Remove duplicate close phi nodes in the canonical close phi representation.
[gcc.git] / gcc / graphite-scop-detection.c
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree-flow.h"
26 #include "cfgloop.h"
27 #include "tree-chrec.h"
28 #include "tree-data-ref.h"
29 #include "tree-scalar-evolution.h"
30 #include "tree-pass.h"
31 #include "sese.h"
32
33 #ifdef HAVE_cloog
34 #include "ppl_c.h"
35 #include "graphite-ppl.h"
36 #include "graphite-poly.h"
37 #include "graphite-scop-detection.h"
38
39 /* The type of the analyzed basic block. */
40
41 typedef enum gbb_type {
42 GBB_UNKNOWN,
43 GBB_LOOP_SING_EXIT_HEADER,
44 GBB_LOOP_MULT_EXIT_HEADER,
45 GBB_LOOP_EXIT,
46 GBB_COND_HEADER,
47 GBB_SIMPLE,
48 GBB_LAST
49 } gbb_type;
50
51 /* Detect the type of BB. Loop headers are only marked, if they are
52 new. This means their loop_father is different to LAST_LOOP.
53 Otherwise they are treated like any other bb and their type can be
54 any other type. */
55
56 static gbb_type
57 get_bb_type (basic_block bb, struct loop *last_loop)
58 {
59 VEC (basic_block, heap) *dom;
60 int nb_dom, nb_suc;
61 struct loop *loop = bb->loop_father;
62
63 /* Check, if we entry into a new loop. */
64 if (loop != last_loop)
65 {
66 if (single_exit (loop) != NULL)
67 return GBB_LOOP_SING_EXIT_HEADER;
68 else if (loop->num != 0)
69 return GBB_LOOP_MULT_EXIT_HEADER;
70 else
71 return GBB_COND_HEADER;
72 }
73
74 dom = get_dominated_by (CDI_DOMINATORS, bb);
75 nb_dom = VEC_length (basic_block, dom);
76 VEC_free (basic_block, heap, dom);
77
78 if (nb_dom == 0)
79 return GBB_LAST;
80
81 nb_suc = VEC_length (edge, bb->succs);
82
83 if (nb_dom == 1 && nb_suc == 1)
84 return GBB_SIMPLE;
85
86 return GBB_COND_HEADER;
87 }
88
89 /* A SCoP detection region, defined using bbs as borders.
90
91 All control flow touching this region, comes in passing basic_block
92 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
93 edges for the borders we are able to represent also regions that do
94 not have a single entry or exit edge.
95
96 But as they have a single entry basic_block and a single exit
97 basic_block, we are able to generate for every sd_region a single
98 entry and exit edge.
99
100 1 2
101 \ /
102 3 <- entry
103 |
104 4
105 / \ This region contains: {3, 4, 5, 6, 7, 8}
106 5 6
107 | |
108 7 8
109 \ /
110 9 <- exit */
111
112
113 typedef struct sd_region_p
114 {
115 /* The entry bb dominates all bbs in the sd_region. It is part of
116 the region. */
117 basic_block entry;
118
119 /* The exit bb postdominates all bbs in the sd_region, but is not
120 part of the region. */
121 basic_block exit;
122 } sd_region;
123
124 DEF_VEC_O(sd_region);
125 DEF_VEC_ALLOC_O(sd_region, heap);
126
127
128 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
129
130 static void
131 move_sd_regions (VEC (sd_region, heap) **source,
132 VEC (sd_region, heap) **target)
133 {
134 sd_region *s;
135 int i;
136
137 FOR_EACH_VEC_ELT (sd_region, *source, i, s)
138 VEC_safe_push (sd_region, heap, *target, s);
139
140 VEC_free (sd_region, heap, *source);
141 }
142
143 /* Something like "n * m" is not allowed. */
144
145 static bool
146 graphite_can_represent_init (tree e)
147 {
148 switch (TREE_CODE (e))
149 {
150 case POLYNOMIAL_CHREC:
151 return graphite_can_represent_init (CHREC_LEFT (e))
152 && graphite_can_represent_init (CHREC_RIGHT (e));
153
154 case MULT_EXPR:
155 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
156 return graphite_can_represent_init (TREE_OPERAND (e, 0))
157 && host_integerp (TREE_OPERAND (e, 1), 0);
158 else
159 return graphite_can_represent_init (TREE_OPERAND (e, 1))
160 && host_integerp (TREE_OPERAND (e, 0), 0);
161
162 case PLUS_EXPR:
163 case POINTER_PLUS_EXPR:
164 case MINUS_EXPR:
165 return graphite_can_represent_init (TREE_OPERAND (e, 0))
166 && graphite_can_represent_init (TREE_OPERAND (e, 1));
167
168 case NEGATE_EXPR:
169 case BIT_NOT_EXPR:
170 CASE_CONVERT:
171 case NON_LVALUE_EXPR:
172 return graphite_can_represent_init (TREE_OPERAND (e, 0));
173
174 default:
175 break;
176 }
177
178 return true;
179 }
180
181 /* Return true when SCEV can be represented in the polyhedral model.
