New Graphite files.
[gcc.git] / gcc / graphite-scop-detection.c
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "toplev.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "value-prof.h"
42 #include "pointer-set.h"
43 #include "gimple.h"
44 #include "sese.h"
45
46 #ifdef HAVE_cloog
47 #include "cloog/cloog.h"
48 #include "ppl_c.h"
49 #include "graphite-ppl.h"
50 #include "graphite.h"
51 #include "graphite-poly.h"
52 #include "graphite-scop-detection.h"
53
54 /* The type of the analyzed basic block. */
55
56 typedef enum gbb_type {
57 GBB_UNKNOWN,
58 GBB_LOOP_SING_EXIT_HEADER,
59 GBB_LOOP_MULT_EXIT_HEADER,
60 GBB_LOOP_EXIT,
61 GBB_COND_HEADER,
62 GBB_SIMPLE,
63 GBB_LAST
64 } gbb_type;
65
66 /* Detect the type of BB. Loop headers are only marked, if they are
67 new. This means their loop_father is different to LAST_LOOP.
68 Otherwise they are treated like any other bb and their type can be
69 any other type. */
70
71 static gbb_type
72 get_bb_type (basic_block bb, struct loop *last_loop)
73 {
74 VEC (basic_block, heap) *dom;
75 int nb_dom, nb_suc;
76 struct loop *loop = bb->loop_father;
77
78 /* Check, if we entry into a new loop. */
79 if (loop != last_loop)
80 {
81 if (single_exit (loop) != NULL)
82 return GBB_LOOP_SING_EXIT_HEADER;
83 else if (loop->num != 0)
84 return GBB_LOOP_MULT_EXIT_HEADER;
85 else
86 return GBB_COND_HEADER;
87 }
88
89 dom = get_dominated_by (CDI_DOMINATORS, bb);
90 nb_dom = VEC_length (basic_block, dom);
91 VEC_free (basic_block, heap, dom);
92
93 if (nb_dom == 0)
94 return GBB_LAST;
95
96 nb_suc = VEC_length (edge, bb->succs);
97
98 if (nb_dom == 1 && nb_suc == 1)
99 return GBB_SIMPLE;
100
101 return GBB_COND_HEADER;
102 }
103
104 /* A SCoP detection region, defined using bbs as borders.
105
106 All control flow touching this region, comes in passing basic_block
107 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
108 edges for the borders we are able to represent also regions that do
109 not have a single entry or exit edge.
110
111 But as they have a single entry basic_block and a single exit
112 basic_block, we are able to generate for every sd_region a single
113 entry and exit edge.
114
115 1 2
116 \ /
117 3 <- entry
118 |
119 4
120 / \ This region contains: {3, 4, 5, 6, 7, 8}
121 5 6
122 | |
123 7 8
124 \ /
125 9 <- exit */
126
127
128 typedef struct sd_region_p
129 {
130 /* The entry bb dominates all bbs in the sd_region. It is part of
131 the region. */
132 basic_block entry;
133
134 /* The exit bb postdominates all bbs in the sd_region, but is not
135 part of the region. */
136 basic_block exit;
137 } sd_region;
138
139 DEF_VEC_O(sd_region);
140 DEF_VEC_ALLOC_O(sd_region, heap);
141
142
143 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
144
145 static void
146 move_sd_regions (VEC (sd_region, heap) **source,
147 VEC (sd_region, heap) **target)
148 {
149 sd_region *s;
150 int i;
151
152 for (i = 0; VEC_iterate (sd_region, *source, i, s); i++)
153 VEC_safe_push (sd_region, heap, *target, s);
154
155 VEC_free (sd_region, heap, *source);
156 }
157
158 /* Something like "n * m" is not allowed. */
159
160 static bool
161 graphite_can_represent_init (tree e)
162 {
163 switch (TREE_CODE (e))
164 {
165 case POLYNOMIAL_CHREC:
166 return graphite_can_represent_init (CHREC_LEFT (e))
167 && graphite_can_represent_init (CHREC_RIGHT (e));
168
169 case MULT_EXPR:
170 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
171 return host_integerp (TREE_OPERAND (e, 1), 0);
172 else
173 return host_integerp (TREE_OPERAND (e, 0), 0);
174
175 case PLUS_EXPR:
176 case POINTER_PLUS_EXPR:
177 case MINUS_EXPR:
178 return graphite_can_represent_init (TREE_OPERAND (e, 0))
179 && graphite_can_represent_init (TREE_OPERAND (e, 1));
180
181 case NEGATE_EXPR:
182 case BIT_NOT_EXPR:
183 CASE_CONVERT:
184 case NON_LVALUE_EXPR:
185 return graphite_can_represent_init (TREE_OPERAND (e, 0));
186
187 default:
188 break;
189 }
190
191 return true;
192 }
193
194 /* Return true when SCEV can be represented in the polyhedral model.
195
196 An expression can be represented, if it can be expressed as an
197 affine expression. For loops (i, j) and parameters (m, n) all
198 affine expressions are of the form:
199
200 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
201
202 1 i + 20 j + (-2) m + 25
203
204 Something like "i * n" or "n * m" is not allowed.
205
206 OUTERMOST_LOOP defines the outermost loop that can variate. */
207
208 static bool
209 graphite_can_represent_scev (tree scev, int outermost_loop)
210 {
211 if (chrec_contains_undetermined (scev))
212 return false;
213
214 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
215
216 /* Check for constant strides. With a non constant stride of
217 'n' we would have a value of 'iv * n'. */
218 && (!evolution_function_right_is_integer_cst (scev)
219
220 /* Check the initial value: 'n * m' cannot be represented. */
221 || !graphite_can_represent_init (scev)))
222 return false;
223
224 /* Only affine functions can be represented. */
225 if (!scev_is_linear_expression (scev))
226 return false;
227
228 return evolution_function_is_invariant_p (scev, outermost_loop)
229 || evolution_function_is_affine_multivariate_p (scev, outermost_loop);
230 }
231
232
233 /* Return true when EXPR can be represented in the polyhedral model.
