ipa-cp.c (ipcp_cloning_candidate_p): Use opt_for_fn.
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "hashtab.h"
135 #include "hash-set.h"
136 #include "vec.h"
137 #include "machmode.h"
138 #include "input.h"
139 #include "function.h"
140 #include "flags.h"
141 #include "insn-config.h"
142 #include "insn-attr.h"
143 #include "except.h"
144 #include "recog.h"
145 #include "dominance.h"
146 #include "cfg.h"
147 #include "cfgrtl.h"
148 #include "cfgbuild.h"
149 #include "predict.h"
150 #include "basic-block.h"
151 #include "sched-int.h"
152 #include "target.h"
153 #include "common/common-target.h"
154 #include "params.h"
155 #include "dbgcnt.h"
156 #include "cfgloop.h"
157 #include "ira.h"
158 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
159 #include "hash-table.h"
160 #include "dumpfile.h"
161
162 #ifdef INSN_SCHEDULING
163
164 /* True if we do register pressure relief through live-range
165 shrinkage. */
166 static bool live_range_shrinkage_p;
167
168 /* Switch on live range shrinkage. */
169 void
170 initialize_live_range_shrinkage (void)
171 {
172 live_range_shrinkage_p = true;
173 }
174
175 /* Switch off live range shrinkage. */
176 void
177 finish_live_range_shrinkage (void)
178 {
179 live_range_shrinkage_p = false;
180 }
181
182 /* issue_rate is the number of insns that can be scheduled in the same
183 machine cycle. It can be defined in the config/mach/mach.h file,
184 otherwise we set it to 1. */
185
186 int issue_rate;
187
188 /* This can be set to true by a backend if the scheduler should not
189 enable a DCE pass. */
190 bool sched_no_dce;
191
192 /* The current initiation interval used when modulo scheduling. */
193 static int modulo_ii;
194
195 /* The maximum number of stages we are prepared to handle. */
196 static int modulo_max_stages;
197
198 /* The number of insns that exist in each iteration of the loop. We use this
199 to detect when we've scheduled all insns from the first iteration. */
200 static int modulo_n_insns;
201
202 /* The current count of insns in the first iteration of the loop that have
203 already been scheduled. */
204 static int modulo_insns_scheduled;
205
206 /* The maximum uid of insns from the first iteration of the loop. */
207 static int modulo_iter0_max_uid;
208
209 /* The number of times we should attempt to backtrack when modulo scheduling.
210 Decreased each time we have to backtrack. */
211 static int modulo_backtracks_left;
212
213 /* The stage in which the last insn from the original loop was
214 scheduled. */
215 static int modulo_last_stage;
216
217 /* sched-verbose controls the amount of debugging output the
218 scheduler prints. It is controlled by -fsched-verbose=N:
219 N>0 and no -DSR : the output is directed to stderr.
220 N>=10 will direct the printouts to stderr (regardless of -dSR).
221 N=1: same as -dSR.
222 N=2: bb's probabilities, detailed ready list info, unit/insn info.
223 N=3: rtl at abort point, control-flow, regions info.
224 N=5: dependences info. */
225
226 int sched_verbose = 0;
227
228 /* Debugging file. All printouts are sent to dump, which is always set,
229 either to stderr, or to the dump listing file (-dRS). */
230 FILE *sched_dump = 0;
231
232 /* This is a placeholder for the scheduler parameters common
233 to all schedulers. */
234 struct common_sched_info_def *common_sched_info;
235
236 #define INSN_TICK(INSN) (HID (INSN)->tick)
237 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
238 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
239 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
240 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
241 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
242 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
243 /* Cached cost of the instruction. Use insn_cost to get cost of the
244 insn. -1 here means that the field is not initialized. */
245 #define INSN_COST(INSN) (HID (INSN)->cost)
246
247 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
248 then it should be recalculated from scratch. */
249 #define INVALID_TICK (-(max_insn_queue_index + 1))
250 /* The minimal value of the INSN_TICK of an instruction. */
251 #define MIN_TICK (-max_insn_queue_index)
252
253 /* The deciding reason for INSN's place in the ready list. */
254 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
255
256 /* List of important notes we must keep around. This is a pointer to the
257 last element in the list. */
258 rtx_insn *note_list;
259
260 static struct spec_info_def spec_info_var;
261 /* Description of the speculative part of the scheduling.
262 If NULL - no speculation. */
263 spec_info_t spec_info = NULL;
264
265 /* True, if recovery block was added during scheduling of current block.
266 Used to determine, if we need to fix INSN_TICKs. */
267 static bool haifa_recovery_bb_recently_added_p;
268
269 /* True, if recovery block was added during this scheduling pass.
270 Used to determine if we should have empty memory pools of dependencies
271 after finishing current region. */
272 bool haifa_recovery_bb_ever_added_p;
273
274 /* Counters of different types of speculative instructions. */
275 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
276
277 /* Array used in {unlink, restore}_bb_notes. */
278 static rtx_insn **bb_header = 0;
279
280 /* Basic block after which recovery blocks will be created. */
281 static basic_block before_recovery;
282
283 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
284 created it. */
285 basic_block after_recovery;
286
287 /* FALSE if we add bb to another region, so we don't need to initialize it. */
288 bool adding_bb_to_current_region_p = true;
289
290 /* Queues, etc. */
291
292 /* An instruction is ready to be scheduled when all insns preceding it
293 have already been scheduled. It is important to ensure that all
294 insns which use its result will not be executed until its result
295 has been computed. An insn is maintained in one of four structures:
296
297 (P) the "Pending" set of insns which cannot be scheduled until
298 their dependencies have been satisfied.
299 (Q) the "Queued" set of insns that can be scheduled when sufficient
300 time has passed.
301 (R) the "Ready" list of unscheduled, uncommitted insns.
302 (S) the "Scheduled" list of insns.
303
304 Initially, all insns are either "Pending" or "Ready" depending on
305 whether their dependencies are satisfied.
306
307 Insns move from the "Ready" list to the "Scheduled" list as they
308 are committed to the schedule. As this occurs, the insns in the
309 "Pending" list have their dependencies satisfied and move to either
310 the "Ready" list or the "Queued" set depending on whether
311 sufficient time has passed to make them ready. As time passes,
312 insns move from the "Queued" set to the "Ready" list.
313
314 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
315 unscheduled insns, i.e., those that are ready, queued, and pending.
316 The "Queued" set (Q) is implemented by the variable `insn_queue'.
317 The "Ready" list (R) is implemented by the variables `ready' and
318 `n_ready'.
319 The "Scheduled" list (S) is the new insn chain built by this pass.
320
321 The transition (R->S) is implemented in the scheduling loop in
322 `schedule_block' when the best insn to schedule is chosen.
323 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
324 insns move from the ready list to the scheduled list.
325 The transition (Q->R) is implemented in 'queue_to_insn' as time
326 passes or stalls are introduced. */
327
328 /* Implement a circular buffer to delay instructions until sufficient
329 time has passed. For the new pipeline description interface,
330 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
331 than maximal time of instruction execution computed by genattr.c on
332 the base maximal time of functional unit reservations and getting a
333 result. This is the longest time an insn may be queued. */
334
335 static rtx_insn_list **insn_queue;
336 static int q_ptr = 0;
337 static int q_size = 0;
338 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
339 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
340
341 #define QUEUE_SCHEDULED (-3)
342 #define QUEUE_NOWHERE (-2)
343 #define QUEUE_READY (-1)
344 /* QUEUE_SCHEDULED - INSN is scheduled.
345 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
346 queue or ready list.
347 QUEUE_READY - INSN is in ready list.
348 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
349
350 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
351
352 /* The following variable value refers for all current and future
353 reservations of the processor units. */
354 state_t curr_state;
355
356 /* The following variable value is size of memory representing all
357 current and future reservations of the processor units. */
358 size_t dfa_state_size;
359
360 /* The following array is used to find the best insn from ready when
361 the automaton pipeline interface is used. */
362 signed char *ready_try = NULL;
363
364 /* The ready list. */
365 struct ready_list ready = {NULL, 0, 0, 0, 0};
366
367 /* The pointer to the ready list (to be removed). */
368 static struct ready_list *readyp = &ready;
369
370 /* Scheduling clock. */
371 static int clock_var;
372
373 /* Clock at which the previous instruction was issued. */
374 static int last_clock_var;
375
376 /* Set to true if, when queuing a shadow insn, we discover that it would be
377 scheduled too late. */
378 static bool must_backtrack;
379
380 /* The following variable value is number of essential insns issued on
381 the current cycle. An insn is essential one if it changes the
382 processors state. */
383 int cycle_issued_insns;
384
385 /* This records the actual schedule. It is built up during the main phase
386 of schedule_block, and afterwards used to reorder the insns in the RTL. */
387 static vec<rtx_insn *> scheduled_insns;
388
389 static int may_trap_exp (const_rtx, int);
390
391 /* Nonzero iff the address is comprised from at most 1 register. */
392 #define CONST_BASED_ADDRESS_P(x) \
393 (REG_P (x) \
394 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
395 || (GET_CODE (x) == LO_SUM)) \
396 && (CONSTANT_P (XEXP (x, 0)) \
397 || CONSTANT_P (XEXP (x, 1)))))
398
399 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
400 as found by analyzing insn's expression. */
401
402 \f
403 static int haifa_luid_for_non_insn (rtx x);
404
405 /* Haifa version of sched_info hooks common to all headers. */
406 const struct common_sched_info_def haifa_common_sched_info =
407 {
408 NULL, /* fix_recovery_cfg */
409 NULL, /* add_block */
410 NULL, /* estimate_number_of_insns */
411 haifa_luid_for_non_insn, /* luid_for_non_insn */
412 SCHED_PASS_UNKNOWN /* sched_pass_id */
413 };
414
415 /* Mapping from instruction UID to its Logical UID. */
416 vec<int> sched_luids = vNULL;
417
418 /* Next LUID to assign to an instruction. */
419 int sched_max_luid = 1;
420
421 /* Haifa Instruction Data. */
422 vec<haifa_insn_data_def> h_i_d = vNULL;
423
424 void (* sched_init_only_bb) (basic_block, basic_block);
425
426 /* Split block function. Different schedulers might use different functions
427 to handle their internal data consistent. */
428 basic_block (* sched_split_block) (basic_block, rtx);
429
430 /* Create empty basic block after the specified block. */
431 basic_block (* sched_create_empty_bb) (basic_block);
432
433 /* Return the number of cycles until INSN is expected to be ready.
434 Return zero if it already is. */
435 static int
436 insn_delay (rtx_insn *insn)
437 {
438 return MAX (INSN_TICK (insn) - clock_var, 0);
439 }
440
441 static int
442 may_trap_exp (const_rtx x, int is_store)
443 {
444 enum rtx_code code;
445
446 if (x == 0)
447 return TRAP_FREE;
448 code = GET_CODE (x);
449 if (is_store)
450 {
451 if (code == MEM && may_trap_p (x))
452 return TRAP_RISKY;
453 else
454 return TRAP_FREE;
455 }
456 if (code == MEM)
457 {
458 /* The insn uses memory: a volatile load. */
459 if (MEM_VOLATILE_P (x))
460 return IRISKY;
461 /* An exception-free load. */
462 if (!may_trap_p (x))
463 return IFREE;
464 /* A load with 1 base register, to be further checked. */
465 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
466 return PFREE_CANDIDATE;
467 /* No info on the load, to be further checked. */
468 return PRISKY_CANDIDATE;
469 }
470 else
471 {
472 const char *fmt;
473 int i, insn_class = TRAP_FREE;
474
475 /* Neither store nor load, check if it may cause a trap. */
476 if (may_trap_p (x))
477 return TRAP_RISKY;
478 /* Recursive step: walk the insn... */
479 fmt = GET_RTX_FORMAT (code);
480 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
481 {
482 if (fmt[i] == 'e')
483 {
484 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
485 insn_class = WORST_CLASS (insn_class, tmp_class);
486 }
487 else if (fmt[i] == 'E')
488 {
489 int j;
490 for (j = 0; j < XVECLEN (x, i); j++)
491 {
492 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
493 insn_class = WORST_CLASS (insn_class, tmp_class);
494 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
495 break;
496 }
497 }
498 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
499 break;
500 }
501 return insn_class;
502 }
503 }
504
505 /* Classifies rtx X of an insn for the purpose of verifying that X can be
506 executed speculatively (and consequently the insn can be moved
507 speculatively), by examining X, returning:
508 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
509 TRAP_FREE: non-load insn.
510 IFREE: load from a globally safe location.
511 IRISKY: volatile load.
512 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
513 being either PFREE or PRISKY. */
514
515 static int
516 haifa_classify_rtx (const_rtx x)
517 {
518 int tmp_class = TRAP_FREE;
519 int insn_class = TRAP_FREE;
520 enum rtx_code code;
521
522 if (GET_CODE (x) == PARALLEL)
523 {
524 int i, len = XVECLEN (x, 0);
525
526 for (i = len - 1; i >= 0; i--)
527 {
528 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
529 insn_class = WORST_CLASS (insn_class, tmp_class);
530 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
531 break;
532 }
533 }
534 else
535 {
536 code = GET_CODE (x);
537 switch (code)
538 {
539 case CLOBBER:
540 /* Test if it is a 'store'. */
541 tmp_class = may_trap_exp (XEXP (x, 0), 1);
542 break;
543 case SET:
544 /* Test if it is a store. */
545 tmp_class = may_trap_exp (SET_DEST (x), 1);
546 if (tmp_class == TRAP_RISKY)
547 break;
548 /* Test if it is a load. */
549 tmp_class =
550 WORST_CLASS (tmp_class,
551 may_trap_exp (SET_SRC (x), 0));
552 break;
553 case COND_EXEC:
554 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
555 if (tmp_class == TRAP_RISKY)
556 break;
557 tmp_class = WORST_CLASS (tmp_class,
558 may_trap_exp (COND_EXEC_TEST (x), 0));
559 break;
560 case TRAP_IF:
561 tmp_class = TRAP_RISKY;
562 break;
563 default:;
564 }
565 insn_class = tmp_class;
566 }
567
568 return insn_class;
569 }
570
571 int
572 haifa_classify_insn (const_rtx insn)
573 {
574 return haifa_classify_rtx (PATTERN (insn));
575 }
576 \f
577 /* After the scheduler initialization function has been called, this function
578 can be called to enable modulo scheduling. II is the initiation interval
579 we should use, it affects the delays for delay_pairs that were recorded as
580 separated by a given number of stages.
581
582 MAX_STAGES provides us with a limit
583 after which we give up scheduling; the caller must have unrolled at least
584 as many copies of the loop body and recorded delay_pairs for them.
585
586 INSNS is the number of real (non-debug) insns in one iteration of
587 the loop. MAX_UID can be used to test whether an insn belongs to
588 the first iteration of the loop; all of them have a uid lower than
589 MAX_UID. */
590 void
591 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
592 {
593 modulo_ii = ii;
594 modulo_max_stages = max_stages;
595 modulo_n_insns = insns;
596 modulo_iter0_max_uid = max_uid;
597 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
598 }
599
600 /* A structure to record a pair of insns where the first one is a real
601 insn that has delay slots, and the second is its delayed shadow.
602 I1 is scheduled normally and will emit an assembly instruction,
603 while I2 describes the side effect that takes place at the
604 transition between cycles CYCLES and (CYCLES + 1) after I1. */
605 struct delay_pair
606 {
607 struct delay_pair *next_same_i1;
608 rtx_insn *i1, *i2;
609 int cycles;
610 /* When doing modulo scheduling, we a delay_pair can also be used to
611 show that I1 and I2 are the same insn in a different stage. If that
612 is the case, STAGES will be nonzero. */
613 int stages;
614 };
615
616 /* Helpers for delay hashing. */
617
618 struct delay_i1_hasher : typed_noop_remove <delay_pair>
619 {
620 typedef delay_pair value_type;
621 typedef void compare_type;
622 static inline hashval_t hash (const value_type *);
623 static inline bool equal (const value_type *, const compare_type *);
624 };
625
626 /* Returns a hash value for X, based on hashing just I1. */
627
628 inline hashval_t
629 delay_i1_hasher::hash (const value_type *x)
630 {
631 return htab_hash_pointer (x->i1);
632 }
633
634 /* Return true if I1 of pair X is the same as that of pair Y. */
635
636 inline bool
637 delay_i1_hasher::equal (const value_type *x, const compare_type *y)
638 {
639 return x->i1 == y;
640 }
641
642 struct delay_i2_hasher : typed_free_remove <delay_pair>
643 {
644 typedef delay_pair value_type;
645 typedef void compare_type;
646 static inline hashval_t hash (const value_type *);
647 static inline bool equal (const value_type *, const compare_type *);
648 };
649
650 /* Returns a hash value for X, based on hashing just I2. */
651
652 inline hashval_t
653 delay_i2_hasher::hash (const value_type *x)
654 {
655 return htab_hash_pointer (x->i2);
656 }
657
658 /* Return true if I2 of pair X is the same as that of pair Y. */
659
660 inline bool
661 delay_i2_hasher::equal (const value_type *x, const compare_type *y)
662 {
663 return x->i2 == y;
664 }
665
666 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
667 indexed by I2. */
668 static hash_table<delay_i1_hasher> *delay_htab;
669 static hash_table<delay_i2_hasher> *delay_htab_i2;
670
671 /* Called through htab_traverse. Walk the hashtable using I2 as
672 index, and delete all elements involving an UID higher than
673 that pointed to by *DATA. */
674 int
675 haifa_htab_i2_traverse (delay_pair **slot, int *data)
676 {
677 int maxuid = *data;
678 struct delay_pair *p = *slot;
679 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
680 {
681 delay_htab_i2->clear_slot (slot);
682 }
683 return 1;
684 }
685
686 /* Called through htab_traverse. Walk the hashtable using I2 as
687 index, and delete all elements involving an UID higher than
688 that pointed to by *DATA. */
689 int
690 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
691 {
692 int maxuid = *data;
693 struct delay_pair *p, *first, **pprev;
694
695 if (INSN_UID ((*pslot)->i1) >= maxuid)
696 {
697 delay_htab->clear_slot (pslot);
698 return 1;
699 }
700 pprev = &first;
701 for (p = *pslot; p; p = p->next_same_i1)
702 {
703 if (INSN_UID (p->i2) < maxuid)
704 {
705 *pprev = p;
706 pprev = &p->next_same_i1;
707 }
708 }
709 *pprev = NULL;
710 if (first == NULL)
711 delay_htab->clear_slot (pslot);
712 else
713 *pslot = first;
714 return 1;
715 }
716
717 /* Discard all delay pairs which involve an insn with an UID higher
718 than MAX_UID. */
719 void
720 discard_delay_pairs_above (int max_uid)
721 {
722 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
723 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
724 }
725
726 /* This function can be called by a port just before it starts the final
727 scheduling pass. It records the fact that an instruction with delay
728 slots has been split into two insns, I1 and I2. The first one will be
729 scheduled normally and initiates the operation. The second one is a
730 shadow which must follow a specific number of cycles after I1; its only
731 purpose is to show the side effect that occurs at that cycle in the RTL.
732 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
733 while I2 retains the original insn type.
734
735 There are two ways in which the number of cycles can be specified,
736 involving the CYCLES and STAGES arguments to this function. If STAGES
737 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
738 which is multiplied by MODULO_II to give the number of cycles. This is
739 only useful if the caller also calls set_modulo_params to enable modulo
740 scheduling. */
741
742 void
743 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
744 {
745 struct delay_pair *p = XNEW (struct delay_pair);
746 struct delay_pair **slot;
747
748 p->i1 = i1;
749 p->i2 = i2;
750 p->cycles = cycles;
751 p->stages = stages;
752
753 if (!delay_htab)
754 {
755 delay_htab = new hash_table<delay_i1_hasher> (10);
756 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
757 }
758 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
759 p->next_same_i1 = *slot;
760 *slot = p;
761 slot = delay_htab_i2->find_slot (p, INSERT);
762 *slot = p;
763 }
764
765 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
766 and return the other insn if so. Return NULL otherwise. */
767 rtx_insn *
768 real_insn_for_shadow (rtx_insn *insn)
769 {
770 struct delay_pair *pair;
771
772 if (!delay_htab)
773 return NULL;
774
775 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
776 if (!pair || pair->stages > 0)
777 return NULL;
778 return pair->i1;
779 }
780
781 /* For a pair P of insns, return the fixed distance in cycles from the first
782 insn after which the second must be scheduled. */
783 static int
784 pair_delay (struct delay_pair *p)
785 {
786 if (p->stages == 0)
787 return p->cycles;
788 else
789 return p->stages * modulo_ii;
790 }
791
792 /* Given an insn INSN, add a dependence on its delayed shadow if it
793 has one. Also try to find situations where shadows depend on each other
794 and add dependencies to the real insns to limit the amount of backtracking
795 needed. */
796 void
797 add_delay_dependencies (rtx_insn *insn)
798 {
799 struct delay_pair *pair;
800 sd_iterator_def sd_it;
801 dep_t dep;
802
803 if (!delay_htab)
804 return;
805
806 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
807 if (!pair)
808 return;
809 add_dependence (insn, pair->i1, REG_DEP_ANTI);
810 if (pair->stages)
811 return;
812
813 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
814 {
815 rtx_insn *pro = DEP_PRO (dep);
816 struct delay_pair *other_pair
817 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
818 if (!other_pair || other_pair->stages)
819 continue;
820 if (pair_delay (other_pair) >= pair_delay (pair))
821 {
822 if (sched_verbose >= 4)
823 {
824 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
825 INSN_UID (other_pair->i1),
826 INSN_UID (pair->i1));
827 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
828 INSN_UID (pair->i1),
829 INSN_UID (pair->i2),
830 pair_delay (pair));
831 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
832 INSN_UID (other_pair->i1),
833 INSN_UID (other_pair->i2),
834 pair_delay (other_pair));
835 }
836 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
837 }
838 }
839 }
840 \f
841 /* Forward declarations. */
842
843 static int priority (rtx_insn *);
844 static int rank_for_schedule (const void *, const void *);
845 static void swap_sort (rtx_insn **, int);
846 static void queue_insn (rtx_insn *, int, const char *);
847 static int schedule_insn (rtx_insn *);
848 static void adjust_priority (rtx_insn *);
849 static void advance_one_cycle (void);
850 static void extend_h_i_d (void);
851
852
853 /* Notes handling mechanism:
854 =========================
855 Generally, NOTES are saved before scheduling and restored after scheduling.
856 The scheduler distinguishes between two types of notes:
857
858 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
859 Before scheduling a region, a pointer to the note is added to the insn
860 that follows or precedes it. (This happens as part of the data dependence
861 computation). After scheduling an insn, the pointer contained in it is
862 used for regenerating the corresponding note (in reemit_notes).
