Add loop_exits_from_bb_p.
[gcc.git] / gcc / graphite-scop-detection.c
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "toplev.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "value-prof.h"
42 #include "pointer-set.h"
43 #include "gimple.h"
44 #include "sese.h"
45
46 #ifdef HAVE_cloog
47 #include "ppl_c.h"
48 #include "graphite-ppl.h"
49 #include "graphite.h"
50 #include "graphite-poly.h"
51 #include "graphite-scop-detection.h"
52
53 /* The type of the analyzed basic block. */
54
55 typedef enum gbb_type {
56 GBB_UNKNOWN,
57 GBB_LOOP_SING_EXIT_HEADER,
58 GBB_LOOP_MULT_EXIT_HEADER,
59 GBB_LOOP_EXIT,
60 GBB_COND_HEADER,
61 GBB_SIMPLE,
62 GBB_LAST
63 } gbb_type;
64
65 /* Detect the type of BB. Loop headers are only marked, if they are
66 new. This means their loop_father is different to LAST_LOOP.
67 Otherwise they are treated like any other bb and their type can be
68 any other type. */
69
70 static gbb_type
71 get_bb_type (basic_block bb, struct loop *last_loop)
72 {
73 VEC (basic_block, heap) *dom;
74 int nb_dom, nb_suc;
75 struct loop *loop = bb->loop_father;
76
77 /* Check, if we entry into a new loop. */
78 if (loop != last_loop)
79 {
80 if (single_exit (loop) != NULL)
81 return GBB_LOOP_SING_EXIT_HEADER;
82 else if (loop->num != 0)
83 return GBB_LOOP_MULT_EXIT_HEADER;
84 else
85 return GBB_COND_HEADER;
86 }
87
88 dom = get_dominated_by (CDI_DOMINATORS, bb);
89 nb_dom = VEC_length (basic_block, dom);
90 VEC_free (basic_block, heap, dom);
91
92 if (nb_dom == 0)
93 return GBB_LAST;
94
95 nb_suc = VEC_length (edge, bb->succs);
96
97 if (nb_dom == 1 && nb_suc == 1)
98 return GBB_SIMPLE;
99
100 return GBB_COND_HEADER;
101 }
102
103 /* A SCoP detection region, defined using bbs as borders.
104
105 All control flow touching this region, comes in passing basic_block
106 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
107 edges for the borders we are able to represent also regions that do
108 not have a single entry or exit edge.
109
110 But as they have a single entry basic_block and a single exit
111 basic_block, we are able to generate for every sd_region a single
112 entry and exit edge.
113
114 1 2
115 \ /
116 3 <- entry
117 |
118 4
119 / \ This region contains: {3, 4, 5, 6, 7, 8}
120 5 6
121 | |
122 7 8
123 \ /
124 9 <- exit */
125
126
127 typedef struct sd_region_p
128 {
129 /* The entry bb dominates all bbs in the sd_region. It is part of
130 the region. */
131 basic_block entry;
132
133 /* The exit bb postdominates all bbs in the sd_region, but is not
134 part of the region. */
135 basic_block exit;
136 } sd_region;
137
138 DEF_VEC_O(sd_region);
139 DEF_VEC_ALLOC_O(sd_region, heap);
140
141
142 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
143
144 static void
145 move_sd_regions (VEC (sd_region, heap) **source,
146 VEC (sd_region, heap) **target)
147 {
148 sd_region *s;
149 int i;
150
151 for (i = 0; VEC_iterate (sd_region, *source, i, s); i++)
152 VEC_safe_push (sd_region, heap, *target, s);
153
154 VEC_free (sd_region, heap, *source);
155 }
156
157 /* Something like "n * m" is not allowed. */
158
159 static bool
160 graphite_can_represent_init (tree e)
161 {
162 switch (TREE_CODE (e))
163 {
164 case POLYNOMIAL_CHREC:
165 return graphite_can_represent_init (CHREC_LEFT (e))
166 && graphite_can_represent_init (CHREC_RIGHT (e));
167
168 case MULT_EXPR:
169 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
170 return graphite_can_represent_init (TREE_OPERAND (e, 0))
171 && host_integerp (TREE_OPERAND (e, 1), 0);
172 else
173 return graphite_can_represent_init (TREE_OPERAND (e, 1))
174 && host_integerp (TREE_OPERAND (e, 0), 0);
175
176 case PLUS_EXPR:
177 case POINTER_PLUS_EXPR:
178 case MINUS_EXPR:
179 return graphite_can_represent_init (TREE_OPERAND (e, 0))
180 && graphite_can_represent_init (TREE_OPERAND (e, 1));
181
182 case NEGATE_EXPR:
183 case BIT_NOT_EXPR:
184 CASE_CONVERT:
185 case NON_LVALUE_EXPR:
186 return graphite_can_represent_init (TREE_OPERAND (e, 0));
187
188 default:
189 break;
190 }
191
192 return true;
193 }
194
195 /* Return true when SCEV can be represented in the polyhedral model.
