Also handle GIMPLE_CALLs in rewrite_cross_bb_scalar_deps.
[gcc.git] / gcc / graphite-sese-to-poly.c
1 /* Conversion of SESE regions to Polyhedra.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "toplev.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "tree-chrec.h"
36 #include "tree-data-ref.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "gimple.h"
43 #include "sese.h"
44
45 #ifdef HAVE_cloog
46 #include "ppl_c.h"
47 #include "graphite-ppl.h"
48 #include "graphite.h"
49 #include "graphite-poly.h"
50 #include "graphite-scop-detection.h"
51 #include "graphite-sese-to-poly.h"
52
53 /* Check if VAR is used in a phi node, that is no loop header. */
54
55 static bool
56 var_used_in_not_loop_header_phi_node (tree var)
57 {
58 imm_use_iterator imm_iter;
59 gimple stmt;
60 bool result = false;
61
62 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, var)
63 {
64 basic_block bb = gimple_bb (stmt);
65
66 if (gimple_code (stmt) == GIMPLE_PHI
67 && bb->loop_father->header != bb)
68 result = true;
69 }
70
71 return result;
72 }
73
74 /* Returns the index of the PHI argument defined in the outermost
75 loop. */
76
77 static size_t
78 phi_arg_in_outermost_loop (gimple phi)
79 {
80 loop_p loop = gimple_bb (phi)->loop_father;
81 size_t i, res = 0;
82
83 for (i = 0; i < gimple_phi_num_args (phi); i++)
84 if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
85 {
86 loop = gimple_phi_arg_edge (phi, i)->src->loop_father;
87 res = i;
88 }
89
90 return res;
91 }
92
93 /* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
94 PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
95
96 static void
97 remove_simple_copy_phi (gimple_stmt_iterator *psi)
98 {
99 gimple phi = gsi_stmt (*psi);
100 tree res = gimple_phi_result (phi);
101 size_t entry = phi_arg_in_outermost_loop (phi);
102 tree init = gimple_phi_arg_def (phi, entry);
103 gimple stmt = gimple_build_assign (res, init);
104 edge e = gimple_phi_arg_edge (phi, entry);
105
106 remove_phi_node (psi, false);
107 gsi_insert_on_edge_immediate (e, stmt);
108 SSA_NAME_DEF_STMT (res) = stmt;
109 }
110
111 /* Removes an invariant phi node at position PSI by inserting on the
112 loop ENTRY edge the assignment RES = INIT. */
113
114 static void
115 remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
116 {
117 gimple phi = gsi_stmt (*psi);
118 loop_p loop = loop_containing_stmt (phi);
119 tree res = gimple_phi_result (phi);
120 tree scev = scalar_evolution_in_region (region, loop, res);
121 size_t entry = phi_arg_in_outermost_loop (phi);
122 edge e = gimple_phi_arg_edge (phi, entry);
123 tree var;
124 gimple stmt;
125 gimple_seq stmts;
126 gimple_stmt_iterator gsi;
127
128 if (tree_contains_chrecs (scev, NULL))
129 scev = gimple_phi_arg_def (phi, entry);
130
131 var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
132 stmt = gimple_build_assign (res, var);
133 remove_phi_node (psi, false);
134
135 if (!stmts)
136 stmts = gimple_seq_alloc ();
137
138 gsi = gsi_last (stmts);
139 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
140 gsi_insert_seq_on_edge (e, stmts);
141 gsi_commit_edge_inserts ();
142 SSA_NAME_DEF_STMT (res) = stmt;
143 }
144
145 /* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
146
147 static inline bool
148 simple_copy_phi_p (gimple phi)
149 {
150 tree res;
151
152 if (gimple_phi_num_args (phi) != 2)
153 return false;
154
155 res = gimple_phi_result (phi);
156 return (res == gimple_phi_arg_def (phi, 0)
157 || res == gimple_phi_arg_def (phi, 1));
158 }
159
160 /* Returns true when the phi node at position PSI is a reduction phi
161 node in REGION. Otherwise moves the pointer PSI to the next phi to
162 be considered. */
163
164 static bool
165 reduction_phi_p (sese region, gimple_stmt_iterator *psi)
166 {
167 loop_p loop;
168 tree scev;
169 affine_iv iv;
170 gimple phi = gsi_stmt (*psi);
171 tree res = gimple_phi_result (phi);
172
173 if (!is_gimple_reg (res))
174 {
175 gsi_next (psi);
176 return false;
177 }
178
179 loop = loop_containing_stmt (phi);
180
181 if (simple_copy_phi_p (phi))
182 {
183 /* PRE introduces phi nodes like these, for an example,
184 see id-5.f in the fortran graphite testsuite:
185
186 # prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
187 */
188 remove_simple_copy_phi (psi);
189 return false;
190 }
191
192 /* Main induction variables with constant strides in LOOP are not
193 reductions. */
194 if (simple_iv (loop, loop, res, &iv, true))
195 {
196 if (integer_zerop (iv.step))
197 remove_invariant_phi (region, psi);
198 else
199 gsi_next (psi);
200
201 return false;
202 }
203
204 scev = scalar_evolution_in_region (region, loop, res);
205 if (chrec_contains_undetermined (scev))
206 return true;
207
208 if (evolution_function_is_invariant_p (scev, loop->num))
209 {
210 remove_invariant_phi (region, psi);
211 return false;
212 }
213
214 /* All the other cases are considered reductions. */
215 return true;
216 }
217
218 /* Returns true when BB will be represented in graphite. Return false
219 for the basic blocks that contain code eliminated in the code
220 generation pass: i.e. induction variables and exit conditions. */
221
222 static bool
223 graphite_stmt_p (sese region, basic_block bb,
224 VEC (data_reference_p, heap) *drs)
225 {
226 gimple_stmt_iterator gsi;
227 loop_p loop = bb->loop_father;
228
229 if (VEC_length (data_reference_p, drs) > 0)
230 return true;
231
232 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
233 {
234 gimple stmt = gsi_stmt (gsi);
235
236 switch (gimple_code (stmt))
237 {
238 case GIMPLE_DEBUG:
239 /* Control flow expressions can be ignored, as they are
240 represented in the iteration domains and will be
241 regenerated by graphite. */
242 case GIMPLE_COND:
243 case GIMPLE_GOTO:
244 case GIMPLE_SWITCH:
245 break;
246
247 case GIMPLE_ASSIGN:
248 {
249 tree var = gimple_assign_lhs (stmt);
250
251 /* We need these bbs to be able to construct the phi nodes. */
252 if (var_used_in_not_loop_header_phi_node (var))
253 return true;
254
255 var = scalar_evolution_in_region (region, loop, var);
256 if (chrec_contains_undetermined (var))
257 return true;
258
259 break;
260 }
261
262 default:
263 return true;
264 }
265 }
266
267 return false;
268 }
269
270 /* Store the GRAPHITE representation of BB. */
271
272 static gimple_bb_p
273 new_gimple_bb (basic_block bb, VEC (data_reference_p, heap) *drs)
274 {
275 struct gimple_bb *gbb;
276
277 gbb = XNEW (struct gimple_bb);
278 bb->aux = gbb;
279 GBB_BB (gbb) = bb;
280 GBB_DATA_REFS (gbb) = drs;
281 GBB_CONDITIONS (gbb) = NULL;
282 GBB_CONDITION_CASES (gbb) = NULL;
283
284 return gbb;
285 }
286
287 static void
288 free_data_refs_aux (VEC (data_reference_p, heap) *datarefs)
289 {
290 unsigned int i;
291 struct data_reference *dr;
292
293 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
294 if (dr->aux)
295 {
296 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
297
298 if (bap->alias_set)
299 free (bap->alias_set);
300
301 free (bap);
302 dr->aux = NULL;
303 }
304 }
305 /* Frees GBB. */
306
307 static void
308 free_gimple_bb (struct gimple_bb *gbb)
309 {
310 free_data_refs_aux (GBB_DATA_REFS (gbb));
311 free_data_refs (GBB_DATA_REFS (gbb));
312
313 VEC_free (gimple, heap, GBB_CONDITIONS (gbb));
314 VEC_free (gimple, heap, GBB_CONDITION_CASES (gbb));
315 GBB_BB (gbb)->aux = 0;
316 XDELETE (gbb);
317 }
318
319 /* Deletes all gimple bbs in SCOP. */
320
321 static void
322 remove_gbbs_in_scop (scop_p scop)
323 {
324 int i;
325 poly_bb_p pbb;
326
327 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
328 free_gimple_bb (PBB_BLACK_BOX (pbb));
329 }
330
331 /* Deletes all scops in SCOPS. */
332
333 void
334 free_scops (VEC (scop_p, heap) *scops)
335 {
336 int i;
337 scop_p scop;
338
339 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
340 {
341 remove_gbbs_in_scop (scop);
342 free_sese (SCOP_REGION (scop));
343 free_scop (scop);
344 }
345
346 VEC_free (scop_p, heap, scops);
347 }
348
349 /* Generates a polyhedral black box only if the bb contains interesting
350 information. */
351
352 static void
353 try_generate_gimple_bb (scop_p scop, basic_block bb, sbitmap reductions)
354 {
355 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
356 loop_p nest = outermost_loop_in_sese (SCOP_REGION (scop), bb);
357 gimple_stmt_iterator gsi;
358
359 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
360 {
361 gimple stmt = gsi_stmt (gsi);
362 if (!is_gimple_debug (stmt))
363 graphite_find_data_references_in_stmt (nest, stmt, &drs);
364 }
365
366 if (!graphite_stmt_p (SCOP_REGION (scop), bb, drs))
367 free_data_refs (drs);
368 else
369 new_poly_bb (scop, new_gimple_bb (bb, drs), TEST_BIT (reductions,
370 bb->index));
371 }
372
373 /* Returns true if all predecessors of BB, that are not dominated by BB, are
374 marked in MAP. The predecessors dominated by BB are loop latches and will
375 be handled after BB. */
376
377 static bool
378 all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
379 {
380 edge e;
381 edge_iterator ei;
382
383 FOR_EACH_EDGE (e, ei, bb->preds)
384 if (!TEST_BIT (map, e->src->index)
385 && !dominated_by_p (CDI_DOMINATORS, e->src, bb))
386 return false;
387
388 return true;
389 }
390
391 /* Compare the depth of two basic_block's P1 and P2. */
392
393 static int
394 compare_bb_depths (const void *p1, const void *p2)
395 {
396 const_basic_block const bb1 = *(const_basic_block const*)p1;
397 const_basic_block const bb2 = *(const_basic_block const*)p2;
398 int d1 = loop_depth (bb1->loop_father);
399 int d2 = loop_depth (bb2->loop_father);
400
401 if (d1 < d2)
402 return 1;
403
404 if (d1 > d2)
405 return -1;
406
407 return 0;
408 }
409
410 /* Sort the basic blocks from DOM such that the first are the ones at
411 a deepest loop level. */
412
413 static void
414 graphite_sort_dominated_info (VEC (basic_block, heap) *dom)
415 {
416 size_t len = VEC_length (basic_block, dom);
417
418 qsort (VEC_address (basic_block, dom), len, sizeof (basic_block),
419 compare_bb_depths);
420 }
421
422 /* Recursive helper function for build_scops_bbs. */
423
424 static void
425 build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb, sbitmap reductions)
426 {
427 sese region = SCOP_REGION (scop);
428 VEC (basic_block, heap) *dom;
429
430 if (TEST_BIT (visited, bb->index)
431 || !bb_in_sese_p (bb, region))
432 return;
433
434 try_generate_gimple_bb (scop, bb, reductions);
435 SET_BIT (visited, bb->index);
436
437 dom = get_dominated_by (CDI_DOMINATORS, bb);
438
439 if (dom == NULL)
440 return;
441
442 graphite_sort_dominated_info (dom);
443
444 while (!VEC_empty (basic_block, dom))
445 {
446 int i;
447 basic_block dom_bb;
448
449 for (i = 0; VEC_iterate (basic_block, dom, i, dom_bb); i++)
450 if (all_non_dominated_preds_marked_p (dom_bb, visited))
451 {
452 build_scop_bbs_1 (scop, visited, dom_bb, reductions);
453 VEC_unordered_remove (basic_block, dom, i);
454 break;
455 }
456 }
457
458 VEC_free (basic_block, heap, dom);
459 }
460
461 /* Gather the basic blocks belonging to the SCOP. */
462
463 void
464 build_scop_bbs (scop_p scop, sbitmap reductions)
465 {
466 sbitmap visited = sbitmap_alloc (last_basic_block);
467 sese region = SCOP_REGION (scop);
468
469 sbitmap_zero (visited);
470 build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region), reductions);
471 sbitmap_free (visited);
472 }
473
474 /* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
475 We generate SCATTERING_DIMENSIONS scattering dimensions.
476
477 CLooG 0.15.0 and previous versions require, that all
478 scattering functions of one CloogProgram have the same number of
479 scattering dimensions, therefore we allow to specify it. This
480 should be removed in future versions of CLooG.
