cond.md (stzx_16): Use register_operand for operand 0.
[gcc.git] / gcc / graphite-interchange.c
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
3
4 Copyright (C) 2009-2013 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25
26 #ifdef HAVE_cloog
27 #include <isl/aff.h>
28 #include <isl/set.h>
29 #include <isl/map.h>
30 #include <isl/union_map.h>
31 #include <isl/ilp.h>
32 #include <cloog/cloog.h>
33 #include <cloog/isl/domain.h>
34 #endif
35
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tree.h"
39 #include "gimple.h"
40 #include "gimple-iterator.h"
41 #include "tree-ssa-loop.h"
42 #include "dumpfile.h"
43 #include "cfgloop.h"
44 #include "tree-chrec.h"
45 #include "tree-data-ref.h"
46 #include "tree-scalar-evolution.h"
47 #include "sese.h"
48
49 #ifdef HAVE_cloog
50 #include "graphite-poly.h"
51
52 /* XXX isl rewrite following comment */
53 /* Builds a linear expression, of dimension DIM, representing PDR's
54 memory access:
55
56 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
57
58 For an array A[10][20] with two subscript locations s0 and s1, the
59 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
60 corresponds to a memory stride of 20.
61
62 OFFSET is a number of dimensions to prepend before the
63 subscript dimensions: s_0, s_1, ..., s_n.
64
65 Thus, the final linear expression has the following format:
66 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
67 where the expression itself is:
68 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
69
70 static isl_constraint *
71 build_linearized_memory_access (isl_map *map, poly_dr_p pdr)
72 {
73 isl_constraint *res;
74 isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map));
75 unsigned offset, nsubs;
76 int i;
77 isl_int size, subsize;
78
79 res = isl_equality_alloc (ls);
80 isl_int_init (size);
81 isl_int_set_ui (size, 1);
82 isl_int_init (subsize);
83 isl_int_set_ui (subsize, 1);
84
85 nsubs = isl_set_dim (pdr->extent, isl_dim_set);
86 /* -1 for the already included L dimension. */
87 offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs;
88 res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1);
89 /* Go through all subscripts from last to first. First dimension
90 is the alias set, ignore it. */
91 for (i = nsubs - 1; i >= 1; i--)
92 {
93 isl_space *dc;
94 isl_aff *aff;
95
96 res = isl_constraint_set_coefficient (res, isl_dim_out, offset + i, size);
97
98 dc = isl_set_get_space (pdr->extent);
99 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
100 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, i, 1);
101 isl_set_max (pdr->extent, aff, &subsize);
102 isl_aff_free (aff);
103 isl_int_mul (size, size, subsize);
104 }
105
106 isl_int_clear (subsize);
107 isl_int_clear (size);
108
109 return res;
110 }
111
112 /* Set STRIDE to the stride of PDR in memory by advancing by one in
113 the loop at DEPTH. */
114
115 static void
116 pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
117 {
118 poly_bb_p pbb = PDR_PBB (pdr);
119 isl_map *map;
120 isl_set *set;
121 isl_aff *aff;
122 isl_space *dc;
123 isl_constraint *lma, *c;
124 isl_int islstride;
125 graphite_dim_t time_depth;
126 unsigned offset, nt;
127 unsigned i;
128 /* XXX isl rewrite following comments. */
129 /* Builds a partial difference equations and inserts them
130 into pointset powerset polyhedron P. Polyhedron is assumed
131 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
132
133 TIME_DEPTH is the time dimension w.r.t. which we are
134 differentiating.
135 OFFSET represents the number of dimensions between
136 columns t_{time_depth} and t'_{time_depth}.
137 DIM_SCTR is the number of scattering dimensions. It is
138 essentially the dimensionality of the T vector.
139
140 The following equations are inserted into the polyhedron P:
141 | t_1 = t_1'
142 | ...
143 | t_{time_depth-1} = t'_{time_depth-1}
144 | t_{time_depth} = t'_{time_depth} + 1
145 | t_{time_depth+1} = t'_{time_depth + 1}
146 | ...
147 | t_{dim_sctr} = t'_{dim_sctr}. */
148
149 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
150 This is the core part of this alogrithm, since this
151 constraint asks for the memory access stride (difference)
152 between two consecutive points in time dimensions. */
153
154 /* Add equalities:
155 | t1 = t1'
156 | ...
157 | t_{time_depth-1} = t'_{time_depth-1}
158 | t_{time_depth+1} = t'_{time_depth+1}
159 | ...
