dbxout.c: Consistently use putc instead of fputc.
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
13
14 GNU CC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to the Free
21 the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
23
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
27
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
36
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
41
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
56
57 Function unit conflicts are resolved during forward list scheduling
58 by tracking the time when each insn is committed to the schedule
59 and from that, the time the function units it uses must be free.
60 As insns on the ready list are considered for scheduling, those
61 that would result in a blockage of the already committed insns are
62 queued until no blockage will result.
63
64 The following list shows the order in which we want to break ties
65 among insns in the ready list:
66
67 1. choose insn with the longest path to end of bb, ties
68 broken by
69 2. choose insn with least contribution to register pressure,
70 ties broken by
71 3. prefer in-block upon interblock motion, ties broken by
72 4. prefer useful upon speculative motion, ties broken by
73 5. choose insn with largest control flow probability, ties
74 broken by
75 6. choose insn with the least dependences upon the previously
76 scheduled insn, or finally
77 7 choose the insn which has the most insns dependent on it.
78 8. choose insn with lowest UID.
79
80 Memory references complicate matters. Only if we can be certain
81 that memory references are not part of the data dependency graph
82 (via true, anti, or output dependence), can we move operations past
83 memory references. To first approximation, reads can be done
84 independently, while writes introduce dependencies. Better
85 approximations will yield fewer dependencies.
86
87 Before reload, an extended analysis of interblock data dependences
88 is required for interblock scheduling. This is performed in
89 compute_block_backward_dependences ().
90
91 Dependencies set up by memory references are treated in exactly the
92 same way as other dependencies, by using LOG_LINKS backward
93 dependences. LOG_LINKS are translated into INSN_DEPEND forward
94 dependences for the purpose of forward list scheduling.
95
96 Having optimized the critical path, we may have also unduly
97 extended the lifetimes of some registers. If an operation requires
98 that constants be loaded into registers, it is certainly desirable
99 to load those constants as early as necessary, but no earlier.
100 I.e., it will not do to load up a bunch of registers at the
101 beginning of a basic block only to use them at the end, if they
102 could be loaded later, since this may result in excessive register
103 utilization.
104
105 Note that since branches are never in basic blocks, but only end
106 basic blocks, this pass will not move branches. But that is ok,
107 since we can use GNU's delayed branch scheduling pass to take care
108 of this case.
109
110 Also note that no further optimizations based on algebraic
111 identities are performed, so this pass would be a good one to
112 perform instruction splitting, such as breaking up a multiply
113 instruction into shifts and adds where that is profitable.
114
115 Given the memory aliasing analysis that this pass should perform,
116 it should be possible to remove redundant stores to memory, and to
117 load values from registers instead of hitting memory.
118
119 Before reload, speculative insns are moved only if a 'proof' exists
120 that no exception will be caused by this, and if no live registers
121 exist that inhibit the motion (live registers constraints are not
122 represented by data dependence edges).
123
124 This pass must update information that subsequent passes expect to
125 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
126 reg_n_calls_crossed, and reg_live_length. Also, BLOCK_HEAD,
127 BLOCK_END.
128
129 The information in the line number notes is carefully retained by
130 this pass. Notes that refer to the starting and ending of
131 exception regions are also carefully retained by this pass. All
132 other NOTE insns are grouped in their same relative order at the
133 beginning of basic blocks and regions that have been scheduled. */
134 \f
135 #include "config.h"
136 #include "system.h"
137 #include "toplev.h"
138 #include "rtl.h"
139 #include "tm_p.h"
140 #include "hard-reg-set.h"
141 #include "basic-block.h"
142 #include "regs.h"
143 #include "function.h"
144 #include "flags.h"
145 #include "insn-config.h"
146 #include "insn-attr.h"
147 #include "except.h"
148 #include "toplev.h"
149 #include "recog.h"
150 #include "sched-int.h"
151
152 #ifdef INSN_SCHEDULING
153
154 /* issue_rate is the number of insns that can be scheduled in the same
155 machine cycle. It can be defined in the config/mach/mach.h file,
156 otherwise we set it to 1. */
157
158 static int issue_rate;
159
160 #ifndef ISSUE_RATE
161 #define ISSUE_RATE 1
162 #endif
163
164 /* sched-verbose controls the amount of debugging output the
165 scheduler prints. It is controlled by -fsched-verbose=N:
166 N>0 and no -DSR : the output is directed to stderr.
167 N>=10 will direct the printouts to stderr (regardless of -dSR).
168 N=1: same as -dSR.
169 N=2: bb's probabilities, detailed ready list info, unit/insn info.
170 N=3: rtl at abort point, control-flow, regions info.
171 N=5: dependences info. */
172
173 static int sched_verbose_param = 0;
174 int sched_verbose = 0;
175
176 /* Debugging file. All printouts are sent to dump, which is always set,
177 either to stderr, or to the dump listing file (-dRS). */
178 FILE *sched_dump = 0;
179
180 /* Highest uid before scheduling. */
181 static int old_max_uid;
182
183 /* fix_sched_param() is called from toplev.c upon detection
184 of the -fsched-verbose=N option. */
185
186 void
187 fix_sched_param (param, val)
188 const char *param, *val;
189 {
190 if (!strcmp (param, "verbose"))
191 sched_verbose_param = atoi (val);
192 else
193 warning ("fix_sched_param: unknown param: %s", param);
194 }
195
196 struct haifa_insn_data *h_i_d;
197
198 #define DONE_PRIORITY -1
199 #define MAX_PRIORITY 0x7fffffff
200 #define TAIL_PRIORITY 0x7ffffffe
201 #define LAUNCH_PRIORITY 0x7f000001
202 #define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
203 #define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
204
205 #define LINE_NOTE(INSN) (h_i_d[INSN_UID (INSN)].line_note)
206 #define INSN_TICK(INSN) (h_i_d[INSN_UID (INSN)].tick)
207
208 /* Vector indexed by basic block number giving the starting line-number
209 for each basic block. */
210 static rtx *line_note_head;
211
212 /* List of important notes we must keep around. This is a pointer to the
213 last element in the list. */
214 static rtx note_list;
215
216 /* Queues, etc. */
217
218 /* An instruction is ready to be scheduled when all insns preceding it
219 have already been scheduled. It is important to ensure that all
220 insns which use its result will not be executed until its result
221 has been computed. An insn is maintained in one of four structures:
222
223 (P) the "Pending" set of insns which cannot be scheduled until
224 their dependencies have been satisfied.
225 (Q) the "Queued" set of insns that can be scheduled when sufficient
226 time has passed.
227 (R) the "Ready" list of unscheduled, uncommitted insns.
228 (S) the "Scheduled" list of insns.
229
230 Initially, all insns are either "Pending" or "Ready" depending on
231 whether their dependencies are satisfied.
232
233 Insns move from the "Ready" list to the "Scheduled" list as they
234 are committed to the schedule. As this occurs, the insns in the
235 "Pending" list have their dependencies satisfied and move to either
236 the "Ready" list or the "Queued" set depending on whether
237 sufficient time has passed to make them ready. As time passes,
238 insns move from the "Queued" set to the "Ready" list. Insns may
239 move from the "Ready" list to the "Queued" set if they are blocked
240 due to a function unit conflict.
241
242 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
243 insns, i.e., those that are ready, queued, and pending.
244 The "Queued" set (Q) is implemented by the variable `insn_queue'.
245 The "Ready" list (R) is implemented by the variables `ready' and
246 `n_ready'.
247 The "Scheduled" list (S) is the new insn chain built by this pass.
248
249 The transition (R->S) is implemented in the scheduling loop in
250 `schedule_block' when the best insn to schedule is chosen.
251 The transition (R->Q) is implemented in `queue_insn' when an
252 insn is found to have a function unit conflict with the already
253 committed insns.