182
183 An expression can be represented, if it can be expressed as an
184 affine expression. For loops (i, j) and parameters (m, n) all
185 affine expressions are of the form:
186
187 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
188
189 1 i + 20 j + (-2) m + 25
190
191 Something like "i * n" or "n * m" is not allowed. */
192
193 static bool
194 graphite_can_represent_scev (tree scev)
195 {
196 if (chrec_contains_undetermined (scev))
197 return false;
198
199 switch (TREE_CODE (scev))
200 {
201 case PLUS_EXPR:
202 case MINUS_EXPR:
203 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
204 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
205
206 case MULT_EXPR:
207 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
208 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
209 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
210 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
211 && graphite_can_represent_init (scev)
212 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
213 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
214
215 case POLYNOMIAL_CHREC:
216 /* Check for constant strides. With a non constant stride of
217 'n' we would have a value of 'iv * n'. Also check that the
218 initial value can represented: for example 'n * m' cannot be
219 represented. */
220 if (!evolution_function_right_is_integer_cst (scev)
221 || !graphite_can_represent_init (scev))
222 return false;
223
224 default:
225 break;
226 }
227
228 /* Only affine functions can be represented. */
229 if (!scev_is_linear_expression (scev))
230 return false;
231
232 return true;
233 }
234
235
236 /* Return true when EXPR can be represented in the polyhedral model.
237
238 This means an expression can be represented, if it is linear with
239 respect to the loops and the strides are non parametric.
240 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
241 entry of the region we analyse. */
242
243 static bool
244 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
245 tree expr)
246 {
247 tree scev = analyze_scalar_evolution (loop, expr);
248
249 scev = instantiate_scev (scop_entry, loop, scev);
250
251 return graphite_can_represent_scev (scev);
252 }
253
254 /* Return true if the data references of STMT can be represented by
255 Graphite. */
256
257 static bool
258 stmt_has_simple_data_refs_p (loop_p outermost_loop, gimple stmt)
259 {
260 data_reference_p dr;
261 unsigned i;
262 int j;
263 bool res = true;
264 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
265
266 graphite_find_data_references_in_stmt (outermost_loop, stmt, &drs);
267
268 FOR_EACH_VEC_ELT (data_reference_p, drs, j, dr)
269 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
270 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
271 {
272 res = false;
273 goto done;
274 }
275
276 done:
277 free_data_refs (drs);
278 return res;
279 }
280
281 /* Return true only when STMT is simple enough for being handled by
282 Graphite. This depends on SCOP_ENTRY, as the parameters are
283 initialized relatively to this basic block, the linear functions
284 are initialized to OUTERMOST_LOOP and BB is the place where we try
285 to evaluate the STMT. */
286
287 static bool
288 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
289 gimple stmt, basic_block bb)
290 {
291 loop_p loop = bb->loop_father;
292
293 gcc_assert (scop_entry);
294
295 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
296 Calls have side-effects, except those to const or pure
297 functions. */
298 if (gimple_has_volatile_ops (stmt)
299 || (gimple_code (stmt) == GIMPLE_CALL
300 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
301 || (gimple_code (stmt) == GIMPLE_ASM))
302 return false;
303
304 if (is_gimple_debug (stmt))
305 return true;
306
307 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
308 return false;
309
310 switch (gimple_code (stmt))
311 {
312 case GIMPLE_RETURN:
313 case GIMPLE_LABEL:
314 return true;
315
316 case GIMPLE_COND:
317 {
318 tree op;
319 ssa_op_iter op_iter;
320 enum tree_code code = gimple_cond_code (stmt);
321
322 /* We can handle all binary comparisons. Inequalities are
323 also supported as they can be represented with union of
324 polyhedra. */
325 if (!(code == LT_EXPR
326 || code == GT_EXPR
327 || code == LE_EXPR
328 || code == GE_EXPR
329 || code == EQ_EXPR
330 || code == NE_EXPR))
331 return false;
332
333 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
334 if (!graphite_can_represent_expr (scop_entry, loop, op)
335 /* We can not handle REAL_TYPE. Failed for pr39260. */
336 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
337 return false;
338
339 return true;
340 }
341
342 case GIMPLE_ASSIGN:
343 case GIMPLE_CALL:
344 return true;
345
346 default:
347 /* These nodes cut a new scope. */
348 return false;
349 }
350
351 return false;
352 }
353
354 /* Returns the statement of BB that contains a harmful operation: that
355 can be a function call with side effects, the induction variables
356 are not linear with respect to SCOP_ENTRY, etc. The current open
357 scop should end before this statement. The evaluation is limited using
358 OUTERMOST_LOOP as outermost loop that may change. */
359
360 static gimple
361 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
362 {
363 gimple_stmt_iterator gsi;
364
365 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
366 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
367 return gsi_stmt (gsi);
368
369 return NULL;
370 }
371
372 /* Return true if LOOP can be represented in the polyhedral
373 representation. This is evaluated taking SCOP_ENTRY and
374 OUTERMOST_LOOP in mind. */
375
376 static bool
377 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
378 {
379 tree niter = number_of_latch_executions (loop);
380
381 /* Number of iterations unknown. */
382 if (chrec_contains_undetermined (niter))
383 return false;
384
385 /* Number of iterations not affine. */
386 if (!graphite_can_represent_expr (scop_entry, loop, niter))
387 return false;
388
389 return true;
390 }
391
392 /* Store information needed by scopdet_* functions. */
393
394 struct scopdet_info
395 {
