re PR c++/60572 (ICE deriving from class with invalid member)
[gcc.git] / gcc / graphite-scop-detection.c
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23
24 #ifdef HAVE_cloog
25 #include <isl/set.h>
26 #include <isl/map.h>
27 #include <isl/union_map.h>
28 #include <cloog/cloog.h>
29 #include <cloog/isl/domain.h>
30 #endif
31
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tree.h"
35 #include "basic-block.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-expr.h"
39 #include "is-a.h"
40 #include "gimple.h"
41 #include "gimple-iterator.h"
42 #include "gimple-ssa.h"
43 #include "tree-phinodes.h"
44 #include "ssa-iterators.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "cfgloop.h"
51 #include "tree-chrec.h"
52 #include "tree-data-ref.h"
53 #include "tree-scalar-evolution.h"
54 #include "tree-pass.h"
55 #include "sese.h"
56 #include "tree-ssa-propagate.h"
57
58 #ifdef HAVE_cloog
59 #include "graphite-poly.h"
60 #include "graphite-scop-detection.h"
61
62 /* Forward declarations. */
63 static void make_close_phi_nodes_unique (basic_block);
64
65 /* The type of the analyzed basic block. */
66
67 typedef enum gbb_type {
68 GBB_UNKNOWN,
69 GBB_LOOP_SING_EXIT_HEADER,
70 GBB_LOOP_MULT_EXIT_HEADER,
71 GBB_LOOP_EXIT,
72 GBB_COND_HEADER,
73 GBB_SIMPLE,
74 GBB_LAST
75 } gbb_type;
76
77 /* Detect the type of BB. Loop headers are only marked, if they are
78 new. This means their loop_father is different to LAST_LOOP.
79 Otherwise they are treated like any other bb and their type can be
80 any other type. */
81
82 static gbb_type
83 get_bb_type (basic_block bb, struct loop *last_loop)
84 {
85 vec<basic_block> dom;
86 int nb_dom;
87 struct loop *loop = bb->loop_father;
88
89 /* Check, if we entry into a new loop. */
90 if (loop != last_loop)
91 {
92 if (single_exit (loop) != NULL)
93 return GBB_LOOP_SING_EXIT_HEADER;
94 else if (loop->num != 0)
95 return GBB_LOOP_MULT_EXIT_HEADER;
96 else
97 return GBB_COND_HEADER;
98 }
99
100 dom = get_dominated_by (CDI_DOMINATORS, bb);
101 nb_dom = dom.length ();
102 dom.release ();
103
104 if (nb_dom == 0)
105 return GBB_LAST;
106
107 if (nb_dom == 1 && single_succ_p (bb))
108 return GBB_SIMPLE;
109
110 return GBB_COND_HEADER;
111 }
112
113 /* A SCoP detection region, defined using bbs as borders.
114
115 All control flow touching this region, comes in passing basic_block
116 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
117 edges for the borders we are able to represent also regions that do
118 not have a single entry or exit edge.
119
120 But as they have a single entry basic_block and a single exit
121 basic_block, we are able to generate for every sd_region a single
122 entry and exit edge.
123
124 1 2
125 \ /
126 3 <- entry
127 |
128 4
129 / \ This region contains: {3, 4, 5, 6, 7, 8}
130 5 6
131 | |
132 7 8
133 \ /
134 9 <- exit */
135
136
137 typedef struct sd_region_p
138 {
139 /* The entry bb dominates all bbs in the sd_region. It is part of
140 the region. */
141 basic_block entry;
142
143 /* The exit bb postdominates all bbs in the sd_region, but is not
144 part of the region. */
145 basic_block exit;
146 } sd_region;
147
148
149
150 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
151
152 static void
153 move_sd_regions (vec<sd_region> *source, vec<sd_region> *target)
154 {
155 sd_region *s;
156 int i;
157
158 FOR_EACH_VEC_ELT (*source, i, s)
159 target->safe_push (*s);
160
161 source->release ();
162 }
163
164 /* Something like "n * m" is not allowed. */
165
166 static bool
167 graphite_can_represent_init (tree e)
168 {
169 switch (TREE_CODE (e))
170 {
171 case POLYNOMIAL_CHREC:
172 return graphite_can_represent_init (CHREC_LEFT (e))
173 && graphite_can_represent_init (CHREC_RIGHT (e));
174
175 case MULT_EXPR:
176 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
177 return graphite_can_represent_init (TREE_OPERAND (e, 0))
178 && tree_fits_shwi_p (TREE_OPERAND (e, 1));
179 else
180 return graphite_can_represent_init (TREE_OPERAND (e, 1))
181 && tree_fits_shwi_p (TREE_OPERAND (e, 0));
182
183 case PLUS_EXPR:
184 case POINTER_PLUS_EXPR:
185 case MINUS_EXPR:
186 return graphite_can_represent_init (TREE_OPERAND (e, 0))
187 && graphite_can_represent_init (TREE_OPERAND (e, 1));
188
189 case NEGATE_EXPR:
190 case BIT_NOT_EXPR:
191 CASE_CONVERT:
192 case NON_LVALUE_EXPR:
193 return graphite_can_represent_init (TREE_OPERAND (e, 0));
194
195 default:
196 break;
197 }
198
199 return true;
200 }
201
202 /* Return true when SCEV can be represented in the polyhedral model.