481
482 The scattering polyhedron consists of these dimensions: scattering,
483 loop_iterators, parameters.
484
485 Example:
486
487 | scattering_dimensions = 5
488 | used_scattering_dimensions = 3
489 | nb_iterators = 1
490 | scop_nb_params = 2
491 |
492 | Schedule:
493 | i
494 | 4 5
495 |
496 | Scattering polyhedron:
497 |
498 | scattering: {s1, s2, s3, s4, s5}
499 | loop_iterators: {i}
500 | parameters: {p1, p2}
501 |
502 | s1 s2 s3 s4 s5 i p1 p2 1
503 | 1 0 0 0 0 0 0 0 -4 = 0
504 | 0 1 0 0 0 -1 0 0 0 = 0
505 | 0 0 1 0 0 0 0 0 -5 = 0 */
506
507 static void
508 build_pbb_scattering_polyhedrons (ppl_Linear_Expression_t static_schedule,
509 poly_bb_p pbb, int scattering_dimensions)
510 {
511 int i;
512 scop_p scop = PBB_SCOP (pbb);
513 int nb_iterators = pbb_dim_iter_domain (pbb);
514 int used_scattering_dimensions = nb_iterators * 2 + 1;
515 int nb_params = scop_nb_params (scop);
516 ppl_Coefficient_t c;
517 ppl_dimension_type dim = scattering_dimensions + nb_iterators + nb_params;
518 mpz_t v;
519
520 gcc_assert (scattering_dimensions >= used_scattering_dimensions);
521
522 mpz_init (v);
523 ppl_new_Coefficient (&c);
524 PBB_TRANSFORMED (pbb) = poly_scattering_new ();
525 ppl_new_C_Polyhedron_from_space_dimension
526 (&PBB_TRANSFORMED_SCATTERING (pbb), dim, 0);
527
528 PBB_NB_SCATTERING_TRANSFORM (pbb) = scattering_dimensions;
529
530 for (i = 0; i < scattering_dimensions; i++)
531 {
532 ppl_Constraint_t cstr;
533 ppl_Linear_Expression_t expr;
534
535 ppl_new_Linear_Expression_with_dimension (&expr, dim);
536 mpz_set_si (v, 1);
537 ppl_assign_Coefficient_from_mpz_t (c, v);
538 ppl_Linear_Expression_add_to_coefficient (expr, i, c);
539
540 /* Textual order inside this loop. */
541 if ((i % 2) == 0)
542 {
543 ppl_Linear_Expression_coefficient (static_schedule, i / 2, c);
544 ppl_Coefficient_to_mpz_t (c, v);
545 mpz_neg (v, v);
546 ppl_assign_Coefficient_from_mpz_t (c, v);
547 ppl_Linear_Expression_add_to_inhomogeneous (expr, c);
548 }
549
550 /* Iterations of this loop. */
551 else /* if ((i % 2) == 1) */
552 {
553 int loop = (i - 1) / 2;
554
555 mpz_set_si (v, -1);
556 ppl_assign_Coefficient_from_mpz_t (c, v);
557 ppl_Linear_Expression_add_to_coefficient
558 (expr, scattering_dimensions + loop, c);
559 }
560
561 ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
562 ppl_Polyhedron_add_constraint (PBB_TRANSFORMED_SCATTERING (pbb), cstr);
563 ppl_delete_Linear_Expression (expr);
564 ppl_delete_Constraint (cstr);
565 }
566
567 mpz_clear (v);
568 ppl_delete_Coefficient (c);
569
570 PBB_ORIGINAL (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
571 }
572
573 /* Build for BB the static schedule.
574
575 The static schedule is a Dewey numbering of the abstract syntax
576 tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
577
578 The following example informally defines the static schedule:
579
580 A
581 for (i: ...)
582 {
583 for (j: ...)
584 {
585 B
586 C
587 }
588
589 for (k: ...)
590 {
591 D
592 E
593 }
594 }
595 F
596
597 Static schedules for A to F:
598
599 DEPTH
600 0 1 2
601 A 0
602 B 1 0 0
603 C 1 0 1
604 D 1 1 0
605 E 1 1 1
606 F 2
607 */
608
609 static void
610 build_scop_scattering (scop_p scop)
611 {
612 int i;
613 poly_bb_p pbb;
614 gimple_bb_p previous_gbb = NULL;
615 ppl_Linear_Expression_t static_schedule;
616 ppl_Coefficient_t c;
617 mpz_t v;
618
619 mpz_init (v);
620 ppl_new_Coefficient (&c);
621 ppl_new_Linear_Expression (&static_schedule);
622
623 /* We have to start schedules at 0 on the first component and
624 because we cannot compare_prefix_loops against a previous loop,
625 prefix will be equal to zero, and that index will be
626 incremented before copying. */
627 mpz_set_si (v, -1);
628 ppl_assign_Coefficient_from_mpz_t (c, v);
629 ppl_Linear_Expression_add_to_coefficient (static_schedule, 0, c);
630
631 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
632 {
633 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
634 ppl_Linear_Expression_t common;
635 int prefix;
636 int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
637
638 if (previous_gbb)
639 prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
640 else
641 prefix = 0;
642
643 previous_gbb = gbb;
644 ppl_new_Linear_Expression_with_dimension (&common, prefix + 1);
645 ppl_assign_Linear_Expression_from_Linear_Expression (common,
646 static_schedule);
647
648 mpz_set_si (v, 1);
649 ppl_assign_Coefficient_from_mpz_t (c, v);
650 ppl_Linear_Expression_add_to_coefficient (common, prefix, c);
651 ppl_assign_Linear_Expression_from_Linear_Expression (static_schedule,
652 common);
653
654 build_pbb_scattering_polyhedrons (common, pbb, nb_scat_dims);
655
656 ppl_delete_Linear_Expression (common);
657 }
658
659 mpz_clear (v);
660 ppl_delete_Coefficient (c);
661 ppl_delete_Linear_Expression (static_schedule);
662 }
663
664 /* Add the value K to the dimension D of the linear expression EXPR. */
665
666 static void
667 add_value_to_dim (ppl_dimension_type d, ppl_Linear_Expression_t expr,
668 mpz_t k)
669 {
670 mpz_t val;
671 ppl_Coefficient_t coef;
672
673 ppl_new_Coefficient (&coef);
674 ppl_Linear_Expression_coefficient (expr, d, coef);
675 mpz_init (val);
676 ppl_Coefficient_to_mpz_t (coef, val);
677
678 mpz_add (val, val, k);
679
680 ppl_assign_Coefficient_from_mpz_t (coef, val);
681 ppl_Linear_Expression_add_to_coefficient (expr, d, coef);
682 mpz_clear (val);
683 ppl_delete_Coefficient (coef);
684 }
685
686 /* In the context of scop S, scan E, the right hand side of a scalar
687 evolution function in loop VAR, and translate it to a linear
688 expression EXPR. */
689
690 static void
691 scan_tree_for_params_right_scev (sese s, tree e, int var,
692 ppl_Linear_Expression_t expr)
693 {
694 if (expr)
695 {
696 loop_p loop = get_loop (var);
697 ppl_dimension_type l = sese_loop_depth (s, loop) - 1;
698 mpz_t val;
699
700 /* Scalar evolutions should happen in the sese region. */
701 gcc_assert (sese_loop_depth (s, loop) > 0);
702
703 /* We can not deal with parametric strides like:
704
705 | p = parameter;
706 |
707 | for i:
708 | a [i * p] = ... */
709 gcc_assert (TREE_CODE (e) == INTEGER_CST);
710
711 mpz_init (val);
712 mpz_set_si (val, int_cst_value (e));
713 add_value_to_dim (l, expr, val);
714 mpz_clear (val);
715 }
716 }
717
718 /* Scan the integer constant CST, and add it to the inhomogeneous part of the
719 linear expression EXPR. K is the multiplier of the constant. */
720
721 static void
722 scan_tree_for_params_int (tree cst, ppl_Linear_Expression_t expr, mpz_t k)
723 {
724 mpz_t val;
725 ppl_Coefficient_t coef;
726 int v = int_cst_value (cst);
727
728 mpz_init (val);
729 mpz_set_si (val, 0);
730
731 /* Necessary to not get "-1 = 2^n - 1". */
732 if (v < 0)
733 mpz_sub_ui (val, val, -v);
734 else
735 mpz_add_ui (val, val, v);
736
737 mpz_mul (val, val, k);
738 ppl_new_Coefficient (&coef);
739 ppl_assign_Coefficient_from_mpz_t (coef, val);
740 ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
741 mpz_clear (val);
742 ppl_delete_Coefficient (coef);
743 }
744
745 /* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
746 Otherwise returns -1. */
747
748 static inline int
749 parameter_index_in_region_1 (tree name, sese region)
750 {
751 int i;
752 tree p;
753
754 gcc_assert (TREE_CODE (name) == SSA_NAME);
755
756 for (i = 0; VEC_iterate (tree, SESE_PARAMS (region), i, p); i++)
757 if (p == name)
758 return i;
759
760 return -1;
761 }
762
763 /* When the parameter NAME is in REGION, returns its index in
764 SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
765 and returns the index of NAME. */
766
767 static int
768 parameter_index_in_region (tree name, sese region)
769 {
770 int i;
771
772 gcc_assert (TREE_CODE (name) == SSA_NAME);
773
774 i = parameter_index_in_region_1 (name, region);
775 if (i != -1)
776 return i;
777
778 gcc_assert (SESE_ADD_PARAMS (region));
779
780 i = VEC_length (tree, SESE_PARAMS (region));
781 VEC_safe_push (tree, heap, SESE_PARAMS (region), name);
782 return i;
783 }
784
785 /* In the context of sese S, scan the expression E and translate it to
786 a linear expression C. When parsing a symbolic multiplication, K
787 represents the constant multiplier of an expression containing
788 parameters. */
789
790 static void
791 scan_tree_for_params (sese s, tree e, ppl_Linear_Expression_t c,
792 mpz_t k)
793 {
794 if (e == chrec_dont_know)
795 return;
796
797 switch (TREE_CODE (e))
798 {
799 case POLYNOMIAL_CHREC:
800 scan_tree_for_params_right_scev (s, CHREC_RIGHT (e),
801 CHREC_VARIABLE (e), c);
802 scan_tree_for_params (s, CHREC_LEFT (e), c, k);
803 break;
804
805 case MULT_EXPR:
806 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
807 {
808 if (c)
809 {
810 mpz_t val;
811 gcc_assert (host_integerp (TREE_OPERAND (e, 1), 0));
812 mpz_init (val);
813 mpz_set_si (val, int_cst_value (TREE_OPERAND (e, 1)));
814 mpz_mul (val, val, k);
815 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, val);
816 mpz_clear (val);
817 }
818 else
819 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
820 }
821 else
822 {
823 if (c)
824 {
825 mpz_t val;
826 gcc_assert (host_integerp (TREE_OPERAND (e, 0), 0));
827 mpz_init (val);
828 mpz_set_si (val, int_cst_value (TREE_OPERAND (e, 0)));
829 mpz_mul (val, val, k);
830 scan_tree_for_params (s, TREE_OPERAND (e, 1), c, val);
831 mpz_clear (val);
832 }
833 else
834 scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
835 }
836 break;
837
838 case PLUS_EXPR:
839 case POINTER_PLUS_EXPR:
840 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
841 scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
842 break;
843
844 case MINUS_EXPR:
845 {
846 ppl_Linear_Expression_t tmp_expr = NULL;
847
848 if (c)
849 {
850 ppl_dimension_type dim;
851 ppl_Linear_Expression_space_dimension (c, &dim);
852 ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
853 }
854
855 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
856 scan_tree_for_params (s, TREE_OPERAND (e, 1), tmp_expr, k);
857
858 if (c)
859 {
860 ppl_subtract_Linear_Expression_from_Linear_Expression (c,
861 tmp_expr);
862 ppl_delete_Linear_Expression (tmp_expr);
863 }
864
865 break;
866 }
867
868 case NEGATE_EXPR:
869 {
870 ppl_Linear_Expression_t tmp_expr = NULL;
871
872 if (c)
873 {
874 ppl_dimension_type dim;
875 ppl_Linear_Expression_space_dimension (c, &dim);
876 ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
877 }
878
879 scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
880
881 if (c)
882 {
883 ppl_subtract_Linear_Expression_from_Linear_Expression (c,
884 tmp_expr);
885 ppl_delete_Linear_Expression (tmp_expr);
886 }
887
888 break;
