decl.c (value_annotation_hasher::handle_cache_entry): Delete.
[gcc.git] / gcc / graphite-scop-detection.c
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23
24 #ifdef HAVE_isl
25 #include <isl/set.h>
26 #include <isl/map.h>
27 #include <isl/union_map.h>
28 #endif
29
30 #include "system.h"
31 #include "coretypes.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "options.h"
35 #include "tree.h"
36 #include "fold-const.h"
37 #include "predict.h"
38 #include "tm.h"
39 #include "hard-reg-set.h"
40 #include "function.h"
41 #include "dominance.h"
42 #include "cfg.h"
43 #include "basic-block.h"
44 #include "tree-ssa-alias.h"
45 #include "internal-fn.h"
46 #include "gimple-expr.h"
47 #include "gimple.h"
48 #include "gimple-iterator.h"
49 #include "gimple-ssa.h"
50 #include "tree-phinodes.h"
51 #include "ssa-iterators.h"
52 #include "tree-ssa-loop-manip.h"
53 #include "tree-ssa-loop-niter.h"
54 #include "tree-ssa-loop.h"
55 #include "tree-into-ssa.h"
56 #include "tree-ssa.h"
57 #include "cfgloop.h"
58 #include "tree-chrec.h"
59 #include "tree-data-ref.h"
60 #include "tree-scalar-evolution.h"
61 #include "tree-pass.h"
62 #include "sese.h"
63 #include "tree-ssa-propagate.h"
64
65 #ifdef HAVE_isl
66 #include "graphite-poly.h"
67 #include "graphite-scop-detection.h"
68
69 /* Forward declarations. */
70 static void make_close_phi_nodes_unique (basic_block);
71
72 /* The type of the analyzed basic block. */
73
74 typedef enum gbb_type {
75 GBB_UNKNOWN,
76 GBB_LOOP_SING_EXIT_HEADER,
77 GBB_LOOP_MULT_EXIT_HEADER,
78 GBB_LOOP_EXIT,
79 GBB_COND_HEADER,
80 GBB_SIMPLE,
81 GBB_LAST
82 } gbb_type;
83
84 /* Detect the type of BB. Loop headers are only marked, if they are
85 new. This means their loop_father is different to LAST_LOOP.
86 Otherwise they are treated like any other bb and their type can be
87 any other type. */
88
89 static gbb_type
90 get_bb_type (basic_block bb, struct loop *last_loop)
91 {
92 vec<basic_block> dom;
93 int nb_dom;
94 struct loop *loop = bb->loop_father;
95
96 /* Check, if we entry into a new loop. */
97 if (loop != last_loop)
98 {
99 if (single_exit (loop) != NULL)
100 return GBB_LOOP_SING_EXIT_HEADER;
101 else if (loop->num != 0)
102 return GBB_LOOP_MULT_EXIT_HEADER;
103 else
104 return GBB_COND_HEADER;
105 }
106
107 dom = get_dominated_by (CDI_DOMINATORS, bb);
108 nb_dom = dom.length ();
109 dom.release ();
110
111 if (nb_dom == 0)
112 return GBB_LAST;
113
114 if (nb_dom == 1 && single_succ_p (bb))
115 return GBB_SIMPLE;
116
117 return GBB_COND_HEADER;
118 }
119
120 /* A SCoP detection region, defined using bbs as borders.
121
122 All control flow touching this region, comes in passing basic_block
123 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
124 edges for the borders we are able to represent also regions that do
125 not have a single entry or exit edge.
126
127 But as they have a single entry basic_block and a single exit
128 basic_block, we are able to generate for every sd_region a single
129 entry and exit edge.
130
131 1 2
132 \ /
133 3 <- entry
134 |
135 4
136 / \ This region contains: {3, 4, 5, 6, 7, 8}
137 5 6
138 | |
139 7 8
140 \ /
141 9 <- exit */
142
143
144 typedef struct sd_region_p
145 {
146 /* The entry bb dominates all bbs in the sd_region. It is part of
147 the region. */
148 basic_block entry;
149
150 /* The exit bb postdominates all bbs in the sd_region, but is not
151 part of the region. */
152 basic_block exit;
153 } sd_region;
154
155
156
157 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
158
159 static void
160 move_sd_regions (vec<sd_region> *source, vec<sd_region> *target)
161 {
162 sd_region *s;
163 int i;
164
165 FOR_EACH_VEC_ELT (*source, i, s)
166 target->safe_push (*s);
167
168 source->release ();
169 }
170
171 /* Something like "n * m" is not allowed. */
172
173 static bool
174 graphite_can_represent_init (tree e)
175 {
176 switch (TREE_CODE (e))
177 {
178 case POLYNOMIAL_CHREC:
179 return graphite_can_represent_init (CHREC_LEFT (e))
180 && graphite_can_represent_init (CHREC_RIGHT (e));
181
182 case MULT_EXPR:
183 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
184 return graphite_can_represent_init (TREE_OPERAND (e, 0))
185 && tree_fits_shwi_p (TREE_OPERAND (e, 1));
186 else
187 return graphite_can_represent_init (TREE_OPERAND (e, 1))
188 && tree_fits_shwi_p (TREE_OPERAND (e, 0));
189
190 case PLUS_EXPR:
191 case POINTER_PLUS_EXPR:
192 case MINUS_EXPR:
193 return graphite_can_represent_init (TREE_OPERAND (e, 0))
194 && graphite_can_represent_init (TREE_OPERAND (e, 1));
195
196 case NEGATE_EXPR:
197 case BIT_NOT_EXPR:
198 CASE_CONVERT:
199 case NON_LVALUE_EXPR:
200 return graphite_can_represent_init (TREE_OPERAND (e, 0));
201
202 default:
203 break;
204 }
205
206 return true;
207 }
208
209 /* Return true when SCEV can be represented in the polyhedral model.