234
235 This means an expression can be represented, if it is linear with
236 respect to the loops and the strides are non parametric.
237 LOOP is the place where the expr will be evaluated and OUTERMOST_LOOP
238 defindes the outermost loop that can variate. SCOP_ENTRY defines the
239 entry of the region we analyse. */
240
241 static bool
242 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
243 loop_p outermost_loop, tree expr)
244 {
245 tree scev = analyze_scalar_evolution (loop, expr);
246
247 scev = instantiate_scev (scop_entry, loop, scev);
248
249 return graphite_can_represent_scev (scev, outermost_loop->num);
250 }
251
252 /* Return false if the tree_code of the operand OP or any of its operands
253 is component_ref. */
254
255 static bool
256 exclude_component_ref (tree op)
257 {
258 int i;
259 int len;
260
261 if (!op)
262 return true;
263
264 if (TREE_CODE (op) == COMPONENT_REF)
265 return false;
266
267 len = TREE_OPERAND_LENGTH (op);
268 for (i = 0; i < len; ++i)
269 if (!exclude_component_ref (TREE_OPERAND (op, i)))
270 return false;
271
272 return true;
273 }
274
275 /* Return true if the data references of STMT can be represented by
276 Graphite. */
277
278 static bool
279 stmt_has_simple_data_refs_p (loop_p outermost_loop, gimple stmt)
280 {
281 data_reference_p dr;
282 unsigned i;
283 int j;
284 bool res = true;
285 int loop = outermost_loop->num;
286 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
287
288 graphite_find_data_references_in_stmt (outermost_loop, stmt, &drs);
289
290 for (j = 0; VEC_iterate (data_reference_p, drs, j, dr); j++)
291 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
292 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i), loop))
293 {
294 res = false;
295 goto done;
296 }
297
298 done:
299 free_data_refs (drs);
300 return res;
301 }
302
303 /* Return true if we can create an affine data-ref for OP in STMT
304 in regards to OUTERMOST_LOOP. */
305
306 static bool
307 stmt_simple_memref_p (loop_p outermost_loop, gimple stmt, tree op)
308 {
309 data_reference_p dr;
310 unsigned int i;
311 VEC(tree,heap) *fns;
312 tree t;
313 bool res = true;
314
315 dr = create_data_ref (outermost_loop, op, stmt, true);
316 fns = DR_ACCESS_FNS (dr);
317
318 for (i = 0; VEC_iterate (tree, fns, i, t); i++)
319 if (!graphite_can_represent_scev (t, outermost_loop->num))
320 {
321 res = false;
322 break;
323 }
324
325 free_data_ref (dr);
326 return res;
327 }
328
329 /* Return true if the operand OP used in STMT is simple in regards to
330 OUTERMOST_LOOP. */
331
332 static bool
333 is_simple_operand (loop_p outermost_loop, gimple stmt, tree op)
334 {
335 /* It is not a simple operand when it is a declaration, */
336 if (DECL_P (op))
337 return false;
338
339 /* or a structure, */
340 if (AGGREGATE_TYPE_P (TREE_TYPE (op)))
341 return false;
342
343 /* or a memory access that cannot be analyzed by the data reference
344 analysis. */
345 if (handled_component_p (op) || INDIRECT_REF_P (op))
346 if (!stmt_simple_memref_p (outermost_loop, stmt, op))
347 return false;
348
349 return exclude_component_ref (op);
350 }
351
352 /* Return true only when STMT is simple enough for being handled by
353 Graphite. This depends on SCOP_ENTRY, as the parameters are
354 initialized relatively to this basic block, the linear functions
355 are initialized to OUTERMOST_LOOP and BB is the place where we try
356 to evaluate the STMT. */
357
358 static bool
359 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
360 gimple stmt, basic_block bb)
361 {
362 loop_p loop = bb->loop_father;
363
364 gcc_assert (scop_entry);
365
366 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
367 Calls have side-effects, except those to const or pure
368 functions. */
369 if (gimple_has_volatile_ops (stmt)
370 || (gimple_code (stmt) == GIMPLE_CALL
371 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
372 || (gimple_code (stmt) == GIMPLE_ASM))
373 return false;
374
375 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
376 return false;
377
378 switch (gimple_code (stmt))
379 {
380 case GIMPLE_RETURN:
381 case GIMPLE_LABEL:
382 return true;
383
384 case GIMPLE_COND:
385 {
386 tree op;
387 ssa_op_iter op_iter;
388 enum tree_code code = gimple_cond_code (stmt);
389
390 /* We can handle all binary comparisons. Inequalities are
391 also supported as they can be represented with union of
392 polyhedra. */
393 if (!(code == LT_EXPR
394 || code == GT_EXPR
395 || code == LE_EXPR
396 || code == GE_EXPR
397 || code == EQ_EXPR
398 || code == NE_EXPR))
399 return false;
400
401 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
402 if (!graphite_can_represent_expr (scop_entry, loop, outermost_loop,
403 op)
404 /* We can not handle REAL_TYPE. Failed for pr39260. */
405 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
406 return false;
407
408 return true;
409 }
410
411 case GIMPLE_ASSIGN:
412 {
413 enum tree_code code = gimple_assign_rhs_code (stmt);
414
415 switch (get_gimple_rhs_class (code))
416 {
417 case GIMPLE_UNARY_RHS:
418 case GIMPLE_SINGLE_RHS:
419 return (is_simple_operand (outermost_loop, stmt,
420 gimple_assign_lhs (stmt))
421 && is_simple_operand (outermost_loop, stmt,
422 gimple_assign_rhs1 (stmt)));
423
424 case GIMPLE_BINARY_RHS:
425 return (is_simple_operand (outermost_loop, stmt,
426 gimple_assign_lhs (stmt))
427 && is_simple_operand (outermost_loop, stmt,
428 gimple_assign_rhs1 (stmt))
429 && is_simple_operand (outermost_loop, stmt,
430 gimple_assign_rhs2 (stmt)));
431
432 case GIMPLE_INVALID_RHS:
433 default:
434 gcc_unreachable ();
435 }
436 }
437
