9e8181b62a311e52d385c11787752d564f4cc8d0
[gcc.git] / gcc / graphite-interchange.c
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
3
4 Copyright (C) 2009 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "output.h"
31 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "toplev.h"
35 #include "tree-dump.h"
36 #include "timevar.h"
37 #include "cfgloop.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-pass.h"
42 #include "domwalk.h"
43 #include "value-prof.h"
44 #include "pointer-set.h"
45 #include "gimple.h"
46 #include "params.h"
47
48 #ifdef HAVE_cloog
49 #include "cloog/cloog.h"
50 #include "ppl_c.h"
51 #include "sese.h"
52 #include "graphite-ppl.h"
53 #include "graphite.h"
54 #include "graphite-poly.h"
55
56 /* Builds a linear expression, of dimension DIM, representing PDR's
57 memory access:
58
59 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
60
61 For an array A[10][20] with two subscript locations s0 and s1, the
62 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
63 corresponds to a memory stride of 20.
64
65 OFFSET is a number of dimensions to prepend before the
66 subscript dimensions: s_0, s_1, ..., s_n.
67
68 Thus, the final linear expression has the following format:
69 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
70 where the expression itself is:
71 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
72
73 static ppl_Linear_Expression_t
74 build_linearized_memory_access (ppl_dimension_type offset, poly_dr_p pdr)
75 {
76 ppl_Linear_Expression_t res;
77 ppl_Linear_Expression_t le;
78 ppl_dimension_type i;
79 ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
80 ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
81 Value size, sub_size;
82 graphite_dim_t dim = offset + pdr_dim (pdr);
83
84 ppl_new_Linear_Expression_with_dimension (&res, dim);
85
86 mpz_init (size);
87 mpz_set_si (size, 1);
88 mpz_init (sub_size);
89 mpz_set_si (sub_size, 1);
90
91 for (i = last - 1; i >= first; i--)
92 {
93 ppl_set_coef_gmp (res, i + offset, size);
94
95 ppl_new_Linear_Expression_with_dimension (&le, dim - offset);
96 ppl_set_coef (le, i, 1);
97 ppl_max_for_le_pointset (PDR_ACCESSES (pdr), le, sub_size);
98 mpz_mul (size, size, sub_size);
99 ppl_delete_Linear_Expression (le);
100 }
101
102 mpz_clear (sub_size);
103 mpz_clear (size);
104 return res;
105 }
106
107 /* Builds a partial difference equations and inserts them
108 into pointset powerset polyhedron P. Polyhedron is assumed
109 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
110
111 TIME_DEPTH is the time dimension w.r.t. which we are
112 differentiating.
113 OFFSET represents the number of dimensions between
114 columns t_{time_depth} and t'_{time_depth}.
115 DIM_SCTR is the number of scattering dimensions. It is
116 essentially the dimensionality of the T vector.
117
118 The following equations are inserted into the polyhedron P:
119 | t_1 = t_1'
120 | ...
121 | t_{time_depth-1} = t'_{time_depth-1}
122 | t_{time_depth} = t'_{time_depth} + 1
123 | t_{time_depth+1} = t'_{time_depth + 1}
124 | ...
125 | t_{dim_sctr} = t'_{dim_sctr}. */
126
127 static void
128 build_partial_difference (ppl_Pointset_Powerset_C_Polyhedron_t *p,
129 ppl_dimension_type time_depth,
130 ppl_dimension_type offset,
131 ppl_dimension_type dim_sctr)
132 {
133 ppl_Constraint_t new_cstr;
134 ppl_Linear_Expression_t le;
135 ppl_dimension_type i;
136 ppl_dimension_type dim;
137 ppl_Pointset_Powerset_C_Polyhedron_t temp;
138
139 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
140 This is the core part of this alogrithm, since this
141 constraint asks for the memory access stride (difference)
142 between two consecutive points in time dimensions. */
143
144 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*p, &dim);
145 ppl_new_Linear_Expression_with_dimension (&le, dim);
146 ppl_set_coef (le, time_depth, 1);
147 ppl_set_coef (le, time_depth + offset, -1);
148 ppl_set_inhomogeneous (le, 1);
149 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
150 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
151 ppl_delete_Linear_Expression (le);
152 ppl_delete_Constraint (new_cstr);
153
154 /* Add equalities:
155 | t1 = t1'
156 | ...