889 }
890
891 case BIT_NOT_EXPR:
892 {
893 ppl_Linear_Expression_t tmp_expr = NULL;
894
895 if (c)
896 {
897 ppl_dimension_type dim;
898 ppl_Linear_Expression_space_dimension (c, &dim);
899 ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
900 }
901
902 scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
903
904 if (c)
905 {
906 ppl_Coefficient_t coef;
907 mpz_t minus_one;
908
909 ppl_subtract_Linear_Expression_from_Linear_Expression (c,
910 tmp_expr);
911 ppl_delete_Linear_Expression (tmp_expr);
912 mpz_init (minus_one);
913 mpz_set_si (minus_one, -1);
914 ppl_new_Coefficient_from_mpz_t (&coef, minus_one);
915 ppl_Linear_Expression_add_to_inhomogeneous (c, coef);
916 mpz_clear (minus_one);
917 ppl_delete_Coefficient (coef);
918 }
919
920 break;
921 }
922
923 case SSA_NAME:
924 {
925 ppl_dimension_type p = parameter_index_in_region (e, s);
926
927 if (c)
928 {
929 ppl_dimension_type dim;
930 ppl_Linear_Expression_space_dimension (c, &dim);
931 p += dim - sese_nb_params (s);
932 add_value_to_dim (p, c, k);
933 }
934 break;
935 }
936
937 case INTEGER_CST:
938 if (c)
939 scan_tree_for_params_int (e, c, k);
940 break;
941
942 CASE_CONVERT:
943 case NON_LVALUE_EXPR:
944 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
945 break;
946
947 default:
948 gcc_unreachable ();
949 break;
950 }
951 }
952
953 /* Find parameters with respect to REGION in BB. We are looking in memory
954 access functions, conditions and loop bounds. */
955
956 static void
957 find_params_in_bb (sese region, gimple_bb_p gbb)
958 {
959 int i;
960 unsigned j;
961 data_reference_p dr;
962 gimple stmt;
963 loop_p loop = GBB_BB (gbb)->loop_father;
964 mpz_t one;
965
966 mpz_init (one);
967 mpz_set_si (one, 1);
968
969 /* Find parameters in the access functions of data references. */
970 for (i = 0; VEC_iterate (data_reference_p, GBB_DATA_REFS (gbb), i, dr); i++)
971 for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
972 scan_tree_for_params (region, DR_ACCESS_FN (dr, j), NULL, one);
973
974 /* Find parameters in conditional statements. */
975 for (i = 0; VEC_iterate (gimple, GBB_CONDITIONS (gbb), i, stmt); i++)
976 {
977 tree lhs = scalar_evolution_in_region (region, loop,
978 gimple_cond_lhs (stmt));
979 tree rhs = scalar_evolution_in_region (region, loop,
980 gimple_cond_rhs (stmt));
981
982 scan_tree_for_params (region, lhs, NULL, one);
983 scan_tree_for_params (region, rhs, NULL, one);
984 }
985
986 mpz_clear (one);
987 }
988
989 /* Record the parameters used in the SCOP. A variable is a parameter
990 in a scop if it does not vary during the execution of that scop. */
991
992 static void
993 find_scop_parameters (scop_p scop)
994 {
995 poly_bb_p pbb;
996 unsigned i;
997 sese region = SCOP_REGION (scop);
998 struct loop *loop;
999 mpz_t one;
1000
1001 mpz_init (one);
1002 mpz_set_si (one, 1);
1003
1004 /* Find the parameters used in the loop bounds. */
1005 for (i = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), i, loop); i++)
1006 {
1007 tree nb_iters = number_of_latch_executions (loop);
1008
1009 if (!chrec_contains_symbols (nb_iters))
1010 continue;
1011
1012 nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
1013 scan_tree_for_params (region, nb_iters, NULL, one);
1014 }
1015
1016 mpz_clear (one);
1017
1018 /* Find the parameters used in data accesses. */
1019 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1020 find_params_in_bb (region, PBB_BLACK_BOX (pbb));
1021
1022 scop_set_nb_params (scop, sese_nb_params (region));
1023 SESE_ADD_PARAMS (region) = false;
1024
1025 ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension
1026 (&SCOP_CONTEXT (scop), scop_nb_params (scop), 0);
1027 }
1028
1029 /* Returns a gimple_bb from BB. */
1030
1031 static inline gimple_bb_p
1032 gbb_from_bb (basic_block bb)
1033 {
1034 return (gimple_bb_p) bb->aux;
1035 }
1036
1037 /* Insert in the SCOP context constraints from the estimation of the
1038 number of iterations. UB_EXPR is a linear expression describing
1039 the number of iterations in a loop. This expression is bounded by
1040 the estimation NIT. */
1041
1042 static void
1043 add_upper_bounds_from_estimated_nit (scop_p scop, double_int nit,
1044 ppl_dimension_type dim,
1045 ppl_Linear_Expression_t ub_expr)
1046 {
1047 mpz_t val;
1048 ppl_Linear_Expression_t nb_iters_le;
1049 ppl_Polyhedron_t pol;
1050 ppl_Coefficient_t coef;
1051 ppl_Constraint_t ub;
1052
1053 ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
1054 ppl_new_C_Polyhedron_from_space_dimension (&pol, dim, 0);
1055 ppl_new_Linear_Expression_from_Linear_Expression (&nb_iters_le,
1056 ub_expr);
1057
1058 /* Construct the negated number of last iteration in VAL. */
1059 mpz_init (val);
1060 mpz_set_double_int (val, nit, false);
1061 mpz_sub_ui (val, val, 1);
1062 mpz_neg (val, val);
1063
1064 /* NB_ITERS_LE holds the number of last iteration in
1065 parametrical form. Subtract estimated number of last
1066 iteration and assert that result is not positive. */
1067 ppl_new_Coefficient_from_mpz_t (&coef, val);
1068 ppl_Linear_Expression_add_to_inhomogeneous (nb_iters_le, coef);
1069 ppl_delete_Coefficient (coef);
1070 ppl_new_Constraint (&ub, nb_iters_le,
1071 PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
1072 ppl_Polyhedron_add_constraint (pol, ub);
1073
1074 /* Remove all but last GDIM dimensions from POL to obtain
1075 only the constraints on the parameters. */
1076 {
1077 graphite_dim_t gdim = scop_nb_params (scop);
1078 ppl_dimension_type *dims = XNEWVEC (ppl_dimension_type, dim - gdim);
1079 graphite_dim_t i;
1080
1081 for (i = 0; i < dim - gdim; i++)
1082 dims[i] = i;
1083
1084 ppl_Polyhedron_remove_space_dimensions (pol, dims, dim - gdim);
1085 XDELETEVEC (dims);
1086 }
1087
1088 /* Add the constraints on the parameters to the SCoP context. */
1089 {
1090 ppl_Pointset_Powerset_C_Polyhedron_t constraints_ps;
1091
1092 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1093 (&constraints_ps, pol);
1094 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
1095 (SCOP_CONTEXT (scop), constraints_ps);
1096 ppl_delete_Pointset_Powerset_C_Polyhedron (constraints_ps);
1097 }
1098
1099 ppl_delete_Polyhedron (pol);
1100 ppl_delete_Linear_Expression (nb_iters_le);
1101 ppl_delete_Constraint (ub);
1102 mpz_clear (val);
1103 }
1104
1105 /* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
1106 the constraints for the surrounding loops. */
1107
1108 static void
1109 build_loop_iteration_domains (scop_p scop, struct loop *loop,
1110 ppl_Polyhedron_t outer_ph, int nb,
1111 ppl_Pointset_Powerset_C_Polyhedron_t *domains)
1112 {
1113 int i;
1114 ppl_Polyhedron_t ph;
1115 tree nb_iters = number_of_latch_executions (loop);
1116 ppl_dimension_type dim = nb + 1 + scop_nb_params (scop);
1117 sese region = SCOP_REGION (scop);
1118
1119 {
1120 ppl_const_Constraint_System_t pcs;
1121 ppl_dimension_type *map
1122 = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
1123
1124 ppl_new_C_Polyhedron_from_space_dimension (&ph, dim, 0);
1125 ppl_Polyhedron_get_constraints (outer_ph, &pcs);
1126 ppl_Polyhedron_add_constraints (ph, pcs);
1127
1128 for (i = 0; i < (int) nb; i++)
1129 map[i] = i;
1130 for (i = (int) nb; i < (int) dim - 1; i++)
1131 map[i] = i + 1;
1132 map[dim - 1] = nb;
1133
1134 ppl_Polyhedron_map_space_dimensions (ph, map, dim);
1135 free (map);
1136 }
1137
1138 /* 0 <= loop_i */
1139 {
1140 ppl_Constraint_t lb;
1141 ppl_Linear_Expression_t lb_expr;
1142
1143 ppl_new_Linear_Expression_with_dimension (&lb_expr, dim);
1144 ppl_set_coef (lb_expr, nb, 1);
1145 ppl_new_Constraint (&lb, lb_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1146 ppl_delete_Linear_Expression (lb_expr);
1147 ppl_Polyhedron_add_constraint (ph, lb);
1148 ppl_delete_Constraint (lb);
1149 }
1150
1151 if (TREE_CODE (nb_iters) == INTEGER_CST)
1152 {
1153 ppl_Constraint_t ub;
1154 ppl_Linear_Expression_t ub_expr;
1155
1156 ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
1157
1158 /* loop_i <= cst_nb_iters */
1159 ppl_set_coef (ub_expr, nb, -1);
1160 ppl_set_inhomogeneous_tree (ub_expr, nb_iters);
1161 ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1162 ppl_Polyhedron_add_constraint (ph, ub);
1163 ppl_delete_Linear_Expression (ub_expr);
1164 ppl_delete_Constraint (ub);
1165 }
1166 else if (!chrec_contains_undetermined (nb_iters))
1167 {
1168 mpz_t one;
1169 ppl_Constraint_t ub;
1170 ppl_Linear_Expression_t ub_expr;
1171 double_int nit;
1172
1173 mpz_init (one);
1174 mpz_set_si (one, 1);
1175 ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
1176 nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
1177 scan_tree_for_params (SCOP_REGION (scop), nb_iters, ub_expr, one);
1178 mpz_clear (one);
1179
1180 if (estimated_loop_iterations (loop, true, &nit))
1181 add_upper_bounds_from_estimated_nit (scop, nit, dim, ub_expr);
1182
1183 /* loop_i <= expr_nb_iters */
1184 ppl_set_coef (ub_expr, nb, -1);
1185 ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1186 ppl_Polyhedron_add_constraint (ph, ub);
1187 ppl_delete_Linear_Expression (ub_expr);
1188 ppl_delete_Constraint (ub);
1189 }
1190 else
1191 gcc_unreachable ();
1192
1193 if (loop->inner && loop_in_sese_p (loop->inner, region))
1194 build_loop_iteration_domains (scop, loop->inner, ph, nb + 1, domains);
1195
1196 if (nb != 0
1197 && loop->next
1198 && loop_in_sese_p (loop->next, region))
1199 build_loop_iteration_domains (scop, loop->next, outer_ph, nb, domains);
1200
1201 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1202 (&domains[loop->num], ph);
1203
1204 ppl_delete_Polyhedron (ph);
1205 }
1206
1207 /* Returns a linear expression for tree T evaluated in PBB. */
1208
1209 static ppl_Linear_Expression_t
1210 create_linear_expr_from_tree (poly_bb_p pbb, tree t)
1211 {
1212 mpz_t one;
1213 ppl_Linear_Expression_t res;
1214 ppl_dimension_type dim;
1215 sese region = SCOP_REGION (PBB_SCOP (pbb));
1216 loop_p loop = pbb_loop (pbb);
1217
1218 dim = pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
1219 ppl_new_Linear_Expression_with_dimension (&res, dim);
1220
1221 t = scalar_evolution_in_region (region, loop, t);
1222 gcc_assert (!automatically_generated_chrec_p (t));
1223
1224 mpz_init (one);
1225 mpz_set_si (one, 1);
1226 scan_tree_for_params (region, t, res, one);
1227 mpz_clear (one);
1228
1229 return res;
1230 }
1231
1232 /* Returns the ppl constraint type from the gimple tree code CODE. */
1233
1234 static enum ppl_enum_Constraint_Type
1235 ppl_constraint_type_from_tree_code (enum tree_code code)
1236 {
1237 switch (code)
1238 {
1239 /* We do not support LT and GT to be able to work with C_Polyhedron.
