Resolve CLooG's value_* macros to their respective mpz_* counterparts.
[gcc.git] / gcc / graphite-poly.h
1 /* Graphite polyhedral representation.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_GRAPHITE_POLY_H
23 #define GCC_GRAPHITE_POLY_H
24
25 typedef struct poly_dr *poly_dr_p;
26 DEF_VEC_P(poly_dr_p);
27 DEF_VEC_ALLOC_P (poly_dr_p, heap);
28
29 typedef struct poly_bb *poly_bb_p;
30 DEF_VEC_P(poly_bb_p);
31 DEF_VEC_ALLOC_P (poly_bb_p, heap);
32
33 typedef struct scop *scop_p;
34 DEF_VEC_P(scop_p);
35 DEF_VEC_ALLOC_P (scop_p, heap);
36
37 typedef ppl_dimension_type graphite_dim_t;
38
39 static inline graphite_dim_t pbb_dim_iter_domain (const struct poly_bb *);
40 static inline graphite_dim_t pbb_nb_params (const struct poly_bb *);
41 static inline graphite_dim_t scop_nb_params (scop_p);
42
43 /* A data reference can write or read some memory or we
44 just know it may write some memory. */
45 enum poly_dr_type
46 {
47 PDR_READ,
48 /* PDR_MAY_READs are represented using PDR_READS. This does not
49 limit the expressiveness. */
50 PDR_WRITE,
51 PDR_MAY_WRITE
52 };
53
54 struct poly_dr
55 {
56 /* An identifier for this PDR. */
57 int id;
58
59 /* The number of data refs identical to this one in the PBB. */
60 int nb_refs;
61
62 /* A pointer to compiler's data reference description. */
63 void *compiler_dr;
64
65 /* A pointer to the PBB that contains this data reference. */
66 poly_bb_p pbb;
67
68 enum poly_dr_type type;
69
70 /* The access polyhedron contains the polyhedral space this data
71 reference will access.
72
73 The polyhedron contains these dimensions:
74
75 - The alias set (a):
76 Every memory access is classified in at least one alias set.
77
78 - The subscripts (s_0, ..., s_n):
79 The memory is accessed using zero or more subscript dimensions.
80
81 - The iteration domain (variables and parameters)
82
83 Do not hardcode the dimensions. Use the following accessor functions:
84 - pdr_alias_set_dim
85 - pdr_subscript_dim
86 - pdr_iterator_dim
87 - pdr_parameter_dim
88
89 Example:
90
91 | int A[1335][123];
92 | int *p = malloc ();
93 |
94 | k = ...
95 | for i
96 | {
97 | if (unknown_function ())
98 | p = A;
99 | ... = p[?][?];
100 | for j
101 | A[i][j+k] = m;
102 | }
103
104 The data access A[i][j+k] in alias set "5" is described like this:
105
106 | i j k a s0 s1 1
107 | 0 0 0 1 0 0 -5 = 0
108 |-1 0 0 0 1 0 0 = 0
109 | 0 -1 -1 0 0 1 0 = 0
110 | 0 0 0 0 1 0 0 >= 0 # The last four lines describe the
111 | 0 0 0 0 0 1 0 >= 0 # array size.
112 | 0 0 0 0 -1 0 1335 >= 0
113 | 0 0 0 0 0 -1 123 >= 0
114
115 The pointer "*p" in alias set "5" and "7" is described as a union of
116 polyhedron:
117
118
119 | i k a s0 1
120 | 0 0 1 0 -5 = 0
121 | 0 0 0 1 0 >= 0
122
123 "or"
124
125 | i k a s0 1
126 | 0 0 1 0 -7 = 0
127 | 0 0 0 1 0 >= 0
128
129 "*p" accesses all of the object allocated with 'malloc'.
130
131 The scalar data access "m" is represented as an array with zero subscript
132 dimensions.
133
134 | i j k a 1
135 | 0 0 0 -1 15 = 0 */
136 ppl_Pointset_Powerset_C_Polyhedron_t accesses;
137
138 /* Data reference's base object set number, we must assure 2 pdrs are in the
139 same base object set before dependency checking. */
140 int dr_base_object_set;
141
142 /* The number of subscripts. */
143 graphite_dim_t nb_subscripts;
144 };
145
146 #define PDR_ID(PDR) (PDR->id)
147 #define PDR_NB_REFS(PDR) (PDR->nb_refs)
148 #define PDR_CDR(PDR) (PDR->compiler_dr)
149 #define PDR_PBB(PDR) (PDR->pbb)
150 #define PDR_TYPE(PDR) (PDR->type)
151 #define PDR_ACCESSES(PDR) (PDR->accesses)
152 #define PDR_BASE_OBJECT_SET(PDR) (PDR->dr_base_object_set)
153 #define PDR_NB_SUBSCRIPTS(PDR) (PDR->nb_subscripts)
154
155 void new_poly_dr (poly_bb_p, int, ppl_Pointset_Powerset_C_Polyhedron_t,
156 enum poly_dr_type, void *, graphite_dim_t);
157 void free_poly_dr (poly_dr_p);
158 void debug_pdr (poly_dr_p, int);
159 void print_pdr (FILE *, poly_dr_p, int);
160 static inline scop_p pdr_scop (poly_dr_p pdr);
161
162 /* The dimension of the PDR_ACCESSES polyhedron of PDR. */
163
164 static inline ppl_dimension_type
165 pdr_dim (poly_dr_p pdr)
166 {
167 ppl_dimension_type dim;
168 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PDR_ACCESSES (pdr),
169 &dim);
170 return dim;
171 }
172
173 /* The dimension of the iteration domain of the scop of PDR. */
174
175 static inline ppl_dimension_type
176 pdr_dim_iter_domain (poly_dr_p pdr)
177 {
178 return pbb_dim_iter_domain (PDR_PBB (pdr));
179 }
180
181 /* The number of parameters of the scop of PDR. */
182
183 static inline ppl_dimension_type
184 pdr_nb_params (poly_dr_p pdr)
185 {
186 return scop_nb_params (pdr_scop (pdr));
187 }
188
189 /* The dimension of the alias set in PDR. */
190
191 static inline ppl_dimension_type
192 pdr_alias_set_dim (poly_dr_p pdr)
193 {
194 poly_bb_p pbb = PDR_PBB (pdr);
195
196 return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
197 }
198
