decl.c (gnat_to_gnu_entity): For a derived untagged type that renames discriminants...
[gcc.git] / gcc / graphite-interchange.c
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
3
4 Copyright (C) 2009-2014 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25
26 #ifdef HAVE_isl
27 #include <isl/aff.h>
28 #include <isl/set.h>
29 #include <isl/map.h>
30 #include <isl/union_map.h>
31 #include <isl/ilp.h>
32 #include <isl/val.h>
33 #if defined(__cplusplus)
34 extern "C" {
35 #endif
36 #include <isl/val_gmp.h>
37 #if defined(__cplusplus)
38 }
39 #endif
40 #ifdef HAVE_cloog
41 #include <cloog/cloog.h>
42 #include <cloog/isl/domain.h>
43 #endif
44 #endif
45
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tree.h"
49 #include "predict.h"
50 #include "vec.h"
51 #include "hashtab.h"
52 #include "hash-set.h"
53 #include "machmode.h"
54 #include "tm.h"
55 #include "hard-reg-set.h"
56 #include "input.h"
57 #include "function.h"
58 #include "dominance.h"
59 #include "cfg.h"
60 #include "basic-block.h"
61 #include "tree-ssa-alias.h"
62 #include "internal-fn.h"
63 #include "gimple-expr.h"
64 #include "is-a.h"
65 #include "gimple.h"
66 #include "gimple-iterator.h"
67 #include "tree-ssa-loop.h"
68 #include "dumpfile.h"
69 #include "cfgloop.h"
70 #include "tree-chrec.h"
71 #include "tree-data-ref.h"
72 #include "tree-scalar-evolution.h"
73 #include "sese.h"
74
75 #ifdef HAVE_isl
76 #include "graphite-poly.h"
77
78 /* XXX isl rewrite following comment */
79 /* Builds a linear expression, of dimension DIM, representing PDR's
80 memory access:
81
82 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
83
84 For an array A[10][20] with two subscript locations s0 and s1, the
85 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
86 corresponds to a memory stride of 20.
87
88 OFFSET is a number of dimensions to prepend before the
89 subscript dimensions: s_0, s_1, ..., s_n.
90
91 Thus, the final linear expression has the following format:
92 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
93 where the expression itself is:
94 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
95
96 static isl_constraint *
97 build_linearized_memory_access (isl_map *map, poly_dr_p pdr)
98 {
99 isl_constraint *res;
100 isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map));
101 unsigned offset, nsubs;
102 int i;
103 isl_ctx *ctx;
104
105 isl_val *size, *subsize, *size1;
106
107 res = isl_equality_alloc (ls);
108 ctx = isl_local_space_get_ctx (ls);
109 size = isl_val_int_from_ui (ctx, 1);
110
111 nsubs = isl_set_dim (pdr->extent, isl_dim_set);
112 /* -1 for the already included L dimension. */
113 offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs;
114 res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1);
115 /* Go through all subscripts from last to first. First dimension
116 is the alias set, ignore it. */
117 for (i = nsubs - 1; i >= 1; i--)
118 {
119 isl_space *dc;
120 isl_aff *aff;
121
122 size1 = isl_val_copy (size);
123 res = isl_constraint_set_coefficient_val (res, isl_dim_out, offset + i, size);
124 dc = isl_set_get_space (pdr->extent);
125 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
126 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, i, 1);
127 subsize = isl_set_max_val (pdr->extent, aff);
128 isl_aff_free (aff);
129 size = isl_val_mul (size1, subsize);
130 }
131
132 isl_val_free (size);
133
134 return res;
135 }
136
137 /* Set STRIDE to the stride of PDR in memory by advancing by one in
138 the loop at DEPTH. */
139
140 static void
141 pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
142 {
143 poly_bb_p pbb = PDR_PBB (pdr);
144 isl_map *map;
145 isl_set *set;
146 isl_aff *aff;
147 isl_space *dc;
148 isl_constraint *lma, *c;
149 isl_val *islstride;
150 graphite_dim_t time_depth;
151 unsigned offset, nt;
152 unsigned i;
153 /* XXX isl rewrite following comments. */
154 /* Builds a partial difference equations and inserts them
155 into pointset powerset polyhedron P. Polyhedron is assumed
156 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
157
158 TIME_DEPTH is the time dimension w.r.t. which we are
159 differentiating.
160 OFFSET represents the number of dimensions between
161 columns t_{time_depth} and t'_{time_depth}.
162 DIM_SCTR is the number of scattering dimensions. It is
163 essentially the dimensionality of the T vector.
164
165 The following equations are inserted into the polyhedron P:
166 | t_1 = t_1'
167 | ...
168 | t_{time_depth-1} = t'_{time_depth-1}
169 | t_{time_depth} = t'_{time_depth} + 1
170 | t_{time_depth+1} = t'_{time_depth + 1}
171 | ...