1240 As we work on integer polyhedron "a < b" can be expressed by
1241 "a + 1 <= b". */
1242 case LT_EXPR:
1243 case GT_EXPR:
1244 gcc_unreachable ();
1245
1246 case LE_EXPR:
1247 return PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL;
1248
1249 case GE_EXPR:
1250 return PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL;
1251
1252 case EQ_EXPR:
1253 return PPL_CONSTRAINT_TYPE_EQUAL;
1254
1255 default:
1256 gcc_unreachable ();
1257 }
1258 }
1259
1260 /* Add conditional statement STMT to PS. It is evaluated in PBB and
1261 CODE is used as the comparison operator. This allows us to invert the
1262 condition or to handle inequalities. */
1263
1264 static void
1265 add_condition_to_domain (ppl_Pointset_Powerset_C_Polyhedron_t ps, gimple stmt,
1266 poly_bb_p pbb, enum tree_code code)
1267 {
1268 mpz_t v;
1269 ppl_Coefficient_t c;
1270 ppl_Linear_Expression_t left, right;
1271 ppl_Constraint_t cstr;
1272 enum ppl_enum_Constraint_Type type;
1273
1274 left = create_linear_expr_from_tree (pbb, gimple_cond_lhs (stmt));
1275 right = create_linear_expr_from_tree (pbb, gimple_cond_rhs (stmt));
1276
1277 /* If we have < or > expressions convert them to <= or >= by adding 1 to
1278 the left or the right side of the expression. */
1279 if (code == LT_EXPR)
1280 {
1281 mpz_init (v);
1282 mpz_set_si (v, 1);
1283 ppl_new_Coefficient (&c);
1284 ppl_assign_Coefficient_from_mpz_t (c, v);
1285 ppl_Linear_Expression_add_to_inhomogeneous (left, c);
1286 ppl_delete_Coefficient (c);
1287 mpz_clear (v);
1288
1289 code = LE_EXPR;
1290 }
1291 else if (code == GT_EXPR)
1292 {
1293 mpz_init (v);
1294 mpz_set_si (v, 1);
1295 ppl_new_Coefficient (&c);
1296 ppl_assign_Coefficient_from_mpz_t (c, v);
1297 ppl_Linear_Expression_add_to_inhomogeneous (right, c);
1298 ppl_delete_Coefficient (c);
1299 mpz_clear (v);
1300
1301 code = GE_EXPR;
1302 }
1303
1304 type = ppl_constraint_type_from_tree_code (code);
1305
1306 ppl_subtract_Linear_Expression_from_Linear_Expression (left, right);
1307
1308 ppl_new_Constraint (&cstr, left, type);
1309 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (ps, cstr);
1310
1311 ppl_delete_Constraint (cstr);
1312 ppl_delete_Linear_Expression (left);
1313 ppl_delete_Linear_Expression (right);
1314 }
1315
1316 /* Add conditional statement STMT to pbb. CODE is used as the comparision
1317 operator. This allows us to invert the condition or to handle
1318 inequalities. */
1319
1320 static void
1321 add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
1322 {
1323 if (code == NE_EXPR)
1324 {
1325 ppl_Pointset_Powerset_C_Polyhedron_t left = PBB_DOMAIN (pbb);
1326 ppl_Pointset_Powerset_C_Polyhedron_t right;
1327 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1328 (&right, left);
1329 add_condition_to_domain (left, stmt, pbb, LT_EXPR);
1330 add_condition_to_domain (right, stmt, pbb, GT_EXPR);
1331 ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (left, right);
1332 ppl_delete_Pointset_Powerset_C_Polyhedron (right);
1333 }
1334 else
1335 add_condition_to_domain (PBB_DOMAIN (pbb), stmt, pbb, code);
1336 }
1337
1338 /* Add conditions to the domain of PBB. */
1339
1340 static void
1341 add_conditions_to_domain (poly_bb_p pbb)
1342 {
1343 unsigned int i;
1344 gimple stmt;
1345 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
1346
1347 if (VEC_empty (gimple, GBB_CONDITIONS (gbb)))
1348 return;
1349
1350 for (i = 0; VEC_iterate (gimple, GBB_CONDITIONS (gbb), i, stmt); i++)
1351 switch (gimple_code (stmt))
1352 {
1353 case GIMPLE_COND:
1354 {
1355 enum tree_code code = gimple_cond_code (stmt);
1356
1357 /* The conditions for ELSE-branches are inverted. */
1358 if (!VEC_index (gimple, GBB_CONDITION_CASES (gbb), i))
1359 code = invert_tree_comparison (code, false);
1360
1361 add_condition_to_pbb (pbb, stmt, code);
1362 break;
1363 }
1364
1365 case GIMPLE_SWITCH:
1366 /* Switch statements are not supported right now - fall throught. */
1367
1368 default:
1369 gcc_unreachable ();
1370 break;
1371 }
1372 }
1373
1374 /* Structure used to pass data to dom_walk. */
1375
1376 struct bsc
1377 {
1378 VEC (gimple, heap) **conditions, **cases;
1379 sese region;
1380 };
1381
1382 /* Returns a COND_EXPR statement when BB has a single predecessor, the
1383 edge between BB and its predecessor is not a loop exit edge, and
1384 the last statement of the single predecessor is a COND_EXPR. */
1385
1386 static gimple
1387 single_pred_cond_non_loop_exit (basic_block bb)
1388 {
1389 if (single_pred_p (bb))
1390 {
1391 edge e = single_pred_edge (bb);
1392 basic_block pred = e->src;
1393 gimple stmt;
1394
1395 if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
1396 return NULL;
1397
1398 stmt = last_stmt (pred);
1399
1400 if (stmt && gimple_code (stmt) == GIMPLE_COND)
1401 return stmt;
1402 }
1403
1404 return NULL;
1405 }
1406
1407 /* Call-back for dom_walk executed before visiting the dominated
1408 blocks. */
1409
1410 static void
1411 build_sese_conditions_before (struct dom_walk_data *dw_data,
1412 basic_block bb)
1413 {
1414 struct bsc *data = (struct bsc *) dw_data->global_data;
1415 VEC (gimple, heap) **conditions = data->conditions;
1416 VEC (gimple, heap) **cases = data->cases;
1417 gimple_bb_p gbb;
1418 gimple stmt;
1419
1420 if (!bb_in_sese_p (bb, data->region))
1421 return;
1422
1423 stmt = single_pred_cond_non_loop_exit (bb);
1424
1425 if (stmt)
1426 {
1427 edge e = single_pred_edge (bb);
1428
1429 VEC_safe_push (gimple, heap, *conditions, stmt);
1430
1431 if (e->flags & EDGE_TRUE_VALUE)
1432 VEC_safe_push (gimple, heap, *cases, stmt);
1433 else
1434 VEC_safe_push (gimple, heap, *cases, NULL);
1435 }
1436
1437 gbb = gbb_from_bb (bb);
1438
1439 if (gbb)
1440 {
1441 GBB_CONDITIONS (gbb) = VEC_copy (gimple, heap, *conditions);
1442 GBB_CONDITION_CASES (gbb) = VEC_copy (gimple, heap, *cases);
1443 }
1444 }
1445
1446 /* Call-back for dom_walk executed after visiting the dominated
1447 blocks. */
1448
1449 static void
1450 build_sese_conditions_after (struct dom_walk_data *dw_data,
1451 basic_block bb)
1452 {
1453 struct bsc *data = (struct bsc *) dw_data->global_data;
1454 VEC (gimple, heap) **conditions = data->conditions;
1455 VEC (gimple, heap) **cases = data->cases;
1456
1457 if (!bb_in_sese_p (bb, data->region))
1458 return;
1459
1460 if (single_pred_cond_non_loop_exit (bb))
1461 {
1462 VEC_pop (gimple, *conditions);
1463 VEC_pop (gimple, *cases);
1464 }
1465 }
1466
1467 /* Record all conditions in REGION. */
1468
1469 static void
1470 build_sese_conditions (sese region)
1471 {
1472 struct dom_walk_data walk_data;
1473 VEC (gimple, heap) *conditions = VEC_alloc (gimple, heap, 3);
1474 VEC (gimple, heap) *cases = VEC_alloc (gimple, heap, 3);
1475 struct bsc data;
1476
1477 data.conditions = &conditions;
1478 data.cases = &cases;
1479 data.region = region;
1480
1481 walk_data.dom_direction = CDI_DOMINATORS;
1482 walk_data.initialize_block_local_data = NULL;
1483 walk_data.before_dom_children = build_sese_conditions_before;
1484 walk_data.after_dom_children = build_sese_conditions_after;
1485 walk_data.global_data = &data;
1486 walk_data.block_local_data_size = 0;
1487
1488 init_walk_dominator_tree (&walk_data);
1489 walk_dominator_tree (&walk_data, SESE_ENTRY_BB (region));
1490 fini_walk_dominator_tree (&walk_data);
1491
1492 VEC_free (gimple, heap, conditions);
1493 VEC_free (gimple, heap, cases);
1494 }
1495
1496 /* Traverses all the GBBs of the SCOP and add their constraints to the
1497 iteration domains. */
1498
1499 static void
1500 add_conditions_to_constraints (scop_p scop)
1501 {
1502 int i;
1503 poly_bb_p pbb;
1504
1505 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1506 add_conditions_to_domain (pbb);
1507 }
1508
1509 /* Add constraints on the possible values of parameter P from the type
1510 of P. */
1511
1512 static void
1513 add_param_constraints (scop_p scop, ppl_Polyhedron_t context, graphite_dim_t p)
1514 {
1515 ppl_Constraint_t cstr;
1516 ppl_Linear_Expression_t le;
1517 tree parameter = VEC_index (tree, SESE_PARAMS (SCOP_REGION (scop)), p);
1518 tree type = TREE_TYPE (parameter);
1519 tree lb = NULL_TREE;
1520 tree ub = NULL_TREE;
1521
1522 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
1523 lb = lower_bound_in_type (type, type);
1524 else
1525 lb = TYPE_MIN_VALUE (type);
1526
1527 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
1528 ub = upper_bound_in_type (type, type);
1529 else
1530 ub = TYPE_MAX_VALUE (type);
1531
1532 if (lb)
1533 {
1534 ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
1535 ppl_set_coef (le, p, -1);
1536 ppl_set_inhomogeneous_tree (le, lb);
1537 ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
1538 ppl_Polyhedron_add_constraint (context, cstr);
1539 ppl_delete_Linear_Expression (le);
1540 ppl_delete_Constraint (cstr);
1541 }
1542
1543 if (ub)
1544 {
1545 ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
1546 ppl_set_coef (le, p, -1);
1547 ppl_set_inhomogeneous_tree (le, ub);
1548 ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1549 ppl_Polyhedron_add_constraint (context, cstr);
1550 ppl_delete_Linear_Expression (le);
1551 ppl_delete_Constraint (cstr);
1552 }
1553 }
1554
1555 /* Build the context of the SCOP. The context usually contains extra
1556 constraints that are added to the iteration domains that constrain
1557 some parameters. */
1558
1559 static void
1560 build_scop_context (scop_p scop)
1561 {
1562 ppl_Polyhedron_t context;
1563 ppl_Pointset_Powerset_C_Polyhedron_t ps;
1564 graphite_dim_t p, n = scop_nb_params (scop);
1565
1566 ppl_new_C_Polyhedron_from_space_dimension (&context, n, 0);
1567
1568 for (p = 0; p < n; p++)
1569 add_param_constraints (scop, context, p);
1570
1571 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1572 (&ps, context);
1573 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
1574 (SCOP_CONTEXT (scop), ps);
1575
1576 ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
1577 ppl_delete_Polyhedron (context);
