Fix the description of graphite_can_represent_loop.
[gcc.git] / gcc / graphite-scop-detection.c
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "toplev.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "value-prof.h"
42 #include "pointer-set.h"
43 #include "gimple.h"
44 #include "sese.h"
45
46 #ifdef HAVE_cloog
47 #include "ppl_c.h"
48 #include "graphite-ppl.h"
49 #include "graphite.h"
50 #include "graphite-poly.h"
51 #include "graphite-scop-detection.h"
52
53 /* The type of the analyzed basic block. */
54
55 typedef enum gbb_type {
56 GBB_UNKNOWN,
57 GBB_LOOP_SING_EXIT_HEADER,
58 GBB_LOOP_MULT_EXIT_HEADER,
59 GBB_LOOP_EXIT,
60 GBB_COND_HEADER,
61 GBB_SIMPLE,
62 GBB_LAST
63 } gbb_type;
64
65 /* Detect the type of BB. Loop headers are only marked, if they are
66 new. This means their loop_father is different to LAST_LOOP.
67 Otherwise they are treated like any other bb and their type can be
68 any other type. */
69
70 static gbb_type
71 get_bb_type (basic_block bb, struct loop *last_loop)
72 {
73 VEC (basic_block, heap) *dom;
74 int nb_dom, nb_suc;
75 struct loop *loop = bb->loop_father;
76
77 /* Check, if we entry into a new loop. */
78 if (loop != last_loop)
79 {
80 if (single_exit (loop) != NULL)
81 return GBB_LOOP_SING_EXIT_HEADER;
82 else if (loop->num != 0)
83 return GBB_LOOP_MULT_EXIT_HEADER;
84 else
85 return GBB_COND_HEADER;
86 }
87
88 dom = get_dominated_by (CDI_DOMINATORS, bb);
89 nb_dom = VEC_length (basic_block, dom);
90 VEC_free (basic_block, heap, dom);
91
92 if (nb_dom == 0)
93 return GBB_LAST;
94
95 nb_suc = VEC_length (edge, bb->succs);
96
97 if (nb_dom == 1 && nb_suc == 1)
98 return GBB_SIMPLE;
99
100 return GBB_COND_HEADER;
101 }
102
103 /* A SCoP detection region, defined using bbs as borders.
104
105 All control flow touching this region, comes in passing basic_block
106 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
107 edges for the borders we are able to represent also regions that do
108 not have a single entry or exit edge.
109
110 But as they have a single entry basic_block and a single exit
111 basic_block, we are able to generate for every sd_region a single
112 entry and exit edge.
113
114 1 2
115 \ /
116 3 <- entry
117 |
118 4
119 / \ This region contains: {3, 4, 5, 6, 7, 8}
120 5 6
121 | |
122 7 8
123 \ /
124 9 <- exit */
125
126
127 typedef struct sd_region_p
128 {
129 /* The entry bb dominates all bbs in the sd_region. It is part of
130 the region. */
131 basic_block entry;
132
133 /* The exit bb postdominates all bbs in the sd_region, but is not
134 part of the region. */
135 basic_block exit;
136 } sd_region;
137
138 DEF_VEC_O(sd_region);
139 DEF_VEC_ALLOC_O(sd_region, heap);
140
141
142 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
143
144 static void
145 move_sd_regions (VEC (sd_region, heap) **source,
146 VEC (sd_region, heap) **target)
147 {
148 sd_region *s;
149 int i;
150
151 FOR_EACH_VEC_ELT (sd_region, *source, i, s)
152 VEC_safe_push (sd_region, heap, *target, s);
153
154 VEC_free (sd_region, heap, *source);
155 }
156
157 /* Something like "n * m" is not allowed. */
158
159 static bool
160 graphite_can_represent_init (tree e)
161 {
162 switch (TREE_CODE (e))
163 {
164 case POLYNOMIAL_CHREC:
165 return graphite_can_represent_init (CHREC_LEFT (e))
166 && graphite_can_represent_init (CHREC_RIGHT (e));
167
168 case MULT_EXPR:
169 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
170 return graphite_can_represent_init (TREE_OPERAND (e, 0))
171 && host_integerp (TREE_OPERAND (e, 1), 0);
172 else
173 return graphite_can_represent_init (TREE_OPERAND (e, 1))
174 && host_integerp (TREE_OPERAND (e, 0), 0);
175
176 case PLUS_EXPR:
177 case POINTER_PLUS_EXPR:
178 case MINUS_EXPR:
179 return graphite_can_represent_init (TREE_OPERAND (e, 0))
180 && graphite_can_represent_init (TREE_OPERAND (e, 1));
181
182 case NEGATE_EXPR:
183 case BIT_NOT_EXPR:
184 CASE_CONVERT:
185 case NON_LVALUE_EXPR:
186 return graphite_can_represent_init (TREE_OPERAND (e, 0));
187
188 default:
189 break;
190 }
191
192 return true;
193 }
194
195 /* Return true when SCEV can be represented in the polyhedral model.