196
197 An expression can be represented, if it can be expressed as an
198 affine expression. For loops (i, j) and parameters (m, n) all
199 affine expressions are of the form:
200
201 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
202
203 1 i + 20 j + (-2) m + 25
204
205 Something like "i * n" or "n * m" is not allowed.
206
207 OUTERMOST_LOOP defines the outermost loop that can variate. */
208
209 static bool
210 graphite_can_represent_scev (tree scev, int outermost_loop)
211 {
212 if (chrec_contains_undetermined (scev))
213 return false;
214
215 switch (TREE_CODE (scev))
216 {
217 case PLUS_EXPR:
218 case MINUS_EXPR:
219 return graphite_can_represent_scev (TREE_OPERAND (scev, 0), outermost_loop)
220 && graphite_can_represent_scev (TREE_OPERAND (scev, 1), outermost_loop);
221
222 case MULT_EXPR:
223 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
224 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
225 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
226 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
227 && graphite_can_represent_init (scev)
228 && graphite_can_represent_scev (TREE_OPERAND (scev, 0), outermost_loop)
229 && graphite_can_represent_scev (TREE_OPERAND (scev, 1), outermost_loop);
230
231 case POLYNOMIAL_CHREC:
232 /* Check for constant strides. With a non constant stride of
233 'n' we would have a value of 'iv * n'. Also check that the
234 initial value can represented: for example 'n * m' cannot be
235 represented. */
236 if (!evolution_function_right_is_integer_cst (scev)
237 || !graphite_can_represent_init (scev))
238 return false;
239
240 default:
241 break;
242 }
243
244 /* Only affine functions can be represented. */
245 if (!scev_is_linear_expression (scev))
246 return false;
247
248 return evolution_function_is_invariant_p (scev, outermost_loop)
249 || evolution_function_is_affine_multivariate_p (scev, outermost_loop);
250 }
251
252
253 /* Return true when EXPR can be represented in the polyhedral model.
254
255 This means an expression can be represented, if it is linear with
256 respect to the loops and the strides are non parametric.
257 LOOP is the place where the expr will be evaluated and OUTERMOST_LOOP
258 defindes the outermost loop that can variate. SCOP_ENTRY defines the
259 entry of the region we analyse. */
260
261 static bool
262 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
263 loop_p outermost_loop, tree expr)
264 {
265 tree scev = analyze_scalar_evolution (loop, expr);
266
267 scev = instantiate_scev (scop_entry, loop, scev);
268
269 return graphite_can_represent_scev (scev, outermost_loop->num);
270 }
271
272 /* Return true if the data references of STMT can be represented by
273 Graphite. */
274
275 static bool
276 stmt_has_simple_data_refs_p (loop_p outermost_loop, gimple stmt)
277 {
278 data_reference_p dr;
279 unsigned i;
280 int j;
281 bool res = true;
282 int loop = outermost_loop->num;
283 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
284
285 graphite_find_data_references_in_stmt (outermost_loop, stmt, &drs);
286
287 for (j = 0; VEC_iterate (data_reference_p, drs, j, dr); j++)
288 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
289 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i), loop))
290 {
291 res = false;
292 goto done;
293 }
294
295 done:
296 free_data_refs (drs);
297 return res;
298 }
299
300 /* Return true only when STMT is simple enough for being handled by
301 Graphite. This depends on SCOP_ENTRY, as the parameters are
302 initialized relatively to this basic block, the linear functions
303 are initialized to OUTERMOST_LOOP and BB is the place where we try
304 to evaluate the STMT. */
305
306 static bool
307 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
308 gimple stmt, basic_block bb)
309 {
310 loop_p loop = bb->loop_father;
311
312 gcc_assert (scop_entry);
313
314 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
315 Calls have side-effects, except those to const or pure
316 functions. */
317 if (gimple_has_volatile_ops (stmt)
318 || (gimple_code (stmt) == GIMPLE_CALL
319 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
320 || (gimple_code (stmt) == GIMPLE_ASM))
321 return false;
322
323 if (is_gimple_debug (stmt))
324 return true;
325
326 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
327 return false;
328
329 switch (gimple_code (stmt))
330 {
331 case GIMPLE_RETURN:
332 case GIMPLE_LABEL:
333 return true;
334
335 case GIMPLE_COND:
336 {
337 tree op;
338 ssa_op_iter op_iter;
339 enum tree_code code = gimple_cond_code (stmt);
340
341 /* We can handle all binary comparisons. Inequalities are
342 also supported as they can be represented with union of
343 polyhedra. */
344 if (!(code == LT_EXPR
345 || code == GT_EXPR
346 || code == LE_EXPR
347 || code == GE_EXPR
348 || code == EQ_EXPR
349 || code == NE_EXPR))
350 return false;
351
352 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
353 if (!graphite_can_represent_expr (scop_entry, loop, outermost_loop,
354 op)
355 /* We can not handle REAL_TYPE. Failed for pr39260. */
356 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
357 return false;
358
359 return true;
360 }
361
362 case GIMPLE_ASSIGN:
363 case GIMPLE_CALL:
364 return true;
365
366 default:
367 /* These nodes cut a new scope. */
368 return false;
369 }
370
371 return false;