157 | t_{time_depth-1} = t'_{time_depth-1}
158 | t_{time_depth+1} = t'_{time_depth+1}
159 | ...
160 | t_{dim_sctr} = t'_{dim_sctr}
161
162 This means that all the time dimensions are equal except for
163 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
164 step. More to this: we should be carefull not to add equalities
165 to the 'coupled' dimensions, which happens when the one dimension
166 is stripmined dimension, and the other dimension corresponds
167 to the point loop inside stripmined dimension. */
168
169 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
170
171 for (i = 0; i < dim_sctr; i++)
172 if (i != time_depth)
173 {
174 ppl_new_Linear_Expression_with_dimension (&le, dim);
175 ppl_set_coef (le, i, 1);
176 ppl_set_coef (le, i + offset, -1);
177 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
178 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (temp, new_cstr);
179
180 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp))
181 {
182 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
183 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
184 }
185 else
186 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
187 ppl_delete_Linear_Expression (le);
188 ppl_delete_Constraint (new_cstr);
189 }
190
191 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
192 }
193
194
195 /* Set STRIDE to the stride of PDR in memory by advancing by one in
196 the loop at DEPTH. */
197
198 static void
199 pdr_stride_in_loop (Value stride, graphite_dim_t depth, poly_dr_p pdr)
200 {
201 ppl_dimension_type time_depth;
202 ppl_Linear_Expression_t le, lma;
203 ppl_Constraint_t new_cstr;
204 ppl_dimension_type i, *map;
205 ppl_Pointset_Powerset_C_Polyhedron_t p1, p2, sctr;
206 graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr) + 1;
207 poly_bb_p pbb = PDR_PBB (pdr);
208 ppl_dimension_type offset = pbb_nb_scattering_transform (pbb)
209 + pbb_nb_local_vars (pbb)
210 + pbb_dim_iter_domain (pbb);
211 ppl_dimension_type offsetg = offset + pbb_nb_params (pbb);
212 ppl_dimension_type dim_sctr = pbb_nb_scattering_transform (pbb)
213 + pbb_nb_local_vars (pbb);
214 ppl_dimension_type dim_L1 = offset + offsetg + 2 * nb_subscripts;
215 ppl_dimension_type dim_L2 = offset + offsetg + 2 * nb_subscripts + 1;
216 ppl_dimension_type new_dim = offset + offsetg + 2 * nb_subscripts + 2;
217
218 /* The resulting polyhedron should have the following format:
219 T|I|T'|I'|G|S|S'|l1|l2
220 where:
221 | T = t_1..t_{dim_sctr}
222 | I = i_1..i_{dim_iter_domain}
223 | T'= t'_1..t'_{dim_sctr}
224 | I'= i'_1..i'_{dim_iter_domain}
225 | G = g_1..g_{nb_params}
226 | S = s_1..s_{nb_subscripts}
227 | S'= s'_1..s'_{nb_subscripts}
228 | l1 and l2 are scalars.
229
230 Some invariants:
231 offset = dim_sctr + dim_iter_domain + nb_local_vars
232 offsetg = dim_sctr + dim_iter_domain + nb_local_vars + nb_params. */
233
234 /* Construct the T|I|0|0|G|0|0|0|0 part. */
235 {
236 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
237 (&sctr, PBB_TRANSFORMED_SCATTERING (pbb));
238 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
239 (sctr, 2 * nb_subscripts + 2);
240 ppl_insert_dimensions_pointset (sctr, offset, offset);
241 }
242
243 /* Construct the 0|I|0|0|G|S|0|0|0 part. */
244 {
245 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
246 (&p1, PDR_ACCESSES (pdr));
247 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
248 (p1, nb_subscripts + 2);
249 ppl_insert_dimensions_pointset (p1, 0, dim_sctr);
250 ppl_insert_dimensions_pointset (p1, offset, offset);
251 }
252
253 /* Construct the 0|0|0|0|0|S|0|l1|0 part. */
254 {
255 lma = build_linearized_memory_access (offset + dim_sctr, pdr);
256 ppl_set_coef (lma, dim_L1, -1);
257 ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
258 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
259 ppl_delete_Linear_Expression (lma);
260 ppl_delete_Constraint (new_cstr);
261 }
262
263 /* Now intersect all the parts to get the polyhedron P1:
264 T|I|0|0|G|0|0|0 |0
265 0|I|0|0|G|S|0|0 |0