196
197 An expression can be represented, if it can be expressed as an
198 affine expression. For loops (i, j) and parameters (m, n) all
199 affine expressions are of the form:
200
201 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
202
203 1 i + 20 j + (-2) m + 25
204
205 Something like "i * n" or "n * m" is not allowed. */
206
207 static bool
208 graphite_can_represent_scev (tree scev)
209 {
210 if (chrec_contains_undetermined (scev))
211 return false;
212
213 switch (TREE_CODE (scev))
214 {
215 case PLUS_EXPR:
216 case MINUS_EXPR:
217 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
218 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
219
220 case MULT_EXPR:
221 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
222 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
223 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
224 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
225 && graphite_can_represent_init (scev)
226 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
227 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
228
229 case POLYNOMIAL_CHREC:
230 /* Check for constant strides. With a non constant stride of
231 'n' we would have a value of 'iv * n'. Also check that the
232 initial value can represented: for example 'n * m' cannot be
233 represented. */
234 if (!evolution_function_right_is_integer_cst (scev)
235 || !graphite_can_represent_init (scev))
236 return false;
237
238 default:
239 break;
240 }
241
242 /* Only affine functions can be represented. */
243 if (!scev_is_linear_expression (scev))
244 return false;
245
246 return true;
247 }
248
249
250 /* Return true when EXPR can be represented in the polyhedral model.
251
252 This means an expression can be represented, if it is linear with
253 respect to the loops and the strides are non parametric.
254 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
255 entry of the region we analyse. */
256
257 static bool
258 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
259 tree expr)
260 {
261 tree scev = analyze_scalar_evolution (loop, expr);
262
263 scev = instantiate_scev (scop_entry, loop, scev);
264
265 return graphite_can_represent_scev (scev);
266 }
267
268 /* Return true if the data references of STMT can be represented by
269 Graphite. */
270
271 static bool
272 stmt_has_simple_data_refs_p (loop_p outermost_loop, gimple stmt)
273 {
274 data_reference_p dr;
275 unsigned i;
276 int j;
277 bool res = true;
278 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
279
280 graphite_find_data_references_in_stmt (outermost_loop, stmt, &drs);
281
282 FOR_EACH_VEC_ELT (data_reference_p, drs, j, dr)
283 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
284 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
285 {
286 res = false;
287 goto done;
288 }
289
290 done:
291 free_data_refs (drs);
292 return res;
293 }
294
295 /* Return true only when STMT is simple enough for being handled by
296 Graphite. This depends on SCOP_ENTRY, as the parameters are
297 initialized relatively to this basic block, the linear functions
298 are initialized to OUTERMOST_LOOP and BB is the place where we try
299 to evaluate the STMT. */
300
301 static bool
302 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
303 gimple stmt, basic_block bb)
304 {
305 loop_p loop = bb->loop_father;
306
307 gcc_assert (scop_entry);
308
309 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
310 Calls have side-effects, except those to const or pure
311 functions. */
312 if (gimple_has_volatile_ops (stmt)
313 || (gimple_code (stmt) == GIMPLE_CALL
314 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
315 || (gimple_code (stmt) == GIMPLE_ASM))
316 return false;
317
318 if (is_gimple_debug (stmt))
319 return true;
320
321 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
322 return false;
323
324 switch (gimple_code (stmt))
325 {
326 case GIMPLE_RETURN:
327 case GIMPLE_LABEL:
328 return true;
329
330 case GIMPLE_COND:
331 {
332 tree op;
333 ssa_op_iter op_iter;
334 enum tree_code code = gimple_cond_code (stmt);
335
336 /* We can handle all binary comparisons. Inequalities are
337 also supported as they can be represented with union of
338 polyhedra. */
339 if (!(code == LT_EXPR
340 || code == GT_EXPR
341 || code == LE_EXPR
342 || code == GE_EXPR
343 || code == EQ_EXPR
344 || code == NE_EXPR))
345 return false;
346
347 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
348 if (!graphite_can_represent_expr (scop_entry, loop, op)
349 /* We can not handle REAL_TYPE. Failed for pr39260. */
350 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
351 return false;
352
353 return true;
354 }
355
356 case GIMPLE_ASSIGN:
357 case GIMPLE_CALL:
358 return true;
359
360 default:
361 /* These nodes cut a new scope. */
362 return false;
363 }
364
365 return false;
366 }
367
368 /* Returns the statement of BB that contains a harmful operation: that
369 can be a function call with side effects, the induction variables
370 are not linear with respect to SCOP_ENTRY, etc. The current open
371 scop should end before this statement. The evaluation is limited using
372 OUTERMOST_LOOP as outermost loop that may change. */
373
374 static gimple
375 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
376 {
377 gimple_stmt_iterator gsi;
378
379 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
380 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
381 return gsi_stmt (gsi);
382
383 return NULL;
384 }
385
386 /* Return true if LOOP can be represented in the polyhedral
387 representation. This is evaluated taking SCOP_ENTRY and
388 OUTERMOST_LOOP in mind. */
389
390 static bool
391 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
392 {
393 tree niter = number_of_latch_executions (loop);
394
395 /* Number of iterations unknown. */
396 if (chrec_contains_undetermined (niter))
397 return false;
398
399 /* Number of iterations not affine. */
400 if (!graphite_can_represent_expr (scop_entry, loop, niter))
401 return false;
402
403 return true;
404 }
405
406 /* Store information needed by scopdet_* functions. */
407
408 struct scopdet_info
409 {