863
864 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
865 these notes are put in a list (in rm_other_notes() and
866 unlink_other_notes ()). After scheduling the block, these notes are
867 inserted at the beginning of the block (in schedule_block()). */
868
869 static void ready_add (struct ready_list *, rtx_insn *, bool);
870 static rtx_insn *ready_remove_first (struct ready_list *);
871 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
872
873 static void queue_to_ready (struct ready_list *);
874 static int early_queue_to_ready (state_t, struct ready_list *);
875
876 /* The following functions are used to implement multi-pass scheduling
877 on the first cycle. */
878 static rtx_insn *ready_remove (struct ready_list *, int);
879 static void ready_remove_insn (rtx);
880
881 static void fix_inter_tick (rtx_insn *, rtx_insn *);
882 static int fix_tick_ready (rtx_insn *);
883 static void change_queue_index (rtx_insn *, int);
884
885 /* The following functions are used to implement scheduling of data/control
886 speculative instructions. */
887
888 static void extend_h_i_d (void);
889 static void init_h_i_d (rtx_insn *);
890 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
891 static void generate_recovery_code (rtx_insn *);
892 static void process_insn_forw_deps_be_in_spec (rtx, rtx_insn *, ds_t);
893 static void begin_speculative_block (rtx_insn *);
894 static void add_to_speculative_block (rtx_insn *);
895 static void init_before_recovery (basic_block *);
896 static void create_check_block_twin (rtx_insn *, bool);
897 static void fix_recovery_deps (basic_block);
898 static bool haifa_change_pattern (rtx_insn *, rtx);
899 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
900 static void restore_bb_notes (basic_block);
901 static void fix_jump_move (rtx_insn *);
902 static void move_block_after_check (rtx_insn *);
903 static void move_succs (vec<edge, va_gc> **, basic_block);
904 static void sched_remove_insn (rtx_insn *);
905 static void clear_priorities (rtx_insn *, rtx_vec_t *);
906 static void calc_priorities (rtx_vec_t);
907 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
908
909 #endif /* INSN_SCHEDULING */
910 \f
911 /* Point to state used for the current scheduling pass. */
912 struct haifa_sched_info *current_sched_info;
913 \f
914 #ifndef INSN_SCHEDULING
915 void
916 schedule_insns (void)
917 {
918 }
919 #else
920
921 /* Do register pressure sensitive insn scheduling if the flag is set
922 up. */
923 enum sched_pressure_algorithm sched_pressure;
924
925 /* Map regno -> its pressure class. The map defined only when
926 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
927 enum reg_class *sched_regno_pressure_class;
928
929 /* The current register pressure. Only elements corresponding pressure
930 classes are defined. */
931 static int curr_reg_pressure[N_REG_CLASSES];
932
933 /* Saved value of the previous array. */
934 static int saved_reg_pressure[N_REG_CLASSES];
935
936 /* Register living at given scheduling point. */
937 static bitmap curr_reg_live;
938
939 /* Saved value of the previous array. */
940 static bitmap saved_reg_live;
941
942 /* Registers mentioned in the current region. */
943 static bitmap region_ref_regs;
944
945 /* Effective number of available registers of a given class (see comment
946 in sched_pressure_start_bb). */
947 static int sched_class_regs_num[N_REG_CLASSES];
948 /* Number of call_used_regs. This is a helper for calculating of
949 sched_class_regs_num. */
950 static int call_used_regs_num[N_REG_CLASSES];
951
952 /* Initiate register pressure relative info for scheduling the current
953 region. Currently it is only clearing register mentioned in the
954 current region. */
955 void
956 sched_init_region_reg_pressure_info (void)
957 {
958 bitmap_clear (region_ref_regs);
959 }
960
961 /* PRESSURE[CL] describes the pressure on register class CL. Update it
962 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
963 LIVE tracks the set of live registers; if it is null, assume that
964 every birth or death is genuine. */
965 static inline void
966 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
967 {
968 enum reg_class pressure_class;
969
970 pressure_class = sched_regno_pressure_class[regno];
971 if (regno >= FIRST_PSEUDO_REGISTER)
972 {
973 if (pressure_class != NO_REGS)
974 {
975 if (birth_p)
976 {
977 if (!live || bitmap_set_bit (live, regno))
978 pressure[pressure_class]
979 += (ira_reg_class_max_nregs
980 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
981 }
982 else
983 {
984 if (!live || bitmap_clear_bit (live, regno))
985 pressure[pressure_class]
986 -= (ira_reg_class_max_nregs
987 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
988 }
989 }
990 }
991 else if (pressure_class != NO_REGS
992 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
993 {
994 if (birth_p)
995 {
996 if (!live || bitmap_set_bit (live, regno))
997 pressure[pressure_class]++;
998 }
999 else
1000 {
1001 if (!live || bitmap_clear_bit (live, regno))
1002 pressure[pressure_class]--;
1003 }
1004 }
1005 }
1006
1007 /* Initiate current register pressure related info from living
1008 registers given by LIVE. */
1009 static void
1010 initiate_reg_pressure_info (bitmap live)
1011 {
1012 int i;
1013 unsigned int j;
1014 bitmap_iterator bi;
1015
1016 for (i = 0; i < ira_pressure_classes_num; i++)
1017 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1018 bitmap_clear (curr_reg_live);
1019 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1020 if (sched_pressure == SCHED_PRESSURE_MODEL
1021 || current_nr_blocks == 1
1022 || bitmap_bit_p (region_ref_regs, j))
1023 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1024 }
1025
1026 /* Mark registers in X as mentioned in the current region. */
1027 static void
1028 setup_ref_regs (rtx x)
1029 {
1030 int i, j, regno;
1031 const RTX_CODE code = GET_CODE (x);
1032 const char *fmt;
1033
1034 if (REG_P (x))
1035 {
1036 regno = REGNO (x);
1037 if (HARD_REGISTER_NUM_P (regno))
1038 bitmap_set_range (region_ref_regs, regno,
1039 hard_regno_nregs[regno][GET_MODE (x)]);
1040 else
1041 bitmap_set_bit (region_ref_regs, REGNO (x));
1042 return;
1043 }
1044 fmt = GET_RTX_FORMAT (code);
1045 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1046 if (fmt[i] == 'e')
1047 setup_ref_regs (XEXP (x, i));
1048 else if (fmt[i] == 'E')
1049 {
1050 for (j = 0; j < XVECLEN (x, i); j++)
1051 setup_ref_regs (XVECEXP (x, i, j));
1052 }
1053 }
1054
1055 /* Initiate current register pressure related info at the start of
1056 basic block BB. */
1057 static void
1058 initiate_bb_reg_pressure_info (basic_block bb)
1059 {
1060 unsigned int i ATTRIBUTE_UNUSED;
1061 rtx_insn *insn;
1062
1063 if (current_nr_blocks > 1)
1064 FOR_BB_INSNS (bb, insn)
1065 if (NONDEBUG_INSN_P (insn))
1066 setup_ref_regs (PATTERN (insn));
1067 initiate_reg_pressure_info (df_get_live_in (bb));
1068 #ifdef EH_RETURN_DATA_REGNO
1069 if (bb_has_eh_pred (bb))
1070 for (i = 0; ; ++i)
1071 {
1072 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1073
1074 if (regno == INVALID_REGNUM)
1075 break;
1076 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1077 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1078 regno, true);
1079 }
1080 #endif
1081 }
1082
1083 /* Save current register pressure related info. */
1084 static void
1085 save_reg_pressure (void)
1086 {
1087 int i;
1088
1089 for (i = 0; i < ira_pressure_classes_num; i++)
1090 saved_reg_pressure[ira_pressure_classes[i]]
1091 = curr_reg_pressure[ira_pressure_classes[i]];
1092 bitmap_copy (saved_reg_live, curr_reg_live);
1093 }
1094
1095 /* Restore saved register pressure related info. */
1096 static void
1097 restore_reg_pressure (void)
1098 {
1099 int i;
1100
1101 for (i = 0; i < ira_pressure_classes_num; i++)
1102 curr_reg_pressure[ira_pressure_classes[i]]
1103 = saved_reg_pressure[ira_pressure_classes[i]];
1104 bitmap_copy (curr_reg_live, saved_reg_live);
1105 }
1106
1107 /* Return TRUE if the register is dying after its USE. */
1108 static bool
1109 dying_use_p (struct reg_use_data *use)
1110 {
1111 struct reg_use_data *next;
1112
1113 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1114 if (NONDEBUG_INSN_P (next->insn)
1115 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1116 return false;
1117 return true;
1118 }
1119
1120 /* Print info about the current register pressure and its excess for
1121 each pressure class. */
1122 static void
1123 print_curr_reg_pressure (void)
1124 {
1125 int i;
1126 enum reg_class cl;
1127
1128 fprintf (sched_dump, ";;\t");
1129 for (i = 0; i < ira_pressure_classes_num; i++)
1130 {
1131 cl = ira_pressure_classes[i];
1132 gcc_assert (curr_reg_pressure[cl] >= 0);
1133 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1134 curr_reg_pressure[cl],
1135 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1136 }
1137 fprintf (sched_dump, "\n");
1138 }
1139 \f
1140 /* Determine if INSN has a condition that is clobbered if a register
1141 in SET_REGS is modified. */
1142 static bool
1143 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1144 {
1145 rtx pat = PATTERN (insn);
1146 gcc_assert (GET_CODE (pat) == COND_EXEC);
1147 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1148 {
1149 sd_iterator_def sd_it;
1150 dep_t dep;
1151 haifa_change_pattern (insn, ORIG_PAT (insn));
1152 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1153 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1154 TODO_SPEC (insn) = HARD_DEP;
1155 if (sched_verbose >= 2)
1156 fprintf (sched_dump,
1157 ";;\t\tdequeue insn %s because of clobbered condition\n",
1158 (*current_sched_info->print_insn) (insn, 0));
1159 return true;
1160 }
1161
1162 return false;
1163 }
1164
1165 /* This function should be called after modifying the pattern of INSN,
1166 to update scheduler data structures as needed. */
1167 static void
1168 update_insn_after_change (rtx_insn *insn)
1169 {
1170 sd_iterator_def sd_it;
1171 dep_t dep;
1172
1173 dfa_clear_single_insn_cache (insn);
1174
1175 sd_it = sd_iterator_start (insn,
1176 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1177 while (sd_iterator_cond (&sd_it, &dep))
1178 {
1179 DEP_COST (dep) = UNKNOWN_DEP_COST;
1180 sd_iterator_next (&sd_it);
1181 }
1182
1183 /* Invalidate INSN_COST, so it'll be recalculated. */
1184 INSN_COST (insn) = -1;
1185 /* Invalidate INSN_TICK, so it'll be recalculated. */
1186 INSN_TICK (insn) = INVALID_TICK;
1187 }
1188
1189
1190 /* Two VECs, one to hold dependencies for which pattern replacements
1191 need to be applied or restored at the start of the next cycle, and
1192 another to hold an integer that is either one, to apply the
1193 corresponding replacement, or zero to restore it. */
1194 static vec<dep_t> next_cycle_replace_deps;
1195 static vec<int> next_cycle_apply;
1196
1197 static void apply_replacement (dep_t, bool);
1198 static void restore_pattern (dep_t, bool);
1199
1200 /* Look at the remaining dependencies for insn NEXT, and compute and return
1201 the TODO_SPEC value we should use for it. This is called after one of
1202 NEXT's dependencies has been resolved.
1203 We also perform pattern replacements for predication, and for broken
1204 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1205 false. */
1206
1207 static ds_t
1208 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1209 {
1210 ds_t new_ds;
1211 sd_iterator_def sd_it;
1212 dep_t dep, modify_dep = NULL;
1213 int n_spec = 0;
1214 int n_control = 0;
1215 int n_replace = 0;
1216 bool first_p = true;
1217
1218 if (sd_lists_empty_p (next, SD_LIST_BACK))
1219 /* NEXT has all its dependencies resolved. */
1220 return 0;
1221
1222 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1223 return HARD_DEP;
1224
1225 /* Now we've got NEXT with speculative deps only.
1226 1. Look at the deps to see what we have to do.
1227 2. Check if we can do 'todo'. */
1228 new_ds = 0;
1229
1230 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1231 {
1232 rtx_insn *pro = DEP_PRO (dep);
1233 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1234
1235 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1236 continue;
1237
1238 if (ds)
1239 {
1240 n_spec++;
1241 if (first_p)
1242 {
1243 first_p = false;
1244
1245 new_ds = ds;
1246 }
1247 else
1248 new_ds = ds_merge (new_ds, ds);
1249 }
1250 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1251 {
1252 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1253 {
1254 n_control++;
1255 modify_dep = dep;
1256 }
1257 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1258 }
1259 else if (DEP_REPLACE (dep) != NULL)
1260 {
1261 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1262 {
1263 n_replace++;
1264 modify_dep = dep;
1265 }
1266 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1267 }
1268 }
1269
1270 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1271 {
1272 if (!dbg_cnt (sched_breakdep))
1273 return HARD_DEP;
1274 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1275 {
1276 struct dep_replacement *desc = DEP_REPLACE (dep);
1277 if (desc != NULL)
1278 {
1279 if (desc->insn == next && !for_backtrack)
1280 {
1281 gcc_assert (n_replace == 1);
1282 apply_replacement (dep, true);
1283 }
1284 DEP_STATUS (dep) |= DEP_CANCELLED;
1285 }
1286 }
1287 return 0;
1288 }
1289
1290 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1291 {
1292 rtx_insn *pro, *other;
1293 rtx new_pat;
1294 rtx cond = NULL_RTX;
1295 bool success;
1296 rtx_insn *prev = NULL;
1297 int i;
1298 unsigned regno;
1299
1300 if ((current_sched_info->flags & DO_PREDICATION) == 0
1301 || (ORIG_PAT (next) != NULL_RTX
1302 && PREDICATED_PAT (next) == NULL_RTX))
1303 return HARD_DEP;
1304
1305 pro = DEP_PRO (modify_dep);
1306 other = real_insn_for_shadow (pro);
1307 if (other != NULL_RTX)
1308 pro = other;
1309
1310 cond = sched_get_reverse_condition_uncached (pro);
1311 regno = REGNO (XEXP (cond, 0));
1312
1313 /* Find the last scheduled insn that modifies the condition register.
1314 We can stop looking once we find the insn we depend on through the
1315 REG_DEP_CONTROL; if the condition register isn't modified after it,
1316 we know that it still has the right value. */
1317 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1318 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1319 {
1320 HARD_REG_SET t;
1321
1322 find_all_hard_reg_sets (prev, &t, true);
1323 if (TEST_HARD_REG_BIT (t, regno))
1324 return HARD_DEP;
1325 if (prev == pro)
1326 break;
1327 }
1328 if (ORIG_PAT (next) == NULL_RTX)
1329 {
1330 ORIG_PAT (next) = PATTERN (next);
1331
1332 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1333 success = haifa_change_pattern (next, new_pat);
1334 if (!success)
1335 return HARD_DEP;
1336 PREDICATED_PAT (next) = new_pat;
1337 }
1338 else if (PATTERN (next) != PREDICATED_PAT (next))
1339 {
1340 bool success = haifa_change_pattern (next,
1341 PREDICATED_PAT (next));
1342 gcc_assert (success);
1343 }
1344 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1345 return DEP_CONTROL;
1346 }
1347
1348 if (PREDICATED_PAT (next) != NULL_RTX)
1349 {
1350 int tick = INSN_TICK (next);
1351 bool success = haifa_change_pattern (next,
1352 ORIG_PAT (next));
1353 INSN_TICK (next) = tick;
1354 gcc_assert (success);
1355 }
1356
1357 /* We can't handle the case where there are both speculative and control
1358 dependencies, so we return HARD_DEP in such a case. Also fail if
1359 we have speculative dependencies with not enough points, or more than
1360 one control dependency. */
1361 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1362 || (n_spec > 0
1363 /* Too few points? */
1364 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1365 || n_control > 0
1366 || n_replace > 0)
1367 return HARD_DEP;
1368
1369 return new_ds;
1370 }
1371 \f
1372 /* Pointer to the last instruction scheduled. */
1373 static rtx_insn *last_scheduled_insn;
1374
1375 /* Pointer to the last nondebug instruction scheduled within the
1376 block, or the prev_head of the scheduling block. Used by
1377 rank_for_schedule, so that insns independent of the last scheduled
1378 insn will be preferred over dependent instructions. */
1379 static rtx last_nondebug_scheduled_insn;
1380
1381 /* Pointer that iterates through the list of unscheduled insns if we
1382 have a dbg_cnt enabled. It always points at an insn prior to the
1383 first unscheduled one. */
1384 static rtx_insn *nonscheduled_insns_begin;
1385
1386 /* Compute cost of executing INSN.
1387 This is the number of cycles between instruction issue and
1388 instruction results. */
1389 int
1390 insn_cost (rtx_insn *insn)
1391 {
1392 int cost;
1393
1394 if (sched_fusion)
1395 return 0;
1396
1397 if (sel_sched_p ())
1398 {
1399 if (recog_memoized (insn) < 0)
1400 return 0;
1401
1402 cost = insn_default_latency (insn);
1403 if (cost < 0)
1404 cost = 0;
1405
1406 return cost;
1407 }
1408
1409 cost = INSN_COST (insn);
1410
1411 if (cost < 0)
1412 {
1413 /* A USE insn, or something else we don't need to
1414 understand. We can't pass these directly to
1415 result_ready_cost or insn_default_latency because it will
1416 trigger a fatal error for unrecognizable insns. */
1417 if (recog_memoized (insn) < 0)
1418 {
1419 INSN_COST (insn) = 0;
1420 return 0;
1421 }
1422 else
1423 {
1424 cost = insn_default_latency (insn);
1425 if (cost < 0)
1426 cost = 0;
1427
1428 INSN_COST (insn) = cost;
1429 }
1430 }
1431
1432 return cost;
1433 }
1434
1435 /* Compute cost of dependence LINK.
1436 This is the number of cycles between instruction issue and
1437 instruction results.
1438 ??? We also use this function to call recog_memoized on all insns. */
1439 int
1440 dep_cost_1 (dep_t link, dw_t dw)
1441 {
1442 rtx_insn *insn = DEP_PRO (link);
1443 rtx_insn *used = DEP_CON (link);
1444 int cost;
1445
1446 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1447 return DEP_COST (link);
1448
1449 if (delay_htab)
1450 {
1451 struct delay_pair *delay_entry;
1452 delay_entry
1453 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1454 if (delay_entry)
1455 {
1456 if (delay_entry->i1 == insn)
1457 {
1458 DEP_COST (link) = pair_delay (delay_entry);
1459 return DEP_COST (link);
1460 }
1461 }
1462 }
1463
1464 /* A USE insn should never require the value used to be computed.
1465 This allows the computation of a function's result and parameter
1466 values to overlap the return and call. We don't care about the
1467 dependence cost when only decreasing register pressure. */
1468 if (recog_memoized (used) < 0)
1469 {
1470 cost = 0;
1471 recog_memoized (insn);
1472 }
1473 else
1474 {
1475 enum reg_note dep_type = DEP_TYPE (link);
1476
1477 cost = insn_cost (insn);
1478
1479 if (INSN_CODE (insn) >= 0)
1480 {
1481 if (dep_type == REG_DEP_ANTI)
1482 cost = 0;
1483 else if (dep_type == REG_DEP_OUTPUT)
1484 {
1485 cost = (insn_default_latency (insn)
1486 - insn_default_latency (used));
1487 if (cost <= 0)
1488 cost = 1;
1489 }
1490 else if (bypass_p (insn))
1491 cost = insn_latency (insn, used);
1492 }
1493
1494
1495 if (targetm.sched.adjust_cost_2)
1496 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1497 dw);
1498 else if (targetm.sched.adjust_cost != NULL)
1499 {
1500 /* This variable is used for backward compatibility with the
1501 targets. */
1502 rtx_insn_list *dep_cost_rtx_link =
1503 alloc_INSN_LIST (NULL_RTX, NULL);
1504
1505 /* Make it self-cycled, so that if some tries to walk over this
1506 incomplete list he/she will be caught in an endless loop. */
1507 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1508
1509 /* Targets use only REG_NOTE_KIND of the link. */
1510 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1511
1512 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1513 insn, cost);
1514
1515 free_INSN_LIST_node (dep_cost_rtx_link);
1516 }
1517
1518 if (cost < 0)
1519 cost = 0;
1520 }
1521
1522 DEP_COST (link) = cost;
1523 return cost;
1524 }
1525
1526 /* Compute cost of dependence LINK.