266 0|0|0|0|0|S|0|l1|0
267 ------------------
268 T|I|0|0|G|S|0|l1|0. */
269
270 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, sctr);
271 ppl_delete_Pointset_Powerset_C_Polyhedron (sctr);
272
273 /* Build P2, which would have the following form:
274 0|0|T'|I'|G|0|S'|0|l2
275
276 P2 is built, by remapping the P1 polyhedron:
277 T|I|0|0|G|S|0|l1|0
278
279 using the following mapping:
280 T->T'
281 I->I'
282 S->S'
283 l1->l2. */
284 {
285 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
286 (&p2, p1);
287
288 map = ppl_new_id_map (new_dim);
289
290 /* TI -> T'I'. */
291 for (i = 0; i < offset; i++)
292 ppl_interchange (map, i, i + offset);
293
294 /* l1 -> l2. */
295 ppl_interchange (map, dim_L1, dim_L2);
296
297 /* S -> S'. */
298 for (i = 0; i < nb_subscripts; i++)
299 ppl_interchange (map, offset + offsetg + i,
300 offset + offsetg + nb_subscripts + i);
301
302 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
303 free (map);
304 }
305
306 time_depth = psct_dynamic_dim (pbb, depth);
307
308 /* P1 = P1 inter P2. */
309 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
310 build_partial_difference (&p1, time_depth, offset, dim_sctr);
311
312 /* Maximise the expression L2 - L1. */
313 {
314 ppl_new_Linear_Expression_with_dimension (&le, new_dim);
315 ppl_set_coef (le, dim_L2, 1);
316 ppl_set_coef (le, dim_L1, -1);
317 ppl_max_for_le_pointset (p1, le, stride);
318 }
319
320 if (dump_file && (dump_flags & TDF_DETAILS))
321 {
322 char *str;
323 void (*gmp_free) (void *, size_t);
324
325 fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d:",
326 pbb_index (pbb), PDR_ID (pdr), (int) depth);
327 str = mpz_get_str (0, 10, stride);
328 fprintf (dump_file, " %s ", str);
329 mp_get_memory_functions (NULL, NULL, &gmp_free);
330 (*gmp_free) (str, strlen (str) + 1);
331 }
332
333 ppl_delete_Pointset_Powerset_C_Polyhedron (p1);
334 ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
335 ppl_delete_Linear_Expression (le);
336 }
337
338
339 /* Sets STRIDES to the sum of all the strides of the data references
340 accessed in LOOP at DEPTH. */
341
342 static void
343 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, Value strides)
344 {
345 int i, j;
346 lst_p l;
347 poly_dr_p pdr;
348 Value s, n;
349
350 mpz_init (s);
351 mpz_init (n);
352
353 for (j = 0; VEC_iterate (lst_p, LST_SEQ (loop), j, l); j++)
354 if (LST_LOOP_P (l))
355 memory_strides_in_loop_1 (l, depth, strides);
356 else
357 for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (LST_PBB (l)), i, pdr); i++)
358 {
359 pdr_stride_in_loop (s, depth, pdr);
360 mpz_set_si (n, PDR_NB_REFS (pdr));
361 mpz_mul (s, s, n);
362 mpz_add (strides, strides, s);
363 }
364
365 mpz_clear (s);
366 mpz_clear (n);
367 }
368
369 /* Sets STRIDES to the sum of all the strides of the data references
370 accessed in LOOP at DEPTH. */
371
372 static void
373 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, Value strides)
374 {
375 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
376 {
377 mpz_set_si (strides, 0);
378 memory_strides_in_loop_1 (loop, depth, strides);
379 }
380 else
381 mpz_set (strides, loop->memory_strides);
382 }
383
384 /* Return true when the interchange of loops LOOP1 and LOOP2 is
385 profitable.
386
387 Example:
388
389 | int a[100][100];
390 |
391 | int
392 | foo (int N)
393 | {
394 | int j;
395 | int i;
396 |
397 | for (i = 0; i < N; i++)
398 | for (j = 0; j < N; j++)
399 | a[j][2 * i] += 1;
400 |
401 | return a[N][12];
402 | }
403
404 The data access A[j][i] is described like this:
405
406 | i j N a s0 s1 1
407 | 0 0 0 1 0 0 -5 = 0
408 | 0 -1 0 0 1 0 0 = 0
409 |-2 0 0 0 0 1 0 = 0
410 | 0 0 0 0 1 0 0 >= 0
411 | 0 0 0 0 0 1 0 >= 0
412 | 0 0 0 0 -1 0 100 >= 0
413 | 0 0 0 0 0 -1 100 >= 0
414
415 The linearized memory access L to A[100][100] is:
416
417 | i j N a s0 s1 1
418 | 0 0 0 0 100 1 0
419
420 TODO: the shown format is not valid as it does not show the fact
421 that the iteration domain "i j" is transformed using the scattering.