210
211 An expression can be represented, if it can be expressed as an
212 affine expression. For loops (i, j) and parameters (m, n) all
213 affine expressions are of the form:
214
215 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
216
217 1 i + 20 j + (-2) m + 25
218
219 Something like "i * n" or "n * m" is not allowed. */
220
221 static bool
222 graphite_can_represent_scev (tree scev)
223 {
224 if (chrec_contains_undetermined (scev))
225 return false;
226
227 /* We disable the handling of pointer types, because it’s currently not
228 supported by Graphite with the ISL AST generator. SSA_NAME nodes are
229 the only nodes, which are disabled in case they are pointers to object
230 types, but this can be changed. */
231
232 if (POINTER_TYPE_P (TREE_TYPE (scev)) && TREE_CODE (scev) == SSA_NAME)
233 return false;
234
235 switch (TREE_CODE (scev))
236 {
237 case NEGATE_EXPR:
238 case BIT_NOT_EXPR:
239 CASE_CONVERT:
240 case NON_LVALUE_EXPR:
241 return graphite_can_represent_scev (TREE_OPERAND (scev, 0));
242
243 case PLUS_EXPR:
244 case POINTER_PLUS_EXPR:
245 case MINUS_EXPR:
246 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
247 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
248
249 case MULT_EXPR:
250 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
251 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
252 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
253 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
254 && graphite_can_represent_init (scev)
255 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
256 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
257
258 case POLYNOMIAL_CHREC:
259 /* Check for constant strides. With a non constant stride of
260 'n' we would have a value of 'iv * n'. Also check that the
261 initial value can represented: for example 'n * m' cannot be
262 represented. */
263 if (!evolution_function_right_is_integer_cst (scev)
264 || !graphite_can_represent_init (scev))
265 return false;
266 return graphite_can_represent_scev (CHREC_LEFT (scev));
267
268 default:
269 break;
270 }
271
272 /* Only affine functions can be represented. */
273 if (tree_contains_chrecs (scev, NULL)
274 || !scev_is_linear_expression (scev))
275 return false;
276
277 return true;
278 }
279
280
281 /* Return true when EXPR can be represented in the polyhedral model.
282
283 This means an expression can be represented, if it is linear with
284 respect to the loops and the strides are non parametric.
285 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
286 entry of the region we analyse. */
287
288 static bool
289 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
290 tree expr)
291 {
292 tree scev = analyze_scalar_evolution (loop, expr);
293
294 scev = instantiate_scev (scop_entry, loop, scev);
295
296 return graphite_can_represent_scev (scev);
297 }
298
299 /* Return true if the data references of STMT can be represented by
300 Graphite. */
301
302 static bool
303 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
304 gimple stmt)
305 {
306 data_reference_p dr;
307 unsigned i;
308 int j;
309 bool res = true;
310 vec<data_reference_p> drs = vNULL;
311 loop_p outer;
312
313 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
314 {
315 graphite_find_data_references_in_stmt (outer,
316 loop_containing_stmt (stmt),
317 stmt, &drs);
318
319 FOR_EACH_VEC_ELT (drs, j, dr)
320 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
321 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
322 {
323 res = false;
324 goto done;
325 }
326
327 free_data_refs (drs);
328 drs.create (0);
329 }
330
331 done:
332 free_data_refs (drs);
333 return res;
334 }
335
336 /* Return true only when STMT is simple enough for being handled by
337 Graphite. This depends on SCOP_ENTRY, as the parameters are
338 initialized relatively to this basic block, the linear functions
339 are initialized to OUTERMOST_LOOP and BB is the place where we try
340 to evaluate the STMT. */
341
342 static bool
343 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
344 gimple stmt, basic_block bb)
345 {
346 loop_p loop = bb->loop_father;
347
348 gcc_assert (scop_entry);
349
350 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
351 Calls have side-effects, except those to const or pure
352 functions. */
353 if (gimple_has_volatile_ops (stmt)
354 || (gimple_code (stmt) == GIMPLE_CALL
355 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
356 || (gimple_code (stmt) == GIMPLE_ASM))
357 return false;
358
359 if (is_gimple_debug (stmt))
360 return true;
361
362 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
363 return false;
364
365 switch (gimple_code (stmt))
366 {
367 case GIMPLE_RETURN:
368 case GIMPLE_LABEL:
369 return true;
370
371 case GIMPLE_COND:
372 {
373 /* We can handle all binary comparisons. Inequalities are
374 also supported as they can be represented with union of
375 polyhedra. */
376 enum tree_code code = gimple_cond_code (stmt);
377 if (!(code == LT_EXPR
378 || code == GT_EXPR
379 || code == LE_EXPR
380 || code == GE_EXPR
381 || code == EQ_EXPR
382 || code == NE_EXPR))
383 return false;
384
385 for (unsigned i = 0; i < 2; ++i)
386 {
387 tree op = gimple_op (stmt, i);
388 if (!graphite_can_represent_expr (scop_entry, loop, op)
389 /* We can not handle REAL_TYPE. Failed for pr39260. */
390 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
391 return false;
392 }
393
394 return true;
395 }
396
397 case GIMPLE_ASSIGN:
