Use sizetype instead of unsigned_type_node.
[gcc.git] / gcc / graphite-sese-to-poly.c
1 /* Conversion of SESE regions to Polyhedra.
2 Copyright (C) 2009 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "toplev.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "tree-chrec.h"
36 #include "tree-data-ref.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "gimple.h"
43 #include "sese.h"
44
45 #ifdef HAVE_cloog
46 #include "cloog/cloog.h"
47 #include "ppl_c.h"
48 #include "graphite-ppl.h"
49 #include "graphite.h"
50 #include "graphite-poly.h"
51 #include "graphite-scop-detection.h"
52 #include "graphite-clast-to-gimple.h"
53 #include "graphite-sese-to-poly.h"
54
55 /* Check if VAR is used in a phi node, that is no loop header. */
56
57 static bool
58 var_used_in_not_loop_header_phi_node (tree var)
59 {
60 imm_use_iterator imm_iter;
61 gimple stmt;
62 bool result = false;
63
64 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, var)
65 {
66 basic_block bb = gimple_bb (stmt);
67
68 if (gimple_code (stmt) == GIMPLE_PHI
69 && bb->loop_father->header != bb)
70 result = true;
71 }
72
73 return result;
74 }
75
76 /* Returns the index of the phi argument corresponding to the initial
77 value in the loop. */
78
79 static size_t
80 loop_entry_phi_arg (gimple phi)
81 {
82 loop_p loop = gimple_bb (phi)->loop_father;
83 size_t i;
84
85 for (i = 0; i < gimple_phi_num_args (phi); i++)
86 if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
87 return i;
88
89 gcc_unreachable ();
90 return 0;
91 }
92
93 /* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
94 PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
95
96 static void
97 remove_simple_copy_phi (gimple_stmt_iterator *psi)
98 {
99 gimple phi = gsi_stmt (*psi);
100 tree res = gimple_phi_result (phi);
101 size_t entry = loop_entry_phi_arg (phi);
102 tree init = gimple_phi_arg_def (phi, entry);
103 gimple stmt = gimple_build_assign (res, init);
104 edge e = gimple_phi_arg_edge (phi, entry);
105
106 remove_phi_node (psi, false);
107 gsi_insert_on_edge_immediate (e, stmt);
108 SSA_NAME_DEF_STMT (res) = stmt;
109 }
110
111 /* Removes an invariant phi node at position PSI by inserting on the
112 loop ENTRY edge the assignment RES = INIT. */
113
114 static void
115 remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
116 {
117 gimple phi = gsi_stmt (*psi);
118 loop_p loop = loop_containing_stmt (phi);
119 tree res = gimple_phi_result (phi);
120 tree scev = scalar_evolution_in_region (region, loop, res);
121 size_t entry = loop_entry_phi_arg (phi);
122 edge e = gimple_phi_arg_edge (phi, entry);
123 tree var;
124 gimple stmt;
125 gimple_seq stmts;
126 gimple_stmt_iterator gsi;
127
128 if (tree_contains_chrecs (scev, NULL))
129 scev = gimple_phi_arg_def (phi, entry);
130
131 var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
132 stmt = gimple_build_assign (res, var);
133 remove_phi_node (psi, false);
134
135 if (!stmts)
136 stmts = gimple_seq_alloc ();
137
138 gsi = gsi_last (stmts);
139 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
140 gsi_insert_seq_on_edge (e, stmts);
141 gsi_commit_edge_inserts ();
142 SSA_NAME_DEF_STMT (res) = stmt;
143 }
144
145 /* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
146
147 static inline bool
148 simple_copy_phi_p (gimple phi)
149 {
150 tree res;
151
152 if (gimple_phi_num_args (phi) != 2)
153 return false;
154
155 res = gimple_phi_result (phi);
156 return (res == gimple_phi_arg_def (phi, 0)
157 || res == gimple_phi_arg_def (phi, 1));
158 }
159
160 /* Returns true when the phi node at position PSI is a reduction phi
161 node in REGION. Otherwise moves the pointer PSI to the next phi to
162 be considered. */
163
164 static bool
165 reduction_phi_p (sese region, gimple_stmt_iterator *psi)
166 {
167 loop_p loop;
168 tree scev;
169 affine_iv iv;
170 gimple phi = gsi_stmt (*psi);
171 tree res = gimple_phi_result (phi);
172
173 if (!is_gimple_reg (res))
174 {
175 gsi_next (psi);
176 return false;
177 }
178
179 loop = loop_containing_stmt (phi);
180
181 if (simple_copy_phi_p (phi))
182 {
183 /* FIXME: PRE introduces phi nodes like these, for an example,
184 see id-5.f in the fortran graphite testsuite:
185
186 # prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
187 */
188 remove_simple_copy_phi (psi);
189 return false;
190 }
191
192 /* Main induction variables with constant strides in LOOP are not
193 reductions. */
194 if (simple_iv (loop, loop, res, &iv, true))
195 {
196 if (integer_zerop (iv.step))
197 remove_invariant_phi (region, psi);
198 else
199 gsi_next (psi);
200
201 return false;
202 }
203
204 scev = scalar_evolution_in_region (region, loop, res);
205 if (chrec_contains_undetermined (scev))
206 return true;
207
208 if (evolution_function_is_invariant_p (scev, loop->num))
209 {
210 remove_invariant_phi (region, psi);
211 return false;
212 }
213
214 /* All the other cases are considered reductions. */
215 return true;
216 }
217
218 /* Returns true when BB will be represented in graphite. Return false
219 for the basic blocks that contain code eliminated in the code
220 generation pass: i.e. induction variables and exit conditions. */
221
222 static bool
223 graphite_stmt_p (sese region, basic_block bb,
224 VEC (data_reference_p, heap) *drs)
225 {
226 gimple_stmt_iterator gsi;
227 loop_p loop = bb->loop_father;
228
229 if (VEC_length (data_reference_p, drs) > 0)
230 return true;
231
232 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
233 {
234 gimple stmt = gsi_stmt (gsi);
235
236 switch (gimple_code (stmt))
237 {
238 case GIMPLE_DEBUG:
239 /* Control flow expressions can be ignored, as they are
240 represented in the iteration domains and will be
241 regenerated by graphite. */
242 case GIMPLE_COND:
243 case GIMPLE_GOTO:
244 case GIMPLE_SWITCH:
245 break;
246
247 case GIMPLE_ASSIGN:
248 {
249 tree var = gimple_assign_lhs (stmt);
250
251 /* We need these bbs to be able to construct the phi nodes. */
252 if (var_used_in_not_loop_header_phi_node (var))
253 return true;
254
255 var = scalar_evolution_in_region (region, loop, var);
256 if (chrec_contains_undetermined (var))
257 return true;
258
259 break;
260 }
261
262 default:
263 return true;
264 }
265 }
266
267 return false;
268 }
269
270 /* Store the GRAPHITE representation of BB. */
271
272 static gimple_bb_p
273 new_gimple_bb (basic_block bb, VEC (data_reference_p, heap) *drs)
274 {
275 struct gimple_bb *gbb;
276
277 gbb = XNEW (struct gimple_bb);
278 bb->aux = gbb;
279 GBB_BB (gbb) = bb;
280 GBB_DATA_REFS (gbb) = drs;
281 GBB_CONDITIONS (gbb) = NULL;
282 GBB_CONDITION_CASES (gbb) = NULL;
283 GBB_CLOOG_IV_TYPES (gbb) = NULL;
284
285 return gbb;
286 }
287
288 static void
289 free_data_refs_aux (VEC (data_reference_p, heap) *datarefs)
290 {
291 unsigned int i;
292 struct data_reference *dr;
293
294 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
295 if (dr->aux)
296 {
297 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
298
299 if (bap->alias_set)
300 free (bap->alias_set);
301
302 free (bap);
303 dr->aux = NULL;
304 }
305 }
306 /* Frees GBB. */
307
308 static void
309 free_gimple_bb (struct gimple_bb *gbb)
310 {
311 if (GBB_CLOOG_IV_TYPES (gbb))
312 htab_delete (GBB_CLOOG_IV_TYPES (gbb));
313
314 free_data_refs_aux (GBB_DATA_REFS (gbb));
315 free_data_refs (GBB_DATA_REFS (gbb));
316
317 VEC_free (gimple, heap, GBB_CONDITIONS (gbb));
318 VEC_free (gimple, heap, GBB_CONDITION_CASES (gbb));
319 GBB_BB (gbb)->aux = 0;
320 XDELETE (gbb);
321 }
322
323 /* Deletes all gimple bbs in SCOP. */
324
325 static void
326 remove_gbbs_in_scop (scop_p scop)
327 {
328 int i;
329 poly_bb_p pbb;
330
331 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
332 free_gimple_bb (PBB_BLACK_BOX (pbb));
333 }
334
335 /* Deletes all scops in SCOPS. */
336
337 void
338 free_scops (VEC (scop_p, heap) *scops)
339 {
340 int i;
341 scop_p scop;
342
343 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
344 {
345 remove_gbbs_in_scop (scop);
346 free_sese (SCOP_REGION (scop));
347 free_scop (scop);
348 }
349
350 VEC_free (scop_p, heap, scops);
351 }
352
353 /* Generates a polyhedral black box only if the bb contains interesting
354 information. */
355
356 static void
357 try_generate_gimple_bb (scop_p scop, basic_block bb, sbitmap reductions)
358 {
359 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
360 loop_p nest = outermost_loop_in_sese (SCOP_REGION (scop), bb);
361 gimple_stmt_iterator gsi;
362
363 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
364 {
365 gimple stmt = gsi_stmt (gsi);
366 if (!is_gimple_debug (stmt))
367 graphite_find_data_references_in_stmt (nest, stmt, &drs);
368 }
369
370 if (!graphite_stmt_p (SCOP_REGION (scop), bb, drs))
371 free_data_refs (drs);
372 else
373 new_poly_bb (scop, new_gimple_bb (bb, drs), TEST_BIT (reductions,
374 bb->index));
375 }
376
377 /* Returns true if all predecessors of BB, that are not dominated by BB, are
378 marked in MAP. The predecessors dominated by BB are loop latches and will
379 be handled after BB. */
380
381 static bool
382 all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
383 {
384 edge e;
385 edge_iterator ei;
386
387 FOR_EACH_EDGE (e, ei, bb->preds)
388 if (!TEST_BIT (map, e->src->index)
389 && !dominated_by_p (CDI_DOMINATORS, e->src, bb))
390 return false;
391
392 return true;
393 }
394
395 /* Compare the depth of two basic_block's P1 and P2. */
396
397 static int
398 compare_bb_depths (const void *p1, const void *p2)
399 {
400 const_basic_block const bb1 = *(const_basic_block const*)p1;
401 const_basic_block const bb2 = *(const_basic_block const*)p2;
402 int d1 = loop_depth (bb1->loop_father);
403 int d2 = loop_depth (bb2->loop_father);
404
405 if (d1 < d2)
406 return 1;
407
408 if (d1 > d2)
409 return -1;
410
411 return 0;
412 }
413
414 /* Sort the basic blocks from DOM such that the first are the ones at
415 a deepest loop level. */
416
417 static void
418 graphite_sort_dominated_info (VEC (basic_block, heap) *dom)
419 {
420 size_t len = VEC_length (basic_block, dom);
421
422 qsort (VEC_address (basic_block, dom), len, sizeof (basic_block),
423 compare_bb_depths);
424 }
425
426 /* Recursive helper function for build_scops_bbs. */
427
428 static void
429 build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb, sbitmap reductions)
430 {
431 sese region = SCOP_REGION (scop);
432 VEC (basic_block, heap) *dom;
433
434 if (TEST_BIT (visited, bb->index)
435 || !bb_in_sese_p (bb, region))
436 return;
437
438 try_generate_gimple_bb (scop, bb, reductions);
439 SET_BIT (visited, bb->index);
440
441 dom = get_dominated_by (CDI_DOMINATORS, bb);
442
443 if (dom == NULL)
444 return;
445
446 graphite_sort_dominated_info (dom);
447
448 while (!VEC_empty (basic_block, dom))
449 {
450 int i;
451 basic_block dom_bb;
452
453 for (i = 0; VEC_iterate (basic_block, dom, i, dom_bb); i++)
454 if (all_non_dominated_preds_marked_p (dom_bb, visited))
455 {
456 build_scop_bbs_1 (scop, visited, dom_bb, reductions);
457 VEC_unordered_remove (basic_block, dom, i);
458 break;
459 }
460 }
461
462 VEC_free (basic_block, heap, dom);
463 }
464
465 /* Gather the basic blocks belonging to the SCOP. */
466
467 static void
468 build_scop_bbs (scop_p scop, sbitmap reductions)
469 {
470 sbitmap visited = sbitmap_alloc (last_basic_block);
471 sese region = SCOP_REGION (scop);
472
473 sbitmap_zero (visited);
474 build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region), reductions);
475 sbitmap_free (visited);
476 }
477
478 /* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
479 We generate SCATTERING_DIMENSIONS scattering dimensions.
480
481 CLooG 0.15.0 and previous versions require, that all
482 scattering functions of one CloogProgram have the same number of
483 scattering dimensions, therefore we allow to specify it. This
484 should be removed in future versions of CLooG.