372 }
373
374 /* Returns the statement of BB that contains a harmful operation: that
375 can be a function call with side effects, the induction variables
376 are not linear with respect to SCOP_ENTRY, etc. The current open
377 scop should end before this statement. The evaluation is limited using
378 OUTERMOST_LOOP as outermost loop that may change. */
379
380 static gimple
381 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
382 {
383 gimple_stmt_iterator gsi;
384
385 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
386 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
387 return gsi_stmt (gsi);
388
389 return NULL;
390 }
391
392 /* Return true when it is not possible to represent LOOP in the
393 polyhedral representation. This is evaluated taking SCOP_ENTRY and
394 OUTERMOST_LOOP in mind. */
395
396 static bool
397 graphite_can_represent_loop (basic_block scop_entry, loop_p outermost_loop,
398 loop_p loop)
399 {
400 tree niter = number_of_latch_executions (loop);
401
402 /* Number of iterations unknown. */
403 if (chrec_contains_undetermined (niter))
404 return false;
405
406 /* Number of iterations not affine. */
407 if (!graphite_can_represent_expr (scop_entry, loop, outermost_loop, niter))
408 return false;
409
410 return true;
411 }
412
413 /* Store information needed by scopdet_* functions. */
414
415 struct scopdet_info
416 {
417 /* Exit of the open scop would stop if the current BB is harmful. */
418 basic_block exit;
419
420 /* Where the next scop would start if the current BB is harmful. */
421 basic_block next;
422
423 /* The bb or one of its children contains open loop exits. That means
424 loop exit nodes that are not surrounded by a loop dominated by bb. */
425 bool exits;
426
427 /* The bb or one of its children contains only structures we can handle. */
428 bool difficult;
429 };
430
431 static struct scopdet_info build_scops_1 (basic_block, loop_p,
432 VEC (sd_region, heap) **, loop_p);
433
434 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
435 to SCOPS. TYPE is the gbb_type of BB. */
436
437 static struct scopdet_info
438 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
439 VEC (sd_region, heap) **scops, gbb_type type)
440 {
441 loop_p loop = bb->loop_father;
442 struct scopdet_info result;
443 gimple stmt;
444
445 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
446 basic_block entry_block = ENTRY_BLOCK_PTR;
447 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
448 result.difficult = (stmt != NULL);
449 result.exit = NULL;
450
451 switch (type)
452 {
453 case GBB_LAST:
454 result.next = NULL;
455 result.exits = false;
456
457 /* Mark bbs terminating a SESE region difficult, if they start
458 a condition. */
459 if (!single_succ_p (bb))
460 result.difficult = true;
461 else
462 result.exit = single_succ (bb);
463
464 break;
465
466 case GBB_SIMPLE:
467 result.next = single_succ (bb);
468 result.exits = false;
469 result.exit = single_succ (bb);
470 break;
471
472 case GBB_LOOP_SING_EXIT_HEADER:
473 {
474 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
475 struct scopdet_info sinfo;
476 edge exit_e = single_exit (loop);
477
478 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
479
480 if (!graphite_can_represent_loop (entry_block, outermost_loop, loop))
481 result.difficult = true;
482
483 result.difficult |= sinfo.difficult;
484
485 /* Try again with another loop level. */
486 if (result.difficult
487 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
488 {
489 outermost_loop = loop;
490
491 VEC_free (sd_region, heap, regions);
492 regions = VEC_alloc (sd_region, heap, 3);
493
494 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
495
496 result = sinfo;
497 result.difficult = true;
498
499 if (sinfo.difficult)
500 move_sd_regions (&regions, scops);
501 else
502 {
503 sd_region open_scop;
504 open_scop.entry = bb;
505 open_scop.exit = exit_e->dest;
506 VEC_safe_push (sd_region, heap, *scops, &open_scop);
507 VEC_free (sd_region, heap, regions);
508 }
509 }
510 else
511 {
512 result.exit = exit_e->dest;
513 result.next = exit_e->dest;
514
515 /* If we do not dominate result.next, remove it. It's either
516 the EXIT_BLOCK_PTR, or another bb dominates it and will
517 call the scop detection for this bb. */
518 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
519 result.next = NULL;
520
521 if (exit_e->src->loop_father != loop)
522 result.next = NULL;
523
524 result.exits = false;
525
526 if (result.difficult)
527 move_sd_regions (&regions, scops);
528 else
529 VEC_free (sd_region, heap, regions);
530 }
531
532 break;
533 }
534
535 case GBB_LOOP_MULT_EXIT_HEADER:
536 {
537 /* XXX: For now we just do not join loops with multiple exits. If the
538 exits lead to the same bb it may be possible to join the loop. */
539 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
540 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
541 edge e;
542 int i;
543 build_scops_1 (bb, loop, &regions, loop);
544
545 /* Scan the code dominated by this loop. This means all bbs, that are
546 are dominated by a bb in this loop, but are not part of this loop.
547
548 The easiest case:
549 - The loop exit destination is dominated by the exit sources.
550
551 TODO: We miss here the more complex cases:
552 - The exit destinations are dominated by another bb inside
553 the loop.