398 case GIMPLE_CALL:
399 return true;
400
401 default:
402 /* These nodes cut a new scope. */
403 return false;
404 }
405
406 return false;
407 }
408
409 /* Returns the statement of BB that contains a harmful operation: that
410 can be a function call with side effects, the induction variables
411 are not linear with respect to SCOP_ENTRY, etc. The current open
412 scop should end before this statement. The evaluation is limited using
413 OUTERMOST_LOOP as outermost loop that may change. */
414
415 static gimple
416 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
417 {
418 gimple_stmt_iterator gsi;
419
420 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
421 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
422 return gsi_stmt (gsi);
423
424 return NULL;
425 }
426
427 /* Return true if LOOP can be represented in the polyhedral
428 representation. This is evaluated taking SCOP_ENTRY and
429 OUTERMOST_LOOP in mind. */
430
431 static bool
432 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
433 {
434 tree niter;
435 struct tree_niter_desc niter_desc;
436
437 /* FIXME: For the moment, graphite cannot be used on loops that
438 iterate using induction variables that wrap. */
439
440 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
441 && niter_desc.control.no_overflow
442 && (niter = number_of_latch_executions (loop))
443 && !chrec_contains_undetermined (niter)
444 && graphite_can_represent_expr (scop_entry, loop, niter);
445 }
446
447 /* Store information needed by scopdet_* functions. */
448
449 struct scopdet_info
450 {
451 /* Exit of the open scop would stop if the current BB is harmful. */
452 basic_block exit;
453
454 /* Where the next scop would start if the current BB is harmful. */
455 basic_block next;
456
457 /* The bb or one of its children contains open loop exits. That means
458 loop exit nodes that are not surrounded by a loop dominated by bb. */
459 bool exits;
460
461 /* The bb or one of its children contains only structures we can handle. */
462 bool difficult;
463 };
464
465 static struct scopdet_info build_scops_1 (basic_block, loop_p,
466 vec<sd_region> *, loop_p);
467
468 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
469 to SCOPS. TYPE is the gbb_type of BB. */
470
471 static struct scopdet_info
472 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
473 vec<sd_region> *scops, gbb_type type)
474 {
475 loop_p loop = bb->loop_father;
476 struct scopdet_info result;
477 gimple stmt;
478
479 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
480 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
481 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
482 result.difficult = (stmt != NULL);
483 result.exit = NULL;
484
485 switch (type)
486 {
487 case GBB_LAST:
488 result.next = NULL;
489 result.exits = false;
490
491 /* Mark bbs terminating a SESE region difficult, if they start
492 a condition or if the block it exits to cannot be split
493 with make_forwarder_block. */
494 if (!single_succ_p (bb)
495 || bb_has_abnormal_pred (single_succ (bb)))
496 result.difficult = true;
497 else
498 result.exit = single_succ (bb);
499
500 break;
501
502 case GBB_SIMPLE:
503 result.next = single_succ (bb);
504 result.exits = false;
505 result.exit = single_succ (bb);
506 break;
507
508 case GBB_LOOP_SING_EXIT_HEADER:
509 {
510 auto_vec<sd_region, 3> regions;
511 struct scopdet_info sinfo;
512 edge exit_e = single_exit (loop);
513
514 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
515
516 if (!graphite_can_represent_loop (entry_block, loop))
517 result.difficult = true;
518
519 result.difficult |= sinfo.difficult;
520
521 /* Try again with another loop level. */
522 if (result.difficult
523 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
524 {
525 outermost_loop = loop;
526
527 regions.release ();
528 regions.create (3);
529
530 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
531
532 result = sinfo;
533 result.difficult = true;
534
535 if (sinfo.difficult)
536 move_sd_regions (&regions, scops);
537 else
538 {
539 sd_region open_scop;
540 open_scop.entry = bb;
541 open_scop.exit = exit_e->dest;
542 scops->safe_push (open_scop);
543 regions.release ();
544 }
545 }
546 else
547 {
548 result.exit = exit_e->dest;
549 result.next = exit_e->dest;
550
551 /* If we do not dominate result.next, remove it. It's either
552 the exit block, or another bb dominates it and will
553 call the scop detection for this bb. */
554 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
555 result.next = NULL;
556
557 if (exit_e->src->loop_father != loop)
558 result.next = NULL;
559
560 result.exits = false;
561
562 if (result.difficult)
563 move_sd_regions (&regions, scops);
564 else
565 regions.release ();
566 }
567
568 break;
569 }
570
571 case GBB_LOOP_MULT_EXIT_HEADER:
572 {
573 /* XXX: For now we just do not join loops with multiple exits. If the
574 exits lead to the same bb it may be possible to join the loop. */
575 auto_vec<sd_region, 3> regions;
576 vec<edge> exits = get_loop_exit_edges (loop);
577 edge e;
578 int i;
579 build_scops_1 (bb, loop, &regions, loop);
580
581 /* Scan the code dominated by this loop. This means all bbs, that are
582 are dominated by a bb in this loop, but are not part of this loop.
583
584 The easiest case:
585 - The loop exit destination is dominated by the exit sources.
586
587 TODO: We miss here the more complex cases:
588 - The exit destinations are dominated by another bb inside
589 the loop.