485
486 The scattering polyhedron consists of these dimensions: scattering,
487 loop_iterators, parameters.
488
489 Example:
490
491 | scattering_dimensions = 5
492 | used_scattering_dimensions = 3
493 | nb_iterators = 1
494 | scop_nb_params = 2
495 |
496 | Schedule:
497 | i
498 | 4 5
499 |
500 | Scattering polyhedron:
501 |
502 | scattering: {s1, s2, s3, s4, s5}
503 | loop_iterators: {i}
504 | parameters: {p1, p2}
505 |
506 | s1 s2 s3 s4 s5 i p1 p2 1
507 | 1 0 0 0 0 0 0 0 -4 = 0
508 | 0 1 0 0 0 -1 0 0 0 = 0
509 | 0 0 1 0 0 0 0 0 -5 = 0 */
510
511 static void
512 build_pbb_scattering_polyhedrons (ppl_Linear_Expression_t static_schedule,
513 poly_bb_p pbb, int scattering_dimensions)
514 {
515 int i;
516 scop_p scop = PBB_SCOP (pbb);
517 int nb_iterators = pbb_dim_iter_domain (pbb);
518 int used_scattering_dimensions = nb_iterators * 2 + 1;
519 int nb_params = scop_nb_params (scop);
520 ppl_Coefficient_t c;
521 ppl_dimension_type dim = scattering_dimensions + nb_iterators + nb_params;
522 Value v;
523
524 gcc_assert (scattering_dimensions >= used_scattering_dimensions);
525
526 value_init (v);
527 ppl_new_Coefficient (&c);
528 PBB_TRANSFORMED (pbb) = poly_scattering_new ();
529 ppl_new_C_Polyhedron_from_space_dimension
530 (&PBB_TRANSFORMED_SCATTERING (pbb), dim, 0);
531
532 PBB_NB_SCATTERING_TRANSFORM (pbb) = scattering_dimensions;
533
534 for (i = 0; i < scattering_dimensions; i++)
535 {
536 ppl_Constraint_t cstr;
537 ppl_Linear_Expression_t expr;
538
539 ppl_new_Linear_Expression_with_dimension (&expr, dim);
540 value_set_si (v, 1);
541 ppl_assign_Coefficient_from_mpz_t (c, v);
542 ppl_Linear_Expression_add_to_coefficient (expr, i, c);
543
544 /* Textual order inside this loop. */
545 if ((i % 2) == 0)
546 {
547 ppl_Linear_Expression_coefficient (static_schedule, i / 2, c);
548 ppl_Coefficient_to_mpz_t (c, v);
549 value_oppose (v, v);
550 ppl_assign_Coefficient_from_mpz_t (c, v);
551 ppl_Linear_Expression_add_to_inhomogeneous (expr, c);
552 }
553
554 /* Iterations of this loop. */
555 else /* if ((i % 2) == 1) */
556 {
557 int loop = (i - 1) / 2;
558
559 value_set_si (v, -1);
560 ppl_assign_Coefficient_from_mpz_t (c, v);
561 ppl_Linear_Expression_add_to_coefficient
562 (expr, scattering_dimensions + loop, c);
563 }
564
565 ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
566 ppl_Polyhedron_add_constraint (PBB_TRANSFORMED_SCATTERING (pbb), cstr);
567 ppl_delete_Linear_Expression (expr);
568 ppl_delete_Constraint (cstr);
569 }
570
571 value_clear (v);
572 ppl_delete_Coefficient (c);
573
574 PBB_ORIGINAL (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
575 }
576
577 /* Build for BB the static schedule.
578
579 The static schedule is a Dewey numbering of the abstract syntax
580 tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
581
582 The following example informally defines the static schedule:
583
584 A
585 for (i: ...)
586 {
587 for (j: ...)
588 {
589 B
590 C
591 }
592
593 for (k: ...)
594 {
595 D
596 E
597 }
598 }
599 F
600
601 Static schedules for A to F:
602
603 DEPTH
604 0 1 2
605 A 0
606 B 1 0 0
607 C 1 0 1
608 D 1 1 0
609 E 1 1 1
610 F 2
611 */
612
613 static void
614 build_scop_scattering (scop_p scop)
615 {
616 int i;
617 poly_bb_p pbb;
618 gimple_bb_p previous_gbb = NULL;
619 ppl_Linear_Expression_t static_schedule;
620 ppl_Coefficient_t c;
621 Value v;
622
623 value_init (v);
624 ppl_new_Coefficient (&c);
625 ppl_new_Linear_Expression (&static_schedule);
626
627 /* We have to start schedules at 0 on the first component and
628 because we cannot compare_prefix_loops against a previous loop,
629 prefix will be equal to zero, and that index will be
630 incremented before copying. */
631 value_set_si (v, -1);
632 ppl_assign_Coefficient_from_mpz_t (c, v);
633 ppl_Linear_Expression_add_to_coefficient (static_schedule, 0, c);
634
635 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
636 {
637 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
638 ppl_Linear_Expression_t common;
639 int prefix;
640 int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
641
642 if (previous_gbb)
643 prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
644 else
645 prefix = 0;
646
647 previous_gbb = gbb;
648 ppl_new_Linear_Expression_with_dimension (&common, prefix + 1);
649 ppl_assign_Linear_Expression_from_Linear_Expression (common,
650 static_schedule);
651
652 value_set_si (v, 1);
653 ppl_assign_Coefficient_from_mpz_t (c, v);
654 ppl_Linear_Expression_add_to_coefficient (common, prefix, c);
655 ppl_assign_Linear_Expression_from_Linear_Expression (static_schedule,
656 common);
657
658 build_pbb_scattering_polyhedrons (common, pbb, nb_scat_dims);
659
660 ppl_delete_Linear_Expression (common);
661 }
662
663 value_clear (v);
664 ppl_delete_Coefficient (c);
665 ppl_delete_Linear_Expression (static_schedule);
666 }
667
668 /* Add the value K to the dimension D of the linear expression EXPR. */
669
670 static void
671 add_value_to_dim (ppl_dimension_type d, ppl_Linear_Expression_t expr,
672 Value k)
673 {
674 Value val;
675 ppl_Coefficient_t coef;
676
677 ppl_new_Coefficient (&coef);
678 ppl_Linear_Expression_coefficient (expr, d, coef);
679 value_init (val);
680 ppl_Coefficient_to_mpz_t (coef, val);
681
682 value_addto (val, val, k);
683
684 ppl_assign_Coefficient_from_mpz_t (coef, val);
685 ppl_Linear_Expression_add_to_coefficient (expr, d, coef);
686 value_clear (val);
687 ppl_delete_Coefficient (coef);
688 }
689
690 /* In the context of scop S, scan E, the right hand side of a scalar
691 evolution function in loop VAR, and translate it to a linear
692 expression EXPR. */
693
694 static void
695 scan_tree_for_params_right_scev (sese s, tree e, int var,
696 ppl_Linear_Expression_t expr)
697 {
698 if (expr)
699 {
700 loop_p loop = get_loop (var);
701 ppl_dimension_type l = sese_loop_depth (s, loop) - 1;
702 Value val;
703
704 /* Scalar evolutions should happen in the sese region. */
705 gcc_assert (sese_loop_depth (s, loop) > 0);
706
707 /* We can not deal with parametric strides like:
708
709 | p = parameter;
710 |
711 | for i:
712 | a [i * p] = ... */
713 gcc_assert (TREE_CODE (e) == INTEGER_CST);
714
715 value_init (val);
716 value_set_si (val, int_cst_value (e));
717 add_value_to_dim (l, expr, val);
718 value_clear (val);
719 }
720 }
721
722 /* Scan the integer constant CST, and add it to the inhomogeneous part of the
723 linear expression EXPR. K is the multiplier of the constant. */
724
725 static void
726 scan_tree_for_params_int (tree cst, ppl_Linear_Expression_t expr, Value k)
727 {
728 Value val;
729 ppl_Coefficient_t coef;
730 int v = int_cst_value (cst);
731
732 value_init (val);
733 value_set_si (val, 0);
734
735 /* Necessary to not get "-1 = 2^n - 1". */
736 if (v < 0)
737 value_sub_int (val, val, -v);
738 else
739 value_add_int (val, val, v);
740
741 value_multiply (val, val, k);
742 ppl_new_Coefficient (&coef);
743 ppl_assign_Coefficient_from_mpz_t (coef, val);
744 ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
745 value_clear (val);
746 ppl_delete_Coefficient (coef);
747 }
748
749 /* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
750 Otherwise returns -1. */
751
752 static inline int
753 parameter_index_in_region_1 (tree name, sese region)
754 {
755 int i;
756 tree p;
757
758 gcc_assert (TREE_CODE (name) == SSA_NAME);
759
760 for (i = 0; VEC_iterate (tree, SESE_PARAMS (region), i, p); i++)
761 if (p == name)
762 return i;
763
764 return -1;
765 }
766
767 /* When the parameter NAME is in REGION, returns its index in
768 SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
769 and returns the index of NAME. */
770
771 static int
772 parameter_index_in_region (tree name, sese region)
773 {
774 int i;
775
776 gcc_assert (TREE_CODE (name) == SSA_NAME);
777
778 i = parameter_index_in_region_1 (name, region);
779 if (i != -1)
780 return i;
781
782 gcc_assert (SESE_ADD_PARAMS (region));
783
784 i = VEC_length (tree, SESE_PARAMS (region));
785 VEC_safe_push (tree, heap, SESE_PARAMS (region), name);
786 return i;
787 }
788
789 /* In the context of sese S, scan the expression E and translate it to
790 a linear expression C. When parsing a symbolic multiplication, K
791 represents the constant multiplier of an expression containing
792 parameters. */
793
794 static void
795 scan_tree_for_params (sese s, tree e, ppl_Linear_Expression_t c,
796 Value k)
797 {
798 if (e == chrec_dont_know)
799 return;
800
801 switch (TREE_CODE (e))
802 {
803 case POLYNOMIAL_CHREC:
804 scan_tree_for_params_right_scev (s, CHREC_RIGHT (e),
805 CHREC_VARIABLE (e), c);
806 scan_tree_for_params (s, CHREC_LEFT (e), c, k);
807 break;
808
809 case MULT_EXPR:
810 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
811 {
812 if (c)
813 {
814 Value val;
815 gcc_assert (host_integerp (TREE_OPERAND (e, 1), 0));
816 value_init (val);
817 value_set_si (val, int_cst_value (TREE_OPERAND (e, 1)));
818 value_multiply (val, val, k);
819 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, val);
820 value_clear (val);
821 }
822 else
823 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
824 }
825 else
826 {
827 if (c)
828 {
829 Value val;
830 gcc_assert (host_integerp (TREE_OPERAND (e, 0), 0));
831 value_init (val);
832 value_set_si (val, int_cst_value (TREE_OPERAND (e, 0)));
833 value_multiply (val, val, k);
834 scan_tree_for_params (s, TREE_OPERAND (e, 1), c, val);
835 value_clear (val);
836 }
837 else
838 scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
839 }
840 break;
841
842 case PLUS_EXPR:
843 case POINTER_PLUS_EXPR:
844 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
845 scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
846 break;
847
848 case MINUS_EXPR:
849 {
850 ppl_Linear_Expression_t tmp_expr = NULL;
851
852 if (c)
853 {
854 ppl_dimension_type dim;
855 ppl_Linear_Expression_space_dimension (c, &dim);
856 ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
857 }
858
859 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
860 scan_tree_for_params (s, TREE_OPERAND (e, 1), tmp_expr, k);
861
862 if (c)
863 {
864 ppl_subtract_Linear_Expression_from_Linear_Expression (c,
865 tmp_expr);
866 ppl_delete_Linear_Expression (tmp_expr);
867 }
868
869 break;
870 }
871
872 case NEGATE_EXPR:
873 {
874 ppl_Linear_Expression_t tmp_expr = NULL;
875
876 if (c)
877 {
878 ppl_dimension_type dim;
879 ppl_Linear_Expression_space_dimension (c, &dim);
880 ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
