Reimplement interchange heuristic.
[gcc.git] / gcc / graphite-interchange.c
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
3
4 Copyright (C) 2009 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "output.h"
31 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "toplev.h"
35 #include "tree-dump.h"
36 #include "timevar.h"
37 #include "cfgloop.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-pass.h"
42 #include "domwalk.h"
43 #include "value-prof.h"
44 #include "pointer-set.h"
45 #include "gimple.h"
46 #include "params.h"
47
48 #ifdef HAVE_cloog
49 #include "cloog/cloog.h"
50 #include "ppl_c.h"
51 #include "sese.h"
52 #include "graphite-ppl.h"
53 #include "graphite.h"
54 #include "graphite-poly.h"
55
56 /* Return in RES the maximum of the linear expression LE on polyhedron PS. */
57
58 static void
59 ppl_max_for_le (ppl_Pointset_Powerset_C_Polyhedron_t ps,
60 ppl_Linear_Expression_t le, Value res)
61 {
62 ppl_Coefficient_t num, denom;
63 Value dv, nv;
64 int maximum;
65
66 value_init (nv);
67 value_init (dv);
68 ppl_new_Coefficient (&num);
69 ppl_new_Coefficient (&denom);
70 ppl_Pointset_Powerset_C_Polyhedron_maximize (ps, le, num, denom, &maximum);
71
72 if (maximum)
73 {
74 ppl_Coefficient_to_mpz_t (num, nv);
75 ppl_Coefficient_to_mpz_t (denom, dv);
76 value_division (res, nv, dv);
77 }
78
79 value_clear (nv);
80 value_clear (dv);
81 ppl_delete_Coefficient (num);
82 ppl_delete_Coefficient (denom);
83 }
84
85 /* Builds a linear expression, of dimension DIM, representing PDR's
86 memory access:
87
88 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
89
90 For an array A[10][20] with two subscript locations s0 and s1, the
91 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
92 corresponds to a memory stride of 20. */
93
94 static ppl_Linear_Expression_t
95 build_linearized_memory_access (poly_dr_p pdr)
96 {
97 ppl_Linear_Expression_t res;
98 ppl_Linear_Expression_t le;
99 ppl_dimension_type i;
100 ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
101 ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
102 Value size, sub_size;
103 graphite_dim_t dim = pdr_dim (pdr);
104
105 ppl_new_Linear_Expression_with_dimension (&res, dim);
106
107 value_init (size);
108 value_set_si (size, 1);
109 value_init (sub_size);
110 value_set_si (sub_size, 1);
111
112 for (i = last - 1; i >= first; i--)
113 {
114 ppl_set_coef_gmp (res, i, size);
115
116 ppl_new_Linear_Expression_with_dimension (&le, dim);
117 ppl_set_coef (le, i, 1);
118 ppl_max_for_le (PDR_ACCESSES (pdr), le, sub_size);
119 value_multiply (size, size, sub_size);
120 ppl_delete_Linear_Expression (le);
121 }
122
123 value_clear (sub_size);
124 value_clear (size);
125 return res;
126 }
127
128 /* Set STRIDE to the stride of PDR in memory by advancing by one in
129 loop DEPTH. */
130
131 static void
132 memory_stride_in_loop (Value stride, graphite_dim_t depth, poly_dr_p pdr)
133 {
134 ppl_Linear_Expression_t le, lma;
135 ppl_Constraint_t new_cstr;
136 ppl_Pointset_Powerset_C_Polyhedron_t p1, p2;
137 graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr);
138 ppl_dimension_type i, *map;
139 ppl_dimension_type dim = pdr_dim (pdr);
140 ppl_dimension_type dim_i = pdr_iterator_dim (pdr, depth);
141 ppl_dimension_type dim_k = dim;
142 ppl_dimension_type dim_L1 = dim + nb_subscripts + 1;
143 ppl_dimension_type dim_L2 = dim + nb_subscripts + 2;
144 ppl_dimension_type new_dim = dim + nb_subscripts + 3;
145
146 /* Add new dimensions to the polyhedron corresponding to
147 k, s0', s1',..., L1, and L2. These new variables are at
148 dimensions dim, dim + 1,... of the polyhedron P1 respectively. */
149 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
150 (&p1, PDR_ACCESSES (pdr));
151 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
152 (p1, nb_subscripts + 3);
153
154 lma = build_linearized_memory_access (pdr);
155 ppl_set_coef (lma, dim_L1, -1);
156 ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
157 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
158
159 /* Build P2. */
160 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
161 (&p2, p1);
162 map = ppl_new_id_map (new_dim);
163 ppl_interchange (map, dim_L1, dim_L2);
164 ppl_interchange (map, dim_i, dim_k);
165 for (i = 0; i < PDR_NB_SUBSCRIPTS (pdr); i++)
166 ppl_interchange (map, pdr_subscript_dim (pdr, i), dim + i + 1);
167 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
168 free (map);
169
170 /* Add constraint k = i + 1. */
171 ppl_new_Linear_Expression_with_dimension (&le, new_dim);
172 ppl_set_coef (le, dim_i, 1);
173 ppl_set_coef (le, dim_k, -1);
174 ppl_set_inhomogeneous (le, 1);
175 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
176 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p2, new_cstr);
177 ppl_delete_Linear_Expression (le);
178 ppl_delete_Constraint (new_cstr);
179
180 /* P1 = P1 inter P2. */
181 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
182 ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
183
184 /* Maximise the expression L2 - L1. */
185 ppl_new_Linear_Expression_with_dimension (&le, new_dim);
186 ppl_set_coef (le, dim_L2, 1);
187 ppl_set_coef (le, dim_L1, -1);
188 ppl_max_for_le (p1, le, stride);
189 ppl_delete_Linear_Expression (le);
190 }
191
192
193 /* Returns true when it is profitable to interchange loop at DEPTH1
194 and loop at DEPTH2 with DEPTH1 < DEPTH2 for PBB.
