re PR tree-optimization/42285 (ICE in Graphite's scan_tree_for_params for 416.gamess)
[gcc.git] / gcc / graphite-scop-detection.c
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "toplev.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "value-prof.h"
42 #include "pointer-set.h"
43 #include "gimple.h"
44 #include "sese.h"
45
46 #ifdef HAVE_cloog
47 #include "cloog/cloog.h"
48 #include "ppl_c.h"
49 #include "graphite-ppl.h"
50 #include "graphite.h"
51 #include "graphite-poly.h"
52 #include "graphite-scop-detection.h"
53
54 /* The type of the analyzed basic block. */
55
56 typedef enum gbb_type {
57 GBB_UNKNOWN,
58 GBB_LOOP_SING_EXIT_HEADER,
59 GBB_LOOP_MULT_EXIT_HEADER,
60 GBB_LOOP_EXIT,
61 GBB_COND_HEADER,
62 GBB_SIMPLE,
63 GBB_LAST
64 } gbb_type;
65
66 /* Detect the type of BB. Loop headers are only marked, if they are
67 new. This means their loop_father is different to LAST_LOOP.
68 Otherwise they are treated like any other bb and their type can be
69 any other type. */
70
71 static gbb_type
72 get_bb_type (basic_block bb, struct loop *last_loop)
73 {
74 VEC (basic_block, heap) *dom;
75 int nb_dom, nb_suc;
76 struct loop *loop = bb->loop_father;
77
78 /* Check, if we entry into a new loop. */
79 if (loop != last_loop)
80 {
81 if (single_exit (loop) != NULL)
82 return GBB_LOOP_SING_EXIT_HEADER;
83 else if (loop->num != 0)
84 return GBB_LOOP_MULT_EXIT_HEADER;
85 else
86 return GBB_COND_HEADER;
87 }
88
89 dom = get_dominated_by (CDI_DOMINATORS, bb);
90 nb_dom = VEC_length (basic_block, dom);
91 VEC_free (basic_block, heap, dom);
92
93 if (nb_dom == 0)
94 return GBB_LAST;
95
96 nb_suc = VEC_length (edge, bb->succs);
97
98 if (nb_dom == 1 && nb_suc == 1)
99 return GBB_SIMPLE;
100
101 return GBB_COND_HEADER;
102 }
103
104 /* A SCoP detection region, defined using bbs as borders.
105
106 All control flow touching this region, comes in passing basic_block
107 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
108 edges for the borders we are able to represent also regions that do
109 not have a single entry or exit edge.
110
111 But as they have a single entry basic_block and a single exit
112 basic_block, we are able to generate for every sd_region a single
113 entry and exit edge.
114
115 1 2
116 \ /
117 3 <- entry
118 |
119 4
120 / \ This region contains: {3, 4, 5, 6, 7, 8}
121 5 6
122 | |
123 7 8
124 \ /
125 9 <- exit */
126
127
128 typedef struct sd_region_p
129 {
130 /* The entry bb dominates all bbs in the sd_region. It is part of
131 the region. */
132 basic_block entry;
133
134 /* The exit bb postdominates all bbs in the sd_region, but is not
135 part of the region. */
136 basic_block exit;
137 } sd_region;
138
139 DEF_VEC_O(sd_region);
140 DEF_VEC_ALLOC_O(sd_region, heap);
141
142
143 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
144
145 static void
146 move_sd_regions (VEC (sd_region, heap) **source,
147 VEC (sd_region, heap) **target)
148 {
149 sd_region *s;
150 int i;
151
152 for (i = 0; VEC_iterate (sd_region, *source, i, s); i++)
153 VEC_safe_push (sd_region, heap, *target, s);
154
155 VEC_free (sd_region, heap, *source);
156 }
157
158 /* Something like "n * m" is not allowed. */
159
160 static bool
161 graphite_can_represent_init (tree e)
162 {
163 switch (TREE_CODE (e))
164 {
165 case POLYNOMIAL_CHREC:
166 return graphite_can_represent_init (CHREC_LEFT (e))
167 && graphite_can_represent_init (CHREC_RIGHT (e));
168
169 case MULT_EXPR:
170 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
171 return graphite_can_represent_init (TREE_OPERAND (e, 0))
172 && host_integerp (TREE_OPERAND (e, 1), 0);
173 else
174 return graphite_can_represent_init (TREE_OPERAND (e, 1))
175 && host_integerp (TREE_OPERAND (e, 0), 0);
176
177 case PLUS_EXPR:
178 case POINTER_PLUS_EXPR:
179 case MINUS_EXPR:
180 return graphite_can_represent_init (TREE_OPERAND (e, 0))
181 && graphite_can_represent_init (TREE_OPERAND (e, 1));
182
183 case NEGATE_EXPR:
184 case BIT_NOT_EXPR:
185 CASE_CONVERT:
186 case NON_LVALUE_EXPR:
187 return graphite_can_represent_init (TREE_OPERAND (e, 0));
188
189 default:
190 break;
191 }
192
193 return true;
194 }
195
196 /* Return true when SCEV can be represented in the polyhedral model.