1527 This is the number of cycles between instruction issue and
1528 instruction results. */
1529 int
1530 dep_cost (dep_t link)
1531 {
1532 return dep_cost_1 (link, 0);
1533 }
1534
1535 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1536 INSN_PRIORITY explicitly. */
1537 void
1538 increase_insn_priority (rtx_insn *insn, int amount)
1539 {
1540 if (!sel_sched_p ())
1541 {
1542 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1543 if (INSN_PRIORITY_KNOWN (insn))
1544 INSN_PRIORITY (insn) += amount;
1545 }
1546 else
1547 {
1548 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1549 Use EXPR_PRIORITY instead. */
1550 sel_add_to_insn_priority (insn, amount);
1551 }
1552 }
1553
1554 /* Return 'true' if DEP should be included in priority calculations. */
1555 static bool
1556 contributes_to_priority_p (dep_t dep)
1557 {
1558 if (DEBUG_INSN_P (DEP_CON (dep))
1559 || DEBUG_INSN_P (DEP_PRO (dep)))
1560 return false;
1561
1562 /* Critical path is meaningful in block boundaries only. */
1563 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1564 DEP_PRO (dep)))
1565 return false;
1566
1567 if (DEP_REPLACE (dep) != NULL)
1568 return false;
1569
1570 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1571 then speculative instructions will less likely be
1572 scheduled. That is because the priority of
1573 their producers will increase, and, thus, the
1574 producers will more likely be scheduled, thus,
1575 resolving the dependence. */
1576 if (sched_deps_info->generate_spec_deps
1577 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1578 && (DEP_STATUS (dep) & SPECULATIVE))
1579 return false;
1580
1581 return true;
1582 }
1583
1584 /* Compute the number of nondebug deps in list LIST for INSN. */
1585
1586 static int
1587 dep_list_size (rtx insn, sd_list_types_def list)
1588 {
1589 sd_iterator_def sd_it;
1590 dep_t dep;
1591 int dbgcount = 0, nodbgcount = 0;
1592
1593 if (!MAY_HAVE_DEBUG_INSNS)
1594 return sd_lists_size (insn, list);
1595
1596 FOR_EACH_DEP (insn, list, sd_it, dep)
1597 {
1598 if (DEBUG_INSN_P (DEP_CON (dep)))
1599 dbgcount++;
1600 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1601 nodbgcount++;
1602 }
1603
1604 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1605
1606 return nodbgcount;
1607 }
1608
1609 bool sched_fusion;
1610
1611 /* Compute the priority number for INSN. */
1612 static int
1613 priority (rtx_insn *insn)
1614 {
1615 if (! INSN_P (insn))
1616 return 0;
1617
1618 /* We should not be interested in priority of an already scheduled insn. */
1619 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1620
1621 if (!INSN_PRIORITY_KNOWN (insn))
1622 {
1623 int this_priority = -1;
1624
1625 if (sched_fusion)
1626 {
1627 int this_fusion_priority;
1628
1629 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1630 &this_fusion_priority, &this_priority);
1631 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1632 }
1633 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1634 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1635 some forward deps but all of them are ignored by
1636 contributes_to_priority hook. At the moment we set priority of
1637 such insn to 0. */
1638 this_priority = insn_cost (insn);
1639 else
1640 {
1641 rtx_insn *prev_first, *twin;
1642 basic_block rec;
1643
1644 /* For recovery check instructions we calculate priority slightly
1645 different than that of normal instructions. Instead of walking
1646 through INSN_FORW_DEPS (check) list, we walk through
1647 INSN_FORW_DEPS list of each instruction in the corresponding
1648 recovery block. */
1649
1650 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1651 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1652 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1653 {
1654 prev_first = PREV_INSN (insn);
1655 twin = insn;
1656 }
1657 else
1658 {
1659 prev_first = NEXT_INSN (BB_HEAD (rec));
1660 twin = PREV_INSN (BB_END (rec));
1661 }
1662
1663 do
1664 {
1665 sd_iterator_def sd_it;
1666 dep_t dep;
1667
1668 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1669 {
1670 rtx_insn *next;
1671 int next_priority;
1672
1673 next = DEP_CON (dep);
1674
1675 if (BLOCK_FOR_INSN (next) != rec)
1676 {
1677 int cost;
1678
1679 if (!contributes_to_priority_p (dep))
1680 continue;
1681
1682 if (twin == insn)
1683 cost = dep_cost (dep);
1684 else
1685 {
1686 struct _dep _dep1, *dep1 = &_dep1;
1687
1688 init_dep (dep1, insn, next, REG_DEP_ANTI);
1689
1690 cost = dep_cost (dep1);
1691 }
1692
1693 next_priority = cost + priority (next);
1694
1695 if (next_priority > this_priority)
1696 this_priority = next_priority;
1697 }
1698 }
1699
1700 twin = PREV_INSN (twin);
1701 }
1702 while (twin != prev_first);
1703 }
1704
1705 if (this_priority < 0)
1706 {
1707 gcc_assert (this_priority == -1);
1708
1709 this_priority = insn_cost (insn);
1710 }
1711
1712 INSN_PRIORITY (insn) = this_priority;
1713 INSN_PRIORITY_STATUS (insn) = 1;
1714 }
1715
1716 return INSN_PRIORITY (insn);
1717 }
1718 \f
1719 /* Macros and functions for keeping the priority queue sorted, and
1720 dealing with queuing and dequeuing of instructions. */
1721
1722 /* For each pressure class CL, set DEATH[CL] to the number of registers
1723 in that class that die in INSN. */
1724
1725 static void
1726 calculate_reg_deaths (rtx_insn *insn, int *death)
1727 {
1728 int i;
1729 struct reg_use_data *use;
1730
1731 for (i = 0; i < ira_pressure_classes_num; i++)
1732 death[ira_pressure_classes[i]] = 0;
1733 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1734 if (dying_use_p (use))
1735 mark_regno_birth_or_death (0, death, use->regno, true);
1736 }
1737
1738 /* Setup info about the current register pressure impact of scheduling
1739 INSN at the current scheduling point. */
1740 static void
1741 setup_insn_reg_pressure_info (rtx_insn *insn)
1742 {
1743 int i, change, before, after, hard_regno;
1744 int excess_cost_change;
1745 machine_mode mode;
1746 enum reg_class cl;
1747 struct reg_pressure_data *pressure_info;
1748 int *max_reg_pressure;
1749 static int death[N_REG_CLASSES];
1750
1751 gcc_checking_assert (!DEBUG_INSN_P (insn));
1752
1753 excess_cost_change = 0;
1754 calculate_reg_deaths (insn, death);
1755 pressure_info = INSN_REG_PRESSURE (insn);
1756 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1757 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1758 for (i = 0; i < ira_pressure_classes_num; i++)
1759 {
1760 cl = ira_pressure_classes[i];
1761 gcc_assert (curr_reg_pressure[cl] >= 0);
1762 change = (int) pressure_info[i].set_increase - death[cl];
1763 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1764 after = MAX (0, max_reg_pressure[i] + change
1765 - sched_class_regs_num[cl]);
1766 hard_regno = ira_class_hard_regs[cl][0];
1767 gcc_assert (hard_regno >= 0);
1768 mode = reg_raw_mode[hard_regno];
1769 excess_cost_change += ((after - before)
1770 * (ira_memory_move_cost[mode][cl][0]
1771 + ira_memory_move_cost[mode][cl][1]));
1772 }
1773 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1774 }
1775 \f
1776 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1777 It tries to make the scheduler take register pressure into account
1778 without introducing too many unnecessary stalls. It hooks into the
1779 main scheduling algorithm at several points:
1780
1781 - Before scheduling starts, model_start_schedule constructs a
1782 "model schedule" for the current block. This model schedule is
1783 chosen solely to keep register pressure down. It does not take the
1784 target's pipeline or the original instruction order into account,
1785 except as a tie-breaker. It also doesn't work to a particular
1786 pressure limit.
1787
1788 This model schedule gives us an idea of what pressure can be
1789 achieved for the block and gives us an example of a schedule that
1790 keeps to that pressure. It also makes the final schedule less
1791 dependent on the original instruction order. This is important
1792 because the original order can either be "wide" (many values live
1793 at once, such as in user-scheduled code) or "narrow" (few values
1794 live at once, such as after loop unrolling, where several
1795 iterations are executed sequentially).
1796
1797 We do not apply this model schedule to the rtx stream. We simply
1798 record it in model_schedule. We also compute the maximum pressure,
1799 MP, that was seen during this schedule.
1800
1801 - Instructions are added to the ready queue even if they require
1802 a stall. The length of the stall is instead computed as:
1803
1804 MAX (INSN_TICK (INSN) - clock_var, 0)
1805
1806 (= insn_delay). This allows rank_for_schedule to choose between
1807 introducing a deliberate stall or increasing pressure.
1808
1809 - Before sorting the ready queue, model_set_excess_costs assigns
1810 a pressure-based cost to each ready instruction in the queue.
1811 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1812 (ECC for short) and is effectively measured in cycles.
1813
1814 - rank_for_schedule ranks instructions based on:
1815
1816 ECC (insn) + insn_delay (insn)
1817
1818 then as:
1819
1820 insn_delay (insn)
1821
1822 So, for example, an instruction X1 with an ECC of 1 that can issue
1823 now will win over an instruction X0 with an ECC of zero that would
1824 introduce a stall of one cycle. However, an instruction X2 with an
1825 ECC of 2 that can issue now will lose to both X0 and X1.
1826
1827 - When an instruction is scheduled, model_recompute updates the model
1828 schedule with the new pressures (some of which might now exceed the
1829 original maximum pressure MP). model_update_limit_points then searches
1830 for the new point of maximum pressure, if not already known. */
1831
1832 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1833 from surrounding debug information. */
1834 #define MODEL_BAR \
1835 ";;\t\t+------------------------------------------------------\n"
1836
1837 /* Information about the pressure on a particular register class at a
1838 particular point of the model schedule. */
1839 struct model_pressure_data {
1840 /* The pressure at this point of the model schedule, or -1 if the
1841 point is associated with an instruction that has already been
1842 scheduled. */
1843 int ref_pressure;
1844
1845 /* The maximum pressure during or after this point of the model schedule. */
1846 int max_pressure;
1847 };
1848
1849 /* Per-instruction information that is used while building the model
1850 schedule. Here, "schedule" refers to the model schedule rather
1851 than the main schedule. */
1852 struct model_insn_info {
1853 /* The instruction itself. */
1854 rtx_insn *insn;
1855
1856 /* If this instruction is in model_worklist, these fields link to the
1857 previous (higher-priority) and next (lower-priority) instructions
1858 in the list. */
1859 struct model_insn_info *prev;
1860 struct model_insn_info *next;
1861
1862 /* While constructing the schedule, QUEUE_INDEX describes whether an
1863 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1864 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1865 old_queue records the value that QUEUE_INDEX had before scheduling
1866 started, so that we can restore it once the schedule is complete. */
1867 int old_queue;
1868
1869 /* The relative importance of an unscheduled instruction. Higher
1870 values indicate greater importance. */
1871 unsigned int model_priority;
1872
1873 /* The length of the longest path of satisfied true dependencies
1874 that leads to this instruction. */
1875 unsigned int depth;
1876
1877 /* The length of the longest path of dependencies of any kind
1878 that leads from this instruction. */
1879 unsigned int alap;
1880
1881 /* The number of predecessor nodes that must still be scheduled. */
1882 int unscheduled_preds;
1883 };
1884
1885 /* Information about the pressure limit for a particular register class.
1886 This structure is used when applying a model schedule to the main
1887 schedule. */
1888 struct model_pressure_limit {
1889 /* The maximum register pressure seen in the original model schedule. */
1890 int orig_pressure;
1891
1892 /* The maximum register pressure seen in the current model schedule
1893 (which excludes instructions that have already been scheduled). */
1894 int pressure;
1895
1896 /* The point of the current model schedule at which PRESSURE is first
1897 reached. It is set to -1 if the value needs to be recomputed. */
1898 int point;
1899 };
1900
1901 /* Describes a particular way of measuring register pressure. */
1902 struct model_pressure_group {
1903 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1904 struct model_pressure_limit limits[N_REG_CLASSES];
1905
1906 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1907 on register class ira_pressure_classes[PCI] at point POINT of the
1908 current model schedule. A POINT of model_num_insns describes the
1909 pressure at the end of the schedule. */
1910 struct model_pressure_data *model;
1911 };
1912
1913 /* Index POINT gives the instruction at point POINT of the model schedule.
1914 This array doesn't change during main scheduling. */
1915 static vec<rtx_insn *> model_schedule;
1916
1917 /* The list of instructions in the model worklist, sorted in order of
1918 decreasing priority. */
1919 static struct model_insn_info *model_worklist;
1920
1921 /* Index I describes the instruction with INSN_LUID I. */
1922 static struct model_insn_info *model_insns;
1923
1924 /* The number of instructions in the model schedule. */
1925 static int model_num_insns;
1926
1927 /* The index of the first instruction in model_schedule that hasn't yet been
1928 added to the main schedule, or model_num_insns if all of them have. */
1929 static int model_curr_point;
1930
1931 /* Describes the pressure before each instruction in the model schedule. */
1932 static struct model_pressure_group model_before_pressure;
1933
1934 /* The first unused model_priority value (as used in model_insn_info). */
1935 static unsigned int model_next_priority;
1936
1937
1938 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1939 at point POINT of the model schedule. */
1940 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1941 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1942
1943 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1944 after point POINT of the model schedule. */
1945 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1946 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1947
1948 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1949 of the model schedule. */
1950 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1951 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1952
1953 /* Information about INSN that is used when creating the model schedule. */
1954 #define MODEL_INSN_INFO(INSN) \
1955 (&model_insns[INSN_LUID (INSN)])
1956
1957 /* The instruction at point POINT of the model schedule. */
1958 #define MODEL_INSN(POINT) \
1959 (model_schedule[POINT])
1960
1961
1962 /* Return INSN's index in the model schedule, or model_num_insns if it
1963 doesn't belong to that schedule. */
1964
1965 static int
1966 model_index (rtx_insn *insn)
1967 {
1968 if (INSN_MODEL_INDEX (insn) == 0)
1969 return model_num_insns;
1970 return INSN_MODEL_INDEX (insn) - 1;
1971 }
1972
1973 /* Make sure that GROUP->limits is up-to-date for the current point
1974 of the model schedule. */
1975
1976 static void
1977 model_update_limit_points_in_group (struct model_pressure_group *group)
1978 {
1979 int pci, max_pressure, point;
1980
1981 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1982 {
1983 /* We may have passed the final point at which the pressure in
1984 group->limits[pci].pressure was reached. Update the limit if so. */
1985 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1986 group->limits[pci].pressure = max_pressure;
1987
1988 /* Find the point at which MAX_PRESSURE is first reached. We need
1989 to search in three cases:
1990
1991 - We've already moved past the previous pressure point.
1992 In this case we search forward from model_curr_point.
1993
1994 - We scheduled the previous point of maximum pressure ahead of
1995 its position in the model schedule, but doing so didn't bring
1996 the pressure point earlier. In this case we search forward
1997 from that previous pressure point.
1998
1999 - Scheduling an instruction early caused the maximum pressure
2000 to decrease. In this case we will have set the pressure
2001 point to -1, and we search forward from model_curr_point. */
2002 point = MAX (group->limits[pci].point, model_curr_point);
2003 while (point < model_num_insns
2004 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
2005 point++;
2006 group->limits[pci].point = point;
2007
2008 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
2009 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
2010 }
2011 }
2012
2013 /* Make sure that all register-pressure limits are up-to-date for the
2014 current position in the model schedule. */
2015
2016 static void
2017 model_update_limit_points (void)
2018 {
2019 model_update_limit_points_in_group (&model_before_pressure);
2020 }
2021
2022 /* Return the model_index of the last unscheduled use in chain USE
2023 outside of USE's instruction. Return -1 if there are no other uses,
2024 or model_num_insns if the register is live at the end of the block. */
2025
2026 static int
2027 model_last_use_except (struct reg_use_data *use)
2028 {
2029 struct reg_use_data *next;
2030 int last, index;
2031
2032 last = -1;
2033 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2034 if (NONDEBUG_INSN_P (next->insn)
2035 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2036 {
2037 index = model_index (next->insn);
2038 if (index == model_num_insns)
2039 return model_num_insns;
2040 if (last < index)
2041 last = index;
2042 }
2043 return last;
2044 }
2045
2046 /* An instruction with model_index POINT has just been scheduled, and it
2047 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2048 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2049 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2050
2051 static void
2052 model_start_update_pressure (struct model_pressure_group *group,
2053 int point, int pci, int delta)
2054 {
2055 int next_max_pressure;
2056
2057 if (point == model_num_insns)
2058 {
2059 /* The instruction wasn't part of the model schedule; it was moved
2060 from a different block. Update the pressure for the end of
2061 the model schedule. */
2062 MODEL_REF_PRESSURE (group, point, pci) += delta;
2063 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2064 }
2065 else
2066 {
2067 /* Record that this instruction has been scheduled. Nothing now
2068 changes between POINT and POINT + 1, so get the maximum pressure
2069 from the latter. If the maximum pressure decreases, the new
2070 pressure point may be before POINT. */
2071 MODEL_REF_PRESSURE (group, point, pci) = -1;
2072 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2073 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2074 {
2075 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2076 if (group->limits[pci].point == point)
2077 group->limits[pci].point = -1;
2078 }
2079 }
2080 }
2081
2082 /* Record that scheduling a later instruction has changed the pressure
2083 at point POINT of the model schedule by DELTA (which might be 0).
2084 Update GROUP accordingly. Return nonzero if these changes might
2085 trigger changes to previous points as well. */
2086
2087 static int
2088 model_update_pressure (struct model_pressure_group *group,
2089 int point, int pci, int delta)
2090 {
2091 int ref_pressure, max_pressure, next_max_pressure;
2092
2093 /* If POINT hasn't yet been scheduled, update its pressure. */
2094 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2095 if (ref_pressure >= 0 && delta != 0)
2096 {
2097 ref_pressure += delta;
2098 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2099
2100 /* Check whether the maximum pressure in the overall schedule
2101 has increased. (This means that the MODEL_MAX_PRESSURE of
2102 every point <= POINT will need to increase too; see below.) */
2103 if (group->limits[pci].pressure < ref_pressure)
2104 group->limits[pci].pressure = ref_pressure;
2105
2106 /* If we are at maximum pressure, and the maximum pressure
2107 point was previously unknown or later than POINT,
2108 bring it forward. */
2109 if (group->limits[pci].pressure == ref_pressure
2110 && !IN_RANGE (group->limits[pci].point, 0, point))
2111 group->limits[pci].point = point;
2112
2113 /* If POINT used to be the point of maximum pressure, but isn't
2114 any longer, we need to recalculate it using a forward walk. */
2115 if (group->limits[pci].pressure > ref_pressure
2116 && group->limits[pci].point == point)
2117 group->limits[pci].point = -1;
2118 }
2119
2120 /* Update the maximum pressure at POINT. Changes here might also
2121 affect the maximum pressure at POINT - 1. */
2122 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2123 max_pressure = MAX (ref_pressure, next_max_pressure);
2124 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2125 {
2126 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2127 return 1;
2128 }
2129 return 0;
2130 }
2131
2132 /* INSN has just been scheduled. Update the model schedule accordingly. */
2133
2134 static void
2135 model_recompute (rtx_insn *insn)
2136 {
2137 struct {
2138 int last_use;
2139 int regno;
2140 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2141 struct reg_use_data *use;
2142 struct reg_pressure_data *reg_pressure;
2143 int delta[N_REG_CLASSES];
2144 int pci, point, mix, new_last, cl, ref_pressure, queue;
2145 unsigned int i, num_uses, num_pending_births;
2146 bool print_p;
2147
2148 /* The destinations of INSN were previously live from POINT onwards, but are
2149 now live from model_curr_point onwards. Set up DELTA accordingly. */
2150 point = model_index (insn);
2151 reg_pressure = INSN_REG_PRESSURE (insn);
2152 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2153 {
2154 cl = ira_pressure_classes[pci];
2155 delta[cl] = reg_pressure[pci].set_increase;
2156 }
2157
2158 /* Record which registers previously died at POINT, but which now die
2159 before POINT. Adjust DELTA so that it represents the effect of
2160 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2161 registers that will be born in the range [model_curr_point, POINT). */
2162 num_uses = 0;
2163 num_pending_births = 0;
2164 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2165 {
2166 new_last = model_last_use_except (use);
2167 if (new_last < point)
2168 {
2169 gcc_assert (num_uses < ARRAY_SIZE (uses));
2170 uses[num_uses].last_use = new_last;
2171 uses[num_uses].regno = use->regno;
2172 /* This register is no longer live after POINT - 1. */
2173 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2174 num_uses++;
2175 if (new_last >= 0)
2176 num_pending_births++;
2177 }
2178 }
2179
2180 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2181 Also set each group pressure limit for POINT. */
2182 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2183 {
2184 cl = ira_pressure_classes[pci];
2185 model_start_update_pressure (&model_before_pressure,
2186 point, pci, delta[cl]);
2187 }
2188
2189 /* Walk the model schedule backwards, starting immediately before POINT. */
2190 print_p = false;
2191 if (point != model_curr_point)
2192 do
2193 {
2194 point--;
2195 insn = MODEL_INSN (point);
2196 queue = QUEUE_INDEX (insn);
2197
2198 if (queue != QUEUE_SCHEDULED)
2199 {
2200 /* DELTA describes the effect of the move on the register pressure
2201 after POINT. Make it describe the effect on the pressure
2202 before POINT. */
2203 i = 0;
2204 while (i < num_uses)
2205 {
2206 if (uses[i].last_use == point)
2207 {
2208 /* This register is now live again. */
2209 mark_regno_birth_or_death (NULL, delta,
2210 uses[i].regno, true);
2211
2212 /* Remove this use from the array. */
2213 uses[i] = uses[num_uses - 1];
2214 num_uses--;
2215 num_pending_births--;
2216 }
2217 else
2218 i++;
2219 }
2220
2221 if (sched_verbose >= 5)
2222 {
2223 if (!print_p)
2224 {
2225 fprintf (sched_dump, MODEL_BAR);
2226 fprintf (sched_dump, ";;\t\t| New pressure for model"
2227 " schedule\n");
2228 fprintf (sched_dump, MODEL_BAR);
2229 print_p = true;
2230 }
2231
2232 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2233 point, INSN_UID (insn),
2234 str_pattern_slim (PATTERN (insn)));
2235 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2236 {
2237 cl = ira_pressure_classes[pci];
2238 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2239 point, pci);
2240 fprintf (sched_dump, " %s:[%d->%d]",
2241 reg_class_names[ira_pressure_classes[pci]],
2242 ref_pressure, ref_pressure + delta[cl]);
2243 }
2244 fprintf (sched_dump, "\n");
2245 }
2246 }
2247
2248 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2249 might have changed as well. */
2250 mix = num_pending_births;
2251 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2252 {
2253 cl = ira_pressure_classes[pci];
2254 mix |= delta[cl];
2255 mix |= model_update_pressure (&model_before_pressure,
2256 point, pci, delta[cl]);
2257 }
2258 }
2259 while (mix && point > model_curr_point);
2260
2261 if (print_p)
2262 fprintf (sched_dump, MODEL_BAR);
2263 }
2264
2265 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2266 check whether the insn's pattern needs restoring. */
2267 static bool
2268 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2269 {
2270 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2271 return false;
2272
2273 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2274 {
2275 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2276 gcc_assert (next == DEP_CON (dep));
2277 }
2278 else
2279 {
2280 struct dep_replacement *desc = DEP_REPLACE (dep);
2281 if (desc->insn != next)
2282 {
2283 gcc_assert (*desc->loc == desc->orig);
2284 return false;
2285 }
2286 }
2287 return true;
2288 }
2289 \f
2290 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2291 pressure on CL from P to P'. We use this to calculate a "base ECC",
2292 baseECC (CL, X), for each pressure class CL and each instruction X.