203
204 An expression can be represented, if it can be expressed as an
205 affine expression. For loops (i, j) and parameters (m, n) all
206 affine expressions are of the form:
207
208 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
209
210 1 i + 20 j + (-2) m + 25
211
212 Something like "i * n" or "n * m" is not allowed. */
213
214 static bool
215 graphite_can_represent_scev (tree scev)
216 {
217 if (chrec_contains_undetermined (scev))
218 return false;
219
220 switch (TREE_CODE (scev))
221 {
222 case PLUS_EXPR:
223 case MINUS_EXPR:
224 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
225 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
226
227 case MULT_EXPR:
228 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
229 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
230 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
231 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
232 && graphite_can_represent_init (scev)
233 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
234 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
235
236 case POLYNOMIAL_CHREC:
237 /* Check for constant strides. With a non constant stride of
238 'n' we would have a value of 'iv * n'. Also check that the
239 initial value can represented: for example 'n * m' cannot be
240 represented. */
241 if (!evolution_function_right_is_integer_cst (scev)
242 || !graphite_can_represent_init (scev))
243 return false;
244
245 default:
246 break;
247 }
248
249 /* Only affine functions can be represented. */
250 if (!scev_is_linear_expression (scev))
251 return false;
252
253 return true;
254 }
255
256
257 /* Return true when EXPR can be represented in the polyhedral model.
258
259 This means an expression can be represented, if it is linear with
260 respect to the loops and the strides are non parametric.
261 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
262 entry of the region we analyse. */
263
264 static bool
265 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
266 tree expr)
267 {
268 tree scev = analyze_scalar_evolution (loop, expr);
269
270 scev = instantiate_scev (scop_entry, loop, scev);
271
272 return graphite_can_represent_scev (scev);
273 }
274
275 /* Return true if the data references of STMT can be represented by
276 Graphite. */
277
278 static bool
279 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
280 gimple stmt)
281 {
282 data_reference_p dr;
283 unsigned i;
284 int j;
285 bool res = true;
286 vec<data_reference_p> drs = vNULL;
287 loop_p outer;
288
289 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
290 {
291 graphite_find_data_references_in_stmt (outer,
292 loop_containing_stmt (stmt),
293 stmt, &drs);
294
295 FOR_EACH_VEC_ELT (drs, j, dr)
296 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
297 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
298 {
299 res = false;
300 goto done;
301 }
302
303 free_data_refs (drs);
304 drs.create (0);
305 }
306
307 done:
308 free_data_refs (drs);
309 return res;
310 }
311
312 /* Return true only when STMT is simple enough for being handled by
313 Graphite. This depends on SCOP_ENTRY, as the parameters are
314 initialized relatively to this basic block, the linear functions
315 are initialized to OUTERMOST_LOOP and BB is the place where we try
316 to evaluate the STMT. */
317
318 static bool
319 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
320 gimple stmt, basic_block bb)
321 {
322 loop_p loop = bb->loop_father;
323
324 gcc_assert (scop_entry);
325
326 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
327 Calls have side-effects, except those to const or pure
328 functions. */
329 if (gimple_has_volatile_ops (stmt)
330 || (gimple_code (stmt) == GIMPLE_CALL
331 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
332 || (gimple_code (stmt) == GIMPLE_ASM))
333 return false;
334
335 if (is_gimple_debug (stmt))
336 return true;
337
338 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
339 return false;
340
341 switch (gimple_code (stmt))
342 {
343 case GIMPLE_RETURN:
344 case GIMPLE_LABEL:
345 return true;
346
347 case GIMPLE_COND:
348 {
349 tree op;
350 ssa_op_iter op_iter;
351 enum tree_code code = gimple_cond_code (stmt);
352
353 /* We can handle all binary comparisons. Inequalities are
354 also supported as they can be represented with union of
355 polyhedra. */
356 if (!(code == LT_EXPR
357 || code == GT_EXPR
358 || code == LE_EXPR
359 || code == GE_EXPR
360 || code == EQ_EXPR
361 || code == NE_EXPR))
362 return false;
363
364 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
365 if (!graphite_can_represent_expr (scop_entry, loop, op)
366 /* We can not handle REAL_TYPE. Failed for pr39260. */
367 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
368 return false;
369
370 return true;
371 }
372
373 case GIMPLE_ASSIGN:
374 case GIMPLE_CALL:
375 return true;
376
377 default:
378 /* These nodes cut a new scope. */
379 return false;
380 }
381
382 return false;
383 }
384
385 /* Returns the statement of BB that contains a harmful operation: that
386 can be a function call with side effects, the induction variables
387 are not linear with respect to SCOP_ENTRY, etc. The current open
388 scop should end before this statement. The evaluation is limited using
389 OUTERMOST_LOOP as outermost loop that may change. */
390
391 static gimple
392 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
393 {
394 gimple_stmt_iterator gsi;
395
396 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
397 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
398 return gsi_stmt (gsi);
399
400 return NULL;
401 }
402
403 /* Return true if LOOP can be represented in the polyhedral
404 representation. This is evaluated taking SCOP_ENTRY and
405 OUTERMOST_LOOP in mind. */
406
407 static bool
408 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
409 {
410 tree niter;
411 struct tree_niter_desc niter_desc;
412
413 /* FIXME: For the moment, graphite cannot be used on loops that
414 iterate using induction variables that wrap. */
415
416 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
417 && niter_desc.control.no_overflow
418 && (niter = number_of_latch_executions (loop))