590 - The loop dominates bbs, that are not exit destinations. */
591 FOR_EACH_VEC_ELT (exits, i, e)
592 if (e->src->loop_father == loop
593 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
594 {
595 if (loop_outer (outermost_loop))
596 outermost_loop = loop_outer (outermost_loop);
597
598 /* Pass loop_outer to recognize e->dest as loop header in
599 build_scops_1. */
600 if (e->dest->loop_father->header == e->dest)
601 build_scops_1 (e->dest, outermost_loop, &regions,
602 loop_outer (e->dest->loop_father));
603 else
604 build_scops_1 (e->dest, outermost_loop, &regions,
605 e->dest->loop_father);
606 }
607
608 result.next = NULL;
609 result.exit = NULL;
610 result.difficult = true;
611 result.exits = false;
612 move_sd_regions (&regions, scops);
613 exits.release ();
614 break;
615 }
616 case GBB_COND_HEADER:
617 {
618 auto_vec<sd_region, 3> regions;
619 struct scopdet_info sinfo;
620 vec<basic_block> dominated;
621 int i;
622 basic_block dom_bb;
623 basic_block last_exit = NULL;
624 edge e;
625 result.exits = false;
626
627 /* First check the successors of BB, and check if it is
628 possible to join the different branches. */
629 FOR_EACH_VEC_SAFE_ELT (bb->succs, i, e)
630 {
631 /* Ignore loop exits. They will be handled after the loop
632 body. */
633 if (loop_exits_to_bb_p (loop, e->dest))
634 {
635 result.exits = true;
636 continue;
637 }
638
639 /* Do not follow edges that lead to the end of the
640 conditions block. For example, in
641
642 | 0
643 | /|\
644 | 1 2 |
645 | | | |
646 | 3 4 |
647 | \|/
648 | 6
649
650 the edge from 0 => 6. Only check if all paths lead to
651 the same node 6. */
652
653 if (!single_pred_p (e->dest))
654 {
655 /* Check, if edge leads directly to the end of this
656 condition. */
657 if (!last_exit)
658 last_exit = e->dest;
659
660 if (e->dest != last_exit)
661 result.difficult = true;
662
663 continue;
664 }
665
666 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
667 {
668 result.difficult = true;
669 continue;
670 }
671
672 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
673
674 result.exits |= sinfo.exits;
675 result.difficult |= sinfo.difficult;
676
677 /* Checks, if all branches end at the same point.
678 If that is true, the condition stays joinable.
679 Have a look at the example above. */
680 if (sinfo.exit)
681 {
682 if (!last_exit)
683 last_exit = sinfo.exit;
684
685 if (sinfo.exit != last_exit)
686 result.difficult = true;
687 }
688 else
689 result.difficult = true;
690 }
691
692 if (!last_exit)
693 result.difficult = true;
694
695 /* Join the branches of the condition if possible. */
696 if (!result.exits && !result.difficult)
697 {
698 /* Only return a next pointer if we dominate this pointer.
699 Otherwise it will be handled by the bb dominating it. */
700 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
701 && last_exit != bb)
702 result.next = last_exit;
703 else
704 result.next = NULL;
705
706 result.exit = last_exit;
707
708 regions.release ();
709 break;
710 }
711
712 /* Scan remaining bbs dominated by BB. */
713 dominated = get_dominated_by (CDI_DOMINATORS, bb);
714
715 FOR_EACH_VEC_ELT (dominated, i, dom_bb)
716 {
717 /* Ignore loop exits: they will be handled after the loop body. */
718 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
719 < loop_depth (loop))
720 {
721 result.exits = true;
722 continue;
723 }
724
725 /* Ignore the bbs processed above. */
726 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
727 continue;
728
729 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
730 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
731 loop_outer (loop));
732 else
733 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
734
735 result.exits |= sinfo.exits;
736 result.difficult = true;
737 result.exit = NULL;
738 }
739
740 dominated.release ();
741
742 result.next = NULL;
743 move_sd_regions (&regions, scops);
744
745 break;
746 }
747
748 default:
749 gcc_unreachable ();
750 }
751
752 return result;
753 }
754
755 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
756 SCOPS. The analyse if a sd_region can be handled is based on the value
757 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
758 is the loop in which CURRENT is handled.
759
760 TODO: These functions got a little bit big. They definitely should be cleaned
761 up. */
762
763 static struct scopdet_info
764 build_scops_1 (basic_block current, loop_p outermost_loop,
765 vec<sd_region> *scops, loop_p loop)
766 {
767 bool in_scop = false;
768 sd_region open_scop;
769 struct scopdet_info sinfo;
770
771 /* Initialize result. */
772 struct scopdet_info result;
773 result.exits = false;
774 result.difficult = false;
775 result.next = NULL;
776 result.exit = NULL;
777 open_scop.entry = NULL;
778 open_scop.exit = NULL;
779 sinfo.exit = NULL;
780
781 /* Loop over the dominance tree. If we meet a difficult bb, close
782 the current SCoP. Loop and condition header start a new layer,
783 and can only be added if all bbs in deeper layers are simple. */
784 while (current != NULL)
785 {
786 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
787 get_bb_type (current, loop));
788
789 if (!in_scop && !(sinfo.exits || sinfo.difficult))
790 {
791 open_scop.entry = current;
792 open_scop.exit = NULL;
793 in_scop = true;
794 }
795 else if (in_scop && (sinfo.exits || sinfo.difficult))
796 {
797 open_scop.exit = current;
798 scops->safe_push (open_scop);
799 in_scop = false;
800 }
801
802 result.difficult |= sinfo.difficult;
803 result.exits |= sinfo.exits;
804
805 current = sinfo.next;
806 }
807
808 /* Try to close open_scop, if we are still in an open SCoP. */
809 if (in_scop)
810 {
811 open_scop.exit = sinfo.exit;
812 gcc_assert (open_scop.exit);
813 scops->safe_push (open_scop);
814 }
815
816 result.exit = sinfo.exit;
817 return result;
818 }
819
820 /* Checks if a bb is contained in REGION. */
821
822 static bool
823 bb_in_sd_region (basic_block bb, sd_region *region)
824 {
825 return bb_in_region (bb, region->entry, region->exit);
826 }
827
828 /* Returns the single entry edge of REGION, if it does not exits NULL. */
829
830 static edge
831 find_single_entry_edge (sd_region *region)
832 {
833 edge e;
834 edge_iterator ei;
835 edge entry = NULL;
836
837 FOR_EACH_EDGE (e, ei, region->entry->preds)
838 if (!bb_in_sd_region (e->src, region))
839 {
840 if (entry)
841 {
842 entry = NULL;
843 break;
844 }
845
846 else
847 entry = e;
848 }
849
850 return entry;
851 }
852
853 /* Returns the single exit edge of REGION, if it does not exits NULL. */
854
855 static edge
856 find_single_exit_edge (sd_region *region)
857 {
858 edge e;
859 edge_iterator ei;
860 edge exit = NULL;
861
862 FOR_EACH_EDGE (e, ei, region->exit->preds)
863 if (bb_in_sd_region (e->src, region))
864 {
865 if (exit)
866 {
867 exit = NULL;
868 break;
869 }
870
871 else
872 exit = e;
873 }
874
875 return exit;
876 }
877
878 /* Create a single entry edge for REGION. */
879
880 static void
881 create_single_entry_edge (sd_region *region)
882 {
883 if (find_single_entry_edge (region))
884 return;
885
886 /* There are multiple predecessors for bb_3
887
888 | 1 2
889 | | /
890 | |/
891 | 3 <- entry
892 | |\
893 | | |
894 | 4 ^
895 | | |
896 | |/
897 | 5
898
899 There are two edges (1->3, 2->3), that point from outside into the region,
900 and another one (5->3), a loop latch, lead to bb_3.