2293 Supposing X changes the pressure on CL from P to P', and that the
2294 maximum pressure on CL in the current model schedule is MP', then:
2295
2296 * if X occurs before or at the next point of maximum pressure in
2297 the model schedule and P' > MP', then:
2298
2299 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2300
2301 The idea is that the pressure after scheduling a fixed set of
2302 instructions -- in this case, the set up to and including the
2303 next maximum pressure point -- is going to be the same regardless
2304 of the order; we simply want to keep the intermediate pressure
2305 under control. Thus X has a cost of zero unless scheduling it
2306 now would exceed MP'.
2307
2308 If all increases in the set are by the same amount, no zero-cost
2309 instruction will ever cause the pressure to exceed MP'. However,
2310 if X is instead moved past an instruction X' with pressure in the
2311 range (MP' - (P' - P), MP'), the pressure at X' will increase
2312 beyond MP'. Since baseECC is very much a heuristic anyway,
2313 it doesn't seem worth the overhead of tracking cases like these.
2314
2315 The cost of exceeding MP' is always based on the original maximum
2316 pressure MP. This is so that going 2 registers over the original
2317 limit has the same cost regardless of whether it comes from two
2318 separate +1 deltas or from a single +2 delta.
2319
2320 * if X occurs after the next point of maximum pressure in the model
2321 schedule and P' > P, then:
2322
2323 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2324
2325 That is, if we move X forward across a point of maximum pressure,
2326 and if X increases the pressure by P' - P, then we conservatively
2327 assume that scheduling X next would increase the maximum pressure
2328 by P' - P. Again, the cost of doing this is based on the original
2329 maximum pressure MP, for the same reason as above.
2330
2331 * if P' < P, P > MP, and X occurs at or after the next point of
2332 maximum pressure, then:
2333
2334 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2335
2336 That is, if we have already exceeded the original maximum pressure MP,
2337 and if X might reduce the maximum pressure again -- or at least push
2338 it further back, and thus allow more scheduling freedom -- it is given
2339 a negative cost to reflect the improvement.
2340
2341 * otherwise,
2342
2343 baseECC (CL, X) = 0
2344
2345 In this case, X is not expected to affect the maximum pressure MP',
2346 so it has zero cost.
2347
2348 We then create a combined value baseECC (X) that is the sum of
2349 baseECC (CL, X) for each pressure class CL.
2350
2351 baseECC (X) could itself be used as the ECC value described above.
2352 However, this is often too conservative, in the sense that it
2353 tends to make high-priority instructions that increase pressure
2354 wait too long in cases where introducing a spill would be better.
2355 For this reason the final ECC is a priority-adjusted form of
2356 baseECC (X). Specifically, we calculate:
2357
2358 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2359 baseP = MAX { P (X) | baseECC (X) <= 0 }
2360
2361 Then:
2362
2363 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2364
2365 Thus an instruction's effect on pressure is ignored if it has a high
2366 enough priority relative to the ones that don't increase pressure.
2367 Negative values of baseECC (X) do not increase the priority of X
2368 itself, but they do make it harder for other instructions to
2369 increase the pressure further.
2370
2371 This pressure cost is deliberately timid. The intention has been
2372 to choose a heuristic that rarely interferes with the normal list
2373 scheduler in cases where that scheduler would produce good code.
2374 We simply want to curb some of its worst excesses. */
2375
2376 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2377
2378 Here we use the very simplistic cost model that every register above
2379 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2380 measures instead, such as one based on MEMORY_MOVE_COST. However:
2381
2382 (1) In order for an instruction to be scheduled, the higher cost
2383 would need to be justified in a single saving of that many stalls.
2384 This is overly pessimistic, because the benefit of spilling is
2385 often to avoid a sequence of several short stalls rather than
2386 a single long one.
2387
2388 (2) The cost is still arbitrary. Because we are not allocating
2389 registers during scheduling, we have no way of knowing for
2390 sure how many memory accesses will be required by each spill,
2391 where the spills will be placed within the block, or even
2392 which block(s) will contain the spills.
2393
2394 So a higher cost than 1 is often too conservative in practice,
2395 forcing blocks to contain unnecessary stalls instead of spill code.
2396 The simple cost below seems to be the best compromise. It reduces
2397 the interference with the normal list scheduler, which helps make
2398 it more suitable for a default-on option. */
2399
2400 static int
2401 model_spill_cost (int cl, int from, int to)
2402 {
2403 from = MAX (from, sched_class_regs_num[cl]);
2404 return MAX (to, from) - from;
2405 }
2406
2407 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2408 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2409 P' = P + DELTA. */
2410
2411 static int
2412 model_excess_group_cost (struct model_pressure_group *group,
2413 int point, int pci, int delta)
2414 {
2415 int pressure, cl;
2416
2417 cl = ira_pressure_classes[pci];
2418 if (delta < 0 && point >= group->limits[pci].point)
2419 {
2420 pressure = MAX (group->limits[pci].orig_pressure,
2421 curr_reg_pressure[cl] + delta);
2422 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2423 }
2424
2425 if (delta > 0)
2426 {
2427 if (point > group->limits[pci].point)
2428 pressure = group->limits[pci].pressure + delta;
2429 else
2430 pressure = curr_reg_pressure[cl] + delta;
2431
2432 if (pressure > group->limits[pci].pressure)
2433 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2434 pressure);
2435 }
2436
2437 return 0;
2438 }
2439
2440 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2441 if PRINT_P. */
2442
2443 static int
2444 model_excess_cost (rtx_insn *insn, bool print_p)
2445 {
2446 int point, pci, cl, cost, this_cost, delta;
2447 struct reg_pressure_data *insn_reg_pressure;
2448 int insn_death[N_REG_CLASSES];
2449
2450 calculate_reg_deaths (insn, insn_death);
2451 point = model_index (insn);
2452 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2453 cost = 0;
2454
2455 if (print_p)
2456 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2457 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2458
2459 /* Sum up the individual costs for each register class. */
2460 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2461 {
2462 cl = ira_pressure_classes[pci];
2463 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2464 this_cost = model_excess_group_cost (&model_before_pressure,
2465 point, pci, delta);
2466 cost += this_cost;
2467 if (print_p)
2468 fprintf (sched_dump, " %s:[%d base cost %d]",
2469 reg_class_names[cl], delta, this_cost);
2470 }
2471
2472 if (print_p)
2473 fprintf (sched_dump, "\n");
2474
2475 return cost;
2476 }
2477
2478 /* Dump the next points of maximum pressure for GROUP. */
2479
2480 static void
2481 model_dump_pressure_points (struct model_pressure_group *group)
2482 {
2483 int pci, cl;
2484
2485 fprintf (sched_dump, ";;\t\t| pressure points");
2486 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2487 {
2488 cl = ira_pressure_classes[pci];
2489 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2490 curr_reg_pressure[cl], group->limits[pci].pressure);
2491 if (group->limits[pci].point < model_num_insns)
2492 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2493 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2494 else
2495 fprintf (sched_dump, "end]");
2496 }
2497 fprintf (sched_dump, "\n");
2498 }
2499
2500 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2501
2502 static void
2503 model_set_excess_costs (rtx_insn **insns, int count)
2504 {
2505 int i, cost, priority_base, priority;
2506 bool print_p;
2507
2508 /* Record the baseECC value for each instruction in the model schedule,
2509 except that negative costs are converted to zero ones now rather than
2510 later. Do not assign a cost to debug instructions, since they must
2511 not change code-generation decisions. Experiments suggest we also
2512 get better results by not assigning a cost to instructions from
2513 a different block.
2514
2515 Set PRIORITY_BASE to baseP in the block comment above. This is the
2516 maximum priority of the "cheap" instructions, which should always
2517 include the next model instruction. */
2518 priority_base = 0;
2519 print_p = false;
2520 for (i = 0; i < count; i++)
2521 if (INSN_MODEL_INDEX (insns[i]))
2522 {
2523 if (sched_verbose >= 6 && !print_p)
2524 {
2525 fprintf (sched_dump, MODEL_BAR);
2526 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2527 model_dump_pressure_points (&model_before_pressure);
2528 fprintf (sched_dump, MODEL_BAR);
2529 print_p = true;
2530 }
2531 cost = model_excess_cost (insns[i], print_p);
2532 if (cost <= 0)
2533 {
2534 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2535 priority_base = MAX (priority_base, priority);
2536 cost = 0;
2537 }
2538 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2539 }
2540 if (print_p)
2541 fprintf (sched_dump, MODEL_BAR);
2542
2543 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2544 instruction. */
2545 for (i = 0; i < count; i++)
2546 {
2547 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2548 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2549 if (cost > 0 && priority > priority_base)
2550 {
2551 cost += priority_base - priority;
2552 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2553 }
2554 }
2555 }
2556 \f
2557
2558 /* Enum of rank_for_schedule heuristic decisions. */
2559 enum rfs_decision {
2560 RFS_DEBUG, RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2561 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2562 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2563 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2564 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2565
2566 /* Corresponding strings for print outs. */
2567 static const char *rfs_str[RFS_N] = {
2568 "RFS_DEBUG", "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2569 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2570 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2571 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2572 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2573
2574 /* Statistical breakdown of rank_for_schedule decisions. */
2575 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2576 static rank_for_schedule_stats_t rank_for_schedule_stats;
2577
2578 /* Return the result of comparing insns TMP and TMP2 and update
2579 Rank_For_Schedule statistics. */
2580 static int
2581 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2582 {
2583 ++rank_for_schedule_stats.stats[decision];
2584 if (result < 0)
2585 INSN_LAST_RFS_WIN (tmp) = decision;
2586 else if (result > 0)
2587 INSN_LAST_RFS_WIN (tmp2) = decision;
2588 else
2589 gcc_unreachable ();
2590 return result;
2591 }
2592
2593 /* Returns a positive value if x is preferred; returns a negative value if
2594 y is preferred. Should never return 0, since that will make the sort
2595 unstable. */
2596
2597 static int
2598 rank_for_schedule (const void *x, const void *y)
2599 {
2600 rtx_insn *tmp = *(rtx_insn * const *) y;
2601 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2602 int tmp_class, tmp2_class;
2603 int val, priority_val, info_val, diff;
2604
2605 if (MAY_HAVE_DEBUG_INSNS)
2606 {
2607 /* Schedule debug insns as early as possible. */
2608 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2609 return rfs_result (RFS_DEBUG, -1, tmp, tmp2);
2610 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2611 return rfs_result (RFS_DEBUG, 1, tmp, tmp2);
2612 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2613 return rfs_result (RFS_DEBUG, INSN_LUID (tmp) - INSN_LUID (tmp2),
2614 tmp, tmp2);
2615 }
2616
2617 if (live_range_shrinkage_p)
2618 {
2619 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2620 code. */
2621 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2622 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2623 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2624 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2625 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2626 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2627 /* Sort by INSN_LUID (original insn order), so that we make the
2628 sort stable. This minimizes instruction movement, thus
2629 minimizing sched's effect on debugging and cross-jumping. */
2630 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2631 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2632 }
2633
2634 /* The insn in a schedule group should be issued the first. */
2635 if (flag_sched_group_heuristic &&
2636 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2637 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2638 tmp, tmp2);
2639
2640 /* Make sure that priority of TMP and TMP2 are initialized. */
2641 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2642
2643 if (sched_fusion)
2644 {
2645 /* The instruction that has the same fusion priority as the last
2646 instruction is the instruction we picked next. If that is not
2647 the case, we sort ready list firstly by fusion priority, then
2648 by priority, and at last by INSN_LUID. */
2649 int a = INSN_FUSION_PRIORITY (tmp);
2650 int b = INSN_FUSION_PRIORITY (tmp2);
2651 int last = -1;
2652
2653 if (last_nondebug_scheduled_insn
2654 && !NOTE_P (last_nondebug_scheduled_insn)
2655 && BLOCK_FOR_INSN (tmp)
2656 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2657 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2658
2659 if (a != last && b != last)
2660 {
2661 if (a == b)
2662 {
2663 a = INSN_PRIORITY (tmp);
2664 b = INSN_PRIORITY (tmp2);
2665 }
2666 if (a != b)
2667 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2668 else
2669 return rfs_result (RFS_FUSION,
2670 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2671 }
2672 else if (a == b)
2673 {
2674 gcc_assert (last_nondebug_scheduled_insn
2675 && !NOTE_P (last_nondebug_scheduled_insn));
2676 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2677
2678 a = abs (INSN_PRIORITY (tmp) - last);
2679 b = abs (INSN_PRIORITY (tmp2) - last);
2680 if (a != b)
2681 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2682 else
2683 return rfs_result (RFS_FUSION,
2684 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2685 }
2686 else if (a == last)
2687 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2688 else
2689 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2690 }
2691
2692 if (sched_pressure != SCHED_PRESSURE_NONE)
2693 {
2694 /* Prefer insn whose scheduling results in the smallest register
2695 pressure excess. */
2696 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2697 + insn_delay (tmp)
2698 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2699 - insn_delay (tmp2))))
2700 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2701 }
2702
2703 if (sched_pressure != SCHED_PRESSURE_NONE
2704 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2705 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2706 {
2707 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2708 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2709 }
2710
2711 /* If we are doing backtracking in this schedule, prefer insns that
2712 have forward dependencies with negative cost against an insn that
2713 was already scheduled. */
2714 if (current_sched_info->flags & DO_BACKTRACKING)
2715 {
2716 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2717 if (priority_val)
2718 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2719 }
2720
2721 /* Prefer insn with higher priority. */
2722 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2723
2724 if (flag_sched_critical_path_heuristic && priority_val)
2725 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2726
2727 /* Prefer speculative insn with greater dependencies weakness. */
2728 if (flag_sched_spec_insn_heuristic && spec_info)
2729 {
2730 ds_t ds1, ds2;
2731 dw_t dw1, dw2;
2732 int dw;
2733
2734 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2735 if (ds1)
2736 dw1 = ds_weak (ds1);
2737 else
2738 dw1 = NO_DEP_WEAK;
2739
2740 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2741 if (ds2)
2742 dw2 = ds_weak (ds2);
2743 else
2744 dw2 = NO_DEP_WEAK;
2745
2746 dw = dw2 - dw1;
2747 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2748 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2749 }
2750
2751 info_val = (*current_sched_info->rank) (tmp, tmp2);
2752 if (flag_sched_rank_heuristic && info_val)
2753 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2754
2755 /* Compare insns based on their relation to the last scheduled
2756 non-debug insn. */
2757 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2758 {
2759 dep_t dep1;
2760 dep_t dep2;
2761 rtx last = last_nondebug_scheduled_insn;
2762
2763 /* Classify the instructions into three classes:
2764 1) Data dependent on last schedule insn.
2765 2) Anti/Output dependent on last scheduled insn.
2766 3) Independent of last scheduled insn, or has latency of one.
2767 Choose the insn from the highest numbered class if different. */
2768 dep1 = sd_find_dep_between (last, tmp, true);
2769
2770 if (dep1 == NULL || dep_cost (dep1) == 1)
2771 tmp_class = 3;
2772 else if (/* Data dependence. */
2773 DEP_TYPE (dep1) == REG_DEP_TRUE)
2774 tmp_class = 1;
2775 else
2776 tmp_class = 2;
2777
2778 dep2 = sd_find_dep_between (last, tmp2, true);
2779
2780 if (dep2 == NULL || dep_cost (dep2) == 1)
2781 tmp2_class = 3;
2782 else if (/* Data dependence. */
2783 DEP_TYPE (dep2) == REG_DEP_TRUE)
2784 tmp2_class = 1;
2785 else
2786 tmp2_class = 2;
2787
2788 if ((val = tmp2_class - tmp_class))
2789 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2790 }
2791
2792 /* Prefer instructions that occur earlier in the model schedule. */
2793 if (sched_pressure == SCHED_PRESSURE_MODEL
2794 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2795 {
2796 diff = model_index (tmp) - model_index (tmp2);
2797 gcc_assert (diff != 0);
2798 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2799 }
2800
2801 /* Prefer the insn which has more later insns that depend on it.
2802 This gives the scheduler more freedom when scheduling later
2803 instructions at the expense of added register pressure. */
2804
2805 val = (dep_list_size (tmp2, SD_LIST_FORW)
2806 - dep_list_size (tmp, SD_LIST_FORW));
2807
2808 if (flag_sched_dep_count_heuristic && val != 0)
2809 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2810
2811 /* If insns are equally good, sort by INSN_LUID (original insn order),
2812 so that we make the sort stable. This minimizes instruction movement,
2813 thus minimizing sched's effect on debugging and cross-jumping. */
2814 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2815 }
2816
2817 /* Resort the array A in which only element at index N may be out of order. */
2818
2819 HAIFA_INLINE static void
2820 swap_sort (rtx_insn **a, int n)
2821 {
2822 rtx_insn *insn = a[n - 1];
2823 int i = n - 2;
2824
2825 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2826 {
2827 a[i + 1] = a[i];
2828 i -= 1;
2829 }
2830 a[i + 1] = insn;
2831 }
2832
2833 /* Add INSN to the insn queue so that it can be executed at least
2834 N_CYCLES after the currently executing insn. Preserve insns
2835 chain for debugging purposes. REASON will be printed in debugging
2836 output. */
2837
2838 HAIFA_INLINE static void
2839 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2840 {
2841 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2842 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2843 int new_tick;
2844
2845 gcc_assert (n_cycles <= max_insn_queue_index);
2846 gcc_assert (!DEBUG_INSN_P (insn));
2847
2848 insn_queue[next_q] = link;
2849 q_size += 1;
2850
2851 if (sched_verbose >= 2)
2852 {
2853 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2854 (*current_sched_info->print_insn) (insn, 0));
2855
2856 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2857 }
2858
2859 QUEUE_INDEX (insn) = next_q;
2860
2861 if (current_sched_info->flags & DO_BACKTRACKING)
2862 {
2863 new_tick = clock_var + n_cycles;
2864 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2865 INSN_TICK (insn) = new_tick;
2866
2867 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2868 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2869 {
2870 must_backtrack = true;
2871 if (sched_verbose >= 2)
2872 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2873 }
2874 }
2875 }
2876
2877 /* Remove INSN from queue. */
2878 static void
2879 queue_remove (rtx_insn *insn)
2880 {
2881 gcc_assert (QUEUE_INDEX (insn) >= 0);
2882 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2883 q_size--;
2884 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2885 }
2886
2887 /* Return a pointer to the bottom of the ready list, i.e. the insn
2888 with the lowest priority. */
2889
2890 rtx_insn **
2891 ready_lastpos (struct ready_list *ready)
2892 {
2893 gcc_assert (ready->n_ready >= 1);
2894 return ready->vec + ready->first - ready->n_ready + 1;
2895 }
2896
2897 /* Add an element INSN to the ready list so that it ends up with the
2898 lowest/highest priority depending on FIRST_P. */
2899
2900 HAIFA_INLINE static void
2901 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2902 {
2903 if (!first_p)
2904 {
2905 if (ready->first == ready->n_ready)
2906 {
2907 memmove (ready->vec + ready->veclen - ready->n_ready,
2908 ready_lastpos (ready),
2909 ready->n_ready * sizeof (rtx));
2910 ready->first = ready->veclen - 1;
2911 }
2912 ready->vec[ready->first - ready->n_ready] = insn;
2913 }
2914 else
2915 {
2916 if (ready->first == ready->veclen - 1)
2917 {
2918 if (ready->n_ready)
2919 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2920 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2921 ready_lastpos (ready),
2922 ready->n_ready * sizeof (rtx));
2923 ready->first = ready->veclen - 2;
2924 }
2925 ready->vec[++(ready->first)] = insn;
2926 }
2927
2928 ready->n_ready++;
2929 if (DEBUG_INSN_P (insn))
2930 ready->n_debug++;
2931
2932 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2933 QUEUE_INDEX (insn) = QUEUE_READY;
2934
2935 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2936 && INSN_EXACT_TICK (insn) < clock_var)
2937 {
2938 must_backtrack = true;
2939 }
2940 }
2941
2942 /* Remove the element with the highest priority from the ready list and
2943 return it. */
2944
2945 HAIFA_INLINE static rtx_insn *
2946 ready_remove_first (struct ready_list *ready)
2947 {
2948 rtx_insn *t;
2949
2950 gcc_assert (ready->n_ready);
2951 t = ready->vec[ready->first--];
2952 ready->n_ready--;
2953 if (DEBUG_INSN_P (t))
2954 ready->n_debug--;
2955 /* If the queue becomes empty, reset it. */
2956 if (ready->n_ready == 0)
2957 ready->first = ready->veclen - 1;
2958
2959 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2960 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2961
2962 return t;
2963 }
2964
2965 /* The following code implements multi-pass scheduling for the first
2966 cycle. In other words, we will try to choose ready insn which
2967 permits to start maximum number of insns on the same cycle. */
2968
2969 /* Return a pointer to the element INDEX from the ready. INDEX for
2970 insn with the highest priority is 0, and the lowest priority has
2971 N_READY - 1. */
2972
2973 rtx_insn *
2974 ready_element (struct ready_list *ready, int index)
2975 {
2976 gcc_assert (ready->n_ready && index < ready->n_ready);
2977
2978 return ready->vec[ready->first - index];
2979 }
2980
2981 /* Remove the element INDEX from the ready list and return it. INDEX
2982 for insn with the highest priority is 0, and the lowest priority
2983 has N_READY - 1. */
2984
2985 HAIFA_INLINE static rtx_insn *
2986 ready_remove (struct ready_list *ready, int index)
2987 {
2988 rtx_insn *t;
2989 int i;
2990
2991 if (index == 0)
2992 return ready_remove_first (ready);
2993 gcc_assert (ready->n_ready && index < ready->n_ready);
2994 t = ready->vec[ready->first - index];
2995 ready->n_ready--;
2996 if (DEBUG_INSN_P (t))
2997 ready->n_debug--;
2998 for (i = index; i < ready->n_ready; i++)
2999 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3000 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3001 return t;
3002 }
3003
3004 /* Remove INSN from the ready list. */
3005 static void
3006 ready_remove_insn (rtx insn)
3007 {
3008 int i;
3009
3010 for (i = 0; i < readyp->n_ready; i++)
3011 if (ready_element (readyp, i) == insn)
3012 {
3013 ready_remove (readyp, i);
3014 return;
3015 }
3016 gcc_unreachable ();
3017 }
3018
3019 /* Calculate difference of two statistics set WAS and NOW.