254 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
255 insns move from the ready list to the scheduled list.
256 The transition (Q->R) is implemented in 'queue_to_insn' as time
257 passes or stalls are introduced. */
258
259 /* Implement a circular buffer to delay instructions until sufficient
260 time has passed. INSN_QUEUE_SIZE is a power of two larger than
261 MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
262 longest time an isnsn may be queued. */
263 static rtx insn_queue[INSN_QUEUE_SIZE];
264 static int q_ptr = 0;
265 static int q_size = 0;
266 #define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
267 #define NEXT_Q_AFTER(X, C) (((X)+C) & (INSN_QUEUE_SIZE-1))
268
269 /* Describe the ready list of the scheduler.
270 VEC holds space enough for all insns in the current region. VECLEN
271 says how many exactly.
272 FIRST is the index of the element with the highest priority; i.e. the
273 last one in the ready list, since elements are ordered by ascending
274 priority.
275 N_READY determines how many insns are on the ready list. */
276
277 struct ready_list
278 {
279 rtx *vec;
280 int veclen;
281 int first;
282 int n_ready;
283 };
284
285 /* Forward declarations. */
286 static unsigned int blockage_range PARAMS ((int, rtx));
287 static void clear_units PARAMS ((void));
288 static void schedule_unit PARAMS ((int, rtx, int));
289 static int actual_hazard PARAMS ((int, rtx, int, int));
290 static int potential_hazard PARAMS ((int, rtx, int));
291 static int priority PARAMS ((rtx));
292 static int rank_for_schedule PARAMS ((const PTR, const PTR));
293 static void swap_sort PARAMS ((rtx *, int));
294 static void queue_insn PARAMS ((rtx, int));
295 static void schedule_insn PARAMS ((rtx, struct ready_list *, int));
296 static void find_insn_reg_weight PARAMS ((int));
297 static void adjust_priority PARAMS ((rtx));
298
299 /* Notes handling mechanism:
300 =========================
301 Generally, NOTES are saved before scheduling and restored after scheduling.
302 The scheduler distinguishes between three types of notes:
303
304 (1) LINE_NUMBER notes, generated and used for debugging. Here,
305 before scheduling a region, a pointer to the LINE_NUMBER note is
306 added to the insn following it (in save_line_notes()), and the note
307 is removed (in rm_line_notes() and unlink_line_notes()). After
308 scheduling the region, this pointer is used for regeneration of
309 the LINE_NUMBER note (in restore_line_notes()).
310
311 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
312 Before scheduling a region, a pointer to the note is added to the insn
313 that follows or precedes it. (This happens as part of the data dependence
314 computation). After scheduling an insn, the pointer contained in it is
315 used for regenerating the corresponding note (in reemit_notes).
316
317 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
318 these notes are put in a list (in rm_other_notes() and
319 unlink_other_notes ()). After scheduling the block, these notes are
320 inserted at the beginning of the block (in schedule_block()). */
321
322 static rtx unlink_other_notes PARAMS ((rtx, rtx));
323 static rtx unlink_line_notes PARAMS ((rtx, rtx));
324 static rtx reemit_notes PARAMS ((rtx, rtx));
325
326 static rtx *ready_lastpos PARAMS ((struct ready_list *));
327 static void ready_sort PARAMS ((struct ready_list *));
328 static rtx ready_remove_first PARAMS ((struct ready_list *));
329
330 static void queue_to_ready PARAMS ((struct ready_list *));
331
332 static void debug_ready_list PARAMS ((struct ready_list *));
333
334 static rtx move_insn1 PARAMS ((rtx, rtx));
335 static rtx move_insn PARAMS ((rtx, rtx));
336
337 #endif /* INSN_SCHEDULING */
338 \f
339 /* Point to state used for the current scheduling pass. */
340 struct sched_info *current_sched_info;
341 \f
342 #ifndef INSN_SCHEDULING
343 void
344 schedule_insns (dump_file)
345 FILE *dump_file ATTRIBUTE_UNUSED;
346 {
347 }
348 #else
349
350 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
351 so that insns independent of the last scheduled insn will be preferred
352 over dependent instructions. */
353
354 static rtx last_scheduled_insn;
355
356 /* Compute the function units used by INSN. This caches the value
357 returned by function_units_used. A function unit is encoded as the
358 unit number if the value is non-negative and the compliment of a
359 mask if the value is negative. A function unit index is the
360 non-negative encoding. */
361
362 HAIFA_INLINE int
363 insn_unit (insn)
364 rtx insn;
365 {
366 register int unit = INSN_UNIT (insn);
367
368 if (unit == 0)
369 {
370 recog_memoized (insn);
371
372 /* A USE insn, or something else we don't need to understand.
373 We can't pass these directly to function_units_used because it will
374 trigger a fatal error for unrecognizable insns. */
375 if (INSN_CODE (insn) < 0)
376 unit = -1;
377 else
378 {
379 unit = function_units_used (insn);
380 /* Increment non-negative values so we can cache zero. */
381 if (unit >= 0)
382 unit++;
383 }
384 /* We only cache 16 bits of the result, so if the value is out of
385 range, don't cache it. */
386 if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
387 || unit >= 0
388 || (unit & ~((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
389 INSN_UNIT (insn) = unit;
390 }
391 return (unit > 0 ? unit - 1 : unit);
392 }
393
394 /* Compute the blockage range for executing INSN on UNIT. This caches
395 the value returned by the blockage_range_function for the unit.
396 These values are encoded in an int where the upper half gives the
397 minimum value and the lower half gives the maximum value. */
398
399 HAIFA_INLINE static unsigned int
400 blockage_range (unit, insn)
401 int unit;
402 rtx insn;
403 {
404 unsigned int blockage = INSN_BLOCKAGE (insn);
405 unsigned int range;
406
407 if ((int) UNIT_BLOCKED (blockage) != unit + 1)
408 {
409 range = function_units[unit].blockage_range_function (insn);
410 /* We only cache the blockage range for one unit and then only if
411 the values fit. */
412 if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
413 INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
414 }
415 else
416 range = BLOCKAGE_RANGE (blockage);
417
418 return range;
419 }
420
421 /* A vector indexed by function unit instance giving the last insn to use
422 the unit. The value of the function unit instance index for unit U
423 instance I is (U + I * FUNCTION_UNITS_SIZE). */
424 static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
425
426 /* A vector indexed by function unit instance giving the minimum time when
427 the unit will unblock based on the maximum blockage cost. */
428 static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
429
430 /* A vector indexed by function unit number giving the number of insns
431 that remain to use the unit. */
432 static int unit_n_insns[FUNCTION_UNITS_SIZE];
433
434 /* Access the unit_last_insn array. Used by the visualization code. */
435
436 rtx
437 get_unit_last_insn (instance)
438 int instance;
439 {
440 return unit_last_insn[instance];
441 }
442
443 /* Reset the function unit state to the null state. */
444
445 static void
446 clear_units ()
447 {
448 memset ((char *) unit_last_insn, 0, sizeof (unit_last_insn));
449 memset ((char *) unit_tick, 0, sizeof (unit_tick));
450 memset ((char *) unit_n_insns, 0, sizeof (unit_n_insns));
451 }
452
453 /* Return the issue-delay of an insn. */
454
455 HAIFA_INLINE int
456 insn_issue_delay (insn)
457 rtx insn;
458 {
459 int i, delay = 0;
460 int unit = insn_unit (insn);
461
462 /* Efficiency note: in fact, we are working 'hard' to compute a
463 value that was available in md file, and is not available in
464 function_units[] structure. It would be nice to have this
465 value there, too. */
466 if (unit >= 0)
467 {
468 if (function_units[unit].blockage_range_function &&
469 function_units[unit].blockage_function)
470 delay = function_units[unit].blockage_function (insn, insn);
471 }
472 else
473 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
474 if ((unit & 1) != 0 && function_units[i].blockage_range_function
475 && function_units[i].blockage_function)
476 delay = MAX (delay, function_units[i].blockage_function (insn, insn));
477
478 return delay;
479 }
480
481 /* Return the actual hazard cost of executing INSN on the unit UNIT,
482 instance INSTANCE at time CLOCK if the previous actual hazard cost
483 was COST. */
484
485 HAIFA_INLINE int
486 actual_hazard_this_instance (unit, instance, insn, clock, cost)
487 int unit, instance, clock, cost;
488 rtx insn;
489 {
490 int tick = unit_tick[instance]; /* Issue time of the last issued insn. */
491
492 if (tick - clock > cost)
493 {
494 /* The scheduler is operating forward, so unit's last insn is the
495 executing insn and INSN is the candidate insn. We want a
496 more exact measure of the blockage if we execute INSN at CLOCK
497 given when we committed the execution of the unit's last insn.