438 case GIMPLE_CALL:
439 {
440 size_t i;
441 size_t n = gimple_call_num_args (stmt);
442 tree lhs = gimple_call_lhs (stmt);
443
444 if (lhs && !is_simple_operand (outermost_loop, stmt, lhs))
445 return false;
446
447 for (i = 0; i < n; i++)
448 if (!is_simple_operand (outermost_loop, stmt,
449 gimple_call_arg (stmt, i)))
450 return false;
451
452 return true;
453 }
454
455 default:
456 /* These nodes cut a new scope. */
457 return false;
458 }
459
460 return false;
461 }
462
463 /* Returns the statement of BB that contains a harmful operation: that
464 can be a function call with side effects, the induction variables
465 are not linear with respect to SCOP_ENTRY, etc. The current open
466 scop should end before this statement. The evaluation is limited using
467 OUTERMOST_LOOP as outermost loop that may change. */
468
469 static gimple
470 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
471 {
472 gimple_stmt_iterator gsi;
473
474 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
475 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
476 return gsi_stmt (gsi);
477
478 return NULL;
479 }
480
481 /* Return true when it is not possible to represent LOOP in the
482 polyhedral representation. This is evaluated taking SCOP_ENTRY and
483 OUTERMOST_LOOP in mind. */
484
485 static bool
486 graphite_can_represent_loop (basic_block scop_entry, loop_p outermost_loop,
487 loop_p loop)
488 {
489 tree niter = number_of_latch_executions (loop);
490
491 /* Number of iterations unknown. */
492 if (chrec_contains_undetermined (niter))
493 return false;
494
495 /* Number of iterations not affine. */
496 if (!graphite_can_represent_expr (scop_entry, loop, outermost_loop, niter))
497 return false;
498
499 return true;
500 }
501
502 /* Store information needed by scopdet_* functions. */
503
504 struct scopdet_info
505 {
506 /* Exit of the open scop would stop if the current BB is harmful. */
507 basic_block exit;
508
509 /* Where the next scop would start if the current BB is harmful. */
510 basic_block next;
511
512 /* The bb or one of its children contains open loop exits. That means
513 loop exit nodes that are not surrounded by a loop dominated by bb. */
514 bool exits;
515
516 /* The bb or one of its children contains only structures we can handle. */
517 bool difficult;
518 };
519
520 static struct scopdet_info build_scops_1 (basic_block, loop_p,
521 VEC (sd_region, heap) **, loop_p);
522
523 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
524 to SCOPS. TYPE is the gbb_type of BB. */
525
526 static struct scopdet_info
527 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
528 VEC (sd_region, heap) **scops, gbb_type type)
529 {
530 loop_p loop = bb->loop_father;
531 struct scopdet_info result;
532 gimple stmt;
533
534 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
535 basic_block entry_block = ENTRY_BLOCK_PTR;
536 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
537 result.difficult = (stmt != NULL);
538 result.exit = NULL;
539
540 switch (type)
541 {
542 case GBB_LAST:
543 result.next = NULL;
544 result.exits = false;
545
546 /* Mark bbs terminating a SESE region difficult, if they start
547 a condition. */
548 if (!single_succ_p (bb))
549 result.difficult = true;
550 else
551 result.exit = single_succ (bb);
552
553 break;
554
555 case GBB_SIMPLE:
556 result.next = single_succ (bb);
557 result.exits = false;
558 result.exit = single_succ (bb);
559 break;
560
561 case GBB_LOOP_SING_EXIT_HEADER:
562 {
563 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
564 struct scopdet_info sinfo;
565 edge exit_e = single_exit (loop);
566
567 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
568
569 if (!graphite_can_represent_loop (entry_block, outermost_loop, loop))
570 result.difficult = true;
571
572 result.difficult |= sinfo.difficult;
573
574 /* Try again with another loop level. */
575 if (result.difficult
576 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
577 {
578 outermost_loop = loop;
579
580 VEC_free (sd_region, heap, regions);
581 regions = VEC_alloc (sd_region, heap, 3);
582
583 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
584
585 result = sinfo;
586 result.difficult = true;
587
588 if (sinfo.difficult)
589 move_sd_regions (&regions, scops);
590 else
591 {
592 sd_region open_scop;
593 open_scop.entry = bb;
594 open_scop.exit = exit_e->dest;
595 VEC_safe_push (sd_region, heap, *scops, &open_scop);
596 VEC_free (sd_region, heap, regions);
597 }
598 }
599 else
600 {
601 result.exit = exit_e->dest;
602 result.next = exit_e->dest;
603
604 /* If we do not dominate result.next, remove it. It's either
605 the EXIT_BLOCK_PTR, or another bb dominates it and will
606 call the scop detection for this bb. */
607 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
608 result.next = NULL;
609
610 if (exit_e->src->loop_father != loop)
611 result.next = NULL;
612
613 result.exits = false;
614
615 if (result.difficult)
616 move_sd_regions (&regions, scops);
617 else
618 VEC_free (sd_region, heap, regions);
619 }
620
621 break;
622 }
623
624 case GBB_LOOP_MULT_EXIT_HEADER:
625 {
626 /* XXX: For now we just do not join loops with multiple exits. If the
627 exits lead to the same bb it may be possible to join the loop. */
628 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
629 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
630 edge e;
631 int i;
632 build_scops_1 (bb, loop, &regions, loop);
633
634 /* Scan the code dominated by this loop. This means all bbs, that are
635 are dominated by a bb in this loop, but are not part of this loop.