197
198 An expression can be represented, if it can be expressed as an
199 affine expression. For loops (i, j) and parameters (m, n) all
200 affine expressions are of the form:
201
202 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
203
204 1 i + 20 j + (-2) m + 25
205
206 Something like "i * n" or "n * m" is not allowed.
207
208 OUTERMOST_LOOP defines the outermost loop that can variate. */
209
210 static bool
211 graphite_can_represent_scev (tree scev, int outermost_loop)
212 {
213 if (chrec_contains_undetermined (scev))
214 return false;
215
216 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
217
218 /* Check for constant strides. With a non constant stride of
219 'n' we would have a value of 'iv * n'. */
220 && (!evolution_function_right_is_integer_cst (scev)
221
222 /* Check the initial value: 'n * m' cannot be represented. */
223 || !graphite_can_represent_init (scev)))
224 return false;
225
226 /* Only affine functions can be represented. */
227 if (!scev_is_linear_expression (scev))
228 return false;
229
230 return evolution_function_is_invariant_p (scev, outermost_loop)
231 || evolution_function_is_affine_multivariate_p (scev, outermost_loop);
232 }
233
234
235 /* Return true when EXPR can be represented in the polyhedral model.
236
237 This means an expression can be represented, if it is linear with
238 respect to the loops and the strides are non parametric.
239 LOOP is the place where the expr will be evaluated and OUTERMOST_LOOP
240 defindes the outermost loop that can variate. SCOP_ENTRY defines the
241 entry of the region we analyse. */
242
243 static bool
244 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
245 loop_p outermost_loop, tree expr)
246 {
247 tree scev = analyze_scalar_evolution (loop, expr);
248
249 scev = instantiate_scev (scop_entry, loop, scev);
250
251 return graphite_can_represent_scev (scev, outermost_loop->num);
252 }
253
254 /* Return true if the data references of STMT can be represented by
255 Graphite. */
256
257 static bool
258 stmt_has_simple_data_refs_p (loop_p outermost_loop, gimple stmt)
259 {
260 data_reference_p dr;
261 unsigned i;
262 int j;
263 bool res = true;
264 int loop = outermost_loop->num;
265 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
266
267 graphite_find_data_references_in_stmt (outermost_loop, stmt, &drs);
268
269 for (j = 0; VEC_iterate (data_reference_p, drs, j, dr); j++)
270 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
271 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i), loop))
272 {
273 res = false;
274 goto done;
275 }
276
277 done:
278 free_data_refs (drs);
279 return res;
280 }
281
282 /* Return false if the TREE_CODE of the operand OP or any of its operands
283 is a COMPONENT_REF. */
284
285 static bool
286 exclude_component_ref (tree op)
287 {
288 int i;
289 int len;
290
291 if (!op)
292 return true;
293
294 if (TREE_CODE (op) == COMPONENT_REF)
295 return false;
296
297 len = TREE_OPERAND_LENGTH (op);
298 for (i = 0; i < len; ++i)
299 if (!exclude_component_ref (TREE_OPERAND (op, i)))
300 return false;
301
302 return true;
303 }
304
305 /* Return true if the operand OP used in STMT is simple in regards to
306 OUTERMOST_LOOP. */
307
308 static inline bool
309 is_simple_operand (tree op)
310 {
311 /* It is not a simple operand when it is a declaration or a
312 structure. */
313 return !DECL_P (op) && !AGGREGATE_TYPE_P (TREE_TYPE (op))
314 && exclude_component_ref (op);
315 }
316
317 /* Return true only when STMT is simple enough for being handled by
318 Graphite. This depends on SCOP_ENTRY, as the parameters are
319 initialized relatively to this basic block, the linear functions
320 are initialized to OUTERMOST_LOOP and BB is the place where we try
321 to evaluate the STMT. */
322
323 static bool
324 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
325 gimple stmt, basic_block bb)
326 {
327 loop_p loop = bb->loop_father;
328
329 gcc_assert (scop_entry);
330
331 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
332 Calls have side-effects, except those to const or pure
333 functions. */
334 if (gimple_has_volatile_ops (stmt)
335 || (gimple_code (stmt) == GIMPLE_CALL
336 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
337 || (gimple_code (stmt) == GIMPLE_ASM))
338 return false;
339
340 if (is_gimple_debug (stmt))
341 return true;
342
343 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
344 return false;
345
346 switch (gimple_code (stmt))
347 {
348 case GIMPLE_RETURN:
349 case GIMPLE_LABEL:
350 return true;
351
352 case GIMPLE_COND:
353 {
354 tree op;
355 ssa_op_iter op_iter;
356 enum tree_code code = gimple_cond_code (stmt);
357
358 /* We can handle all binary comparisons. Inequalities are
359 also supported as they can be represented with union of
360 polyhedra. */
361 if (!(code == LT_EXPR
362 || code == GT_EXPR
363 || code == LE_EXPR
364 || code == GE_EXPR
365 || code == EQ_EXPR
366 || code == NE_EXPR))
367 return false;
368
369 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
370 if (!graphite_can_represent_expr (scop_entry, loop, outermost_loop,
371 op)
372 /* We can not handle REAL_TYPE. Failed for pr39260. */
373 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
374 return false;
375
376 return true;
377 }
378
379 case GIMPLE_ASSIGN:
380 {
381 enum tree_code code = gimple_assign_rhs_code (stmt);
382
383 switch (get_gimple_rhs_class (code))
384 {
385 case GIMPLE_UNARY_RHS:
386 case GIMPLE_SINGLE_RHS:
387 return (is_simple_operand (gimple_assign_lhs (stmt))
388 && is_simple_operand (gimple_assign_rhs1 (stmt)));
389
390 case GIMPLE_BINARY_RHS:
391 return (is_simple_operand (gimple_assign_lhs (stmt))
392 && is_simple_operand (gimple_assign_rhs1 (stmt))