498
499 The blockage value is given by either the unit's max blockage
500 constant, blockage range function, or blockage function. Use
501 the most exact form for the given unit. */
502
503 if (function_units[unit].blockage_range_function)
504 {
505 if (function_units[unit].blockage_function)
506 tick += (function_units[unit].blockage_function
507 (unit_last_insn[instance], insn)
508 - function_units[unit].max_blockage);
509 else
510 tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
511 - function_units[unit].max_blockage);
512 }
513 if (tick - clock > cost)
514 cost = tick - clock;
515 }
516 return cost;
517 }
518
519 /* Record INSN as having begun execution on the units encoded by UNIT at
520 time CLOCK. */
521
522 HAIFA_INLINE static void
523 schedule_unit (unit, insn, clock)
524 int unit, clock;
525 rtx insn;
526 {
527 int i;
528
529 if (unit >= 0)
530 {
531 int instance = unit;
532 #if MAX_MULTIPLICITY > 1
533 /* Find the first free instance of the function unit and use that
534 one. We assume that one is free. */
535 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
536 {
537 if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
538 break;
539 instance += FUNCTION_UNITS_SIZE;
540 }
541 #endif
542 unit_last_insn[instance] = insn;
543 unit_tick[instance] = (clock + function_units[unit].max_blockage);
544 }
545 else
546 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
547 if ((unit & 1) != 0)
548 schedule_unit (i, insn, clock);
549 }
550
551 /* Return the actual hazard cost of executing INSN on the units encoded by
552 UNIT at time CLOCK if the previous actual hazard cost was COST. */
553
554 HAIFA_INLINE static int
555 actual_hazard (unit, insn, clock, cost)
556 int unit, clock, cost;
557 rtx insn;
558 {
559 int i;
560
561 if (unit >= 0)
562 {
563 /* Find the instance of the function unit with the minimum hazard. */
564 int instance = unit;
565 int best_cost = actual_hazard_this_instance (unit, instance, insn,
566 clock, cost);
567 #if MAX_MULTIPLICITY > 1
568 int this_cost;
569
570 if (best_cost > cost)
571 {
572 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
573 {
574 instance += FUNCTION_UNITS_SIZE;
575 this_cost = actual_hazard_this_instance (unit, instance, insn,
576 clock, cost);
577 if (this_cost < best_cost)
578 {
579 best_cost = this_cost;
580 if (this_cost <= cost)
581 break;
582 }
583 }
584 }
585 #endif
586 cost = MAX (cost, best_cost);
587 }
588 else
589 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
590 if ((unit & 1) != 0)
591 cost = actual_hazard (i, insn, clock, cost);
592
593 return cost;
594 }
595
596 /* Return the potential hazard cost of executing an instruction on the
597 units encoded by UNIT if the previous potential hazard cost was COST.
598 An insn with a large blockage time is chosen in preference to one
599 with a smaller time; an insn that uses a unit that is more likely
600 to be used is chosen in preference to one with a unit that is less
601 used. We are trying to minimize a subsequent actual hazard. */
602
603 HAIFA_INLINE static int
604 potential_hazard (unit, insn, cost)
605 int unit, cost;
606 rtx insn;
607 {
608 int i, ncost;
609 unsigned int minb, maxb;
610
611 if (unit >= 0)
612 {
613 minb = maxb = function_units[unit].max_blockage;
614 if (maxb > 1)
615 {
616 if (function_units[unit].blockage_range_function)
617 {
618 maxb = minb = blockage_range (unit, insn);
619 maxb = MAX_BLOCKAGE_COST (maxb);
620 minb = MIN_BLOCKAGE_COST (minb);
621 }
622
623 if (maxb > 1)
624 {
625 /* Make the number of instructions left dominate. Make the
626 minimum delay dominate the maximum delay. If all these
627 are the same, use the unit number to add an arbitrary
628 ordering. Other terms can be added. */
629 ncost = minb * 0x40 + maxb;
630 ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
631 if (ncost > cost)
632 cost = ncost;
633 }
634 }
635 }
636 else
637 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
638 if ((unit & 1) != 0)
639 cost = potential_hazard (i, insn, cost);
640
641 return cost;
642 }
643
644 /* Compute cost of executing INSN given the dependence LINK on the insn USED.
645 This is the number of cycles between instruction issue and
646 instruction results. */
647
648 HAIFA_INLINE int
649 insn_cost (insn, link, used)
650 rtx insn, link, used;
651 {
652 register int cost = INSN_COST (insn);
653
654 if (cost == 0)
655 {
656 recog_memoized (insn);
657
658 /* A USE insn, or something else we don't need to understand.
659 We can't pass these directly to result_ready_cost because it will
660 trigger a fatal error for unrecognizable insns. */
661 if (INSN_CODE (insn) < 0)
662 {
663 INSN_COST (insn) = 1;
664 return 1;
665 }
666 else
667 {
668 cost = result_ready_cost (insn);
669
670 if (cost < 1)
671 cost = 1;
672
673 INSN_COST (insn) = cost;
674 }
675 }
676
677 /* In this case estimate cost without caring how insn is used. */
678 if (link == 0 && used == 0)
679 return cost;
680
681 /* A USE insn should never require the value used to be computed. This
682 allows the computation of a function's result and parameter values to
683 overlap the return and call. */
684 recog_memoized (used);
685 if (INSN_CODE (used) < 0)
686 LINK_COST_FREE (link) = 1;
687
688 /* If some dependencies vary the cost, compute the adjustment. Most
689 commonly, the adjustment is complete: either the cost is ignored
690 (in the case of an output- or anti-dependence), or the cost is
691 unchanged. These values are cached in the link as LINK_COST_FREE
692 and LINK_COST_ZERO. */
693
694 if (LINK_COST_FREE (link))
695 cost = 0;
696 #ifdef ADJUST_COST
697 else if (!LINK_COST_ZERO (link))
698 {
699 int ncost = cost;
700
701 ADJUST_COST (used, link, insn, ncost);
702 if (ncost < 1)
703 {
704 LINK_COST_FREE (link) = 1;
705 ncost = 0;
706 }
707 if (cost == ncost)
708 LINK_COST_ZERO (link) = 1;
709 cost = ncost;
710 }
711 #endif
712 return cost;
713 }
714
715 /* Compute the priority number for INSN. */
716
717 static int
718 priority (insn)
719 rtx insn;
720 {
721 rtx link;
722
723 if (! INSN_P (insn))
724 return 0;
725
726 if (! INSN_PRIORITY_KNOWN (insn))
727 {
728 int this_priority = 0;
729
730 if (INSN_DEPEND (insn) == 0)
731 this_priority = insn_cost (insn, 0, 0);
732 else
733 {
734 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
735 {
736 rtx next;
737 int next_priority;
738
739 if (RTX_INTEGRATED_P (link))
740 continue;
741
742 next = XEXP (link, 0);
743
744 /* Critical path is meaningful in block boundaries only. */
745 if (! (*current_sched_info->contributes_to_priority) (next, insn))
746 continue;
747
748 next_priority = insn_cost (insn, link, next) + priority (next);
749 if (next_priority > this_priority)
750 this_priority = next_priority;
751 }
752 }
753 INSN_PRIORITY (insn) = this_priority;
754 INSN_PRIORITY_KNOWN (insn) = 1;
755 }
756
757 return INSN_PRIORITY (insn);
758 }
759 \f
760 /* Macros and functions for keeping the priority queue sorted, and
761 dealing with queueing and dequeueing of instructions. */
762
763 #define SCHED_SORT(READY, N_READY) \
764 do { if ((N_READY) == 2) \
765 swap_sort (READY, N_READY); \
766 else if ((N_READY) > 2) \
767 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
768 while (0)
769
770 /* Returns a positive value if x is preferred; returns a negative value if
771 y is preferred. Should never return 0, since that will make the sort
772 unstable. */
773
774 static int
775 rank_for_schedule (x, y)
776 const PTR x;
777 const PTR y;
778 {
779 rtx tmp = *(const rtx *) y;
780 rtx tmp2 = *(const rtx *) x;
781 rtx link;
782 int tmp_class, tmp2_class, depend_count1, depend_count2;
783 int val, priority_val, weight_val, info_val;
784
785 /* Prefer insn with higher priority. */
786 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
787 if (priority_val)
788 return priority_val;
789
790 /* Prefer an insn with smaller contribution to registers-pressure. */
791 if (!reload_completed &&
792 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
793 return (weight_val);
794
795 info_val = (*current_sched_info->rank) (tmp, tmp2);
796 if (info_val)
797 return info_val;
798
799 /* Compare insns based on their relation to the last-scheduled-insn. */
800 if (last_scheduled_insn)
801 {
802 /* Classify the instructions into three classes:
803 1) Data dependent on last schedule insn.