410 /* Exit of the open scop would stop if the current BB is harmful. */
411 basic_block exit;
412
413 /* Where the next scop would start if the current BB is harmful. */
414 basic_block next;
415
416 /* The bb or one of its children contains open loop exits. That means
417 loop exit nodes that are not surrounded by a loop dominated by bb. */
418 bool exits;
419
420 /* The bb or one of its children contains only structures we can handle. */
421 bool difficult;
422 };
423
424 static struct scopdet_info build_scops_1 (basic_block, loop_p,
425 VEC (sd_region, heap) **, loop_p);
426
427 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
428 to SCOPS. TYPE is the gbb_type of BB. */
429
430 static struct scopdet_info
431 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
432 VEC (sd_region, heap) **scops, gbb_type type)
433 {
434 loop_p loop = bb->loop_father;
435 struct scopdet_info result;
436 gimple stmt;
437
438 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
439 basic_block entry_block = ENTRY_BLOCK_PTR;
440 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
441 result.difficult = (stmt != NULL);
442 result.exit = NULL;
443
444 switch (type)
445 {
446 case GBB_LAST:
447 result.next = NULL;
448 result.exits = false;
449
450 /* Mark bbs terminating a SESE region difficult, if they start
451 a condition. */
452 if (!single_succ_p (bb))
453 result.difficult = true;
454 else
455 result.exit = single_succ (bb);
456
457 break;
458
459 case GBB_SIMPLE:
460 result.next = single_succ (bb);
461 result.exits = false;
462 result.exit = single_succ (bb);
463 break;
464
465 case GBB_LOOP_SING_EXIT_HEADER:
466 {
467 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
468 struct scopdet_info sinfo;
469 edge exit_e = single_exit (loop);
470
471 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
472
473 if (!graphite_can_represent_loop (entry_block, loop))
474 result.difficult = true;
475
476 result.difficult |= sinfo.difficult;
477
478 /* Try again with another loop level. */
479 if (result.difficult
480 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
481 {
482 outermost_loop = loop;
483
484 VEC_free (sd_region, heap, regions);
485 regions = VEC_alloc (sd_region, heap, 3);
486
487 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
488
489 result = sinfo;
490 result.difficult = true;
491
492 if (sinfo.difficult)
493 move_sd_regions (&regions, scops);
494 else
495 {
496 sd_region open_scop;
497 open_scop.entry = bb;
498 open_scop.exit = exit_e->dest;
499 VEC_safe_push (sd_region, heap, *scops, &open_scop);
500 VEC_free (sd_region, heap, regions);
501 }
502 }
503 else
504 {
505 result.exit = exit_e->dest;
506 result.next = exit_e->dest;
507
508 /* If we do not dominate result.next, remove it. It's either
509 the EXIT_BLOCK_PTR, or another bb dominates it and will
510 call the scop detection for this bb. */
511 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
512 result.next = NULL;
513
514 if (exit_e->src->loop_father != loop)
515 result.next = NULL;
516
517 result.exits = false;
518
519 if (result.difficult)
520 move_sd_regions (&regions, scops);
521 else
522 VEC_free (sd_region, heap, regions);
523 }
524
525 break;
526 }
527
528 case GBB_LOOP_MULT_EXIT_HEADER:
529 {
530 /* XXX: For now we just do not join loops with multiple exits. If the
531 exits lead to the same bb it may be possible to join the loop. */
532 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
533 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
534 edge e;
535 int i;
536 build_scops_1 (bb, loop, &regions, loop);
537
538 /* Scan the code dominated by this loop. This means all bbs, that are
539 are dominated by a bb in this loop, but are not part of this loop.
540
541 The easiest case:
542 - The loop exit destination is dominated by the exit sources.
543
544 TODO: We miss here the more complex cases:
545 - The exit destinations are dominated by another bb inside
546 the loop.
547 - The loop dominates bbs, that are not exit destinations. */
548 FOR_EACH_VEC_ELT (edge, exits, i, e)
549 if (e->src->loop_father == loop
550 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
551 {
552 if (loop_outer (outermost_loop))
553 outermost_loop = loop_outer (outermost_loop);
554
555 /* Pass loop_outer to recognize e->dest as loop header in
556 build_scops_1. */
557 if (e->dest->loop_father->header == e->dest)
558 build_scops_1 (e->dest, outermost_loop, &regions,
559 loop_outer (e->dest->loop_father));
560 else
561 build_scops_1 (e->dest, outermost_loop, &regions,
562 e->dest->loop_father);
563 }
564
565 result.next = NULL;
566 result.exit = NULL;
567 result.difficult = true;
568 result.exits = false;
569 move_sd_regions (&regions, scops);
570 VEC_free (edge, heap, exits);
571 break;
572 }
573 case GBB_COND_HEADER:
574 {
575 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
576 struct scopdet_info sinfo;
577 VEC (basic_block, heap) *dominated;
578 int i;
579 basic_block dom_bb;
580 basic_block last_exit = NULL;
581 edge e;
582 result.exits = false;
583
584 /* First check the successors of BB, and check if it is
585 possible to join the different branches. */
586 FOR_EACH_VEC_ELT (edge, bb->succs, i, e)
587 {
588 /* Ignore loop exits. They will be handled after the loop
589 body. */
590 if (loop_exits_to_bb_p (loop, e->dest))
591 {
592 result.exits = true;
593 continue;
594 }
595
596 /* Do not follow edges that lead to the end of the
597 conditions block. For example, in
598
599 | 0
600 | /|\
601 | 1 2 |
602 | | | |
603 | 3 4 |
604 | \|/
605 | 6
606
607 the edge from 0 => 6. Only check if all paths lead to
608 the same node 6. */
609
610 if (!single_pred_p (e->dest))
611 {
612 /* Check, if edge leads directly to the end of this
613 condition. */
614 if (!last_exit)
615 last_exit = e->dest;
616
617 if (e->dest != last_exit)
618 result.difficult = true;
619
620 continue;
621 }
622
623 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
624 {
625 result.difficult = true;
626 continue;
627 }
628
629 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
630
631 result.exits |= sinfo.exits;
632 result.difficult |= sinfo.difficult;
633
634 /* Checks, if all branches end at the same point.