636
637 The easiest case:
638 - The loop exit destination is dominated by the exit sources.
639
640 TODO: We miss here the more complex cases:
641 - The exit destinations are dominated by another bb inside
642 the loop.
643 - The loop dominates bbs, that are not exit destinations. */
644 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
645 if (e->src->loop_father == loop
646 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
647 {
648 if (loop_outer (outermost_loop))
649 outermost_loop = loop_outer (outermost_loop);
650
651 /* Pass loop_outer to recognize e->dest as loop header in
652 build_scops_1. */
653 if (e->dest->loop_father->header == e->dest)
654 build_scops_1 (e->dest, outermost_loop, &regions,
655 loop_outer (e->dest->loop_father));
656 else
657 build_scops_1 (e->dest, outermost_loop, &regions,
658 e->dest->loop_father);
659 }
660
661 result.next = NULL;
662 result.exit = NULL;
663 result.difficult = true;
664 result.exits = false;
665 move_sd_regions (&regions, scops);
666 VEC_free (edge, heap, exits);
667 break;
668 }
669 case GBB_COND_HEADER:
670 {
671 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
672 struct scopdet_info sinfo;
673 VEC (basic_block, heap) *dominated;
674 int i;
675 basic_block dom_bb;
676 basic_block last_exit = NULL;
677 edge e;
678 result.exits = false;
679
680 /* First check the successors of BB, and check if it is
681 possible to join the different branches. */
682 for (i = 0; VEC_iterate (edge, bb->succs, i, e); i++)
683 {
684 /* Ignore loop exits. They will be handled after the loop
685 body. */
686 if (is_loop_exit (loop, e->dest))
687 {
688 result.exits = true;
689 continue;
690 }
691
692 /* Do not follow edges that lead to the end of the
693 conditions block. For example, in
694
695 | 0
696 | /|\
697 | 1 2 |
698 | | | |
699 | 3 4 |
700 | \|/
701 | 6
702
703 the edge from 0 => 6. Only check if all paths lead to
704 the same node 6. */
705
706 if (!single_pred_p (e->dest))
707 {
708 /* Check, if edge leads directly to the end of this
709 condition. */
710 if (!last_exit)
711 last_exit = e->dest;
712
713 if (e->dest != last_exit)
714 result.difficult = true;
715
716 continue;
717 }
718
719 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
720 {
721 result.difficult = true;
722 continue;
723 }
724
725 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
726
727 result.exits |= sinfo.exits;
728 result.difficult |= sinfo.difficult;
729
730 /* Checks, if all branches end at the same point.
731 If that is true, the condition stays joinable.
732 Have a look at the example above. */
733 if (sinfo.exit)
734 {
735 if (!last_exit)
736 last_exit = sinfo.exit;
737
738 if (sinfo.exit != last_exit)
739 result.difficult = true;
740 }
741 else
742 result.difficult = true;
743 }
744
745 if (!last_exit)
746 result.difficult = true;
747
748 /* Join the branches of the condition if possible. */
749 if (!result.exits && !result.difficult)
750 {
751 /* Only return a next pointer if we dominate this pointer.
752 Otherwise it will be handled by the bb dominating it. */
753 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
754 && last_exit != bb)
755 result.next = last_exit;
756 else
757 result.next = NULL;
758
759 result.exit = last_exit;
760
761 VEC_free (sd_region, heap, regions);
762 break;
763 }
764
765 /* Scan remaining bbs dominated by BB. */
766 dominated = get_dominated_by (CDI_DOMINATORS, bb);
767
768 for (i = 0; VEC_iterate (basic_block, dominated, i, dom_bb); i++)
769 {
770 /* Ignore loop exits: they will be handled after the loop body. */
771 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
772 < loop_depth (loop))
773 {
774 result.exits = true;
775 continue;
776 }
777
778 /* Ignore the bbs processed above. */
779 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
780 continue;
781
782 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
783 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
784 loop_outer (loop));
785 else
786 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
787
788 result.exits |= sinfo.exits;
789 result.difficult = true;
790 result.exit = NULL;
791 }
792
793 VEC_free (basic_block, heap, dominated);
794
795 result.next = NULL;
796 move_sd_regions (&regions, scops);
797
798 break;
799 }
800
801 default:
802 gcc_unreachable ();
803 }
804
805 return result;
806 }
807
808 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
809 SCOPS. The analyse if a sd_region can be handled is based on the value
810 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
811 is the loop in which CURRENT is handled.