396 /* Exit of the open scop would stop if the current BB is harmful. */
397 basic_block exit;
398
399 /* Where the next scop would start if the current BB is harmful. */
400 basic_block next;
401
402 /* The bb or one of its children contains open loop exits. That means
403 loop exit nodes that are not surrounded by a loop dominated by bb. */
404 bool exits;
405
406 /* The bb or one of its children contains only structures we can handle. */
407 bool difficult;
408 };
409
410 static struct scopdet_info build_scops_1 (basic_block, loop_p,
411 VEC (sd_region, heap) **, loop_p);
412
413 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
414 to SCOPS. TYPE is the gbb_type of BB. */
415
416 static struct scopdet_info
417 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
418 VEC (sd_region, heap) **scops, gbb_type type)
419 {
420 loop_p loop = bb->loop_father;
421 struct scopdet_info result;
422 gimple stmt;
423
424 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
425 basic_block entry_block = ENTRY_BLOCK_PTR;
426 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
427 result.difficult = (stmt != NULL);
428 result.exit = NULL;
429
430 switch (type)
431 {
432 case GBB_LAST:
433 result.next = NULL;
434 result.exits = false;
435
436 /* Mark bbs terminating a SESE region difficult, if they start
437 a condition. */
438 if (!single_succ_p (bb))
439 result.difficult = true;
440 else
441 result.exit = single_succ (bb);
442
443 break;
444
445 case GBB_SIMPLE:
446 result.next = single_succ (bb);
447 result.exits = false;
448 result.exit = single_succ (bb);
449 break;
450
451 case GBB_LOOP_SING_EXIT_HEADER:
452 {
453 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
454 struct scopdet_info sinfo;
455 edge exit_e = single_exit (loop);
456
457 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
458
459 if (!graphite_can_represent_loop (entry_block, loop))
460 result.difficult = true;
461
462 result.difficult |= sinfo.difficult;
463
464 /* Try again with another loop level. */
465 if (result.difficult
466 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
467 {
468 outermost_loop = loop;
469
470 VEC_free (sd_region, heap, regions);
471 regions = VEC_alloc (sd_region, heap, 3);
472
473 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
474
475 result = sinfo;
476 result.difficult = true;
477
478 if (sinfo.difficult)
479 move_sd_regions (&regions, scops);
480 else
481 {
482 sd_region open_scop;
483 open_scop.entry = bb;
484 open_scop.exit = exit_e->dest;
485 VEC_safe_push (sd_region, heap, *scops, &open_scop);
486 VEC_free (sd_region, heap, regions);
487 }
488 }
489 else
490 {
491 result.exit = exit_e->dest;
492 result.next = exit_e->dest;
493
494 /* If we do not dominate result.next, remove it. It's either
495 the EXIT_BLOCK_PTR, or another bb dominates it and will
496 call the scop detection for this bb. */
497 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
498 result.next = NULL;
499
500 if (exit_e->src->loop_father != loop)
501 result.next = NULL;
502
503 result.exits = false;
504
505 if (result.difficult)
506 move_sd_regions (&regions, scops);
507 else
508 VEC_free (sd_region, heap, regions);
509 }
510
511 break;
512 }
513
514 case GBB_LOOP_MULT_EXIT_HEADER:
515 {
516 /* XXX: For now we just do not join loops with multiple exits. If the
517 exits lead to the same bb it may be possible to join the loop. */
518 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
519 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
520 edge e;
521 int i;
522 build_scops_1 (bb, loop, &regions, loop);
523
524 /* Scan the code dominated by this loop. This means all bbs, that are
525 are dominated by a bb in this loop, but are not part of this loop.
526
527 The easiest case:
528 - The loop exit destination is dominated by the exit sources.
529
530 TODO: We miss here the more complex cases:
531 - The exit destinations are dominated by another bb inside
532 the loop.
533 - The loop dominates bbs, that are not exit destinations. */
534 FOR_EACH_VEC_ELT (edge, exits, i, e)
535 if (e->src->loop_father == loop
536 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
537 {
538 if (loop_outer (outermost_loop))
539 outermost_loop = loop_outer (outermost_loop);
540
541 /* Pass loop_outer to recognize e->dest as loop header in
542 build_scops_1. */
543 if (e->dest->loop_father->header == e->dest)
544 build_scops_1 (e->dest, outermost_loop, &regions,
545 loop_outer (e->dest->loop_father));
546 else
547 build_scops_1 (e->dest, outermost_loop, &regions,
548 e->dest->loop_father);
549 }
550
551 result.next = NULL;
552 result.exit = NULL;
553 result.difficult = true;
554 result.exits = false;
555 move_sd_regions (&regions, scops);
556 VEC_free (edge, heap, exits);
557 break;
558 }
559 case GBB_COND_HEADER:
560 {
561 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
562 struct scopdet_info sinfo;
563 VEC (basic_block, heap) *dominated;
564 int i;
565 basic_block dom_bb;
566 basic_block last_exit = NULL;
567 edge e;
568 result.exits = false;
569
570 /* First check the successors of BB, and check if it is
571 possible to join the different branches. */
572 FOR_EACH_VEC_ELT (edge, bb->succs, i, e)
573 {
574 /* Ignore loop exits. They will be handled after the loop
575 body. */
576 if (loop_exits_to_bb_p (loop, e->dest))
577 {
578 result.exits = true;
579 continue;
580 }
581
582 /* Do not follow edges that lead to the end of the
583 conditions block. For example, in
584
585 | 0
586 | /|\
587 | 1 2 |
588 | | | |
589 | 3 4 |
590 | \|/
591 | 6
592
593 the edge from 0 => 6. Only check if all paths lead to
594 the same node 6. */
595
596 if (!single_pred_p (e->dest))
597 {
598 /* Check, if edge leads directly to the end of this
599 condition. */
600 if (!last_exit)
601 last_exit = e->dest;
602
603 if (e->dest != last_exit)
604 result.difficult = true;
605
606 continue;
607 }
608
609 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
610 {
611 result.difficult = true;
612 continue;
613 }
614
615 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
616
617 result.exits |= sinfo.exits;
618 result.difficult |= sinfo.difficult;
619
620 /* Checks, if all branches end at the same point.