804 2) Anti/Output dependent on last scheduled insn.
805 3) Independent of last scheduled insn, or has latency of one.
806 Choose the insn from the highest numbered class if different. */
807 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
808 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
809 tmp_class = 3;
810 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
811 tmp_class = 1;
812 else
813 tmp_class = 2;
814
815 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
816 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
817 tmp2_class = 3;
818 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
819 tmp2_class = 1;
820 else
821 tmp2_class = 2;
822
823 if ((val = tmp2_class - tmp_class))
824 return val;
825 }
826
827 /* Prefer the insn which has more later insns that depend on it.
828 This gives the scheduler more freedom when scheduling later
829 instructions at the expense of added register pressure. */
830 depend_count1 = 0;
831 for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
832 depend_count1++;
833
834 depend_count2 = 0;
835 for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
836 depend_count2++;
837
838 val = depend_count2 - depend_count1;
839 if (val)
840 return val;
841
842 /* If insns are equally good, sort by INSN_LUID (original insn order),
843 so that we make the sort stable. This minimizes instruction movement,
844 thus minimizing sched's effect on debugging and cross-jumping. */
845 return INSN_LUID (tmp) - INSN_LUID (tmp2);
846 }
847
848 /* Resort the array A in which only element at index N may be out of order. */
849
850 HAIFA_INLINE static void
851 swap_sort (a, n)
852 rtx *a;
853 int n;
854 {
855 rtx insn = a[n - 1];
856 int i = n - 2;
857
858 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
859 {
860 a[i + 1] = a[i];
861 i -= 1;
862 }
863 a[i + 1] = insn;
864 }
865
866 /* Add INSN to the insn queue so that it can be executed at least
867 N_CYCLES after the currently executing insn. Preserve insns
868 chain for debugging purposes. */
869
870 HAIFA_INLINE static void
871 queue_insn (insn, n_cycles)
872 rtx insn;
873 int n_cycles;
874 {
875 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
876 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
877 insn_queue[next_q] = link;
878 q_size += 1;
879
880 if (sched_verbose >= 2)
881 {
882 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
883 (*current_sched_info->print_insn) (insn, 0));
884
885 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
886 }
887 }
888
889 /* Return a pointer to the bottom of the ready list, i.e. the insn
890 with the lowest priority. */
891
892 HAIFA_INLINE static rtx *
893 ready_lastpos (ready)
894 struct ready_list *ready;
895 {
896 if (ready->n_ready == 0)
897 abort ();
898 return ready->vec + ready->first - ready->n_ready + 1;
899 }
900
901 /* Add an element INSN to the ready list so that it ends up with the lowest
902 priority. */
903
904 HAIFA_INLINE void
905 ready_add (ready, insn)
906 struct ready_list *ready;
907 rtx insn;
908 {
909 if (ready->first == ready->n_ready)
910 {
911 memmove (ready->vec + ready->veclen - ready->n_ready,
912 ready_lastpos (ready),
913 ready->n_ready * sizeof (rtx));
914 ready->first = ready->veclen - 1;
915 }
916 ready->vec[ready->first - ready->n_ready] = insn;
917 ready->n_ready++;
918 }
919
920 /* Remove the element with the highest priority from the ready list and
921 return it. */
922
923 HAIFA_INLINE static rtx
924 ready_remove_first (ready)
925 struct ready_list *ready;
926 {
927 rtx t;
928 if (ready->n_ready == 0)
929 abort ();
930 t = ready->vec[ready->first--];
931 ready->n_ready--;
932 /* If the queue becomes empty, reset it. */
933 if (ready->n_ready == 0)
934 ready->first = ready->veclen - 1;
935 return t;
936 }
937
938 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
939 macro. */
940
941 HAIFA_INLINE static void
942 ready_sort (ready)
943 struct ready_list *ready;
944 {
945 rtx *first = ready_lastpos (ready);
946 SCHED_SORT (first, ready->n_ready);
947 }
948
949 /* PREV is an insn that is ready to execute. Adjust its priority if that
950 will help shorten or lengthen register lifetimes as appropriate. Also
951 provide a hook for the target to tweek itself. */
952
953 HAIFA_INLINE static void
954 adjust_priority (prev)
955 rtx prev ATTRIBUTE_UNUSED;
956 {
957 /* ??? There used to be code here to try and estimate how an insn
958 affected register lifetimes, but it did it by looking at REG_DEAD
959 notes, which we removed in schedule_region. Nor did it try to
960 take into account register pressure or anything useful like that.
961
962 Revisit when we have a machine model to work with and not before. */
963
964 #ifdef ADJUST_PRIORITY
965 ADJUST_PRIORITY (prev);
966 #endif
967 }
968
969 /* Clock at which the previous instruction was issued. */
970 static int last_clock_var;
971
972 /* INSN is the "currently executing insn". Launch each insn which was
973 waiting on INSN. READY is the ready list which contains the insns
974 that are ready to fire. CLOCK is the current cycle.