393 && is_simple_operand (gimple_assign_rhs2 (stmt)));
394
395 case GIMPLE_INVALID_RHS:
396 default:
397 gcc_unreachable ();
398 }
399 }
400
401 case GIMPLE_CALL:
402 {
403 size_t i;
404 size_t n = gimple_call_num_args (stmt);
405 tree lhs = gimple_call_lhs (stmt);
406
407 if (lhs && !is_simple_operand (lhs))
408 return false;
409
410 for (i = 0; i < n; i++)
411 if (!is_simple_operand (gimple_call_arg (stmt, i)))
412 return false;
413
414 return true;
415 }
416
417 default:
418 /* These nodes cut a new scope. */
419 return false;
420 }
421
422 return false;
423 }
424
425 /* Returns the statement of BB that contains a harmful operation: that
426 can be a function call with side effects, the induction variables
427 are not linear with respect to SCOP_ENTRY, etc. The current open
428 scop should end before this statement. The evaluation is limited using
429 OUTERMOST_LOOP as outermost loop that may change. */
430
431 static gimple
432 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
433 {
434 gimple_stmt_iterator gsi;
435
436 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
437 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
438 return gsi_stmt (gsi);
439
440 return NULL;
441 }
442
443 /* Return true when it is not possible to represent LOOP in the
444 polyhedral representation. This is evaluated taking SCOP_ENTRY and
445 OUTERMOST_LOOP in mind. */
446
447 static bool
448 graphite_can_represent_loop (basic_block scop_entry, loop_p outermost_loop,
449 loop_p loop)
450 {
451 tree niter = number_of_latch_executions (loop);
452
453 /* Number of iterations unknown. */
454 if (chrec_contains_undetermined (niter))
455 return false;
456
457 /* Number of iterations not affine. */
458 if (!graphite_can_represent_expr (scop_entry, loop, outermost_loop, niter))
459 return false;
460
461 return true;
462 }
463
464 /* Store information needed by scopdet_* functions. */
465
466 struct scopdet_info
467 {
468 /* Exit of the open scop would stop if the current BB is harmful. */
469 basic_block exit;
470
471 /* Where the next scop would start if the current BB is harmful. */
472 basic_block next;
473
474 /* The bb or one of its children contains open loop exits. That means
475 loop exit nodes that are not surrounded by a loop dominated by bb. */
476 bool exits;
477
478 /* The bb or one of its children contains only structures we can handle. */
479 bool difficult;
480 };
481
482 static struct scopdet_info build_scops_1 (basic_block, loop_p,
483 VEC (sd_region, heap) **, loop_p);
484
485 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
486 to SCOPS. TYPE is the gbb_type of BB. */
487
488 static struct scopdet_info
489 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
490 VEC (sd_region, heap) **scops, gbb_type type)
491 {
492 loop_p loop = bb->loop_father;
493 struct scopdet_info result;
494 gimple stmt;
495
496 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
497 basic_block entry_block = ENTRY_BLOCK_PTR;
498 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
499 result.difficult = (stmt != NULL);
500 result.exit = NULL;
501
502 switch (type)
503 {
504 case GBB_LAST:
505 result.next = NULL;
506 result.exits = false;
507
508 /* Mark bbs terminating a SESE region difficult, if they start
509 a condition. */
510 if (!single_succ_p (bb))
511 result.difficult = true;
512 else
513 result.exit = single_succ (bb);
514
515 break;
516
517 case GBB_SIMPLE:
518 result.next = single_succ (bb);
519 result.exits = false;
520 result.exit = single_succ (bb);
521 break;
522
523 case GBB_LOOP_SING_EXIT_HEADER:
524 {
525 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
526 struct scopdet_info sinfo;
527 edge exit_e = single_exit (loop);
528
529 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
530
531 if (!graphite_can_represent_loop (entry_block, outermost_loop, loop))
532 result.difficult = true;
533
534 result.difficult |= sinfo.difficult;
535
536 /* Try again with another loop level. */
537 if (result.difficult
538 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
539 {
540 outermost_loop = loop;
541
542 VEC_free (sd_region, heap, regions);
543 regions = VEC_alloc (sd_region, heap, 3);
544
545 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
546
547 result = sinfo;
548 result.difficult = true;
549
550 if (sinfo.difficult)
551 move_sd_regions (&regions, scops);
552 else
553 {
554 sd_region open_scop;
555 open_scop.entry = bb;
556 open_scop.exit = exit_e->dest;
557 VEC_safe_push (sd_region, heap, *scops, &open_scop);
558 VEC_free (sd_region, heap, regions);
559 }
560 }
561 else
562 {
563 result.exit = exit_e->dest;
564 result.next = exit_e->dest;
565
566 /* If we do not dominate result.next, remove it. It's either
567 the EXIT_BLOCK_PTR, or another bb dominates it and will
568 call the scop detection for this bb. */
569 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
570 result.next = NULL;
571
572 if (exit_e->src->loop_father != loop)
573 result.next = NULL;
574
575 result.exits = false;
576
577 if (result.difficult)
578 move_sd_regions (&regions, scops);
579 else
580 VEC_free (sd_region, heap, regions);
581 }
582
583 break;
584 }
585
586 case GBB_LOOP_MULT_EXIT_HEADER:
587 {
588 /* XXX: For now we just do not join loops with multiple exits. If the
589 exits lead to the same bb it may be possible to join the loop. */
590 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
591 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
592 edge e;
593 int i;
594 build_scops_1 (bb, loop, &regions, loop);
595
596 /* Scan the code dominated by this loop. This means all bbs, that are
597 are dominated by a bb in this loop, but are not part of this loop.