621 If that is true, the condition stays joinable.
622 Have a look at the example above. */
623 if (sinfo.exit)
624 {
625 if (!last_exit)
626 last_exit = sinfo.exit;
627
628 if (sinfo.exit != last_exit)
629 result.difficult = true;
630 }
631 else
632 result.difficult = true;
633 }
634
635 if (!last_exit)
636 result.difficult = true;
637
638 /* Join the branches of the condition if possible. */
639 if (!result.exits && !result.difficult)
640 {
641 /* Only return a next pointer if we dominate this pointer.
642 Otherwise it will be handled by the bb dominating it. */
643 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
644 && last_exit != bb)
645 result.next = last_exit;
646 else
647 result.next = NULL;
648
649 result.exit = last_exit;
650
651 VEC_free (sd_region, heap, regions);
652 break;
653 }
654
655 /* Scan remaining bbs dominated by BB. */
656 dominated = get_dominated_by (CDI_DOMINATORS, bb);
657
658 FOR_EACH_VEC_ELT (basic_block, dominated, i, dom_bb)
659 {
660 /* Ignore loop exits: they will be handled after the loop body. */
661 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
662 < loop_depth (loop))
663 {
664 result.exits = true;
665 continue;
666 }
667
668 /* Ignore the bbs processed above. */
669 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
670 continue;
671
672 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
673 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
674 loop_outer (loop));
675 else
676 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
677
678 result.exits |= sinfo.exits;
679 result.difficult = true;
680 result.exit = NULL;
681 }
682
683 VEC_free (basic_block, heap, dominated);
684
685 result.next = NULL;
686 move_sd_regions (&regions, scops);
687
688 break;
689 }
690
691 default:
692 gcc_unreachable ();
693 }
694
695 return result;
696 }
697
698 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
699 SCOPS. The analyse if a sd_region can be handled is based on the value
700 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
701 is the loop in which CURRENT is handled.
702
703 TODO: These functions got a little bit big. They definitely should be cleaned
704 up. */
705
706 static struct scopdet_info
707 build_scops_1 (basic_block current, loop_p outermost_loop,
708 VEC (sd_region, heap) **scops, loop_p loop)
709 {
710 bool in_scop = false;
711 sd_region open_scop;
712 struct scopdet_info sinfo;
713
714 /* Initialize result. */
715 struct scopdet_info result;
716 result.exits = false;
717 result.difficult = false;
718 result.next = NULL;
719 result.exit = NULL;
720 open_scop.entry = NULL;
721 open_scop.exit = NULL;
722 sinfo.exit = NULL;
723
724 /* Loop over the dominance tree. If we meet a difficult bb, close
725 the current SCoP. Loop and condition header start a new layer,
726 and can only be added if all bbs in deeper layers are simple. */
727 while (current != NULL)
728 {
729 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
730 get_bb_type (current, loop));
731
732 if (!in_scop && !(sinfo.exits || sinfo.difficult))
733 {
734 open_scop.entry = current;
735 open_scop.exit = NULL;
736 in_scop = true;
737 }
738 else if (in_scop && (sinfo.exits || sinfo.difficult))
739 {
740 open_scop.exit = current;
741 VEC_safe_push (sd_region, heap, *scops, &open_scop);
742 in_scop = false;
743 }
744
745 result.difficult |= sinfo.difficult;
746 result.exits |= sinfo.exits;
747
748 current = sinfo.next;
749 }
750
751 /* Try to close open_scop, if we are still in an open SCoP. */
752 if (in_scop)
753 {
754 open_scop.exit = sinfo.exit;
755 gcc_assert (open_scop.exit);
756 VEC_safe_push (sd_region, heap, *scops, &open_scop);
757 }
758
759 result.exit = sinfo.exit;
760 return result;
761 }
762
763 /* Checks if a bb is contained in REGION. */
764
765 static bool
766 bb_in_sd_region (basic_block bb, sd_region *region)
767 {
768 return bb_in_region (bb, region->entry, region->exit);
769 }
770
771 /* Returns the single entry edge of REGION, if it does not exits NULL. */
772
773 static edge
774 find_single_entry_edge (sd_region *region)
775 {
776 edge e;
777 edge_iterator ei;
778 edge entry = NULL;
779
780 FOR_EACH_EDGE (e, ei, region->entry->preds)
781 if (!bb_in_sd_region (e->src, region))
782 {
783 if (entry)
784 {
785 entry = NULL;
786 break;
787 }
788
789 else
790 entry = e;
791 }
792
793 return entry;
794 }
795
796 /* Returns the single exit edge of REGION, if it does not exits NULL. */
797
798 static edge
799 find_single_exit_edge (sd_region *region)
800 {
801 edge e;
802 edge_iterator ei;
803 edge exit = NULL;
804
805 FOR_EACH_EDGE (e, ei, region->exit->preds)
806 if (bb_in_sd_region (e->src, region))
807 {
808 if (exit)
809 {
810 exit = NULL;
811 break;
812 }
813
814 else
815 exit = e;
816 }
817
818 return exit;
819 }
820
821 /* Create a single entry edge for REGION. */
822
823 static void
824 create_single_entry_edge (sd_region *region)
825 {
826 if (find_single_entry_edge (region))
827 return;
828
829 /* There are multiple predecessors for bb_3
830
831 | 1 2
832 | | /
833 | |/
834 | 3 <- entry
835 | |\
836 | | |
837 | 4 ^
838 | | |
839 | |/
840 | 5
841
842 There are two edges (1->3, 2->3), that point from outside into the region,
843 and another one (5->3), a loop latch, lead to bb_3.