3020 Result returned in WAS. */
3021 static void
3022 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3023 const rank_for_schedule_stats_t *now)
3024 {
3025 for (int i = 0; i < RFS_N; ++i)
3026 was->stats[i] = now->stats[i] - was->stats[i];
3027 }
3028
3029 /* Print rank_for_schedule statistics. */
3030 static void
3031 print_rank_for_schedule_stats (const char *prefix,
3032 const rank_for_schedule_stats_t *stats,
3033 struct ready_list *ready)
3034 {
3035 for (int i = 0; i < RFS_N; ++i)
3036 if (stats->stats[i])
3037 {
3038 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3039
3040 if (ready != NULL)
3041 /* Print out insns that won due to RFS_<I>. */
3042 {
3043 rtx_insn **p = ready_lastpos (ready);
3044
3045 fprintf (sched_dump, ":");
3046 /* Start with 1 since least-priority insn didn't have any wins. */
3047 for (int j = 1; j < ready->n_ready; ++j)
3048 if (INSN_LAST_RFS_WIN (p[j]) == i)
3049 fprintf (sched_dump, " %s",
3050 (*current_sched_info->print_insn) (p[j], 0));
3051 }
3052 fprintf (sched_dump, "\n");
3053 }
3054 }
3055
3056 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
3057 macro. */
3058
3059 void
3060 ready_sort (struct ready_list *ready)
3061 {
3062 int i;
3063 rtx_insn **first = ready_lastpos (ready);
3064
3065 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3066 {
3067 for (i = 0; i < ready->n_ready; i++)
3068 if (!DEBUG_INSN_P (first[i]))
3069 setup_insn_reg_pressure_info (first[i]);
3070 }
3071 if (sched_pressure == SCHED_PRESSURE_MODEL
3072 && model_curr_point < model_num_insns)
3073 model_set_excess_costs (first, ready->n_ready);
3074
3075 rank_for_schedule_stats_t stats1;
3076 if (sched_verbose >= 4)
3077 stats1 = rank_for_schedule_stats;
3078
3079 if (ready->n_ready == 2)
3080 swap_sort (first, ready->n_ready);
3081 else if (ready->n_ready > 2)
3082 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule);
3083
3084 if (sched_verbose >= 4)
3085 {
3086 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3087 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3088 }
3089 }
3090
3091 /* PREV is an insn that is ready to execute. Adjust its priority if that
3092 will help shorten or lengthen register lifetimes as appropriate. Also
3093 provide a hook for the target to tweak itself. */
3094
3095 HAIFA_INLINE static void
3096 adjust_priority (rtx_insn *prev)
3097 {
3098 /* ??? There used to be code here to try and estimate how an insn
3099 affected register lifetimes, but it did it by looking at REG_DEAD
3100 notes, which we removed in schedule_region. Nor did it try to
3101 take into account register pressure or anything useful like that.
3102
3103 Revisit when we have a machine model to work with and not before. */
3104
3105 if (targetm.sched.adjust_priority)
3106 INSN_PRIORITY (prev) =
3107 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3108 }
3109
3110 /* Advance DFA state STATE on one cycle. */
3111 void
3112 advance_state (state_t state)
3113 {
3114 if (targetm.sched.dfa_pre_advance_cycle)
3115 targetm.sched.dfa_pre_advance_cycle ();
3116
3117 if (targetm.sched.dfa_pre_cycle_insn)
3118 state_transition (state,
3119 targetm.sched.dfa_pre_cycle_insn ());
3120
3121 state_transition (state, NULL);
3122
3123 if (targetm.sched.dfa_post_cycle_insn)
3124 state_transition (state,
3125 targetm.sched.dfa_post_cycle_insn ());
3126
3127 if (targetm.sched.dfa_post_advance_cycle)
3128 targetm.sched.dfa_post_advance_cycle ();
3129 }
3130
3131 /* Advance time on one cycle. */
3132 HAIFA_INLINE static void
3133 advance_one_cycle (void)
3134 {
3135 advance_state (curr_state);
3136 if (sched_verbose >= 4)
3137 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3138 }
3139
3140 /* Update register pressure after scheduling INSN. */
3141 static void
3142 update_register_pressure (rtx_insn *insn)
3143 {
3144 struct reg_use_data *use;
3145 struct reg_set_data *set;
3146
3147 gcc_checking_assert (!DEBUG_INSN_P (insn));
3148
3149 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3150 if (dying_use_p (use))
3151 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3152 use->regno, false);
3153 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3154 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3155 set->regno, true);
3156 }
3157
3158 /* Set up or update (if UPDATE_P) max register pressure (see its
3159 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3160 after insn AFTER. */
3161 static void
3162 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3163 {
3164 int i, p;
3165 bool eq_p;
3166 rtx_insn *insn;
3167 static int max_reg_pressure[N_REG_CLASSES];
3168
3169 save_reg_pressure ();
3170 for (i = 0; i < ira_pressure_classes_num; i++)
3171 max_reg_pressure[ira_pressure_classes[i]]
3172 = curr_reg_pressure[ira_pressure_classes[i]];
3173 for (insn = NEXT_INSN (after);
3174 insn != NULL_RTX && ! BARRIER_P (insn)
3175 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3176 insn = NEXT_INSN (insn))
3177 if (NONDEBUG_INSN_P (insn))
3178 {
3179 eq_p = true;
3180 for (i = 0; i < ira_pressure_classes_num; i++)
3181 {
3182 p = max_reg_pressure[ira_pressure_classes[i]];
3183 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3184 {
3185 eq_p = false;
3186 INSN_MAX_REG_PRESSURE (insn)[i]
3187 = max_reg_pressure[ira_pressure_classes[i]];
3188 }
3189 }
3190 if (update_p && eq_p)
3191 break;
3192 update_register_pressure (insn);
3193 for (i = 0; i < ira_pressure_classes_num; i++)
3194 if (max_reg_pressure[ira_pressure_classes[i]]
3195 < curr_reg_pressure[ira_pressure_classes[i]])
3196 max_reg_pressure[ira_pressure_classes[i]]
3197 = curr_reg_pressure[ira_pressure_classes[i]];
3198 }
3199 restore_reg_pressure ();
3200 }
3201
3202 /* Update the current register pressure after scheduling INSN. Update
3203 also max register pressure for unscheduled insns of the current
3204 BB. */
3205 static void
3206 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3207 {
3208 int i;
3209 int before[N_REG_CLASSES];
3210
3211 for (i = 0; i < ira_pressure_classes_num; i++)
3212 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3213 update_register_pressure (insn);
3214 for (i = 0; i < ira_pressure_classes_num; i++)
3215 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3216 break;
3217 if (i < ira_pressure_classes_num)
3218 setup_insn_max_reg_pressure (insn, true);
3219 }
3220
3221 /* Set up register pressure at the beginning of basic block BB whose
3222 insns starting after insn AFTER. Set up also max register pressure
3223 for all insns of the basic block. */
3224 void
3225 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3226 {
3227 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3228 initiate_bb_reg_pressure_info (bb);
3229 setup_insn_max_reg_pressure (after, false);
3230 }
3231 \f
3232 /* If doing predication while scheduling, verify whether INSN, which
3233 has just been scheduled, clobbers the conditions of any
3234 instructions that must be predicated in order to break their
3235 dependencies. If so, remove them from the queues so that they will
3236 only be scheduled once their control dependency is resolved. */
3237
3238 static void
3239 check_clobbered_conditions (rtx insn)
3240 {
3241 HARD_REG_SET t;
3242 int i;
3243
3244 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3245 return;
3246
3247 find_all_hard_reg_sets (insn, &t, true);
3248
3249 restart:
3250 for (i = 0; i < ready.n_ready; i++)
3251 {
3252 rtx_insn *x = ready_element (&ready, i);
3253 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3254 {
3255 ready_remove_insn (x);
3256 goto restart;
3257 }
3258 }
3259 for (i = 0; i <= max_insn_queue_index; i++)
3260 {
3261 rtx_insn_list *link;
3262 int q = NEXT_Q_AFTER (q_ptr, i);
3263
3264 restart_queue:
3265 for (link = insn_queue[q]; link; link = link->next ())
3266 {
3267 rtx_insn *x = link->insn ();
3268 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3269 {
3270 queue_remove (x);
3271 goto restart_queue;
3272 }
3273 }
3274 }
3275 }
3276 \f
3277 /* Return (in order):
3278
3279 - positive if INSN adversely affects the pressure on one
3280 register class
3281
3282 - negative if INSN reduces the pressure on one register class
3283
3284 - 0 if INSN doesn't affect the pressure on any register class. */
3285
3286 static int
3287 model_classify_pressure (struct model_insn_info *insn)
3288 {
3289 struct reg_pressure_data *reg_pressure;
3290 int death[N_REG_CLASSES];
3291 int pci, cl, sum;
3292
3293 calculate_reg_deaths (insn->insn, death);
3294 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3295 sum = 0;
3296 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3297 {
3298 cl = ira_pressure_classes[pci];
3299 if (death[cl] < reg_pressure[pci].set_increase)
3300 return 1;
3301 sum += reg_pressure[pci].set_increase - death[cl];
3302 }
3303 return sum;
3304 }
3305
3306 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3307
3308 static int
3309 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3310 {
3311 unsigned int height1, height2;
3312 unsigned int priority1, priority2;
3313
3314 /* Prefer instructions with a higher model priority. */
3315 if (insn1->model_priority != insn2->model_priority)
3316 return insn1->model_priority > insn2->model_priority;
3317
3318 /* Combine the length of the longest path of satisfied true dependencies
3319 that leads to each instruction (depth) with the length of the longest
3320 path of any dependencies that leads from the instruction (alap).
3321 Prefer instructions with the greatest combined length. If the combined
3322 lengths are equal, prefer instructions with the greatest depth.
3323
3324 The idea is that, if we have a set S of "equal" instructions that each
3325 have ALAP value X, and we pick one such instruction I, any true-dependent
3326 successors of I that have ALAP value X - 1 should be preferred over S.
3327 This encourages the schedule to be "narrow" rather than "wide".
3328 However, if I is a low-priority instruction that we decided to
3329 schedule because of its model_classify_pressure, and if there
3330 is a set of higher-priority instructions T, the aforementioned
3331 successors of I should not have the edge over T. */
3332 height1 = insn1->depth + insn1->alap;
3333 height2 = insn2->depth + insn2->alap;
3334 if (height1 != height2)
3335 return height1 > height2;
3336 if (insn1->depth != insn2->depth)
3337 return insn1->depth > insn2->depth;
3338
3339 /* We have no real preference between INSN1 an INSN2 as far as attempts
3340 to reduce pressure go. Prefer instructions with higher priorities. */
3341 priority1 = INSN_PRIORITY (insn1->insn);
3342 priority2 = INSN_PRIORITY (insn2->insn);
3343 if (priority1 != priority2)
3344 return priority1 > priority2;
3345
3346 /* Use the original rtl sequence as a tie-breaker. */
3347 return insn1 < insn2;
3348 }
3349
3350 /* Add INSN to the model worklist immediately after PREV. Add it to the
3351 beginning of the list if PREV is null. */
3352
3353 static void
3354 model_add_to_worklist_at (struct model_insn_info *insn,
3355 struct model_insn_info *prev)
3356 {
3357 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3358 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3359
3360 insn->prev = prev;
3361 if (prev)
3362 {
3363 insn->next = prev->next;
3364 prev->next = insn;
3365 }
3366 else
3367 {
3368 insn->next = model_worklist;
3369 model_worklist = insn;
3370 }
3371 if (insn->next)
3372 insn->next->prev = insn;
3373 }
3374
3375 /* Remove INSN from the model worklist. */
3376
3377 static void
3378 model_remove_from_worklist (struct model_insn_info *insn)
3379 {
3380 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3381 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3382
3383 if (insn->prev)
3384 insn->prev->next = insn->next;
3385 else
3386 model_worklist = insn->next;
3387 if (insn->next)
3388 insn->next->prev = insn->prev;
3389 }
3390
3391 /* Add INSN to the model worklist. Start looking for a suitable position
3392 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3393 insns either side. A null PREV indicates the beginning of the list and
3394 a null NEXT indicates the end. */
3395
3396 static void
3397 model_add_to_worklist (struct model_insn_info *insn,
3398 struct model_insn_info *prev,
3399 struct model_insn_info *next)
3400 {
3401 int count;
3402
3403 count = MAX_SCHED_READY_INSNS;
3404 if (count > 0 && prev && model_order_p (insn, prev))
3405 do
3406 {
3407 count--;
3408 prev = prev->prev;
3409 }
3410 while (count > 0 && prev && model_order_p (insn, prev));
3411 else
3412 while (count > 0 && next && model_order_p (next, insn))
3413 {
3414 count--;
3415 prev = next;
3416 next = next->next;
3417 }
3418 model_add_to_worklist_at (insn, prev);
3419 }
3420
3421 /* INSN may now have a higher priority (in the model_order_p sense)
3422 than before. Move it up the worklist if necessary. */
3423
3424 static void
3425 model_promote_insn (struct model_insn_info *insn)
3426 {
3427 struct model_insn_info *prev;
3428 int count;
3429
3430 prev = insn->prev;
3431 count = MAX_SCHED_READY_INSNS;
3432 while (count > 0 && prev && model_order_p (insn, prev))
3433 {
3434 count--;
3435 prev = prev->prev;
3436 }
3437 if (prev != insn->prev)
3438 {
3439 model_remove_from_worklist (insn);
3440 model_add_to_worklist_at (insn, prev);
3441 }
3442 }
3443
3444 /* Add INSN to the end of the model schedule. */
3445
3446 static void
3447 model_add_to_schedule (rtx_insn *insn)
3448 {
3449 unsigned int point;
3450
3451 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3452 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3453
3454 point = model_schedule.length ();
3455 model_schedule.quick_push (insn);
3456 INSN_MODEL_INDEX (insn) = point + 1;
3457 }
3458
3459 /* Analyze the instructions that are to be scheduled, setting up
3460 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3461 instructions to model_worklist. */
3462
3463 static void
3464 model_analyze_insns (void)
3465 {
3466 rtx_insn *start, *end, *iter;
3467 sd_iterator_def sd_it;
3468 dep_t dep;
3469 struct model_insn_info *insn, *con;
3470
3471 model_num_insns = 0;
3472 start = PREV_INSN (current_sched_info->next_tail);
3473 end = current_sched_info->prev_head;
3474 for (iter = start; iter != end; iter = PREV_INSN (iter))
3475 if (NONDEBUG_INSN_P (iter))
3476 {
3477 insn = MODEL_INSN_INFO (iter);
3478 insn->insn = iter;
3479 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3480 {
3481 con = MODEL_INSN_INFO (DEP_CON (dep));
3482 if (con->insn && insn->alap < con->alap + 1)
3483 insn->alap = con->alap + 1;
3484 }
3485
3486 insn->old_queue = QUEUE_INDEX (iter);
3487 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3488
3489 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3490 if (insn->unscheduled_preds == 0)
3491 model_add_to_worklist (insn, NULL, model_worklist);
3492
3493 model_num_insns++;
3494 }
3495 }
3496
3497 /* The global state describes the register pressure at the start of the
3498 model schedule. Initialize GROUP accordingly. */
3499
3500 static void
3501 model_init_pressure_group (struct model_pressure_group *group)
3502 {
3503 int pci, cl;
3504
3505 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3506 {
3507 cl = ira_pressure_classes[pci];
3508 group->limits[pci].pressure = curr_reg_pressure[cl];
3509 group->limits[pci].point = 0;
3510 }
3511 /* Use index model_num_insns to record the state after the last
3512 instruction in the model schedule. */
3513 group->model = XNEWVEC (struct model_pressure_data,
3514 (model_num_insns + 1) * ira_pressure_classes_num);
3515 }
3516
3517 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3518 Update the maximum pressure for the whole schedule. */
3519
3520 static void
3521 model_record_pressure (struct model_pressure_group *group,
3522 int point, int pci, int pressure)
3523 {
3524 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3525 if (group->limits[pci].pressure < pressure)
3526 {
3527 group->limits[pci].pressure = pressure;
3528 group->limits[pci].point = point;
3529 }
3530 }
3531
3532 /* INSN has just been added to the end of the model schedule. Record its
3533 register-pressure information. */
3534
3535 static void
3536 model_record_pressures (struct model_insn_info *insn)
3537 {
3538 struct reg_pressure_data *reg_pressure;
3539 int point, pci, cl, delta;
3540 int death[N_REG_CLASSES];
3541
3542 point = model_index (insn->insn);
3543 if (sched_verbose >= 2)
3544 {
3545 if (point == 0)
3546 {
3547 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3548 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3549 }
3550 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3551 point, INSN_UID (insn->insn), insn->model_priority,
3552 insn->depth + insn->alap, insn->depth,
3553 INSN_PRIORITY (insn->insn),
3554 str_pattern_slim (PATTERN (insn->insn)));
3555 }
3556 calculate_reg_deaths (insn->insn, death);
3557 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3558 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3559 {
3560 cl = ira_pressure_classes[pci];
3561 delta = reg_pressure[pci].set_increase - death[cl];
3562 if (sched_verbose >= 2)
3563 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3564 curr_reg_pressure[cl], delta);
3565 model_record_pressure (&model_before_pressure, point, pci,
3566 curr_reg_pressure[cl]);
3567 }
3568 if (sched_verbose >= 2)
3569 fprintf (sched_dump, "\n");
3570 }
3571
3572 /* All instructions have been added to the model schedule. Record the
3573 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3574
3575 static void
3576 model_record_final_pressures (struct model_pressure_group *group)
3577 {
3578 int point, pci, max_pressure, ref_pressure, cl;
3579
3580 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3581 {
3582 /* Record the final pressure for this class. */
3583 cl = ira_pressure_classes[pci];
3584 point = model_num_insns;
3585 ref_pressure = curr_reg_pressure[cl];
3586 model_record_pressure (group, point, pci, ref_pressure);
3587
3588 /* Record the original maximum pressure. */
3589 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3590
3591 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3592 max_pressure = ref_pressure;
3593 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3594 while (point > 0)
3595 {
3596 point--;
3597 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3598 max_pressure = MAX (max_pressure, ref_pressure);
3599 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3600 }
3601 }
3602 }
3603
3604 /* Update all successors of INSN, given that INSN has just been scheduled. */
3605
3606 static void
3607 model_add_successors_to_worklist (struct model_insn_info *insn)
3608 {
3609 sd_iterator_def sd_it;
3610 struct model_insn_info *con;
3611 dep_t dep;
3612
3613 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3614 {
3615 con = MODEL_INSN_INFO (DEP_CON (dep));
3616 /* Ignore debug instructions, and instructions from other blocks. */
3617 if (con->insn)
3618 {
3619 con->unscheduled_preds--;
3620
3621 /* Update the depth field of each true-dependent successor.
3622 Increasing the depth gives them a higher priority than
3623 before. */
3624 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3625 {
3626 con->depth = insn->depth + 1;
3627 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3628 model_promote_insn (con);
3629 }
3630
3631 /* If this is a true dependency, or if there are no remaining
3632 dependencies for CON (meaning that CON only had non-true
3633 dependencies), make sure that CON is on the worklist.
3634 We don't bother otherwise because it would tend to fill the
3635 worklist with a lot of low-priority instructions that are not
3636 yet ready to issue. */
3637 if ((con->depth > 0 || con->unscheduled_preds == 0)
3638 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3639 model_add_to_worklist (con, insn, insn->next);
3640 }
3641 }
3642 }
3643
3644 /* Give INSN a higher priority than any current instruction, then give
3645 unscheduled predecessors of INSN a higher priority still. If any of
3646 those predecessors are not on the model worklist, do the same for its
3647 predecessors, and so on. */
3648
3649 static void
3650 model_promote_predecessors (struct model_insn_info *insn)
3651 {
3652 struct model_insn_info *pro, *first;
3653 sd_iterator_def sd_it;
3654 dep_t dep;
3655
3656 if (sched_verbose >= 7)
3657 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3658 INSN_UID (insn->insn), model_next_priority);
3659 insn->model_priority = model_next_priority++;
3660 model_remove_from_worklist (insn);
3661 model_add_to_worklist_at (insn, NULL);
3662
3663 first = NULL;
3664 for (;;)
3665 {
3666 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3667 {
3668 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3669 /* The first test is to ignore debug instructions, and instructions
3670 from other blocks. */
3671 if (pro->insn
3672 && pro->model_priority != model_next_priority
3673 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3674 {
3675 pro->model_priority = model_next_priority;
3676 if (sched_verbose >= 7)
3677 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3678 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3679 {
3680 /* PRO is already in the worklist, but it now has
3681 a higher priority than before. Move it at the
3682 appropriate place. */
3683 model_remove_from_worklist (pro);
3684 model_add_to_worklist (pro, NULL, model_worklist);
3685 }
3686 else
3687 {
3688 /* PRO isn't in the worklist. Recursively process
3689 its predecessors until we find one that is. */
3690 pro->next = first;
3691 first = pro;
3692 }
3693 }
3694 }
3695 if (!first)
3696 break;
3697 insn = first;
3698 first = insn->next;
3699 }
3700 if (sched_verbose >= 7)
3701 fprintf (sched_dump, " = %d\n", model_next_priority);
3702 model_next_priority++;
3703 }
3704
3705 /* Pick one instruction from model_worklist and process it. */
3706
3707 static void
3708 model_choose_insn (void)
3709 {
3710 struct model_insn_info *insn, *fallback;
3711 int count;
3712
3713 if (sched_verbose >= 7)
3714 {
3715 fprintf (sched_dump, ";;\t+--- worklist:\n");
3716 insn = model_worklist;
3717 count = MAX_SCHED_READY_INSNS;
3718 while (count > 0 && insn)
3719 {
3720 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3721 INSN_UID (insn->insn), insn->model_priority,
3722 insn->depth + insn->alap, insn->depth,
3723 INSN_PRIORITY (insn->insn));
3724 count--;
3725 insn = insn->next;
3726 }
3727 }
3728
3729 /* Look for a ready instruction whose model_classify_priority is zero
3730 or negative, picking the highest-priority one. Adding such an
3731 instruction to the schedule now should do no harm, and may actually
3732 do some good.