598
599 The easiest case:
600 - The loop exit destination is dominated by the exit sources.
601
602 TODO: We miss here the more complex cases:
603 - The exit destinations are dominated by another bb inside
604 the loop.
605 - The loop dominates bbs, that are not exit destinations. */
606 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
607 if (e->src->loop_father == loop
608 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
609 {
610 if (loop_outer (outermost_loop))
611 outermost_loop = loop_outer (outermost_loop);
612
613 /* Pass loop_outer to recognize e->dest as loop header in
614 build_scops_1. */
615 if (e->dest->loop_father->header == e->dest)
616 build_scops_1 (e->dest, outermost_loop, &regions,
617 loop_outer (e->dest->loop_father));
618 else
619 build_scops_1 (e->dest, outermost_loop, &regions,
620 e->dest->loop_father);
621 }
622
623 result.next = NULL;
624 result.exit = NULL;
625 result.difficult = true;
626 result.exits = false;
627 move_sd_regions (&regions, scops);
628 VEC_free (edge, heap, exits);
629 break;
630 }
631 case GBB_COND_HEADER:
632 {
633 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
634 struct scopdet_info sinfo;
635 VEC (basic_block, heap) *dominated;
636 int i;
637 basic_block dom_bb;
638 basic_block last_exit = NULL;
639 edge e;
640 result.exits = false;
641
642 /* First check the successors of BB, and check if it is
643 possible to join the different branches. */
644 for (i = 0; VEC_iterate (edge, bb->succs, i, e); i++)
645 {
646 /* Ignore loop exits. They will be handled after the loop
647 body. */
648 if (is_loop_exit (loop, e->dest))
649 {
650 result.exits = true;
651 continue;
652 }
653
654 /* Do not follow edges that lead to the end of the
655 conditions block. For example, in
656
657 | 0
658 | /|\
659 | 1 2 |
660 | | | |
661 | 3 4 |
662 | \|/
663 | 6
664
665 the edge from 0 => 6. Only check if all paths lead to
666 the same node 6. */
667
668 if (!single_pred_p (e->dest))
669 {
670 /* Check, if edge leads directly to the end of this
671 condition. */
672 if (!last_exit)
673 last_exit = e->dest;
674
675 if (e->dest != last_exit)
676 result.difficult = true;
677
678 continue;
679 }
680
681 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
682 {
683 result.difficult = true;
684 continue;
685 }
686
687 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
688
689 result.exits |= sinfo.exits;
690 result.difficult |= sinfo.difficult;
691
692 /* Checks, if all branches end at the same point.
693 If that is true, the condition stays joinable.
694 Have a look at the example above. */
695 if (sinfo.exit)
696 {
697 if (!last_exit)
698 last_exit = sinfo.exit;
699
700 if (sinfo.exit != last_exit)
701 result.difficult = true;
702 }
703 else
704 result.difficult = true;
705 }
706
707 if (!last_exit)
708 result.difficult = true;
709
710 /* Join the branches of the condition if possible. */
711 if (!result.exits && !result.difficult)
712 {
713 /* Only return a next pointer if we dominate this pointer.
714 Otherwise it will be handled by the bb dominating it. */
715 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
716 && last_exit != bb)
717 result.next = last_exit;
718 else
719 result.next = NULL;
720
721 result.exit = last_exit;
722
723 VEC_free (sd_region, heap, regions);
724 break;
725 }
726
727 /* Scan remaining bbs dominated by BB. */
728 dominated = get_dominated_by (CDI_DOMINATORS, bb);
729
730 for (i = 0; VEC_iterate (basic_block, dominated, i, dom_bb); i++)
731 {
732 /* Ignore loop exits: they will be handled after the loop body. */
733 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
734 < loop_depth (loop))
735 {
736 result.exits = true;
737 continue;
738 }
739
740 /* Ignore the bbs processed above. */
741 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
742 continue;
743
744 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
745 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
746 loop_outer (loop));
747 else
748 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
749
750 result.exits |= sinfo.exits;
751 result.difficult = true;
752 result.exit = NULL;
753 }
754
755 VEC_free (basic_block, heap, dominated);
756
757 result.next = NULL;
758 move_sd_regions (&regions, scops);
759
760 break;
761 }
762
763 default:
764 gcc_unreachable ();
765 }
766
767 return result;
768 }
769
770 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
771 SCOPS. The analyse if a sd_region can be handled is based on the value
772 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
773 is the loop in which CURRENT is handled.