419 && !chrec_contains_undetermined (niter)
420 && graphite_can_represent_expr (scop_entry, loop, niter);
421 }
422
423 /* Store information needed by scopdet_* functions. */
424
425 struct scopdet_info
426 {
427 /* Exit of the open scop would stop if the current BB is harmful. */
428 basic_block exit;
429
430 /* Where the next scop would start if the current BB is harmful. */
431 basic_block next;
432
433 /* The bb or one of its children contains open loop exits. That means
434 loop exit nodes that are not surrounded by a loop dominated by bb. */
435 bool exits;
436
437 /* The bb or one of its children contains only structures we can handle. */
438 bool difficult;
439 };
440
441 static struct scopdet_info build_scops_1 (basic_block, loop_p,
442 vec<sd_region> *, loop_p);
443
444 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
445 to SCOPS. TYPE is the gbb_type of BB. */
446
447 static struct scopdet_info
448 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
449 vec<sd_region> *scops, gbb_type type)
450 {
451 loop_p loop = bb->loop_father;
452 struct scopdet_info result;
453 gimple stmt;
454
455 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
456 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
457 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
458 result.difficult = (stmt != NULL);
459 result.exit = NULL;
460
461 switch (type)
462 {
463 case GBB_LAST:
464 result.next = NULL;
465 result.exits = false;
466
467 /* Mark bbs terminating a SESE region difficult, if they start
468 a condition. */
469 if (!single_succ_p (bb))
470 result.difficult = true;
471 else
472 result.exit = single_succ (bb);
473
474 break;
475
476 case GBB_SIMPLE:
477 result.next = single_succ (bb);
478 result.exits = false;
479 result.exit = single_succ (bb);
480 break;
481
482 case GBB_LOOP_SING_EXIT_HEADER:
483 {
484 auto_vec<sd_region, 3> regions;
485 struct scopdet_info sinfo;
486 edge exit_e = single_exit (loop);
487
488 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
489
490 if (!graphite_can_represent_loop (entry_block, loop))
491 result.difficult = true;
492
493 result.difficult |= sinfo.difficult;
494
495 /* Try again with another loop level. */
496 if (result.difficult
497 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
498 {
499 outermost_loop = loop;
500
501 regions.release ();
502 regions.create (3);
503
504 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
505
506 result = sinfo;
507 result.difficult = true;
508
509 if (sinfo.difficult)
510 move_sd_regions (&regions, scops);
511 else
512 {
513 sd_region open_scop;
514 open_scop.entry = bb;
515 open_scop.exit = exit_e->dest;
516 scops->safe_push (open_scop);
517 regions.release ();
518 }
519 }
520 else
521 {
522 result.exit = exit_e->dest;
523 result.next = exit_e->dest;
524
525 /* If we do not dominate result.next, remove it. It's either
526 the exit block, or another bb dominates it and will
527 call the scop detection for this bb. */
528 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
529 result.next = NULL;
530
531 if (exit_e->src->loop_father != loop)
532 result.next = NULL;
533
534 result.exits = false;
535
536 if (result.difficult)
537 move_sd_regions (&regions, scops);
538 else
539 regions.release ();
540 }
541
542 break;
543 }
544
545 case GBB_LOOP_MULT_EXIT_HEADER:
546 {
547 /* XXX: For now we just do not join loops with multiple exits. If the
548 exits lead to the same bb it may be possible to join the loop. */
549 auto_vec<sd_region, 3> regions;
550 vec<edge> exits = get_loop_exit_edges (loop);
551 edge e;
552 int i;
553 build_scops_1 (bb, loop, &regions, loop);
554
555 /* Scan the code dominated by this loop. This means all bbs, that are
556 are dominated by a bb in this loop, but are not part of this loop.
557
558 The easiest case:
559 - The loop exit destination is dominated by the exit sources.
560
561 TODO: We miss here the more complex cases:
562 - The exit destinations are dominated by another bb inside
563 the loop.
564 - The loop dominates bbs, that are not exit destinations. */
565 FOR_EACH_VEC_ELT (exits, i, e)
566 if (e->src->loop_father == loop
567 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
568 {
569 if (loop_outer (outermost_loop))
570 outermost_loop = loop_outer (outermost_loop);
571
572 /* Pass loop_outer to recognize e->dest as loop header in
573 build_scops_1. */
574 if (e->dest->loop_father->header == e->dest)
575 build_scops_1 (e->dest, outermost_loop, &regions,
576 loop_outer (e->dest->loop_father));
577 else
578 build_scops_1 (e->dest, outermost_loop, &regions,
579 e->dest->loop_father);
580 }
581
582 result.next = NULL;
583 result.exit = NULL;
584 result.difficult = true;
585 result.exits = false;
586 move_sd_regions (&regions, scops);
587 exits.release ();
588 break;
589 }
590 case GBB_COND_HEADER:
591 {
592 auto_vec<sd_region, 3> regions;
593 struct scopdet_info sinfo;
594 vec<basic_block> dominated;
595 int i;
596 basic_block dom_bb;
597 basic_block last_exit = NULL;
598 edge e;
599 result.exits = false;
600
601 /* First check the successors of BB, and check if it is
602 possible to join the different branches. */
603 FOR_EACH_VEC_SAFE_ELT (bb->succs, i, e)
604 {
605 /* Ignore loop exits. They will be handled after the loop
606 body. */
607 if (loop_exits_to_bb_p (loop, e->dest))
608 {
609 result.exits = true;
610 continue;
611 }
612
613 /* Do not follow edges that lead to the end of the
614 conditions block. For example, in
615
616 | 0
617 | /|\
618 | 1 2 |
619 | | | |
620 | 3 4 |
621 | \|/
622 | 6
623
624 the edge from 0 => 6. Only check if all paths lead to
625 the same node 6. */
626
627 if (!single_pred_p (e->dest))
628 {
629 /* Check, if edge leads directly to the end of this
630 condition. */
631 if (!last_exit)
632 last_exit = e->dest;
633
634 if (e->dest != last_exit)
635 result.difficult = true;
636
637 continue;
638 }
639
640 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
641 {
642 result.difficult = true;
643 continue;
644 }
645
646 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
647
648 result.exits |= sinfo.exits;
649 result.difficult |= sinfo.difficult;
650
651 /* Checks, if all branches end at the same point.