172 | t_{dim_sctr} = t'_{dim_sctr}. */
173
174 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
175 This is the core part of this alogrithm, since this
176 constraint asks for the memory access stride (difference)
177 between two consecutive points in time dimensions. */
178
179 /* Add equalities:
180 | t1 = t1'
181 | ...
182 | t_{time_depth-1} = t'_{time_depth-1}
183 | t_{time_depth+1} = t'_{time_depth+1}
184 | ...
185 | t_{dim_sctr} = t'_{dim_sctr}
186
187 This means that all the time dimensions are equal except for
188 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
189 step. More to this: we should be careful not to add equalities
190 to the 'coupled' dimensions, which happens when the one dimension
191 is stripmined dimension, and the other dimension corresponds
192 to the point loop inside stripmined dimension. */
193
194 /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
195 ??? [P] not used for PDRs?
196 pdr->extent: [a,S1..nb_subscript]
197 pbb->domain: [P1..nb_param,I1..nb_domain]
198 pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
199 [T] includes local vars (currently unused)
200
201 First we create [P,I] -> [T,a,S]. */
202
203 map = isl_map_flat_range_product (isl_map_copy (pbb->transformed),
204 isl_map_copy (pdr->accesses));
205 /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
206 map = isl_map_add_dims (map, isl_dim_out, 1);
207 /* Build a constraint for "lma[S] - L == 0", effectively calculating
208 L in terms of subscripts. */
209 lma = build_linearized_memory_access (map, pdr);
210 /* And add it to the map, so we now have:
211 [P,I] -> [T,a,S,L] : lma([S]) == L. */
212 map = isl_map_add_constraint (map, lma);
213
214 /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
215 map = isl_map_flat_product (map, isl_map_copy (map));
216
217 /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
218 force L' to be the linear address at T[time_depth] + 1. */
219 time_depth = psct_dynamic_dim (pbb, depth);
220 /* Length of [a,S] plus [L] ... */
221 offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out);
222 /* ... plus [T]. */
223 offset += isl_map_dim (pbb->transformed, isl_dim_out);
224
225 c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map)));
226 c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1);
227 c = isl_constraint_set_coefficient_si (c, isl_dim_out,
228 offset + time_depth, -1);
229 c = isl_constraint_set_constant_si (c, 1);
230 map = isl_map_add_constraint (map, c);
231
232 /* Now we equate most of the T/T' elements (making PITaSL nearly
233 the same is (PITaSL)', except for one dimension, namely for 'depth'
234 (an index into [I]), after translating to index into [T]. Take care
235 to not produce an empty map, which indicates we wanted to equate
236 two dimensions that are already coupled via the above time_depth
237 dimension. Happens with strip mining where several scatter dimension
238 are interdependend. */
239 /* Length of [T]. */
240 nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb);
241 for (i = 0; i < nt; i++)
242 if (i != time_depth)
243 {
244 isl_map *temp = isl_map_equate (isl_map_copy (map),
245 isl_dim_out, i,
246 isl_dim_out, offset + i);
247 if (isl_map_is_empty (temp))
248 isl_map_free (temp);
249 else
250 {
251 isl_map_free (map);
252 map = temp;
253 }
254 }
255
256 /* Now maximize the expression L' - L. */
257 set = isl_map_range (map);
258 dc = isl_set_get_space (set);
259 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
260 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1);
261 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1);
262 islstride = isl_set_max_val (set, aff);
263 isl_val_get_num_gmp (islstride, stride);
264 isl_val_free (islstride);
265 isl_aff_free (aff);
266 isl_set_free (set);
267
268 if (dump_file && (dump_flags & TDF_DETAILS))
269 {
270 gmp_fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d: %Zd ",
271 pbb_index (pbb), PDR_ID (pdr), (int) depth, stride);
272 }
273 }
274
275 /* Sets STRIDES to the sum of all the strides of the data references
276 accessed in LOOP at DEPTH. */
277
278 static void
279 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
280 {
281 int i, j;
282 lst_p l;
283 poly_dr_p pdr;
284 mpz_t s, n;
285
286 mpz_init (s);
287 mpz_init (n);
288
289 FOR_EACH_VEC_ELT (LST_SEQ (loop), j, l)
290 if (LST_LOOP_P (l))
291 memory_strides_in_loop_1 (l, depth, strides);
292 else
293 FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l)), i, pdr)
294 {
295 pdr_stride_in_loop (s, depth, pdr);
296 mpz_set_si (n, PDR_NB_REFS (pdr));
297 mpz_mul (s, s, n);
298 mpz_add (strides, strides, s);
299 }
300
301 mpz_clear (s);
302 mpz_clear (n);
303 }
304
305 /* Sets STRIDES to the sum of all the strides of the data references
306 accessed in LOOP at DEPTH. */
307
308 static void
309 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
310 {
311 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
312 {
313 mpz_set_si (strides, 0);
314 memory_strides_in_loop_1 (loop, depth, strides);
315 }
316 else
317 mpz_set (strides, loop->memory_strides);
318 }
319
320 /* Return true when the interchange of loops LOOP1 and LOOP2 is
321 profitable.