975 */
976
977 static void
978 schedule_insn (insn, ready, clock)
979 rtx insn;
980 struct ready_list *ready;
981 int clock;
982 {
983 rtx link;
984 int unit;
985
986 unit = insn_unit (insn);
987
988 if (sched_verbose >= 2)
989 {
990 fprintf (sched_dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ",
991 INSN_UID (insn));
992 insn_print_units (insn);
993 fprintf (sched_dump, "\n");
994 }
995
996 if (sched_verbose && unit == -1)
997 visualize_no_unit (insn);
998
999 if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
1000 schedule_unit (unit, insn, clock);
1001
1002 if (INSN_DEPEND (insn) == 0)
1003 return;
1004
1005 for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
1006 {
1007 rtx next = XEXP (link, 0);
1008 int cost = insn_cost (insn, link, next);
1009
1010 INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
1011
1012 if ((INSN_DEP_COUNT (next) -= 1) == 0)
1013 {
1014 int effective_cost = INSN_TICK (next) - clock;
1015
1016 if (! (*current_sched_info->new_ready) (next))
1017 continue;
1018
1019 if (sched_verbose >= 2)
1020 {
1021 fprintf (sched_dump, ";;\t\tdependences resolved: insn %s ",
1022 (*current_sched_info->print_insn) (next, 0));
1023
1024 if (effective_cost < 1)
1025 fprintf (sched_dump, "into ready\n");
1026 else
1027 fprintf (sched_dump, "into queue with cost=%d\n", effective_cost);
1028 }
1029
1030 /* Adjust the priority of NEXT and either put it on the ready
1031 list or queue it. */
1032 adjust_priority (next);
1033 if (effective_cost < 1)
1034 ready_add (ready, next);
1035 else
1036 queue_insn (next, effective_cost);
1037 }
1038 }
1039
1040 /* Annotate the instruction with issue information -- TImode
1041 indicates that the instruction is expected not to be able
1042 to issue on the same cycle as the previous insn. A machine
1043 may use this information to decide how the instruction should
1044 be aligned. */
1045 if (reload_completed && issue_rate > 1)
1046 {
1047 PUT_MODE (insn, clock > last_clock_var ? TImode : VOIDmode);
1048 last_clock_var = clock;
1049 }
1050 }
1051
1052 /* Functions for handling of notes. */
1053
1054 /* Delete notes beginning with INSN and put them in the chain
1055 of notes ended by NOTE_LIST.
1056 Returns the insn following the notes. */
1057
1058 static rtx
1059 unlink_other_notes (insn, tail)
1060 rtx insn, tail;
1061 {
1062 rtx prev = PREV_INSN (insn);
1063
1064 while (insn != tail && GET_CODE (insn) == NOTE)
1065 {
1066 rtx next = NEXT_INSN (insn);
1067 /* Delete the note from its current position. */
1068 if (prev)
1069 NEXT_INSN (prev) = next;
1070 if (next)
1071 PREV_INSN (next) = prev;
1072
1073 /* See sched_analyze to see how these are handled. */
1074 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_SETJMP
1075 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
1076 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
1077 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_BEG
1078 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
1079 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
1080 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
1081 {
1082 /* Insert the note at the end of the notes list. */
1083 PREV_INSN (insn) = note_list;
1084 if (note_list)
1085 NEXT_INSN (note_list) = insn;
1086 note_list = insn;
1087 }
1088
1089 insn = next;
1090 }
1091 return insn;
1092 }
1093
1094 /* Delete line notes beginning with INSN. Record line-number notes so
1095 they can be reused. Returns the insn following the notes. */
1096
1097 static rtx
1098 unlink_line_notes (insn, tail)
1099 rtx insn, tail;
1100 {
1101 rtx prev = PREV_INSN (insn);
1102
1103 while (insn != tail && GET_CODE (insn) == NOTE)
1104 {
1105 rtx next = NEXT_INSN (insn);
1106
1107 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
1108 {
1109 /* Delete the note from its current position. */
1110 if (prev)
1111 NEXT_INSN (prev) = next;
1112 if (next)
1113 PREV_INSN (next) = prev;
1114
1115 /* Record line-number notes so they can be reused. */
1116 LINE_NOTE (insn) = insn;
1117 }
1118 else
1119 prev = insn;
1120
1121 insn = next;
1122 }
1123 return insn;
1124 }
1125
1126 /* Return the head and tail pointers of BB. */
1127
1128 void
1129 get_block_head_tail (b, headp, tailp)
1130 int b;
1131 rtx *headp;
1132 rtx *tailp;
1133 {
1134 /* HEAD and TAIL delimit the basic block being scheduled. */
1135 rtx head = BLOCK_HEAD (b);
1136 rtx tail = BLOCK_END (b);
1137
1138 /* Don't include any notes or labels at the beginning of the
1139 basic block, or notes at the ends of basic blocks. */
1140 while (head != tail)
1141 {
1142 if (GET_CODE (head) == NOTE)
1143 head = NEXT_INSN (head);
1144 else if (GET_CODE (tail) == NOTE)
1145 tail = PREV_INSN (tail);
1146 else if (GET_CODE (head) == CODE_LABEL)
1147 head = NEXT_INSN (head);
1148 else
1149 break;
1150 }
1151
1152 *headp = head;
1153 *tailp = tail;
1154 }
1155
1156 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1157
1158 int
1159 no_real_insns_p (head, tail)
1160 rtx head, tail;
1161 {
1162 while (head != NEXT_INSN (tail))
1163 {
1164 if (GET_CODE (head) != NOTE && GET_CODE (head) != CODE_LABEL)
1165 return 0;
1166 head = NEXT_INSN (head);
1167 }
1168 return 1;
1169 }
1170
1171 /* Delete line notes from one block. Save them so they can be later restored
1172 (in restore_line_notes). HEAD and TAIL are the boundaries of the
1173 block in which notes should be processed. */
1174
1175 void
1176 rm_line_notes (head, tail)
1177 rtx head, tail;
1178 {
1179 rtx next_tail;
1180 rtx insn;
1181
1182 next_tail = NEXT_INSN (tail);
1183 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1184 {
1185 rtx prev;
1186
1187 /* Farm out notes, and maybe save them in NOTE_LIST.
1188 This is needed to keep the debugger from
1189 getting completely deranged. */
1190 if (GET_CODE (insn) == NOTE)
1191 {
1192 prev = insn;
1193 insn = unlink_line_notes (insn, next_tail);
1194
1195 if (prev == tail)
1196 abort ();
1197 if (prev == head)
1198 abort ();
1199 if (insn == next_tail)
1200 abort ();
1201 }
1202 }
1203 }
1204
1205 /* Save line number notes for each insn in block B. HEAD and TAIL are
1206 the boundaries of the block in which notes should be processed.*/
1207
1208 void
1209 save_line_notes (b, head, tail)
1210 int b;
1211 rtx head, tail;
1212 {
1213 rtx next_tail;
1214
1215 /* We must use the true line number for the first insn in the block
1216 that was computed and saved at the start of this pass. We can't
1217 use the current line number, because scheduling of the previous
1218 block may have changed the current line number. */
1219
1220 rtx line = line_note_head[b];
1221 rtx insn;
1222
1223 next_tail = NEXT_INSN (tail);
1224
1225 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1226 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1227 line = insn;
1228 else
1229 LINE_NOTE (insn) = line;
1230 }
1231
1232 /* After a block was scheduled, insert line notes into the insns list.
1233 HEAD and TAIL are the boundaries of the block in which notes should
1234 be processed.*/
1235
1236 void
1237 restore_line_notes (head, tail)
1238 rtx head, tail;
1239 {
1240 rtx line, note, prev, new;
1241 int added_notes = 0;
1242 rtx next_tail, insn;
1243
1244 head = head;
1245 next_tail = NEXT_INSN (tail);
1246
1247 /* Determine the current line-number. We want to know the current
1248 line number of the first insn of the block here, in case it is
1249 different from the true line number that was saved earlier. If
1250 different, then we need a line number note before the first insn
1251 of this block. If it happens to be the same, then we don't want to
1252 emit another line number note here. */
1253 for (line = head; line; line = PREV_INSN (line))
1254 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1255 break;
1256
1257 /* Walk the insns keeping track of the current line-number and inserting
1258 the line-number notes as needed. */
1259 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1260 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1261 line = insn;
1262 /* This used to emit line number notes before every non-deleted note.