635 If that is true, the condition stays joinable.
636 Have a look at the example above. */
637 if (sinfo.exit)
638 {
639 if (!last_exit)
640 last_exit = sinfo.exit;
641
642 if (sinfo.exit != last_exit)
643 result.difficult = true;
644 }
645 else
646 result.difficult = true;
647 }
648
649 if (!last_exit)
650 result.difficult = true;
651
652 /* Join the branches of the condition if possible. */
653 if (!result.exits && !result.difficult)
654 {
655 /* Only return a next pointer if we dominate this pointer.
656 Otherwise it will be handled by the bb dominating it. */
657 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
658 && last_exit != bb)
659 result.next = last_exit;
660 else
661 result.next = NULL;
662
663 result.exit = last_exit;
664
665 VEC_free (sd_region, heap, regions);
666 break;
667 }
668
669 /* Scan remaining bbs dominated by BB. */
670 dominated = get_dominated_by (CDI_DOMINATORS, bb);
671
672 FOR_EACH_VEC_ELT (basic_block, dominated, i, dom_bb)
673 {
674 /* Ignore loop exits: they will be handled after the loop body. */
675 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
676 < loop_depth (loop))
677 {
678 result.exits = true;
679 continue;
680 }
681
682 /* Ignore the bbs processed above. */
683 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
684 continue;
685
686 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
687 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
688 loop_outer (loop));
689 else
690 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
691
692 result.exits |= sinfo.exits;
693 result.difficult = true;
694 result.exit = NULL;
695 }
696
697 VEC_free (basic_block, heap, dominated);
698
699 result.next = NULL;
700 move_sd_regions (&regions, scops);
701
702 break;
703 }
704
705 default:
706 gcc_unreachable ();
707 }
708
709 return result;
710 }
711
712 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
713 SCOPS. The analyse if a sd_region can be handled is based on the value
714 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
715 is the loop in which CURRENT is handled.
716
717 TODO: These functions got a little bit big. They definitely should be cleaned
718 up. */
719
720 static struct scopdet_info
721 build_scops_1 (basic_block current, loop_p outermost_loop,
722 VEC (sd_region, heap) **scops, loop_p loop)
723 {
724 bool in_scop = false;
725 sd_region open_scop;
726 struct scopdet_info sinfo;
727
728 /* Initialize result. */
729 struct scopdet_info result;
730 result.exits = false;
731 result.difficult = false;
732 result.next = NULL;
733 result.exit = NULL;
734 open_scop.entry = NULL;
735 open_scop.exit = NULL;
736 sinfo.exit = NULL;
737
738 /* Loop over the dominance tree. If we meet a difficult bb, close
739 the current SCoP. Loop and condition header start a new layer,
740 and can only be added if all bbs in deeper layers are simple. */
741 while (current != NULL)
742 {
743 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
744 get_bb_type (current, loop));
745
746 if (!in_scop && !(sinfo.exits || sinfo.difficult))
747 {
748 open_scop.entry = current;
749 open_scop.exit = NULL;
750 in_scop = true;
751 }
752 else if (in_scop && (sinfo.exits || sinfo.difficult))
753 {
754 open_scop.exit = current;
755 VEC_safe_push (sd_region, heap, *scops, &open_scop);
756 in_scop = false;
757 }
758
759 result.difficult |= sinfo.difficult;
760 result.exits |= sinfo.exits;
761
762 current = sinfo.next;
763 }
764
765 /* Try to close open_scop, if we are still in an open SCoP. */
766 if (in_scop)
767 {
768 open_scop.exit = sinfo.exit;
769 gcc_assert (open_scop.exit);
770 VEC_safe_push (sd_region, heap, *scops, &open_scop);
771 }
772
773 result.exit = sinfo.exit;
774 return result;
775 }
776
777 /* Checks if a bb is contained in REGION. */
778
779 static bool
780 bb_in_sd_region (basic_block bb, sd_region *region)
781 {
782 return bb_in_region (bb, region->entry, region->exit);
783 }
784
785 /* Returns the single entry edge of REGION, if it does not exits NULL. */
786
787 static edge
788 find_single_entry_edge (sd_region *region)
789 {
790 edge e;
791 edge_iterator ei;
792 edge entry = NULL;
793
794 FOR_EACH_EDGE (e, ei, region->entry->preds)
795 if (!bb_in_sd_region (e->src, region))
796 {
797 if (entry)
798 {
799 entry = NULL;
800 break;
801 }
802
803 else