554 - The loop dominates bbs, that are not exit destinations. */
555 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
556 if (e->src->loop_father == loop
557 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
558 {
559 if (loop_outer (outermost_loop))
560 outermost_loop = loop_outer (outermost_loop);
561
562 /* Pass loop_outer to recognize e->dest as loop header in
563 build_scops_1. */
564 if (e->dest->loop_father->header == e->dest)
565 build_scops_1 (e->dest, outermost_loop, &regions,
566 loop_outer (e->dest->loop_father));
567 else
568 build_scops_1 (e->dest, outermost_loop, &regions,
569 e->dest->loop_father);
570 }
571
572 result.next = NULL;
573 result.exit = NULL;
574 result.difficult = true;
575 result.exits = false;
576 move_sd_regions (&regions, scops);
577 VEC_free (edge, heap, exits);
578 break;
579 }
580 case GBB_COND_HEADER:
581 {
582 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
583 struct scopdet_info sinfo;
584 VEC (basic_block, heap) *dominated;
585 int i;
586 basic_block dom_bb;
587 basic_block last_exit = NULL;
588 edge e;
589 result.exits = false;
590
591 /* First check the successors of BB, and check if it is
592 possible to join the different branches. */
593 for (i = 0; VEC_iterate (edge, bb->succs, i, e); i++)
594 {
595 /* Ignore loop exits. They will be handled after the loop
596 body. */
597 if (loop_exits_to_bb_p (loop, e->dest))
598 {
599 result.exits = true;
600 continue;
601 }
602
603 /* Do not follow edges that lead to the end of the
604 conditions block. For example, in
605
606 | 0
607 | /|\
608 | 1 2 |
609 | | | |
610 | 3 4 |
611 | \|/
612 | 6
613
614 the edge from 0 => 6. Only check if all paths lead to
615 the same node 6. */
616
617 if (!single_pred_p (e->dest))
618 {
619 /* Check, if edge leads directly to the end of this
620 condition. */
621 if (!last_exit)
622 last_exit = e->dest;
623
624 if (e->dest != last_exit)
625 result.difficult = true;
626
627 continue;
628 }
629
630 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
631 {
632 result.difficult = true;
633 continue;
634 }
635
636 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
637
638 result.exits |= sinfo.exits;
639 result.difficult |= sinfo.difficult;
640
641 /* Checks, if all branches end at the same point.
642 If that is true, the condition stays joinable.
643 Have a look at the example above. */
644 if (sinfo.exit)
645 {
646 if (!last_exit)
647 last_exit = sinfo.exit;
648
649 if (sinfo.exit != last_exit)
650 result.difficult = true;
651 }
652 else
653 result.difficult = true;
654 }
655
656 if (!last_exit)
657 result.difficult = true;
658
659 /* Join the branches of the condition if possible. */
660 if (!result.exits && !result.difficult)
661 {
662 /* Only return a next pointer if we dominate this pointer.
663 Otherwise it will be handled by the bb dominating it. */
664 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
665 && last_exit != bb)
666 result.next = last_exit;
667 else
668 result.next = NULL;
669
670 result.exit = last_exit;
671
672 VEC_free (sd_region, heap, regions);
673 break;
674 }
675
676 /* Scan remaining bbs dominated by BB. */
677 dominated = get_dominated_by (CDI_DOMINATORS, bb);
678
679 for (i = 0; VEC_iterate (basic_block, dominated, i, dom_bb); i++)
680 {
681 /* Ignore loop exits: they will be handled after the loop body. */
682 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
683 < loop_depth (loop))
684 {
685 result.exits = true;
686 continue;
687 }
688
689 /* Ignore the bbs processed above. */
690 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
691 continue;
692
693 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
694 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
695 loop_outer (loop));
696 else
697 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
698
699 result.exits |= sinfo.exits;
700 result.difficult = true;
701 result.exit = NULL;
702 }
703
704 VEC_free (basic_block, heap, dominated);
705
706 result.next = NULL;
707 move_sd_regions (&regions, scops);
708
709 break;
710 }
711
712 default:
713 gcc_unreachable ();
714 }
715
716 return result;
717 }
718
719 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
720 SCOPS. The analyse if a sd_region can be handled is based on the value
721 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
722 is the loop in which CURRENT is handled.
723
724 TODO: These functions got a little bit big. They definitely should be cleaned
725 up. */
726
727 static struct scopdet_info
728 build_scops_1 (basic_block current, loop_p outermost_loop,
729 VEC (sd_region, heap) **scops, loop_p loop)
730 {
731 bool in_scop = false;
732 sd_region open_scop;
733 struct scopdet_info sinfo;
734
735 /* Initialize result. */
736 struct scopdet_info result;
737 result.exits = false;
738 result.difficult = false;
739 result.next = NULL;
740 result.exit = NULL;
741 open_scop.entry = NULL;
742 open_scop.exit = NULL;
743 sinfo.exit = NULL;
744
745 /* Loop over the dominance tree. If we meet a difficult bb, close
746 the current SCoP. Loop and condition header start a new layer,
747 and can only be added if all bbs in deeper layers are simple. */
748 while (current != NULL)
749 {
750 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