1263 However, this confuses a debugger, because line notes not separated
1264 by real instructions all end up at the same address. I can find no
1265 use for line number notes before other notes, so none are emitted. */
1266 else if (GET_CODE (insn) != NOTE
1267 && INSN_UID (insn) < old_max_uid
1268 && (note = LINE_NOTE (insn)) != 0
1269 && note != line
1270 && (line == 0
1271 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
1272 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
1273 {
1274 line = note;
1275 prev = PREV_INSN (insn);
1276 if (LINE_NOTE (note))
1277 {
1278 /* Re-use the original line-number note. */
1279 LINE_NOTE (note) = 0;
1280 PREV_INSN (note) = prev;
1281 NEXT_INSN (prev) = note;
1282 PREV_INSN (insn) = note;
1283 NEXT_INSN (note) = insn;
1284 }
1285 else
1286 {
1287 added_notes++;
1288 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
1289 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
1290 RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
1291 }
1292 }
1293 if (sched_verbose && added_notes)
1294 fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
1295 }
1296
1297 /* After scheduling the function, delete redundant line notes from the
1298 insns list. */
1299
1300 void
1301 rm_redundant_line_notes ()
1302 {
1303 rtx line = 0;
1304 rtx insn = get_insns ();
1305 int active_insn = 0;
1306 int notes = 0;
1307
1308 /* Walk the insns deleting redundant line-number notes. Many of these
1309 are already present. The remainder tend to occur at basic
1310 block boundaries. */
1311 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1312 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1313 {
1314 /* If there are no active insns following, INSN is redundant. */
1315 if (active_insn == 0)
1316 {
1317 notes++;
1318 NOTE_SOURCE_FILE (insn) = 0;
1319 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1320 }
1321 /* If the line number is unchanged, LINE is redundant. */
1322 else if (line
1323 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
1324 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
1325 {
1326 notes++;
1327 NOTE_SOURCE_FILE (line) = 0;
1328 NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
1329 line = insn;
1330 }
1331 else
1332 line = insn;
1333 active_insn = 0;
1334 }
1335 else if (!((GET_CODE (insn) == NOTE
1336 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
1337 || (GET_CODE (insn) == INSN
1338 && (GET_CODE (PATTERN (insn)) == USE
1339 || GET_CODE (PATTERN (insn)) == CLOBBER))))
1340 active_insn++;
1341
1342 if (sched_verbose && notes)
1343 fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
1344 }
1345
1346 /* Delete notes between HEAD and TAIL and put them in the chain
1347 of notes ended by NOTE_LIST. */
1348
1349 void
1350 rm_other_notes (head, tail)
1351 rtx head;
1352 rtx tail;
1353 {
1354 rtx next_tail;
1355 rtx insn;
1356
1357 note_list = 0;
1358 if (head == tail && (! INSN_P (head)))
1359 return;
1360
1361 next_tail = NEXT_INSN (tail);
1362 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1363 {
1364 rtx prev;
1365
1366 /* Farm out notes, and maybe save them in NOTE_LIST.
1367 This is needed to keep the debugger from
1368 getting completely deranged. */
1369 if (GET_CODE (insn) == NOTE)
1370 {
1371 prev = insn;
1372
1373 insn = unlink_other_notes (insn, next_tail);
1374
1375 if (prev == tail)
1376 abort ();
1377 if (prev == head)
1378 abort ();
1379 if (insn == next_tail)
1380 abort ();
1381 }
1382 }
1383 }
1384
1385 /* Functions for computation of registers live/usage info. */
1386
1387 /* Calculate INSN_REG_WEIGHT for all insns of a block. */
1388
1389 static void
1390 find_insn_reg_weight (b)
1391 int b;
1392 {
1393 rtx insn, next_tail, head, tail;
1394
1395 get_block_head_tail (b, &head, &tail);
1396 next_tail = NEXT_INSN (tail);
1397
1398 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1399 {
1400 int reg_weight = 0;
1401 rtx x;
1402
1403 /* Handle register life information. */
1404 if (! INSN_P (insn))
1405 continue;
1406
1407 /* Increment weight for each register born here. */
1408 x = PATTERN (insn);
1409 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1410 && register_operand (SET_DEST (x), VOIDmode))
1411 reg_weight++;
1412 else if (GET_CODE (x) == PARALLEL)
1413 {
1414 int j;
1415 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
1416 {
1417 x = XVECEXP (PATTERN (insn), 0, j);
1418 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1419 && register_operand (SET_DEST (x), VOIDmode))
1420 reg_weight++;
1421 }
1422 }
1423
1424 /* Decrement weight for each register that dies here. */
1425 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1426 {
1427 if (REG_NOTE_KIND (x) == REG_DEAD
1428 || REG_NOTE_KIND (x) == REG_UNUSED)
1429 reg_weight--;
1430 }
1431
1432 INSN_REG_WEIGHT (insn) = reg_weight;
1433 }
1434 }
1435
1436 /* Scheduling clock, modified in schedule_block() and queue_to_ready (). */
1437 static int clock_var;
1438
1439 /* Move insns that became ready to fire from queue to ready list. */
1440
1441 static void
1442 queue_to_ready (ready)
1443 struct ready_list *ready;
1444 {
1445 rtx insn;
1446 rtx link;
1447
1448 q_ptr = NEXT_Q (q_ptr);
1449
1450 /* Add all pending insns that can be scheduled without stalls to the
1451 ready list. */
1452 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1453 {
1454 insn = XEXP (link, 0);
1455 q_size -= 1;
1456
1457 if (sched_verbose >= 2)
1458 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1459 (*current_sched_info->print_insn) (insn, 0));
1460
1461 ready_add (ready, insn);
1462 if (sched_verbose >= 2)
1463 fprintf (sched_dump, "moving to ready without stalls\n");
1464 }
1465 insn_queue[q_ptr] = 0;
1466
1467 /* If there are no ready insns, stall until one is ready and add all
1468 of the pending insns at that point to the ready list. */
1469 if (ready->n_ready == 0)
1470 {
1471 register int stalls;
1472
1473 for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
1474 {
1475 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1476 {
1477 for (; link; link = XEXP (link, 1))
1478 {
1479 insn = XEXP (link, 0);
1480 q_size -= 1;
1481
1482 if (sched_verbose >= 2)
1483 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1484 (*current_sched_info->print_insn) (insn, 0));
1485
1486 ready_add (ready, insn);
1487 if (sched_verbose >= 2)
1488 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1489 }
1490 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
1491
1492 if (ready->n_ready)
1493 break;
1494 }
1495 }
1496
1497 if (sched_verbose && stalls)
1498 visualize_stall_cycles (stalls);
1499 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1500 clock_var += stalls;
1501 }
1502 }
1503
1504 /* Print the ready list for debugging purposes. Callable from debugger. */
1505
1506 static void
1507 debug_ready_list (ready)
1508 struct ready_list *ready;
1509 {
1510 rtx *p;
1511 int i;
1512
1513 if (ready->n_ready == 0)
1514 return;
1515
1516 p = ready_lastpos (ready);
1517 for (i = 0; i < ready->n_ready; i++)
1518 fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
1519 fprintf (sched_dump, "\n");
1520 }
1521
1522 /* move_insn1: Remove INSN from insn chain, and link it after LAST insn. */
1523
1524 static rtx
1525 move_insn1 (insn, last)
1526 rtx insn, last;
1527 {
1528 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1529 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1530
1531 NEXT_INSN (insn) = NEXT_INSN (last);
1532 PREV_INSN (NEXT_INSN (last)) = insn;
1533
1534 NEXT_INSN (last) = insn;
1535 PREV_INSN (insn) = last;
1536
1537 return insn;
1538 }
1539
1540 /* Search INSN for REG_SAVE_NOTE note pairs for NOTE_INSN_SETJMP,
1541 NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
1542 NOTEs. The REG_SAVE_NOTE note following first one is contains the
1543 saved value for NOTE_BLOCK_NUMBER which is useful for
1544 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
1545 output by the instruction scheduler. Return the new value of LAST. */
1546
1547 static rtx
1548 reemit_notes (insn, last)
1549 rtx insn;
1550 rtx last;
1551 {
1552 rtx note, retval;
1553
1554 retval = last;
1555 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1556 {
1557 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
1558 {
1559 enum insn_note note_type = INTVAL (XEXP (note, 0));
1560
1561 if (note_type == NOTE_INSN_SETJMP)
1562 {
1563 retval = emit_note_after (NOTE_INSN_SETJMP, insn);
1564 CONST_CALL_P (retval) = CONST_CALL_P (note);
1565 remove_note (insn, note);
1566 note = XEXP (note, 1);
1567 }
1568 else if (note_type == NOTE_INSN_RANGE_BEG
1569 || note_type == NOTE_INSN_RANGE_END)
1570 {
1571 last = emit_note_before (note_type, last);
1572 remove_note (insn, note);
1573 note = XEXP (note, 1);
1574 NOTE_RANGE_INFO (last) = XEXP (note, 0);
1575 }
1576 else
1577 {
1578 last = emit_note_before (note_type, last);
1579 remove_note (insn, note);
1580 note = XEXP (note, 1);
1581 if (note_type == NOTE_INSN_EH_REGION_BEG
1582 || note_type == NOTE_INSN_EH_REGION_END)
1583 NOTE_EH_HANDLER (last) = INTVAL (XEXP (note, 0));
1584 }
1585 remove_note (insn, note);
1586 }
1587 }
1588 return retval;
1589 }
1590
1591 /* Move INSN, and all insns which should be issued before it,
1592 due to SCHED_GROUP_P flag. Reemit notes if needed.