199 /* The dimension in PDR containing subscript S. */
200
201 static inline ppl_dimension_type
202 pdr_subscript_dim (poly_dr_p pdr, graphite_dim_t s)
203 {
204 poly_bb_p pbb = PDR_PBB (pdr);
205
206 return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb) + 1 + s;
207 }
208
209 /* The dimension in PDR containing the loop iterator ITER. */
210
211 static inline ppl_dimension_type
212 pdr_iterator_dim (poly_dr_p pdr ATTRIBUTE_UNUSED, graphite_dim_t iter)
213 {
214 return iter;
215 }
216
217 /* The dimension in PDR containing parameter PARAM. */
218
219 static inline ppl_dimension_type
220 pdr_parameter_dim (poly_dr_p pdr, graphite_dim_t param)
221 {
222 poly_bb_p pbb = PDR_PBB (pdr);
223
224 return pbb_dim_iter_domain (pbb) + param;
225 }
226
227 /* Returns true when PDR is a "read". */
228
229 static inline bool
230 pdr_read_p (poly_dr_p pdr)
231 {
232 return PDR_TYPE (pdr) == PDR_READ;
233 }
234
235 /* Returns true when PDR is a "write". */
236
237 static inline bool
238 pdr_write_p (poly_dr_p pdr)
239 {
240 return PDR_TYPE (pdr) == PDR_WRITE;
241 }
242
243 /* Returns true when PDR is a "may write". */
244
245 static inline bool
246 pdr_may_write_p (poly_dr_p pdr)
247 {
248 return PDR_TYPE (pdr) == PDR_MAY_WRITE;
249 }
250
251 /* Return true when PDR1 and PDR2 are similar data accesses: they have
252 the same base array, and the same access functions. */
253
254 static inline bool
255 same_pdr_p (poly_dr_p pdr1, poly_dr_p pdr2)
256 {
257 return PDR_TYPE (pdr1) == PDR_TYPE (pdr2)
258 && PDR_NB_SUBSCRIPTS (pdr1) == PDR_NB_SUBSCRIPTS (pdr2)
259 && PDR_BASE_OBJECT_SET (pdr1) == PDR_BASE_OBJECT_SET (pdr2);
260 }
261
262 typedef struct poly_scattering *poly_scattering_p;
263
264 struct poly_scattering
265 {
266 /* The scattering function containing the transformations: the
267 layout of this polyhedron is: T|I|G with T the transform
268 scattering, I the iteration domain, G the context parameters. */
269 ppl_Polyhedron_t scattering;
270
271 /* The number of local variables. */
272 int nb_local_variables;
273
274 /* The number of scattering dimensions. */
275 int nb_scattering;
276 };
277
278 /* POLY_BB represents a blackbox in the polyhedral model. */
279
280 struct poly_bb
281 {
282 /* Pointer to a basic block or a statement in the compiler. */
283 void *black_box;
284
285 /* Pointer to the SCOP containing this PBB. */
286 scop_p scop;
287
288 /* The iteration domain of this bb. The layout of this polyhedron
289 is I|G with I the iteration domain, G the context parameters.
290
291 Example:
292
293 for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++)
294 for (j = 2; j <= 2*i + 5; j++)
295 for (k = 0; k <= 5; k++)
296 S (i,j,k)
297
298 Loop iterators: i, j, k
299 Parameters: a, b
300
301 | i >= a - 7b + 8
302 | i <= 3a + 13b + 20
303 | j >= 2
304 | j <= 2i + 5
305 | k >= 0
306 | k <= 5
307
308 The number of variables in the DOMAIN may change and is not
309 related to the number of loops in the original code. */
310 ppl_Pointset_Powerset_C_Polyhedron_t domain;
311
312 /* The data references we access. */
313 VEC (poly_dr_p, heap) *drs;
314
315 /* The original scattering. */
316 poly_scattering_p original;
317
318 /* The transformed scattering. */
319 poly_scattering_p transformed;
320
321 /* A copy of the transformed scattering. */
322 poly_scattering_p saved;
323
324 /* True when the PDR duplicates have already been removed. */
325 bool pdr_duplicates_removed;
326
327 /* True when this PBB contains only a reduction statement. */
328 bool is_reduction;
329 };
330
331 #define PBB_BLACK_BOX(PBB) ((gimple_bb_p) PBB->black_box)
332 #define PBB_SCOP(PBB) (PBB->scop)
333 #define PBB_DOMAIN(PBB) (PBB->domain)
334 #define PBB_DRS(PBB) (PBB->drs)
335 #define PBB_ORIGINAL(PBB) (PBB->original)
336 #define PBB_ORIGINAL_SCATTERING(PBB) (PBB->original->scattering)
337 #define PBB_TRANSFORMED(PBB) (PBB->transformed)
338 #define PBB_TRANSFORMED_SCATTERING(PBB) (PBB->transformed->scattering)
339 #define PBB_SAVED(PBB) (PBB->saved)
340 #define PBB_NB_LOCAL_VARIABLES(PBB) (PBB->transformed->nb_local_variables)
341 #define PBB_NB_SCATTERING_TRANSFORM(PBB) (PBB->transformed->nb_scattering)
342 #define PBB_PDR_DUPLICATES_REMOVED(PBB) (PBB->pdr_duplicates_removed)
343 #define PBB_IS_REDUCTION(PBB) (PBB->is_reduction)
344
345 extern void new_poly_bb (scop_p, void *, bool);
346 extern void free_poly_bb (poly_bb_p);
347 extern void debug_loop_vec (poly_bb_p);
348 extern void schedule_to_scattering (poly_bb_p, int);
349 extern void print_pbb_domain (FILE *, poly_bb_p, int);
350 extern void print_pbb (FILE *, poly_bb_p, int);
351 extern void print_scop_context (FILE *, scop_p, int);
352 extern void print_scop (FILE *, scop_p, int);
353 extern void print_cloog (FILE *, scop_p, int);
354 extern void debug_pbb_domain (poly_bb_p, int);
355 extern void debug_pbb (poly_bb_p, int);
356 extern void print_pdrs (FILE *, poly_bb_p, int);
357 extern void debug_pdrs (poly_bb_p, int);