844
845 We split bb_3.
846
847 | 1 2
848 | | /
849 | |/
850 |3.0
851 | |\ (3.0 -> 3.1) = single entry edge
852 |3.1 | <- entry
853 | | |
854 | | |
855 | 4 ^
856 | | |
857 | |/
858 | 5
859
860 If the loop is part of the SCoP, we have to redirect the loop latches.
861
862 | 1 2
863 | | /
864 | |/
865 |3.0
866 | | (3.0 -> 3.1) = entry edge
867 |3.1 <- entry
868 | |\
869 | | |
870 | 4 ^
871 | | |
872 | |/
873 | 5 */
874
875 if (region->entry->loop_father->header != region->entry
876 || dominated_by_p (CDI_DOMINATORS,
877 loop_latch_edge (region->entry->loop_father)->src,
878 region->exit))
879 {
880 edge forwarder = split_block_after_labels (region->entry);
881 region->entry = forwarder->dest;
882 }
883 else
884 /* This case is never executed, as the loop headers seem always to have a
885 single edge pointing from outside into the loop. */
886 gcc_unreachable ();
887
888 gcc_checking_assert (find_single_entry_edge (region));
889 }
890
891 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
892
893 static bool
894 sd_region_without_exit (edge e)
895 {
896 sd_region *r = (sd_region *) e->aux;
897
898 if (r)
899 return r->exit == NULL;
900 else
901 return false;
902 }
903
904 /* Create a single exit edge for REGION. */
905
906 static void
907 create_single_exit_edge (sd_region *region)
908 {
909 edge e;
910 edge_iterator ei;
911 edge forwarder = NULL;
912 basic_block exit;
913
914 /* We create a forwarder bb (5) for all edges leaving this region
915 (3->5, 4->5). All other edges leading to the same bb, are moved
916 to a new bb (6). If these edges where part of another region (2->5)
917 we update the region->exit pointer, of this region.
918
919 To identify which edge belongs to which region we depend on the e->aux
920 pointer in every edge. It points to the region of the edge or to NULL,
921 if the edge is not part of any region.
922
923 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
924 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
925 5 <- exit
926
927 changes to
928
929 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
930 | | \/ 3->5 no region, 4->5 no region,
931 | | 5
932 \| / 5->6 region->exit = 6
933 6
934
935 Now there is only a single exit edge (5->6). */
936 exit = region->exit;
937 region->exit = NULL;
938 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
939
940 /* Unmark the edges, that are no longer exit edges. */
941 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
942 if (e->aux)
943 e->aux = NULL;
944
945 /* Mark the new exit edge. */
946 single_succ_edge (forwarder->src)->aux = region;
947
948 /* Update the exit bb of all regions, where exit edges lead to
949 forwarder->dest. */
950 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
951 if (e->aux)
952 ((sd_region *) e->aux)->exit = forwarder->dest;
953
954 gcc_checking_assert (find_single_exit_edge (region));
955 }
956
957 /* Unmark the exit edges of all REGIONS.
958 See comment in "create_single_exit_edge". */
959
960 static void
961 unmark_exit_edges (VEC (sd_region, heap) *regions)
962 {
963 int i;
964 sd_region *s;
965 edge e;
966 edge_iterator ei;
967
968 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
969 FOR_EACH_EDGE (e, ei, s->exit->preds)
970 e->aux = NULL;
971 }
972
973
974 /* Mark the exit edges of all REGIONS.