774
775 TODO: These functions got a little bit big. They definitely should be cleaned
776 up. */
777
778 static struct scopdet_info
779 build_scops_1 (basic_block current, loop_p outermost_loop,
780 VEC (sd_region, heap) **scops, loop_p loop)
781 {
782 bool in_scop = false;
783 sd_region open_scop;
784 struct scopdet_info sinfo;
785
786 /* Initialize result. */
787 struct scopdet_info result;
788 result.exits = false;
789 result.difficult = false;
790 result.next = NULL;
791 result.exit = NULL;
792 open_scop.entry = NULL;
793 open_scop.exit = NULL;
794 sinfo.exit = NULL;
795
796 /* Loop over the dominance tree. If we meet a difficult bb, close
797 the current SCoP. Loop and condition header start a new layer,
798 and can only be added if all bbs in deeper layers are simple. */
799 while (current != NULL)
800 {
801 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
802 get_bb_type (current, loop));
803
804 if (!in_scop && !(sinfo.exits || sinfo.difficult))
805 {
806 open_scop.entry = current;
807 open_scop.exit = NULL;
808 in_scop = true;
809 }
810 else if (in_scop && (sinfo.exits || sinfo.difficult))
811 {
812 open_scop.exit = current;
813 VEC_safe_push (sd_region, heap, *scops, &open_scop);
814 in_scop = false;
815 }
816
817 result.difficult |= sinfo.difficult;
818 result.exits |= sinfo.exits;
819
820 current = sinfo.next;
821 }
822
823 /* Try to close open_scop, if we are still in an open SCoP. */
824 if (in_scop)
825 {
826 open_scop.exit = sinfo.exit;
827 gcc_assert (open_scop.exit);
828 VEC_safe_push (sd_region, heap, *scops, &open_scop);
829 }
830
831 result.exit = sinfo.exit;
832 return result;
833 }
834
835 /* Checks if a bb is contained in REGION. */
836
837 static bool
838 bb_in_sd_region (basic_block bb, sd_region *region)
839 {
840 return bb_in_region (bb, region->entry, region->exit);
841 }
842
843 /* Returns the single entry edge of REGION, if it does not exits NULL. */
844
845 static edge
846 find_single_entry_edge (sd_region *region)
847 {
848 edge e;
849 edge_iterator ei;
850 edge entry = NULL;
851
852 FOR_EACH_EDGE (e, ei, region->entry->preds)
853 if (!bb_in_sd_region (e->src, region))
854 {
855 if (entry)
856 {
857 entry = NULL;
858 break;
859 }
860
861 else
862 entry = e;
863 }
864
865 return entry;
866 }
867
868 /* Returns the single exit edge of REGION, if it does not exits NULL. */
869
870 static edge
871 find_single_exit_edge (sd_region *region)
872 {
873 edge e;
874 edge_iterator ei;
875 edge exit = NULL;
876
877 FOR_EACH_EDGE (e, ei, region->exit->preds)
878 if (bb_in_sd_region (e->src, region))
879 {
880 if (exit)
881 {
882 exit = NULL;
883 break;
884 }
885
886 else
887 exit = e;
888 }
889
890 return exit;
891 }
892
893 /* Create a single entry edge for REGION. */
894
895 static void
896 create_single_entry_edge (sd_region *region)
897 {
898 if (find_single_entry_edge (region))
899 return;
900
901 /* There are multiple predecessors for bb_3
902
903 | 1 2
904 | | /
905 | |/
906 | 3 <- entry
907 | |\
908 | | |
909 | 4 ^
910 | | |
911 | |/
912 | 5
913
914 There are two edges (1->3, 2->3), that point from outside into the region,
915 and another one (5->3), a loop latch, lead to bb_3.
916
917 We split bb_3.
918
919 | 1 2
920 | | /
921 | |/
922 |3.0
923 | |\ (3.0 -> 3.1) = single entry edge
924 |3.1 | <- entry
925 | | |
926 | | |
927 | 4 ^
928 | | |
929 | |/
930 | 5
931
932 If the loop is part of the SCoP, we have to redirect the loop latches.
933
934 | 1 2
935 | | /
936 | |/
937 |3.0
938 | | (3.0 -> 3.1) = entry edge
939 |3.1 <- entry
940 | |\
941 | | |
942 | 4 ^
943 | | |
944 | |/
945 | 5 */
946
947 if (region->entry->loop_father->header != region->entry
948 || dominated_by_p (CDI_DOMINATORS,
949 loop_latch_edge (region->entry->loop_father)->src,
950 region->exit))
951 {
952 edge forwarder = split_block_after_labels (region->entry);
953 region->entry = forwarder->dest;
954 }
955 else
956 /* This case is never executed, as the loop headers seem always to have a
957 single edge pointing from outside into the loop. */
958 gcc_unreachable ();
959
960 #ifdef ENABLE_CHECKING
961 gcc_assert (find_single_entry_edge (region));
962 #endif
963 }
964
965 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
966
967 static bool
968 sd_region_without_exit (edge e)
969 {
970 sd_region *r = (sd_region *) e->aux;
971
972 if (r)
973 return r->exit == NULL;
974 else
975 return false;
976 }
977
978 /* Create a single exit edge for REGION. */
979
980 static void
981 create_single_exit_edge (sd_region *region)
982 {
983 edge e;
984 edge_iterator ei;
985 edge forwarder = NULL;
986 basic_block exit;
987
988 if (find_single_exit_edge (region))
989 return;
990
991 /* We create a forwarder bb (5) for all edges leaving this region
992 (3->5, 4->5). All other edges leading to the same bb, are moved
993 to a new bb (6). If these edges where part of another region (2->5)
994 we update the region->exit pointer, of this region.
995
996 To identify which edge belongs to which region we depend on the e->aux
997 pointer in every edge. It points to the region of the edge or to NULL,
998 if the edge is not part of any region.