1593
1594 Return the last insn emitted by the scheduler, which is the
1595 return value from the first call to reemit_notes. */
1596
1597 static rtx
1598 move_insn (insn, last)
1599 rtx insn, last;
1600 {
1601 rtx retval = NULL;
1602
1603 /* If INSN has SCHED_GROUP_P set, then issue it and any other
1604 insns with SCHED_GROUP_P set first. */
1605 while (SCHED_GROUP_P (insn))
1606 {
1607 rtx prev = PREV_INSN (insn);
1608
1609 /* Move a SCHED_GROUP_P insn. */
1610 move_insn1 (insn, last);
1611 /* If this is the first call to reemit_notes, then record
1612 its return value. */
1613 if (retval == NULL_RTX)
1614 retval = reemit_notes (insn, insn);
1615 else
1616 reemit_notes (insn, insn);
1617 insn = prev;
1618 }
1619
1620 /* Now move the first non SCHED_GROUP_P insn. */
1621 move_insn1 (insn, last);
1622
1623 /* If this is the first call to reemit_notes, then record
1624 its return value. */
1625 if (retval == NULL_RTX)
1626 retval = reemit_notes (insn, insn);
1627 else
1628 reemit_notes (insn, insn);
1629
1630 return retval;
1631 }
1632
1633 /* Use forward list scheduling to rearrange insns of block B in region RGN,
1634 possibly bringing insns from subsequent blocks in the same region. */
1635
1636 void
1637 schedule_block (b, rgn_n_insns)
1638 int b;
1639 int rgn_n_insns;
1640 {
1641 rtx last;
1642 struct ready_list ready;
1643 int can_issue_more;
1644
1645 /* Head/tail info for this block. */
1646 rtx prev_head = current_sched_info->prev_head;
1647 rtx next_tail = current_sched_info->next_tail;
1648 rtx head = NEXT_INSN (prev_head);
1649 rtx tail = PREV_INSN (next_tail);
1650
1651 /* We used to have code to avoid getting parameters moved from hard
1652 argument registers into pseudos.
1653
1654 However, it was removed when it proved to be of marginal benefit
1655 and caused problems because schedule_block and compute_forward_dependences
1656 had different notions of what the "head" insn was. */
1657
1658 if (head == tail && (! INSN_P (head)))
1659 abort ();
1660
1661 /* Debug info. */
1662 if (sched_verbose)
1663 {
1664 fprintf (sched_dump, ";; ======================================================\n");
1665 fprintf (sched_dump,
1666 ";; -- basic block %d from %d to %d -- %s reload\n",
1667 b, INSN_UID (head), INSN_UID (tail),
1668 (reload_completed ? "after" : "before"));
1669 fprintf (sched_dump, ";; ======================================================\n");
1670 fprintf (sched_dump, "\n");
1671
1672 visualize_alloc ();
1673 init_block_visualization ();
1674 }
1675
1676 clear_units ();
1677
1678 /* Allocate the ready list. */
1679 ready.veclen = rgn_n_insns + 1 + ISSUE_RATE;
1680 ready.first = ready.veclen - 1;
1681 ready.vec = (rtx *) xmalloc (ready.veclen * sizeof (rtx));
1682 ready.n_ready = 0;
1683
1684 (*current_sched_info->init_ready_list) (&ready);
1685
1686 #ifdef MD_SCHED_INIT
1687 MD_SCHED_INIT (sched_dump, sched_verbose, ready.veclen);
1688 #endif
1689
1690 /* No insns scheduled in this block yet. */
1691 last_scheduled_insn = 0;
1692
1693 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
1694 queue. */
1695 q_ptr = 0;
1696 q_size = 0;
1697 last_clock_var = 0;
1698 memset ((char *) insn_queue, 0, sizeof (insn_queue));
1699
1700 /* Start just before the beginning of time. */
1701 clock_var = -1;
1702
1703 /* We start inserting insns after PREV_HEAD. */
1704 last = prev_head;
1705
1706 /* Loop until all the insns in BB are scheduled. */
1707 while ((*current_sched_info->schedule_more_p) ())
1708 {
1709 clock_var++;
1710
1711 /* Add to the ready list all pending insns that can be issued now.