812
813 TODO: These functions got a little bit big. They definitely should be cleaned
814 up. */
815
816 static struct scopdet_info
817 build_scops_1 (basic_block current, loop_p outermost_loop,
818 VEC (sd_region, heap) **scops, loop_p loop)
819 {
820 bool in_scop = false;
821 sd_region open_scop;
822 struct scopdet_info sinfo;
823
824 /* Initialize result. */
825 struct scopdet_info result;
826 result.exits = false;
827 result.difficult = false;
828 result.next = NULL;
829 result.exit = NULL;
830 open_scop.entry = NULL;
831 open_scop.exit = NULL;
832 sinfo.exit = NULL;
833
834 /* Loop over the dominance tree. If we meet a difficult bb, close
835 the current SCoP. Loop and condition header start a new layer,
836 and can only be added if all bbs in deeper layers are simple. */
837 while (current != NULL)
838 {
839 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
840 get_bb_type (current, loop));
841
842 if (!in_scop && !(sinfo.exits || sinfo.difficult))
843 {
844 open_scop.entry = current;
845 open_scop.exit = NULL;
846 in_scop = true;
847 }
848 else if (in_scop && (sinfo.exits || sinfo.difficult))
849 {
850 open_scop.exit = current;
851 VEC_safe_push (sd_region, heap, *scops, &open_scop);
852 in_scop = false;
853 }
854
855 result.difficult |= sinfo.difficult;
856 result.exits |= sinfo.exits;
857
858 current = sinfo.next;
859 }
860
861 /* Try to close open_scop, if we are still in an open SCoP. */
862 if (in_scop)
863 {
864 open_scop.exit = sinfo.exit;
865 gcc_assert (open_scop.exit);
866 VEC_safe_push (sd_region, heap, *scops, &open_scop);
867 }
868
869 result.exit = sinfo.exit;
870 return result;
871 }
872
873 /* Checks if a bb is contained in REGION. */
874
875 static bool
876 bb_in_sd_region (basic_block bb, sd_region *region)
877 {
878 return bb_in_region (bb, region->entry, region->exit);
879 }
880
881 /* Returns the single entry edge of REGION, if it does not exits NULL. */
882
883 static edge
884 find_single_entry_edge (sd_region *region)
885 {
886 edge e;
887 edge_iterator ei;
888 edge entry = NULL;
889
890 FOR_EACH_EDGE (e, ei, region->entry->preds)
891 if (!bb_in_sd_region (e->src, region))
892 {
893 if (entry)
894 {
895 entry = NULL;
896 break;
897 }
898
899 else
900 entry = e;
901 }
902
903 return entry;
904 }
905
906 /* Returns the single exit edge of REGION, if it does not exits NULL. */
907
908 static edge
909 find_single_exit_edge (sd_region *region)
910 {
911 edge e;
912 edge_iterator ei;
913 edge exit = NULL;
914
915 FOR_EACH_EDGE (e, ei, region->exit->preds)
916 if (bb_in_sd_region (e->src, region))
917 {
918 if (exit)
919 {
920 exit = NULL;
921 break;
922 }
923
924 else
925 exit = e;
926 }
927
928 return exit;
929 }
930
931 /* Create a single entry edge for REGION. */
932
933 static void
934 create_single_entry_edge (sd_region *region)
935 {
936 if (find_single_entry_edge (region))
937 return;
938
939 /* There are multiple predecessors for bb_3
940
941 | 1 2
942 | | /
943 | |/
944 | 3 <- entry
945 | |\
946 | | |
947 | 4 ^
948 | | |
949 | |/
950 | 5
951
952 There are two edges (1->3, 2->3), that point from outside into the region,
953 and another one (5->3), a loop latch, lead to bb_3.
954
955 We split bb_3.
956
957 | 1 2
958 | | /
959 | |/
960 |3.0
961 | |\ (3.0 -> 3.1) = single entry edge
962 |3.1 | <- entry
963 | | |
964 | | |
965 | 4 ^
966 | | |
967 | |/
968 | 5
969
970 If the loop is part of the SCoP, we have to redirect the loop latches.
971
972 | 1 2
973 | | /
974 | |/
975 |3.0
976 | | (3.0 -> 3.1) = entry edge
977 |3.1 <- entry
978 | |\
979 | | |
980 | 4 ^
981 | | |
982 | |/
983 | 5 */
984
985 if (region->entry->loop_father->header != region->entry
986 || dominated_by_p (CDI_DOMINATORS,
987 loop_latch_edge (region->entry->loop_father)->src,
988 region->exit))
989 {
990 edge forwarder = split_block_after_labels (region->entry);
991 region->entry = forwarder->dest;
992 }
993 else
994 /* This case is never executed, as the loop headers seem always to have a
995 single edge pointing from outside into the loop. */
996 gcc_unreachable ();
997
998 #ifdef ENABLE_CHECKING
999 gcc_assert (find_single_entry_edge (region));
1000 #endif
1001 }
1002
1003 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
1004
1005 static bool
1006 sd_region_without_exit (edge e)
1007 {
1008 sd_region *r = (sd_region *) e->aux;
1009
1010 if (r)
1011 return r->exit == NULL;
1012 else
1013 return false;
1014 }
1015
1016 /* Create a single exit edge for REGION. */
1017
1018 static void
1019 create_single_exit_edge (sd_region *region)
1020 {
1021 edge e;
1022 edge_iterator ei;
1023 edge forwarder = NULL;
1024 basic_block exit;
1025
1026 if (find_single_exit_edge (region))
1027 return;
1028
1029 /* We create a forwarder bb (5) for all edges leaving this region
1030 (3->5, 4->5). All other edges leading to the same bb, are moved
1031 to a new bb (6). If these edges where part of another region (2->5)
1032 we update the region->exit pointer, of this region.
1033
1034 To identify which edge belongs to which region we depend on the e->aux
1035 pointer in every edge. It points to the region of the edge or to NULL,
1036 if the edge is not part of any region.