652 If that is true, the condition stays joinable.
653 Have a look at the example above. */
654 if (sinfo.exit)
655 {
656 if (!last_exit)
657 last_exit = sinfo.exit;
658
659 if (sinfo.exit != last_exit)
660 result.difficult = true;
661 }
662 else
663 result.difficult = true;
664 }
665
666 if (!last_exit)
667 result.difficult = true;
668
669 /* Join the branches of the condition if possible. */
670 if (!result.exits && !result.difficult)
671 {
672 /* Only return a next pointer if we dominate this pointer.
673 Otherwise it will be handled by the bb dominating it. */
674 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
675 && last_exit != bb)
676 result.next = last_exit;
677 else
678 result.next = NULL;
679
680 result.exit = last_exit;
681
682 regions.release ();
683 break;
684 }
685
686 /* Scan remaining bbs dominated by BB. */
687 dominated = get_dominated_by (CDI_DOMINATORS, bb);
688
689 FOR_EACH_VEC_ELT (dominated, i, dom_bb)
690 {
691 /* Ignore loop exits: they will be handled after the loop body. */
692 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
693 < loop_depth (loop))
694 {
695 result.exits = true;
696 continue;
697 }
698
699 /* Ignore the bbs processed above. */
700 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
701 continue;
702
703 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
704 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
705 loop_outer (loop));
706 else
707 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
708
709 result.exits |= sinfo.exits;
710 result.difficult = true;
711 result.exit = NULL;
712 }
713
714 dominated.release ();
715
716 result.next = NULL;
717 move_sd_regions (&regions, scops);
718
719 break;
720 }
721
722 default:
723 gcc_unreachable ();
724 }
725
726 return result;
727 }
728
729 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
730 SCOPS. The analyse if a sd_region can be handled is based on the value
731 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
732 is the loop in which CURRENT is handled.
733
734 TODO: These functions got a little bit big. They definitely should be cleaned
735 up. */
736
737 static struct scopdet_info
738 build_scops_1 (basic_block current, loop_p outermost_loop,
739 vec<sd_region> *scops, loop_p loop)
740 {
741 bool in_scop = false;
742 sd_region open_scop;
743 struct scopdet_info sinfo;
744
745 /* Initialize result. */
746 struct scopdet_info result;
747 result.exits = false;
748 result.difficult = false;
749 result.next = NULL;
750 result.exit = NULL;
751 open_scop.entry = NULL;
752 open_scop.exit = NULL;
753 sinfo.exit = NULL;
754
755 /* Loop over the dominance tree. If we meet a difficult bb, close
756 the current SCoP. Loop and condition header start a new layer,
757 and can only be added if all bbs in deeper layers are simple. */
758 while (current != NULL)
759 {
760 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
761 get_bb_type (current, loop));
762
763 if (!in_scop && !(sinfo.exits || sinfo.difficult))
764 {
765 open_scop.entry = current;
766 open_scop.exit = NULL;
767 in_scop = true;
768 }
769 else if (in_scop && (sinfo.exits || sinfo.difficult))
770 {
771 open_scop.exit = current;
772 scops->safe_push (open_scop);
773 in_scop = false;
774 }
775
776 result.difficult |= sinfo.difficult;
777 result.exits |= sinfo.exits;
778
779 current = sinfo.next;
780 }
781
782 /* Try to close open_scop, if we are still in an open SCoP. */
783 if (in_scop)
784 {
785 open_scop.exit = sinfo.exit;
786 gcc_assert (open_scop.exit);
787 scops->safe_push (open_scop);
788 }
789
790 result.exit = sinfo.exit;
791 return result;
792 }
793
794 /* Checks if a bb is contained in REGION. */
795
796 static bool
797 bb_in_sd_region (basic_block bb, sd_region *region)
798 {
799 return bb_in_region (bb, region->entry, region->exit);
800 }
801
802 /* Returns the single entry edge of REGION, if it does not exits NULL. */
803
804 static edge
805 find_single_entry_edge (sd_region *region)
806 {
807 edge e;
808 edge_iterator ei;
809 edge entry = NULL;
810
811 FOR_EACH_EDGE (e, ei, region->entry->preds)
812 if (!bb_in_sd_region (e->src, region))
813 {
814 if (entry)
815 {
816 entry = NULL;
817 break;
818 }
819
820 else
821 entry = e;
822 }
823
824 return entry;
825 }
826
827 /* Returns the single exit edge of REGION, if it does not exits NULL. */
828
829 static edge
830 find_single_exit_edge (sd_region *region)
831 {
832 edge e;
833 edge_iterator ei;
834 edge exit = NULL;
835
836 FOR_EACH_EDGE (e, ei, region->exit->preds)
837 if (bb_in_sd_region (e->src, region))
838 {
839 if (exit)
840 {
841 exit = NULL;
842 break;
843 }
844
845 else
846 exit = e;
847 }
848
849 return exit;
850 }
851
852 /* Create a single entry edge for REGION. */
853
854 static void
855 create_single_entry_edge (sd_region *region)
856 {
857 if (find_single_entry_edge (region))
858 return;
859
860 /* There are multiple predecessors for bb_3
861
862 | 1 2
863 | | /
864 | |/
865 | 3 <- entry
866 | |\
867 | | |
868 | 4 ^
869 | | |
870 | |/
871 | 5
872
873 There are two edges (1->3, 2->3), that point from outside into the region,
874 and another one (5->3), a loop latch, lead to bb_3.