751 get_bb_type (current, loop));
752
753 if (!in_scop && !(sinfo.exits || sinfo.difficult))
754 {
755 open_scop.entry = current;
756 open_scop.exit = NULL;
757 in_scop = true;
758 }
759 else if (in_scop && (sinfo.exits || sinfo.difficult))
760 {
761 open_scop.exit = current;
762 VEC_safe_push (sd_region, heap, *scops, &open_scop);
763 in_scop = false;
764 }
765
766 result.difficult |= sinfo.difficult;
767 result.exits |= sinfo.exits;
768
769 current = sinfo.next;
770 }
771
772 /* Try to close open_scop, if we are still in an open SCoP. */
773 if (in_scop)
774 {
775 open_scop.exit = sinfo.exit;
776 gcc_assert (open_scop.exit);
777 VEC_safe_push (sd_region, heap, *scops, &open_scop);
778 }
779
780 result.exit = sinfo.exit;
781 return result;
782 }
783
784 /* Checks if a bb is contained in REGION. */
785
786 static bool
787 bb_in_sd_region (basic_block bb, sd_region *region)
788 {
789 return bb_in_region (bb, region->entry, region->exit);
790 }
791
792 /* Returns the single entry edge of REGION, if it does not exits NULL. */
793
794 static edge
795 find_single_entry_edge (sd_region *region)
796 {
797 edge e;
798 edge_iterator ei;
799 edge entry = NULL;
800
801 FOR_EACH_EDGE (e, ei, region->entry->preds)
802 if (!bb_in_sd_region (e->src, region))
803 {
804 if (entry)
805 {
806 entry = NULL;
807 break;
808 }
809
810 else
811 entry = e;
812 }
813
814 return entry;
815 }
816
817 /* Returns the single exit edge of REGION, if it does not exits NULL. */
818
819 static edge
820 find_single_exit_edge (sd_region *region)
821 {
822 edge e;
823 edge_iterator ei;
824 edge exit = NULL;
825
826 FOR_EACH_EDGE (e, ei, region->exit->preds)
827 if (bb_in_sd_region (e->src, region))
828 {
829 if (exit)
830 {
831 exit = NULL;
832 break;
833 }
834
835 else
836 exit = e;
837 }
838
839 return exit;
840 }
841
842 /* Create a single entry edge for REGION. */
843
844 static void
845 create_single_entry_edge (sd_region *region)
846 {
847 if (find_single_entry_edge (region))
848 return;
849
850 /* There are multiple predecessors for bb_3
851
852 | 1 2
853 | | /
854 | |/
855 | 3 <- entry
856 | |\
857 | | |
858 | 4 ^
859 | | |
860 | |/
861 | 5
862
863 There are two edges (1->3, 2->3), that point from outside into the region,
864 and another one (5->3), a loop latch, lead to bb_3.
865
866 We split bb_3.
867
868 | 1 2
869 | | /
870 | |/
871 |3.0
872 | |\ (3.0 -> 3.1) = single entry edge
873 |3.1 | <- entry
874 | | |
875 | | |
876 | 4 ^
877 | | |
878 | |/
879 | 5
880
881 If the loop is part of the SCoP, we have to redirect the loop latches.
882
883 | 1 2
884 | | /
885 | |/
886 |3.0
887 | | (3.0 -> 3.1) = entry edge
888 |3.1 <- entry
889 | |\
890 | | |
891 | 4 ^
892 | | |
893 | |/
894 | 5 */
895
896 if (region->entry->loop_father->header != region->entry
897 || dominated_by_p (CDI_DOMINATORS,
898 loop_latch_edge (region->entry->loop_father)->src,
899 region->exit))
900 {
901 edge forwarder = split_block_after_labels (region->entry);
902 region->entry = forwarder->dest;
903 }
904 else
905 /* This case is never executed, as the loop headers seem always to have a
906 single edge pointing from outside into the loop. */
907 gcc_unreachable ();
908
909 #ifdef ENABLE_CHECKING
910 gcc_assert (find_single_entry_edge (region));
911 #endif
912 }
913
914 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
915
916 static bool
917 sd_region_without_exit (edge e)
918 {
919 sd_region *r = (sd_region *) e->aux;
920
921 if (r)
922 return r->exit == NULL;
923 else
924 return false;
925 }
926
927 /* Create a single exit edge for REGION. */
928
929 static void
930 create_single_exit_edge (sd_region *region)
931 {
932 edge e;
933 edge_iterator ei;
934 edge forwarder = NULL;
935 basic_block exit;
936
937 /* We create a forwarder bb (5) for all edges leaving this region
938 (3->5, 4->5). All other edges leading to the same bb, are moved
939 to a new bb (6). If these edges where part of another region (2->5)
940 we update the region->exit pointer, of this region.
941
942 To identify which edge belongs to which region we depend on the e->aux
943 pointer in every edge. It points to the region of the edge or to NULL,
944 if the edge is not part of any region.
945
946 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
947 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
948 5 <- exit
949
950 changes to
951
952 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
953 | | \/ 3->5 no region, 4->5 no region,
954 | | 5
955 \| / 5->6 region->exit = 6
956 6
957
958 Now there is only a single exit edge (5->6). */
959 exit = region->exit;
960 region->exit = NULL;
961 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
962
963 /* Unmark the edges, that are no longer exit edges. */
964 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
965 if (e->aux)
966 e->aux = NULL;
967
968 /* Mark the new exit edge. */
969 single_succ_edge (forwarder->src)->aux = region;
970
971 /* Update the exit bb of all regions, where exit edges lead to
972 forwarder->dest. */
973 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
974 if (e->aux)
975 ((sd_region *) e->aux)->exit = forwarder->dest;
976
977 #ifdef ENABLE_CHECKING
978 gcc_assert (find_single_exit_edge (region));
979 #endif
980 }
981
982 /* Unmark the exit edges of all REGIONS.