1578 }
1579
1580 /* Build the iteration domains: the loops belonging to the current
1581 SCOP, and that vary for the execution of the current basic block.
1582 Returns false if there is no loop in SCOP. */
1583
1584 static void
1585 build_scop_iteration_domain (scop_p scop)
1586 {
1587 struct loop *loop;
1588 sese region = SCOP_REGION (scop);
1589 int i;
1590 ppl_Polyhedron_t ph;
1591 poly_bb_p pbb;
1592 int nb_loops = number_of_loops ();
1593 ppl_Pointset_Powerset_C_Polyhedron_t *domains
1594 = XNEWVEC (ppl_Pointset_Powerset_C_Polyhedron_t, nb_loops);
1595
1596 for (i = 0; i < nb_loops; i++)
1597 domains[i] = NULL;
1598
1599 ppl_new_C_Polyhedron_from_space_dimension (&ph, scop_nb_params (scop), 0);
1600
1601 for (i = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), i, loop); i++)
1602 if (!loop_in_sese_p (loop_outer (loop), region))
1603 build_loop_iteration_domains (scop, loop, ph, 0, domains);
1604
1605 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1606 if (domains[gbb_loop (PBB_BLACK_BOX (pbb))->num])
1607 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1608 (&PBB_DOMAIN (pbb), (ppl_const_Pointset_Powerset_C_Polyhedron_t)
1609 domains[gbb_loop (PBB_BLACK_BOX (pbb))->num]);
1610 else
1611 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1612 (&PBB_DOMAIN (pbb), ph);
1613
1614 for (i = 0; i < nb_loops; i++)
1615 if (domains[i])
1616 ppl_delete_Pointset_Powerset_C_Polyhedron (domains[i]);
1617
1618 ppl_delete_Polyhedron (ph);
1619 free (domains);
1620 }
1621
1622 /* Add a constrain to the ACCESSES polyhedron for the alias set of
1623 data reference DR. ACCESSP_NB_DIMS is the dimension of the
1624 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1625 domain. */
1626
1627 static void
1628 pdr_add_alias_set (ppl_Polyhedron_t accesses, data_reference_p dr,
1629 ppl_dimension_type accessp_nb_dims,
1630 ppl_dimension_type dom_nb_dims)
1631 {
1632 ppl_Linear_Expression_t alias;
1633 ppl_Constraint_t cstr;
1634 int alias_set_num = 0;
1635 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
1636
1637 if (bap && bap->alias_set)
1638 alias_set_num = *(bap->alias_set);
1639
1640 ppl_new_Linear_Expression_with_dimension (&alias, accessp_nb_dims);
1641
1642 ppl_set_coef (alias, dom_nb_dims, 1);
1643 ppl_set_inhomogeneous (alias, -alias_set_num);
1644 ppl_new_Constraint (&cstr, alias, PPL_CONSTRAINT_TYPE_EQUAL);
1645 ppl_Polyhedron_add_constraint (accesses, cstr);
1646
1647 ppl_delete_Linear_Expression (alias);
1648 ppl_delete_Constraint (cstr);
1649 }
1650
1651 /* Add to ACCESSES polyhedron equalities defining the access functions
1652 to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
1653 polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
1654 PBB is the poly_bb_p that contains the data reference DR. */
1655
1656 static void
1657 pdr_add_memory_accesses (ppl_Polyhedron_t accesses, data_reference_p dr,
1658 ppl_dimension_type accessp_nb_dims,
1659 ppl_dimension_type dom_nb_dims,
1660 poly_bb_p pbb)
1661 {
1662 int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
1663 mpz_t v;
1664 scop_p scop = PBB_SCOP (pbb);
1665 sese region = SCOP_REGION (scop);
1666
1667 mpz_init (v);
1668
1669 for (i = 0; i < nb_subscripts; i++)
1670 {
1671 ppl_Linear_Expression_t fn, access;
1672 ppl_Constraint_t cstr;
1673 ppl_dimension_type subscript = dom_nb_dims + 1 + i;
1674 tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
1675
1676 ppl_new_Linear_Expression_with_dimension (&fn, dom_nb_dims);
1677 ppl_new_Linear_Expression_with_dimension (&access, accessp_nb_dims);
1678
1679 mpz_set_si (v, 1);
1680 scan_tree_for_params (region, afn, fn, v);
1681 ppl_assign_Linear_Expression_from_Linear_Expression (access, fn);
1682
1683 ppl_set_coef (access, subscript, -1);
1684 ppl_new_Constraint (&cstr, access, PPL_CONSTRAINT_TYPE_EQUAL);
1685 ppl_Polyhedron_add_constraint (accesses, cstr);
1686
1687 ppl_delete_Linear_Expression (fn);
1688 ppl_delete_Linear_Expression (access);
1689 ppl_delete_Constraint (cstr);
1690 }
1691
1692 mpz_clear (v);
1693 }
1694
1695 /* Add constrains representing the size of the accessed data to the
1696 ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
1697 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1698 domain. */
1699
1700 static void
1701 pdr_add_data_dimensions (ppl_Polyhedron_t accesses, data_reference_p dr,
1702 ppl_dimension_type accessp_nb_dims,
1703 ppl_dimension_type dom_nb_dims)
1704 {
1705 tree ref = DR_REF (dr);
1706 int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
1707
1708 for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
1709 {
1710 ppl_Linear_Expression_t expr;
1711 ppl_Constraint_t cstr;
1712 ppl_dimension_type subscript = dom_nb_dims + 1 + i;
1713 tree low, high;
1714
1715 if (TREE_CODE (ref) != ARRAY_REF)
1716 break;
1717
1718 low = array_ref_low_bound (ref);
1719
1720 /* subscript - low >= 0 */
1721 if (host_integerp (low, 0))
1722 {
1723 ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
1724 ppl_set_coef (expr, subscript, 1);
1725
1726 ppl_set_inhomogeneous (expr, -int_cst_value (low));
1727
1728 ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1729 ppl_Polyhedron_add_constraint (accesses, cstr);
1730 ppl_delete_Linear_Expression (expr);
1731 ppl_delete_Constraint (cstr);
1732 }
1733
1734 high = array_ref_up_bound (ref);
1735
1736 /* high - subscript >= 0 */
1737 if (high && host_integerp (high, 0)
1738 /* 1-element arrays at end of structures may extend over
1739 their declared size. */
1740 && !(array_at_struct_end_p (ref)
1741 && operand_equal_p (low, high, 0)))
1742 {
1743 ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
1744 ppl_set_coef (expr, subscript, -1);
1745
1746 ppl_set_inhomogeneous (expr, int_cst_value (high));
1747
1748 ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1749 ppl_Polyhedron_add_constraint (accesses, cstr);
1750 ppl_delete_Linear_Expression (expr);
1751 ppl_delete_Constraint (cstr);
1752 }
1753 }
1754 }
1755
1756 /* Build data accesses for DR in PBB. */
1757
1758 static void
1759 build_poly_dr (data_reference_p dr, poly_bb_p pbb)
1760 {
1761 ppl_Polyhedron_t accesses;
1762 ppl_Pointset_Powerset_C_Polyhedron_t accesses_ps;
1763 ppl_dimension_type dom_nb_dims;
1764 ppl_dimension_type accessp_nb_dims;
1765 int dr_base_object_set;
1766
1767 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb),
1768 &dom_nb_dims);
1769 accessp_nb_dims = dom_nb_dims + 1 + DR_NUM_DIMENSIONS (dr);
1770
1771 ppl_new_C_Polyhedron_from_space_dimension (&accesses, accessp_nb_dims, 0);
1772
1773 pdr_add_alias_set (accesses, dr, accessp_nb_dims, dom_nb_dims);
1774 pdr_add_memory_accesses (accesses, dr, accessp_nb_dims, dom_nb_dims, pbb);
1775 pdr_add_data_dimensions (accesses, dr, accessp_nb_dims, dom_nb_dims);
1776
1777 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&accesses_ps,
1778 accesses);
1779 ppl_delete_Polyhedron (accesses);
1780
1781 gcc_assert (dr->aux);
1782 dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
1783
1784 new_poly_dr (pbb, dr_base_object_set, accesses_ps,
1785 DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
1786 dr, DR_NUM_DIMENSIONS (dr));
1787 }
1788
1789 /* Write to FILE the alias graph of data references in DIMACS format. */
1790
1791 static inline bool
1792 write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
1793 VEC (data_reference_p, heap) *drs)
1794 {
1795 int num_vertex = VEC_length (data_reference_p, drs);
1796 int edge_num = 0;
1797 data_reference_p dr1, dr2;
1798 int i, j;
1799
1800 if (num_vertex == 0)
1801 return true;
1802
1803 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1804 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1805 if (dr_may_alias_p (dr1, dr2))
1806 edge_num++;
1807
1808 fprintf (file, "$\n");
1809
1810 if (comment)
1811 fprintf (file, "c %s\n", comment);
1812
1813 fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
1814
1815 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1816 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1817 if (dr_may_alias_p (dr1, dr2))
1818 fprintf (file, "e %d %d\n", i + 1, j + 1);
1819
1820 return true;
1821 }
1822
1823 /* Write to FILE the alias graph of data references in DOT format. */
1824
1825 static inline bool
1826 write_alias_graph_to_ascii_dot (FILE *file, char *comment,
1827 VEC (data_reference_p, heap) *drs)
1828 {
1829 int num_vertex = VEC_length (data_reference_p, drs);
1830 data_reference_p dr1, dr2;
1831 int i, j;
1832
1833 if (num_vertex == 0)
1834 return true;
1835
1836 fprintf (file, "$\n");
1837
1838 if (comment)
1839 fprintf (file, "c %s\n", comment);
1840
1841 /* First print all the vertices. */
1842 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1843 fprintf (file, "n%d;\n", i);
1844
1845 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1846 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1847 if (dr_may_alias_p (dr1, dr2))
1848 fprintf (file, "n%d n%d\n", i, j);
1849
1850 return true;
1851 }
1852
1853 /* Write to FILE the alias graph of data references in ECC format. */
1854
1855 static inline bool
1856 write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
1857 VEC (data_reference_p, heap) *drs)
1858 {
1859 int num_vertex = VEC_length (data_reference_p, drs);
1860 data_reference_p dr1, dr2;
1861 int i, j;
1862
1863 if (num_vertex == 0)
1864 return true;
1865
1866 fprintf (file, "$\n");
1867
1868 if (comment)
1869 fprintf (file, "c %s\n", comment);
1870
1871 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1872 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1873 if (dr_may_alias_p (dr1, dr2))
1874 fprintf (file, "%d %d\n", i, j);
1875
1876 return true;
1877 }
1878
1879 /* Check if DR1 and DR2 are in the same object set. */
1880
1881 static bool
1882 dr_same_base_object_p (const struct data_reference *dr1,
1883 const struct data_reference *dr2)
1884 {
1885 return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
1886 }
1887
1888 /* Uses DFS component number as representative of alias-sets. Also tests for
1889 optimality by verifying if every connected component is a clique. Returns
1890 true (1) if the above test is true, and false (0) otherwise. */
1891
1892 static int
1893 build_alias_set_optimal_p (VEC (data_reference_p, heap) *drs)
1894 {
1895 int num_vertices = VEC_length (data_reference_p, drs);
1896 struct graph *g = new_graph (num_vertices);
1897 data_reference_p dr1, dr2;
1898 int i, j;
1899 int num_connected_components;
1900 int v_indx1, v_indx2, num_vertices_in_component;