975 See comment in "create_single_exit_edge". */
976
977 static void
978 mark_exit_edges (VEC (sd_region, heap) *regions)
979 {
980 int i;
981 sd_region *s;
982 edge e;
983 edge_iterator ei;
984
985 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
986 FOR_EACH_EDGE (e, ei, s->exit->preds)
987 if (bb_in_sd_region (e->src, s))
988 e->aux = s;
989 }
990
991 /* Create for all scop regions a single entry and a single exit edge. */
992
993 static void
994 create_sese_edges (VEC (sd_region, heap) *regions)
995 {
996 int i;
997 sd_region *s;
998
999 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1000 create_single_entry_edge (s);
1001
1002 mark_exit_edges (regions);
1003
1004 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1005 /* Don't handle multiple edges exiting the function. */
1006 if (!find_single_exit_edge (s)
1007 && s->exit != EXIT_BLOCK_PTR)
1008 create_single_exit_edge (s);
1009
1010 unmark_exit_edges (regions);
1011
1012 fix_loop_structure (NULL);
1013
1014 #ifdef ENABLE_CHECKING
1015 verify_loop_structure ();
1016 verify_dominators (CDI_DOMINATORS);
1017 verify_ssa (false);
1018 #endif
1019 }
1020
1021 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1022
1023 static void
1024 build_graphite_scops (VEC (sd_region, heap) *regions,
1025 VEC (scop_p, heap) **scops)
1026 {
1027 int i;
1028 sd_region *s;
1029
1030 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1031 {
1032 edge entry = find_single_entry_edge (s);
1033 edge exit = find_single_exit_edge (s);
1034 scop_p scop;
1035
1036 if (!exit)
1037 continue;
1038
1039 scop = new_scop (new_sese (entry, exit));
1040 VEC_safe_push (scop_p, heap, *scops, scop);
1041
1042 /* Are there overlapping SCoPs? */
1043 #ifdef ENABLE_CHECKING
1044 {
1045 int j;
1046 sd_region *s2;
1047
1048 FOR_EACH_VEC_ELT (sd_region, regions, j, s2)
1049 if (s != s2)
1050 gcc_assert (!bb_in_sd_region (s->entry, s2));
1051 }
1052 #endif
1053 }
1054 }
1055
1056 /* Returns true when BB contains only close phi nodes. */
1057
1058 static bool
1059 contains_only_close_phi_nodes (basic_block bb)
1060 {
1061 gimple_stmt_iterator gsi;
1062
1063 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1064 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1065 return false;
1066
1067 return true;
1068 }
1069
1070 /* Print statistics for SCOP to FILE. */
1071
1072 static void
1073 print_graphite_scop_statistics (FILE* file, scop_p scop)
1074 {
1075 long n_bbs = 0;
1076 long n_loops = 0;
1077 long n_stmts = 0;
1078 long n_conditions = 0;
1079 long n_p_bbs = 0;
1080 long n_p_loops = 0;
1081 long n_p_stmts = 0;
1082 long n_p_conditions = 0;
1083
1084 basic_block bb;
1085
1086 FOR_ALL_BB (bb)
1087 {
1088 gimple_stmt_iterator psi;
1089 loop_p loop = bb->loop_father;
1090
1091 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1092 continue;
1093
1094 n_bbs++;
1095 n_p_bbs += bb->count;
1096
1097 if (VEC_length (edge, bb->succs) > 1)
1098 {
1099 n_conditions++;
1100 n_p_conditions += bb->count;
1101 }
1102
1103 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1104 {
1105 n_stmts++;
1106 n_p_stmts += bb->count;
1107 }
1108
1109 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1110 {
1111 n_loops++;
1112 n_p_loops += bb->count;
1113 }
1114
1115 }
1116
1117 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1118 fprintf (file, "BBS:%ld, ", n_bbs);
1119 fprintf (file, "LOOPS:%ld, ", n_loops);
1120 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1121 fprintf (file, "STMTS:%ld)\n", n_stmts);
1122 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1123 fprintf (file, "BBS:%ld, ", n_p_bbs);
1124 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1125 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1126 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1127 }
1128
1129 /* Print statistics for SCOPS to FILE. */
1130
1131 static void
1132 print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1133 {
1134 int i;
1135 scop_p scop;
1136
1137 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1138 print_graphite_scop_statistics (file, scop);
1139 }
1140
1141 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1142
1143 Example:
1144
1145 for (i |
1146 { |
1147 for (j | SCoP 1
1148 for (k |
1149 } |
1150
1151 * SCoP frontier, as this line is not surrounded by any loop. *
1152
1153 for (l | SCoP 2
1154
1155 This is necessary as scalar evolution and parameter detection need a
1156 outermost loop to initialize parameters correctly.
1157
1158 TODO: FIX scalar evolution and parameter detection to allow more flexible
1159 SCoP frontiers. */
1160
1161 static void
1162 limit_scops (VEC (scop_p, heap) **scops)
1163 {
1164 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1165
1166 int i;
1167 scop_p scop;
1168
1169 FOR_EACH_VEC_ELT (scop_p, *scops, i, scop)
1170 {
1171 int j;
1172 loop_p loop;
1173 sese region = SCOP_REGION (scop);
1174 build_sese_loop_nests (region);
1175
1176 FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), j, loop)
1177 if (!loop_in_sese_p (loop_outer (loop), region)
1178 && single_exit (loop))
1179 {
1180 sd_region open_scop;
1181 open_scop.entry = loop->header;
1182 open_scop.exit = single_exit (loop)->dest;
1183
1184 /* This is a hack on top of the limit_scops hack. The
1185 limit_scops hack should disappear all together. */
1186 if (single_succ_p (open_scop.exit)
1187 && contains_only_close_phi_nodes (open_scop.exit))
1188 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1189
1190 VEC_safe_push (sd_region, heap, regions, &open_scop);
1191 }
1192 }
1193
1194 free_scops (*scops);
1195 *scops = VEC_alloc (scop_p, heap, 3);
1196