901
902 We split bb_3.
903
904 | 1 2
905 | | /
906 | |/
907 |3.0
908 | |\ (3.0 -> 3.1) = single entry edge
909 |3.1 | <- entry
910 | | |
911 | | |
912 | 4 ^
913 | | |
914 | |/
915 | 5
916
917 If the loop is part of the SCoP, we have to redirect the loop latches.
918
919 | 1 2
920 | | /
921 | |/
922 |3.0
923 | | (3.0 -> 3.1) = entry edge
924 |3.1 <- entry
925 | |\
926 | | |
927 | 4 ^
928 | | |
929 | |/
930 | 5 */
931
932 if (region->entry->loop_father->header != region->entry
933 || dominated_by_p (CDI_DOMINATORS,
934 loop_latch_edge (region->entry->loop_father)->src,
935 region->exit))
936 {
937 edge forwarder = split_block_after_labels (region->entry);
938 region->entry = forwarder->dest;
939 }
940 else
941 /* This case is never executed, as the loop headers seem always to have a
942 single edge pointing from outside into the loop. */
943 gcc_unreachable ();
944
945 gcc_checking_assert (find_single_entry_edge (region));
946 }
947
948 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
949
950 static bool
951 sd_region_without_exit (edge e)
952 {
953 sd_region *r = (sd_region *) e->aux;
954
955 if (r)
956 return r->exit == NULL;
957 else
958 return false;
959 }
960
961 /* Create a single exit edge for REGION. */
962
963 static void
964 create_single_exit_edge (sd_region *region)
965 {
966 edge e;
967 edge_iterator ei;
968 edge forwarder = NULL;
969 basic_block exit;
970
971 /* We create a forwarder bb (5) for all edges leaving this region
972 (3->5, 4->5). All other edges leading to the same bb, are moved
973 to a new bb (6). If these edges where part of another region (2->5)
974 we update the region->exit pointer, of this region.
975
976 To identify which edge belongs to which region we depend on the e->aux
977 pointer in every edge. It points to the region of the edge or to NULL,
978 if the edge is not part of any region.
979
980 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
981 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
982 5 <- exit
983
984 changes to
985
986 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
987 | | \/ 3->5 no region, 4->5 no region,
988 | | 5
989 \| / 5->6 region->exit = 6
990 6
991
992 Now there is only a single exit edge (5->6). */
993 exit = region->exit;
994 region->exit = NULL;
995 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
996
997 /* Unmark the edges, that are no longer exit edges. */
998 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
999 if (e->aux)
1000 e->aux = NULL;
1001
1002 /* Mark the new exit edge. */
1003 single_succ_edge (forwarder->src)->aux = region;
1004
1005 /* Update the exit bb of all regions, where exit edges lead to
1006 forwarder->dest. */
1007 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
1008 if (e->aux)
1009 ((sd_region *) e->aux)->exit = forwarder->dest;
1010
1011 gcc_checking_assert (find_single_exit_edge (region));
1012 }
1013
1014 /* Unmark the exit edges of all REGIONS.
1015 See comment in "create_single_exit_edge". */
1016
1017 static void
1018 unmark_exit_edges (vec<sd_region> regions)
1019 {
1020 int i;
1021 sd_region *s;
1022 edge e;
1023 edge_iterator ei;
1024
1025 FOR_EACH_VEC_ELT (regions, i, s)
1026 FOR_EACH_EDGE (e, ei, s->exit->preds)
1027 e->aux = NULL;
1028 }
1029
1030
1031 /* Mark the exit edges of all REGIONS.