881 }
882
883 scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
884
885 if (c)
886 {
887 ppl_subtract_Linear_Expression_from_Linear_Expression (c,
888 tmp_expr);
889 ppl_delete_Linear_Expression (tmp_expr);
890 }
891
892 break;
893 }
894
895 case BIT_NOT_EXPR:
896 {
897 ppl_Linear_Expression_t tmp_expr = NULL;
898
899 if (c)
900 {
901 ppl_dimension_type dim;
902 ppl_Linear_Expression_space_dimension (c, &dim);
903 ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
904 }
905
906 scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
907
908 if (c)
909 {
910 ppl_Coefficient_t coef;
911 Value minus_one;
912
913 ppl_subtract_Linear_Expression_from_Linear_Expression (c,
914 tmp_expr);
915 ppl_delete_Linear_Expression (tmp_expr);
916 value_init (minus_one);
917 value_set_si (minus_one, -1);
918 ppl_new_Coefficient_from_mpz_t (&coef, minus_one);
919 ppl_Linear_Expression_add_to_inhomogeneous (c, coef);
920 value_clear (minus_one);
921 ppl_delete_Coefficient (coef);
922 }
923
924 break;
925 }
926
927 case SSA_NAME:
928 {
929 ppl_dimension_type p = parameter_index_in_region (e, s);
930
931 if (c)
932 {
933 ppl_dimension_type dim;
934 ppl_Linear_Expression_space_dimension (c, &dim);
935 p += dim - sese_nb_params (s);
936 add_value_to_dim (p, c, k);
937 }
938 break;
939 }
940
941 case INTEGER_CST:
942 if (c)
943 scan_tree_for_params_int (e, c, k);
944 break;
945
946 CASE_CONVERT:
947 case NON_LVALUE_EXPR:
948 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
949 break;
950
951 default:
952 gcc_unreachable ();
953 break;
954 }
955 }
956
957 /* Find parameters with respect to REGION in BB. We are looking in memory
958 access functions, conditions and loop bounds. */
959
960 static void
961 find_params_in_bb (sese region, gimple_bb_p gbb)
962 {
963 int i;
964 unsigned j;
965 data_reference_p dr;
966 gimple stmt;
967 loop_p loop = GBB_BB (gbb)->loop_father;
968 Value one;
969
970 value_init (one);
971 value_set_si (one, 1);
972
973 /* Find parameters in the access functions of data references. */
974 for (i = 0; VEC_iterate (data_reference_p, GBB_DATA_REFS (gbb), i, dr); i++)
975 for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
976 scan_tree_for_params (region, DR_ACCESS_FN (dr, j), NULL, one);
977
978 /* Find parameters in conditional statements. */
979 for (i = 0; VEC_iterate (gimple, GBB_CONDITIONS (gbb), i, stmt); i++)
980 {
981 tree lhs = scalar_evolution_in_region (region, loop,
982 gimple_cond_lhs (stmt));
983 tree rhs = scalar_evolution_in_region (region, loop,
984 gimple_cond_rhs (stmt));
985
986 scan_tree_for_params (region, lhs, NULL, one);
987 scan_tree_for_params (region, rhs, NULL, one);
988 }
989
990 value_clear (one);
991 }
992
993 /* Record the parameters used in the SCOP. A variable is a parameter
994 in a scop if it does not vary during the execution of that scop. */
995
996 static void
997 find_scop_parameters (scop_p scop)
998 {
999 poly_bb_p pbb;
1000 unsigned i;
1001 sese region = SCOP_REGION (scop);
1002 struct loop *loop;
1003 Value one;
1004
1005 value_init (one);
1006 value_set_si (one, 1);
1007
1008 /* Find the parameters used in the loop bounds. */
1009 for (i = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), i, loop); i++)
1010 {
1011 tree nb_iters = number_of_latch_executions (loop);
1012
1013 if (!chrec_contains_symbols (nb_iters))
1014 continue;
1015
1016 nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
1017 scan_tree_for_params (region, nb_iters, NULL, one);
1018 }
1019
1020 value_clear (one);
1021
1022 /* Find the parameters used in data accesses. */
1023 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1024 find_params_in_bb (region, PBB_BLACK_BOX (pbb));
1025
1026 scop_set_nb_params (scop, sese_nb_params (region));
1027 SESE_ADD_PARAMS (region) = false;
1028
1029 ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension
1030 (&SCOP_CONTEXT (scop), scop_nb_params (scop), 0);
1031 }
1032
1033 /* Returns a gimple_bb from BB. */
1034
1035 static inline gimple_bb_p
1036 gbb_from_bb (basic_block bb)
1037 {
1038 return (gimple_bb_p) bb->aux;
1039 }
1040
1041 /* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
1042 the constraints for the surrounding loops. */
1043
1044 static void
1045 build_loop_iteration_domains (scop_p scop, struct loop *loop,
1046 ppl_Polyhedron_t outer_ph, int nb,
1047 ppl_Pointset_Powerset_C_Polyhedron_t *domains)
1048 {
1049 int i;
1050 ppl_Polyhedron_t ph;
1051 tree nb_iters = number_of_latch_executions (loop);
1052 ppl_dimension_type dim = nb + 1 + scop_nb_params (scop);
1053 sese region = SCOP_REGION (scop);
1054
1055 {
1056 ppl_const_Constraint_System_t pcs;
1057 ppl_dimension_type *map
1058 = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
1059
1060 ppl_new_C_Polyhedron_from_space_dimension (&ph, dim, 0);
1061 ppl_Polyhedron_get_constraints (outer_ph, &pcs);
1062 ppl_Polyhedron_add_constraints (ph, pcs);
1063
1064 for (i = 0; i < (int) nb; i++)
1065 map[i] = i;
1066 for (i = (int) nb; i < (int) dim - 1; i++)
1067 map[i] = i + 1;
1068 map[dim - 1] = nb;
1069
1070 ppl_Polyhedron_map_space_dimensions (ph, map, dim);
1071 free (map);
1072 }
1073
1074 /* 0 <= loop_i */
1075 {
1076 ppl_Constraint_t lb;
1077 ppl_Linear_Expression_t lb_expr;
1078
1079 ppl_new_Linear_Expression_with_dimension (&lb_expr, dim);
1080 ppl_set_coef (lb_expr, nb, 1);
1081 ppl_new_Constraint (&lb, lb_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1082 ppl_delete_Linear_Expression (lb_expr);
1083 ppl_Polyhedron_add_constraint (ph, lb);
1084 ppl_delete_Constraint (lb);
1085 }
1086
1087 if (TREE_CODE (nb_iters) == INTEGER_CST)
1088 {
1089 ppl_Constraint_t ub;
1090 ppl_Linear_Expression_t ub_expr;
1091
1092 ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
1093
1094 /* loop_i <= cst_nb_iters */
1095 ppl_set_coef (ub_expr, nb, -1);
1096 ppl_set_inhomogeneous_tree (ub_expr, nb_iters);
1097 ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1098 ppl_Polyhedron_add_constraint (ph, ub);
1099 ppl_delete_Linear_Expression (ub_expr);
1100 ppl_delete_Constraint (ub);
1101 }
1102 else if (!chrec_contains_undetermined (nb_iters))
1103 {
1104 Value one;
1105 ppl_Constraint_t ub;
1106 ppl_Linear_Expression_t ub_expr;
1107 double_int nit;
1108
1109 value_init (one);
1110 value_set_si (one, 1);
1111 ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
1112 nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
1113 scan_tree_for_params (SCOP_REGION (scop), nb_iters, ub_expr, one);
1114 value_clear (one);
1115
1116 /* N <= estimated_nb_iters
1117
1118 FIXME: This is a workaround that should go away once we will
1119 have the PIP algorithm. */
1120 if (estimated_loop_iterations (loop, true, &nit))
1121 {
1122 Value val;
1123 ppl_Linear_Expression_t nb_iters_le;
1124 ppl_Polyhedron_t pol;
1125 graphite_dim_t n = scop_nb_params (scop);
1126 ppl_Coefficient_t coef;
1127
1128 ppl_new_C_Polyhedron_from_space_dimension (&pol, dim, 0);
1129 ppl_new_Linear_Expression_from_Linear_Expression (&nb_iters_le,
1130 ub_expr);
1131
1132 /* Construct the negated number of last iteration in VAL. */
1133 value_init (val);
1134 mpz_set_double_int (val, nit, false);
1135 value_sub_int (val, val, 1);
1136 value_oppose (val, val);
1137
1138 /* NB_ITERS_LE holds number of last iteration in parametrical form.
1139 Subtract estimated number of last iteration and assert that result
1140 is not positive. */
1141 ppl_new_Coefficient_from_mpz_t (&coef, val);
1142 ppl_Linear_Expression_add_to_inhomogeneous (nb_iters_le, coef);
1143 ppl_delete_Coefficient (coef);
1144 ppl_new_Constraint (&ub, nb_iters_le,
1145 PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
1146 ppl_Polyhedron_add_constraint (pol, ub);
1147
1148 /* Remove all but last N dimensions from POL to obtain constraints
1149 on parameters. */
1150 {
1151 ppl_dimension_type *dims = XNEWVEC (ppl_dimension_type, dim - n);
1152 graphite_dim_t i;
1153 for (i = 0; i < dim - n; i++)
1154 dims[i] = i;
1155 ppl_Polyhedron_remove_space_dimensions (pol, dims, dim - n);
1156 XDELETEVEC (dims);
1157 }
1158
1159 /* Add constraints on parameters to SCoP context. */
1160 {
1161 ppl_Pointset_Powerset_C_Polyhedron_t constraints_ps;
1162 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1163 (&constraints_ps, pol);
1164 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
1165 (SCOP_CONTEXT (scop), constraints_ps);
1166 ppl_delete_Pointset_Powerset_C_Polyhedron (constraints_ps);
1167 }
1168
1169 ppl_delete_Polyhedron (pol);
1170 ppl_delete_Linear_Expression (nb_iters_le);
1171 ppl_delete_Constraint (ub);
1172 value_clear (val);
1173 }
1174
1175 /* loop_i <= expr_nb_iters */
1176 ppl_set_coef (ub_expr, nb, -1);
1177 ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1178 ppl_Polyhedron_add_constraint (ph, ub);
1179 ppl_delete_Linear_Expression (ub_expr);
1180 ppl_delete_Constraint (ub);
1181 }
1182 else
1183 gcc_unreachable ();
1184
1185 if (loop->inner && loop_in_sese_p (loop->inner, region))
1186 build_loop_iteration_domains (scop, loop->inner, ph, nb + 1, domains);
1187
1188 if (nb != 0
1189 && loop->next
1190 && loop_in_sese_p (loop->next, region))
1191 build_loop_iteration_domains (scop, loop->next, outer_ph, nb, domains);
1192
1193 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1194 (&domains[loop->num], ph);
1195
1196 ppl_delete_Polyhedron (ph);
1197 }
1198
1199 /* Returns a linear expression for tree T evaluated in PBB. */
1200
1201 static ppl_Linear_Expression_t
1202 create_linear_expr_from_tree (poly_bb_p pbb, tree t)
1203 {
1204 Value one;
1205 ppl_Linear_Expression_t res;
1206 ppl_dimension_type dim;
1207 sese region = SCOP_REGION (PBB_SCOP (pbb));
1208 loop_p loop = pbb_loop (pbb);
1209
1210 dim = pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
1211 ppl_new_Linear_Expression_with_dimension (&res, dim);
1212
1213 t = scalar_evolution_in_region (region, loop, t);
1214 gcc_assert (!automatically_generated_chrec_p (t));
1215
1216 value_init (one);
1217 value_set_si (one, 1);
1218 scan_tree_for_params (region, t, res, one);
1219 value_clear (one);
1220
1221 return res;
1222 }
1223
1224 /* Returns the ppl constraint type from the gimple tree code CODE. */
1225
1226 static enum ppl_enum_Constraint_Type
1227 ppl_constraint_type_from_tree_code (enum tree_code code)
1228 {
1229 switch (code)
1230 {
1231 /* We do not support LT and GT to be able to work with C_Polyhedron.