358 extern void debug_scop_context (scop_p, int);
359 extern void debug_scop (scop_p, int);
360 extern void debug_cloog (scop_p, int);
361 extern void print_scop_params (FILE *, scop_p, int);
362 extern void debug_scop_params (scop_p, int);
363 extern void print_iteration_domain (FILE *, poly_bb_p, int);
364 extern void print_iteration_domains (FILE *, scop_p, int);
365 extern void debug_iteration_domain (poly_bb_p, int);
366 extern void debug_iteration_domains (scop_p, int);
367 extern bool scop_do_interchange (scop_p);
368 extern bool scop_do_strip_mine (scop_p);
369 extern bool scop_do_block (scop_p);
370 extern void pbb_number_of_iterations (poly_bb_p, graphite_dim_t, Value);
371 extern void pbb_number_of_iterations_at_time (poly_bb_p, graphite_dim_t, Value);
372 extern void pbb_remove_duplicate_pdrs (poly_bb_p);
373
374 /* Return the number of write data references in PBB. */
375
376 static inline int
377 number_of_write_pdrs (poly_bb_p pbb)
378 {
379 int res = 0;
380 int i;
381 poly_dr_p pdr;
382
383 for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
384 if (PDR_TYPE (pdr) == PDR_WRITE)
385 res++;
386
387 return res;
388 }
389
390 /* The basic block of the PBB. */
391 static inline basic_block
392 pbb_bb (poly_bb_p pbb)
393 {
394 return GBB_BB (PBB_BLACK_BOX (pbb));
395 }
396
397 /* The index of the PBB. */
398
399 static inline int
400 pbb_index (poly_bb_p pbb)
401 {
402 return pbb_bb (pbb)->index;
403 }
404
405 /* The loop of the PBB. */
406
407 static inline loop_p
408 pbb_loop (poly_bb_p pbb)
409 {
410 return gbb_loop (PBB_BLACK_BOX (pbb));
411 }
412
413 /* The scop that contains the PDR. */
414
415 static inline scop_p
416 pdr_scop (poly_dr_p pdr)
417 {
418 return PBB_SCOP (PDR_PBB (pdr));
419 }
420
421 /* Set black box of PBB to BLACKBOX. */
422
423 static inline void
424 pbb_set_black_box (poly_bb_p pbb, void *black_box)
425 {
426 pbb->black_box = black_box;
427 }
428
429 /* The number of loops around PBB: the dimension of the iteration
430 domain. */
431
432 static inline graphite_dim_t
433 pbb_dim_iter_domain (const struct poly_bb *pbb)
434 {
435 scop_p scop = PBB_SCOP (pbb);
436 ppl_dimension_type dim;
437
438 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb), &dim);
439 return dim - scop_nb_params (scop);
440 }
441
442 /* The number of params defined in PBB. */
443
444 static inline graphite_dim_t
445 pbb_nb_params (const struct poly_bb *pbb)
446 {
447 scop_p scop = PBB_SCOP (pbb);
448
449 return scop_nb_params (scop);
450 }
451
452 /* The number of scattering dimensions in the SCATTERING polyhedron
453 of a PBB for a given SCOP. */
454
455 static inline graphite_dim_t
456 pbb_nb_scattering_orig (const struct poly_bb *pbb)
457 {
458 return 2 * pbb_dim_iter_domain (pbb) + 1;
459 }
460
461 /* The number of scattering dimensions in PBB. */
462
463 static inline graphite_dim_t
464 pbb_nb_scattering_transform (const struct poly_bb *pbb)
465 {
466 return PBB_NB_SCATTERING_TRANSFORM (pbb);
467 }
468
469 /* The number of dynamic scattering dimensions in PBB. */
470
471 static inline graphite_dim_t
472 pbb_nb_dynamic_scattering_transform (const struct poly_bb *pbb)
473 {
474 /* This function requires the 2d + 1 scattering format to be
475 invariant during all transformations. */
476 gcc_assert (PBB_NB_SCATTERING_TRANSFORM (pbb) % 2);
477 return PBB_NB_SCATTERING_TRANSFORM (pbb) / 2;
478 }
479
480 /* Returns the number of local variables used in the transformed
481 scattering polyhedron of PBB. */
482
483 static inline graphite_dim_t
484 pbb_nb_local_vars (const struct poly_bb *pbb)
485 {
486 /* For now we do not have any local variables, as we do not do strip
487 mining for example. */
488 return PBB_NB_LOCAL_VARIABLES (pbb);
489 }
490
491 /* The dimension in the domain of PBB containing the iterator ITER. */
492
493 static inline ppl_dimension_type
494 pbb_iterator_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t iter)
495 {
496 return iter;
497 }
498
499 /* The dimension in the domain of PBB containing the iterator ITER. */
500
501 static inline ppl_dimension_type
502 pbb_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
503 {
504 return param
505 + pbb_dim_iter_domain (pbb);
506 }
507
508 /* The dimension in the original scattering polyhedron of PBB
509 containing the scattering iterator SCATTER. */
510
511 static inline ppl_dimension_type
512 psco_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
513 {
514 gcc_assert (scatter < pbb_nb_scattering_orig (pbb));
515 return scatter;
516 }
517
518 /* The dimension in the transformed scattering polyhedron of PBB
519 containing the scattering iterator SCATTER. */
520
521 static inline ppl_dimension_type
522 psct_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
523 {
524 gcc_assert (scatter <= pbb_nb_scattering_transform (pbb));
525 return scatter;
526 }
527
528 ppl_dimension_type psct_scattering_dim_for_loop_depth (poly_bb_p,