322
323 Example:
324
325 | int a[100][100];
326 |
327 | int
328 | foo (int N)
329 | {
330 | int j;
331 | int i;
332 |
333 | for (i = 0; i < N; i++)
334 | for (j = 0; j < N; j++)
335 | a[j][2 * i] += 1;
336 |
337 | return a[N][12];
338 | }
339
340 The data access A[j][i] is described like this:
341
342 | i j N a s0 s1 1
343 | 0 0 0 1 0 0 -5 = 0
344 | 0 -1 0 0 1 0 0 = 0
345 |-2 0 0 0 0 1 0 = 0
346 | 0 0 0 0 1 0 0 >= 0
347 | 0 0 0 0 0 1 0 >= 0
348 | 0 0 0 0 -1 0 100 >= 0
349 | 0 0 0 0 0 -1 100 >= 0
350
351 The linearized memory access L to A[100][100] is:
352
353 | i j N a s0 s1 1
354 | 0 0 0 0 100 1 0
355
356 TODO: the shown format is not valid as it does not show the fact
357 that the iteration domain "i j" is transformed using the scattering.
358
359 Next, to measure the impact of iterating once in loop "i", we build
360 a maximization problem: first, we add to DR accesses the dimensions
361 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
362 L1 and L2 are the linearized memory access functions.
363
364 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
365 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
366 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
367 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
368 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
369 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
370 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
371 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
372 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
373
374 Then, we generate the polyhedron P2 by interchanging the dimensions
375 (s0, s2), (s1, s3), (L1, L2), (k, i)
376
377 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
378 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
379 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
380 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
381 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
382 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
383 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
384 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
385 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
386
387 then we add to P2 the equality k = i + 1:
388
389 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
390
391 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
392
393 Similarly, to determine the impact of one iteration on loop "j", we
394 interchange (k, j), we add "k = j + 1", and we compute D2 the
395 maximal value of the difference.
396
397 Finally, the profitability test is D1 < D2: if in the outer loop
398 the strides are smaller than in the inner loop, then it is
399 profitable to interchange the loops at DEPTH1 and DEPTH2. */
400
401 static bool
402 lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
403 {
404 mpz_t d1, d2;
405 bool res;
406
407 gcc_assert (depth1 < depth2);
408
409 mpz_init (d1);
410 mpz_init (d2);
411
412 memory_strides_in_loop (nest, depth1, d1);
413 memory_strides_in_loop (nest, depth2, d2);
414
415 res = mpz_cmp (d1, d2) < 0;
416
417 mpz_clear (d1);
418 mpz_clear (d2);
419
420 return res;
421 }
422
423 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
424 scattering and assigns the resulting polyhedron to the transformed
425 scattering. */
426
427 static void
428 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
429 poly_bb_p pbb)
430 {
431 unsigned i;
432 unsigned dim1 = psct_dynamic_dim (pbb, depth1);
433 unsigned dim2 = psct_dynamic_dim (pbb, depth2);
434 isl_space *d = isl_map_get_space (pbb->transformed);
435 isl_space *d1 = isl_space_range (d);
436 unsigned n = isl_space_dim (d1, isl_dim_out);
437 isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n);
438 isl_map *x = isl_map_universe (d2);
439
440 x = isl_map_equate (x, isl_dim_in, dim1, isl_dim_out, dim2);
441 x = isl_map_equate (x, isl_dim_in, dim2, isl_dim_out, dim1);
442
443 for (i = 0; i < n; i++)
444 if (i != dim1 && i != dim2)
445 x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i);
446
447 pbb->transformed = isl_map_apply_range (pbb->transformed, x);
448 }
449
450 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
451 the statements below LST. */
452
453 static void
454 lst_apply_interchange (lst_p lst, int depth1, int depth2)
455 {
456 if (!lst)
457 return;
458
459 if (LST_LOOP_P (lst))
460 {
461 int i;
462 lst_p l;
463
464 FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l)
465 lst_apply_interchange (l, depth1, depth2);
466 }
467 else
468 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
469 }
470
471 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
472 perfect: i.e. there are no sequence of statements. */
473
474 static bool
475 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
476 {
477 if (loop1 == loop2)
478 return true;
479
480 if (!LST_LOOP_P (loop1))
481 return false;
482
483 return LST_SEQ (loop1).length () == 1