1232 As we work on integer polyhedron "a < b" can be expressed by
1233 "a + 1 <= b". */
1234 case LT_EXPR:
1235 case GT_EXPR:
1236 gcc_unreachable ();
1237
1238 case LE_EXPR:
1239 return PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL;
1240
1241 case GE_EXPR:
1242 return PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL;
1243
1244 case EQ_EXPR:
1245 return PPL_CONSTRAINT_TYPE_EQUAL;
1246
1247 default:
1248 gcc_unreachable ();
1249 }
1250 }
1251
1252 /* Add conditional statement STMT to PS. It is evaluated in PBB and
1253 CODE is used as the comparison operator. This allows us to invert the
1254 condition or to handle inequalities. */
1255
1256 static void
1257 add_condition_to_domain (ppl_Pointset_Powerset_C_Polyhedron_t ps, gimple stmt,
1258 poly_bb_p pbb, enum tree_code code)
1259 {
1260 Value v;
1261 ppl_Coefficient_t c;
1262 ppl_Linear_Expression_t left, right;
1263 ppl_Constraint_t cstr;
1264 enum ppl_enum_Constraint_Type type;
1265
1266 left = create_linear_expr_from_tree (pbb, gimple_cond_lhs (stmt));
1267 right = create_linear_expr_from_tree (pbb, gimple_cond_rhs (stmt));
1268
1269 /* If we have < or > expressions convert them to <= or >= by adding 1 to
1270 the left or the right side of the expression. */
1271 if (code == LT_EXPR)
1272 {
1273 value_init (v);
1274 value_set_si (v, 1);
1275 ppl_new_Coefficient (&c);
1276 ppl_assign_Coefficient_from_mpz_t (c, v);
1277 ppl_Linear_Expression_add_to_inhomogeneous (left, c);
1278 ppl_delete_Coefficient (c);
1279 value_clear (v);
1280
1281 code = LE_EXPR;
1282 }
1283 else if (code == GT_EXPR)
1284 {
1285 value_init (v);
1286 value_set_si (v, 1);
1287 ppl_new_Coefficient (&c);
1288 ppl_assign_Coefficient_from_mpz_t (c, v);
1289 ppl_Linear_Expression_add_to_inhomogeneous (right, c);
1290 ppl_delete_Coefficient (c);
1291 value_clear (v);
1292
1293 code = GE_EXPR;
1294 }
1295
1296 type = ppl_constraint_type_from_tree_code (code);
1297
1298 ppl_subtract_Linear_Expression_from_Linear_Expression (left, right);
1299
1300 ppl_new_Constraint (&cstr, left, type);
1301 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (ps, cstr);
1302
1303 ppl_delete_Constraint (cstr);
1304 ppl_delete_Linear_Expression (left);
1305 ppl_delete_Linear_Expression (right);
1306 }
1307
1308 /* Add conditional statement STMT to pbb. CODE is used as the comparision
1309 operator. This allows us to invert the condition or to handle
1310 inequalities. */
1311
1312 static void
1313 add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
1314 {
1315 if (code == NE_EXPR)
1316 {
1317 ppl_Pointset_Powerset_C_Polyhedron_t left = PBB_DOMAIN (pbb);
1318 ppl_Pointset_Powerset_C_Polyhedron_t right;
1319 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1320 (&right, left);
1321 add_condition_to_domain (left, stmt, pbb, LT_EXPR);
1322 add_condition_to_domain (right, stmt, pbb, GT_EXPR);
1323 ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (left,
1324 right);
1325 ppl_delete_Pointset_Powerset_C_Polyhedron (right);
1326 }
1327 else
1328 add_condition_to_domain (PBB_DOMAIN (pbb), stmt, pbb, code);
1329 }
1330
1331 /* Add conditions to the domain of PBB. */
1332
1333 static void
1334 add_conditions_to_domain (poly_bb_p pbb)
1335 {
1336 unsigned int i;
1337 gimple stmt;
1338 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
1339 VEC (gimple, heap) *conditions = GBB_CONDITIONS (gbb);
1340
1341 if (VEC_empty (gimple, conditions))
1342 return;
1343
1344 for (i = 0; VEC_iterate (gimple, conditions, i, stmt); i++)
1345 switch (gimple_code (stmt))
1346 {
1347 case GIMPLE_COND:
1348 {
1349 enum tree_code code = gimple_cond_code (stmt);
1350
1351 /* The conditions for ELSE-branches are inverted. */
1352 if (VEC_index (gimple, gbb->condition_cases, i) == NULL)
1353 code = invert_tree_comparison (code, false);
1354
1355 add_condition_to_pbb (pbb, stmt, code);
1356 break;
1357 }
1358
1359 case GIMPLE_SWITCH:
1360 /* Switch statements are not supported right now - fall throught. */
1361
1362 default:
1363 gcc_unreachable ();
1364 break;
1365 }
1366 }
1367
1368 /* Structure used to pass data to dom_walk. */
1369
1370 struct bsc
1371 {
1372 VEC (gimple, heap) **conditions, **cases;
1373 sese region;
1374 };
1375
1376 /* Returns non NULL when BB has a single predecessor and the last
1377 statement of that predecessor is a COND_EXPR. */
1378
1379 static gimple
1380 single_pred_cond (basic_block bb)
1381 {
1382 if (single_pred_p (bb))
1383 {
1384 edge e = single_pred_edge (bb);
1385 basic_block pred = e->src;
1386 gimple stmt = last_stmt (pred);
1387
1388 if (stmt && gimple_code (stmt) == GIMPLE_COND)
1389 return stmt;
1390 }
1391 return NULL;
1392 }
1393
1394 /* Call-back for dom_walk executed before visiting the dominated
1395 blocks. */
1396
1397 static void
1398 build_sese_conditions_before (struct dom_walk_data *dw_data,
1399 basic_block bb)
1400 {
1401 struct bsc *data = (struct bsc *) dw_data->global_data;
1402 VEC (gimple, heap) **conditions = data->conditions;
1403 VEC (gimple, heap) **cases = data->cases;
1404 gimple_bb_p gbb = gbb_from_bb (bb);
1405 gimple stmt = single_pred_cond (bb);
1406
1407 if (!bb_in_sese_p (bb, data->region))
1408 return;
1409
1410 if (stmt)
1411 {
1412 edge e = single_pred_edge (bb);
1413
1414 VEC_safe_push (gimple, heap, *conditions, stmt);
1415
1416 if (e->flags & EDGE_TRUE_VALUE)
1417 VEC_safe_push (gimple, heap, *cases, stmt);
1418 else
1419 VEC_safe_push (gimple, heap, *cases, NULL);
1420 }
1421
1422 if (gbb)
1423 {
1424 GBB_CONDITIONS (gbb) = VEC_copy (gimple, heap, *conditions);
1425 GBB_CONDITION_CASES (gbb) = VEC_copy (gimple, heap, *cases);
1426 }
1427 }
1428
1429 /* Call-back for dom_walk executed after visiting the dominated
1430 blocks. */
1431
1432 static void
1433 build_sese_conditions_after (struct dom_walk_data *dw_data,
1434 basic_block bb)
1435 {
1436 struct bsc *data = (struct bsc *) dw_data->global_data;
1437 VEC (gimple, heap) **conditions = data->conditions;
1438 VEC (gimple, heap) **cases = data->cases;
1439
1440 if (!bb_in_sese_p (bb, data->region))
1441 return;
1442
1443 if (single_pred_cond (bb))
1444 {
1445 VEC_pop (gimple, *conditions);
1446 VEC_pop (gimple, *cases);
1447 }
1448 }
1449
1450 /* Record all conditions in REGION. */
1451
1452 static void
1453 build_sese_conditions (sese region)
1454 {
1455 struct dom_walk_data walk_data;
1456 VEC (gimple, heap) *conditions = VEC_alloc (gimple, heap, 3);
1457 VEC (gimple, heap) *cases = VEC_alloc (gimple, heap, 3);
1458 struct bsc data;
1459
1460 data.conditions = &conditions;
1461 data.cases = &cases;
1462 data.region = region;
1463
1464 walk_data.dom_direction = CDI_DOMINATORS;
1465 walk_data.initialize_block_local_data = NULL;
1466 walk_data.before_dom_children = build_sese_conditions_before;
1467 walk_data.after_dom_children = build_sese_conditions_after;
1468 walk_data.global_data = &data;
1469 walk_data.block_local_data_size = 0;
1470
1471 init_walk_dominator_tree (&walk_data);
1472 walk_dominator_tree (&walk_data, SESE_ENTRY_BB (region));
1473 fini_walk_dominator_tree (&walk_data);
1474
1475 VEC_free (gimple, heap, conditions);
1476 VEC_free (gimple, heap, cases);
1477 }
1478
1479 /* Traverses all the GBBs of the SCOP and add their constraints to the
1480 iteration domains. */
1481
1482 static void
1483 add_conditions_to_constraints (scop_p scop)
1484 {
1485 int i;
1486 poly_bb_p pbb;
1487
1488 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1489 add_conditions_to_domain (pbb);
1490 }
1491
1492 /* Add constraints on the possible values of parameter P from the type
1493 of P. */
1494
1495 static void
1496 add_param_constraints (scop_p scop, ppl_Polyhedron_t context, graphite_dim_t p)
1497 {
1498 ppl_Constraint_t cstr;
1499 ppl_Linear_Expression_t le;
1500 tree parameter = VEC_index (tree, SESE_PARAMS (SCOP_REGION (scop)), p);
1501 tree type = TREE_TYPE (parameter);
1502 tree lb = NULL_TREE;
1503 tree ub = NULL_TREE;
1504
1505 if (INTEGRAL_TYPE_P (type))
1506 {
1507 lb = TYPE_MIN_VALUE (type);
1508 ub = TYPE_MAX_VALUE (type);
1509 }
1510 else if (POINTER_TYPE_P (type))
1511 {
1512 lb = TYPE_MIN_VALUE (sizetype);
1513 ub = TYPE_MAX_VALUE (sizetype);
1514 }
1515
1516 if (lb)
1517 {
1518 ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
1519 ppl_set_coef (le, p, -1);
1520 ppl_set_inhomogeneous_tree (le, lb);
1521 ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
1522 ppl_Polyhedron_add_constraint (context, cstr);
1523 ppl_delete_Linear_Expression (le);
1524 ppl_delete_Constraint (cstr);
1525 }
1526
1527 if (ub)
1528 {
1529 ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
1530 ppl_set_coef (le, p, -1);
1531 ppl_set_inhomogeneous_tree (le, ub);
1532 ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1533 ppl_Polyhedron_add_constraint (context, cstr);
1534 ppl_delete_Linear_Expression (le);
1535 ppl_delete_Constraint (cstr);
1536 }
1537 }
1538
1539 /* Build the context of the SCOP. The context usually contains extra
1540 constraints that are added to the iteration domains that constrain
1541 some parameters. */
1542
1543 static void
1544 build_scop_context (scop_p scop)
1545 {
1546 ppl_Polyhedron_t context;
1547 ppl_Pointset_Powerset_C_Polyhedron_t ps;
1548 graphite_dim_t p, n = scop_nb_params (scop);
1549
1550 ppl_new_C_Polyhedron_from_space_dimension (&context, n, 0);
1551
1552 for (p = 0; p < n; p++)
1553 add_param_constraints (scop, context, p);
1554
1555 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1556 (&ps, context);
1557 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
1558 (SCOP_CONTEXT (scop), ps);
1559
1560 ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
1561 ppl_delete_Polyhedron (context);