875
876 We split bb_3.
877
878 | 1 2
879 | | /
880 | |/
881 |3.0
882 | |\ (3.0 -> 3.1) = single entry edge
883 |3.1 | <- entry
884 | | |
885 | | |
886 | 4 ^
887 | | |
888 | |/
889 | 5
890
891 If the loop is part of the SCoP, we have to redirect the loop latches.
892
893 | 1 2
894 | | /
895 | |/
896 |3.0
897 | | (3.0 -> 3.1) = entry edge
898 |3.1 <- entry
899 | |\
900 | | |
901 | 4 ^
902 | | |
903 | |/
904 | 5 */
905
906 if (region->entry->loop_father->header != region->entry
907 || dominated_by_p (CDI_DOMINATORS,
908 loop_latch_edge (region->entry->loop_father)->src,
909 region->exit))
910 {
911 edge forwarder = split_block_after_labels (region->entry);
912 region->entry = forwarder->dest;
913 }
914 else
915 /* This case is never executed, as the loop headers seem always to have a
916 single edge pointing from outside into the loop. */
917 gcc_unreachable ();
918
919 gcc_checking_assert (find_single_entry_edge (region));
920 }
921
922 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
923
924 static bool
925 sd_region_without_exit (edge e)
926 {
927 sd_region *r = (sd_region *) e->aux;
928
929 if (r)
930 return r->exit == NULL;
931 else
932 return false;
933 }
934
935 /* Create a single exit edge for REGION. */
936
937 static void
938 create_single_exit_edge (sd_region *region)
939 {
940 edge e;
941 edge_iterator ei;
942 edge forwarder = NULL;
943 basic_block exit;
944
945 /* We create a forwarder bb (5) for all edges leaving this region
946 (3->5, 4->5). All other edges leading to the same bb, are moved
947 to a new bb (6). If these edges where part of another region (2->5)
948 we update the region->exit pointer, of this region.
949
950 To identify which edge belongs to which region we depend on the e->aux
951 pointer in every edge. It points to the region of the edge or to NULL,
952 if the edge is not part of any region.
953
954 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
955 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
956 5 <- exit
957
958 changes to
959
960 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
961 | | \/ 3->5 no region, 4->5 no region,
962 | | 5
963 \| / 5->6 region->exit = 6
964 6
965
966 Now there is only a single exit edge (5->6). */
967 exit = region->exit;
968 region->exit = NULL;
969 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
970
971 /* Unmark the edges, that are no longer exit edges. */
972 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
973 if (e->aux)
974 e->aux = NULL;
975
976 /* Mark the new exit edge. */
977 single_succ_edge (forwarder->src)->aux = region;
978
979 /* Update the exit bb of all regions, where exit edges lead to
980 forwarder->dest. */
981 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
982 if (e->aux)
983 ((sd_region *) e->aux)->exit = forwarder->dest;
984
985 gcc_checking_assert (find_single_exit_edge (region));
986 }
987
988 /* Unmark the exit edges of all REGIONS.
989 See comment in "create_single_exit_edge". */
990
991 static void
992 unmark_exit_edges (vec<sd_region> regions)
993 {
994 int i;
995 sd_region *s;
996 edge e;
997 edge_iterator ei;
998
999 FOR_EACH_VEC_ELT (regions, i, s)
1000 FOR_EACH_EDGE (e, ei, s->exit->preds)
1001 e->aux = NULL;
1002 }
1003
1004
1005 /* Mark the exit edges of all REGIONS.
1006 See comment in "create_single_exit_edge". */
1007
1008 static void
1009 mark_exit_edges (vec<sd_region> regions)
1010 {
1011 int i;
1012 sd_region *s;
1013 edge e;
1014 edge_iterator ei;
1015
1016 FOR_EACH_VEC_ELT (regions, i, s)
1017 FOR_EACH_EDGE (e, ei, s->exit->preds)
1018 if (bb_in_sd_region (e->src, s))
1019 e->aux = s;
1020 }
1021
1022 /* Create for all scop regions a single entry and a single exit edge. */
1023
1024 static void
1025 create_sese_edges (vec<sd_region> regions)
1026 {
1027 int i;
1028 sd_region *s;
1029
1030 FOR_EACH_VEC_ELT (regions, i, s)
1031 create_single_entry_edge (s);
1032
1033 mark_exit_edges (regions);
1034
1035 FOR_EACH_VEC_ELT (regions, i, s)
1036 /* Don't handle multiple edges exiting the function. */
1037 if (!find_single_exit_edge (s)
1038 && s->exit != EXIT_BLOCK_PTR_FOR_FN (cfun))
1039 create_single_exit_edge (s);
1040
1041 unmark_exit_edges (regions);
1042
1043 calculate_dominance_info (CDI_DOMINATORS);
1044 fix_loop_structure (NULL);
1045
1046 #ifdef ENABLE_CHECKING
1047 verify_loop_structure ();
1048 verify_ssa (false);
1049 #endif
1050 }
1051
1052 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1053
1054 static void
1055 build_graphite_scops (vec<sd_region> regions,
1056 vec<scop_p> *scops)
1057 {
1058 int i;
1059 sd_region *s;
1060
1061 FOR_EACH_VEC_ELT (regions, i, s)
1062 {
1063 edge entry = find_single_entry_edge (s);
1064 edge exit = find_single_exit_edge (s);
1065 scop_p scop;
1066
1067 if (!exit)
1068 continue;
1069
1070 scop = new_scop (new_sese (entry, exit));
1071 scops->safe_push (scop);
1072