999
1000 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
1001 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
1002 5 <- exit
1003
1004 changes to
1005
1006 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
1007 | | \/ 3->5 no region, 4->5 no region,
1008 | | 5
1009 \| / 5->6 region->exit = 6
1010 6
1011
1012 Now there is only a single exit edge (5->6). */
1013 exit = region->exit;
1014 region->exit = NULL;
1015 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
1016
1017 /* Unmark the edges, that are no longer exit edges. */
1018 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
1019 if (e->aux)
1020 e->aux = NULL;
1021
1022 /* Mark the new exit edge. */
1023 single_succ_edge (forwarder->src)->aux = region;
1024
1025 /* Update the exit bb of all regions, where exit edges lead to
1026 forwarder->dest. */
1027 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
1028 if (e->aux)
1029 ((sd_region *) e->aux)->exit = forwarder->dest;
1030
1031 #ifdef ENABLE_CHECKING
1032 gcc_assert (find_single_exit_edge (region));
1033 #endif
1034 }
1035
1036 /* Unmark the exit edges of all REGIONS.
1037 See comment in "create_single_exit_edge". */
1038
1039 static void
1040 unmark_exit_edges (VEC (sd_region, heap) *regions)
1041 {
1042 int i;
1043 sd_region *s;
1044 edge e;
1045 edge_iterator ei;
1046
1047 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1048 FOR_EACH_EDGE (e, ei, s->exit->preds)
1049 e->aux = NULL;
1050 }
1051
1052
1053 /* Mark the exit edges of all REGIONS.
1054 See comment in "create_single_exit_edge". */
1055
1056 static void
1057 mark_exit_edges (VEC (sd_region, heap) *regions)
1058 {
1059 int i;
1060 sd_region *s;
1061 edge e;
1062 edge_iterator ei;
1063
1064 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1065 FOR_EACH_EDGE (e, ei, s->exit->preds)
1066 if (bb_in_sd_region (e->src, s))
1067 e->aux = s;
1068 }
1069
1070 /* Create for all scop regions a single entry and a single exit edge. */
1071
1072 static void
1073 create_sese_edges (VEC (sd_region, heap) *regions)
1074 {
1075 int i;
1076 sd_region *s;
1077
1078 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1079 create_single_entry_edge (s);
1080
1081 mark_exit_edges (regions);
1082
1083 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1084 create_single_exit_edge (s);
1085
1086 unmark_exit_edges (regions);
1087
1088 fix_loop_structure (NULL);
1089
1090 #ifdef ENABLE_CHECKING
1091 verify_loop_structure ();
1092 verify_dominators (CDI_DOMINATORS);
1093 verify_ssa (false);
1094 #endif
1095 }
1096
1097 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1098
1099 static void
1100 build_graphite_scops (VEC (sd_region, heap) *regions,
1101 VEC (scop_p, heap) **scops)
1102 {
1103 int i;
1104 sd_region *s;
1105
1106 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1107 {
1108 edge entry = find_single_entry_edge (s);
1109 edge exit = find_single_exit_edge (s);
1110 scop_p scop = new_scop (new_sese (entry, exit));
1111 VEC_safe_push (scop_p, heap, *scops, scop);
1112
1113 /* Are there overlapping SCoPs? */
1114 #ifdef ENABLE_CHECKING
1115 {
1116 int j;
1117 sd_region *s2;
1118
1119 for (j = 0; VEC_iterate (sd_region, regions, j, s2); j++)
1120 if (s != s2)
1121 gcc_assert (!bb_in_sd_region (s->entry, s2));
1122 }
1123 #endif
1124 }
1125 }
1126
1127 /* Returns true when BB contains only close phi nodes. */
1128
1129 static bool
1130 contains_only_close_phi_nodes (basic_block bb)
1131 {
1132 gimple_stmt_iterator gsi;
1133
1134 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1135 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1136 return false;
1137
1138 return true;
1139 }
1140
1141 /* Print statistics for SCOP to FILE. */
1142
1143 static void
1144 print_graphite_scop_statistics (FILE* file, scop_p scop)
1145 {
1146 long n_bbs = 0;
1147 long n_loops = 0;
1148 long n_stmts = 0;
1149 long n_conditions = 0;
1150 long n_p_bbs = 0;
1151 long n_p_loops = 0;
1152 long n_p_stmts = 0;
1153 long n_p_conditions = 0;
1154
1155 basic_block bb;
1156
1157 FOR_ALL_BB (bb)
1158 {
1159 gimple_stmt_iterator psi;
1160 loop_p loop = bb->loop_father;
1161
1162 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1163 continue;
1164
1165 n_bbs++;
1166 n_p_bbs += bb->count;
1167
1168 if (VEC_length (edge, bb->succs) > 1)
1169 {
1170 n_conditions++;
1171 n_p_conditions += bb->count;
1172 }
1173
1174 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1175 {
1176 n_stmts++;
1177 n_p_stmts += bb->count;
1178 }
1179
1180 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1181 {
1182 n_loops++;
1183 n_p_loops += bb->count;
1184 }
1185
1186 }
1187
1188 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1189 fprintf (file, "BBS:%ld, ", n_bbs);
1190 fprintf (file, "LOOPS:%ld, ", n_loops);
1191 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1192 fprintf (file, "STMTS:%ld)\n", n_stmts);
1193 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1194 fprintf (file, "BBS:%ld, ", n_p_bbs);
1195 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1196 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1197 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1198 }
1199
1200 /* Print statistics for SCOPS to FILE. */
1201
1202 static void
1203 print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1204 {
1205 int i;
1206 scop_p scop;
1207
1208 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
1209 print_graphite_scop_statistics (file, scop);
1210 }
1211
1212 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1213
1214 Example:
1215
1216 for (i |
1217 { |
1218 for (j | SCoP 1
1219 for (k |
1220 } |
1221
1222 * SCoP frontier, as this line is not surrounded by any loop. *
1223
1224 for (l | SCoP 2
1225
1226 This is necessary as scalar evolution and parameter detection need a
1227 outermost loop to initialize parameters correctly.