1197 create_sese_edges (regions);
1198 build_graphite_scops (regions, scops);
1199 VEC_free (sd_region, heap, regions);
1200 }
1201
1202 /* Returns true when P1 and P2 are close phis with the same
1203 argument. */
1204
1205 static inline bool
1206 same_close_phi_node (gimple p1, gimple p2)
1207 {
1208 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1209 gimple_phi_arg_def (p2, 0), 0);
1210 }
1211
1212 /* Remove the close phi node at GSI and replace its rhs with the rhs
1213 of PHI. */
1214
1215 static void
1216 remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1217 {
1218 gimple use_stmt;
1219 use_operand_p use_p;
1220 imm_use_iterator imm_iter;
1221 tree res = gimple_phi_result (phi);
1222 tree def = gimple_phi_result (gsi_stmt (*gsi));
1223
1224 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1225
1226 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1227 {
1228 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1229 SET_USE (use_p, res);
1230
1231 update_stmt (use_stmt);
1232 }
1233
1234 remove_phi_node (gsi, true);
1235 }
1236
1237 /* Removes all the close phi duplicates from BB. */
1238
1239 static void
1240 make_close_phi_nodes_unique (basic_block bb)
1241 {
1242 gimple_stmt_iterator psi;
1243
1244 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1245 {
1246 gimple_stmt_iterator gsi = psi;
1247 gimple phi = gsi_stmt (psi);
1248
1249 /* At this point, PHI should be a close phi in normal form. */
1250 gcc_assert (gimple_phi_num_args (phi) == 1);
1251
1252 /* Iterate over the next phis and remove duplicates. */
1253 gsi_next (&gsi);
1254 while (!gsi_end_p (gsi))
1255 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1256 remove_duplicate_close_phi (phi, &gsi);
1257 else
1258 gsi_next (&gsi);
1259 }
1260 }
1261
1262 /* Transforms LOOP to the canonical loop closed SSA form. */
1263
1264 static void
1265 canonicalize_loop_closed_ssa (loop_p loop)
1266 {
1267 edge e = single_exit (loop);
1268 basic_block bb;
1269
1270 if (!e || e->flags & EDGE_ABNORMAL)
1271 return;
1272
1273 bb = e->dest;
1274
1275 if (VEC_length (edge, bb->preds) == 1)
1276 {
1277 e = split_block_after_labels (bb);
1278 make_close_phi_nodes_unique (e->src);
1279 }
1280 else
1281 {
1282 gimple_stmt_iterator psi;
1283 basic_block close = split_edge (e);
1284
1285 e = single_succ_edge (close);
1286
1287 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1288 {
1289 gimple phi = gsi_stmt (psi);
1290 unsigned i;
1291
1292 for (i = 0; i < gimple_phi_num_args (phi); i++)
1293 if (gimple_phi_arg_edge (phi, i) == e)
1294 {
1295 tree res, arg = gimple_phi_arg_def (phi, i);
1296 use_operand_p use_p;
1297 gimple close_phi;
1298
1299 if (TREE_CODE (arg) != SSA_NAME)
1300 continue;
1301
1302 close_phi = create_phi_node (arg, close);
1303 res = create_new_def_for (gimple_phi_result (close_phi),
1304 close_phi,
1305 gimple_phi_result_ptr (close_phi));
1306 add_phi_arg (close_phi, arg,
1307 gimple_phi_arg_edge (close_phi, 0),
1308 UNKNOWN_LOCATION);
1309 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1310 replace_exp (use_p, res);
1311 update_stmt (phi);
1312 }
1313 }
1314
1315 make_close_phi_nodes_unique (close);
1316 }
1317
1318 /* The code above does not properly handle changes in the post dominance
1319 information (yet). */
1320 free_dominance_info (CDI_POST_DOMINATORS);
1321 }
1322
1323 /* Converts the current loop closed SSA form to a canonical form
1324 expected by the Graphite code generation.
1325
1326 The loop closed SSA form has the following invariant: a variable
1327 defined in a loop that is used outside the loop appears only in the
1328 phi nodes in the destination of the loop exit. These phi nodes are
1329 called close phi nodes.
1330
1331 The canonical loop closed SSA form contains the extra invariants:
1332
1333 - when the loop contains only one exit, the close phi nodes contain
1334 only one argument. That implies that the basic block that contains
1335 the close phi nodes has only one predecessor, that is a basic block
1336 in the loop.
1337
1338 - the basic block containing the close phi nodes does not contain
1339 other statements.
1340
1341 - there exist only one phi node per definition in the loop.
1342 */
1343
1344 static void
1345 canonicalize_loop_closed_ssa_form (void)
1346 {
1347 loop_iterator li;
1348 loop_p loop;
1349
1350 #ifdef ENABLE_CHECKING
1351 verify_loop_closed_ssa (true);
1352 #endif
1353
1354 FOR_EACH_LOOP (li, loop, 0)
1355 canonicalize_loop_closed_ssa (loop);
1356
1357 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1358 update_ssa (TODO_update_ssa);
1359
1360 #ifdef ENABLE_CHECKING
1361 verify_loop_closed_ssa (true);
1362 #endif
1363 }
1364
1365 /* Find Static Control Parts (SCoP) in the current function and pushes
1366 them to SCOPS. */
1367
1368 void
1369 build_scops (VEC (scop_p, heap) **scops)
1370 {
1371 struct loop *loop = current_loops->tree_root;
1372 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1373
1374 canonicalize_loop_closed_ssa_form ();
1375 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1376 &regions, loop);
1377 create_sese_edges (regions);
1378 build_graphite_scops (regions, scops);
1379
1380 if (dump_file && (dump_flags & TDF_DETAILS))
1381 print_graphite_statistics (dump_file, *scops);
1382
1383 limit_scops (scops);
1384 VEC_free (sd_region, heap, regions);
1385
1386 if (dump_file && (dump_flags & TDF_DETAILS))
1387 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1388 VEC_length (scop_p, *scops));
1389 }
1390
1391 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1392 different colors. If there are not enough colors, paint the
1393 remaining SCoPs in gray.