3733
3734 Failing that, see whether there is an instruction with the highest
3735 extant model_priority that is not yet ready, but which would reduce
3736 pressure if it became ready. This is designed to catch cases like:
3737
3738 (set (mem (reg R1)) (reg R2))
3739
3740 where the instruction is the last remaining use of R1 and where the
3741 value of R2 is not yet available (or vice versa). The death of R1
3742 means that this instruction already reduces pressure. It is of
3743 course possible that the computation of R2 involves other registers
3744 that are hard to kill, but such cases are rare enough for this
3745 heuristic to be a win in general.
3746
3747 Failing that, just pick the highest-priority instruction in the
3748 worklist. */
3749 count = MAX_SCHED_READY_INSNS;
3750 insn = model_worklist;
3751 fallback = 0;
3752 for (;;)
3753 {
3754 if (count == 0 || !insn)
3755 {
3756 insn = fallback ? fallback : model_worklist;
3757 break;
3758 }
3759 if (insn->unscheduled_preds)
3760 {
3761 if (model_worklist->model_priority == insn->model_priority
3762 && !fallback
3763 && model_classify_pressure (insn) < 0)
3764 fallback = insn;
3765 }
3766 else
3767 {
3768 if (model_classify_pressure (insn) <= 0)
3769 break;
3770 }
3771 count--;
3772 insn = insn->next;
3773 }
3774
3775 if (sched_verbose >= 7 && insn != model_worklist)
3776 {
3777 if (insn->unscheduled_preds)
3778 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3779 INSN_UID (insn->insn));
3780 else
3781 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3782 INSN_UID (insn->insn));
3783 }
3784 if (insn->unscheduled_preds)
3785 /* INSN isn't yet ready to issue. Give all its predecessors the
3786 highest priority. */
3787 model_promote_predecessors (insn);
3788 else
3789 {
3790 /* INSN is ready. Add it to the end of model_schedule and
3791 process its successors. */
3792 model_add_successors_to_worklist (insn);
3793 model_remove_from_worklist (insn);
3794 model_add_to_schedule (insn->insn);
3795 model_record_pressures (insn);
3796 update_register_pressure (insn->insn);
3797 }
3798 }
3799
3800 /* Restore all QUEUE_INDEXs to the values that they had before
3801 model_start_schedule was called. */
3802
3803 static void
3804 model_reset_queue_indices (void)
3805 {
3806 unsigned int i;
3807 rtx_insn *insn;
3808
3809 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3810 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3811 }
3812
3813 /* We have calculated the model schedule and spill costs. Print a summary
3814 to sched_dump. */
3815
3816 static void
3817 model_dump_pressure_summary (void)
3818 {
3819 int pci, cl;
3820
3821 fprintf (sched_dump, ";; Pressure summary:");
3822 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3823 {
3824 cl = ira_pressure_classes[pci];
3825 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3826 model_before_pressure.limits[pci].pressure);
3827 }
3828 fprintf (sched_dump, "\n\n");
3829 }
3830
3831 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3832 scheduling region. */
3833
3834 static void
3835 model_start_schedule (basic_block bb)
3836 {
3837 model_next_priority = 1;
3838 model_schedule.create (sched_max_luid);
3839 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3840
3841 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3842 initiate_reg_pressure_info (df_get_live_in (bb));
3843
3844 model_analyze_insns ();
3845 model_init_pressure_group (&model_before_pressure);
3846 while (model_worklist)
3847 model_choose_insn ();
3848 gcc_assert (model_num_insns == (int) model_schedule.length ());
3849 if (sched_verbose >= 2)
3850 fprintf (sched_dump, "\n");
3851
3852 model_record_final_pressures (&model_before_pressure);
3853 model_reset_queue_indices ();
3854
3855 XDELETEVEC (model_insns);
3856
3857 model_curr_point = 0;
3858 initiate_reg_pressure_info (df_get_live_in (bb));
3859 if (sched_verbose >= 1)
3860 model_dump_pressure_summary ();
3861 }
3862
3863 /* Free the information associated with GROUP. */
3864
3865 static void
3866 model_finalize_pressure_group (struct model_pressure_group *group)
3867 {
3868 XDELETEVEC (group->model);
3869 }
3870
3871 /* Free the information created by model_start_schedule. */
3872
3873 static void
3874 model_end_schedule (void)
3875 {
3876 model_finalize_pressure_group (&model_before_pressure);
3877 model_schedule.release ();
3878 }
3879
3880 /* Prepare reg pressure scheduling for basic block BB. */
3881 static void
3882 sched_pressure_start_bb (basic_block bb)
3883 {
3884 /* Set the number of available registers for each class taking into account
3885 relative probability of current basic block versus function prologue and
3886 epilogue.
3887 * If the basic block executes much more often than the prologue/epilogue
3888 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3889 nil, so the effective number of available registers is
3890 (ira_class_hard_regs_num[cl] - 0).
3891 * If the basic block executes as often as the prologue/epilogue,
3892 then spill in the block is as costly as in the prologue, so the effective
3893 number of available registers is
3894 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3895 Note that all-else-equal, we prefer to spill in the prologue, since that
3896 allows "extra" registers for other basic blocks of the function.
3897 * If the basic block is on the cold path of the function and executes
3898 rarely, then we should always prefer to spill in the block, rather than
3899 in the prologue/epilogue. The effective number of available register is
3900 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3901 {
3902 int i;
3903 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3904 int bb_freq = bb->frequency;
3905
3906 if (bb_freq == 0)
3907 {
3908 if (entry_freq == 0)
3909 entry_freq = bb_freq = 1;
3910 }
3911 if (bb_freq < entry_freq)
3912 bb_freq = entry_freq;
3913
3914 for (i = 0; i < ira_pressure_classes_num; ++i)
3915 {
3916 enum reg_class cl = ira_pressure_classes[i];
3917 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3918 sched_class_regs_num[cl]
3919 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3920 }
3921 }
3922
3923 if (sched_pressure == SCHED_PRESSURE_MODEL)
3924 model_start_schedule (bb);
3925 }
3926 \f
3927 /* A structure that holds local state for the loop in schedule_block. */
3928 struct sched_block_state
3929 {
3930 /* True if no real insns have been scheduled in the current cycle. */
3931 bool first_cycle_insn_p;
3932 /* True if a shadow insn has been scheduled in the current cycle, which
3933 means that no more normal insns can be issued. */
3934 bool shadows_only_p;
3935 /* True if we're winding down a modulo schedule, which means that we only
3936 issue insns with INSN_EXACT_TICK set. */
3937 bool modulo_epilogue;
3938 /* Initialized with the machine's issue rate every cycle, and updated
3939 by calls to the variable_issue hook. */
3940 int can_issue_more;
3941 };
3942
3943 /* INSN is the "currently executing insn". Launch each insn which was
3944 waiting on INSN. READY is the ready list which contains the insns
3945 that are ready to fire. CLOCK is the current cycle. The function
3946 returns necessary cycle advance after issuing the insn (it is not
3947 zero for insns in a schedule group). */
3948
3949 static int
3950 schedule_insn (rtx_insn *insn)
3951 {
3952 sd_iterator_def sd_it;
3953 dep_t dep;
3954 int i;
3955 int advance = 0;
3956
3957 if (sched_verbose >= 1)
3958 {
3959 struct reg_pressure_data *pressure_info;
3960 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3961 clock_var, (*current_sched_info->print_insn) (insn, 1),
3962 str_pattern_slim (PATTERN (insn)));
3963
3964 if (recog_memoized (insn) < 0)
3965 fprintf (sched_dump, "nothing");
3966 else
3967 print_reservation (sched_dump, insn);
3968 pressure_info = INSN_REG_PRESSURE (insn);
3969 if (pressure_info != NULL)
3970 {
3971 fputc (':', sched_dump);
3972 for (i = 0; i < ira_pressure_classes_num; i++)
3973 fprintf (sched_dump, "%s%s%+d(%d)",
3974 scheduled_insns.length () > 1
3975 && INSN_LUID (insn)
3976 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3977 reg_class_names[ira_pressure_classes[i]],
3978 pressure_info[i].set_increase, pressure_info[i].change);
3979 }
3980 if (sched_pressure == SCHED_PRESSURE_MODEL
3981 && model_curr_point < model_num_insns
3982 && model_index (insn) == model_curr_point)
3983 fprintf (sched_dump, ":model %d", model_curr_point);
3984 fputc ('\n', sched_dump);
3985 }
3986
3987 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
3988 update_reg_and_insn_max_reg_pressure (insn);
3989
3990 /* Scheduling instruction should have all its dependencies resolved and
3991 should have been removed from the ready list. */
3992 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
3993
3994 /* Reset debug insns invalidated by moving this insn. */
3995 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
3996 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
3997 sd_iterator_cond (&sd_it, &dep);)
3998 {
3999 rtx_insn *dbg = DEP_PRO (dep);
4000 struct reg_use_data *use, *next;
4001
4002 if (DEP_STATUS (dep) & DEP_CANCELLED)
4003 {
4004 sd_iterator_next (&sd_it);
4005 continue;
4006 }
4007
4008 gcc_assert (DEBUG_INSN_P (dbg));
4009
4010 if (sched_verbose >= 6)
4011 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4012 INSN_UID (dbg));
4013
4014 /* ??? Rather than resetting the debug insn, we might be able
4015 to emit a debug temp before the just-scheduled insn, but
4016 this would involve checking that the expression at the
4017 point of the debug insn is equivalent to the expression
4018 before the just-scheduled insn. They might not be: the
4019 expression in the debug insn may depend on other insns not
4020 yet scheduled that set MEMs, REGs or even other debug
4021 insns. It's not clear that attempting to preserve debug
4022 information in these cases is worth the effort, given how
4023 uncommon these resets are and the likelihood that the debug
4024 temps introduced won't survive the schedule change. */
4025 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4026 df_insn_rescan (dbg);
4027
4028 /* Unknown location doesn't use any registers. */
4029 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4030 {
4031 struct reg_use_data *prev = use;
4032
4033 /* Remove use from the cyclic next_regno_use chain first. */
4034 while (prev->next_regno_use != use)
4035 prev = prev->next_regno_use;
4036 prev->next_regno_use = use->next_regno_use;
4037 next = use->next_insn_use;
4038 free (use);
4039 }
4040 INSN_REG_USE_LIST (dbg) = NULL;
4041
4042 /* We delete rather than resolve these deps, otherwise we
4043 crash in sched_free_deps(), because forward deps are
4044 expected to be released before backward deps. */
4045 sd_delete_dep (sd_it);
4046 }
4047
4048 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4049 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4050
4051 if (sched_pressure == SCHED_PRESSURE_MODEL
4052 && model_curr_point < model_num_insns
4053 && NONDEBUG_INSN_P (insn))
4054 {
4055 if (model_index (insn) == model_curr_point)
4056 do
4057 model_curr_point++;
4058 while (model_curr_point < model_num_insns
4059 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4060 == QUEUE_SCHEDULED));
4061 else
4062 model_recompute (insn);
4063 model_update_limit_points ();
4064 update_register_pressure (insn);
4065 if (sched_verbose >= 2)
4066 print_curr_reg_pressure ();
4067 }
4068
4069 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4070 if (INSN_TICK (insn) > clock_var)
4071 /* INSN has been prematurely moved from the queue to the ready list.
4072 This is possible only if following flags are set. */
4073 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4074
4075 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4076 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4077 INSN_TICK (insn) = clock_var;
4078
4079 check_clobbered_conditions (insn);
4080
4081 /* Update dependent instructions. First, see if by scheduling this insn
4082 now we broke a dependence in a way that requires us to change another
4083 insn. */
4084 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4085 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4086 {
4087 struct dep_replacement *desc = DEP_REPLACE (dep);
4088 rtx_insn *pro = DEP_PRO (dep);
4089 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4090 && desc != NULL && desc->insn == pro)
4091 apply_replacement (dep, false);
4092 }
4093
4094 /* Go through and resolve forward dependencies. */
4095 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4096 sd_iterator_cond (&sd_it, &dep);)
4097 {
4098 rtx_insn *next = DEP_CON (dep);
4099 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4100
4101 /* Resolve the dependence between INSN and NEXT.
4102 sd_resolve_dep () moves current dep to another list thus
4103 advancing the iterator. */
4104 sd_resolve_dep (sd_it);
4105
4106 if (cancelled)
4107 {
4108 if (must_restore_pattern_p (next, dep))
4109 restore_pattern (dep, false);
4110 continue;
4111 }
4112
4113 /* Don't bother trying to mark next as ready if insn is a debug
4114 insn. If insn is the last hard dependency, it will have
4115 already been discounted. */
4116 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4117 continue;
4118
4119 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4120 {
4121 int effective_cost;
4122
4123 effective_cost = try_ready (next);
4124
4125 if (effective_cost >= 0
4126 && SCHED_GROUP_P (next)
4127 && advance < effective_cost)
4128 advance = effective_cost;
4129 }
4130 else
4131 /* Check always has only one forward dependence (to the first insn in
4132 the recovery block), therefore, this will be executed only once. */
4133 {
4134 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4135 fix_recovery_deps (RECOVERY_BLOCK (insn));
4136 }
4137 }
4138
4139 /* Annotate the instruction with issue information -- TImode
4140 indicates that the instruction is expected not to be able
4141 to issue on the same cycle as the previous insn. A machine
4142 may use this information to decide how the instruction should
4143 be aligned. */
4144 if (issue_rate > 1
4145 && GET_CODE (PATTERN (insn)) != USE
4146 && GET_CODE (PATTERN (insn)) != CLOBBER
4147 && !DEBUG_INSN_P (insn))
4148 {
4149 if (reload_completed)
4150 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4151 last_clock_var = clock_var;
4152 }
4153
4154 if (nonscheduled_insns_begin != NULL_RTX)
4155 /* Indicate to debug counters that INSN is scheduled. */
4156 nonscheduled_insns_begin = insn;
4157
4158 return advance;
4159 }
4160
4161 /* Functions for handling of notes. */
4162
4163 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4164 void
4165 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4166 {
4167 rtx_insn *from_start;
4168
4169 /* It's easy when have nothing to concat. */
4170 if (from_end == NULL)
4171 return;
4172
4173 /* It's also easy when destination is empty. */
4174 if (*to_endp == NULL)
4175 {
4176 *to_endp = from_end;
4177 return;
4178 }
4179
4180 from_start = from_end;
4181 while (PREV_INSN (from_start) != NULL)
4182 from_start = PREV_INSN (from_start);
4183
4184 SET_PREV_INSN (from_start) = *to_endp;
4185 SET_NEXT_INSN (*to_endp) = from_start;
4186 *to_endp = from_end;
4187 }
4188
4189 /* Delete notes between HEAD and TAIL and put them in the chain
4190 of notes ended by NOTE_LIST. */
4191 void
4192 remove_notes (rtx_insn *head, rtx_insn *tail)
4193 {
4194 rtx_insn *next_tail, *insn, *next;
4195
4196 note_list = 0;
4197 if (head == tail && !INSN_P (head))
4198 return;
4199
4200 next_tail = NEXT_INSN (tail);
4201 for (insn = head; insn != next_tail; insn = next)
4202 {
4203 next = NEXT_INSN (insn);
4204 if (!NOTE_P (insn))
4205 continue;
4206
4207 switch (NOTE_KIND (insn))
4208 {
4209 case NOTE_INSN_BASIC_BLOCK:
4210 continue;
4211
4212 case NOTE_INSN_EPILOGUE_BEG:
4213 if (insn != tail)
4214 {
4215 remove_insn (insn);
4216 add_reg_note (next, REG_SAVE_NOTE,
4217 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4218 break;
4219 }
4220 /* FALLTHRU */
4221
4222 default:
4223 remove_insn (insn);
4224
4225 /* Add the note to list that ends at NOTE_LIST. */
4226 SET_PREV_INSN (insn) = note_list;
4227 SET_NEXT_INSN (insn) = NULL_RTX;
4228 if (note_list)
4229 SET_NEXT_INSN (note_list) = insn;
4230 note_list = insn;
4231 break;
4232 }
4233
4234 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4235 }
4236 }
4237
4238 /* A structure to record enough data to allow us to backtrack the scheduler to
4239 a previous state. */
4240 struct haifa_saved_data
4241 {
4242 /* Next entry on the list. */
4243 struct haifa_saved_data *next;
4244
4245 /* Backtracking is associated with scheduling insns that have delay slots.
4246 DELAY_PAIR points to the structure that contains the insns involved, and
4247 the number of cycles between them. */
4248 struct delay_pair *delay_pair;
4249
4250 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4251 void *fe_saved_data;
4252 /* Data used by the backend. */
4253 void *be_saved_data;
4254
4255 /* Copies of global state. */
4256 int clock_var, last_clock_var;
4257 struct ready_list ready;
4258 state_t curr_state;
4259
4260 rtx_insn *last_scheduled_insn;
4261 rtx last_nondebug_scheduled_insn;
4262 rtx_insn *nonscheduled_insns_begin;
4263 int cycle_issued_insns;
4264
4265 /* Copies of state used in the inner loop of schedule_block. */
4266 struct sched_block_state sched_block;
4267
4268 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4269 to 0 when restoring. */
4270 int q_size;
4271 rtx_insn_list **insn_queue;
4272
4273 /* Describe pattern replacements that occurred since this backtrack point
4274 was queued. */
4275 vec<dep_t> replacement_deps;
4276 vec<int> replace_apply;
4277
4278 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4279 point. */
4280 vec<dep_t> next_cycle_deps;
4281 vec<int> next_cycle_apply;
4282 };
4283
4284 /* A record, in reverse order, of all scheduled insns which have delay slots
4285 and may require backtracking. */
4286 static struct haifa_saved_data *backtrack_queue;
4287
4288 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4289 to SET_P. */
4290 static void
4291 mark_backtrack_feeds (rtx insn, int set_p)
4292 {
4293 sd_iterator_def sd_it;
4294 dep_t dep;
4295 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4296 {
4297 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4298 }
4299 }
4300
4301 /* Save the current scheduler state so that we can backtrack to it
4302 later if necessary. PAIR gives the insns that make it necessary to
4303 save this point. SCHED_BLOCK is the local state of schedule_block
4304 that need to be saved. */
4305 static void
4306 save_backtrack_point (struct delay_pair *pair,
4307 struct sched_block_state sched_block)
4308 {
4309 int i;
4310 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4311
4312 save->curr_state = xmalloc (dfa_state_size);
4313 memcpy (save->curr_state, curr_state, dfa_state_size);
4314
4315 save->ready.first = ready.first;
4316 save->ready.n_ready = ready.n_ready;
4317 save->ready.n_debug = ready.n_debug;
4318 save->ready.veclen = ready.veclen;
4319 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4320 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4321
4322 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4323 save->q_size = q_size;
4324 for (i = 0; i <= max_insn_queue_index; i++)
4325 {
4326 int q = NEXT_Q_AFTER (q_ptr, i);
4327 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4328 }
4329
4330 save->clock_var = clock_var;
4331 save->last_clock_var = last_clock_var;
4332 save->cycle_issued_insns = cycle_issued_insns;
4333 save->last_scheduled_insn = last_scheduled_insn;
4334 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4335 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4336
4337 save->sched_block = sched_block;
4338
4339 save->replacement_deps.create (0);
4340 save->replace_apply.create (0);
4341 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4342 save->next_cycle_apply = next_cycle_apply.copy ();
4343
4344 if (current_sched_info->save_state)
4345 save->fe_saved_data = (*current_sched_info->save_state) ();
4346
4347 if (targetm.sched.alloc_sched_context)
4348 {
4349 save->be_saved_data = targetm.sched.alloc_sched_context ();
4350 targetm.sched.init_sched_context (save->be_saved_data, false);
4351 }
4352 else
4353 save->be_saved_data = NULL;
4354
4355 save->delay_pair = pair;
4356
4357 save->next = backtrack_queue;
4358 backtrack_queue = save;
4359
4360 while (pair)
4361 {
4362 mark_backtrack_feeds (pair->i2, 1);
4363 INSN_TICK (pair->i2) = INVALID_TICK;
4364 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4365 SHADOW_P (pair->i2) = pair->stages == 0;
4366 pair = pair->next_same_i1;
4367 }
4368 }
4369
4370 /* Walk the ready list and all queues. If any insns have unresolved backwards
4371 dependencies, these must be cancelled deps, broken by predication. Set or
4372 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4373
4374 static void
4375 toggle_cancelled_flags (bool set)
4376 {
4377 int i;
4378 sd_iterator_def sd_it;
4379 dep_t dep;
4380
4381 if (ready.n_ready > 0)
4382 {
4383 rtx_insn **first = ready_lastpos (&ready);
4384 for (i = 0; i < ready.n_ready; i++)
4385 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4386 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4387 {
4388 if (set)
4389 DEP_STATUS (dep) |= DEP_CANCELLED;
4390 else
4391 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4392 }
4393 }
4394 for (i = 0; i <= max_insn_queue_index; i++)
4395 {
4396 int q = NEXT_Q_AFTER (q_ptr, i);
4397 rtx_insn_list *link;
4398 for (link = insn_queue[q]; link; link = link->next ())
4399 {
4400 rtx_insn *insn = link->insn ();
4401 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4402 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4403 {
4404 if (set)
4405 DEP_STATUS (dep) |= DEP_CANCELLED;
4406 else
4407 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4408 }
4409 }
4410 }
4411 }
4412
4413 /* Undo the replacements that have occurred after backtrack point SAVE
4414 was placed. */
4415 static void
4416 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4417 {
4418 while (!save->replacement_deps.is_empty ())
4419 {
4420 dep_t dep = save->replacement_deps.pop ();
4421 int apply_p = save->replace_apply.pop ();
4422
4423 if (apply_p)
4424 restore_pattern (dep, true);
4425 else
4426 apply_replacement (dep, true);
4427 }
4428 save->replacement_deps.release ();
4429 save->replace_apply.release ();
4430 }
4431
4432 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4433 Restore their dependencies to an unresolved state, and mark them as
4434 queued nowhere. */
4435
4436 static void
4437 unschedule_insns_until (rtx insn)
4438 {
4439 auto_vec<rtx_insn *> recompute_vec;
4440
4441 /* Make two passes over the insns to be unscheduled. First, we clear out
4442 dependencies and other trivial bookkeeping. */
4443 for (;;)
4444 {
4445 rtx_insn *last;
4446 sd_iterator_def sd_it;
4447 dep_t dep;
4448
4449 last = scheduled_insns.pop ();
4450
4451 /* This will be changed by restore_backtrack_point if the insn is in
4452 any queue. */
4453 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4454 if (last != insn)
4455 INSN_TICK (last) = INVALID_TICK;
4456
4457 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4458 modulo_insns_scheduled--;
4459
4460 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4461 sd_iterator_cond (&sd_it, &dep);)
4462 {
4463 rtx_insn *con = DEP_CON (dep);
4464 sd_unresolve_dep (sd_it);
4465 if (!MUST_RECOMPUTE_SPEC_P (con))
4466 {
4467 MUST_RECOMPUTE_SPEC_P (con) = 1;
4468 recompute_vec.safe_push (con);
4469 }
4470 }
4471
4472 if (last == insn)
4473 break;
4474 }
4475
4476 /* A second pass, to update ready and speculation status for insns
4477 depending on the unscheduled ones. The first pass must have
4478 popped the scheduled_insns vector up to the point where we
4479 restart scheduling, as recompute_todo_spec requires it to be
4480 up-to-date. */
4481 while (!recompute_vec.is_empty ())
4482 {
4483 rtx_insn *con;
4484
4485 con = recompute_vec.pop ();
4486 MUST_RECOMPUTE_SPEC_P (con) = 0;
4487 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4488 {
4489 TODO_SPEC (con) = HARD_DEP;
4490 INSN_TICK (con) = INVALID_TICK;
4491 if (PREDICATED_PAT (con) != NULL_RTX)
4492 haifa_change_pattern (con, ORIG_PAT (con));
4493 }
4494 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4495 TODO_SPEC (con) = recompute_todo_spec (con, true);
4496 }
4497 }
4498
4499 /* Restore scheduler state from the topmost entry on the backtracking queue.