804 entry = e;
805 }
806
807 return entry;
808 }
809
810 /* Returns the single exit edge of REGION, if it does not exits NULL. */
811
812 static edge
813 find_single_exit_edge (sd_region *region)
814 {
815 edge e;
816 edge_iterator ei;
817 edge exit = NULL;
818
819 FOR_EACH_EDGE (e, ei, region->exit->preds)
820 if (bb_in_sd_region (e->src, region))
821 {
822 if (exit)
823 {
824 exit = NULL;
825 break;
826 }
827
828 else
829 exit = e;
830 }
831
832 return exit;
833 }
834
835 /* Create a single entry edge for REGION. */
836
837 static void
838 create_single_entry_edge (sd_region *region)
839 {
840 if (find_single_entry_edge (region))
841 return;
842
843 /* There are multiple predecessors for bb_3
844
845 | 1 2
846 | | /
847 | |/
848 | 3 <- entry
849 | |\
850 | | |
851 | 4 ^
852 | | |
853 | |/
854 | 5
855
856 There are two edges (1->3, 2->3), that point from outside into the region,
857 and another one (5->3), a loop latch, lead to bb_3.
858
859 We split bb_3.
860
861 | 1 2
862 | | /
863 | |/
864 |3.0
865 | |\ (3.0 -> 3.1) = single entry edge
866 |3.1 | <- entry
867 | | |
868 | | |
869 | 4 ^
870 | | |
871 | |/
872 | 5
873
874 If the loop is part of the SCoP, we have to redirect the loop latches.
875
876 | 1 2
877 | | /
878 | |/
879 |3.0
880 | | (3.0 -> 3.1) = entry edge
881 |3.1 <- entry
882 | |\
883 | | |
884 | 4 ^
885 | | |
886 | |/
887 | 5 */
888
889 if (region->entry->loop_father->header != region->entry
890 || dominated_by_p (CDI_DOMINATORS,
891 loop_latch_edge (region->entry->loop_father)->src,
892 region->exit))
893 {
894 edge forwarder = split_block_after_labels (region->entry);
895 region->entry = forwarder->dest;
896 }
897 else
898 /* This case is never executed, as the loop headers seem always to have a
899 single edge pointing from outside into the loop. */
900 gcc_unreachable ();
901
902 #ifdef ENABLE_CHECKING
903 gcc_assert (find_single_entry_edge (region));
904 #endif
905 }
906
907 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
908
909 static bool
910 sd_region_without_exit (edge e)
911 {
912 sd_region *r = (sd_region *) e->aux;
913
914 if (r)
915 return r->exit == NULL;
916 else
917 return false;
918 }
919
920 /* Create a single exit edge for REGION. */
921
922 static void
923 create_single_exit_edge (sd_region *region)
924 {
925 edge e;
926 edge_iterator ei;
927 edge forwarder = NULL;
928 basic_block exit;
929
930 /* We create a forwarder bb (5) for all edges leaving this region
931 (3->5, 4->5). All other edges leading to the same bb, are moved
932 to a new bb (6). If these edges where part of another region (2->5)
933 we update the region->exit pointer, of this region.
934
935 To identify which edge belongs to which region we depend on the e->aux
936 pointer in every edge. It points to the region of the edge or to NULL,
937 if the edge is not part of any region.
938
939 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
940 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
941 5 <- exit
942
943 changes to
944
945 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
946 | | \/ 3->5 no region, 4->5 no region,
947 | | 5
948 \| / 5->6 region->exit = 6
949 6
950
951 Now there is only a single exit edge (5->6). */
952 exit = region->exit;
953 region->exit = NULL;
954 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
955
956 /* Unmark the edges, that are no longer exit edges. */
957 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
958 if (e->aux)
959 e->aux = NULL;
960
961 /* Mark the new exit edge. */
962 single_succ_edge (forwarder->src)->aux = region;
963
964 /* Update the exit bb of all regions, where exit edges lead to
965 forwarder->dest. */
966 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
967 if (e->aux)
968 ((sd_region *) e->aux)->exit = forwarder->dest;
969
970 #ifdef ENABLE_CHECKING
971 gcc_assert (find_single_exit_edge (region));
972 #endif
973 }
974
975 /* Unmark the exit edges of all REGIONS.
976 See comment in "create_single_exit_edge". */
977
978 static void
979 unmark_exit_edges (VEC (sd_region, heap) *regions)
980 {
981 int i;
982 sd_region *s;
983 edge e;
984 edge_iterator ei;
985
986 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
987 FOR_EACH_EDGE (e, ei, s->exit->preds)
988 e->aux = NULL;
989 }
990
991
992 /* Mark the exit edges of all REGIONS.