1562 }
1563
1564 /* Build the iteration domains: the loops belonging to the current
1565 SCOP, and that vary for the execution of the current basic block.
1566 Returns false if there is no loop in SCOP. */
1567
1568 static void
1569 build_scop_iteration_domain (scop_p scop)
1570 {
1571 struct loop *loop;
1572 sese region = SCOP_REGION (scop);
1573 int i;
1574 ppl_Polyhedron_t ph;
1575 poly_bb_p pbb;
1576 int nb_loops = number_of_loops ();
1577 ppl_Pointset_Powerset_C_Polyhedron_t *domains
1578 = XNEWVEC (ppl_Pointset_Powerset_C_Polyhedron_t, nb_loops);
1579
1580 for (i = 0; i < nb_loops; i++)
1581 domains[i] = NULL;
1582
1583 ppl_new_C_Polyhedron_from_space_dimension (&ph, scop_nb_params (scop), 0);
1584
1585 for (i = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), i, loop); i++)
1586 if (!loop_in_sese_p (loop_outer (loop), region))
1587 build_loop_iteration_domains (scop, loop, ph, 0, domains);
1588
1589 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1590 if (domains[gbb_loop (PBB_BLACK_BOX (pbb))->num])
1591 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1592 (&PBB_DOMAIN (pbb), (ppl_const_Pointset_Powerset_C_Polyhedron_t)
1593 domains[gbb_loop (PBB_BLACK_BOX (pbb))->num]);
1594 else
1595 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1596 (&PBB_DOMAIN (pbb), ph);
1597
1598 for (i = 0; i < nb_loops; i++)
1599 if (domains[i])
1600 ppl_delete_Pointset_Powerset_C_Polyhedron (domains[i]);
1601
1602 ppl_delete_Polyhedron (ph);
1603 free (domains);
1604 }
1605
1606 /* Add a constrain to the ACCESSES polyhedron for the alias set of
1607 data reference DR. ACCESSP_NB_DIMS is the dimension of the
1608 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1609 domain. */
1610
1611 static void
1612 pdr_add_alias_set (ppl_Polyhedron_t accesses, data_reference_p dr,
1613 ppl_dimension_type accessp_nb_dims,
1614 ppl_dimension_type dom_nb_dims)
1615 {
1616 ppl_Linear_Expression_t alias;
1617 ppl_Constraint_t cstr;
1618 int alias_set_num = 0;
1619 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
1620
1621 if (bap && bap->alias_set)
1622 alias_set_num = *(bap->alias_set);
1623
1624 ppl_new_Linear_Expression_with_dimension (&alias, accessp_nb_dims);
1625
1626 ppl_set_coef (alias, dom_nb_dims, 1);
1627 ppl_set_inhomogeneous (alias, -alias_set_num);
1628 ppl_new_Constraint (&cstr, alias, PPL_CONSTRAINT_TYPE_EQUAL);
1629 ppl_Polyhedron_add_constraint (accesses, cstr);
1630
1631 ppl_delete_Linear_Expression (alias);
1632 ppl_delete_Constraint (cstr);
1633 }
1634
1635 /* Add to ACCESSES polyhedron equalities defining the access functions
1636 to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
1637 polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
1638 PBB is the poly_bb_p that contains the data reference DR. */
1639
1640 static void
1641 pdr_add_memory_accesses (ppl_Polyhedron_t accesses, data_reference_p dr,
1642 ppl_dimension_type accessp_nb_dims,
1643 ppl_dimension_type dom_nb_dims,
1644 poly_bb_p pbb)
1645 {
1646 int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
1647 Value v;
1648 scop_p scop = PBB_SCOP (pbb);
1649 sese region = SCOP_REGION (scop);
1650
1651 value_init (v);
1652
1653 for (i = 0; i < nb_subscripts; i++)
1654 {
1655 ppl_Linear_Expression_t fn, access;
1656 ppl_Constraint_t cstr;
1657 ppl_dimension_type subscript = dom_nb_dims + 1 + i;
1658 tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
1659
1660 ppl_new_Linear_Expression_with_dimension (&fn, dom_nb_dims);
1661 ppl_new_Linear_Expression_with_dimension (&access, accessp_nb_dims);
1662
1663 value_set_si (v, 1);
1664 scan_tree_for_params (region, afn, fn, v);
1665 ppl_assign_Linear_Expression_from_Linear_Expression (access, fn);
1666
1667 ppl_set_coef (access, subscript, -1);
1668 ppl_new_Constraint (&cstr, access, PPL_CONSTRAINT_TYPE_EQUAL);
1669 ppl_Polyhedron_add_constraint (accesses, cstr);
1670
1671 ppl_delete_Linear_Expression (fn);
1672 ppl_delete_Linear_Expression (access);
1673 ppl_delete_Constraint (cstr);
1674 }
1675
1676 value_clear (v);
1677 }
1678
1679 /* Add constrains representing the size of the accessed data to the
1680 ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
1681 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1682 domain. */
1683
1684 static void
1685 pdr_add_data_dimensions (ppl_Polyhedron_t accesses, data_reference_p dr,
1686 ppl_dimension_type accessp_nb_dims,
1687 ppl_dimension_type dom_nb_dims)
1688 {
1689 tree ref = DR_REF (dr);
1690 int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
1691
1692 for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
1693 {
1694 ppl_Linear_Expression_t expr;
1695 ppl_Constraint_t cstr;
1696 ppl_dimension_type subscript = dom_nb_dims + 1 + i;
1697 tree low, high;
1698
1699 if (TREE_CODE (ref) != ARRAY_REF)
1700 break;
1701
1702 low = array_ref_low_bound (ref);
1703
1704 /* subscript - low >= 0 */
1705 if (host_integerp (low, 0))
1706 {
1707 ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
1708 ppl_set_coef (expr, subscript, 1);
1709
1710 ppl_set_inhomogeneous (expr, -int_cst_value (low));
1711
1712 ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1713 ppl_Polyhedron_add_constraint (accesses, cstr);
1714 ppl_delete_Linear_Expression (expr);
1715 ppl_delete_Constraint (cstr);
1716 }
1717
1718 high = array_ref_up_bound (ref);
1719
1720 /* high - subscript >= 0 */
1721 if (high && host_integerp (high, 0)
1722 /* 1-element arrays at end of structures may extend over
1723 their declared size. */
1724 && !(array_at_struct_end_p (ref)
1725 && operand_equal_p (low, high, 0)))
1726 {
1727 ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
1728 ppl_set_coef (expr, subscript, -1);
1729
1730 ppl_set_inhomogeneous (expr, int_cst_value (high));
1731
1732 ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1733 ppl_Polyhedron_add_constraint (accesses, cstr);
1734 ppl_delete_Linear_Expression (expr);
1735 ppl_delete_Constraint (cstr);
1736 }
1737 }
1738 }
1739
1740 /* Build data accesses for DR in PBB. */
1741
1742 static void
1743 build_poly_dr (data_reference_p dr, poly_bb_p pbb)
1744 {
1745 ppl_Polyhedron_t accesses;
1746 ppl_Pointset_Powerset_C_Polyhedron_t accesses_ps;
1747 ppl_dimension_type dom_nb_dims;
1748 ppl_dimension_type accessp_nb_dims;
1749 int dr_base_object_set;
1750
1751 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb),
1752 &dom_nb_dims);
1753 accessp_nb_dims = dom_nb_dims + 1 + DR_NUM_DIMENSIONS (dr);
1754
1755 ppl_new_C_Polyhedron_from_space_dimension (&accesses, accessp_nb_dims, 0);
1756
1757 pdr_add_alias_set (accesses, dr, accessp_nb_dims, dom_nb_dims);
1758 pdr_add_memory_accesses (accesses, dr, accessp_nb_dims, dom_nb_dims, pbb);
1759 pdr_add_data_dimensions (accesses, dr, accessp_nb_dims, dom_nb_dims);
1760
1761 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&accesses_ps,
1762 accesses);
1763 ppl_delete_Polyhedron (accesses);
1764
1765 if (dr->aux)
1766 dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
1767
1768 new_poly_dr (pbb, dr_base_object_set, accesses_ps, DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
1769 dr, DR_NUM_DIMENSIONS (dr));
1770 }
1771
1772 /* Write to FILE the alias graph of data references in DIMACS format. */
1773
1774 static inline bool
1775 write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
1776 VEC (data_reference_p, heap) *drs)
1777 {
1778 int num_vertex = VEC_length (data_reference_p, drs);
1779 int edge_num = 0;
1780 data_reference_p dr1, dr2;
1781 int i, j;
1782
1783 if (num_vertex == 0)
1784 return true;
1785
1786 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1787 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1788 if (dr_may_alias_p (dr1, dr2))
1789 edge_num++;
1790
1791 fprintf (file, "$\n");
1792
1793 if (comment)
1794 fprintf (file, "c %s\n", comment);
1795
1796 fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
1797
1798 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1799 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1800 if (dr_may_alias_p (dr1, dr2))
1801 fprintf (file, "e %d %d\n", i + 1, j + 1);
1802
1803 return true;
1804 }
1805
1806 /* Write to FILE the alias graph of data references in DOT format. */
1807
1808 static inline bool
1809 write_alias_graph_to_ascii_dot (FILE *file, char *comment,
1810 VEC (data_reference_p, heap) *drs)
1811 {
1812 int num_vertex = VEC_length (data_reference_p, drs);
1813 data_reference_p dr1, dr2;
1814 int i, j;
1815
1816 if (num_vertex == 0)
1817 return true;
1818
1819 fprintf (file, "$\n");
1820
1821 if (comment)
1822 fprintf (file, "c %s\n", comment);
1823
1824 /* First print all the vertices. */
1825 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1826 fprintf (file, "n%d;\n", i);
1827
1828 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1829 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1830 if (dr_may_alias_p (dr1, dr2))
1831 fprintf (file, "n%d n%d\n", i, j);
1832
1833 return true;
1834 }
1835
1836 /* Write to FILE the alias graph of data references in ECC format. */
1837
1838 static inline bool
1839 write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
1840 VEC (data_reference_p, heap) *drs)
1841 {
1842 int num_vertex = VEC_length (data_reference_p, drs);
1843 data_reference_p dr1, dr2;
1844 int i, j;
1845
1846 if (num_vertex == 0)
1847 return true;
1848
1849 fprintf (file, "$\n");
1850
1851 if (comment)
1852 fprintf (file, "c %s\n", comment);
1853
1854 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1855 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1856 if (dr_may_alias_p (dr1, dr2))
1857 fprintf (file, "%d %d\n", i, j);
1858
1859 return true;
1860 }
1861
1862 /* Check if DR1 and DR2 are in the same object set. */
1863
1864 static bool
1865 dr_same_base_object_p (const struct data_reference *dr1,
1866 const struct data_reference *dr2)
1867 {
1868 return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
1869 }
1870
1871 /* Uses DFS component number as representative of alias-sets. Also tests for
1872 optimality by verifying if every connected component is a clique. Returns
1873 true (1) if the above test is true, and false (0) otherwise. */
1874
1875 static int
1876 build_alias_set_optimal_p (VEC (data_reference_p, heap) *drs)
1877 {
1878 int num_vertices = VEC_length (data_reference_p, drs);
1879 struct graph *g = new_graph (num_vertices);
1880 data_reference_p dr1, dr2;
1881 int i, j;
1882 int num_connected_components;
1883 int v_indx1, v_indx2, num_vertices_in_component;
1884 int *all_vertices;
1885 int *vertices;
1886 struct graph_edge *e;
1887 int this_component_is_clique;
1888 int all_components_are_cliques = 1;