1037
1038 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
1039 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
1040 5 <- exit
1041
1042 changes to
1043
1044 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
1045 | | \/ 3->5 no region, 4->5 no region,
1046 | | 5
1047 \| / 5->6 region->exit = 6
1048 6
1049
1050 Now there is only a single exit edge (5->6). */
1051 exit = region->exit;
1052 region->exit = NULL;
1053 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
1054
1055 /* Unmark the edges, that are no longer exit edges. */
1056 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
1057 if (e->aux)
1058 e->aux = NULL;
1059
1060 /* Mark the new exit edge. */
1061 single_succ_edge (forwarder->src)->aux = region;
1062
1063 /* Update the exit bb of all regions, where exit edges lead to
1064 forwarder->dest. */
1065 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
1066 if (e->aux)
1067 ((sd_region *) e->aux)->exit = forwarder->dest;
1068
1069 #ifdef ENABLE_CHECKING
1070 gcc_assert (find_single_exit_edge (region));
1071 #endif
1072 }
1073
1074 /* Unmark the exit edges of all REGIONS.
1075 See comment in "create_single_exit_edge". */
1076
1077 static void
1078 unmark_exit_edges (VEC (sd_region, heap) *regions)
1079 {
1080 int i;
1081 sd_region *s;
1082 edge e;
1083 edge_iterator ei;
1084
1085 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1086 FOR_EACH_EDGE (e, ei, s->exit->preds)
1087 e->aux = NULL;
1088 }
1089
1090
1091 /* Mark the exit edges of all REGIONS.
1092 See comment in "create_single_exit_edge". */
1093
1094 static void
1095 mark_exit_edges (VEC (sd_region, heap) *regions)
1096 {
1097 int i;
1098 sd_region *s;
1099 edge e;
1100 edge_iterator ei;
1101
1102 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1103 FOR_EACH_EDGE (e, ei, s->exit->preds)
1104 if (bb_in_sd_region (e->src, s))
1105 e->aux = s;
1106 }
1107
1108 /* Create for all scop regions a single entry and a single exit edge. */
1109
1110 static void
1111 create_sese_edges (VEC (sd_region, heap) *regions)
1112 {
1113 int i;
1114 sd_region *s;
1115
1116 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1117 create_single_entry_edge (s);
1118
1119 mark_exit_edges (regions);
1120
1121 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1122 create_single_exit_edge (s);
1123
1124 unmark_exit_edges (regions);
1125
1126 fix_loop_structure (NULL);
1127
1128 #ifdef ENABLE_CHECKING
1129 verify_loop_structure ();
1130 verify_dominators (CDI_DOMINATORS);
1131 verify_ssa (false);
1132 #endif
1133 }
1134
1135 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1136
1137 static void
1138 build_graphite_scops (VEC (sd_region, heap) *regions,
1139 VEC (scop_p, heap) **scops)
1140 {
1141 int i;
1142 sd_region *s;
1143
1144 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1145 {
1146 edge entry = find_single_entry_edge (s);
1147 edge exit = find_single_exit_edge (s);
1148 scop_p scop = new_scop (new_sese (entry, exit));
1149 VEC_safe_push (scop_p, heap, *scops, scop);
1150
1151 /* Are there overlapping SCoPs? */
1152 #ifdef ENABLE_CHECKING
1153 {
1154 int j;
1155 sd_region *s2;
1156
1157 for (j = 0; VEC_iterate (sd_region, regions, j, s2); j++)
1158 if (s != s2)
1159 gcc_assert (!bb_in_sd_region (s->entry, s2));
1160 }
1161 #endif
1162 }
1163 }
1164
1165 /* Returns true when BB contains only close phi nodes. */
1166
1167 static bool
1168 contains_only_close_phi_nodes (basic_block bb)
1169 {
1170 gimple_stmt_iterator gsi;
1171
1172 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1173 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1174 return false;
1175
1176 return true;
1177 }
1178
1179 /* Print statistics for SCOP to FILE. */
1180
1181 static void
1182 print_graphite_scop_statistics (FILE* file, scop_p scop)
1183 {
1184 long n_bbs = 0;
1185 long n_loops = 0;
1186 long n_stmts = 0;
1187 long n_conditions = 0;
1188 long n_p_bbs = 0;
1189 long n_p_loops = 0;
1190 long n_p_stmts = 0;
1191 long n_p_conditions = 0;
1192
1193 basic_block bb;
1194
1195 FOR_ALL_BB (bb)
1196 {
1197 gimple_stmt_iterator psi;
1198 loop_p loop = bb->loop_father;
1199
1200 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1201 continue;
1202
1203 n_bbs++;
1204 n_p_bbs += bb->count;
1205
1206 if (VEC_length (edge, bb->succs) > 1)
1207 {
1208 n_conditions++;
1209 n_p_conditions += bb->count;
1210 }
1211
1212 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1213 {
1214 n_stmts++;
1215 n_p_stmts += bb->count;
1216 }
1217
1218 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1219 {
1220 n_loops++;
1221 n_p_loops += bb->count;
1222 }
1223
1224 }
1225
1226 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1227 fprintf (file, "BBS:%ld, ", n_bbs);
1228 fprintf (file, "LOOPS:%ld, ", n_loops);
1229 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1230 fprintf (file, "STMTS:%ld)\n", n_stmts);
1231 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1232 fprintf (file, "BBS:%ld, ", n_p_bbs);
1233 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1234 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1235 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1236 }
1237
1238 /* Print statistics for SCOPS to FILE. */
1239
1240 static void
1241 print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1242 {
1243 int i;
1244 scop_p scop;
1245
1246 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
1247 print_graphite_scop_statistics (file, scop);
1248 }
1249
1250 /* Version of free_scops special cased for limit_scops. */
1251
1252 static void
1253 free_scops_1 (VEC (scop_p, heap) **scops)
1254 {
1255 int i;
1256 scop_p scop;
1257
1258 for (i = 0; VEC_iterate (scop_p, *scops, i, scop); i++)
1259 {
1260 sese region = SCOP_REGION (scop);
1261 free (SESE_PARAMS_NAMES (region));
1262 SESE_PARAMS_NAMES (region) = 0;
1263 }
1264
1265 free_scops (*scops);
1266 }
1267
1268 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1269
1270 Example:
1271
1272 for (i |
1273 { |
1274 for (j | SCoP 1
1275 for (k |
1276 } |
1277
1278 * SCoP frontier, as this line is not surrounded by any loop. *
1279
1280 for (l | SCoP 2
1281
1282 This is necessary as scalar evolution and parameter detection need a
1283 outermost loop to initialize parameters correctly.