4500 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4501 overwrite with the saved data.
4502 The caller must already have called unschedule_insns_until. */
4503
4504 static void
4505 restore_last_backtrack_point (struct sched_block_state *psched_block)
4506 {
4507 int i;
4508 struct haifa_saved_data *save = backtrack_queue;
4509
4510 backtrack_queue = save->next;
4511
4512 if (current_sched_info->restore_state)
4513 (*current_sched_info->restore_state) (save->fe_saved_data);
4514
4515 if (targetm.sched.alloc_sched_context)
4516 {
4517 targetm.sched.set_sched_context (save->be_saved_data);
4518 targetm.sched.free_sched_context (save->be_saved_data);
4519 }
4520
4521 /* Do this first since it clobbers INSN_TICK of the involved
4522 instructions. */
4523 undo_replacements_for_backtrack (save);
4524
4525 /* Clear the QUEUE_INDEX of everything in the ready list or one
4526 of the queues. */
4527 if (ready.n_ready > 0)
4528 {
4529 rtx_insn **first = ready_lastpos (&ready);
4530 for (i = 0; i < ready.n_ready; i++)
4531 {
4532 rtx_insn *insn = first[i];
4533 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4534 INSN_TICK (insn) = INVALID_TICK;
4535 }
4536 }
4537 for (i = 0; i <= max_insn_queue_index; i++)
4538 {
4539 int q = NEXT_Q_AFTER (q_ptr, i);
4540
4541 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4542 {
4543 rtx_insn *x = link->insn ();
4544 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4545 INSN_TICK (x) = INVALID_TICK;
4546 }
4547 free_INSN_LIST_list (&insn_queue[q]);
4548 }
4549
4550 free (ready.vec);
4551 ready = save->ready;
4552
4553 if (ready.n_ready > 0)
4554 {
4555 rtx_insn **first = ready_lastpos (&ready);
4556 for (i = 0; i < ready.n_ready; i++)
4557 {
4558 rtx_insn *insn = first[i];
4559 QUEUE_INDEX (insn) = QUEUE_READY;
4560 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4561 INSN_TICK (insn) = save->clock_var;
4562 }
4563 }
4564
4565 q_ptr = 0;
4566 q_size = save->q_size;
4567 for (i = 0; i <= max_insn_queue_index; i++)
4568 {
4569 int q = NEXT_Q_AFTER (q_ptr, i);
4570
4571 insn_queue[q] = save->insn_queue[q];
4572
4573 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4574 {
4575 rtx_insn *x = link->insn ();
4576 QUEUE_INDEX (x) = i;
4577 TODO_SPEC (x) = recompute_todo_spec (x, true);
4578 INSN_TICK (x) = save->clock_var + i;
4579 }
4580 }
4581 free (save->insn_queue);
4582
4583 toggle_cancelled_flags (true);
4584
4585 clock_var = save->clock_var;
4586 last_clock_var = save->last_clock_var;
4587 cycle_issued_insns = save->cycle_issued_insns;
4588 last_scheduled_insn = save->last_scheduled_insn;
4589 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4590 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4591
4592 *psched_block = save->sched_block;
4593
4594 memcpy (curr_state, save->curr_state, dfa_state_size);
4595 free (save->curr_state);
4596
4597 mark_backtrack_feeds (save->delay_pair->i2, 0);
4598
4599 gcc_assert (next_cycle_replace_deps.is_empty ());
4600 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4601 next_cycle_apply = save->next_cycle_apply.copy ();
4602
4603 free (save);
4604
4605 for (save = backtrack_queue; save; save = save->next)
4606 {
4607 mark_backtrack_feeds (save->delay_pair->i2, 1);
4608 }
4609 }
4610
4611 /* Discard all data associated with the topmost entry in the backtrack
4612 queue. If RESET_TICK is false, we just want to free the data. If true,
4613 we are doing this because we discovered a reason to backtrack. In the
4614 latter case, also reset the INSN_TICK for the shadow insn. */
4615 static void
4616 free_topmost_backtrack_point (bool reset_tick)
4617 {
4618 struct haifa_saved_data *save = backtrack_queue;
4619 int i;
4620
4621 backtrack_queue = save->next;
4622
4623 if (reset_tick)
4624 {
4625 struct delay_pair *pair = save->delay_pair;
4626 while (pair)
4627 {
4628 INSN_TICK (pair->i2) = INVALID_TICK;
4629 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4630 pair = pair->next_same_i1;
4631 }
4632 undo_replacements_for_backtrack (save);
4633 }
4634 else
4635 {
4636 save->replacement_deps.release ();
4637 save->replace_apply.release ();
4638 }
4639
4640 if (targetm.sched.free_sched_context)
4641 targetm.sched.free_sched_context (save->be_saved_data);
4642 if (current_sched_info->restore_state)
4643 free (save->fe_saved_data);
4644 for (i = 0; i <= max_insn_queue_index; i++)
4645 free_INSN_LIST_list (&save->insn_queue[i]);
4646 free (save->insn_queue);
4647 free (save->curr_state);
4648 free (save->ready.vec);
4649 free (save);
4650 }
4651
4652 /* Free the entire backtrack queue. */
4653 static void
4654 free_backtrack_queue (void)
4655 {
4656 while (backtrack_queue)
4657 free_topmost_backtrack_point (false);
4658 }
4659
4660 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4661 may have to postpone the replacement until the start of the next cycle,
4662 at which point we will be called again with IMMEDIATELY true. This is
4663 only done for machines which have instruction packets with explicit
4664 parallelism however. */
4665 static void
4666 apply_replacement (dep_t dep, bool immediately)
4667 {
4668 struct dep_replacement *desc = DEP_REPLACE (dep);
4669 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4670 {
4671 next_cycle_replace_deps.safe_push (dep);
4672 next_cycle_apply.safe_push (1);
4673 }
4674 else
4675 {
4676 bool success;
4677
4678 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4679 return;
4680
4681 if (sched_verbose >= 5)
4682 fprintf (sched_dump, "applying replacement for insn %d\n",
4683 INSN_UID (desc->insn));
4684
4685 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4686 gcc_assert (success);
4687
4688 update_insn_after_change (desc->insn);
4689 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4690 fix_tick_ready (desc->insn);
4691
4692 if (backtrack_queue != NULL)
4693 {
4694 backtrack_queue->replacement_deps.safe_push (dep);
4695 backtrack_queue->replace_apply.safe_push (1);
4696 }
4697 }
4698 }
4699
4700 /* We have determined that a pattern involved in DEP must be restored.
4701 If IMMEDIATELY is false, we may have to postpone the replacement
4702 until the start of the next cycle, at which point we will be called
4703 again with IMMEDIATELY true. */
4704 static void
4705 restore_pattern (dep_t dep, bool immediately)
4706 {
4707 rtx_insn *next = DEP_CON (dep);
4708 int tick = INSN_TICK (next);
4709
4710 /* If we already scheduled the insn, the modified version is
4711 correct. */
4712 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4713 return;
4714
4715 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4716 {
4717 next_cycle_replace_deps.safe_push (dep);
4718 next_cycle_apply.safe_push (0);
4719 return;
4720 }
4721
4722
4723 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4724 {
4725 if (sched_verbose >= 5)
4726 fprintf (sched_dump, "restoring pattern for insn %d\n",
4727 INSN_UID (next));
4728 haifa_change_pattern (next, ORIG_PAT (next));
4729 }
4730 else
4731 {
4732 struct dep_replacement *desc = DEP_REPLACE (dep);
4733 bool success;
4734
4735 if (sched_verbose >= 5)
4736 fprintf (sched_dump, "restoring pattern for insn %d\n",
4737 INSN_UID (desc->insn));
4738 tick = INSN_TICK (desc->insn);
4739
4740 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4741 gcc_assert (success);
4742 update_insn_after_change (desc->insn);
4743 if (backtrack_queue != NULL)
4744 {
4745 backtrack_queue->replacement_deps.safe_push (dep);
4746 backtrack_queue->replace_apply.safe_push (0);
4747 }
4748 }
4749 INSN_TICK (next) = tick;
4750 if (TODO_SPEC (next) == DEP_POSTPONED)
4751 return;
4752
4753 if (sd_lists_empty_p (next, SD_LIST_BACK))
4754 TODO_SPEC (next) = 0;
4755 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4756 TODO_SPEC (next) = HARD_DEP;
4757 }
4758
4759 /* Perform pattern replacements that were queued up until the next
4760 cycle. */
4761 static void
4762 perform_replacements_new_cycle (void)
4763 {
4764 int i;
4765 dep_t dep;
4766 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4767 {
4768 int apply_p = next_cycle_apply[i];
4769 if (apply_p)
4770 apply_replacement (dep, true);
4771 else
4772 restore_pattern (dep, true);
4773 }
4774 next_cycle_replace_deps.truncate (0);
4775 next_cycle_apply.truncate (0);
4776 }
4777
4778 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4779 instructions we've previously encountered, a set bit prevents
4780 recursion. BUDGET is a limit on how far ahead we look, it is
4781 reduced on recursive calls. Return true if we produced a good
4782 estimate, or false if we exceeded the budget. */
4783 static bool
4784 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4785 {
4786 sd_iterator_def sd_it;
4787 dep_t dep;
4788 int earliest = INSN_TICK (insn);
4789
4790 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4791 {
4792 rtx_insn *pro = DEP_PRO (dep);
4793 int t;
4794
4795 if (DEP_STATUS (dep) & DEP_CANCELLED)
4796 continue;
4797
4798 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4799 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4800 else
4801 {
4802 int cost = dep_cost (dep);
4803 if (cost >= budget)
4804 return false;
4805 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4806 {
4807 if (!estimate_insn_tick (processed, pro, budget - cost))
4808 return false;
4809 }
4810 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4811 t = INSN_TICK_ESTIMATE (pro) + cost;
4812 if (earliest == INVALID_TICK || t > earliest)
4813 earliest = t;
4814 }
4815 }
4816 bitmap_set_bit (processed, INSN_LUID (insn));
4817 INSN_TICK_ESTIMATE (insn) = earliest;
4818 return true;
4819 }
4820
4821 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4822 infinite resources) the cycle in which the delayed shadow can be issued.
4823 Return the number of cycles that must pass before the real insn can be
4824 issued in order to meet this constraint. */
4825 static int
4826 estimate_shadow_tick (struct delay_pair *p)
4827 {
4828 bitmap_head processed;
4829 int t;
4830 bool cutoff;
4831 bitmap_initialize (&processed, 0);
4832
4833 cutoff = !estimate_insn_tick (&processed, p->i2,
4834 max_insn_queue_index + pair_delay (p));
4835 bitmap_clear (&processed);
4836 if (cutoff)
4837 return max_insn_queue_index;
4838 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4839 if (t > 0)
4840 return t;
4841 return 0;
4842 }
4843
4844 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4845 recursively resolve all its forward dependencies. */
4846 static void
4847 resolve_dependencies (rtx_insn *insn)
4848 {
4849 sd_iterator_def sd_it;
4850 dep_t dep;
4851
4852 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4853 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4854 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4855 return;
4856
4857 if (sched_verbose >= 4)
4858 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4859
4860 if (QUEUE_INDEX (insn) >= 0)
4861 queue_remove (insn);
4862
4863 scheduled_insns.safe_push (insn);
4864
4865 /* Update dependent instructions. */
4866 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4867 sd_iterator_cond (&sd_it, &dep);)
4868 {
4869 rtx_insn *next = DEP_CON (dep);
4870
4871 if (sched_verbose >= 4)
4872 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4873 INSN_UID (next));
4874
4875 /* Resolve the dependence between INSN and NEXT.
4876 sd_resolve_dep () moves current dep to another list thus
4877 advancing the iterator. */
4878 sd_resolve_dep (sd_it);
4879
4880 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4881 {
4882 resolve_dependencies (next);
4883 }
4884 else
4885 /* Check always has only one forward dependence (to the first insn in
4886 the recovery block), therefore, this will be executed only once. */
4887 {
4888 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4889 }
4890 }
4891 }
4892
4893
4894 /* Return the head and tail pointers of ebb starting at BEG and ending
4895 at END. */
4896 void
4897 get_ebb_head_tail (basic_block beg, basic_block end,
4898 rtx_insn **headp, rtx_insn **tailp)
4899 {
4900 rtx_insn *beg_head = BB_HEAD (beg);
4901 rtx_insn * beg_tail = BB_END (beg);
4902 rtx_insn * end_head = BB_HEAD (end);
4903 rtx_insn * end_tail = BB_END (end);
4904
4905 /* Don't include any notes or labels at the beginning of the BEG
4906 basic block, or notes at the end of the END basic blocks. */
4907
4908 if (LABEL_P (beg_head))
4909 beg_head = NEXT_INSN (beg_head);
4910
4911 while (beg_head != beg_tail)
4912 if (NOTE_P (beg_head))
4913 beg_head = NEXT_INSN (beg_head);
4914 else if (DEBUG_INSN_P (beg_head))
4915 {
4916 rtx_insn * note, *next;
4917
4918 for (note = NEXT_INSN (beg_head);
4919 note != beg_tail;
4920 note = next)
4921 {
4922 next = NEXT_INSN (note);
4923 if (NOTE_P (note))
4924 {
4925 if (sched_verbose >= 9)
4926 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4927
4928 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4929
4930 if (BLOCK_FOR_INSN (note) != beg)
4931 df_insn_change_bb (note, beg);
4932 }
4933 else if (!DEBUG_INSN_P (note))
4934 break;
4935 }
4936
4937 break;
4938 }
4939 else
4940 break;
4941
4942 *headp = beg_head;
4943
4944 if (beg == end)
4945 end_head = beg_head;
4946 else if (LABEL_P (end_head))
4947 end_head = NEXT_INSN (end_head);
4948
4949 while (end_head != end_tail)
4950 if (NOTE_P (end_tail))
4951 end_tail = PREV_INSN (end_tail);
4952 else if (DEBUG_INSN_P (end_tail))
4953 {
4954 rtx_insn * note, *prev;
4955
4956 for (note = PREV_INSN (end_tail);
4957 note != end_head;
4958 note = prev)
4959 {
4960 prev = PREV_INSN (note);
4961 if (NOTE_P (note))
4962 {
4963 if (sched_verbose >= 9)
4964 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4965
4966 reorder_insns_nobb (note, note, end_tail);
4967
4968 if (end_tail == BB_END (end))
4969 BB_END (end) = note;
4970
4971 if (BLOCK_FOR_INSN (note) != end)
4972 df_insn_change_bb (note, end);
4973 }
4974 else if (!DEBUG_INSN_P (note))
4975 break;
4976 }
4977
4978 break;
4979 }
4980 else
4981 break;
4982
4983 *tailp = end_tail;
4984 }
4985
4986 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
4987
4988 int
4989 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
4990 {
4991 while (head != NEXT_INSN (tail))
4992 {
4993 if (!NOTE_P (head) && !LABEL_P (head))
4994 return 0;
4995 head = NEXT_INSN (head);
4996 }
4997 return 1;
4998 }
4999
5000 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5001 previously found among the insns. Insert them just before HEAD. */
5002 rtx_insn *
5003 restore_other_notes (rtx_insn *head, basic_block head_bb)
5004 {
5005 if (note_list != 0)
5006 {
5007 rtx_insn *note_head = note_list;
5008
5009 if (head)
5010 head_bb = BLOCK_FOR_INSN (head);
5011 else
5012 head = NEXT_INSN (bb_note (head_bb));
5013
5014 while (PREV_INSN (note_head))
5015 {
5016 set_block_for_insn (note_head, head_bb);
5017 note_head = PREV_INSN (note_head);
5018 }
5019 /* In the above cycle we've missed this note. */
5020 set_block_for_insn (note_head, head_bb);
5021
5022 SET_PREV_INSN (note_head) = PREV_INSN (head);
5023 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5024 SET_PREV_INSN (head) = note_list;
5025 SET_NEXT_INSN (note_list) = head;
5026
5027 if (BLOCK_FOR_INSN (head) != head_bb)
5028 BB_END (head_bb) = note_list;
5029
5030 head = note_head;
5031 }
5032
5033 return head;
5034 }
5035
5036 /* When we know we are going to discard the schedule due to a failed attempt
5037 at modulo scheduling, undo all replacements. */
5038 static void
5039 undo_all_replacements (void)
5040 {
5041 rtx_insn *insn;
5042 int i;
5043
5044 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5045 {
5046 sd_iterator_def sd_it;
5047 dep_t dep;
5048
5049 /* See if we must undo a replacement. */
5050 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5051 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5052 {
5053 struct dep_replacement *desc = DEP_REPLACE (dep);
5054 if (desc != NULL)
5055 validate_change (desc->insn, desc->loc, desc->orig, 0);
5056 }
5057 }
5058 }
5059
5060 /* Return first non-scheduled insn in the current scheduling block.
5061 This is mostly used for debug-counter purposes. */
5062 static rtx_insn *
5063 first_nonscheduled_insn (void)
5064 {
5065 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5066 ? nonscheduled_insns_begin
5067 : current_sched_info->prev_head);
5068
5069 do
5070 {
5071 insn = next_nonnote_nondebug_insn (insn);
5072 }
5073 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5074
5075 return insn;
5076 }
5077
5078 /* Move insns that became ready to fire from queue to ready list. */
5079
5080 static void
5081 queue_to_ready (struct ready_list *ready)
5082 {
5083 rtx_insn *insn;
5084 rtx_insn_list *link;
5085 rtx skip_insn;
5086
5087 q_ptr = NEXT_Q (q_ptr);
5088
5089 if (dbg_cnt (sched_insn) == false)
5090 /* If debug counter is activated do not requeue the first
5091 nonscheduled insn. */
5092 skip_insn = first_nonscheduled_insn ();
5093 else
5094 skip_insn = NULL_RTX;
5095
5096 /* Add all pending insns that can be scheduled without stalls to the
5097 ready list. */
5098 for (link = insn_queue[q_ptr]; link; link = link->next ())
5099 {
5100 insn = link->insn ();
5101 q_size -= 1;
5102
5103 if (sched_verbose >= 2)
5104 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5105 (*current_sched_info->print_insn) (insn, 0));
5106
5107 /* If the ready list is full, delay the insn for 1 cycle.