1889
1890 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1891 for (j = i+1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1892 if (dr_may_alias_p (dr1, dr2))
1893 {
1894 add_edge (g, i, j);
1895 add_edge (g, j, i);
1896 }
1897
1898 all_vertices = XNEWVEC (int, num_vertices);
1899 vertices = XNEWVEC (int, num_vertices);
1900 for (i = 0; i < num_vertices; i++)
1901 all_vertices[i] = i;
1902
1903 num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
1904 NULL, true, NULL);
1905 for (i = 0; i < g->n_vertices; i++)
1906 {
1907 data_reference_p dr = VEC_index (data_reference_p, drs, i);
1908 base_alias_pair *bap;
1909
1910 if (dr->aux)
1911 bap = (base_alias_pair *)(dr->aux);
1912
1913 bap->alias_set = XNEW (int);
1914 *(bap->alias_set) = g->vertices[i].component + 1;
1915 }
1916
1917 /* Verify if the DFS numbering results in optimal solution. */
1918 for (i = 0; i < num_connected_components; i++)
1919 {
1920 num_vertices_in_component = 0;
1921 /* Get all vertices whose DFS component number is the same as i. */
1922 for (j = 0; j < num_vertices; j++)
1923 if (g->vertices[j].component == i)
1924 vertices[num_vertices_in_component++] = j;
1925
1926 /* Now test if the vertices in 'vertices' form a clique, by testing
1927 for edges among each pair. */
1928 this_component_is_clique = 1;
1929 for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
1930 {
1931 for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
1932 {
1933 /* Check if the two vertices are connected by iterating
1934 through all the edges which have one of these are source. */
1935 e = g->vertices[vertices[v_indx2]].pred;
1936 while (e)
1937 {
1938 if (e->src == vertices[v_indx1])
1939 break;
1940 e = e->pred_next;
1941 }
1942 if (!e)
1943 {
1944 this_component_is_clique = 0;
1945 break;
1946 }
1947 }
1948 if (!this_component_is_clique)
1949 all_components_are_cliques = 0;
1950 }
1951 }
1952
1953 free (all_vertices);
1954 free (vertices);
1955 free_graph (g);
1956 return all_components_are_cliques;
1957 }
1958
1959 /* Group each data reference in DRS with it's base object set num. */
1960
1961 static void
1962 build_base_obj_set_for_drs (VEC (data_reference_p, heap) *drs)
1963 {
1964 int num_vertex = VEC_length (data_reference_p, drs);
1965 struct graph *g = new_graph (num_vertex);
1966 data_reference_p dr1, dr2;
1967 int i, j;
1968 int *queue;
1969
1970 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1971 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1972 if (dr_same_base_object_p (dr1, dr2))
1973 {
1974 add_edge (g, i, j);
1975 add_edge (g, j, i);
1976 }
1977
1978 queue = XNEWVEC (int, num_vertex);
1979 for (i = 0; i < num_vertex; i++)
1980 queue[i] = i;
1981
1982 graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
1983
1984 for (i = 0; i < g->n_vertices; i++)
1985 {
1986 data_reference_p dr = VEC_index (data_reference_p, drs, i);
1987 base_alias_pair *bap;
1988
1989 if (dr->aux)
1990 bap = (base_alias_pair *)(dr->aux);
1991
1992 bap->base_obj_set = g->vertices[i].component + 1;
1993 }
1994
1995 free (queue);
1996 free_graph (g);
1997 }
1998
1999 /* Build the data references for PBB. */
2000
2001 static void
2002 build_pbb_drs (poly_bb_p pbb)
2003 {
2004 int j;
2005 data_reference_p dr;
2006 VEC (data_reference_p, heap) *gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
2007
2008 for (j = 0; VEC_iterate (data_reference_p, gbb_drs, j, dr); j++)
2009 build_poly_dr (dr, pbb);
2010 }
2011
2012 /* Dump to file the alias graphs for the data references in DRS. */
2013
2014 static void
2015 dump_alias_graphs (VEC (data_reference_p, heap) *drs)
2016 {
2017 char comment[100];
2018 FILE *file_dimacs, *file_ecc, *file_dot;
2019
2020 file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
2021 if (file_dimacs)
2022 {
2023 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
2024 current_function_name ());
2025 write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
2026 fclose (file_dimacs);
2027 }
2028
2029 file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
2030 if (file_ecc)
2031 {
2032 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
2033 current_function_name ());
2034 write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
2035 fclose (file_ecc);
2036 }
2037
2038 file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
2039 if (file_dot)
2040 {
2041 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
2042 current_function_name ());
2043 write_alias_graph_to_ascii_dot (file_dot, comment, drs);
2044 fclose (file_dot);
2045 }
2046 }
2047
2048 /* Build data references in SCOP. */
2049
2050 static void
2051 build_scop_drs (scop_p scop)
2052 {
2053 int i, j;
2054 poly_bb_p pbb;
2055 data_reference_p dr;
2056 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
2057
2058 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
2059 for (j = 0; VEC_iterate (data_reference_p,
2060 GBB_DATA_REFS (PBB_BLACK_BOX (pbb)), j, dr); j++)
2061 VEC_safe_push (data_reference_p, heap, drs, dr);
2062
2063 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr); i++)
2064 dr->aux = XNEW (base_alias_pair);
2065
2066 if (!build_alias_set_optimal_p (drs))
2067 {
2068 /* TODO: Add support when building alias set is not optimal. */
2069 ;
2070 }
2071
2072 build_base_obj_set_for_drs (drs);
2073
2074 /* When debugging, enable the following code. This cannot be used
2075 in production compilers. */
2076 if (0)
2077 dump_alias_graphs (drs);
2078
2079 VEC_free (data_reference_p, heap, drs);
2080
2081 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
2082 build_pbb_drs (pbb);
2083 }
2084
2085 /* Return a gsi at the position of the phi node STMT. */
2086
2087 static gimple_stmt_iterator
2088 gsi_for_phi_node (gimple stmt)
2089 {
2090 gimple_stmt_iterator psi;
2091 basic_block bb = gimple_bb (stmt);
2092
2093 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2094 if (stmt == gsi_stmt (psi))
2095 return psi;
2096
2097 gcc_unreachable ();
2098 return psi;
2099 }
2100
2101 /* Insert the assignment "RES := VAR" just after the definition of VAR. */
2102
2103 static void
2104 insert_out_of_ssa_copy (tree res, tree var)
2105 {
2106 gimple stmt;
2107 gimple_seq stmts;
2108 gimple_stmt_iterator si;
2109 gimple_stmt_iterator gsi;
2110
2111 var = force_gimple_operand (var, &stmts, true, NULL_TREE);
2112 stmt = gimple_build_assign (res, var);
2113 if (!stmts)
2114 stmts = gimple_seq_alloc ();
2115 si = gsi_last (stmts);
2116 gsi_insert_after (&si, stmt, GSI_NEW_STMT);
2117
2118 stmt = SSA_NAME_DEF_STMT (var);
2119 if (gimple_code (stmt) == GIMPLE_PHI)
2120 {
2121 gsi = gsi_after_labels (gimple_bb (stmt));
2122 gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
2123 }
2124 else
2125 {
2126 gsi = gsi_for_stmt (stmt);
2127 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
2128 }
2129 }
2130
2131 /* Insert on edge E the assignment "RES := EXPR". */
2132
2133 static void
2134 insert_out_of_ssa_copy_on_edge (edge e, tree res, tree expr)
2135 {
2136 gimple_stmt_iterator gsi;
2137 gimple_seq stmts;
2138 tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
2139 gimple stmt = gimple_build_assign (res, var);
2140
2141 if (!stmts)
2142 stmts = gimple_seq_alloc ();
2143
2144 gsi = gsi_last (stmts);
2145 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
2146 gsi_insert_seq_on_edge (e, stmts);
2147 gsi_commit_edge_inserts ();
2148 }
2149
2150 /* Creates a zero dimension array of the same type as VAR. */
2151
2152 static tree
2153 create_zero_dim_array (tree var, const char *base_name)
2154 {
2155 tree index_type = build_index_type (integer_zero_node);
2156 tree elt_type = TREE_TYPE (var);
2157 tree array_type = build_array_type (elt_type, index_type);
2158 tree base = create_tmp_var (array_type, base_name);
2159
2160 add_referenced_var (base);
2161
2162 return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
2163 NULL_TREE);
2164 }
2165
2166 /* Returns true when PHI is a loop close phi node. */
2167
2168 static bool
2169 scalar_close_phi_node_p (gimple phi)
2170 {
2171 if (gimple_code (phi) != GIMPLE_PHI
2172 || !is_gimple_reg (gimple_phi_result (phi)))
2173 return false;
2174
2175 return (gimple_phi_num_args (phi) == 1);
2176 }
2177
2178 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2179 dimension array for it. */
2180
2181 static void
2182 rewrite_close_phi_out_of_ssa (gimple_stmt_iterator *psi)
2183 {
2184 gimple phi = gsi_stmt (*psi);
2185 tree res = gimple_phi_result (phi);
2186 tree var = SSA_NAME_VAR (res);
2187 tree zero_dim_array = create_zero_dim_array (var, "Close_Phi");
2188 gimple_stmt_iterator gsi = gsi_after_labels (gimple_bb (phi));
2189 gimple stmt = gimple_build_assign (res, zero_dim_array);
2190 tree arg = gimple_phi_arg_def (phi, 0);
2191
2192 if (TREE_CODE (arg) == SSA_NAME)
2193 insert_out_of_ssa_copy (zero_dim_array, arg);
2194 else
2195 insert_out_of_ssa_copy_on_edge (single_pred_edge (gimple_bb (phi)),
2196 zero_dim_array, arg);
2197
2198 remove_phi_node (psi, false);
2199 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2200 SSA_NAME_DEF_STMT (res) = stmt;
2201 }
2202
2203 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2204 dimension array for it. */
2205
2206 static void
2207 rewrite_phi_out_of_ssa (gimple_stmt_iterator *psi)
2208 {
2209 size_t i;
2210 gimple phi = gsi_stmt (*psi);
2211 basic_block bb = gimple_bb (phi);
2212 tree res = gimple_phi_result (phi);
2213 tree var = SSA_NAME_VAR (res);
2214 tree zero_dim_array = create_zero_dim_array (var, "General_Reduction");
2215 gimple_stmt_iterator gsi;
2216 gimple stmt;
2217 gimple_seq stmts;
2218
2219 for (i = 0; i < gimple_phi_num_args (phi); i++)
2220 {
2221 tree arg = gimple_phi_arg_def (phi, i);
2222
2223 /* Try to avoid the insertion on edges as much as possible: this
2224 would avoid the insertion of code on loop latch edges, making
2225 the pattern matching of the vectorizer happy, or it would
2226 avoid the insertion of useless basic blocks. Note that it is
2227 incorrect to insert out of SSA copies close by their
2228 definition when they are more than two loop levels apart:
2229 for example, starting from a double nested loop
2230
2231 | a = ...
2232 | loop_1
2233 | loop_2
2234 | b = phi (a, c)
2235 | c = ...
2236 | end_2
2237 | end_1
2238
2239 the following transform is incorrect
2240
2241 | a = ...
2242 | Red[0] = a
2243 | loop_1
2244 | loop_2
2245 | b = Red[0]
2246 | c = ...
2247 | Red[0] = c
2248 | end_2
2249 | end_1
2250
2251 whereas inserting the copy on the incoming edge is correct
2252
2253 | a = ...
2254 | loop_1
2255 | Red[0] = a
2256 | loop_2
2257 | b = Red[0]
2258 | c = ...