1073 /* Are there overlapping SCoPs? */
1074 #ifdef ENABLE_CHECKING
1075 {
1076 int j;
1077 sd_region *s2;
1078
1079 FOR_EACH_VEC_ELT (regions, j, s2)
1080 if (s != s2)
1081 gcc_assert (!bb_in_sd_region (s->entry, s2));
1082 }
1083 #endif
1084 }
1085 }
1086
1087 /* Returns true when BB contains only close phi nodes. */
1088
1089 static bool
1090 contains_only_close_phi_nodes (basic_block bb)
1091 {
1092 gimple_stmt_iterator gsi;
1093
1094 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1095 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1096 return false;
1097
1098 return true;
1099 }
1100
1101 /* Print statistics for SCOP to FILE. */
1102
1103 static void
1104 print_graphite_scop_statistics (FILE* file, scop_p scop)
1105 {
1106 long n_bbs = 0;
1107 long n_loops = 0;
1108 long n_stmts = 0;
1109 long n_conditions = 0;
1110 long n_p_bbs = 0;
1111 long n_p_loops = 0;
1112 long n_p_stmts = 0;
1113 long n_p_conditions = 0;
1114
1115 basic_block bb;
1116
1117 FOR_ALL_BB_FN (bb, cfun)
1118 {
1119 gimple_stmt_iterator psi;
1120 loop_p loop = bb->loop_father;
1121
1122 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1123 continue;
1124
1125 n_bbs++;
1126 n_p_bbs += bb->count;
1127
1128 if (EDGE_COUNT (bb->succs) > 1)
1129 {
1130 n_conditions++;
1131 n_p_conditions += bb->count;
1132 }
1133
1134 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1135 {
1136 n_stmts++;
1137 n_p_stmts += bb->count;
1138 }
1139
1140 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1141 {
1142 n_loops++;
1143 n_p_loops += bb->count;
1144 }
1145
1146 }
1147
1148 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1149 fprintf (file, "BBS:%ld, ", n_bbs);
1150 fprintf (file, "LOOPS:%ld, ", n_loops);
1151 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1152 fprintf (file, "STMTS:%ld)\n", n_stmts);
1153 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1154 fprintf (file, "BBS:%ld, ", n_p_bbs);
1155 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1156 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1157 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1158 }
1159
1160 /* Print statistics for SCOPS to FILE. */
1161
1162 static void
1163 print_graphite_statistics (FILE* file, vec<scop_p> scops)
1164 {
1165 int i;
1166 scop_p scop;
1167
1168 FOR_EACH_VEC_ELT (scops, i, scop)
1169 print_graphite_scop_statistics (file, scop);
1170 }
1171
1172 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1173
1174 Example:
1175
1176 for (i |
1177 { |
1178 for (j | SCoP 1
1179 for (k |
1180 } |
1181
1182 * SCoP frontier, as this line is not surrounded by any loop. *
1183
1184 for (l | SCoP 2
1185
1186 This is necessary as scalar evolution and parameter detection need a
1187 outermost loop to initialize parameters correctly.
1188
1189 TODO: FIX scalar evolution and parameter detection to allow more flexible
1190 SCoP frontiers. */
1191
1192 static void
1193 limit_scops (vec<scop_p> *scops)
1194 {
1195 auto_vec<sd_region, 3> regions;
1196
1197 int i;
1198 scop_p scop;
1199
1200 FOR_EACH_VEC_ELT (*scops, i, scop)
1201 {
1202 int j;
1203 loop_p loop;
1204 sese region = SCOP_REGION (scop);
1205 build_sese_loop_nests (region);
1206
1207 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), j, loop)
1208 if (!loop_in_sese_p (loop_outer (loop), region)
1209 && single_exit (loop))
1210 {
1211 sd_region open_scop;
1212 open_scop.entry = loop->header;
1213 open_scop.exit = single_exit (loop)->dest;
1214
1215 /* This is a hack on top of the limit_scops hack. The
1216 limit_scops hack should disappear all together. */
1217 if (single_succ_p (open_scop.exit)
1218 && contains_only_close_phi_nodes (open_scop.exit))
1219 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1220
1221 regions.safe_push (open_scop);
1222 }
1223 }
1224
1225 free_scops (*scops);
1226 scops->create (3);
1227
1228 create_sese_edges (regions);
1229 build_graphite_scops (regions, scops);
1230 }
1231
1232 /* Returns true when P1 and P2 are close phis with the same
1233 argument. */
1234
1235 static inline bool
1236 same_close_phi_node (gimple p1, gimple p2)
1237 {
1238 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1239 gimple_phi_arg_def (p2, 0), 0);
1240 }
1241
1242 /* Remove the close phi node at GSI and replace its rhs with the rhs
1243 of PHI. */
1244
1245 static void
1246 remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1247 {
1248 gimple use_stmt;
1249 use_operand_p use_p;
1250 imm_use_iterator imm_iter;
1251 tree res = gimple_phi_result (phi);
1252 tree def = gimple_phi_result (gsi_stmt (*gsi));
1253
1254 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1255
1256 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1257 {
1258 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1259 SET_USE (use_p, res);
1260
1261 update_stmt (use_stmt);
1262
1263 /* It is possible that we just created a duplicate close-phi