529 graphite_dim_t);
530
531 /* The dimension in the transformed scattering polyhedron of PBB of
532 the local variable LV. */
533
534 static inline ppl_dimension_type
535 psct_local_var_dim (poly_bb_p pbb, graphite_dim_t lv)
536 {
537 gcc_assert (lv <= pbb_nb_local_vars (pbb));
538 return lv + pbb_nb_scattering_transform (pbb);
539 }
540
541 /* The dimension in the original scattering polyhedron of PBB
542 containing the loop iterator ITER. */
543
544 static inline ppl_dimension_type
545 psco_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
546 {
547 gcc_assert (iter < pbb_dim_iter_domain (pbb));
548 return iter + pbb_nb_scattering_orig (pbb);
549 }
550
551 /* The dimension in the transformed scattering polyhedron of PBB
552 containing the loop iterator ITER. */
553
554 static inline ppl_dimension_type
555 psct_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
556 {
557 gcc_assert (iter < pbb_dim_iter_domain (pbb));
558 return iter
559 + pbb_nb_scattering_transform (pbb)
560 + pbb_nb_local_vars (pbb);
561 }
562
563 /* The dimension in the original scattering polyhedron of PBB
564 containing parameter PARAM. */
565
566 static inline ppl_dimension_type
567 psco_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
568 {
569 gcc_assert (param < pbb_nb_params (pbb));
570 return param
571 + pbb_nb_scattering_orig (pbb)
572 + pbb_dim_iter_domain (pbb);
573 }
574
575 /* The dimension in the transformed scattering polyhedron of PBB
576 containing parameter PARAM. */
577
578 static inline ppl_dimension_type
579 psct_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
580 {
581 gcc_assert (param < pbb_nb_params (pbb));
582 return param
583 + pbb_nb_scattering_transform (pbb)
584 + pbb_nb_local_vars (pbb)
585 + pbb_dim_iter_domain (pbb);
586 }
587
588 /* The scattering dimension of PBB corresponding to the dynamic level
589 LEVEL. */
590
591 static inline ppl_dimension_type
592 psct_dynamic_dim (poly_bb_p pbb, graphite_dim_t level)
593 {
594 graphite_dim_t result = 1 + 2 * level;
595
596 gcc_assert (result < pbb_nb_scattering_transform (pbb));
597 return result;
598 }
599
600 /* The scattering dimension of PBB corresponding to the static
601 sequence of the loop level LEVEL. */
602
603 static inline ppl_dimension_type
604 psct_static_dim (poly_bb_p pbb, graphite_dim_t level)
605 {
606 graphite_dim_t result = 2 * level;
607
608 gcc_assert (result < pbb_nb_scattering_transform (pbb));
609 return result;
610 }
611
612 /* Adds to the transformed scattering polyhedron of PBB a new local
613 variable and returns its index. */
614
615 static inline graphite_dim_t
616 psct_add_local_variable (poly_bb_p pbb)
617 {
618 graphite_dim_t nlv = pbb_nb_local_vars (pbb);
619 ppl_dimension_type lv_column = psct_local_var_dim (pbb, nlv);
620 ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), lv_column, 1);
621 PBB_NB_LOCAL_VARIABLES (pbb) += 1;
622 return nlv;
623 }
624
625 /* Adds a dimension to the transformed scattering polyhedron of PBB at
626 INDEX. */
627
628 static inline void
629 psct_add_scattering_dimension (poly_bb_p pbb, ppl_dimension_type index)
630 {
631 gcc_assert (index < pbb_nb_scattering_transform (pbb));
632
633 ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), index, 1);
634 PBB_NB_SCATTERING_TRANSFORM (pbb) += 1;
635 }
636
637 typedef struct lst *lst_p;
638 DEF_VEC_P(lst_p);
639 DEF_VEC_ALLOC_P (lst_p, heap);
640
641 /* Loops and Statements Tree. */
642 struct lst {
643
644 /* LOOP_P is true when an LST node is a loop. */
645 bool loop_p;
646
647 /* A pointer to the loop that contains this node. */
648 lst_p loop_father;
649
650 /* The sum of all the memory strides for an LST loop. */
651 Value memory_strides;
652
653 /* Loop nodes contain a sequence SEQ of LST nodes, statements
654 contain a pointer to their polyhedral representation PBB. */
655 union {
656 poly_bb_p pbb;
657 VEC (lst_p, heap) *seq;
658 } node;
659 };
660
661 #define LST_LOOP_P(LST) ((LST)->loop_p)
662 #define LST_LOOP_FATHER(LST) ((LST)->loop_father)
663 #define LST_PBB(LST) ((LST)->node.pbb)
664 #define LST_SEQ(LST) ((LST)->node.seq)
665 #define LST_LOOP_MEMORY_STRIDES(LST) ((LST)->memory_strides)
666
667 void scop_to_lst (scop_p);
668 void print_lst (FILE *, lst_p, int);
669 void debug_lst (lst_p);
670 void dot_lst (lst_p);
671
672 /* Creates a new LST loop with SEQ. */
673
674 static inline lst_p
675 new_lst_loop (VEC (lst_p, heap) *seq)
676 {
677 lst_p lst = XNEW (struct lst);
678 int i;
679 lst_p l;
680
681 LST_LOOP_P (lst) = true;
682 LST_SEQ (lst) = seq;
683 LST_LOOP_FATHER (lst) = NULL;
684 mpz_init (LST_LOOP_MEMORY_STRIDES (lst));
685 mpz_set_si (LST_LOOP_MEMORY_STRIDES (lst), -1);
686
687 for (i = 0; VEC_iterate (lst_p, seq, i, l); i++)
688 LST_LOOP_FATHER (l) = lst;
689
690 return lst;
691 }
692
693 /* Creates a new LST statement with PBB. */
694
695 static inline lst_p
696 new_lst_stmt (poly_bb_p pbb)
697 {