1901 int *all_vertices;
1902 int *vertices;
1903 struct graph_edge *e;
1904 int this_component_is_clique;
1905 int all_components_are_cliques = 1;
1906
1907 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1908 for (j = i+1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1909 if (dr_may_alias_p (dr1, dr2))
1910 {
1911 add_edge (g, i, j);
1912 add_edge (g, j, i);
1913 }
1914
1915 all_vertices = XNEWVEC (int, num_vertices);
1916 vertices = XNEWVEC (int, num_vertices);
1917 for (i = 0; i < num_vertices; i++)
1918 all_vertices[i] = i;
1919
1920 num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
1921 NULL, true, NULL);
1922 for (i = 0; i < g->n_vertices; i++)
1923 {
1924 data_reference_p dr = VEC_index (data_reference_p, drs, i);
1925 base_alias_pair *bap;
1926
1927 gcc_assert (dr->aux);
1928 bap = (base_alias_pair *)(dr->aux);
1929
1930 bap->alias_set = XNEW (int);
1931 *(bap->alias_set) = g->vertices[i].component + 1;
1932 }
1933
1934 /* Verify if the DFS numbering results in optimal solution. */
1935 for (i = 0; i < num_connected_components; i++)
1936 {
1937 num_vertices_in_component = 0;
1938 /* Get all vertices whose DFS component number is the same as i. */
1939 for (j = 0; j < num_vertices; j++)
1940 if (g->vertices[j].component == i)
1941 vertices[num_vertices_in_component++] = j;
1942
1943 /* Now test if the vertices in 'vertices' form a clique, by testing
1944 for edges among each pair. */
1945 this_component_is_clique = 1;
1946 for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
1947 {
1948 for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
1949 {
1950 /* Check if the two vertices are connected by iterating
1951 through all the edges which have one of these are source. */
1952 e = g->vertices[vertices[v_indx2]].pred;
1953 while (e)
1954 {
1955 if (e->src == vertices[v_indx1])
1956 break;
1957 e = e->pred_next;
1958 }
1959 if (!e)
1960 {
1961 this_component_is_clique = 0;
1962 break;
1963 }
1964 }
1965 if (!this_component_is_clique)
1966 all_components_are_cliques = 0;
1967 }
1968 }
1969
1970 free (all_vertices);
1971 free (vertices);
1972 free_graph (g);
1973 return all_components_are_cliques;
1974 }
1975
1976 /* Group each data reference in DRS with it's base object set num. */
1977
1978 static void
1979 build_base_obj_set_for_drs (VEC (data_reference_p, heap) *drs)
1980 {
1981 int num_vertex = VEC_length (data_reference_p, drs);
1982 struct graph *g = new_graph (num_vertex);
1983 data_reference_p dr1, dr2;
1984 int i, j;
1985 int *queue;
1986
1987 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
1988 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1989 if (dr_same_base_object_p (dr1, dr2))
1990 {
1991 add_edge (g, i, j);
1992 add_edge (g, j, i);
1993 }
1994
1995 queue = XNEWVEC (int, num_vertex);
1996 for (i = 0; i < num_vertex; i++)
1997 queue[i] = i;
1998
1999 graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
2000
2001 for (i = 0; i < g->n_vertices; i++)
2002 {
2003 data_reference_p dr = VEC_index (data_reference_p, drs, i);
2004 base_alias_pair *bap;
2005
2006 gcc_assert (dr->aux);
2007 bap = (base_alias_pair *)(dr->aux);
2008
2009 bap->base_obj_set = g->vertices[i].component + 1;
2010 }
2011
2012 free (queue);
2013 free_graph (g);
2014 }
2015
2016 /* Build the data references for PBB. */
2017
2018 static void
2019 build_pbb_drs (poly_bb_p pbb)
2020 {
2021 int j;
2022 data_reference_p dr;
2023 VEC (data_reference_p, heap) *gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
2024
2025 for (j = 0; VEC_iterate (data_reference_p, gbb_drs, j, dr); j++)
2026 build_poly_dr (dr, pbb);
2027 }
2028
2029 /* Dump to file the alias graphs for the data references in DRS. */
2030
2031 static void
2032 dump_alias_graphs (VEC (data_reference_p, heap) *drs)
2033 {
2034 char comment[100];
2035 FILE *file_dimacs, *file_ecc, *file_dot;
2036
2037 file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
2038 if (file_dimacs)
2039 {
2040 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
2041 current_function_name ());
2042 write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
2043 fclose (file_dimacs);
2044 }
2045
2046 file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
2047 if (file_ecc)
2048 {
2049 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
2050 current_function_name ());
2051 write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
2052 fclose (file_ecc);
2053 }
2054
2055 file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
2056 if (file_dot)
2057 {
2058 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
2059 current_function_name ());
2060 write_alias_graph_to_ascii_dot (file_dot, comment, drs);
2061 fclose (file_dot);
2062 }
2063 }
2064
2065 /* Build data references in SCOP. */
2066
2067 static void
2068 build_scop_drs (scop_p scop)
2069 {
2070 int i, j;
2071 poly_bb_p pbb;
2072 data_reference_p dr;
2073 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
2074
2075 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
2076 for (j = 0; VEC_iterate (data_reference_p,
2077 GBB_DATA_REFS (PBB_BLACK_BOX (pbb)), j, dr); j++)
2078 VEC_safe_push (data_reference_p, heap, drs, dr);
2079
2080 for (i = 0; VEC_iterate (data_reference_p, drs, i, dr); i++)
2081 dr->aux = XNEW (base_alias_pair);
2082
2083 if (!build_alias_set_optimal_p (drs))
2084 {
2085 /* TODO: Add support when building alias set is not optimal. */
2086 ;
2087 }
2088
2089 build_base_obj_set_for_drs (drs);
2090
2091 /* When debugging, enable the following code. This cannot be used
2092 in production compilers. */
2093 if (0)
2094 dump_alias_graphs (drs);
2095
2096 VEC_free (data_reference_p, heap, drs);
2097
2098 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
2099 build_pbb_drs (pbb);
2100 }
2101
2102 /* Return a gsi at the position of the phi node STMT. */
2103
2104 static gimple_stmt_iterator
2105 gsi_for_phi_node (gimple stmt)
2106 {
2107 gimple_stmt_iterator psi;
2108 basic_block bb = gimple_bb (stmt);
2109
2110 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2111 if (stmt == gsi_stmt (psi))
2112 return psi;
2113
2114 gcc_unreachable ();
2115 return psi;
2116 }
2117
2118 /* Insert the assignment "RES := VAR" just after AFTER_STMT. */
2119
2120 static void
2121 insert_out_of_ssa_copy (tree res, tree var, gimple after_stmt)
2122 {
2123 gimple stmt;
2124 gimple_seq stmts;
2125 gimple_stmt_iterator si;
2126 gimple_stmt_iterator gsi;
2127
2128 var = force_gimple_operand (var, &stmts, true, NULL_TREE);
2129 stmt = gimple_build_assign (res, var);
2130 if (!stmts)
2131 stmts = gimple_seq_alloc ();
2132 si = gsi_last (stmts);
2133 gsi_insert_after (&si, stmt, GSI_NEW_STMT);
2134
2135 if (gimple_code (after_stmt) == GIMPLE_PHI)
2136 {
2137 gsi = gsi_after_labels (gimple_bb (after_stmt));
2138 gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
2139 }
2140 else
2141 {
2142 gsi = gsi_for_stmt (after_stmt);
2143 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
2144 }
2145 }
2146
2147 /* Insert on edge E the assignment "RES := EXPR". */
2148
2149 static void
2150 insert_out_of_ssa_copy_on_edge (edge e, tree res, tree expr)
2151 {
2152 gimple_stmt_iterator gsi;
2153 gimple_seq stmts;
2154 tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
2155 gimple stmt = gimple_build_assign (res, var);
2156
2157 if (!stmts)
2158 stmts = gimple_seq_alloc ();
2159
2160 gsi = gsi_last (stmts);
2161 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
2162 gsi_insert_seq_on_edge (e, stmts);
2163 gsi_commit_edge_inserts ();
2164 }
2165
2166 /* Creates a zero dimension array of the same type as VAR. */
2167
2168 static tree
2169 create_zero_dim_array (tree var, const char *base_name)
2170 {
2171 tree index_type = build_index_type (integer_zero_node);
2172 tree elt_type = TREE_TYPE (var);
2173 tree array_type = build_array_type (elt_type, index_type);
2174 tree base = create_tmp_var (array_type, base_name);
2175
2176 add_referenced_var (base);
2177
2178 return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
2179 NULL_TREE);
2180 }
2181
2182 /* Returns true when PHI is a loop close phi node. */
2183
2184 static bool
2185 scalar_close_phi_node_p (gimple phi)
2186 {
2187 if (gimple_code (phi) != GIMPLE_PHI
2188 || !is_gimple_reg (gimple_phi_result (phi)))
2189 return false;
2190
2191 /* Note that loop close phi nodes should have a single argument
2192 because we translated the representation into a canonical form
2193 before Graphite: see canonicalize_loop_closed_ssa_form. */
2194 return (gimple_phi_num_args (phi) == 1);
2195 }
2196
2197 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2198 dimension array for it. */
2199
2200 static void
2201 rewrite_close_phi_out_of_ssa (gimple_stmt_iterator *psi)
2202 {
2203 gimple phi = gsi_stmt (*psi);
2204 tree res = gimple_phi_result (phi);
2205 tree var = SSA_NAME_VAR (res);
2206 tree zero_dim_array = create_zero_dim_array (var, "Close_Phi");
2207 gimple_stmt_iterator gsi = gsi_after_labels (gimple_bb (phi));
2208 gimple stmt = gimple_build_assign (res, zero_dim_array);
2209 tree arg = gimple_phi_arg_def (phi, 0);
2210
2211 /* Note that loop close phi nodes should have a single argument
2212 because we translated the representation into a canonical form
2213 before Graphite: see canonicalize_loop_closed_ssa_form. */
2214 gcc_assert (gimple_phi_num_args (phi) == 1);
2215
2216 if (TREE_CODE (arg) == SSA_NAME
2217 && !SSA_NAME_IS_DEFAULT_DEF (arg))
2218 insert_out_of_ssa_copy (zero_dim_array, arg, SSA_NAME_DEF_STMT (arg));
2219 else
2220 insert_out_of_ssa_copy_on_edge (single_pred_edge (gimple_bb (phi)),
2221 zero_dim_array, arg);
2222
2223 remove_phi_node (psi, false);
2224 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2225 SSA_NAME_DEF_STMT (res) = stmt;
2226 }
2227
2228 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2229 dimension array for it. */
2230
2231 static void
2232 rewrite_phi_out_of_ssa (gimple_stmt_iterator *psi)
2233 {
2234 size_t i;
2235 gimple phi = gsi_stmt (*psi);
2236 basic_block bb = gimple_bb (phi);
2237 tree res = gimple_phi_result (phi);
2238 tree var = SSA_NAME_VAR (res);
2239 tree zero_dim_array = create_zero_dim_array (var, "phi_out_of_ssa");
2240 gimple_stmt_iterator gsi;
2241 gimple stmt;
2242 gimple_seq stmts;
2243
2244 for (i = 0; i < gimple_phi_num_args (phi); i++)
2245 {
2246 tree arg = gimple_phi_arg_def (phi, i);
2247 edge e = gimple_phi_arg_edge (phi, i);
2248
2249 /* Avoid the insertion of code in the loop latch to please the
2250 pattern matching of the vectorizer. */