993 See comment in "create_single_exit_edge". */
994
995 static void
996 mark_exit_edges (VEC (sd_region, heap) *regions)
997 {
998 int i;
999 sd_region *s;
1000 edge e;
1001 edge_iterator ei;
1002
1003 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1004 FOR_EACH_EDGE (e, ei, s->exit->preds)
1005 if (bb_in_sd_region (e->src, s))
1006 e->aux = s;
1007 }
1008
1009 /* Create for all scop regions a single entry and a single exit edge. */
1010
1011 static void
1012 create_sese_edges (VEC (sd_region, heap) *regions)
1013 {
1014 int i;
1015 sd_region *s;
1016
1017 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1018 create_single_entry_edge (s);
1019
1020 mark_exit_edges (regions);
1021
1022 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1023 /* Don't handle multiple edges exiting the function. */
1024 if (!find_single_exit_edge (s)
1025 && s->exit != EXIT_BLOCK_PTR)
1026 create_single_exit_edge (s);
1027
1028 unmark_exit_edges (regions);
1029
1030 fix_loop_structure (NULL);
1031
1032 #ifdef ENABLE_CHECKING
1033 verify_loop_structure ();
1034 verify_dominators (CDI_DOMINATORS);
1035 verify_ssa (false);
1036 #endif
1037 }
1038
1039 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1040
1041 static void
1042 build_graphite_scops (VEC (sd_region, heap) *regions,
1043 VEC (scop_p, heap) **scops)
1044 {
1045 int i;
1046 sd_region *s;
1047
1048 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1049 {
1050 edge entry = find_single_entry_edge (s);
1051 edge exit = find_single_exit_edge (s);
1052 scop_p scop;
1053
1054 if (!exit)
1055 continue;
1056
1057 scop = new_scop (new_sese (entry, exit));
1058 VEC_safe_push (scop_p, heap, *scops, scop);
1059
1060 /* Are there overlapping SCoPs? */
1061 #ifdef ENABLE_CHECKING
1062 {
1063 int j;
1064 sd_region *s2;
1065
1066 FOR_EACH_VEC_ELT (sd_region, regions, j, s2)
1067 if (s != s2)
1068 gcc_assert (!bb_in_sd_region (s->entry, s2));
1069 }
1070 #endif
1071 }
1072 }
1073
1074 /* Returns true when BB contains only close phi nodes. */
1075
1076 static bool
1077 contains_only_close_phi_nodes (basic_block bb)
1078 {
1079 gimple_stmt_iterator gsi;
1080
1081 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1082 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1083 return false;
1084
1085 return true;
1086 }
1087
1088 /* Print statistics for SCOP to FILE. */
1089
1090 static void
1091 print_graphite_scop_statistics (FILE* file, scop_p scop)
1092 {
1093 long n_bbs = 0;
1094 long n_loops = 0;
1095 long n_stmts = 0;
1096 long n_conditions = 0;
1097 long n_p_bbs = 0;
1098 long n_p_loops = 0;
1099 long n_p_stmts = 0;
1100 long n_p_conditions = 0;
1101
1102 basic_block bb;
1103
1104 FOR_ALL_BB (bb)
1105 {
1106 gimple_stmt_iterator psi;
1107 loop_p loop = bb->loop_father;
1108
1109 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1110 continue;
1111
1112 n_bbs++;
1113 n_p_bbs += bb->count;
1114
1115 if (VEC_length (edge, bb->succs) > 1)
1116 {
1117 n_conditions++;
1118 n_p_conditions += bb->count;
1119 }
1120
1121 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1122 {
1123 n_stmts++;
1124 n_p_stmts += bb->count;
1125 }
1126
1127 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1128 {
1129 n_loops++;
1130 n_p_loops += bb->count;
1131 }
1132
1133 }
1134
1135 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1136 fprintf (file, "BBS:%ld, ", n_bbs);
1137 fprintf (file, "LOOPS:%ld, ", n_loops);
1138 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1139 fprintf (file, "STMTS:%ld)\n", n_stmts);
1140 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1141 fprintf (file, "BBS:%ld, ", n_p_bbs);
1142 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1143 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1144 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1145 }
1146
1147 /* Print statistics for SCOPS to FILE. */
1148
1149 static void
1150 print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1151 {
1152 int i;
1153 scop_p scop;
1154
1155 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1156 print_graphite_scop_statistics (file, scop);
1157 }
1158
1159 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1160
1161 Example:
1162
1163 for (i |
1164 { |
1165 for (j | SCoP 1
1166 for (k |
1167 } |
1168
1169 * SCoP frontier, as this line is not surrounded by any loop. *
1170
1171 for (l | SCoP 2
1172
1173 This is necessary as scalar evolution and parameter detection need a
1174 outermost loop to initialize parameters correctly.