1284
1285 TODO: FIX scalar evolution and parameter detection to allow more flexible
1286 SCoP frontiers. */
1287
1288 static void
1289 limit_scops (VEC (scop_p, heap) **scops)
1290 {
1291 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1292
1293 int i;
1294 scop_p scop;
1295
1296 for (i = 0; VEC_iterate (scop_p, *scops, i, scop); i++)
1297 {
1298 int j;
1299 loop_p loop;
1300 sese region = SCOP_REGION (scop);
1301 build_scop_bbs (scop);
1302 build_sese_loop_nests (region);
1303
1304 for (j = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), j, loop); j++)
1305 if (!loop_in_sese_p (loop_outer (loop), region)
1306 && single_exit (loop))
1307 {
1308 sd_region open_scop;
1309 open_scop.entry = loop->header;
1310 open_scop.exit = single_exit (loop)->dest;
1311
1312 /* This is a hack on top of the limit_scops hack. The
1313 limit_scops hack should disappear all together. */
1314 if (single_succ_p (open_scop.exit)
1315 && contains_only_close_phi_nodes (open_scop.exit))
1316 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1317
1318 VEC_safe_push (sd_region, heap, regions, &open_scop);
1319 }
1320 }
1321
1322 free_scops_1 (scops);
1323 *scops = VEC_alloc (scop_p, heap, 3);
1324
1325 create_sese_edges (regions);
1326 build_graphite_scops (regions, scops);
1327 VEC_free (sd_region, heap, regions);
1328 }
1329
1330 /* Transforms LOOP to the canonical loop closed SSA form. */
1331
1332 static void
1333 canonicalize_loop_closed_ssa (loop_p loop)
1334 {
1335 edge e = single_exit (loop);
1336 basic_block bb;
1337
1338 if (!e || e->flags & EDGE_ABNORMAL)
1339 return;
1340
1341 bb = e->dest;
1342
1343 if (VEC_length (edge, bb->preds) == 1)
1344 split_block_after_labels (bb);
1345 else
1346 {
1347 gimple_stmt_iterator psi;
1348 basic_block close = split_edge (e);
1349
1350 e = single_succ_edge (close);
1351
1352 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1353 {
1354 gimple phi = gsi_stmt (psi);
1355 unsigned i;
1356
1357 for (i = 0; i < gimple_phi_num_args (phi); i++)
1358 if (gimple_phi_arg_edge (phi, i) == e)
1359 {
1360 tree res, arg = gimple_phi_arg_def (phi, i);
1361 use_operand_p use_p;
1362 gimple close_phi;
1363
1364 if (TREE_CODE (arg) != SSA_NAME)
1365 continue;
1366
1367 close_phi = create_phi_node (arg, close);
1368 res = create_new_def_for (gimple_phi_result (close_phi),
1369 close_phi,
1370 gimple_phi_result_ptr (close_phi));
1371 add_phi_arg (close_phi, arg,
1372 gimple_phi_arg_edge (close_phi, 0),
1373 UNKNOWN_LOCATION);
1374 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1375 replace_exp (use_p, res);
1376 update_stmt (phi);
1377 }
1378 }
1379 }
1380 }
1381
1382 /* Converts the current loop closed SSA form to a canonical form
1383 expected by the Graphite code generation.
1384
1385 The loop closed SSA form has the following invariant: a variable
1386 defined in a loop that is used outside the loop appears only in the
1387 phi nodes in the destination of the loop exit. These phi nodes are
1388 called close phi nodes.
1389
1390 The canonical loop closed SSA form contains the extra invariants:
1391
1392 - when the loop contains only one exit, the close phi nodes contain
1393 only one argument. That implies that the basic block that contains
1394 the close phi nodes has only one predecessor, that is a basic block
1395 in the loop.
1396
1397 - the basic block containing the close phi nodes does not contain
1398 other statements.
1399 */
1400
1401 static void
1402 canonicalize_loop_closed_ssa_form (void)
1403 {
1404 loop_iterator li;
1405 loop_p loop;
1406
1407 #ifdef ENABLE_CHECKING
1408 verify_loop_closed_ssa ();
1409 #endif
1410
1411 FOR_EACH_LOOP (li, loop, 0)
1412 canonicalize_loop_closed_ssa (loop);
1413
1414 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1415 update_ssa (TODO_update_ssa);
1416
1417 #ifdef ENABLE_CHECKING
1418 verify_loop_closed_ssa ();
1419 #endif
1420 }
1421
1422 /* Find Static Control Parts (SCoP) in the current function and pushes
1423 them to SCOPS. */
1424
1425 void
1426 build_scops (VEC (scop_p, heap) **scops)
1427 {
1428 struct loop *loop = current_loops->tree_root;
1429 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1430
1431 canonicalize_loop_closed_ssa_form ();
1432 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1433 &regions, loop);
1434 create_sese_edges (regions);
1435 build_graphite_scops (regions, scops);
1436
1437 if (dump_file && (dump_flags & TDF_DETAILS))
1438 print_graphite_statistics (dump_file, *scops);
1439
1440 limit_scops (scops);
1441 VEC_free (sd_region, heap, regions);
1442
1443 if (dump_file && (dump_flags & TDF_DETAILS))
1444 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1445 VEC_length (scop_p, *scops));
1446 }
1447
1448 /* Pretty print all SCoPs in DOT format and mark them with different colors.