2251 if (e->src == bb->loop_father->latch)
2252 insert_out_of_ssa_copy (zero_dim_array, arg, SSA_NAME_DEF_STMT (arg));
2253 else
2254 insert_out_of_ssa_copy_on_edge (e, zero_dim_array, arg);
2255 }
2256
2257 var = force_gimple_operand (zero_dim_array, &stmts, true, NULL_TREE);
2258
2259 if (!stmts)
2260 stmts = gimple_seq_alloc ();
2261
2262 stmt = gimple_build_assign (res, var);
2263 remove_phi_node (psi, false);
2264 SSA_NAME_DEF_STMT (res) = stmt;
2265
2266 gsi = gsi_last (stmts);
2267 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
2268
2269 gsi = gsi_after_labels (bb);
2270 gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
2271 }
2272
2273 /* Rewrite the degenerate phi node at position PSI from the degenerate
2274 form "x = phi (y, y, ..., y)" to "x = y". */
2275
2276 static void
2277 rewrite_degenerate_phi (gimple_stmt_iterator *psi)
2278 {
2279 tree rhs;
2280 gimple stmt;
2281 gimple_stmt_iterator gsi;
2282 gimple phi = gsi_stmt (*psi);
2283 tree res = gimple_phi_result (phi);
2284 basic_block bb;
2285
2286 if (!is_gimple_reg (res))
2287 {
2288 gsi_next (psi);
2289 return;
2290 }
2291
2292 bb = gimple_bb (phi);
2293 rhs = degenerate_phi_result (phi);
2294 gcc_assert (rhs);
2295
2296 stmt = gimple_build_assign (res, rhs);
2297 remove_phi_node (psi, false);
2298 SSA_NAME_DEF_STMT (res) = stmt;
2299
2300 gsi = gsi_after_labels (bb);
2301 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2302 }
2303
2304 /* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2305
2306 void
2307 rewrite_reductions_out_of_ssa (scop_p scop)
2308 {
2309 basic_block bb;
2310 gimple_stmt_iterator psi;
2311 sese region = SCOP_REGION (scop);
2312
2313 FOR_EACH_BB (bb)
2314 if (bb_in_sese_p (bb, region))
2315 for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
2316 {
2317 gimple phi = gsi_stmt (psi);
2318
2319 if (gimple_phi_num_args (phi) > 1
2320 && degenerate_phi_result (phi))
2321 rewrite_degenerate_phi (&psi);
2322
2323 else if (scalar_close_phi_node_p (phi))
2324 rewrite_close_phi_out_of_ssa (&psi);
2325
2326 else if (reduction_phi_p (region, &psi))
2327 rewrite_phi_out_of_ssa (&psi);
2328 }
2329
2330 update_ssa (TODO_update_ssa);
2331 #ifdef ENABLE_CHECKING
2332 verify_loop_closed_ssa (true);
2333 #endif
2334 }
2335
2336 /* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
2337 read from ZERO_DIM_ARRAY. */
2338
2339 static void
2340 rewrite_cross_bb_scalar_dependence (tree zero_dim_array, tree def, gimple use_stmt)
2341 {
2342 tree var = SSA_NAME_VAR (def);
2343 gimple name_stmt = gimple_build_assign (var, zero_dim_array);
2344 tree name = make_ssa_name (var, name_stmt);
2345 ssa_op_iter iter;
2346 use_operand_p use_p;
2347 gimple_stmt_iterator gsi;
2348
2349 gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
2350
2351 gimple_assign_set_lhs (name_stmt, name);
2352
2353 gsi = gsi_for_stmt (use_stmt);
2354 gsi_insert_before (&gsi, name_stmt, GSI_NEW_STMT);
2355
2356 FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
2357 if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
2358 replace_exp (use_p, name);
2359
2360 update_stmt (use_stmt);
2361 }
2362
2363 /* Rewrite the scalar dependences crossing the boundary of the BB
2364 containing STMT with an array. GSI points to a definition that is
2365 used in a PHI node. */
2366
2367 static void
2368 rewrite_cross_bb_phi_deps (sese region, gimple_stmt_iterator gsi)
2369 {
2370 gimple stmt = gsi_stmt (gsi);
2371 imm_use_iterator imm_iter;
2372 tree def;
2373 gimple use_stmt;
2374
2375 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2376 return;
2377
2378 def = gimple_assign_lhs (stmt);
2379 if (!is_gimple_reg (def)
2380 || scev_analyzable_p (def, region))
2381 return;
2382
2383 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2384 if (gimple_code (use_stmt) == GIMPLE_PHI)
2385 {
2386 gimple_stmt_iterator psi = gsi_for_stmt (use_stmt);
2387
2388 if (scalar_close_phi_node_p (gsi_stmt (psi)))
2389 rewrite_close_phi_out_of_ssa (&psi);
2390 else
2391 rewrite_phi_out_of_ssa (&psi);
2392 }
2393 }
2394
2395 /* Rewrite the scalar dependences crossing the boundary of the BB
2396 containing STMT with an array. */
2397
2398 static void
2399 rewrite_cross_bb_scalar_deps (sese region, gimple_stmt_iterator *gsi)
2400 {
2401 gimple stmt = gsi_stmt (*gsi);
2402 imm_use_iterator imm_iter;
2403 tree def;
2404 basic_block def_bb;
2405 tree zero_dim_array = NULL_TREE;
2406 gimple use_stmt;
2407
2408 switch (gimple_code (stmt))
2409 {
2410 case GIMPLE_ASSIGN:
2411 def = gimple_assign_lhs (stmt);
2412 break;
2413
2414 case GIMPLE_CALL:
2415 def = gimple_call_lhs (stmt);
2416 break;
2417
2418 default:
2419 return;
2420 }
2421
2422 if (!is_gimple_reg (def)
2423 || scev_analyzable_p (def, region))
2424 return;
2425
2426 def_bb = gimple_bb (stmt);
2427
2428 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2429 if (def_bb != gimple_bb (use_stmt)
2430 && !is_gimple_debug (use_stmt))
2431 {
2432 gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
2433
2434 if (!zero_dim_array)
2435 {
2436 zero_dim_array = create_zero_dim_array
2437 (SSA_NAME_VAR (def), "Cross_BB_scalar_dependence");
2438 insert_out_of_ssa_copy (zero_dim_array, def,
2439 SSA_NAME_DEF_STMT (def));
2440 gsi_next (gsi);
2441 }
2442
2443 rewrite_cross_bb_scalar_dependence (zero_dim_array, def, use_stmt);
2444 }
2445 }
2446
2447 /* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2448
2449 void
2450 rewrite_cross_bb_scalar_deps_out_of_ssa (scop_p scop)
2451 {
2452 basic_block bb;
2453 gimple_stmt_iterator psi;
2454 sese region = SCOP_REGION (scop);
2455
2456 FOR_EACH_BB (bb)
2457 if (bb_in_sese_p (bb, region))
2458 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
2459 {
2460 rewrite_cross_bb_phi_deps (region, psi);
2461 rewrite_cross_bb_scalar_deps (region, &psi);
2462 }
2463
2464 update_ssa (TODO_update_ssa);
2465 #ifdef ENABLE_CHECKING
2466 verify_loop_closed_ssa (true);
2467 #endif
2468 }
2469
2470 /* Returns the number of pbbs that are in loops contained in SCOP. */
2471
2472 static int
2473 nb_pbbs_in_loops (scop_p scop)
2474 {
2475 int i;
2476 poly_bb_p pbb;
2477 int res = 0;
2478
2479 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
2480 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
2481 res++;
2482
2483 return res;
2484 }
2485
2486 /* Return the number of data references in BB that write in
2487 memory. */
2488
2489 static int
2490 nb_data_writes_in_bb (basic_block bb)
2491 {
2492 int res = 0;
2493 gimple_stmt_iterator gsi;
2494
2495 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2496 if (gimple_vdef (gsi_stmt (gsi)))
2497 res++;
2498
2499 return res;
2500 }
2501
2502 /* Splits STMT out of its current BB. */
2503
2504 static basic_block
2505 split_reduction_stmt (gimple stmt)
2506 {
2507 gimple_stmt_iterator gsi;
2508 basic_block bb = gimple_bb (stmt);
2509 edge e;
2510
2511 /* Do not split basic blocks with no writes to memory: the reduction
2512 will be the only write to memory. */
2513 if (nb_data_writes_in_bb (bb) == 0)
2514 return bb;
2515
2516 split_block (bb, stmt);
2517
2518 if (gsi_one_before_end_p (gsi_start_nondebug_bb (bb)))
2519 return bb;
2520
2521 gsi = gsi_last_bb (bb);
2522 gsi_prev (&gsi);
2523 e = split_block (bb, gsi_stmt (gsi));
2524
2525 return e->dest;
2526 }
2527
2528 /* Return true when stmt is a reduction operation. */
2529
2530 static inline bool
2531 is_reduction_operation_p (gimple stmt)
2532 {
2533 enum tree_code code;
2534
2535 gcc_assert (is_gimple_assign (stmt));
2536 code = gimple_assign_rhs_code (stmt);
2537
2538 return flag_associative_math
2539 && commutative_tree_code (code)
2540 && associative_tree_code (code);
2541 }
2542
2543 /* Returns true when PHI contains an argument ARG. */
2544
2545 static bool
2546 phi_contains_arg (gimple phi, tree arg)
2547 {
2548 size_t i;
2549
2550 for (i = 0; i < gimple_phi_num_args (phi); i++)
2551 if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
2552 return true;
2553
2554 return false;
2555 }
2556
2557 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2558
2559 static gimple
2560 follow_ssa_with_commutative_ops (tree arg, tree lhs)
2561 {
2562 gimple stmt;
2563
2564 if (TREE_CODE (arg) != SSA_NAME)
2565 return NULL;
2566
2567 stmt = SSA_NAME_DEF_STMT (arg);
2568
2569 if (gimple_code (stmt) == GIMPLE_NOP
2570 || gimple_code (stmt) == GIMPLE_CALL)
2571 return NULL;
2572
2573 if (gimple_code (stmt) == GIMPLE_PHI)
2574 {
2575 if (phi_contains_arg (stmt, lhs))
2576 return stmt;
2577 return NULL;
2578 }
2579
2580 if (!is_gimple_assign (stmt))
2581 return NULL;
2582
2583 if (gimple_num_ops (stmt) == 2)
2584 return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
2585
2586 if (is_reduction_operation_p (stmt))
2587 {
2588 gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
2589
2590 return res ? res :
2591 follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
2592 }
2593
2594 return NULL;
2595 }
2596
2597 /* Detect commutative and associative scalar reductions starting at
2598 the STMT. Return the phi node of the reduction cycle, or NULL. */
2599
2600 static gimple
2601 detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
2602 VEC (gimple, heap) **in,
2603 VEC (gimple, heap) **out)
2604 {
2605 gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
2606
2607 if (!phi)
2608 return NULL;
2609
2610 VEC_safe_push (gimple, heap, *in, stmt);
2611 VEC_safe_push (gimple, heap, *out, stmt);
2612 return phi;
2613 }
2614
2615 /* Detect commutative and associative scalar reductions starting at
2616 STMT. Return the phi node of the reduction cycle, or NULL. */
2617
2618 static gimple
2619 detect_commutative_reduction_assign (gimple stmt, VEC (gimple, heap) **in,
2620 VEC (gimple, heap) **out)
2621 {
2622 tree lhs = gimple_assign_lhs (stmt);
2623
2624 if (gimple_num_ops (stmt) == 2)
2625 return detect_commutative_reduction_arg (lhs, stmt,
2626 gimple_assign_rhs1 (stmt),
2627 in, out);
2628
2629 if (is_reduction_operation_p (stmt))
2630 {
2631 gimple res = detect_commutative_reduction_arg (lhs, stmt,
2632 gimple_assign_rhs1 (stmt),
2633 in, out);
2634 return res ? res
2635 : detect_commutative_reduction_arg (lhs, stmt,
2636 gimple_assign_rhs2 (stmt),
2637 in, out);
2638 }
2639
2640 return NULL;
2641 }
2642
2643 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2644
2645 static gimple
2646 follow_inital_value_to_phi (tree arg, tree lhs)
2647 {
2648 gimple stmt;
2649
2650 if (!arg || TREE_CODE (arg) != SSA_NAME)
2651 return NULL;
2652