1228
1229 TODO: FIX scalar evolution and parameter detection to allow more flexible
1230 SCoP frontiers. */
1231
1232 static void
1233 limit_scops (VEC (scop_p, heap) **scops)
1234 {
1235 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1236
1237 int i;
1238 scop_p scop;
1239
1240 for (i = 0; VEC_iterate (scop_p, *scops, i, scop); i++)
1241 {
1242 int j;
1243 loop_p loop;
1244 sese region = SCOP_REGION (scop);
1245 build_sese_loop_nests (region);
1246
1247 for (j = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), j, loop); j++)
1248 if (!loop_in_sese_p (loop_outer (loop), region)
1249 && single_exit (loop))
1250 {
1251 sd_region open_scop;
1252 open_scop.entry = loop->header;
1253 open_scop.exit = single_exit (loop)->dest;
1254
1255 /* This is a hack on top of the limit_scops hack. The
1256 limit_scops hack should disappear all together. */
1257 if (single_succ_p (open_scop.exit)
1258 && contains_only_close_phi_nodes (open_scop.exit))
1259 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1260
1261 VEC_safe_push (sd_region, heap, regions, &open_scop);
1262 }
1263 }
1264
1265 free_scops (*scops);
1266 *scops = VEC_alloc (scop_p, heap, 3);
1267
1268 create_sese_edges (regions);
1269 build_graphite_scops (regions, scops);
1270 VEC_free (sd_region, heap, regions);
1271 }
1272
1273 /* Transforms LOOP to the canonical loop closed SSA form. */
1274
1275 static void
1276 canonicalize_loop_closed_ssa (loop_p loop)
1277 {
1278 edge e = single_exit (loop);
1279 basic_block bb;
1280
1281 if (!e || e->flags & EDGE_ABNORMAL)
1282 return;
1283
1284 bb = e->dest;
1285
1286 if (VEC_length (edge, bb->preds) == 1)
1287 split_block_after_labels (bb);
1288 else
1289 {
1290 gimple_stmt_iterator psi;
1291 basic_block close = split_edge (e);
1292
1293 e = single_succ_edge (close);
1294
1295 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1296 {
1297 gimple phi = gsi_stmt (psi);
1298 unsigned i;
1299
1300 for (i = 0; i < gimple_phi_num_args (phi); i++)
1301 if (gimple_phi_arg_edge (phi, i) == e)
1302 {
1303 tree res, arg = gimple_phi_arg_def (phi, i);
1304 use_operand_p use_p;
1305 gimple close_phi;
1306
1307 if (TREE_CODE (arg) != SSA_NAME)
1308 continue;
1309
1310 close_phi = create_phi_node (arg, close);
1311 res = create_new_def_for (gimple_phi_result (close_phi),
1312 close_phi,
1313 gimple_phi_result_ptr (close_phi));
1314 add_phi_arg (close_phi, arg,
1315 gimple_phi_arg_edge (close_phi, 0),
1316 UNKNOWN_LOCATION);
1317 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1318 replace_exp (use_p, res);
1319 update_stmt (phi);
1320 }
1321 }
1322 }
1323 }
1324
1325 /* Converts the current loop closed SSA form to a canonical form
1326 expected by the Graphite code generation.
1327
1328 The loop closed SSA form has the following invariant: a variable
1329 defined in a loop that is used outside the loop appears only in the
1330 phi nodes in the destination of the loop exit. These phi nodes are
1331 called close phi nodes.
1332
1333 The canonical loop closed SSA form contains the extra invariants:
1334
1335 - when the loop contains only one exit, the close phi nodes contain
1336 only one argument. That implies that the basic block that contains
1337 the close phi nodes has only one predecessor, that is a basic block
1338 in the loop.
1339
1340 - the basic block containing the close phi nodes does not contain
1341 other statements.
1342 */
1343
1344 static void
1345 canonicalize_loop_closed_ssa_form (void)
1346 {
1347 loop_iterator li;
1348 loop_p loop;
1349
1350 #ifdef ENABLE_CHECKING
1351 verify_loop_closed_ssa ();
1352 #endif
1353
1354 FOR_EACH_LOOP (li, loop, 0)
1355 canonicalize_loop_closed_ssa (loop);
1356
1357 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1358 update_ssa (TODO_update_ssa);
1359
1360 #ifdef ENABLE_CHECKING
1361 verify_loop_closed_ssa ();
1362 #endif
1363 }
1364
1365 /* Find Static Control Parts (SCoP) in the current function and pushes
1366 them to SCOPS. */
1367
1368 void
1369 build_scops (VEC (scop_p, heap) **scops)
1370 {
1371 struct loop *loop = current_loops->tree_root;
1372 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1373
1374 canonicalize_loop_closed_ssa_form ();
1375 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1376 &regions, loop);
1377 create_sese_edges (regions);
1378 build_graphite_scops (regions, scops);
1379
1380 if (dump_file && (dump_flags & TDF_DETAILS))
1381 print_graphite_statistics (dump_file, *scops);
1382
1383 limit_scops (scops);
1384 VEC_free (sd_region, heap, regions);
1385
1386 if (dump_file && (dump_flags & TDF_DETAILS))
1387 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1388 VEC_length (scop_p, *scops));
1389 }
1390
1391 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1392 different colors. If there are not enough colors, paint the
1393 remaining SCoPs in gray.