195
196 Example:
197
198 | int a[100][100];
199 |
200 | int
201 | foo (int N)
202 | {
203 | int j;
204 | int i;
205 |
206 | for (i = 0; i < N; i++)
207 | for (j = 0; j < N; j++)
208 | a[j][2 * i] += 1;
209 |
210 | return a[N][12];
211 | }
212
213 The data access A[j][i] is described like this:
214
215 | i j N a s0 s1 1
216 | 0 0 0 1 0 0 -5 = 0
217 | 0 -1 0 0 1 0 0 = 0
218 |-2 0 0 0 0 1 0 = 0
219 | 0 0 0 0 1 0 0 >= 0
220 | 0 0 0 0 0 1 0 >= 0
221 | 0 0 0 0 -1 0 100 >= 0
222 | 0 0 0 0 0 -1 100 >= 0
223
224 The linearized memory access L to A[100][100] is:
225
226 | i j N a s0 s1 1
227 | 0 0 0 0 100 1 0
228
229 Next, to measure the impact of iterating once in loop "i", we build
230 a maximization problem: first, we add to DR accesses the dimensions
231 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: polyhedron P1.
232
233 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
234 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
235 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
236 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
237 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
238 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
239 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
240 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
241 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
242
243 Then, we generate the polyhedron P2 by interchanging the dimensions
244 (s0, s2), (s1, s3), (L1, L2), (i0, i)
245
246 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
247 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
248 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
249 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
250 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
251 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
252 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
253 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
254 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
255
256 then we add to P2 the equality k = i + 1:
257
258 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
259
260 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
261
262 For determining the impact of one iteration on loop "j", we
263 interchange (k, j), we add "k = j + 1", and we compute D2 the
264 maximal value of the difference.
265
266 Finally, the profitability test is D1 < D2: if in the outer loop
267 the strides are smaller than in the inner loop, then it is
268 profitable to interchange the loops at DEPTH1 and DEPTH2. */
269
270 static bool
271 pbb_interchange_profitable_p (graphite_dim_t depth1, graphite_dim_t depth2,
272 poly_bb_p pbb)
273 {
274 int i;
275 poly_dr_p pdr;
276 Value d1, d2, s;
277 bool res;
278
279 gcc_assert (depth1 < depth2);
280
281 value_init (d1);
282 value_set_si (d1, 0);
283 value_init (d2);
284 value_set_si (d2, 0);
285 value_init (s);
286
287 for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
288 {
289 memory_stride_in_loop (s, depth1, pdr);
290 value_addto (d1, d1, s);
291
292 memory_stride_in_loop (s, depth2, pdr);
293 value_addto (d2, d2, s);
294 }
295
296 res = value_lt (d1, d2);
297
298 value_clear (d1);
299 value_clear (d2);
300 value_clear (s);
301
302 return res;
303 }
304
305 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
306 scattering and assigns the resulting polyhedron to the transformed
307 scattering. */
308
309 static void
310 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2, poly_bb_p pbb)
311 {
312 ppl_dimension_type i, dim;
313 ppl_dimension_type *map;
314 ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
315 ppl_dimension_type dim1 = psct_iterator_dim (pbb, depth1);
316 ppl_dimension_type dim2 = psct_iterator_dim (pbb, depth2);
317
318 ppl_Polyhedron_space_dimension (poly, &dim);
319 map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
320
321 for (i = 0; i < dim; i++)
322 map[i] = i;
323
324 map[dim1] = dim2;
325 map[dim2] = dim1;
326
327 ppl_Polyhedron_map_space_dimensions (poly, map, dim);
328 free (map);
329 }
330
331 /* Interchanges all the loop depths that are considered profitable for PBB. */
332
333 static bool
334 pbb_do_interchange (poly_bb_p pbb, scop_p scop)
335 {
336 graphite_dim_t i, j;
337 bool transform_done = false;
338
339 for (i = 0; i < pbb_dim_iter_domain (pbb); i++)
340 for (j = i + 1; j < pbb_dim_iter_domain (pbb); j++)
341 if (pbb_interchange_profitable_p (i, j, pbb))
342 {
343 pbb_interchange_loop_depths (i, j, pbb);
344
345 if (graphite_legal_transform (scop))
346 {
347 transform_done = true;
348
349 if (dump_file && (dump_flags & TDF_DETAILS))
350 fprintf (dump_file,
351 "PBB %d: loops at depths %d and %d will be interchanged.\n",
352 GBB_BB (PBB_BLACK_BOX (pbb))->index, (int) i, (int) j);
353 }
354 else
355 /* Undo the transform. */
356 pbb_interchange_loop_depths (j, i, pbb);
357 }
358
359 return transform_done;
360 }
361
362 /* Interchanges all the loop depths that are considered profitable for SCOP. */
363
364 bool
365 scop_do_interchange (scop_p scop)
366 {
367 int i;
368 poly_bb_p pbb;
369 bool transform_done = false;
370
371 store_scattering (scop);
372
373 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
374 transform_done |= pbb_do_interchange (pbb, scop);
375
376 if (!transform_done)
377 return false;
378
379 if (!graphite_legal_transform (scop))
380 {
381 restore_scattering (scop);
382 return false;
383 }
384
385 return transform_done;
386 }
387
388 #endif
389