2653 stmt = SSA_NAME_DEF_STMT (arg);
2654
2655 if (gimple_code (stmt) == GIMPLE_PHI
2656 && phi_contains_arg (stmt, lhs))
2657 return stmt;
2658
2659 return NULL;
2660 }
2661
2662
2663 /* Return the argument of the loop PHI that is the inital value coming
2664 from outside the loop. */
2665
2666 static edge
2667 edge_initial_value_for_loop_phi (gimple phi)
2668 {
2669 size_t i;
2670
2671 for (i = 0; i < gimple_phi_num_args (phi); i++)
2672 {
2673 edge e = gimple_phi_arg_edge (phi, i);
2674
2675 if (loop_depth (e->src->loop_father)
2676 < loop_depth (e->dest->loop_father))
2677 return e;
2678 }
2679
2680 return NULL;
2681 }
2682
2683 /* Return the argument of the loop PHI that is the inital value coming
2684 from outside the loop. */
2685
2686 static tree
2687 initial_value_for_loop_phi (gimple phi)
2688 {
2689 size_t i;
2690
2691 for (i = 0; i < gimple_phi_num_args (phi); i++)
2692 {
2693 edge e = gimple_phi_arg_edge (phi, i);
2694
2695 if (loop_depth (e->src->loop_father)
2696 < loop_depth (e->dest->loop_father))
2697 return gimple_phi_arg_def (phi, i);
2698 }
2699
2700 return NULL_TREE;
2701 }
2702
2703 /* Detect commutative and associative scalar reductions starting at
2704 the loop closed phi node STMT. Return the phi node of the
2705 reduction cycle, or NULL. */
2706
2707 static gimple
2708 detect_commutative_reduction (gimple stmt, VEC (gimple, heap) **in,
2709 VEC (gimple, heap) **out)
2710 {
2711 if (scalar_close_phi_node_p (stmt))
2712 {
2713 tree arg = gimple_phi_arg_def (stmt, 0);
2714 gimple def, loop_phi;
2715
2716 if (TREE_CODE (arg) != SSA_NAME)
2717 return NULL;
2718
2719 /* Note that loop close phi nodes should have a single argument
2720 because we translated the representation into a canonical form
2721 before Graphite: see canonicalize_loop_closed_ssa_form. */
2722 gcc_assert (gimple_phi_num_args (stmt) == 1);
2723
2724 def = SSA_NAME_DEF_STMT (arg);
2725 loop_phi = detect_commutative_reduction (def, in, out);
2726
2727 if (loop_phi)
2728 {
2729 tree lhs = gimple_phi_result (stmt);
2730 tree init = initial_value_for_loop_phi (loop_phi);
2731 gimple phi = follow_inital_value_to_phi (init, lhs);
2732
2733 VEC_safe_push (gimple, heap, *in, loop_phi);
2734 VEC_safe_push (gimple, heap, *out, stmt);
2735 return phi;
2736 }
2737 else
2738 return NULL;
2739 }
2740
2741 if (gimple_code (stmt) == GIMPLE_ASSIGN)
2742 return detect_commutative_reduction_assign (stmt, in, out);
2743
2744 return NULL;
2745 }
2746
2747 /* Translate the scalar reduction statement STMT to an array RED
2748 knowing that its recursive phi node is LOOP_PHI. */
2749
2750 static void
2751 translate_scalar_reduction_to_array_for_stmt (tree red, gimple stmt,
2752 gimple loop_phi)
2753 {
2754 gimple_stmt_iterator insert_gsi = gsi_after_labels (gimple_bb (loop_phi));
2755 tree res = gimple_phi_result (loop_phi);
2756 gimple assign = gimple_build_assign (res, red);
2757
2758 gsi_insert_before (&insert_gsi, assign, GSI_SAME_STMT);
2759
2760 insert_gsi = gsi_after_labels (gimple_bb (stmt));
2761 assign = gimple_build_assign (red, gimple_assign_lhs (stmt));
2762 insert_gsi = gsi_for_stmt (stmt);
2763 gsi_insert_after (&insert_gsi, assign, GSI_SAME_STMT);
2764 }
2765
2766 /* Removes the PHI node and resets all the debug stmts that are using
2767 the PHI_RESULT. */
2768
2769 static void
2770 remove_phi (gimple phi)
2771 {
2772 imm_use_iterator imm_iter;
2773 tree def;
2774 use_operand_p use_p;
2775 gimple_stmt_iterator gsi;
2776 VEC (gimple, heap) *update = VEC_alloc (gimple, heap, 3);
2777 unsigned int i;
2778 gimple stmt;
2779
2780 def = PHI_RESULT (phi);
2781 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
2782 {
2783 stmt = USE_STMT (use_p);
2784
2785 if (is_gimple_debug (stmt))
2786 {
2787 gimple_debug_bind_reset_value (stmt);
2788 VEC_safe_push (gimple, heap, update, stmt);
2789 }
2790 }
2791
2792 for (i = 0; VEC_iterate (gimple, update, i, stmt); i++)
2793 update_stmt (stmt);
2794
2795 VEC_free (gimple, heap, update);
2796
2797 gsi = gsi_for_phi_node (phi);
2798 remove_phi_node (&gsi, false);
2799 }
2800
2801 /* Rewrite out of SSA the reduction described by the loop phi nodes
2802 IN, and the close phi nodes OUT. IN and OUT are structured by loop
2803 levels like this:
2804
2805 IN: stmt, loop_n, ..., loop_0
2806 OUT: stmt, close_n, ..., close_0
2807
2808 the first element is the reduction statement, and the next elements
2809 are the loop and close phi nodes of each of the outer loops. */
2810
2811 static void
2812 translate_scalar_reduction_to_array (VEC (gimple, heap) *in,
2813 VEC (gimple, heap) *out,
2814 sbitmap reductions)
2815 {
2816 unsigned int i;
2817 gimple loop_phi;
2818 tree red = NULL_TREE;
2819
2820 for (i = 0; VEC_iterate (gimple, in, i, loop_phi); i++)
2821 {
2822 gimple close_phi = VEC_index (gimple, out, i);
2823
2824 if (i == 0)
2825 {
2826 gimple stmt = loop_phi;
2827 basic_block bb = split_reduction_stmt (stmt);
2828
2829 SET_BIT (reductions, bb->index);
2830 gcc_assert (close_phi == loop_phi);
2831
2832 red = create_zero_dim_array
2833 (gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
2834 translate_scalar_reduction_to_array_for_stmt
2835 (red, stmt, VEC_index (gimple, in, 1));
2836 continue;
2837 }
2838
2839 if (i == VEC_length (gimple, in) - 1)
2840 {
2841 insert_out_of_ssa_copy (gimple_phi_result (close_phi), red,
2842 close_phi);
2843 insert_out_of_ssa_copy_on_edge
2844 (edge_initial_value_for_loop_phi (loop_phi),
2845 red, initial_value_for_loop_phi (loop_phi));
2846 }
2847
2848 remove_phi (loop_phi);
2849 remove_phi (close_phi);
2850 }
2851 }
2852
2853 /* Rewrites out of SSA a commutative reduction at CLOSE_PHI. */
2854
2855 static void
2856 rewrite_commutative_reductions_out_of_ssa_close_phi (gimple close_phi,
2857 sbitmap reductions)
2858 {
2859 VEC (gimple, heap) *in = VEC_alloc (gimple, heap, 10);
2860 VEC (gimple, heap) *out = VEC_alloc (gimple, heap, 10);
2861
2862 detect_commutative_reduction (close_phi, &in, &out);
2863 if (VEC_length (gimple, in) > 0)
2864 translate_scalar_reduction_to_array (in, out, reductions);
2865
2866 VEC_free (gimple, heap, in);
2867 VEC_free (gimple, heap, out);
2868 }
2869
2870 /* Rewrites all the commutative reductions from LOOP out of SSA. */
2871
2872 static void
2873 rewrite_commutative_reductions_out_of_ssa_loop (loop_p loop,
2874 sbitmap reductions)
2875 {
2876 gimple_stmt_iterator gsi;
2877 edge exit = single_exit (loop);
2878
2879 if (!exit)
2880 return;
2881
2882 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2883 rewrite_commutative_reductions_out_of_ssa_close_phi (gsi_stmt (gsi),
2884 reductions);
2885 }
2886
2887 /* Rewrites all the commutative reductions from SCOP out of SSA. */
2888
2889 void
2890 rewrite_commutative_reductions_out_of_ssa (sese region, sbitmap reductions)
2891 {
2892 loop_iterator li;
2893 loop_p loop;
2894
2895 if (!flag_associative_math)
2896 return;
2897
2898 FOR_EACH_LOOP (li, loop, 0)
2899 if (loop_in_sese_p (loop, region))
2900 rewrite_commutative_reductions_out_of_ssa_loop (loop, reductions);
2901
2902 gsi_commit_edge_inserts ();
2903 update_ssa (TODO_update_ssa);
2904 #ifdef ENABLE_CHECKING
2905 verify_loop_closed_ssa (true);
2906 #endif
2907 }
2908
2909 /* A LOOP is in normal form for Graphite when it contains only one
2910 scalar phi node that defines the main induction variable of the
2911 loop, only one increment of the IV, and only one exit condition. */
2912
2913 static void
2914 graphite_loop_normal_form (loop_p loop)
2915 {
2916 struct tree_niter_desc niter;
2917 tree nit;
2918 gimple_seq stmts;
2919 edge exit = single_dom_exit (loop);
2920
2921 bool known_niter = number_of_iterations_exit (loop, exit, &niter, false);
2922
2923 /* At this point we should know the number of iterations. */
2924 gcc_assert (known_niter);
2925
2926 nit = force_gimple_operand (unshare_expr (niter.niter), &stmts, true,
2927 NULL_TREE);
2928 if (stmts)
2929 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2930
2931 loop->single_iv = canonicalize_loop_ivs (loop, &nit, false);
2932 }
2933
2934 /* Rewrite all the loops of SCOP in normal form: one induction
2935 variable per loop. */
2936
2937 static void
2938 scop_canonicalize_loops (scop_p scop)
2939 {
2940 loop_iterator li;
2941 loop_p loop;
2942
2943 FOR_EACH_LOOP (li, loop, 0)
2944 if (loop_in_sese_p (loop, SCOP_REGION (scop)))
2945 graphite_loop_normal_form (loop);
2946 }
2947
2948 /* Java does not initialize long_long_integer_type_node. */
2949 #define my_long_long (long_long_integer_type_node ? long_long_integer_type_node : ssizetype)
2950
2951 /* Can all ivs be represented by a signed integer?
2952 As CLooG might generate negative values in its expressions, signed loop ivs
2953 are required in the backend. */
2954
2955 static bool
2956 scop_ivs_can_be_represented (scop_p scop)
2957 {
2958 loop_iterator li;
2959 loop_p loop;
2960
2961 FOR_EACH_LOOP (li, loop, 0)
2962 {
2963 tree type;
2964 int precision;
2965
2966 if (!loop_in_sese_p (loop, SCOP_REGION (scop)))
2967 continue;
2968
2969 if (!loop->single_iv)
2970 continue;
2971
2972 type = TREE_TYPE (loop->single_iv);
2973 precision = TYPE_PRECISION (type);
2974
2975 if (TYPE_UNSIGNED (type)
2976 && precision >= TYPE_PRECISION (my_long_long))
2977 return false;
2978 }
2979
2980 return true;
2981 }
2982
2983 #undef my_long_long
2984
2985 /* Builds the polyhedral representation for a SESE region. */
2986
2987 void
2988 build_poly_scop (scop_p scop)
2989 {
2990 sese region = SCOP_REGION (scop);
2991 graphite_dim_t max_dim;
2992
2993
2994 /* FIXME: This restriction is needed to avoid a problem in CLooG.
2995 Once CLooG is fixed, remove this guard. Anyways, it makes no
2996 sense to optimize a scop containing only PBBs that do not belong
2997 to any loops. */
2998 if (nb_pbbs_in_loops (scop) == 0)
2999 return;
3000
3001 scop_canonicalize_loops (scop);
3002 if (!scop_ivs_can_be_represented (scop))
3003 return;
3004
3005 build_sese_loop_nests (region);
3006 build_sese_conditions (region);
3007 find_scop_parameters (scop);
3008
3009 max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
3010 if (scop_nb_params (scop) > max_dim)
3011 return;
3012
3013 build_scop_iteration_domain (scop);
3014 build_scop_context (scop);
3015
3016 add_conditions_to_constraints (scop);
3017 scop_to_lst (scop);
3018 build_scop_scattering (scop);
3019 build_scop_drs (scop);
3020
3021 /* This SCoP has been translated to the polyhedral
3022 representation. */
3023 POLY_SCOP_P (scop) = true;
3024 }
3025 #endif