422
423 Next, to measure the impact of iterating once in loop "i", we build
424 a maximization problem: first, we add to DR accesses the dimensions
425 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
426 L1 and L2 are the linearized memory access functions.
427
428 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
429 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
430 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
431 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
432 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
433 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
434 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
435 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
436 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
437
438 Then, we generate the polyhedron P2 by interchanging the dimensions
439 (s0, s2), (s1, s3), (L1, L2), (k, i)
440
441 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
442 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
443 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
444 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
445 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
446 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
447 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
448 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
449 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
450
451 then we add to P2 the equality k = i + 1:
452
453 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
454
455 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
456
457 Similarly, to determine the impact of one iteration on loop "j", we
458 interchange (k, j), we add "k = j + 1", and we compute D2 the
459 maximal value of the difference.
460
461 Finally, the profitability test is D1 < D2: if in the outer loop
462 the strides are smaller than in the inner loop, then it is
463 profitable to interchange the loops at DEPTH1 and DEPTH2. */
464
465 static bool
466 lst_interchange_profitable_p (lst_p loop1, lst_p loop2)
467 {
468 Value d1, d2;
469 bool res;
470
471 gcc_assert (loop1 && loop2
472 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2)
473 && lst_depth (loop1) < lst_depth (loop2));
474
475 mpz_init (d1);
476 mpz_init (d2);
477
478 memory_strides_in_loop (loop1, lst_depth (loop1), d1);
479 memory_strides_in_loop (loop2, lst_depth (loop2), d2);
480
481 res = value_lt (d1, d2);
482
483 mpz_clear (d1);
484 mpz_clear (d2);
485
486 return res;
487 }
488
489 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
490 scattering and assigns the resulting polyhedron to the transformed
491 scattering. */
492
493 static void
494 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
495 poly_bb_p pbb)
496 {
497 ppl_dimension_type i, dim;
498 ppl_dimension_type *map;
499 ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
500 ppl_dimension_type dim1 = psct_dynamic_dim (pbb, depth1);
501 ppl_dimension_type dim2 = psct_dynamic_dim (pbb, depth2);
502
503 ppl_Polyhedron_space_dimension (poly, &dim);
504 map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
505
506 for (i = 0; i < dim; i++)
507 map[i] = i;
508
509 map[dim1] = dim2;
510 map[dim2] = dim1;
511
512 ppl_Polyhedron_map_space_dimensions (poly, map, dim);
513 free (map);
514 }
515
516 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
517 the statements below LST. */
518
519 static void
520 lst_apply_interchange (lst_p lst, int depth1, int depth2)
521 {
522 if (!lst)
523 return;
524
525 if (LST_LOOP_P (lst))
526 {
527 int i;
528 lst_p l;
529
530 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
531 lst_apply_interchange (l, depth1, depth2);
532 }
533 else
534 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
535 }
536
537 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
538 perfect: i.e. there are no sequence of statements. */
539
540 static bool
541 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
542 {
543 if (loop1 == loop2)
544 return true;
545
546 if (!LST_LOOP_P (loop1))
547 return false;
548
549 return VEC_length (lst_p, LST_SEQ (loop1)) == 1
550 && lst_perfectly_nested_p (VEC_index (lst_p, LST_SEQ (loop1), 0), loop2);
551 }
552
553 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
554 nest. To continue the naming tradition, this function is called
555 after perfect_nestify. NEST is set to the perfectly nested loop
556 that is created. BEFORE/AFTER are set to the loops distributed
557 before/after the loop NEST. */
558
559 static void
560 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