1032 See comment in "create_single_exit_edge". */
1033
1034 static void
1035 mark_exit_edges (vec<sd_region> regions)
1036 {
1037 int i;
1038 sd_region *s;
1039 edge e;
1040 edge_iterator ei;
1041
1042 FOR_EACH_VEC_ELT (regions, i, s)
1043 FOR_EACH_EDGE (e, ei, s->exit->preds)
1044 if (bb_in_sd_region (e->src, s))
1045 e->aux = s;
1046 }
1047
1048 /* Create for all scop regions a single entry and a single exit edge. */
1049
1050 static void
1051 create_sese_edges (vec<sd_region> regions)
1052 {
1053 int i;
1054 sd_region *s;
1055
1056 FOR_EACH_VEC_ELT (regions, i, s)
1057 create_single_entry_edge (s);
1058
1059 mark_exit_edges (regions);
1060
1061 FOR_EACH_VEC_ELT (regions, i, s)
1062 /* Don't handle multiple edges exiting the function. */
1063 if (!find_single_exit_edge (s)
1064 && s->exit != EXIT_BLOCK_PTR_FOR_FN (cfun))
1065 create_single_exit_edge (s);
1066
1067 unmark_exit_edges (regions);
1068
1069 calculate_dominance_info (CDI_DOMINATORS);
1070 fix_loop_structure (NULL);
1071
1072 #ifdef ENABLE_CHECKING
1073 verify_loop_structure ();
1074 verify_ssa (false, true);
1075 #endif
1076 }
1077
1078 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1079
1080 static void
1081 build_graphite_scops (vec<sd_region> regions,
1082 vec<scop_p> *scops)
1083 {
1084 int i;
1085 sd_region *s;
1086
1087 FOR_EACH_VEC_ELT (regions, i, s)
1088 {
1089 edge entry = find_single_entry_edge (s);
1090 edge exit = find_single_exit_edge (s);
1091 scop_p scop;
1092
1093 if (!exit)
1094 continue;
1095
1096 scop = new_scop (new_sese (entry, exit));
1097 scops->safe_push (scop);
1098
1099 /* Are there overlapping SCoPs? */
1100 #ifdef ENABLE_CHECKING
1101 {
1102 int j;
1103 sd_region *s2;
1104
1105 FOR_EACH_VEC_ELT (regions, j, s2)
1106 if (s != s2)
1107 gcc_assert (!bb_in_sd_region (s->entry, s2));
1108 }
1109 #endif
1110 }
1111 }
1112
1113 /* Returns true when BB contains only close phi nodes. */
1114
1115 static bool
1116 contains_only_close_phi_nodes (basic_block bb)
1117 {
1118 gimple_stmt_iterator gsi;
1119
1120 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1121 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1122 return false;
1123
1124 return true;
1125 }
1126
1127 /* Print statistics for SCOP to FILE. */
1128
1129 static void
1130 print_graphite_scop_statistics (FILE* file, scop_p scop)
1131 {
1132 long n_bbs = 0;
1133 long n_loops = 0;
1134 long n_stmts = 0;
1135 long n_conditions = 0;
1136 long n_p_bbs = 0;
1137 long n_p_loops = 0;
1138 long n_p_stmts = 0;
1139 long n_p_conditions = 0;
1140
1141 basic_block bb;
1142
1143 FOR_ALL_BB_FN (bb, cfun)
1144 {
1145 gimple_stmt_iterator psi;
1146 loop_p loop = bb->loop_father;
1147
1148 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1149 continue;
1150
1151 n_bbs++;
1152 n_p_bbs += bb->count;
1153
1154 if (EDGE_COUNT (bb->succs) > 1)
1155 {
1156 n_conditions++;
1157 n_p_conditions += bb->count;
1158 }
1159
1160 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1161 {
1162 n_stmts++;
1163 n_p_stmts += bb->count;
1164 }
1165
1166 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1167 {
1168 n_loops++;
1169 n_p_loops += bb->count;
1170 }
1171
1172 }
1173
1174 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1175 fprintf (file, "BBS:%ld, ", n_bbs);
1176 fprintf (file, "LOOPS:%ld, ", n_loops);
1177 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1178 fprintf (file, "STMTS:%ld)\n", n_stmts);
1179 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1180 fprintf (file, "BBS:%ld, ", n_p_bbs);
1181 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1182 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1183 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1184 }
1185
1186 /* Print statistics for SCOPS to FILE. */
1187
1188 static void
1189 print_graphite_statistics (FILE* file, vec<scop_p> scops)
1190 {
1191 int i;
1192 scop_p scop;
1193
1194 FOR_EACH_VEC_ELT (scops, i, scop)
1195 print_graphite_scop_statistics (file, scop);
1196 }
1197
1198 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1199
1200 Example:
1201
1202 for (i |
1203 { |
1204 for (j | SCoP 1
1205 for (k |
1206 } |
1207
1208 * SCoP frontier, as this line is not surrounded by any loop. *
1209
1210 for (l | SCoP 2
1211
1212 This is necessary as scalar evolution and parameter detection need a
1213 outermost loop to initialize parameters correctly.
1214
1215 TODO: FIX scalar evolution and parameter detection to allow more flexible
1216 SCoP frontiers. */
1217
1218 static void
1219 limit_scops (vec<scop_p> *scops)
1220 {
1221 auto_vec<sd_region, 3> regions;
1222
1223 int i;
1224 scop_p scop;
1225
1226 FOR_EACH_VEC_ELT (*scops, i, scop)
1227 {
1228 int j;
1229 loop_p loop;
1230 sese region = SCOP_REGION (scop);
1231 build_sese_loop_nests (region);
1232
1233 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), j, loop)
1234 if (!loop_in_sese_p (loop_outer (loop), region)
1235 && single_exit (loop))
1236 {
1237 sd_region open_scop;
1238 open_scop.entry = loop->header;
1239 open_scop.exit = single_exit (loop)->dest;
1240
1241 /* This is a hack on top of the limit_scops hack. The
1242 limit_scops hack should disappear all together. */
1243 if (single_succ_p (open_scop.exit)
1244 && contains_only_close_phi_nodes (open_scop.exit))
1245 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1246
1247 regions.safe_push (open_scop);
1248 }
1249 }
1250
1251 free_scops (*scops);
1252 scops->create (3);
1253
1254 create_sese_edges (regions);
1255 build_graphite_scops (regions, scops);
1256 }
1257
1258 /* Returns true when P1 and P2 are close phis with the same
1259 argument. */
1260
1261 static inline bool