1712 If there are no ready insns, increment clock until one
1713 is ready and add all pending insns at that point to the ready
1714 list. */
1715 queue_to_ready (&ready);
1716
1717 #ifdef HAVE_cycle_display
1718 if (HAVE_cycle_display)
1719 last = emit_insn_after (gen_cycle_display (GEN_INT (clock_var)), last);
1720 #endif
1721
1722 if (ready.n_ready == 0)
1723 abort ();
1724
1725 if (sched_verbose >= 2)
1726 {
1727 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
1728 debug_ready_list (&ready);
1729 }
1730
1731 /* Sort the ready list based on priority. */
1732 ready_sort (&ready);
1733
1734 /* Allow the target to reorder the list, typically for
1735 better instruction bundling. */
1736 #ifdef MD_SCHED_REORDER
1737 MD_SCHED_REORDER (sched_dump, sched_verbose, ready_lastpos (&ready),
1738 ready.n_ready, clock_var, can_issue_more);
1739 #else
1740 can_issue_more = issue_rate;
1741 #endif
1742
1743 if (sched_verbose)
1744 {
1745 fprintf (sched_dump, "\n;;\tReady list (t =%3d): ", clock_var);
1746 debug_ready_list (&ready);
1747 }
1748
1749 /* Issue insns from ready list. */
1750 while (ready.n_ready != 0
1751 && can_issue_more
1752 && (*current_sched_info->schedule_more_p) ())
1753 {
1754 /* Select and remove the insn from the ready list. */
1755 rtx insn = ready_remove_first (&ready);
1756 int cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
1757
1758 if (cost >= 1)
1759 {
1760 queue_insn (insn, cost);
1761 continue;
1762 }
1763
1764 if (! (*current_sched_info->can_schedule_ready_p) (insn))
1765 goto next;
1766
1767 last_scheduled_insn = insn;
1768 last = move_insn (insn, last);
1769
1770 #ifdef MD_SCHED_VARIABLE_ISSUE
1771 MD_SCHED_VARIABLE_ISSUE (sched_dump, sched_verbose, insn,
1772 can_issue_more);
1773 #else
1774 can_issue_more--;
1775 #endif
1776
1777 schedule_insn (insn, &ready, clock_var);
1778
1779 next:
1780 ;
1781 #ifdef MD_SCHED_REORDER2
1782 /* Sort the ready list based on priority. */
1783 if (ready.n_ready > 0)
1784 ready_sort (&ready);
1785 MD_SCHED_REORDER2 (sched_dump, sched_verbose,
1786 ready.n_ready ? ready_lastpos (&ready) : NULL,
1787 ready.n_ready, clock_var, can_issue_more);
1788 #endif
1789 }
1790
1791 /* Debug info. */
1792 if (sched_verbose)
1793 visualize_scheduled_insns (clock_var);
1794 }
1795
1796 #ifdef MD_SCHED_FINISH
1797 MD_SCHED_FINISH (sched_dump, sched_verbose);
1798 #endif
1799
1800 /* Debug info. */
1801 if (sched_verbose)
1802 {
1803 fprintf (sched_dump, ";;\tReady list (final): ");
1804 debug_ready_list (&ready);
1805 print_block_visualization ("");
1806 }
1807
1808 /* Sanity check -- queue must be empty now. Meaningless if region has
1809 multiple bbs. */
1810 if (current_sched_info->queue_must_finish_empty && q_size != 0)
1811 abort ();
1812
1813 /* Update head/tail boundaries. */
1814 head = NEXT_INSN (prev_head);
1815 tail = last;
1816
1817 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1818 previously found among the insns. Insert them at the beginning
1819 of the insns. */
1820 if (note_list != 0)
1821 {
1822 rtx note_head = note_list;
1823
1824 while (PREV_INSN (note_head))
1825 {
1826 note_head = PREV_INSN (note_head);
1827 }
1828
1829 PREV_INSN (note_head) = PREV_INSN (head);
1830 NEXT_INSN (PREV_INSN (head)) = note_head;
1831 PREV_INSN (head) = note_list;
1832 NEXT_INSN (note_list) = head;
1833 head = note_head;
1834 }
1835
1836 /* Debugging. */
1837 if (sched_verbose)
1838 {
1839 fprintf (sched_dump, ";; total time = %d\n;; new head = %d\n",
1840 clock_var, INSN_UID (head));
1841 fprintf (sched_dump, ";; new tail = %d\n\n",
1842 INSN_UID (tail));
1843 visualize_free ();
1844 }
1845
1846 current_sched_info->head = head;
1847 current_sched_info->tail = tail;
1848
1849 free (ready.vec);
1850 }
1851 \f
1852 /* Set_priorities: compute priority of each insn in the block. */
1853
1854 int
1855 set_priorities (head, tail)
1856 rtx head, tail;
1857 {
1858 rtx insn;
1859 int n_insn;
1860
1861 rtx prev_head;
1862
1863 prev_head = PREV_INSN (head);
1864
1865 if (head == tail && (! INSN_P (head)))
1866 return 0;
1867
1868 n_insn = 0;
1869 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
1870 {
1871 if (GET_CODE (insn) == NOTE)
1872 continue;
1873
1874 if (!(SCHED_GROUP_P (insn)))
1875 n_insn++;
1876 (void) priority (insn);
1877 }
1878
1879 return n_insn;
1880 }
1881
1882 /* Initialize some global state for the scheduler. DUMP_FILE is to be used
1883 for debugging output. */
1884
1885 void
1886 sched_init (dump_file)
1887 FILE *dump_file;
1888 {
1889 int luid, b;
1890 rtx insn;
1891
1892 /* Disable speculative loads in their presence if cc0 defined. */
1893 #ifdef HAVE_cc0
1894 flag_schedule_speculative_load = 0;
1895 #endif
1896
1897 /* Set dump and sched_verbose for the desired debugging output. If no
1898 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
1899 For -fsched-verbose=N, N>=10, print everything to stderr. */
1900 sched_verbose = sched_verbose_param;
1901 if (sched_verbose_param == 0 && dump_file)
1902 sched_verbose = 1;
1903 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
1904 ? stderr : dump_file);
1905
1906 /* Initialize issue_rate. */
1907 issue_rate = ISSUE_RATE;
1908
1909 /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
1910 pseudos which do not cross calls. */
1911 old_max_uid = get_max_uid () + 1;
1912
1913 h_i_d = (struct haifa_insn_data *) xcalloc (old_max_uid, sizeof (*h_i_d));
1914
1915 h_i_d[0].luid = 0;
1916 luid = 1;
1917 for (b = 0; b < n_basic_blocks; b++)
1918 for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
1919 {
1920 INSN_LUID (insn) = luid;
1921
1922 /* Increment the next luid, unless this is a note. We don't
1923 really need separate IDs for notes and we don't want to
1924 schedule differently depending on whether or not there are
1925 line-number notes, i.e., depending on whether or not we're
1926 generating debugging information. */
1927 if (GET_CODE (insn) != NOTE)
1928 ++luid;
1929
1930 if (insn == BLOCK_END (b))
1931 break;
1932 }
1933
1934 init_dependency_caches (luid);
1935
1936 compute_bb_for_insn (old_max_uid);
1937
1938 init_alias_analysis ();
1939
1940 if (write_symbols != NO_DEBUG)
1941 {
1942 rtx line;
1943
1944 line_note_head = (rtx *) xcalloc (n_basic_blocks, sizeof (rtx));
1945
1946 /* Save-line-note-head:
1947 Determine the line-number at the start of each basic block.
1948 This must be computed and saved now, because after a basic block's
1949 predecessor has been scheduled, it is impossible to accurately
1950 determine the correct line number for the first insn of the block. */
1951
1952 for (b = 0; b < n_basic_blocks; b++)
1953 {
1954 for (line = BLOCK_HEAD (b); line; line = PREV_INSN (line))
1955 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1956 {
1957 line_note_head[b] = line;
1958 break;
1959 }
1960 /* Do a forward search as well, since we won't get to see the first
1961 notes in a basic block. */
1962 for (line = BLOCK_HEAD (b); line; line = NEXT_INSN (line))
1963 {
1964 if (INSN_P (line))
1965 break;
1966 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1967 line_note_head[b] = line;
1968 }
1969 }
1970 }
1971
1972 /* Find units used in this fuction, for visualization. */
1973 if (sched_verbose)
1974 init_target_units ();
1975
1976 /* ??? Add a NOTE after the last insn of the last basic block. It is not
1977 known why this is done. */
1978
1979 insn = BLOCK_END (n_basic_blocks - 1);
1980 if (NEXT_INSN (insn) == 0
1981 || (GET_CODE (insn) != NOTE
1982 && GET_CODE (insn) != CODE_LABEL
1983 /* Don't emit a NOTE if it would end up before a BARRIER. */
1984 && GET_CODE (NEXT_INSN (insn)) != BARRIER))
1985 emit_note_after (NOTE_INSN_DELETED, BLOCK_END (n_basic_blocks - 1));
1986
1987 /* Compute INSN_REG_WEIGHT for all blocks. We must do this before
1988 removing death notes. */
1989 for (b = n_basic_blocks - 1; b >= 0; b--)
1990 find_insn_reg_weight (b);
1991 }
1992
1993 /* Free global data used during insn scheduling. */
1994
1995 void
1996 sched_finish ()
1997 {
1998 free (h_i_d);
1999 free_dependency_caches ();
2000 end_alias_analysis ();
2001 if (write_symbols != NO_DEBUG)
2002 free (line_note_head);
2003 }
2004 #endif /* INSN_SCHEDULING */