2259 | Red[0] = c
2260 | end_2
2261 | end_1
2262 */
2263 if (TREE_CODE (arg) == SSA_NAME
2264 && is_gimple_reg (arg)
2265 && gimple_bb (SSA_NAME_DEF_STMT (arg))
2266 && (flow_bb_inside_loop_p (bb->loop_father,
2267 gimple_bb (SSA_NAME_DEF_STMT (arg)))
2268 || flow_bb_inside_loop_p (loop_outer (bb->loop_father),
2269 gimple_bb (SSA_NAME_DEF_STMT (arg)))))
2270 insert_out_of_ssa_copy (zero_dim_array, arg);
2271 else
2272 insert_out_of_ssa_copy_on_edge (gimple_phi_arg_edge (phi, i),
2273 zero_dim_array, arg);
2274 }
2275
2276 var = force_gimple_operand (zero_dim_array, &stmts, true, NULL_TREE);
2277
2278 if (!stmts)
2279 stmts = gimple_seq_alloc ();
2280
2281 stmt = gimple_build_assign (res, var);
2282 remove_phi_node (psi, false);
2283 SSA_NAME_DEF_STMT (res) = stmt;
2284
2285 gsi = gsi_last (stmts);
2286 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
2287
2288 gsi = gsi_after_labels (bb);
2289 gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
2290 }
2291
2292 /* Return true when DEF can be analyzed in REGION by the scalar
2293 evolution analyzer. */
2294
2295 static bool
2296 scev_analyzable_p (tree def, sese region)
2297 {
2298 gimple stmt = SSA_NAME_DEF_STMT (def);
2299 loop_p loop = loop_containing_stmt (stmt);
2300 tree scev = scalar_evolution_in_region (region, loop, def);
2301
2302 return !chrec_contains_undetermined (scev);
2303 }
2304
2305 /* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
2306 read from ZERO_DIM_ARRAY. */
2307
2308 static void
2309 rewrite_cross_bb_scalar_dependence (tree zero_dim_array, tree def, gimple use_stmt)
2310 {
2311 tree var = SSA_NAME_VAR (def);
2312 gimple name_stmt = gimple_build_assign (var, zero_dim_array);
2313 tree name = make_ssa_name (var, name_stmt);
2314 ssa_op_iter iter;
2315 use_operand_p use_p;
2316 gimple_stmt_iterator gsi;
2317
2318 gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
2319
2320 gimple_assign_set_lhs (name_stmt, name);
2321
2322 gsi = gsi_for_stmt (use_stmt);
2323 gsi_insert_before (&gsi, name_stmt, GSI_NEW_STMT);
2324
2325 FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
2326 if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
2327 replace_exp (use_p, name);
2328
2329 update_stmt (use_stmt);
2330 }
2331
2332 /* Rewrite the scalar dependences crossing the boundary of the BB
2333 containing STMT with an array. */
2334
2335 static void
2336 rewrite_cross_bb_scalar_deps (sese region, gimple_stmt_iterator *gsi)
2337 {
2338 gimple stmt = gsi_stmt (*gsi);
2339 imm_use_iterator imm_iter;
2340 tree def;
2341 basic_block def_bb;
2342 tree zero_dim_array = NULL_TREE;
2343 gimple use_stmt;
2344
2345 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2346 return;
2347
2348 def = gimple_assign_lhs (stmt);
2349 if (!is_gimple_reg (def)
2350 || scev_analyzable_p (def, region))
2351 return;
2352
2353 def_bb = gimple_bb (stmt);
2354
2355 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2356 if (def_bb != gimple_bb (use_stmt)
2357 && gimple_code (use_stmt) != GIMPLE_PHI)
2358 {
2359 if (!zero_dim_array)
2360 {
2361 zero_dim_array = create_zero_dim_array
2362 (SSA_NAME_VAR (def), "Cross_BB_scalar_dependence");
2363 insert_out_of_ssa_copy (zero_dim_array, def);
2364 gsi_next (gsi);
2365 }
2366
2367 rewrite_cross_bb_scalar_dependence (zero_dim_array, def, use_stmt);
2368 }
2369 }
2370
2371 /* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2372
2373 static void
2374 rewrite_reductions_out_of_ssa (scop_p scop)
2375 {
2376 basic_block bb;
2377 gimple_stmt_iterator psi;
2378 sese region = SCOP_REGION (scop);
2379
2380 FOR_EACH_BB (bb)
2381 if (bb_in_sese_p (bb, region))
2382 for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
2383 {
2384 if (scalar_close_phi_node_p (gsi_stmt (psi)))
2385 rewrite_close_phi_out_of_ssa (&psi);
2386 else if (reduction_phi_p (region, &psi))
2387 rewrite_phi_out_of_ssa (&psi);
2388 }
2389
2390 update_ssa (TODO_update_ssa);
2391 #ifdef ENABLE_CHECKING
2392 verify_ssa (false);
2393 verify_loop_closed_ssa ();
2394 #endif
2395
2396 FOR_EACH_BB (bb)
2397 if (bb_in_sese_p (bb, region))
2398 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
2399 rewrite_cross_bb_scalar_deps (region, &psi);
2400
2401 update_ssa (TODO_update_ssa);
2402 #ifdef ENABLE_CHECKING
2403 verify_ssa (false);
2404 verify_loop_closed_ssa ();
2405 #endif
2406 }
2407
2408 /* Returns the number of pbbs that are in loops contained in SCOP. */
2409
2410 static int
2411 nb_pbbs_in_loops (scop_p scop)
2412 {
2413 int i;
2414 poly_bb_p pbb;
2415 int res = 0;
2416
2417 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
2418 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
2419 res++;
2420
2421 return res;
2422 }
2423
2424 /* Return the number of data references in BB that write in
2425 memory. */
2426
2427 static int
2428 nb_data_writes_in_bb (basic_block bb)
2429 {
2430 int res = 0;
2431 gimple_stmt_iterator gsi;
2432
2433 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2434 if (gimple_vdef (gsi_stmt (gsi)))
2435 res++;
2436
2437 return res;
2438 }
2439
2440 /* Splits STMT out of its current BB. */
2441
2442 static basic_block
2443 split_reduction_stmt (gimple stmt)
2444 {
2445 gimple_stmt_iterator gsi;
2446 basic_block bb = gimple_bb (stmt);
2447 edge e;
2448
2449 /* Do not split basic blocks with no writes to memory: the reduction
2450 will be the only write to memory. */
2451 if (nb_data_writes_in_bb (bb) == 0)
2452 return bb;
2453
2454 split_block (bb, stmt);
2455
2456 if (gsi_one_before_end_p (gsi_start_bb (bb)))
2457 return bb;
2458
2459 gsi = gsi_last_bb (bb);
2460 gsi_prev (&gsi);
2461 e = split_block (bb, gsi_stmt (gsi));
2462
2463 return e->dest;
2464 }
2465
2466 /* Return true when stmt is a reduction operation. */
2467
2468 static inline bool
2469 is_reduction_operation_p (gimple stmt)
2470 {
2471 enum tree_code code;
2472
2473 gcc_assert (is_gimple_assign (stmt));
2474 code = gimple_assign_rhs_code (stmt);
2475
2476 return flag_associative_math
2477 && commutative_tree_code (code)
2478 && associative_tree_code (code);
2479 }
2480
2481 /* Returns true when PHI contains an argument ARG. */
2482
2483 static bool
2484 phi_contains_arg (gimple phi, tree arg)
2485 {
2486 size_t i;
2487
2488 for (i = 0; i < gimple_phi_num_args (phi); i++)
2489 if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
2490 return true;
2491
2492 return false;
2493 }
2494
2495 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2496
2497 static gimple
2498 follow_ssa_with_commutative_ops (tree arg, tree lhs)
2499 {
2500 gimple stmt;
2501
2502 if (TREE_CODE (arg) != SSA_NAME)
2503 return NULL;
2504
2505 stmt = SSA_NAME_DEF_STMT (arg);
2506
2507 if (gimple_code (stmt) == GIMPLE_NOP
2508 || gimple_code (stmt) == GIMPLE_CALL)
2509 return NULL;
2510
2511 if (gimple_code (stmt) == GIMPLE_PHI)
2512 {
2513 if (phi_contains_arg (stmt, lhs))
2514 return stmt;
2515 return NULL;
2516 }
2517
2518 if (!is_gimple_assign (stmt))
2519 return NULL;
2520
2521 if (gimple_num_ops (stmt) == 2)
2522 return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
2523
2524 if (is_reduction_operation_p (stmt))
2525 {
2526 gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
2527
2528 return res ? res :
2529 follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
2530 }
2531
2532 return NULL;
2533 }
2534
2535 /* Detect commutative and associative scalar reductions starting at
2536 the STMT. Return the phi node of the reduction cycle, or NULL. */
2537
2538 static gimple
2539 detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
2540 VEC (gimple, heap) **in,
2541 VEC (gimple, heap) **out)
2542 {
2543 gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
2544
2545 if (!phi)
2546 return NULL;
2547
2548 VEC_safe_push (gimple, heap, *in, stmt);
2549 VEC_safe_push (gimple, heap, *out, stmt);
2550 return phi;
2551 }
2552
2553 /* Detect commutative and associative scalar reductions starting at
2554 the STMT. Return the phi node of the reduction cycle, or NULL. */
2555
2556 static gimple
2557 detect_commutative_reduction_assign (gimple stmt, VEC (gimple, heap) **in,
2558 VEC (gimple, heap) **out)
2559 {
2560 tree lhs = gimple_assign_lhs (stmt);
2561
2562 if (gimple_num_ops (stmt) == 2)
2563 return detect_commutative_reduction_arg (lhs, stmt,
2564 gimple_assign_rhs1 (stmt),
2565 in, out);
2566
2567 if (is_reduction_operation_p (stmt))
2568 {
2569 gimple res = detect_commutative_reduction_arg (lhs, stmt,
2570 gimple_assign_rhs1 (stmt),
2571 in, out);
2572 return res ? res
2573 : detect_commutative_reduction_arg (lhs, stmt,
2574 gimple_assign_rhs2 (stmt),
2575 in, out);
2576 }
2577
2578 return NULL;
2579 }
2580
2581 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2582
2583 static gimple
2584 follow_inital_value_to_phi (tree arg, tree lhs)
2585 {
2586 gimple stmt;
2587
2588 if (!arg || TREE_CODE (arg) != SSA_NAME)
2589 return NULL;
2590
2591 stmt = SSA_NAME_DEF_STMT (arg);
2592
2593 if (gimple_code (stmt) == GIMPLE_PHI
2594 && phi_contains_arg (stmt, lhs))
2595 return stmt;
2596
2597 return NULL;
2598 }
2599
2600
2601 /* Return the argument of the loop PHI that is the inital value coming
2602 from outside the loop. */
2603
2604 static edge
2605 edge_initial_value_for_loop_phi (gimple phi)
2606 {
2607 size_t i;
2608
2609 for (i = 0; i < gimple_phi_num_args (phi); i++)
2610 {
2611 edge e = gimple_phi_arg_edge (phi, i);
2612
2613 if (loop_depth (e->src->loop_father)
2614 < loop_depth (e->dest->loop_father))
2615 return e;
2616 }
2617
2618 return NULL;
2619 }
2620
2621 /* Return the argument of the loop PHI that is the inital value coming
2622 from outside the loop. */
2623
2624 static tree
2625 initial_value_for_loop_phi (gimple phi)
2626 {
2627 size_t i;
2628
2629 for (i = 0; i < gimple_phi_num_args (phi); i++)
2630 {
2631 edge e = gimple_phi_arg_edge (phi, i);
2632
2633 if (loop_depth (e->src->loop_father)
2634 < loop_depth (e->dest->loop_father))
2635 return gimple_phi_arg_def (phi, i);
2636 }
2637
2638 return NULL_TREE;
2639 }
2640