983 See comment in "create_single_exit_edge". */
984
985 static void
986 unmark_exit_edges (VEC (sd_region, heap) *regions)
987 {
988 int i;
989 sd_region *s;
990 edge e;
991 edge_iterator ei;
992
993 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
994 FOR_EACH_EDGE (e, ei, s->exit->preds)
995 e->aux = NULL;
996 }
997
998
999 /* Mark the exit edges of all REGIONS.
1000 See comment in "create_single_exit_edge". */
1001
1002 static void
1003 mark_exit_edges (VEC (sd_region, heap) *regions)
1004 {
1005 int i;
1006 sd_region *s;
1007 edge e;
1008 edge_iterator ei;
1009
1010 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1011 FOR_EACH_EDGE (e, ei, s->exit->preds)
1012 if (bb_in_sd_region (e->src, s))
1013 e->aux = s;
1014 }
1015
1016 /* Create for all scop regions a single entry and a single exit edge. */
1017
1018 static void
1019 create_sese_edges (VEC (sd_region, heap) *regions)
1020 {
1021 int i;
1022 sd_region *s;
1023
1024 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1025 create_single_entry_edge (s);
1026
1027 mark_exit_edges (regions);
1028
1029 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1030 /* Don't handle multiple edges exiting the function. */
1031 if (!find_single_exit_edge (s)
1032 && s->exit != EXIT_BLOCK_PTR)
1033 create_single_exit_edge (s);
1034
1035 unmark_exit_edges (regions);
1036
1037 fix_loop_structure (NULL);
1038
1039 #ifdef ENABLE_CHECKING
1040 verify_loop_structure ();
1041 verify_dominators (CDI_DOMINATORS);
1042 verify_ssa (false);
1043 #endif
1044 }
1045
1046 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1047
1048 static void
1049 build_graphite_scops (VEC (sd_region, heap) *regions,
1050 VEC (scop_p, heap) **scops)
1051 {
1052 int i;
1053 sd_region *s;
1054
1055 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1056 {
1057 edge entry = find_single_entry_edge (s);
1058 edge exit = find_single_exit_edge (s);
1059 scop_p scop;
1060
1061 if (!exit)
1062 continue;
1063
1064 scop = new_scop (new_sese (entry, exit));
1065 VEC_safe_push (scop_p, heap, *scops, scop);
1066
1067 /* Are there overlapping SCoPs? */
1068 #ifdef ENABLE_CHECKING
1069 {
1070 int j;
1071 sd_region *s2;
1072
1073 for (j = 0; VEC_iterate (sd_region, regions, j, s2); j++)
1074 if (s != s2)
1075 gcc_assert (!bb_in_sd_region (s->entry, s2));
1076 }
1077 #endif
1078 }
1079 }
1080
1081 /* Returns true when BB contains only close phi nodes. */
1082
1083 static bool
1084 contains_only_close_phi_nodes (basic_block bb)
1085 {
1086 gimple_stmt_iterator gsi;
1087
1088 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1089 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1090 return false;
1091
1092 return true;
1093 }
1094
1095 /* Print statistics for SCOP to FILE. */
1096
1097 static void
1098 print_graphite_scop_statistics (FILE* file, scop_p scop)
1099 {
1100 long n_bbs = 0;
1101 long n_loops = 0;
1102 long n_stmts = 0;
1103 long n_conditions = 0;
1104 long n_p_bbs = 0;
1105 long n_p_loops = 0;
1106 long n_p_stmts = 0;
1107 long n_p_conditions = 0;
1108
1109 basic_block bb;
1110
1111 FOR_ALL_BB (bb)
1112 {
1113 gimple_stmt_iterator psi;
1114 loop_p loop = bb->loop_father;
1115
1116 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1117 continue;
1118
1119 n_bbs++;
1120 n_p_bbs += bb->count;
1121
1122 if (VEC_length (edge, bb->succs) > 1)
1123 {
1124 n_conditions++;
1125 n_p_conditions += bb->count;
1126 }
1127
1128 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1129 {
1130 n_stmts++;
1131 n_p_stmts += bb->count;
1132 }
1133
1134 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1135 {
1136 n_loops++;
1137 n_p_loops += bb->count;
1138 }
1139
1140 }
1141
1142 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1143 fprintf (file, "BBS:%ld, ", n_bbs);
1144 fprintf (file, "LOOPS:%ld, ", n_loops);
1145 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1146 fprintf (file, "STMTS:%ld)\n", n_stmts);
1147 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1148 fprintf (file, "BBS:%ld, ", n_p_bbs);
1149 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1150 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1151 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1152 }
1153
1154 /* Print statistics for SCOPS to FILE. */
1155
1156 static void
1157 print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1158 {
1159 int i;
1160 scop_p scop;
1161
1162 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
1163 print_graphite_scop_statistics (file, scop);
1164 }
1165
1166 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1167
1168 Example:
1169
1170 for (i |
1171 { |
1172 for (j | SCoP 1
1173 for (k |
1174 } |
1175
1176 * SCoP frontier, as this line is not surrounded by any loop. *
1177
1178 for (l | SCoP 2
1179
1180 This is necessary as scalar evolution and parameter detection need a
1181 outermost loop to initialize parameters correctly.