1264 for an already-processed containing loop. Check for this
1265 case and clean it up. */
1266 if (gimple_code (use_stmt) == GIMPLE_PHI
1267 && gimple_phi_num_args (use_stmt) == 1)
1268 make_close_phi_nodes_unique (gimple_bb (use_stmt));
1269 }
1270
1271 remove_phi_node (gsi, true);
1272 }
1273
1274 /* Removes all the close phi duplicates from BB. */
1275
1276 static void
1277 make_close_phi_nodes_unique (basic_block bb)
1278 {
1279 gimple_stmt_iterator psi;
1280
1281 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1282 {
1283 gimple_stmt_iterator gsi = psi;
1284 gimple phi = gsi_stmt (psi);
1285
1286 /* At this point, PHI should be a close phi in normal form. */
1287 gcc_assert (gimple_phi_num_args (phi) == 1);
1288
1289 /* Iterate over the next phis and remove duplicates. */
1290 gsi_next (&gsi);
1291 while (!gsi_end_p (gsi))
1292 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1293 remove_duplicate_close_phi (phi, &gsi);
1294 else
1295 gsi_next (&gsi);
1296 }
1297 }
1298
1299 /* Transforms LOOP to the canonical loop closed SSA form. */
1300
1301 static void
1302 canonicalize_loop_closed_ssa (loop_p loop)
1303 {
1304 edge e = single_exit (loop);
1305 basic_block bb;
1306
1307 if (!e || e->flags & EDGE_ABNORMAL)
1308 return;
1309
1310 bb = e->dest;
1311
1312 if (single_pred_p (bb))
1313 {
1314 e = split_block_after_labels (bb);
1315 make_close_phi_nodes_unique (e->src);
1316 }
1317 else
1318 {
1319 gimple_stmt_iterator psi;
1320 basic_block close = split_edge (e);
1321
1322 e = single_succ_edge (close);
1323
1324 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1325 {
1326 gimple phi = gsi_stmt (psi);
1327 unsigned i;
1328
1329 for (i = 0; i < gimple_phi_num_args (phi); i++)
1330 if (gimple_phi_arg_edge (phi, i) == e)
1331 {
1332 tree res, arg = gimple_phi_arg_def (phi, i);
1333 use_operand_p use_p;
1334 gimple close_phi;
1335
1336 if (TREE_CODE (arg) != SSA_NAME)
1337 continue;
1338
1339 close_phi = create_phi_node (NULL_TREE, close);
1340 res = create_new_def_for (arg, close_phi,
1341 gimple_phi_result_ptr (close_phi));
1342 add_phi_arg (close_phi, arg,
1343 gimple_phi_arg_edge (close_phi, 0),
1344 UNKNOWN_LOCATION);
1345 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1346 replace_exp (use_p, res);
1347 update_stmt (phi);
1348 }
1349 }
1350
1351 make_close_phi_nodes_unique (close);
1352 }
1353
1354 /* The code above does not properly handle changes in the post dominance
1355 information (yet). */
1356 free_dominance_info (CDI_POST_DOMINATORS);
1357 }
1358
1359 /* Converts the current loop closed SSA form to a canonical form
1360 expected by the Graphite code generation.
1361
1362 The loop closed SSA form has the following invariant: a variable
1363 defined in a loop that is used outside the loop appears only in the
1364 phi nodes in the destination of the loop exit. These phi nodes are
1365 called close phi nodes.
1366
1367 The canonical loop closed SSA form contains the extra invariants:
1368
1369 - when the loop contains only one exit, the close phi nodes contain
1370 only one argument. That implies that the basic block that contains
1371 the close phi nodes has only one predecessor, that is a basic block
1372 in the loop.
1373
1374 - the basic block containing the close phi nodes does not contain
1375 other statements.
1376
1377 - there exist only one phi node per definition in the loop.
1378 */
1379
1380 static void
1381 canonicalize_loop_closed_ssa_form (void)
1382 {
1383 loop_p loop;
1384
1385 #ifdef ENABLE_CHECKING
1386 verify_loop_closed_ssa (true);
1387 #endif
1388
1389 FOR_EACH_LOOP (loop, 0)
1390 canonicalize_loop_closed_ssa (loop);
1391
1392 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1393 update_ssa (TODO_update_ssa);
1394
1395 #ifdef ENABLE_CHECKING
1396 verify_loop_closed_ssa (true);
1397 #endif
1398 }
1399
1400 /* Find Static Control Parts (SCoP) in the current function and pushes
1401 them to SCOPS. */
1402
1403 void
1404 build_scops (vec<scop_p> *scops)
1405 {
1406 struct loop *loop = current_loops->tree_root;
1407 auto_vec<sd_region, 3> regions;
1408
1409 canonicalize_loop_closed_ssa_form ();
1410 build_scops_1 (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1411 ENTRY_BLOCK_PTR_FOR_FN (cfun)->loop_father,
1412 &regions, loop);
1413 create_sese_edges (regions);
1414 build_graphite_scops (regions, scops);
1415
1416 if (dump_file && (dump_flags & TDF_DETAILS))
1417 print_graphite_statistics (dump_file, *scops);
1418
1419 limit_scops (scops);
1420 regions.release ();
1421
1422 if (dump_file && (dump_flags & TDF_DETAILS))
1423 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1424 scops ? scops->length () : 0);
1425 }
1426
1427 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1428 different colors. If there are not enough colors, paint the
1429 remaining SCoPs in gray.