1175
1176 TODO: FIX scalar evolution and parameter detection to allow more flexible
1177 SCoP frontiers. */
1178
1179 static void
1180 limit_scops (VEC (scop_p, heap) **scops)
1181 {
1182 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1183
1184 int i;
1185 scop_p scop;
1186
1187 FOR_EACH_VEC_ELT (scop_p, *scops, i, scop)
1188 {
1189 int j;
1190 loop_p loop;
1191 sese region = SCOP_REGION (scop);
1192 build_sese_loop_nests (region);
1193
1194 FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), j, loop)
1195 if (!loop_in_sese_p (loop_outer (loop), region)
1196 && single_exit (loop))
1197 {
1198 sd_region open_scop;
1199 open_scop.entry = loop->header;
1200 open_scop.exit = single_exit (loop)->dest;
1201
1202 /* This is a hack on top of the limit_scops hack. The
1203 limit_scops hack should disappear all together. */
1204 if (single_succ_p (open_scop.exit)
1205 && contains_only_close_phi_nodes (open_scop.exit))
1206 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1207
1208 VEC_safe_push (sd_region, heap, regions, &open_scop);
1209 }
1210 }
1211
1212 free_scops (*scops);
1213 *scops = VEC_alloc (scop_p, heap, 3);
1214
1215 create_sese_edges (regions);
1216 build_graphite_scops (regions, scops);
1217 VEC_free (sd_region, heap, regions);
1218 }
1219
1220 /* Transforms LOOP to the canonical loop closed SSA form. */
1221
1222 static void
1223 canonicalize_loop_closed_ssa (loop_p loop)
1224 {
1225 edge e = single_exit (loop);
1226 basic_block bb;
1227
1228 if (!e || e->flags & EDGE_ABNORMAL)
1229 return;
1230
1231 bb = e->dest;
1232
1233 if (VEC_length (edge, bb->preds) == 1)
1234 split_block_after_labels (bb);
1235 else
1236 {
1237 gimple_stmt_iterator psi;
1238 basic_block close = split_edge (e);
1239
1240 e = single_succ_edge (close);
1241
1242 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1243 {
1244 gimple phi = gsi_stmt (psi);
1245 unsigned i;
1246
1247 for (i = 0; i < gimple_phi_num_args (phi); i++)
1248 if (gimple_phi_arg_edge (phi, i) == e)
1249 {
1250 tree res, arg = gimple_phi_arg_def (phi, i);
1251 use_operand_p use_p;
1252 gimple close_phi;
1253
1254 if (TREE_CODE (arg) != SSA_NAME)
1255 continue;
1256
1257 close_phi = create_phi_node (arg, close);
1258 res = create_new_def_for (gimple_phi_result (close_phi),
1259 close_phi,
1260 gimple_phi_result_ptr (close_phi));
1261 add_phi_arg (close_phi, arg,
1262 gimple_phi_arg_edge (close_phi, 0),
1263 UNKNOWN_LOCATION);
1264 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1265 replace_exp (use_p, res);
1266 update_stmt (phi);
1267 }
1268 }
1269 }
1270 }
1271
1272 /* Converts the current loop closed SSA form to a canonical form
1273 expected by the Graphite code generation.
1274
1275 The loop closed SSA form has the following invariant: a variable
1276 defined in a loop that is used outside the loop appears only in the
1277 phi nodes in the destination of the loop exit. These phi nodes are
1278 called close phi nodes.
1279
1280 The canonical loop closed SSA form contains the extra invariants:
1281
1282 - when the loop contains only one exit, the close phi nodes contain
1283 only one argument. That implies that the basic block that contains
1284 the close phi nodes has only one predecessor, that is a basic block
1285 in the loop.
1286
1287 - the basic block containing the close phi nodes does not contain
1288 other statements.
1289 */
1290
1291 static void
1292 canonicalize_loop_closed_ssa_form (void)
1293 {
1294 loop_iterator li;
1295 loop_p loop;
1296
1297 #ifdef ENABLE_CHECKING
1298 verify_loop_closed_ssa (true);
1299 #endif
1300
1301 FOR_EACH_LOOP (li, loop, 0)
1302 canonicalize_loop_closed_ssa (loop);
1303
1304 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1305 update_ssa (TODO_update_ssa);
1306
1307 #ifdef ENABLE_CHECKING
1308 verify_loop_closed_ssa (true);
1309 #endif
1310 }
1311
1312 /* Find Static Control Parts (SCoP) in the current function and pushes
1313 them to SCOPS. */
1314
1315 void
1316 build_scops (VEC (scop_p, heap) **scops)
1317 {
1318 struct loop *loop = current_loops->tree_root;
1319 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1320
1321 canonicalize_loop_closed_ssa_form ();
1322 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1323 &regions, loop);
1324 create_sese_edges (regions);
1325 build_graphite_scops (regions, scops);
1326
1327 if (dump_file && (dump_flags & TDF_DETAILS))
1328 print_graphite_statistics (dump_file, *scops);
1329
1330 limit_scops (scops);
1331 VEC_free (sd_region, heap, regions);
1332
1333 if (dump_file && (dump_flags & TDF_DETAILS))
1334 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1335 VEC_length (scop_p, *scops));
1336 }
1337
1338 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1339 different colors. If there are not enough colors, paint the
1340 remaining SCoPs in gray.