1394
1395 Special nodes:
1396 - "*" after the node number denotes the entry of a SCoP,
1397 - "#" after the node number denotes the exit of a SCoP,
1398 - "()" around the node number denotes the entry or the
1399 exit nodes of the SCOP. These are not part of SCoP. */
1400
1401 static void
1402 dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1403 {
1404 basic_block bb;
1405 edge e;
1406 edge_iterator ei;
1407 scop_p scop;
1408 const char* color;
1409 int i;
1410
1411 /* Disable debugging while printing graph. */
1412 int tmp_dump_flags = dump_flags;
1413 dump_flags = 0;
1414
1415 fprintf (file, "digraph all {\n");
1416
1417 FOR_ALL_BB (bb)
1418 {
1419 int part_of_scop = false;
1420
1421 /* Use HTML for every bb label. So we are able to print bbs
1422 which are part of two different SCoPs, with two different
1423 background colors. */
1424 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1425 bb->index);
1426 fprintf (file, "CELLSPACING=\"0\">\n");
1427
1428 /* Select color for SCoP. */
1429 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
1430 {
1431 sese region = SCOP_REGION (scop);
1432 if (bb_in_sese_p (bb, region)
1433 || (SESE_EXIT_BB (region) == bb)
1434 || (SESE_ENTRY_BB (region) == bb))
1435 {
1436 switch (i % 17)
1437 {
1438 case 0: /* red */
1439 color = "#e41a1c";
1440 break;
1441 case 1: /* blue */
1442 color = "#377eb8";
1443 break;
1444 case 2: /* green */
1445 color = "#4daf4a";
1446 break;
1447 case 3: /* purple */
1448 color = "#984ea3";
1449 break;
1450 case 4: /* orange */
1451 color = "#ff7f00";
1452 break;
1453 case 5: /* yellow */
1454 color = "#ffff33";
1455 break;
1456 case 6: /* brown */
1457 color = "#a65628";
1458 break;
1459 case 7: /* rose */
1460 color = "#f781bf";
1461 break;
1462 case 8:
1463 color = "#8dd3c7";
1464 break;
1465 case 9:
1466 color = "#ffffb3";
1467 break;
1468 case 10:
1469 color = "#bebada";
1470 break;
1471 case 11:
1472 color = "#fb8072";
1473 break;
1474 case 12:
1475 color = "#80b1d3";
1476 break;
1477 case 13:
1478 color = "#fdb462";
1479 break;
1480 case 14:
1481 color = "#b3de69";
1482 break;
1483 case 15:
1484 color = "#fccde5";
1485 break;
1486 case 16:
1487 color = "#bc80bd";
1488 break;
1489 default: /* gray */
1490 color = "#999999";
1491 }
1492
1493 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1494
1495 if (!bb_in_sese_p (bb, region))
1496 fprintf (file, " (");
1497
1498 if (bb == SESE_ENTRY_BB (region)
1499 && bb == SESE_EXIT_BB (region))
1500 fprintf (file, " %d*# ", bb->index);
1501 else if (bb == SESE_ENTRY_BB (region))
1502 fprintf (file, " %d* ", bb->index);
1503 else if (bb == SESE_EXIT_BB (region))
1504 fprintf (file, " %d# ", bb->index);
1505 else
1506 fprintf (file, " %d ", bb->index);
1507
1508 if (!bb_in_sese_p (bb,region))
1509 fprintf (file, ")");
1510
1511 fprintf (file, "</TD></TR>\n");
1512 part_of_scop = true;
1513 }
1514 }
1515
1516 if (!part_of_scop)
1517 {
1518 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1519 fprintf (file, " %d </TD></TR>\n", bb->index);
1520 }
1521 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1522 }
1523
1524 FOR_ALL_BB (bb)
1525 {
1526 FOR_EACH_EDGE (e, ei, bb->succs)
1527 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1528 }
1529
1530 fputs ("}\n\n", file);
1531
1532 /* Enable debugging again. */
1533 dump_flags = tmp_dump_flags;
1534 }
1535
1536 /* Display all SCoPs using dotty. */
1537
1538 void
1539 dot_all_scops (VEC (scop_p, heap) *scops)
1540 {
1541 /* When debugging, enable the following code. This cannot be used
1542 in production compilers because it calls "system". */
1543 #if 0
1544 int x;
1545 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1546 gcc_assert (stream);
1547
1548 dot_all_scops_1 (stream, scops);
1549 fclose (stream);
1550
1551 x = system ("dotty /tmp/allscops.dot");
1552 #else
1553 dot_all_scops_1 (stderr, scops);
1554 #endif
1555 }
1556
1557 /* Display all SCoPs using dotty. */
1558
1559 void
1560 dot_scop (scop_p scop)
1561 {
1562 VEC (scop_p, heap) *scops = NULL;
1563
1564 if (scop)
1565 VEC_safe_push (scop_p, heap, scops, scop);
1566
1567 /* When debugging, enable the following code. This cannot be used
1568 in production compilers because it calls "system". */
1569 #if 0
1570 {
1571 int x;
1572 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1573 gcc_assert (stream);
1574
1575 dot_all_scops_1 (stream, scops);
1576 fclose (stream);
1577 x = system ("dotty /tmp/allscops.dot");
1578 }
1579 #else
1580 dot_all_scops_1 (stderr, scops);
1581 #endif
1582
1583 VEC_free (scop_p, heap, scops);
1584 }
1585
1586 #endif