160 | t_{dim_sctr} = t'_{dim_sctr}
161
162 This means that all the time dimensions are equal except for
163 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
164 step. More to this: we should be careful not to add equalities
165 to the 'coupled' dimensions, which happens when the one dimension
166 is stripmined dimension, and the other dimension corresponds
167 to the point loop inside stripmined dimension. */
168
169 /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
170 ??? [P] not used for PDRs?
171 pdr->extent: [a,S1..nb_subscript]
172 pbb->domain: [P1..nb_param,I1..nb_domain]
173 pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
174 [T] includes local vars (currently unused)
175
176 First we create [P,I] -> [T,a,S]. */
177
178 map = isl_map_flat_range_product (isl_map_copy (pbb->transformed),
179 isl_map_copy (pdr->accesses));
180 /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
181 map = isl_map_add_dims (map, isl_dim_out, 1);
182 /* Build a constraint for "lma[S] - L == 0", effectively calculating
183 L in terms of subscripts. */
184 lma = build_linearized_memory_access (map, pdr);
185 /* And add it to the map, so we now have:
186 [P,I] -> [T,a,S,L] : lma([S]) == L. */
187 map = isl_map_add_constraint (map, lma);
188
189 /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
190 map = isl_map_flat_product (map, isl_map_copy (map));
191
192 /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
193 force L' to be the linear address at T[time_depth] + 1. */
194 time_depth = psct_dynamic_dim (pbb, depth);
195 /* Length of [a,S] plus [L] ... */
196 offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out);
197 /* ... plus [T]. */
198 offset += isl_map_dim (pbb->transformed, isl_dim_out);
199
200 c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map)));
201 c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1);
202 c = isl_constraint_set_coefficient_si (c, isl_dim_out,
203 offset + time_depth, -1);
204 c = isl_constraint_set_constant_si (c, 1);
205 map = isl_map_add_constraint (map, c);
206
207 /* Now we equate most of the T/T' elements (making PITaSL nearly
208 the same is (PITaSL)', except for one dimension, namely for 'depth'
209 (an index into [I]), after translating to index into [T]. Take care
210 to not produce an empty map, which indicates we wanted to equate
211 two dimensions that are already coupled via the above time_depth
212 dimension. Happens with strip mining where several scatter dimension
213 are interdependend. */
214 /* Length of [T]. */
215 nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb);
216 for (i = 0; i < nt; i++)
217 if (i != time_depth)
218 {
219 isl_map *temp = isl_map_equate (isl_map_copy (map),
220 isl_dim_out, i,
221 isl_dim_out, offset + i);
222 if (isl_map_is_empty (temp))
223 isl_map_free (temp);
224 else
225 {
226 isl_map_free (map);
227 map = temp;
228 }
229 }
230
231 /* Now maximize the expression L' - L. */
232 set = isl_map_range (map);
233 dc = isl_set_get_space (set);
234 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
235 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1);
236 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1);
237 isl_int_init (islstride);
238 isl_set_max (set, aff, &islstride);
239 isl_int_get_gmp (islstride, stride);
240 isl_int_clear (islstride);
241 isl_aff_free (aff);
242 isl_set_free (set);
243
244 if (dump_file && (dump_flags & TDF_DETAILS))
245 {
246 gmp_fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d: %Zd ",
247 pbb_index (pbb), PDR_ID (pdr), (int) depth, stride);
248 }
249 }
250
251 /* Sets STRIDES to the sum of all the strides of the data references
252 accessed in LOOP at DEPTH. */
253
254 static void
255 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
256 {
257 int i, j;
258 lst_p l;
259 poly_dr_p pdr;
260 mpz_t s, n;
261
262 mpz_init (s);
263 mpz_init (n);
264
265 FOR_EACH_VEC_ELT (LST_SEQ (loop), j, l)
266 if (LST_LOOP_P (l))
267 memory_strides_in_loop_1 (l, depth, strides);
268 else
269 FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l)), i, pdr)
270 {
271 pdr_stride_in_loop (s, depth, pdr);
272 mpz_set_si (n, PDR_NB_REFS (pdr));
273 mpz_mul (s, s, n);
274 mpz_add (strides, strides, s);
275 }
276
277 mpz_clear (s);
278 mpz_clear (n);
279 }
280
281 /* Sets STRIDES to the sum of all the strides of the data references
282 accessed in LOOP at DEPTH. */
283
284 static void
285 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
286 {
287 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
288 {
289 mpz_set_si (strides, 0);
290 memory_strides_in_loop_1 (loop, depth, strides);
291 }
292 else
293 mpz_set (strides, loop->memory_strides);
294 }
295
296 /* Return true when the interchange of loops LOOP1 and LOOP2 is
297 profitable.