2641 /* Detect commutative and associative scalar reductions starting at
2642 the loop closed phi node CLOSE_PHI. Return the phi node of the
2643 reduction cycle, or NULL. */
2644
2645 static gimple
2646 detect_commutative_reduction (gimple stmt, VEC (gimple, heap) **in,
2647 VEC (gimple, heap) **out)
2648 {
2649 if (scalar_close_phi_node_p (stmt))
2650 {
2651 tree arg = gimple_phi_arg_def (stmt, 0);
2652 gimple def, loop_phi;
2653
2654 if (TREE_CODE (arg) != SSA_NAME)
2655 return NULL;
2656
2657 def = SSA_NAME_DEF_STMT (arg);
2658 loop_phi = detect_commutative_reduction (def, in, out);
2659
2660 if (loop_phi)
2661 {
2662 tree lhs = gimple_phi_result (stmt);
2663 tree init = initial_value_for_loop_phi (loop_phi);
2664 gimple phi = follow_inital_value_to_phi (init, lhs);
2665
2666 VEC_safe_push (gimple, heap, *in, loop_phi);
2667 VEC_safe_push (gimple, heap, *out, stmt);
2668 return phi;
2669 }
2670 else
2671 return NULL;
2672 }
2673
2674 if (gimple_code (stmt) == GIMPLE_ASSIGN)
2675 return detect_commutative_reduction_assign (stmt, in, out);
2676
2677 return NULL;
2678 }
2679
2680 /* Translate the scalar reduction statement STMT to an array RED
2681 knowing that its recursive phi node is LOOP_PHI. */
2682
2683 static void
2684 translate_scalar_reduction_to_array_for_stmt (tree red, gimple stmt,
2685 gimple loop_phi)
2686 {
2687 gimple_stmt_iterator insert_gsi = gsi_after_labels (gimple_bb (loop_phi));
2688 tree res = gimple_phi_result (loop_phi);
2689 gimple assign = gimple_build_assign (res, red);
2690
2691 gsi_insert_before (&insert_gsi, assign, GSI_SAME_STMT);
2692
2693 insert_gsi = gsi_after_labels (gimple_bb (stmt));
2694 assign = gimple_build_assign (red, gimple_assign_lhs (stmt));
2695 insert_gsi = gsi_for_stmt (stmt);
2696 gsi_insert_after (&insert_gsi, assign, GSI_SAME_STMT);
2697 }
2698
2699 /* Insert the assignment "result (CLOSE_PHI) = RED". */
2700
2701 static void
2702 insert_copyout (tree red, gimple close_phi)
2703 {
2704 tree res = gimple_phi_result (close_phi);
2705 basic_block bb = gimple_bb (close_phi);
2706 gimple_stmt_iterator insert_gsi = gsi_after_labels (bb);
2707 gimple assign = gimple_build_assign (res, red);
2708
2709 gsi_insert_before (&insert_gsi, assign, GSI_SAME_STMT);
2710 }
2711
2712 /* Insert the assignment "RED = initial_value (LOOP_PHI)". */
2713
2714 static void
2715 insert_copyin (tree red, gimple loop_phi)
2716 {
2717 gimple_seq stmts;
2718 tree init = initial_value_for_loop_phi (loop_phi);
2719 tree expr = build2 (MODIFY_EXPR, TREE_TYPE (init), red, init);
2720
2721 force_gimple_operand (expr, &stmts, true, NULL);
2722 gsi_insert_seq_on_edge (edge_initial_value_for_loop_phi (loop_phi), stmts);
2723 }
2724
2725 /* Removes the PHI node and resets all the debug stmts that are using
2726 the PHI_RESULT. */
2727
2728 static void
2729 remove_phi (gimple phi)
2730 {
2731 imm_use_iterator imm_iter;
2732 tree def;
2733 use_operand_p use_p;
2734 gimple_stmt_iterator gsi;
2735 VEC (gimple, heap) *update = VEC_alloc (gimple, heap, 3);
2736 unsigned int i;
2737 gimple stmt;
2738
2739 def = PHI_RESULT (phi);
2740 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
2741 {
2742 stmt = USE_STMT (use_p);
2743
2744 if (is_gimple_debug (stmt))
2745 {
2746 gimple_debug_bind_reset_value (stmt);
2747 VEC_safe_push (gimple, heap, update, stmt);
2748 }
2749 }
2750
2751 for (i = 0; VEC_iterate (gimple, update, i, stmt); i++)
2752 update_stmt (stmt);
2753
2754 VEC_free (gimple, heap, update);
2755
2756 gsi = gsi_for_phi_node (phi);
2757 remove_phi_node (&gsi, false);
2758 }
2759
2760 /* Rewrite out of SSA the reduction described by the loop phi nodes
2761 IN, and the close phi nodes OUT. IN and OUT are structured by loop
2762 levels like this:
2763
2764 IN: stmt, loop_n, ..., loop_0
2765 OUT: stmt, close_n, ..., close_0
2766
2767 the first element is the reduction statement, and the next elements
2768 are the loop and close phi nodes of each of the outer loops. */
2769
2770 static void
2771 translate_scalar_reduction_to_array (VEC (gimple, heap) *in,
2772 VEC (gimple, heap) *out,
2773 sbitmap reductions)
2774 {
2775 unsigned int i;
2776 gimple loop_phi;
2777 tree red;
2778
2779 for (i = 0; VEC_iterate (gimple, in, i, loop_phi); i++)
2780 {
2781 gimple close_phi = VEC_index (gimple, out, i);
2782
2783 if (i == 0)
2784 {
2785 gimple stmt = loop_phi;
2786 basic_block bb = split_reduction_stmt (stmt);
2787
2788 SET_BIT (reductions, bb->index);
2789 gcc_assert (close_phi == loop_phi);
2790
2791 red = create_zero_dim_array
2792 (gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
2793 translate_scalar_reduction_to_array_for_stmt
2794 (red, stmt, VEC_index (gimple, in, 1));
2795 continue;
2796 }
2797
2798 if (i == VEC_length (gimple, in) - 1)
2799 {
2800 insert_copyout (red, close_phi);
2801 insert_copyin (red, loop_phi);
2802 }
2803
2804 remove_phi (loop_phi);
2805 remove_phi (close_phi);
2806 }
2807 }
2808
2809 /* Rewrites out of SSA a commutative reduction at CLOSE_PHI. */
2810
2811 static void
2812 rewrite_commutative_reductions_out_of_ssa_close_phi (gimple close_phi,
2813 sbitmap reductions)
2814 {
2815 VEC (gimple, heap) *in = VEC_alloc (gimple, heap, 10);
2816 VEC (gimple, heap) *out = VEC_alloc (gimple, heap, 10);
2817
2818 detect_commutative_reduction (close_phi, &in, &out);
2819 if (VEC_length (gimple, in) > 0)
2820 translate_scalar_reduction_to_array (in, out, reductions);
2821
2822 VEC_free (gimple, heap, in);
2823 VEC_free (gimple, heap, out);
2824 }
2825
2826 /* Rewrites all the commutative reductions from LOOP out of SSA. */
2827
2828 static void
2829 rewrite_commutative_reductions_out_of_ssa_loop (loop_p loop,
2830 sbitmap reductions)
2831 {
2832 gimple_stmt_iterator gsi;
2833 edge exit = single_exit (loop);
2834
2835 if (!exit)
2836 return;
2837
2838 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2839 rewrite_commutative_reductions_out_of_ssa_close_phi (gsi_stmt (gsi),
2840 reductions);
2841 }
2842
2843 /* Rewrites all the commutative reductions from SCOP out of SSA. */
2844
2845 static void
2846 rewrite_commutative_reductions_out_of_ssa (sese region, sbitmap reductions)
2847 {
2848 loop_iterator li;
2849 loop_p loop;
2850
2851 FOR_EACH_LOOP (li, loop, 0)
2852 if (loop_in_sese_p (loop, region))
2853 rewrite_commutative_reductions_out_of_ssa_loop (loop, reductions);
2854
2855 gsi_commit_edge_inserts ();
2856 update_ssa (TODO_update_ssa);
2857 #ifdef ENABLE_CHECKING
2858 verify_ssa (false);
2859 verify_loop_closed_ssa ();
2860 #endif
2861 }
2862
2863 /* A LOOP is in normal form for Graphite when it contains only one
2864 scalar phi node that defines the main induction variable of the
2865 loop, only one increment of the IV, and only one exit condition. */
2866
2867 static void
2868 graphite_loop_normal_form (loop_p loop)
2869 {
2870 struct tree_niter_desc niter;
2871 tree nit;
2872 gimple_seq stmts;
2873 edge exit = single_dom_exit (loop);
2874
2875 bool known_niter = number_of_iterations_exit (loop, exit, &niter, false);
2876
2877 /* At this point we should know the number of iterations, */
2878 gcc_assert (known_niter);
2879
2880 nit = force_gimple_operand (unshare_expr (niter.niter), &stmts, true,
2881 NULL_TREE);
2882 if (stmts)
2883 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2884
2885 loop->single_iv = canonicalize_loop_ivs (loop, &nit);
2886 }
2887
2888 /* Rewrite all the loops of SCOP in normal form: one induction
2889 variable per loop. */
2890
2891 static void
2892 scop_canonicalize_loops (scop_p scop)
2893 {
2894 loop_iterator li;
2895 loop_p loop;
2896
2897 FOR_EACH_LOOP (li, loop, 0)
2898 if (loop_in_sese_p (loop, SCOP_REGION (scop)))
2899 graphite_loop_normal_form (loop);
2900 }
2901
2902 /* Can all ivs be represented by a signed integer?
2903 As CLooG might generate negative values in its expressions, signed loop ivs
2904 are required in the backend. */
2905 static bool
2906 scop_ivs_can_be_represented (scop_p scop)
2907 {
2908 loop_iterator li;
2909 loop_p loop;
2910
2911 FOR_EACH_LOOP (li, loop, 0)
2912 {
2913 tree type;
2914 int precision;
2915
2916 if (!loop_in_sese_p (loop, SCOP_REGION (scop)))
2917 continue;
2918
2919 if (!loop->single_iv)
2920 continue;
2921
2922 type = TREE_TYPE(loop->single_iv);
2923 precision = TYPE_PRECISION (type);
2924
2925 if (TYPE_UNSIGNED (type)
2926 && precision >= TYPE_PRECISION (long_long_integer_type_node))
2927 return false;
2928 }
2929
2930 return true;
2931 }
2932
2933
2934 /* Builds the polyhedral representation for a SESE region. */
2935
2936 bool
2937 build_poly_scop (scop_p scop)
2938 {
2939 sese region = SCOP_REGION (scop);
2940 sbitmap reductions = sbitmap_alloc (last_basic_block * 2);
2941
2942 sbitmap_zero (reductions);
2943 rewrite_commutative_reductions_out_of_ssa (region, reductions);
2944 rewrite_reductions_out_of_ssa (scop);
2945 build_scop_bbs (scop, reductions);
2946 sbitmap_free (reductions);
2947
2948 /* FIXME: This restriction is needed to avoid a problem in CLooG.
2949 Once CLooG is fixed, remove this guard. Anyways, it makes no
2950 sense to optimize a scop containing only PBBs that do not belong
2951 to any loops. */
2952 if (nb_pbbs_in_loops (scop) == 0)
2953 return false;
2954
2955 scop_canonicalize_loops (scop);
2956
2957 if (!scop_ivs_can_be_represented (scop))
2958 return false;
2959
2960 build_sese_loop_nests (region);
2961 build_sese_conditions (region);
2962 find_scop_parameters (scop);
2963
2964 build_scop_iteration_domain (scop);
2965 build_scop_context (scop);
2966
2967 add_conditions_to_constraints (scop);
2968 scop_to_lst (scop);
2969 build_scop_scattering (scop);
2970 build_scop_drs (scop);
2971 POLY_SCOP_P (scop) = true;
2972
2973 return true;
2974 }
2975
2976 /* Always return false. Exercise the scop_to_clast function. */
2977
2978 void
2979 check_poly_representation (scop_p scop ATTRIBUTE_UNUSED)
2980 {
2981 #ifdef ENABLE_CHECKING
2982 cloog_prog_clast pc = scop_to_clast (scop);
2983 cloog_clast_free (pc.stmt);
2984 cloog_program_free (pc.prog);
2985 #endif
2986 }
2987 #endif