698 lst_p lst = XNEW (struct lst);
699
700 LST_LOOP_P (lst) = false;
701 LST_PBB (lst) = pbb;
702 LST_LOOP_FATHER (lst) = NULL;
703 return lst;
704 }
705
706 /* Frees the memory used by LST. */
707
708 static inline void
709 free_lst (lst_p lst)
710 {
711 if (!lst)
712 return;
713
714 if (LST_LOOP_P (lst))
715 {
716 int i;
717 lst_p l;
718
719 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
720 free_lst (l);
721
722 mpz_clear (LST_LOOP_MEMORY_STRIDES (lst));
723 VEC_free (lst_p, heap, LST_SEQ (lst));
724 }
725
726 free (lst);
727 }
728
729 /* Returns a copy of LST. */
730
731 static inline lst_p
732 copy_lst (lst_p lst)
733 {
734 if (!lst)
735 return NULL;
736
737 if (LST_LOOP_P (lst))
738 {
739 int i;
740 lst_p l;
741 VEC (lst_p, heap) *seq = VEC_alloc (lst_p, heap, 5);
742
743 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
744 VEC_safe_push (lst_p, heap, seq, copy_lst (l));
745
746 return new_lst_loop (seq);
747 }
748
749 return new_lst_stmt (LST_PBB (lst));
750 }
751
752 /* Adds a new loop under the loop LST. */
753
754 static inline void
755 lst_add_loop_under_loop (lst_p lst)
756 {
757 VEC (lst_p, heap) *seq = VEC_alloc (lst_p, heap, 1);
758 lst_p l = new_lst_loop (LST_SEQ (lst));
759
760 gcc_assert (LST_LOOP_P (lst));
761
762 LST_LOOP_FATHER (l) = lst;
763 VEC_quick_push (lst_p, seq, l);
764 LST_SEQ (lst) = seq;
765 }
766
767 /* Returns the loop depth of LST. */
768
769 static inline int
770 lst_depth (lst_p lst)
771 {
772 if (!lst)
773 return -2;
774
775 /* The depth of the outermost "fake" loop is -1. This outermost
776 loop does not have a loop father and it is just a container, as
777 in the loop representation of GCC. */
778 if (!LST_LOOP_FATHER (lst))
779 return -1;
780
781 return lst_depth (LST_LOOP_FATHER (lst)) + 1;
782 }
783
784 /* Returns the Dewey number for LST. */
785
786 static inline int
787 lst_dewey_number (lst_p lst)
788 {
789 int i;
790 lst_p l;
791
792 if (!lst)
793 return -1;
794
795 if (!LST_LOOP_FATHER (lst))
796 return 0;
797
798 for (i = 0; VEC_iterate (lst_p, LST_SEQ (LST_LOOP_FATHER (lst)), i, l); i++)
799 if (l == lst)
800 return i;
801
802 return -1;
803 }
804
805 /* Returns the Dewey number of LST at depth DEPTH. */
806
807 static inline int
808 lst_dewey_number_at_depth (lst_p lst, int depth)
809 {
810 gcc_assert (lst && depth >= 0 && lst_depth (lst) <= depth);
811
812 if (lst_depth (lst) == depth)
813 return lst_dewey_number (lst);
814
815 return lst_dewey_number_at_depth (LST_LOOP_FATHER (lst), depth);
816 }
817
818 /* Returns the predecessor of LST in the sequence of its loop father.
819 Returns NULL if LST is the first statement in the sequence. */
820
821 static inline lst_p
822 lst_pred (lst_p lst)
823 {
824 int dewey;
825 lst_p father;
826
827 if (!lst || !LST_LOOP_FATHER (lst))
828 return NULL;
829
830 dewey = lst_dewey_number (lst);
831 if (dewey == 0)
832 return NULL;
833
834 father = LST_LOOP_FATHER (lst);
835 return VEC_index (lst_p, LST_SEQ (father), dewey - 1);
836 }
837
838 /* Returns the successor of LST in the sequence of its loop father.
839 Returns NULL if there is none. */
840
841 static inline lst_p
842 lst_succ (lst_p lst)
843 {
844 int dewey;
845 lst_p father;
846
847 if (!lst || !LST_LOOP_FATHER (lst))
848 return NULL;
849
850 dewey = lst_dewey_number (lst);
851 father = LST_LOOP_FATHER (lst);
852
853 if (VEC_length (lst_p, LST_SEQ (father)) == (unsigned) dewey + 1)
854 return NULL;
855
856 return VEC_index (lst_p, LST_SEQ (father), dewey + 1);
857 }
858
859
860 /* Return the LST node corresponding to PBB. */
861
862 static inline lst_p
863 lst_find_pbb (lst_p lst, poly_bb_p pbb)
864 {
865 int i;
866 lst_p l;
867
868 if (!lst)
869 return NULL;
870
871 if (!LST_LOOP_P (lst))
872 return (pbb == LST_PBB (lst)) ? lst : NULL;
873
874 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
875 {
876 lst_p res = lst_find_pbb (l, pbb);
877 if (res)
878 return res;
879 }
880
881 return NULL;
882 }
883
884 /* Return the LST node corresponding to the loop around STMT at depth
885 LOOP_DEPTH. */
886
887 static inline lst_p
888 find_lst_loop (lst_p stmt, int loop_depth)
889 {
890 lst_p loop = LST_LOOP_FATHER (stmt);
891
892 gcc_assert (loop_depth >= 0);
893
894 while (loop_depth < lst_depth (loop))
895 loop = LST_LOOP_FATHER (loop);
896
897 return loop;
898 }
899
900 /* Return the first lst representing a PBB statement in LST. */
901
902 static inline lst_p
903 lst_find_first_pbb (lst_p lst)
904 {
905 int i;
906 lst_p l;
907
908 if (!lst)
909 return NULL;
910
911 if (!LST_LOOP_P (lst))
912 return lst;
913
914 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
915 {
916 lst_p res = lst_find_first_pbb (l);
917 if (res)
918 return res;
919 }
920
921 return NULL;
922 }
923
924 /* Returns true when LST is a loop that does not contains
925 statements. */
926
927 static inline bool
928 lst_empty_p (lst_p lst)
929 {
930 return !lst_find_first_pbb (lst);
931 }