298
299 Example:
300
301 | int a[100][100];
302 |
303 | int
304 | foo (int N)
305 | {
306 | int j;
307 | int i;
308 |
309 | for (i = 0; i < N; i++)
310 | for (j = 0; j < N; j++)
311 | a[j][2 * i] += 1;
312 |
313 | return a[N][12];
314 | }
315
316 The data access A[j][i] is described like this:
317
318 | i j N a s0 s1 1
319 | 0 0 0 1 0 0 -5 = 0
320 | 0 -1 0 0 1 0 0 = 0
321 |-2 0 0 0 0 1 0 = 0
322 | 0 0 0 0 1 0 0 >= 0
323 | 0 0 0 0 0 1 0 >= 0
324 | 0 0 0 0 -1 0 100 >= 0
325 | 0 0 0 0 0 -1 100 >= 0
326
327 The linearized memory access L to A[100][100] is:
328
329 | i j N a s0 s1 1
330 | 0 0 0 0 100 1 0
331
332 TODO: the shown format is not valid as it does not show the fact
333 that the iteration domain "i j" is transformed using the scattering.
334
335 Next, to measure the impact of iterating once in loop "i", we build
336 a maximization problem: first, we add to DR accesses the dimensions
337 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
338 L1 and L2 are the linearized memory access functions.
339
340 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
341 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
342 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
343 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
344 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
345 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
346 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
347 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
348 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
349
350 Then, we generate the polyhedron P2 by interchanging the dimensions
351 (s0, s2), (s1, s3), (L1, L2), (k, i)
352
353 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
354 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
355 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
356 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
357 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
358 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
359 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
360 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
361 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
362
363 then we add to P2 the equality k = i + 1:
364
365 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
366
367 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
368
369 Similarly, to determine the impact of one iteration on loop "j", we
370 interchange (k, j), we add "k = j + 1", and we compute D2 the
371 maximal value of the difference.
372
373 Finally, the profitability test is D1 < D2: if in the outer loop
374 the strides are smaller than in the inner loop, then it is
375 profitable to interchange the loops at DEPTH1 and DEPTH2. */
376
377 static bool
378 lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
379 {
380 mpz_t d1, d2;
381 bool res;
382
383 gcc_assert (depth1 < depth2);
384
385 mpz_init (d1);
386 mpz_init (d2);
387
388 memory_strides_in_loop (nest, depth1, d1);
389 memory_strides_in_loop (nest, depth2, d2);
390
391 res = mpz_cmp (d1, d2) < 0;
392
393 mpz_clear (d1);
394 mpz_clear (d2);
395
396 return res;
397 }
398
399 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
400 scattering and assigns the resulting polyhedron to the transformed
401 scattering. */
402
403 static void
404 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
405 poly_bb_p pbb)
406 {
407 unsigned i;
408 unsigned dim1 = psct_dynamic_dim (pbb, depth1);
409 unsigned dim2 = psct_dynamic_dim (pbb, depth2);
410 isl_space *d = isl_map_get_space (pbb->transformed);
411 isl_space *d1 = isl_space_range (d);
412 unsigned n = isl_space_dim (d1, isl_dim_out);
413 isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n);
414 isl_map *x = isl_map_universe (d2);
415
416 x = isl_map_equate (x, isl_dim_in, dim1, isl_dim_out, dim2);
417 x = isl_map_equate (x, isl_dim_in, dim2, isl_dim_out, dim1);
418
419 for (i = 0; i < n; i++)
420 if (i != dim1 && i != dim2)
421 x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i);
422
423 pbb->transformed = isl_map_apply_range (pbb->transformed, x);
424 }
425
426 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
427 the statements below LST. */
428
429 static void
430 lst_apply_interchange (lst_p lst, int depth1, int depth2)
431 {
432 if (!lst)
433 return;
434
435 if (LST_LOOP_P (lst))
436 {
437 int i;
438 lst_p l;
439
440 FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l)
441 lst_apply_interchange (l, depth1, depth2);
442 }
443 else
444 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
445 }
446
447 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
448 perfect: i.e. there are no sequence of statements. */
449
450 static bool
451 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
452 {
453 if (loop1 == loop2)
454 return true;
455
456 if (!LST_LOOP_P (loop1))
457 return false;
458
459 return LST_SEQ (loop1).length () == 1