1430
1431 Special nodes:
1432 - "*" after the node number denotes the entry of a SCoP,
1433 - "#" after the node number denotes the exit of a SCoP,
1434 - "()" around the node number denotes the entry or the
1435 exit nodes of the SCOP. These are not part of SCoP. */
1436
1437 static void
1438 dot_all_scops_1 (FILE *file, vec<scop_p> scops)
1439 {
1440 basic_block bb;
1441 edge e;
1442 edge_iterator ei;
1443 scop_p scop;
1444 const char* color;
1445 int i;
1446
1447 /* Disable debugging while printing graph. */
1448 int tmp_dump_flags = dump_flags;
1449 dump_flags = 0;
1450
1451 fprintf (file, "digraph all {\n");
1452
1453 FOR_ALL_BB_FN (bb, cfun)
1454 {
1455 int part_of_scop = false;
1456
1457 /* Use HTML for every bb label. So we are able to print bbs
1458 which are part of two different SCoPs, with two different
1459 background colors. */
1460 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1461 bb->index);
1462 fprintf (file, "CELLSPACING=\"0\">\n");
1463
1464 /* Select color for SCoP. */
1465 FOR_EACH_VEC_ELT (scops, i, scop)
1466 {
1467 sese region = SCOP_REGION (scop);
1468 if (bb_in_sese_p (bb, region)
1469 || (SESE_EXIT_BB (region) == bb)
1470 || (SESE_ENTRY_BB (region) == bb))
1471 {
1472 switch (i % 17)
1473 {
1474 case 0: /* red */
1475 color = "#e41a1c";
1476 break;
1477 case 1: /* blue */
1478 color = "#377eb8";
1479 break;
1480 case 2: /* green */
1481 color = "#4daf4a";
1482 break;
1483 case 3: /* purple */
1484 color = "#984ea3";
1485 break;
1486 case 4: /* orange */
1487 color = "#ff7f00";
1488 break;
1489 case 5: /* yellow */
1490 color = "#ffff33";
1491 break;
1492 case 6: /* brown */
1493 color = "#a65628";
1494 break;
1495 case 7: /* rose */
1496 color = "#f781bf";
1497 break;
1498 case 8:
1499 color = "#8dd3c7";
1500 break;
1501 case 9:
1502 color = "#ffffb3";
1503 break;
1504 case 10:
1505 color = "#bebada";
1506 break;
1507 case 11:
1508 color = "#fb8072";
1509 break;
1510 case 12:
1511 color = "#80b1d3";
1512 break;
1513 case 13:
1514 color = "#fdb462";
1515 break;
1516 case 14:
1517 color = "#b3de69";
1518 break;
1519 case 15:
1520 color = "#fccde5";
1521 break;
1522 case 16:
1523 color = "#bc80bd";
1524 break;
1525 default: /* gray */
1526 color = "#999999";
1527 }
1528
1529 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1530
1531 if (!bb_in_sese_p (bb, region))
1532 fprintf (file, " (");
1533
1534 if (bb == SESE_ENTRY_BB (region)
1535 && bb == SESE_EXIT_BB (region))
1536 fprintf (file, " %d*# ", bb->index);
1537 else if (bb == SESE_ENTRY_BB (region))
1538 fprintf (file, " %d* ", bb->index);
1539 else if (bb == SESE_EXIT_BB (region))
1540 fprintf (file, " %d# ", bb->index);
1541 else
1542 fprintf (file, " %d ", bb->index);
1543
1544 if (!bb_in_sese_p (bb,region))
1545 fprintf (file, ")");
1546
1547 fprintf (file, "</TD></TR>\n");
1548 part_of_scop = true;
1549 }
1550 }
1551
1552 if (!part_of_scop)
1553 {
1554 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1555 fprintf (file, " %d </TD></TR>\n", bb->index);
1556 }
1557 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1558 }
1559
1560 FOR_ALL_BB_FN (bb, cfun)
1561 {
1562 FOR_EACH_EDGE (e, ei, bb->succs)
1563 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1564 }
1565
1566 fputs ("}\n\n", file);
1567
1568 /* Enable debugging again. */
1569 dump_flags = tmp_dump_flags;
1570 }
1571
1572 /* Display all SCoPs using dotty. */
1573
1574 DEBUG_FUNCTION void
1575 dot_all_scops (vec<scop_p> scops)
1576 {
1577 /* When debugging, enable the following code. This cannot be used
1578 in production compilers because it calls "system". */
1579 #if 0
1580 int x;
1581 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1582 gcc_assert (stream);
1583
1584 dot_all_scops_1 (stream, scops);
1585 fclose (stream);
1586
1587 x = system ("dotty /tmp/allscops.dot &");
1588 #else
1589 dot_all_scops_1 (stderr, scops);
1590 #endif
1591 }
1592
1593 /* Display all SCoPs using dotty. */
1594
1595 DEBUG_FUNCTION void
1596 dot_scop (scop_p scop)
1597 {
1598 auto_vec<scop_p, 1> scops;
1599
1600 if (scop)
1601 scops.safe_push (scop);
1602
1603 /* When debugging, enable the following code. This cannot be used
1604 in production compilers because it calls "system". */
1605 #if 0
1606 {
1607 int x;
1608 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1609 gcc_assert (stream);
1610
1611 dot_all_scops_1 (stream, scops);
1612 fclose (stream);
1613 x = system ("dotty /tmp/allscops.dot &");
1614 }
1615 #else
1616 dot_all_scops_1 (stderr, scops);
1617 #endif
1618 }
1619
1620 #endif