932
933 /* Return the last lst representing a PBB statement in LST. */
934
935 static inline lst_p
936 lst_find_last_pbb (lst_p lst)
937 {
938 int i;
939 lst_p l, res = NULL;
940
941 if (!lst)
942 return NULL;
943
944 if (!LST_LOOP_P (lst))
945 return lst;
946
947 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
948 {
949 lst_p last = lst_find_last_pbb (l);
950
951 if (last)
952 res = last;
953 }
954
955 gcc_assert (res);
956 return res;
957 }
958
959 /* Returns true if LOOP contains LST, in other words, if LST is nested
960 in LOOP. */
961
962 static inline bool
963 lst_contains_p (lst_p loop, lst_p lst)
964 {
965 if (!loop || !lst || !LST_LOOP_P (loop))
966 return false;
967
968 if (loop == lst)
969 return true;
970
971 return lst_contains_p (loop, LST_LOOP_FATHER (lst));
972 }
973
974 /* Returns true if LOOP contains PBB, in other words, if PBB is nested
975 in LOOP. */
976
977 static inline bool
978 lst_contains_pbb (lst_p loop, poly_bb_p pbb)
979 {
980 return lst_find_pbb (loop, pbb) ? true : false;
981 }
982
983 /* Creates a loop nest of depth NB_LOOPS containing LST. */
984
985 static inline lst_p
986 lst_create_nest (int nb_loops, lst_p lst)
987 {
988 lst_p res, loop;
989 VEC (lst_p, heap) *seq;
990
991 if (nb_loops == 0)
992 return lst;
993
994 seq = VEC_alloc (lst_p, heap, 1);
995 loop = lst_create_nest (nb_loops - 1, lst);
996 VEC_quick_push (lst_p, seq, loop);
997 res = new_lst_loop (seq);
998 LST_LOOP_FATHER (loop) = res;
999
1000 return res;
1001 }
1002
1003 /* Removes LST from the sequence of statements of its loop father. */
1004
1005 static inline void
1006 lst_remove_from_sequence (lst_p lst)
1007 {
1008 lst_p father = LST_LOOP_FATHER (lst);
1009 int dewey = lst_dewey_number (lst);
1010
1011 gcc_assert (lst && father && dewey >= 0);
1012
1013 VEC_ordered_remove (lst_p, LST_SEQ (father), dewey);
1014 LST_LOOP_FATHER (lst) = NULL;
1015 }
1016
1017 /* Updates the scattering of PBB to be at the DEWEY number in the loop
1018 at depth LEVEL. */
1019
1020 static inline void
1021 pbb_update_scattering (poly_bb_p pbb, graphite_dim_t level, int dewey)
1022 {
1023 ppl_Polyhedron_t ph = PBB_TRANSFORMED_SCATTERING (pbb);
1024 ppl_dimension_type sched = psct_static_dim (pbb, level);
1025 ppl_dimension_type ds[1];
1026 ppl_Constraint_t new_cstr;
1027 ppl_Linear_Expression_t expr;
1028 ppl_dimension_type dim;
1029
1030 ppl_Polyhedron_space_dimension (ph, &dim);
1031 ds[0] = sched;
1032 ppl_Polyhedron_remove_space_dimensions (ph, ds, 1);
1033 ppl_insert_dimensions (ph, sched, 1);
1034
1035 ppl_new_Linear_Expression_with_dimension (&expr, dim);
1036 ppl_set_coef (expr, sched, -1);
1037 ppl_set_inhomogeneous (expr, dewey);
1038 ppl_new_Constraint (&new_cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
1039 ppl_delete_Linear_Expression (expr);
1040 ppl_Polyhedron_add_constraint (ph, new_cstr);
1041 ppl_delete_Constraint (new_cstr);
1042 }
1043
1044 /* Updates the scattering of all the PBBs under LST to be at the DEWEY
1045 number in the loop at depth LEVEL. */
1046
1047 static inline void
1048 lst_update_scattering_under (lst_p lst, int level, int dewey)
1049 {
1050 int i;
1051 lst_p l;
1052
1053 gcc_assert (lst && level >= 0 && dewey >= 0);
1054
1055 if (LST_LOOP_P (lst))
1056 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
1057 lst_update_scattering_under (l, level, dewey);
1058 else
1059 pbb_update_scattering (LST_PBB (lst), level, dewey);
1060 }
1061
1062 /* Updates the scattering of all the PBBs under LST and in sequence
1063 with LST. */
1064
1065 static inline void
1066 lst_update_scattering_seq (lst_p lst)
1067 {
1068 int i;
1069 lst_p l;
1070 lst_p father = LST_LOOP_FATHER (lst);
1071 int dewey = lst_dewey_number (lst);
1072 int level = lst_depth (lst);
1073
1074 gcc_assert (lst && father && dewey >= 0 && level >= 0);
1075
1076 for (i = dewey; VEC_iterate (lst_p, LST_SEQ (father), i, l); i++)
1077 lst_update_scattering_under (l, level, i);
1078 }
1079
1080 /* Updates the all the scattering levels of all the PBBs under
1081 LST. */
1082
1083 static inline void
1084 lst_update_scattering (lst_p lst)
1085 {
1086 int i;
1087 lst_p l;
1088
1089 if (!lst || !LST_LOOP_P (lst))
1090 return;
1091
1092 if (LST_LOOP_FATHER (lst))
1093 lst_update_scattering_seq (lst);
1094
1095 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
1096 lst_update_scattering (l);
1097 }
1098
1099 /* Inserts LST1 before LST2 if BEFORE is true; inserts LST1 after LST2
1100 if BEFORE is false. */
1101
1102 static inline void
1103 lst_insert_in_sequence (lst_p lst1, lst_p lst2, bool before)
1104 {
1105 lst_p father;
1106 int dewey;
1107
1108 /* Do not insert empty loops. */
1109 if (!lst1 || lst_empty_p (lst1))
1110 return;
1111
1112 father = LST_LOOP_FATHER (lst2);
1113 dewey = lst_dewey_number (lst2);
1114
1115 gcc_assert (lst2 && father && dewey >= 0);
1116
1117 VEC_safe_insert (lst_p, heap, LST_SEQ (father), before ? dewey : dewey + 1,