1182
1183 TODO: FIX scalar evolution and parameter detection to allow more flexible
1184 SCoP frontiers. */
1185
1186 static void
1187 limit_scops (VEC (scop_p, heap) **scops)
1188 {
1189 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1190
1191 int i;
1192 scop_p scop;
1193
1194 for (i = 0; VEC_iterate (scop_p, *scops, i, scop); i++)
1195 {
1196 int j;
1197 loop_p loop;
1198 sese region = SCOP_REGION (scop);
1199 build_sese_loop_nests (region);
1200
1201 for (j = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), j, loop); j++)
1202 if (!loop_in_sese_p (loop_outer (loop), region)
1203 && single_exit (loop))
1204 {
1205 sd_region open_scop;
1206 open_scop.entry = loop->header;
1207 open_scop.exit = single_exit (loop)->dest;
1208
1209 /* This is a hack on top of the limit_scops hack. The
1210 limit_scops hack should disappear all together. */
1211 if (single_succ_p (open_scop.exit)
1212 && contains_only_close_phi_nodes (open_scop.exit))
1213 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1214
1215 VEC_safe_push (sd_region, heap, regions, &open_scop);
1216 }
1217 }
1218
1219 free_scops (*scops);
1220 *scops = VEC_alloc (scop_p, heap, 3);
1221
1222 create_sese_edges (regions);
1223 build_graphite_scops (regions, scops);
1224 VEC_free (sd_region, heap, regions);
1225 }
1226
1227 /* Transforms LOOP to the canonical loop closed SSA form. */
1228
1229 static void
1230 canonicalize_loop_closed_ssa (loop_p loop)
1231 {
1232 edge e = single_exit (loop);
1233 basic_block bb;
1234
1235 if (!e || e->flags & EDGE_ABNORMAL)
1236 return;
1237
1238 bb = e->dest;
1239
1240 if (VEC_length (edge, bb->preds) == 1)
1241 split_block_after_labels (bb);
1242 else
1243 {
1244 gimple_stmt_iterator psi;
1245 basic_block close = split_edge (e);
1246
1247 e = single_succ_edge (close);
1248
1249 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1250 {
1251 gimple phi = gsi_stmt (psi);
1252 unsigned i;
1253
1254 for (i = 0; i < gimple_phi_num_args (phi); i++)
1255 if (gimple_phi_arg_edge (phi, i) == e)
1256 {
1257 tree res, arg = gimple_phi_arg_def (phi, i);
1258 use_operand_p use_p;
1259 gimple close_phi;
1260
1261 if (TREE_CODE (arg) != SSA_NAME)
1262 continue;
1263
1264 close_phi = create_phi_node (arg, close);
1265 res = create_new_def_for (gimple_phi_result (close_phi),
1266 close_phi,
1267 gimple_phi_result_ptr (close_phi));
1268 add_phi_arg (close_phi, arg,
1269 gimple_phi_arg_edge (close_phi, 0),
1270 UNKNOWN_LOCATION);
1271 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1272 replace_exp (use_p, res);
1273 update_stmt (phi);
1274 }
1275 }
1276 }
1277 }
1278
1279 /* Converts the current loop closed SSA form to a canonical form
1280 expected by the Graphite code generation.
1281
1282 The loop closed SSA form has the following invariant: a variable
1283 defined in a loop that is used outside the loop appears only in the
1284 phi nodes in the destination of the loop exit. These phi nodes are
1285 called close phi nodes.
1286
1287 The canonical loop closed SSA form contains the extra invariants:
1288
1289 - when the loop contains only one exit, the close phi nodes contain
1290 only one argument. That implies that the basic block that contains
1291 the close phi nodes has only one predecessor, that is a basic block
1292 in the loop.
1293
1294 - the basic block containing the close phi nodes does not contain
1295 other statements.
1296 */
1297
1298 static void
1299 canonicalize_loop_closed_ssa_form (void)
1300 {
1301 loop_iterator li;
1302 loop_p loop;
1303
1304 #ifdef ENABLE_CHECKING
1305 verify_loop_closed_ssa (true);
1306 #endif
1307
1308 FOR_EACH_LOOP (li, loop, 0)
1309 canonicalize_loop_closed_ssa (loop);
1310
1311 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1312 update_ssa (TODO_update_ssa);
1313
1314 #ifdef ENABLE_CHECKING
1315 verify_loop_closed_ssa (true);
1316 #endif
1317 }
1318
1319 /* Find Static Control Parts (SCoP) in the current function and pushes
1320 them to SCOPS. */
1321
1322 void
1323 build_scops (VEC (scop_p, heap) **scops)
1324 {
1325 struct loop *loop = current_loops->tree_root;
1326 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1327
1328 canonicalize_loop_closed_ssa_form ();
1329 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1330 &regions, loop);
1331 create_sese_edges (regions);
1332 build_graphite_scops (regions, scops);
1333
1334 if (dump_file && (dump_flags & TDF_DETAILS))
1335 print_graphite_statistics (dump_file, *scops);
1336
1337 limit_scops (scops);
1338 VEC_free (sd_region, heap, regions);
1339
1340 if (dump_file && (dump_flags & TDF_DETAILS))
1341 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1342 VEC_length (scop_p, *scops));
1343 }
1344
1345 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1346 different colors. If there are not enough colors, paint the
1347 remaining SCoPs in gray.