484 && lst_perfectly_nested_p (LST_SEQ (loop1)[0], loop2);
485 }
486
487 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
488 nest. To continue the naming tradition, this function is called
489 after perfect_nestify. NEST is set to the perfectly nested loop
490 that is created. BEFORE/AFTER are set to the loops distributed
491 before/after the loop NEST. */
492
493 static void
494 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
495 lst_p *nest, lst_p *after)
496 {
497 poly_bb_p first, last;
498
499 gcc_assert (loop1 && loop2
500 && loop1 != loop2
501 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
502
503 first = LST_PBB (lst_find_first_pbb (loop2));
504 last = LST_PBB (lst_find_last_pbb (loop2));
505
506 *before = copy_lst (loop1);
507 *nest = copy_lst (loop1);
508 *after = copy_lst (loop1);
509
510 lst_remove_all_before_including_pbb (*before, first, false);
511 lst_remove_all_before_including_pbb (*after, last, true);
512
513 lst_remove_all_before_excluding_pbb (*nest, first, true);
514 lst_remove_all_before_excluding_pbb (*nest, last, false);
515
516 if (lst_empty_p (*before))
517 {
518 free_lst (*before);
519 *before = NULL;
520 }
521 if (lst_empty_p (*after))
522 {
523 free_lst (*after);
524 *after = NULL;
525 }
526 if (lst_empty_p (*nest))
527 {
528 free_lst (*nest);
529 *nest = NULL;
530 }
531 }
532
533 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
534 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
535 interchange. */
536
537 static bool
538 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
539 {
540 int depth1 = lst_depth (loop1);
541 int depth2 = lst_depth (loop2);
542 lst_p transformed;
543
544 lst_p before = NULL, nest = NULL, after = NULL;
545
546 if (!lst_perfectly_nested_p (loop1, loop2))
547 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
548
549 if (!lst_interchange_profitable_p (loop2, depth1, depth2))
550 return false;
551
552 lst_apply_interchange (loop2, depth1, depth2);
553
554 /* Sync the transformed LST information and the PBB scatterings
555 before using the scatterings in the data dependence analysis. */
556 if (before || nest || after)
557 {
558 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
559 before, nest, after);
560 lst_update_scattering (transformed);
561 free_lst (transformed);
562 }
563
564 if (graphite_legal_transform (scop))
565 {
566 if (dump_file && (dump_flags & TDF_DETAILS))
567 fprintf (dump_file,
568 "Loops at depths %d and %d will be interchanged.\n",
569 depth1, depth2);
570
571 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
572 lst_insert_in_sequence (before, loop1, true);
573 lst_insert_in_sequence (after, loop1, false);
574
575 if (nest)
576 {
577 lst_replace (loop1, nest);
578 free_lst (loop1);
579 }
580
581 return true;
582 }
583
584 /* Undo the transform. */
585 free_lst (before);
586 free_lst (nest);
587 free_lst (after);
588 lst_apply_interchange (loop2, depth2, depth1);
589 return false;
590 }
591
592 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
593 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
594
595 static bool
596 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
597 lst_p inner_father)
598 {
599 int inner;
600 lst_p loop1, loop2;
601
602 gcc_assert (outer_father
603 && LST_LOOP_P (outer_father)
604 && LST_LOOP_P (LST_SEQ (outer_father)[outer])
605 && inner_father
606 && LST_LOOP_P (inner_father));
607
608 loop1 = LST_SEQ (outer_father)[outer];
609
610 FOR_EACH_VEC_ELT (LST_SEQ (inner_father), inner, loop2)
611 if (LST_LOOP_P (loop2)
612 && (lst_try_interchange_loops (scop, loop1, loop2)
613 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
614 return true;
615
616 return false;
617 }
618
619 /* Interchanges all the loops of LOOP and the loops of its body that
620 are considered profitable to interchange. Return the number of
621 interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
622 points to the next outer loop to be considered for interchange. */
623
624 static int
625 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
626 {
627 lst_p l;
628 int res = 0;
629 int i = 0;
630 lst_p father;
631
632 if (!loop || !LST_LOOP_P (loop))
633 return 0;
634
635 father = LST_LOOP_FATHER (loop);
636 if (father)
637 {
638 while (lst_interchange_select_inner (scop, father, outer, loop))
639 {
640 res++;
641 loop = LST_SEQ (father)[outer];
642 }
643 }
644
645 if (LST_LOOP_P (loop))
646 FOR_EACH_VEC_ELT (LST_SEQ (loop), i, l)
647 if (LST_LOOP_P (l))
648 res += lst_interchange_select_outer (scop, l, i);
649
650 return res;
651 }
652
653 /* Interchanges all the loop depths that are considered profitable for
654 SCOP. Return the number of interchanged loops. */
655
656 int
657 scop_do_interchange (scop_p scop)
658 {
659 int res = lst_interchange_select_outer
660 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
661
662 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
663
664 return res;
665 }
666
667
668 #endif
669