1449 If there are not enough colors, paint later SCoPs gray.
1450 Special nodes:
1451 - "*" after the node number: entry of a SCoP,
1452 - "#" after the node number: exit of a SCoP,
1453 - "()" entry or exit not part of SCoP. */
1454
1455 static void
1456 dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1457 {
1458 basic_block bb;
1459 edge e;
1460 edge_iterator ei;
1461 scop_p scop;
1462 const char* color;
1463 int i;
1464
1465 /* Disable debugging while printing graph. */
1466 int tmp_dump_flags = dump_flags;
1467 dump_flags = 0;
1468
1469 fprintf (file, "digraph all {\n");
1470
1471 FOR_ALL_BB (bb)
1472 {
1473 int part_of_scop = false;
1474
1475 /* Use HTML for every bb label. So we are able to print bbs
1476 which are part of two different SCoPs, with two different
1477 background colors. */
1478 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1479 bb->index);
1480 fprintf (file, "CELLSPACING=\"0\">\n");
1481
1482 /* Select color for SCoP. */
1483 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
1484 {
1485 sese region = SCOP_REGION (scop);
1486 if (bb_in_sese_p (bb, region)
1487 || (SESE_EXIT_BB (region) == bb)
1488 || (SESE_ENTRY_BB (region) == bb))
1489 {
1490 switch (i % 17)
1491 {
1492 case 0: /* red */
1493 color = "#e41a1c";
1494 break;
1495 case 1: /* blue */
1496 color = "#377eb8";
1497 break;
1498 case 2: /* green */
1499 color = "#4daf4a";
1500 break;
1501 case 3: /* purple */
1502 color = "#984ea3";
1503 break;
1504 case 4: /* orange */
1505 color = "#ff7f00";
1506 break;
1507 case 5: /* yellow */
1508 color = "#ffff33";
1509 break;
1510 case 6: /* brown */
1511 color = "#a65628";
1512 break;
1513 case 7: /* rose */
1514 color = "#f781bf";
1515 break;
1516 case 8:
1517 color = "#8dd3c7";
1518 break;
1519 case 9:
1520 color = "#ffffb3";
1521 break;
1522 case 10:
1523 color = "#bebada";
1524 break;
1525 case 11:
1526 color = "#fb8072";
1527 break;
1528 case 12:
1529 color = "#80b1d3";
1530 break;
1531 case 13:
1532 color = "#fdb462";
1533 break;
1534 case 14:
1535 color = "#b3de69";
1536 break;
1537 case 15:
1538 color = "#fccde5";
1539 break;
1540 case 16:
1541 color = "#bc80bd";
1542 break;
1543 default: /* gray */
1544 color = "#999999";
1545 }
1546
1547 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1548
1549 if (!bb_in_sese_p (bb, region))
1550 fprintf (file, " (");
1551
1552 if (bb == SESE_ENTRY_BB (region)
1553 && bb == SESE_EXIT_BB (region))
1554 fprintf (file, " %d*# ", bb->index);
1555 else if (bb == SESE_ENTRY_BB (region))
1556 fprintf (file, " %d* ", bb->index);
1557 else if (bb == SESE_EXIT_BB (region))
1558 fprintf (file, " %d# ", bb->index);
1559 else
1560 fprintf (file, " %d ", bb->index);
1561
1562 if (!bb_in_sese_p (bb,region))
1563 fprintf (file, ")");
1564
1565 fprintf (file, "</TD></TR>\n");
1566 part_of_scop = true;
1567 }
1568 }
1569
1570 if (!part_of_scop)
1571 {
1572 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1573 fprintf (file, " %d </TD></TR>\n", bb->index);
1574 }
1575 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1576 }
1577
1578 FOR_ALL_BB (bb)
1579 {
1580 FOR_EACH_EDGE (e, ei, bb->succs)
1581 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1582 }
1583
1584 fputs ("}\n\n", file);
1585
1586 /* Enable debugging again. */
1587 dump_flags = tmp_dump_flags;
1588 }
1589
1590 /* Display all SCoPs using dotty. */
1591
1592 void
1593 dot_all_scops (VEC (scop_p, heap) *scops)
1594 {
1595 /* When debugging, enable the following code. This cannot be used
1596 in production compilers because it calls "system". */
1597 #if 0
1598 int x;
1599 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1600 gcc_assert (stream);
1601
1602 dot_all_scops_1 (stream, scops);
1603 fclose (stream);
1604
1605 x = system ("dotty /tmp/allscops.dot");
1606 #else
1607 dot_all_scops_1 (stderr, scops);
1608 #endif
1609 }
1610
1611 /* Display all SCoPs using dotty. */
1612
1613 void
1614 dot_scop (scop_p scop)
1615 {
1616 VEC (scop_p, heap) *scops = NULL;
1617
1618 if (scop)
1619 VEC_safe_push (scop_p, heap, scops, scop);
1620
1621 /* When debugging, enable the following code. This cannot be used
1622 in production compilers because it calls "system". */
1623 #if 0
1624 {
1625 int x;
1626 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1627 gcc_assert (stream);
1628
1629 dot_all_scops_1 (stream, scops);
1630 fclose (stream);
1631 x = system ("dotty /tmp/allscops.dot");
1632 }
1633 #else
1634 dot_all_scops_1 (stderr, scops);
1635 #endif
1636
1637 VEC_free (scop_p, heap, scops);
1638 }
1639
1640 #endif