561 lst_p *nest, lst_p *after)
562 {
563 poly_bb_p first, last;
564
565 gcc_assert (loop1 && loop2
566 && loop1 != loop2
567 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
568
569 first = LST_PBB (lst_find_first_pbb (loop2));
570 last = LST_PBB (lst_find_last_pbb (loop2));
571
572 *before = copy_lst (loop1);
573 *nest = copy_lst (loop1);
574 *after = copy_lst (loop1);
575
576 lst_remove_all_before_including_pbb (*before, first, false);
577 lst_remove_all_before_including_pbb (*after, last, true);
578
579 lst_remove_all_before_excluding_pbb (*nest, first, true);
580 lst_remove_all_before_excluding_pbb (*nest, last, false);
581
582 if (lst_empty_p (*before))
583 {
584 free_lst (*before);
585 *before = NULL;
586 }
587 if (lst_empty_p (*after))
588 {
589 free_lst (*after);
590 *after = NULL;
591 }
592 if (lst_empty_p (*nest))
593 {
594 free_lst (*nest);
595 *nest = NULL;
596 }
597 }
598
599 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
600 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
601 interchange. */
602
603 static bool
604 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
605 {
606 int depth1 = lst_depth (loop1);
607 int depth2 = lst_depth (loop2);
608 lst_p transformed;
609
610 lst_p before = NULL, nest = NULL, after = NULL;
611
612 if (!lst_interchange_profitable_p (loop1, loop2))
613 return false;
614
615 if (!lst_perfectly_nested_p (loop1, loop2))
616 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
617
618 lst_apply_interchange (loop2, depth1, depth2);
619
620 /* Sync the transformed LST information and the PBB scatterings
621 before using the scatterings in the data dependence analysis. */
622 if (before || nest || after)
623 {
624 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
625 before, nest, after);
626 lst_update_scattering (transformed);
627 free_lst (transformed);
628 }
629
630 if (graphite_legal_transform (scop))
631 {
632 if (dump_file && (dump_flags & TDF_DETAILS))
633 fprintf (dump_file,
634 "Loops at depths %d and %d will be interchanged.\n",
635 depth1, depth2);
636
637 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
638 lst_insert_in_sequence (before, loop1, true);
639 lst_insert_in_sequence (after, loop1, false);
640
641 if (nest)
642 {
643 lst_replace (loop1, nest);
644 free_lst (loop1);
645 }
646
647 return true;
648 }
649
650 /* Undo the transform. */
651 free_lst (before);
652 free_lst (nest);
653 free_lst (after);
654 lst_apply_interchange (loop2, depth2, depth1);
655 return false;
656 }
657
658 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
659 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
660
661 static bool
662 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
663 lst_p inner_father)
664 {
665 int inner;
666 lst_p loop1, loop2;
667
668 gcc_assert (outer_father
669 && LST_LOOP_P (outer_father)
670 && LST_LOOP_P (VEC_index (lst_p, LST_SEQ (outer_father), outer))
671 && inner_father
672 && LST_LOOP_P (inner_father));
673
674 loop1 = VEC_index (lst_p, LST_SEQ (outer_father), outer);
675
676 for (inner = 0; VEC_iterate (lst_p, LST_SEQ (inner_father), inner, loop2); inner++)
677 if (LST_LOOP_P (loop2)
678 && (lst_try_interchange_loops (scop, loop1, loop2)
679 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
680 return true;
681
682 return false;
683 }
684
685 /* Interchanges all the loops of LOOP and the loops of its body that
686 are considered profitable to interchange. Return true if it did
687 interchanged some loops. OUTER is the index in LST_SEQ (LOOP) that
688 points to the next outer loop to be considered for interchange. */
689
690 static bool
691 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
692 {
693 lst_p l;
694 bool res = false;
695 int i = 0;
696 lst_p father;
697
698 if (!loop || !LST_LOOP_P (loop))
699 return false;
700
701 father = LST_LOOP_FATHER (loop);
702 if (father)
703 {
704 while (lst_interchange_select_inner (scop, father, outer, loop))
705 {
706 res = true;
707 loop = VEC_index (lst_p, LST_SEQ (father), outer);
708 }
709 }
710
711 if (LST_LOOP_P (loop))
712 for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l); i++)
713 if (LST_LOOP_P (l))
714 res |= lst_interchange_select_outer (scop, l, i);
715
716 return res;
717 }
718
719 /* Interchanges all the loop depths that are considered profitable for SCOP. */
720
721 bool
722 scop_do_interchange (scop_p scop)
723 {
724 bool res = lst_interchange_select_outer
725 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
726
727 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
728
729 return res;
730 }
731
732
733 #endif
734