1118 lst1);
1119 LST_LOOP_FATHER (lst1) = father;
1120 }
1121
1122 /* Replaces LST1 with LST2. */
1123
1124 static inline void
1125 lst_replace (lst_p lst1, lst_p lst2)
1126 {
1127 lst_p father;
1128 int dewey;
1129
1130 if (!lst2 || lst_empty_p (lst2))
1131 return;
1132
1133 father = LST_LOOP_FATHER (lst1);
1134 dewey = lst_dewey_number (lst1);
1135 LST_LOOP_FATHER (lst2) = father;
1136 VEC_replace (lst_p, LST_SEQ (father), dewey, lst2);
1137 }
1138
1139 /* Returns a copy of ROOT where LST has been replaced by a copy of the
1140 LSTs A B C in this sequence. */
1141
1142 static inline lst_p
1143 lst_substitute_3 (lst_p root, lst_p lst, lst_p a, lst_p b, lst_p c)
1144 {
1145 int i;
1146 lst_p l;
1147 VEC (lst_p, heap) *seq;
1148
1149 if (!root)
1150 return NULL;
1151
1152 gcc_assert (lst && root != lst);
1153
1154 if (!LST_LOOP_P (root))
1155 return new_lst_stmt (LST_PBB (root));
1156
1157 seq = VEC_alloc (lst_p, heap, 5);
1158
1159 for (i = 0; VEC_iterate (lst_p, LST_SEQ (root), i, l); i++)
1160 if (l != lst)
1161 VEC_safe_push (lst_p, heap, seq, lst_substitute_3 (l, lst, a, b, c));
1162 else
1163 {
1164 if (!lst_empty_p (a))
1165 VEC_safe_push (lst_p, heap, seq, copy_lst (a));
1166 if (!lst_empty_p (b))
1167 VEC_safe_push (lst_p, heap, seq, copy_lst (b));
1168 if (!lst_empty_p (c))
1169 VEC_safe_push (lst_p, heap, seq, copy_lst (c));
1170 }
1171
1172 return new_lst_loop (seq);
1173 }
1174
1175 /* Moves LST before LOOP if BEFORE is true, and after the LOOP if
1176 BEFORE is false. */
1177
1178 static inline void
1179 lst_distribute_lst (lst_p loop, lst_p lst, bool before)
1180 {
1181 int loop_depth = lst_depth (loop);
1182 int depth = lst_depth (lst);
1183 int nb_loops = depth - loop_depth;
1184
1185 gcc_assert (lst && loop && LST_LOOP_P (loop) && nb_loops > 0);
1186
1187 lst_remove_from_sequence (lst);
1188 lst_insert_in_sequence (lst_create_nest (nb_loops, lst), loop, before);
1189 }
1190
1191 /* Removes from LOOP all the statements before/after and including PBB
1192 if BEFORE is true/false. Returns the negation of BEFORE when the
1193 statement PBB has been found. */
1194
1195 static inline bool
1196 lst_remove_all_before_including_pbb (lst_p loop, poly_bb_p pbb, bool before)
1197 {
1198 int i;
1199 lst_p l;
1200
1201 if (!loop || !LST_LOOP_P (loop))
1202 return before;
1203
1204 for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l);)
1205 if (LST_LOOP_P (l))
1206 {
1207 before = lst_remove_all_before_including_pbb (l, pbb, before);
1208
1209 if (VEC_length (lst_p, LST_SEQ (l)) == 0)
1210 {
1211 VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1212 free_lst (l);
1213 }
1214 else
1215 i++;
1216 }
1217 else
1218 {
1219 if (before)
1220 {
1221 if (LST_PBB (l) == pbb)
1222 before = false;
1223
1224 VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1225 free_lst (l);
1226 }
1227 else if (LST_PBB (l) == pbb)
1228 {
1229 before = true;
1230 VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1231 free_lst (l);
1232 }
1233 else
1234 i++;
1235 }
1236
1237 return before;
1238 }
1239
1240 /* Removes from LOOP all the statements before/after and excluding PBB
1241 if BEFORE is true/false; Returns the negation of BEFORE when the
1242 statement PBB has been found. */
1243
1244 static inline bool
1245 lst_remove_all_before_excluding_pbb (lst_p loop, poly_bb_p pbb, bool before)
1246 {
1247 int i;
1248 lst_p l;
1249
1250 if (!loop || !LST_LOOP_P (loop))
1251 return before;
1252
1253 for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l);)
1254 if (LST_LOOP_P (l))
1255 {
1256 before = lst_remove_all_before_excluding_pbb (l, pbb, before);
1257
1258 if (VEC_length (lst_p, LST_SEQ (l)) == 0)
1259 {
1260 VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1261 free_lst (l);
1262 continue;
1263 }
1264
1265 i++;
1266 }
1267 else
1268 {
1269 if (before && LST_PBB (l) != pbb)
1270 {
1271 VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1272 free_lst (l);
1273 continue;
1274 }
1275
1276 i++;
1277
1278 if (LST_PBB (l) == pbb)
1279 before = before ? false : true;
1280 }
1281
1282 return before;
1283 }
1284
1285 /* A SCOP is a Static Control Part of the program, simple enough to be
1286 represented in polyhedral form. */
1287 struct scop
1288 {
1289 /* A SCOP is defined as a SESE region. */
1290 void *region;
1291
1292 /* Number of parameters in SCoP. */
1293 graphite_dim_t nb_params;
1294
1295 /* All the basic blocks in this scop that contain memory references
1296 and that will be represented as statements in the polyhedral
1297 representation. */
1298 VEC (poly_bb_p, heap) *bbs;
1299
1300 /* Original, transformed and saved schedules. */
1301 lst_p original_schedule, transformed_schedule, saved_schedule;
1302
1303 /* The context describes known restrictions concerning the parameters
1304 and relations in between the parameters.
1305
1306 void f (int8_t a, uint_16_t b) {
1307 c = 2 a + b;
1308 ...