1262 same_close_phi_node (gphi *p1, gphi *p2)
1263 {
1264 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1265 gimple_phi_arg_def (p2, 0), 0);
1266 }
1267
1268 /* Remove the close phi node at GSI and replace its rhs with the rhs
1269 of PHI. */
1270
1271 static void
1272 remove_duplicate_close_phi (gphi *phi, gphi_iterator *gsi)
1273 {
1274 gimple use_stmt;
1275 use_operand_p use_p;
1276 imm_use_iterator imm_iter;
1277 tree res = gimple_phi_result (phi);
1278 tree def = gimple_phi_result (gsi->phi ());
1279
1280 gcc_assert (same_close_phi_node (phi, gsi->phi ()));
1281
1282 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1283 {
1284 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1285 SET_USE (use_p, res);
1286
1287 update_stmt (use_stmt);
1288
1289 /* It is possible that we just created a duplicate close-phi
1290 for an already-processed containing loop. Check for this
1291 case and clean it up. */
1292 if (gimple_code (use_stmt) == GIMPLE_PHI
1293 && gimple_phi_num_args (use_stmt) == 1)
1294 make_close_phi_nodes_unique (gimple_bb (use_stmt));
1295 }
1296
1297 remove_phi_node (gsi, true);
1298 }
1299
1300 /* Removes all the close phi duplicates from BB. */
1301
1302 static void
1303 make_close_phi_nodes_unique (basic_block bb)
1304 {
1305 gphi_iterator psi;
1306
1307 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1308 {
1309 gphi_iterator gsi = psi;
1310 gphi *phi = psi.phi ();
1311
1312 /* At this point, PHI should be a close phi in normal form. */
1313 gcc_assert (gimple_phi_num_args (phi) == 1);
1314
1315 /* Iterate over the next phis and remove duplicates. */
1316 gsi_next (&gsi);
1317 while (!gsi_end_p (gsi))
1318 if (same_close_phi_node (phi, gsi.phi ()))
1319 remove_duplicate_close_phi (phi, &gsi);
1320 else
1321 gsi_next (&gsi);
1322 }
1323 }
1324
1325 /* Transforms LOOP to the canonical loop closed SSA form. */
1326
1327 static void
1328 canonicalize_loop_closed_ssa (loop_p loop)
1329 {
1330 edge e = single_exit (loop);
1331 basic_block bb;
1332
1333 if (!e || e->flags & EDGE_ABNORMAL)
1334 return;
1335
1336 bb = e->dest;
1337
1338 if (single_pred_p (bb))
1339 {
1340 e = split_block_after_labels (bb);
1341 make_close_phi_nodes_unique (e->src);
1342 }
1343 else
1344 {
1345 gphi_iterator psi;
1346 basic_block close = split_edge (e);
1347
1348 e = single_succ_edge (close);
1349
1350 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1351 {
1352 gphi *phi = psi.phi ();
1353 unsigned i;
1354
1355 for (i = 0; i < gimple_phi_num_args (phi); i++)
1356 if (gimple_phi_arg_edge (phi, i) == e)
1357 {
1358 tree res, arg = gimple_phi_arg_def (phi, i);
1359 use_operand_p use_p;
1360 gphi *close_phi;
1361
1362 if (TREE_CODE (arg) != SSA_NAME)
1363 continue;
1364
1365 close_phi = create_phi_node (NULL_TREE, close);
1366 res = create_new_def_for (arg, close_phi,
1367 gimple_phi_result_ptr (close_phi));
1368 add_phi_arg (close_phi, arg,
1369 gimple_phi_arg_edge (close_phi, 0),
1370 UNKNOWN_LOCATION);
1371 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1372 replace_exp (use_p, res);
1373 update_stmt (phi);
1374 }
1375 }
1376
1377 make_close_phi_nodes_unique (close);
1378 }
1379
1380 /* The code above does not properly handle changes in the post dominance
1381 information (yet). */
1382 free_dominance_info (CDI_POST_DOMINATORS);
1383 }
1384
1385 /* Converts the current loop closed SSA form to a canonical form
1386 expected by the Graphite code generation.
1387
1388 The loop closed SSA form has the following invariant: a variable
1389 defined in a loop that is used outside the loop appears only in the
1390 phi nodes in the destination of the loop exit. These phi nodes are
1391 called close phi nodes.
1392
1393 The canonical loop closed SSA form contains the extra invariants:
1394
1395 - when the loop contains only one exit, the close phi nodes contain
1396 only one argument. That implies that the basic block that contains
1397 the close phi nodes has only one predecessor, that is a basic block
1398 in the loop.
1399
1400 - the basic block containing the close phi nodes does not contain
1401 other statements.
1402
1403 - there exist only one phi node per definition in the loop.
1404 */
1405
1406 static void
1407 canonicalize_loop_closed_ssa_form (void)
1408 {
1409 loop_p loop;
1410
1411 #ifdef ENABLE_CHECKING
1412 verify_loop_closed_ssa (true);
1413 #endif
1414
1415 FOR_EACH_LOOP (loop, 0)
1416 canonicalize_loop_closed_ssa (loop);
1417
1418 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1419 update_ssa (TODO_update_ssa);
1420
1421 #ifdef ENABLE_CHECKING
1422 verify_loop_closed_ssa (true);
1423 #endif
1424 }
1425
1426 /* Find Static Control Parts (SCoP) in the current function and pushes
1427 them to SCOPS. */
1428
1429 void
1430 build_scops (vec<scop_p> *scops)
1431 {
1432 struct loop *loop = current_loops->tree_root;
1433 auto_vec<sd_region, 3> regions;
1434
1435 canonicalize_loop_closed_ssa_form ();
1436 build_scops_1 (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1437 ENTRY_BLOCK_PTR_FOR_FN (cfun)->loop_father,
1438 &regions, loop);
1439 create_sese_edges (regions);
1440 build_graphite_scops (regions, scops);
1441
1442 if (dump_file && (dump_flags & TDF_DETAILS))
1443 print_graphite_statistics (dump_file, *scops);
1444
1445 limit_scops (scops);
1446 regions.release ();
1447
1448 if (dump_file && (dump_flags & TDF_DETAILS))
1449 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1450 scops ? scops->length () : 0);
1451 }
1452
1453 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1454 different colors. If there are not enough colors, paint the
1455 remaining SCoPs in gray.