1341
1342 Special nodes:
1343 - "*" after the node number denotes the entry of a SCoP,
1344 - "#" after the node number denotes the exit of a SCoP,
1345 - "()" around the node number denotes the entry or the
1346 exit nodes of the SCOP. These are not part of SCoP. */
1347
1348 static void
1349 dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1350 {
1351 basic_block bb;
1352 edge e;
1353 edge_iterator ei;
1354 scop_p scop;
1355 const char* color;
1356 int i;
1357
1358 /* Disable debugging while printing graph. */
1359 int tmp_dump_flags = dump_flags;
1360 dump_flags = 0;
1361
1362 fprintf (file, "digraph all {\n");
1363
1364 FOR_ALL_BB (bb)
1365 {
1366 int part_of_scop = false;
1367
1368 /* Use HTML for every bb label. So we are able to print bbs
1369 which are part of two different SCoPs, with two different
1370 background colors. */
1371 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1372 bb->index);
1373 fprintf (file, "CELLSPACING=\"0\">\n");
1374
1375 /* Select color for SCoP. */
1376 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1377 {
1378 sese region = SCOP_REGION (scop);
1379 if (bb_in_sese_p (bb, region)
1380 || (SESE_EXIT_BB (region) == bb)
1381 || (SESE_ENTRY_BB (region) == bb))
1382 {
1383 switch (i % 17)
1384 {
1385 case 0: /* red */
1386 color = "#e41a1c";
1387 break;
1388 case 1: /* blue */
1389 color = "#377eb8";
1390 break;
1391 case 2: /* green */
1392 color = "#4daf4a";
1393 break;
1394 case 3: /* purple */
1395 color = "#984ea3";
1396 break;
1397 case 4: /* orange */
1398 color = "#ff7f00";
1399 break;
1400 case 5: /* yellow */
1401 color = "#ffff33";
1402 break;
1403 case 6: /* brown */
1404 color = "#a65628";
1405 break;
1406 case 7: /* rose */
1407 color = "#f781bf";
1408 break;
1409 case 8:
1410 color = "#8dd3c7";
1411 break;
1412 case 9:
1413 color = "#ffffb3";
1414 break;
1415 case 10:
1416 color = "#bebada";
1417 break;
1418 case 11:
1419 color = "#fb8072";
1420 break;
1421 case 12:
1422 color = "#80b1d3";
1423 break;
1424 case 13:
1425 color = "#fdb462";
1426 break;
1427 case 14:
1428 color = "#b3de69";
1429 break;
1430 case 15:
1431 color = "#fccde5";
1432 break;
1433 case 16:
1434 color = "#bc80bd";
1435 break;
1436 default: /* gray */
1437 color = "#999999";
1438 }
1439
1440 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1441
1442 if (!bb_in_sese_p (bb, region))
1443 fprintf (file, " (");
1444
1445 if (bb == SESE_ENTRY_BB (region)
1446 && bb == SESE_EXIT_BB (region))
1447 fprintf (file, " %d*# ", bb->index);
1448 else if (bb == SESE_ENTRY_BB (region))
1449 fprintf (file, " %d* ", bb->index);
1450 else if (bb == SESE_EXIT_BB (region))
1451 fprintf (file, " %d# ", bb->index);
1452 else
1453 fprintf (file, " %d ", bb->index);
1454
1455 if (!bb_in_sese_p (bb,region))
1456 fprintf (file, ")");
1457
1458 fprintf (file, "</TD></TR>\n");
1459 part_of_scop = true;
1460 }
1461 }
1462
1463 if (!part_of_scop)
1464 {
1465 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1466 fprintf (file, " %d </TD></TR>\n", bb->index);
1467 }
1468 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1469 }
1470
1471 FOR_ALL_BB (bb)
1472 {
1473 FOR_EACH_EDGE (e, ei, bb->succs)
1474 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1475 }
1476
1477 fputs ("}\n\n", file);
1478
1479 /* Enable debugging again. */
1480 dump_flags = tmp_dump_flags;
1481 }
1482
1483 /* Display all SCoPs using dotty. */
1484
1485 DEBUG_FUNCTION void
1486 dot_all_scops (VEC (scop_p, heap) *scops)
1487 {
1488 /* When debugging, enable the following code. This cannot be used
1489 in production compilers because it calls "system". */
1490 #if 0
1491 int x;
1492 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1493 gcc_assert (stream);
1494
1495 dot_all_scops_1 (stream, scops);
1496 fclose (stream);
1497
1498 x = system ("dotty /tmp/allscops.dot &");
1499 #else
1500 dot_all_scops_1 (stderr, scops);
1501 #endif
1502 }
1503
1504 /* Display all SCoPs using dotty. */
1505
1506 DEBUG_FUNCTION void
1507 dot_scop (scop_p scop)
1508 {
1509 VEC (scop_p, heap) *scops = NULL;
1510
1511 if (scop)
1512 VEC_safe_push (scop_p, heap, scops, scop);
1513
1514 /* When debugging, enable the following code. This cannot be used
1515 in production compilers because it calls "system". */
1516 #if 0
1517 {
1518 int x;
1519 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1520 gcc_assert (stream);
1521
1522 dot_all_scops_1 (stream, scops);
1523 fclose (stream);
1524 x = system ("dotty /tmp/allscops.dot &");
1525 }
1526 #else
1527 dot_all_scops_1 (stderr, scops);
1528 #endif
1529
1530 VEC_free (scop_p, heap, scops);
1531 }
1532
1533 #endif