460 && lst_perfectly_nested_p (LST_SEQ (loop1)[0], loop2);
461 }
462
463 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
464 nest. To continue the naming tradition, this function is called
465 after perfect_nestify. NEST is set to the perfectly nested loop
466 that is created. BEFORE/AFTER are set to the loops distributed
467 before/after the loop NEST. */
468
469 static void
470 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
471 lst_p *nest, lst_p *after)
472 {
473 poly_bb_p first, last;
474
475 gcc_assert (loop1 && loop2
476 && loop1 != loop2
477 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
478
479 first = LST_PBB (lst_find_first_pbb (loop2));
480 last = LST_PBB (lst_find_last_pbb (loop2));
481
482 *before = copy_lst (loop1);
483 *nest = copy_lst (loop1);
484 *after = copy_lst (loop1);
485
486 lst_remove_all_before_including_pbb (*before, first, false);
487 lst_remove_all_before_including_pbb (*after, last, true);
488
489 lst_remove_all_before_excluding_pbb (*nest, first, true);
490 lst_remove_all_before_excluding_pbb (*nest, last, false);
491
492 if (lst_empty_p (*before))
493 {
494 free_lst (*before);
495 *before = NULL;
496 }
497 if (lst_empty_p (*after))
498 {
499 free_lst (*after);
500 *after = NULL;
501 }
502 if (lst_empty_p (*nest))
503 {
504 free_lst (*nest);
505 *nest = NULL;
506 }
507 }
508
509 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
510 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
511 interchange. */
512
513 static bool
514 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
515 {
516 int depth1 = lst_depth (loop1);
517 int depth2 = lst_depth (loop2);
518 lst_p transformed;
519
520 lst_p before = NULL, nest = NULL, after = NULL;
521
522 if (!lst_perfectly_nested_p (loop1, loop2))
523 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
524
525 if (!lst_interchange_profitable_p (loop2, depth1, depth2))
526 return false;
527
528 lst_apply_interchange (loop2, depth1, depth2);
529
530 /* Sync the transformed LST information and the PBB scatterings
531 before using the scatterings in the data dependence analysis. */
532 if (before || nest || after)
533 {
534 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
535 before, nest, after);
536 lst_update_scattering (transformed);
537 free_lst (transformed);
538 }
539
540 if (graphite_legal_transform (scop))
541 {
542 if (dump_file && (dump_flags & TDF_DETAILS))
543 fprintf (dump_file,
544 "Loops at depths %d and %d will be interchanged.\n",
545 depth1, depth2);
546
547 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
548 lst_insert_in_sequence (before, loop1, true);
549 lst_insert_in_sequence (after, loop1, false);
550
551 if (nest)
552 {
553 lst_replace (loop1, nest);
554 free_lst (loop1);
555 }
556
557 return true;
558 }
559
560 /* Undo the transform. */
561 free_lst (before);
562 free_lst (nest);
563 free_lst (after);
564 lst_apply_interchange (loop2, depth2, depth1);
565 return false;
566 }
567
568 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
569 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
570
571 static bool
572 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
573 lst_p inner_father)
574 {
575 int inner;
576 lst_p loop1, loop2;
577
578 gcc_assert (outer_father
579 && LST_LOOP_P (outer_father)
580 && LST_LOOP_P (LST_SEQ (outer_father)[outer])
581 && inner_father
582 && LST_LOOP_P (inner_father));
583
584 loop1 = LST_SEQ (outer_father)[outer];
585
586 FOR_EACH_VEC_ELT (LST_SEQ (inner_father), inner, loop2)
587 if (LST_LOOP_P (loop2)
588 && (lst_try_interchange_loops (scop, loop1, loop2)
589 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
590 return true;
591
592 return false;
593 }
594
595 /* Interchanges all the loops of LOOP and the loops of its body that
596 are considered profitable to interchange. Return the number of
597 interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
598 points to the next outer loop to be considered for interchange. */
599
600 static int
601 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
602 {
603 lst_p l;
604 int res = 0;
605 int i = 0;
606 lst_p father;
607
608 if (!loop || !LST_LOOP_P (loop))
609 return 0;
610
611 father = LST_LOOP_FATHER (loop);
612 if (father)
613 {
614 while (lst_interchange_select_inner (scop, father, outer, loop))
615 {
616 res++;
617 loop = LST_SEQ (father)[outer];
618 }
619 }
620
621 if (LST_LOOP_P (loop))
622 FOR_EACH_VEC_ELT (LST_SEQ (loop), i, l)
623 if (LST_LOOP_P (l))
624 res += lst_interchange_select_outer (scop, l, i);
625
626 return res;
627 }
628
629 /* Interchanges all the loop depths that are considered profitable for
630 SCOP. Return the number of interchanged loops. */
631
632 int
633 scop_do_interchange (scop_p scop)
634 {
635 int res = lst_interchange_select_outer
636 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
637
638 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
639
640 return res;
641 }
642
643
644 #endif
645