1394
1395 Special nodes:
1396 - "*" after the node number denotes the entry of a SCoP,
1397 - "#" after the node number denotes the exit of a SCoP,
1398 - "()" around the node number denotes the entry or the
1399 exit nodes of the SCOP. These are not part of SCoP. */
1400
1401 static void
1402 dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1403 {
1404 basic_block bb;
1405 edge e;
1406 edge_iterator ei;
1407 scop_p scop;
1408 const char* color;
1409 int i;
1410
1411 /* Disable debugging while printing graph. */
1412 int tmp_dump_flags = dump_flags;
1413 dump_flags = 0;
1414
1415 fprintf (file, "digraph all {\n");
1416
1417 FOR_ALL_BB (bb)
1418 {
1419 int part_of_scop = false;
1420
1421 /* Use HTML for every bb label. So we are able to print bbs
1422 which are part of two different SCoPs, with two different
1423 background colors. */
1424 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1425 bb->index);
1426 fprintf (file, "CELLSPACING=\"0\">\n");
1427
1428 /* Select color for SCoP. */
1429 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1430 {
1431 sese region = SCOP_REGION (scop);
1432 if (bb_in_sese_p (bb, region)
1433 || (SESE_EXIT_BB (region) == bb)
1434 || (SESE_ENTRY_BB (region) == bb))
1435 {
1436 switch (i % 17)
1437 {
1438 case 0: /* red */
1439 color = "#e41a1c";
1440 break;
1441 case 1: /* blue */
1442 color = "#377eb8";
1443 break;
1444 case 2: /* green */
1445 color = "#4daf4a";
1446 break;
1447 case 3: /* purple */
1448 color = "#984ea3";
1449 break;
1450 case 4: /* orange */
1451 color = "#ff7f00";
1452 break;
1453 case 5: /* yellow */
1454 color = "#ffff33";
1455 break;
1456 case 6: /* brown */
1457 color = "#a65628";
1458 break;
1459 case 7: /* rose */
1460 color = "#f781bf";
1461 break;
1462 case 8:
1463 color = "#8dd3c7";
1464 break;
1465 case 9:
1466 color = "#ffffb3";
1467 break;
1468 case 10:
1469 color = "#bebada";
1470 break;
1471 case 11:
1472 color = "#fb8072";
1473 break;
1474 case 12:
1475 color = "#80b1d3";
1476 break;
1477 case 13:
1478 color = "#fdb462";
1479 break;
1480 case 14:
1481 color = "#b3de69";
1482 break;
1483 case 15:
1484 color = "#fccde5";
1485 break;
1486 case 16:
1487 color = "#bc80bd";
1488 break;
1489 default: /* gray */
1490 color = "#999999";
1491 }
1492
1493 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1494
1495 if (!bb_in_sese_p (bb, region))
1496 fprintf (file, " (");
1497
1498 if (bb == SESE_ENTRY_BB (region)
1499 && bb == SESE_EXIT_BB (region))
1500 fprintf (file, " %d*# ", bb->index);
1501 else if (bb == SESE_ENTRY_BB (region))
1502 fprintf (file, " %d* ", bb->index);
1503 else if (bb == SESE_EXIT_BB (region))
1504 fprintf (file, " %d# ", bb->index);
1505 else
1506 fprintf (file, " %d ", bb->index);
1507
1508 if (!bb_in_sese_p (bb,region))
1509 fprintf (file, ")");
1510
1511 fprintf (file, "</TD></TR>\n");
1512 part_of_scop = true;
1513 }
1514 }
1515
1516 if (!part_of_scop)
1517 {
1518 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1519 fprintf (file, " %d </TD></TR>\n", bb->index);
1520 }
1521 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1522 }
1523
1524 FOR_ALL_BB (bb)
1525 {
1526 FOR_EACH_EDGE (e, ei, bb->succs)
1527 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1528 }
1529
1530 fputs ("}\n\n", file);
1531
1532 /* Enable debugging again. */
1533 dump_flags = tmp_dump_flags;
1534 }
1535
1536 /* Display all SCoPs using dotty. */
1537
1538 DEBUG_FUNCTION void
1539 dot_all_scops (VEC (scop_p, heap) *scops)
1540 {
1541 /* When debugging, enable the following code. This cannot be used
1542 in production compilers because it calls "system". */
1543 #if 0
1544 int x;
1545 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1546 gcc_assert (stream);
1547
1548 dot_all_scops_1 (stream, scops);
1549 fclose (stream);
1550
1551 x = system ("dotty /tmp/allscops.dot &");
1552 #else
1553 dot_all_scops_1 (stderr, scops);
1554 #endif
1555 }
1556
1557 /* Display all SCoPs using dotty. */
1558
1559 DEBUG_FUNCTION void
1560 dot_scop (scop_p scop)
1561 {
1562 VEC (scop_p, heap) *scops = NULL;
1563
1564 if (scop)
1565 VEC_safe_push (scop_p, heap, scops, scop);
1566
1567 /* When debugging, enable the following code. This cannot be used
1568 in production compilers because it calls "system". */
1569 #if 0
1570 {
1571 int x;
1572 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1573 gcc_assert (stream);
1574
1575 dot_all_scops_1 (stream, scops);
1576 fclose (stream);
1577 x = system ("dotty /tmp/allscops.dot &");
1578 }
1579 #else
1580 dot_all_scops_1 (stderr, scops);
1581 #endif
1582
1583 VEC_free (scop_p, heap, scops);
1584 }
1585
1586 #endif