1348
1349 Special nodes:
1350 - "*" after the node number denotes the entry of a SCoP,
1351 - "#" after the node number denotes the exit of a SCoP,
1352 - "()" around the node number denotes the entry or the
1353 exit nodes of the SCOP. These are not part of SCoP. */
1354
1355 static void
1356 dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1357 {
1358 basic_block bb;
1359 edge e;
1360 edge_iterator ei;
1361 scop_p scop;
1362 const char* color;
1363 int i;
1364
1365 /* Disable debugging while printing graph. */
1366 int tmp_dump_flags = dump_flags;
1367 dump_flags = 0;
1368
1369 fprintf (file, "digraph all {\n");
1370
1371 FOR_ALL_BB (bb)
1372 {
1373 int part_of_scop = false;
1374
1375 /* Use HTML for every bb label. So we are able to print bbs
1376 which are part of two different SCoPs, with two different
1377 background colors. */
1378 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1379 bb->index);
1380 fprintf (file, "CELLSPACING=\"0\">\n");
1381
1382 /* Select color for SCoP. */
1383 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
1384 {
1385 sese region = SCOP_REGION (scop);
1386 if (bb_in_sese_p (bb, region)
1387 || (SESE_EXIT_BB (region) == bb)
1388 || (SESE_ENTRY_BB (region) == bb))
1389 {
1390 switch (i % 17)
1391 {
1392 case 0: /* red */
1393 color = "#e41a1c";
1394 break;
1395 case 1: /* blue */
1396 color = "#377eb8";
1397 break;
1398 case 2: /* green */
1399 color = "#4daf4a";
1400 break;
1401 case 3: /* purple */
1402 color = "#984ea3";
1403 break;
1404 case 4: /* orange */
1405 color = "#ff7f00";
1406 break;
1407 case 5: /* yellow */
1408 color = "#ffff33";
1409 break;
1410 case 6: /* brown */
1411 color = "#a65628";
1412 break;
1413 case 7: /* rose */
1414 color = "#f781bf";
1415 break;
1416 case 8:
1417 color = "#8dd3c7";
1418 break;
1419 case 9:
1420 color = "#ffffb3";
1421 break;
1422 case 10:
1423 color = "#bebada";
1424 break;
1425 case 11:
1426 color = "#fb8072";
1427 break;
1428 case 12:
1429 color = "#80b1d3";
1430 break;
1431 case 13:
1432 color = "#fdb462";
1433 break;
1434 case 14:
1435 color = "#b3de69";
1436 break;
1437 case 15:
1438 color = "#fccde5";
1439 break;
1440 case 16:
1441 color = "#bc80bd";
1442 break;
1443 default: /* gray */
1444 color = "#999999";
1445 }
1446
1447 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1448
1449 if (!bb_in_sese_p (bb, region))
1450 fprintf (file, " (");
1451
1452 if (bb == SESE_ENTRY_BB (region)
1453 && bb == SESE_EXIT_BB (region))
1454 fprintf (file, " %d*# ", bb->index);
1455 else if (bb == SESE_ENTRY_BB (region))
1456 fprintf (file, " %d* ", bb->index);
1457 else if (bb == SESE_EXIT_BB (region))
1458 fprintf (file, " %d# ", bb->index);
1459 else
1460 fprintf (file, " %d ", bb->index);
1461
1462 if (!bb_in_sese_p (bb,region))
1463 fprintf (file, ")");
1464
1465 fprintf (file, "</TD></TR>\n");
1466 part_of_scop = true;
1467 }
1468 }
1469
1470 if (!part_of_scop)
1471 {
1472 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1473 fprintf (file, " %d </TD></TR>\n", bb->index);
1474 }
1475 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1476 }
1477
1478 FOR_ALL_BB (bb)
1479 {
1480 FOR_EACH_EDGE (e, ei, bb->succs)
1481 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1482 }
1483
1484 fputs ("}\n\n", file);
1485
1486 /* Enable debugging again. */
1487 dump_flags = tmp_dump_flags;
1488 }
1489
1490 /* Display all SCoPs using dotty. */
1491
1492 void
1493 dot_all_scops (VEC (scop_p, heap) *scops)
1494 {
1495 /* When debugging, enable the following code. This cannot be used
1496 in production compilers because it calls "system". */
1497 #if 0
1498 int x;
1499 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1500 gcc_assert (stream);
1501
1502 dot_all_scops_1 (stream, scops);
1503 fclose (stream);
1504
1505 x = system ("dotty /tmp/allscops.dot &");
1506 #else
1507 dot_all_scops_1 (stderr, scops);
1508 #endif
1509 }
1510
1511 /* Display all SCoPs using dotty. */
1512
1513 void
1514 dot_scop (scop_p scop)
1515 {
1516 VEC (scop_p, heap) *scops = NULL;
1517
1518 if (scop)
1519 VEC_safe_push (scop_p, heap, scops, scop);
1520
1521 /* When debugging, enable the following code. This cannot be used
1522 in production compilers because it calls "system". */
1523 #if 0
1524 {
1525 int x;
1526 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1527 gcc_assert (stream);
1528
1529 dot_all_scops_1 (stream, scops);
1530 fclose (stream);
1531 x = system ("dotty /tmp/allscops.dot &");
1532 }
1533 #else
1534 dot_all_scops_1 (stderr, scops);
1535 #endif
1536
1537 VEC_free (scop_p, heap, scops);
1538 }
1539
1540 #endif