1456
1457 Special nodes:
1458 - "*" after the node number denotes the entry of a SCoP,
1459 - "#" after the node number denotes the exit of a SCoP,
1460 - "()" around the node number denotes the entry or the
1461 exit nodes of the SCOP. These are not part of SCoP. */
1462
1463 static void
1464 dot_all_scops_1 (FILE *file, vec<scop_p> scops)
1465 {
1466 basic_block bb;
1467 edge e;
1468 edge_iterator ei;
1469 scop_p scop;
1470 const char* color;
1471 int i;
1472
1473 /* Disable debugging while printing graph. */
1474 int tmp_dump_flags = dump_flags;
1475 dump_flags = 0;
1476
1477 fprintf (file, "digraph all {\n");
1478
1479 FOR_ALL_BB_FN (bb, cfun)
1480 {
1481 int part_of_scop = false;
1482
1483 /* Use HTML for every bb label. So we are able to print bbs
1484 which are part of two different SCoPs, with two different
1485 background colors. */
1486 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1487 bb->index);
1488 fprintf (file, "CELLSPACING=\"0\">\n");
1489
1490 /* Select color for SCoP. */
1491 FOR_EACH_VEC_ELT (scops, i, scop)
1492 {
1493 sese region = SCOP_REGION (scop);
1494 if (bb_in_sese_p (bb, region)
1495 || (SESE_EXIT_BB (region) == bb)
1496 || (SESE_ENTRY_BB (region) == bb))
1497 {
1498 switch (i % 17)
1499 {
1500 case 0: /* red */
1501 color = "#e41a1c";
1502 break;
1503 case 1: /* blue */
1504 color = "#377eb8";
1505 break;
1506 case 2: /* green */
1507 color = "#4daf4a";
1508 break;
1509 case 3: /* purple */
1510 color = "#984ea3";
1511 break;
1512 case 4: /* orange */
1513 color = "#ff7f00";
1514 break;
1515 case 5: /* yellow */
1516 color = "#ffff33";
1517 break;
1518 case 6: /* brown */
1519 color = "#a65628";
1520 break;
1521 case 7: /* rose */
1522 color = "#f781bf";
1523 break;
1524 case 8:
1525 color = "#8dd3c7";
1526 break;
1527 case 9:
1528 color = "#ffffb3";
1529 break;
1530 case 10:
1531 color = "#bebada";
1532 break;
1533 case 11:
1534 color = "#fb8072";
1535 break;
1536 case 12:
1537 color = "#80b1d3";
1538 break;
1539 case 13:
1540 color = "#fdb462";
1541 break;
1542 case 14:
1543 color = "#b3de69";
1544 break;
1545 case 15:
1546 color = "#fccde5";
1547 break;
1548 case 16:
1549 color = "#bc80bd";
1550 break;
1551 default: /* gray */
1552 color = "#999999";
1553 }
1554
1555 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1556
1557 if (!bb_in_sese_p (bb, region))
1558 fprintf (file, " (");
1559
1560 if (bb == SESE_ENTRY_BB (region)
1561 && bb == SESE_EXIT_BB (region))
1562 fprintf (file, " %d*# ", bb->index);
1563 else if (bb == SESE_ENTRY_BB (region))
1564 fprintf (file, " %d* ", bb->index);
1565 else if (bb == SESE_EXIT_BB (region))
1566 fprintf (file, " %d# ", bb->index);
1567 else
1568 fprintf (file, " %d ", bb->index);
1569
1570 if (!bb_in_sese_p (bb,region))
1571 fprintf (file, ")");
1572
1573 fprintf (file, "</TD></TR>\n");
1574 part_of_scop = true;
1575 }
1576 }
1577
1578 if (!part_of_scop)
1579 {
1580 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1581 fprintf (file, " %d </TD></TR>\n", bb->index);
1582 }
1583 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1584 }
1585
1586 FOR_ALL_BB_FN (bb, cfun)
1587 {
1588 FOR_EACH_EDGE (e, ei, bb->succs)
1589 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1590 }
1591
1592 fputs ("}\n\n", file);
1593
1594 /* Enable debugging again. */
1595 dump_flags = tmp_dump_flags;
1596 }
1597
1598 /* Display all SCoPs using dotty. */
1599
1600 DEBUG_FUNCTION void
1601 dot_all_scops (vec<scop_p> scops)
1602 {
1603 /* When debugging, enable the following code. This cannot be used
1604 in production compilers because it calls "system". */
1605 #if 0
1606 int x;
1607 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1608 gcc_assert (stream);
1609
1610 dot_all_scops_1 (stream, scops);
1611 fclose (stream);
1612
1613 x = system ("dotty /tmp/allscops.dot &");
1614 #else
1615 dot_all_scops_1 (stderr, scops);
1616 #endif
1617 }
1618
1619 /* Display all SCoPs using dotty. */
1620
1621 DEBUG_FUNCTION void
1622 dot_scop (scop_p scop)
1623 {
1624 auto_vec<scop_p, 1> scops;
1625
1626 if (scop)
1627 scops.safe_push (scop);
1628
1629 /* When debugging, enable the following code. This cannot be used
1630 in production compilers because it calls "system". */
1631 #if 0
1632 {
1633 int x;
1634 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1635 gcc_assert (stream);
1636
1637 dot_all_scops_1 (stream, scops);
1638 fclose (stream);
1639 x = system ("dotty /tmp/allscops.dot &");
1640 }
1641 #else
1642 dot_all_scops_1 (stderr, scops);
1643 #endif
1644 }
1645
1646 #endif