1309 }
1310
1311 Here we can add these restrictions to the context:
1312
1313 -128 >= a >= 127
1314 0 >= b >= 65,535
1315 c = 2a + b */
1316 ppl_Pointset_Powerset_C_Polyhedron_t context;
1317
1318 /* A hashtable of the data dependence relations for the original
1319 scattering. */
1320 htab_t original_pddrs;
1321
1322 /* True when the scop has been converted to its polyhedral
1323 representation. */
1324 bool poly_scop_p;
1325 };
1326
1327 #define SCOP_BBS(S) (S->bbs)
1328 #define SCOP_REGION(S) ((sese) S->region)
1329 #define SCOP_CONTEXT(S) (S->context)
1330 #define SCOP_ORIGINAL_PDDRS(S) (S->original_pddrs)
1331 #define SCOP_ORIGINAL_SCHEDULE(S) (S->original_schedule)
1332 #define SCOP_TRANSFORMED_SCHEDULE(S) (S->transformed_schedule)
1333 #define SCOP_SAVED_SCHEDULE(S) (S->saved_schedule)
1334 #define POLY_SCOP_P(S) (S->poly_scop_p)
1335
1336 extern scop_p new_scop (void *);
1337 extern void free_scop (scop_p);
1338 extern void free_scops (VEC (scop_p, heap) *);
1339 extern void print_generated_program (FILE *, scop_p);
1340 extern void debug_generated_program (scop_p);
1341 extern void print_scattering_function (FILE *, poly_bb_p, int);
1342 extern void print_scattering_functions (FILE *, scop_p, int);
1343 extern void debug_scattering_function (poly_bb_p, int);
1344 extern void debug_scattering_functions (scop_p, int);
1345 extern int scop_max_loop_depth (scop_p);
1346 extern int unify_scattering_dimensions (scop_p);
1347 extern bool apply_poly_transforms (scop_p);
1348 extern bool graphite_legal_transform (scop_p);
1349
1350 /* Set the region of SCOP to REGION. */
1351
1352 static inline void
1353 scop_set_region (scop_p scop, void *region)
1354 {
1355 scop->region = region;
1356 }
1357
1358 /* Returns the number of parameters for SCOP. */
1359
1360 static inline graphite_dim_t
1361 scop_nb_params (scop_p scop)
1362 {
1363 return scop->nb_params;
1364 }
1365
1366 /* Set the number of params of SCOP to NB_PARAMS. */
1367
1368 static inline void
1369 scop_set_nb_params (scop_p scop, graphite_dim_t nb_params)
1370 {
1371 scop->nb_params = nb_params;
1372 }
1373
1374 /* Allocates a new empty poly_scattering structure. */
1375
1376 static inline poly_scattering_p
1377 poly_scattering_new (void)
1378 {
1379 poly_scattering_p res = XNEW (struct poly_scattering);
1380
1381 res->scattering = NULL;
1382 res->nb_local_variables = 0;
1383 res->nb_scattering = 0;
1384 return res;
1385 }
1386
1387 /* Free a poly_scattering structure. */
1388
1389 static inline void
1390 poly_scattering_free (poly_scattering_p s)
1391 {
1392 ppl_delete_Polyhedron (s->scattering);
1393 free (s);
1394 }
1395
1396 /* Copies S and return a new scattering. */
1397
1398 static inline poly_scattering_p
1399 poly_scattering_copy (poly_scattering_p s)
1400 {
1401 poly_scattering_p res = poly_scattering_new ();
1402
1403 ppl_new_C_Polyhedron_from_C_Polyhedron (&(res->scattering), s->scattering);
1404 res->nb_local_variables = s->nb_local_variables;
1405 res->nb_scattering = s->nb_scattering;
1406 return res;
1407 }
1408
1409 /* Saves the transformed scattering of PBB. */
1410
1411 static inline void
1412 store_scattering_pbb (poly_bb_p pbb)
1413 {
1414 gcc_assert (PBB_TRANSFORMED (pbb));
1415
1416 if (PBB_SAVED (pbb))
1417 poly_scattering_free (PBB_SAVED (pbb));
1418
1419 PBB_SAVED (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
1420 }
1421
1422 /* Stores the SCOP_TRANSFORMED_SCHEDULE to SCOP_SAVED_SCHEDULE. */
1423
1424 static inline void
1425 store_lst_schedule (scop_p scop)
1426 {
1427 if (SCOP_SAVED_SCHEDULE (scop))
1428 free_lst (SCOP_SAVED_SCHEDULE (scop));
1429
1430 SCOP_SAVED_SCHEDULE (scop) = copy_lst (SCOP_TRANSFORMED_SCHEDULE (scop));
1431 }
1432
1433 /* Restores the SCOP_TRANSFORMED_SCHEDULE from SCOP_SAVED_SCHEDULE. */
1434
1435 static inline void
1436 restore_lst_schedule (scop_p scop)
1437 {
1438 if (SCOP_TRANSFORMED_SCHEDULE (scop))
1439 free_lst (SCOP_TRANSFORMED_SCHEDULE (scop));
1440
1441 SCOP_TRANSFORMED_SCHEDULE (scop) = copy_lst (SCOP_SAVED_SCHEDULE (scop));
1442 }
1443
1444 /* Saves the scattering for all the pbbs in the SCOP. */
1445
1446 static inline void
1447 store_scattering (scop_p scop)
1448 {
1449 int i;
1450 poly_bb_p pbb;
1451
1452 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1453 store_scattering_pbb (pbb);
1454
1455 store_lst_schedule (scop);
1456 }
1457
1458 /* Restores the scattering of PBB. */
1459
1460 static inline void
1461 restore_scattering_pbb (poly_bb_p pbb)
1462 {
1463 gcc_assert (PBB_SAVED (pbb));
1464
1465 poly_scattering_free (PBB_TRANSFORMED (pbb));
1466 PBB_TRANSFORMED (pbb) = poly_scattering_copy (PBB_SAVED (pbb));
1467 }
1468
1469 /* Restores the scattering for all the pbbs in the SCOP. */
1470
1471 static inline void
1472 restore_scattering (scop_p scop)
1473 {
1474 int i;
1475 poly_bb_p pbb;
1476
1477 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1478 restore_scattering_pbb (pbb);
1479
1480 restore_lst_schedule (scop);
1481 }
1482
1483 /* For a given PBB, add to RES the scop context, the iteration domain,
1484 the original scattering when ORIGINAL_P is true, otherwise add the
1485 transformed scattering. */
1486
1487 static inline void
1488 combine_context_id_scat (ppl_Pointset_Powerset_C_Polyhedron_t *res,
1489 poly_bb_p pbb, bool original_p)
1490 {
1491 ppl_Pointset_Powerset_C_Polyhedron_t context;
1492 ppl_Pointset_Powerset_C_Polyhedron_t id;
1493
1494 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1495 (res, original_p ?
1496 PBB_ORIGINAL_SCATTERING (pbb) : PBB_TRANSFORMED_SCATTERING (pbb));
1497
1498 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1499 (&context, SCOP_CONTEXT (PBB_SCOP (pbb)));
1500
1501 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1502 (&id, PBB_DOMAIN (pbb));
1503
1504 /* Extend the context and the iteration domain to the dimension of
1505 the scattering: T|I|G. */
1506 {
1507 ppl_dimension_type gdim, tdim, idim;
1508
1509 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*res, &tdim);
1510 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (context, &gdim);
1511 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (id, &idim);
1512
1513 if (tdim > gdim)
1514 ppl_insert_dimensions_pointset (context, 0, tdim - gdim);
1515
1516 if (tdim > idim)
1517 ppl_insert_dimensions_pointset (id, 0, tdim - idim);
1518 }
1519
1520 /* Add the context and the iteration domain to the result. */
1521 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (*res, context);
1522 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (*res, id);
1523
1524 ppl_delete_Pointset_Powerset_C_Polyhedron (context);
1525 ppl_delete_Pointset_Powerset_C_Polyhedron (id);
1526 }
1527
1528 #endif