5108 See the comment in schedule_block for the rationale. */
5109 if (!reload_completed
5110 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5111 || (sched_pressure == SCHED_PRESSURE_MODEL
5112 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5113 instructions too. */
5114 && model_index (insn) > (model_curr_point
5115 + MAX_SCHED_READY_INSNS)))
5116 && !(sched_pressure == SCHED_PRESSURE_MODEL
5117 && model_curr_point < model_num_insns
5118 /* Always allow the next model instruction to issue. */
5119 && model_index (insn) == model_curr_point)
5120 && !SCHED_GROUP_P (insn)
5121 && insn != skip_insn)
5122 {
5123 if (sched_verbose >= 2)
5124 fprintf (sched_dump, "keeping in queue, ready full\n");
5125 queue_insn (insn, 1, "ready full");
5126 }
5127 else
5128 {
5129 ready_add (ready, insn, false);
5130 if (sched_verbose >= 2)
5131 fprintf (sched_dump, "moving to ready without stalls\n");
5132 }
5133 }
5134 free_INSN_LIST_list (&insn_queue[q_ptr]);
5135
5136 /* If there are no ready insns, stall until one is ready and add all
5137 of the pending insns at that point to the ready list. */
5138 if (ready->n_ready == 0)
5139 {
5140 int stalls;
5141
5142 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5143 {
5144 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5145 {
5146 for (; link; link = link->next ())
5147 {
5148 insn = link->insn ();
5149 q_size -= 1;
5150
5151 if (sched_verbose >= 2)
5152 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5153 (*current_sched_info->print_insn) (insn, 0));
5154
5155 ready_add (ready, insn, false);
5156 if (sched_verbose >= 2)
5157 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5158 }
5159 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5160
5161 advance_one_cycle ();
5162
5163 break;
5164 }
5165
5166 advance_one_cycle ();
5167 }
5168
5169 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5170 clock_var += stalls;
5171 if (sched_verbose >= 2)
5172 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5173 stalls, clock_var);
5174 }
5175 }
5176
5177 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5178 prematurely move INSN from the queue to the ready list. Currently,
5179 if a target defines the hook 'is_costly_dependence', this function
5180 uses the hook to check whether there exist any dependences which are
5181 considered costly by the target, between INSN and other insns that
5182 have already been scheduled. Dependences are checked up to Y cycles
5183 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5184 controlling this value.
5185 (Other considerations could be taken into account instead (or in
5186 addition) depending on user flags and target hooks. */
5187
5188 static bool
5189 ok_for_early_queue_removal (rtx insn)
5190 {
5191 if (targetm.sched.is_costly_dependence)
5192 {
5193 rtx prev_insn;
5194 int n_cycles;
5195 int i = scheduled_insns.length ();
5196 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5197 {
5198 while (i-- > 0)
5199 {
5200 int cost;
5201
5202 prev_insn = scheduled_insns[i];
5203
5204 if (!NOTE_P (prev_insn))
5205 {
5206 dep_t dep;
5207
5208 dep = sd_find_dep_between (prev_insn, insn, true);
5209
5210 if (dep != NULL)
5211 {
5212 cost = dep_cost (dep);
5213
5214 if (targetm.sched.is_costly_dependence (dep, cost,
5215 flag_sched_stalled_insns_dep - n_cycles))
5216 return false;
5217 }
5218 }
5219
5220 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5221 break;
5222 }
5223
5224 if (i == 0)
5225 break;
5226 }
5227 }
5228
5229 return true;
5230 }
5231
5232
5233 /* Remove insns from the queue, before they become "ready" with respect
5234 to FU latency considerations. */
5235
5236 static int
5237 early_queue_to_ready (state_t state, struct ready_list *ready)
5238 {
5239 rtx_insn *insn;
5240 rtx_insn_list *link;
5241 rtx_insn_list *next_link;
5242 rtx_insn_list *prev_link;
5243 bool move_to_ready;
5244 int cost;
5245 state_t temp_state = alloca (dfa_state_size);
5246 int stalls;
5247 int insns_removed = 0;
5248
5249 /*
5250 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5251 function:
5252
5253 X == 0: There is no limit on how many queued insns can be removed
5254 prematurely. (flag_sched_stalled_insns = -1).
5255
5256 X >= 1: Only X queued insns can be removed prematurely in each
5257 invocation. (flag_sched_stalled_insns = X).
5258
5259 Otherwise: Early queue removal is disabled.
5260 (flag_sched_stalled_insns = 0)
5261 */
5262
5263 if (! flag_sched_stalled_insns)
5264 return 0;
5265
5266 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5267 {
5268 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5269 {
5270 if (sched_verbose > 6)
5271 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5272
5273 prev_link = 0;
5274 while (link)
5275 {
5276 next_link = link->next ();
5277 insn = link->insn ();
5278 if (insn && sched_verbose > 6)
5279 print_rtl_single (sched_dump, insn);
5280
5281 memcpy (temp_state, state, dfa_state_size);
5282 if (recog_memoized (insn) < 0)
5283 /* non-negative to indicate that it's not ready
5284 to avoid infinite Q->R->Q->R... */
5285 cost = 0;
5286 else
5287 cost = state_transition (temp_state, insn);
5288
5289 if (sched_verbose >= 6)
5290 fprintf (sched_dump, "transition cost = %d\n", cost);
5291
5292 move_to_ready = false;
5293 if (cost < 0)
5294 {
5295 move_to_ready = ok_for_early_queue_removal (insn);
5296 if (move_to_ready == true)
5297 {
5298 /* move from Q to R */
5299 q_size -= 1;
5300 ready_add (ready, insn, false);
5301
5302 if (prev_link)
5303 XEXP (prev_link, 1) = next_link;
5304 else
5305 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5306
5307 free_INSN_LIST_node (link);
5308
5309 if (sched_verbose >= 2)
5310 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5311 (*current_sched_info->print_insn) (insn, 0));
5312
5313 insns_removed++;
5314 if (insns_removed == flag_sched_stalled_insns)
5315 /* Remove no more than flag_sched_stalled_insns insns
5316 from Q at a time. */
5317 return insns_removed;
5318 }
5319 }
5320
5321 if (move_to_ready == false)
5322 prev_link = link;
5323
5324 link = next_link;
5325 } /* while link */
5326 } /* if link */
5327
5328 } /* for stalls.. */
5329
5330 return insns_removed;
5331 }
5332
5333
5334 /* Print the ready list for debugging purposes.
5335 If READY_TRY is non-zero then only print insns that max_issue
5336 will consider. */
5337 static void
5338 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5339 {
5340 rtx_insn **p;
5341 int i;
5342
5343 if (ready->n_ready == 0)
5344 {
5345 fprintf (sched_dump, "\n");
5346 return;
5347 }
5348
5349 p = ready_lastpos (ready);
5350 for (i = 0; i < ready->n_ready; i++)
5351 {
5352 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5353 continue;
5354
5355 fprintf (sched_dump, " %s:%d",
5356 (*current_sched_info->print_insn) (p[i], 0),
5357 INSN_LUID (p[i]));
5358 if (sched_pressure != SCHED_PRESSURE_NONE)
5359 fprintf (sched_dump, "(cost=%d",
5360 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5361 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5362 if (INSN_TICK (p[i]) > clock_var)
5363 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5364 if (sched_pressure == SCHED_PRESSURE_MODEL)
5365 fprintf (sched_dump, ":idx=%d",
5366 model_index (p[i]));
5367 if (sched_pressure != SCHED_PRESSURE_NONE)
5368 fprintf (sched_dump, ")");
5369 }
5370 fprintf (sched_dump, "\n");
5371 }
5372
5373 /* Print the ready list. Callable from debugger. */
5374 static void
5375 debug_ready_list (struct ready_list *ready)
5376 {
5377 debug_ready_list_1 (ready, NULL);
5378 }
5379
5380 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5381 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5382 replaces the epilogue note in the correct basic block. */
5383 void
5384 reemit_notes (rtx_insn *insn)
5385 {
5386 rtx note;
5387 rtx_insn *last = insn;
5388
5389 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5390 {
5391 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5392 {
5393 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5394
5395 last = emit_note_before (note_type, last);
5396 remove_note (insn, note);
5397 }
5398 }
5399 }
5400
5401 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5402 static void
5403 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5404 {
5405 if (PREV_INSN (insn) != last)
5406 {
5407 basic_block bb;
5408 rtx_insn *note;
5409 int jump_p = 0;
5410
5411 bb = BLOCK_FOR_INSN (insn);
5412
5413 /* BB_HEAD is either LABEL or NOTE. */
5414 gcc_assert (BB_HEAD (bb) != insn);
5415
5416 if (BB_END (bb) == insn)
5417 /* If this is last instruction in BB, move end marker one
5418 instruction up. */
5419 {
5420 /* Jumps are always placed at the end of basic block. */
5421 jump_p = control_flow_insn_p (insn);
5422
5423 gcc_assert (!jump_p
5424 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5425 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5426 || (common_sched_info->sched_pass_id
5427 == SCHED_EBB_PASS));
5428
5429 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5430
5431 BB_END (bb) = PREV_INSN (insn);
5432 }
5433
5434 gcc_assert (BB_END (bb) != last);
5435
5436 if (jump_p)
5437 /* We move the block note along with jump. */
5438 {
5439 gcc_assert (nt);
5440
5441 note = NEXT_INSN (insn);
5442 while (NOTE_NOT_BB_P (note) && note != nt)
5443 note = NEXT_INSN (note);
5444
5445 if (note != nt
5446 && (LABEL_P (note)
5447 || BARRIER_P (note)))
5448 note = NEXT_INSN (note);
5449
5450 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5451 }
5452 else
5453 note = insn;
5454
5455 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5456 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5457
5458 SET_NEXT_INSN (note) = NEXT_INSN (last);
5459 SET_PREV_INSN (NEXT_INSN (last)) = note;
5460
5461 SET_NEXT_INSN (last) = insn;
5462 SET_PREV_INSN (insn) = last;
5463
5464 bb = BLOCK_FOR_INSN (last);
5465
5466 if (jump_p)
5467 {
5468 fix_jump_move (insn);
5469
5470 if (BLOCK_FOR_INSN (insn) != bb)
5471 move_block_after_check (insn);
5472
5473 gcc_assert (BB_END (bb) == last);
5474 }
5475
5476 df_insn_change_bb (insn, bb);
5477
5478 /* Update BB_END, if needed. */
5479 if (BB_END (bb) == last)
5480 BB_END (bb) = insn;
5481 }
5482
5483 SCHED_GROUP_P (insn) = 0;
5484 }
5485
5486 /* Return true if scheduling INSN will finish current clock cycle. */
5487 static bool
5488 insn_finishes_cycle_p (rtx_insn *insn)
5489 {
5490 if (SCHED_GROUP_P (insn))
5491 /* After issuing INSN, rest of the sched_group will be forced to issue
5492 in order. Don't make any plans for the rest of cycle. */
5493 return true;
5494
5495 /* Finishing the block will, apparently, finish the cycle. */
5496 if (current_sched_info->insn_finishes_block_p
5497 && current_sched_info->insn_finishes_block_p (insn))
5498 return true;
5499
5500 return false;
5501 }
5502
5503 /* Define type for target data used in multipass scheduling. */
5504 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5505 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5506 #endif
5507 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5508
5509 /* The following structure describe an entry of the stack of choices. */
5510 struct choice_entry
5511 {
5512 /* Ordinal number of the issued insn in the ready queue. */
5513 int index;
5514 /* The number of the rest insns whose issues we should try. */
5515 int rest;
5516 /* The number of issued essential insns. */
5517 int n;
5518 /* State after issuing the insn. */
5519 state_t state;
5520 /* Target-specific data. */
5521 first_cycle_multipass_data_t target_data;
5522 };
5523
5524 /* The following array is used to implement a stack of choices used in
5525 function max_issue. */
5526 static struct choice_entry *choice_stack;
5527
5528 /* This holds the value of the target dfa_lookahead hook. */
5529 int dfa_lookahead;
5530
5531 /* The following variable value is maximal number of tries of issuing
5532 insns for the first cycle multipass insn scheduling. We define
5533 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5534 need this constraint if all real insns (with non-negative codes)
5535 had reservations because in this case the algorithm complexity is
5536 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5537 might be incomplete and such insn might occur. For such
5538 descriptions, the complexity of algorithm (without the constraint)
5539 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5540 static int max_lookahead_tries;
5541
5542 /* The following function returns maximal (or close to maximal) number
5543 of insns which can be issued on the same cycle and one of which
5544 insns is insns with the best rank (the first insn in READY). To
5545 make this function tries different samples of ready insns. READY
5546 is current queue `ready'. Global array READY_TRY reflects what
5547 insns are already issued in this try. The function stops immediately,
5548 if it reached the such a solution, that all instruction can be issued.
5549 INDEX will contain index of the best insn in READY. The following
5550 function is used only for first cycle multipass scheduling.
5551
5552 PRIVILEGED_N >= 0
5553
5554 This function expects recognized insns only. All USEs,
5555 CLOBBERs, etc must be filtered elsewhere. */
5556 int
5557 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5558 bool first_cycle_insn_p, int *index)
5559 {
5560 int n, i, all, n_ready, best, delay, tries_num;
5561 int more_issue;
5562 struct choice_entry *top;
5563 rtx_insn *insn;
5564
5565 if (sched_fusion)
5566 return 0;
5567
5568 n_ready = ready->n_ready;
5569 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5570 && privileged_n <= n_ready);
5571
5572 /* Init MAX_LOOKAHEAD_TRIES. */
5573 if (max_lookahead_tries == 0)
5574 {
5575 max_lookahead_tries = 100;
5576 for (i = 0; i < issue_rate; i++)
5577 max_lookahead_tries *= dfa_lookahead;
5578 }
5579
5580 /* Init max_points. */
5581 more_issue = issue_rate - cycle_issued_insns;
5582 gcc_assert (more_issue >= 0);
5583
5584 /* The number of the issued insns in the best solution. */
5585 best = 0;
5586
5587 top = choice_stack;
5588
5589 /* Set initial state of the search. */
5590 memcpy (top->state, state, dfa_state_size);
5591 top->rest = dfa_lookahead;
5592 top->n = 0;
5593 if (targetm.sched.first_cycle_multipass_begin)
5594 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5595 ready_try, n_ready,
5596 first_cycle_insn_p);
5597
5598 /* Count the number of the insns to search among. */
5599 for (all = i = 0; i < n_ready; i++)
5600 if (!ready_try [i])
5601 all++;
5602
5603 if (sched_verbose >= 2)
5604 {
5605 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5606 debug_ready_list_1 (ready, ready_try);
5607 }
5608
5609 /* I is the index of the insn to try next. */
5610 i = 0;
5611 tries_num = 0;
5612 for (;;)
5613 {
5614 if (/* If we've reached a dead end or searched enough of what we have
5615 been asked... */
5616 top->rest == 0
5617 /* or have nothing else to try... */
5618 || i >= n_ready
5619 /* or should not issue more. */
5620 || top->n >= more_issue)
5621 {
5622 /* ??? (... || i == n_ready). */
5623 gcc_assert (i <= n_ready);
5624
5625 /* We should not issue more than issue_rate instructions. */
5626 gcc_assert (top->n <= more_issue);
5627
5628 if (top == choice_stack)
5629 break;
5630
5631 if (best < top - choice_stack)
5632 {
5633 if (privileged_n)
5634 {
5635 n = privileged_n;
5636 /* Try to find issued privileged insn. */
5637 while (n && !ready_try[--n])
5638 ;
5639 }
5640
5641 if (/* If all insns are equally good... */
5642 privileged_n == 0
5643 /* Or a privileged insn will be issued. */
5644 || ready_try[n])
5645 /* Then we have a solution. */
5646 {
5647 best = top - choice_stack;
5648 /* This is the index of the insn issued first in this
5649 solution. */
5650 *index = choice_stack [1].index;
5651 if (top->n == more_issue || best == all)
5652 break;
5653 }
5654 }
5655
5656 /* Set ready-list index to point to the last insn
5657 ('i++' below will advance it to the next insn). */
5658 i = top->index;
5659
5660 /* Backtrack. */
5661 ready_try [i] = 0;
5662
5663 if (targetm.sched.first_cycle_multipass_backtrack)
5664 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5665 ready_try, n_ready);
5666
5667 top--;
5668 memcpy (state, top->state, dfa_state_size);
5669 }
5670 else if (!ready_try [i])
5671 {
5672 tries_num++;
5673 if (tries_num > max_lookahead_tries)
5674 break;
5675 insn = ready_element (ready, i);
5676 delay = state_transition (state, insn);
5677 if (delay < 0)
5678 {
5679 if (state_dead_lock_p (state)
5680 || insn_finishes_cycle_p (insn))
5681 /* We won't issue any more instructions in the next
5682 choice_state. */
5683 top->rest = 0;
5684 else
5685 top->rest--;
5686
5687 n = top->n;
5688 if (memcmp (top->state, state, dfa_state_size) != 0)
5689 n++;
5690
5691 /* Advance to the next choice_entry. */
5692 top++;
5693 /* Initialize it. */
5694 top->rest = dfa_lookahead;
5695 top->index = i;
5696 top->n = n;
5697 memcpy (top->state, state, dfa_state_size);
5698 ready_try [i] = 1;
5699
5700 if (targetm.sched.first_cycle_multipass_issue)
5701 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5702 ready_try, n_ready,
5703 insn,
5704 &((top - 1)
5705 ->target_data));
5706
5707 i = -1;
5708 }
5709 }
5710
5711 /* Increase ready-list index. */
5712 i++;
5713 }
5714
5715 if (targetm.sched.first_cycle_multipass_end)
5716 targetm.sched.first_cycle_multipass_end (best != 0
5717 ? &choice_stack[1].target_data
5718 : NULL);
5719
5720 /* Restore the original state of the DFA. */
5721 memcpy (state, choice_stack->state, dfa_state_size);
5722
5723 return best;
5724 }
5725
5726 /* The following function chooses insn from READY and modifies
5727 READY. The following function is used only for first
5728 cycle multipass scheduling.
5729 Return:
5730 -1 if cycle should be advanced,
5731 0 if INSN_PTR is set to point to the desirable insn,
5732 1 if choose_ready () should be restarted without advancing the cycle. */
5733 static int
5734 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
5735 rtx_insn **insn_ptr)
5736 {
5737 if (dbg_cnt (sched_insn) == false)
5738 {
5739 if (nonscheduled_insns_begin == NULL_RTX)
5740 nonscheduled_insns_begin = current_sched_info->prev_head;
5741
5742 rtx_insn *insn = first_nonscheduled_insn ();
5743
5744 if (QUEUE_INDEX (insn) == QUEUE_READY)
5745 /* INSN is in the ready_list. */
5746 {
5747 ready_remove_insn (insn);
5748 *insn_ptr = insn;
5749 return 0;
5750 }
5751
5752 /* INSN is in the queue. Advance cycle to move it to the ready list. */
5753 gcc_assert (QUEUE_INDEX (insn) >= 0);
5754 return -1;
5755 }
5756
5757 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
5758 || DEBUG_INSN_P (ready_element (ready, 0)))
5759 {
5760 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
5761 *insn_ptr = ready_remove_first_dispatch (ready);
5762 else
5763 *insn_ptr = ready_remove_first (ready);
5764
5765 return 0;
5766 }
5767 else
5768 {
5769 /* Try to choose the best insn. */
5770 int index = 0, i;
5771 rtx_insn *insn;
5772
5773 insn = ready_element (ready, 0);
5774 if (INSN_CODE (insn) < 0)
5775 {
5776 *insn_ptr = ready_remove_first (ready);
5777 return 0;
5778 }
5779
5780 /* Filter the search space. */
5781 for (i = 0; i < ready->n_ready; i++)
5782 {
5783 ready_try[i] = 0;
5784
5785 insn = ready_element (ready, i);
5786
5787 /* If this insn is recognizable we should have already
5788 recognized it earlier.
5789 ??? Not very clear where this is supposed to be done.
5790 See dep_cost_1. */
5791 gcc_checking_assert (INSN_CODE (insn) >= 0
5792 || recog_memoized (insn) < 0);
5793 if (INSN_CODE (insn) < 0)
5794 {
5795 /* Non-recognized insns at position 0 are handled above. */
5796 gcc_assert (i > 0);
5797 ready_try[i] = 1;
5798 continue;
5799 }
5800
5801 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
5802 {
5803 ready_try[i]
5804 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5805 (insn, i));
5806
5807 if (ready_try[i] < 0)
5808 /* Queue instruction for several cycles.
5809 We need to restart choose_ready as we have changed
5810 the ready list. */
5811 {
5812 change_queue_index (insn, -ready_try[i]);
5813 return 1;
5814 }
5815
5816 /* Make sure that we didn't end up with 0'th insn filtered out.
5817 Don't be tempted to make life easier for backends and just
5818 requeue 0'th insn if (ready_try[0] == 0) and restart
5819 choose_ready. Backends should be very considerate about
5820 requeueing instructions -- especially the highest priority
5821 one at position 0. */
5822 gcc_assert (ready_try[i] == 0 || i > 0);
5823 if (ready_try[i])
5824 continue;
5825 }
5826
5827 gcc_assert (ready_try[i] == 0);
5828 /* INSN made it through the scrutiny of filters! */
5829 }
5830
5831 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
5832 {
5833 *insn_ptr = ready_remove_first (ready);
5834 if (sched_verbose >= 4)
5835 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
5836 (*current_sched_info->print_insn) (*insn_ptr, 0));
5837 return 0;
5838 }
5839 else
5840 {
5841 if (sched_verbose >= 4)
5842 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
5843 (*current_sched_info->print_insn)
5844 (ready_element (ready, index), 0));
5845
5846 *insn_ptr = ready_remove (ready, index);
5847 return 0;
5848 }
5849 }
5850 }
5851
5852 /* This function is called when we have successfully scheduled a
5853 block. It uses the schedule stored in the scheduled_insns vector
5854 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
5855 append the scheduled insns; TAIL is the insn after the scheduled
5856 block. TARGET_BB is the argument passed to schedule_block. */
5857
5858 static void
5859 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
5860 {
5861 unsigned int i;
5862 rtx_insn *insn;
5863
5864 last_scheduled_insn = prev_head;
5865 for (i = 0;
5866 scheduled_insns.iterate (i, &insn);
5867 i++)
5868 {
5869 if (control_flow_insn_p (last_scheduled_insn)
5870 || current_sched_info->advance_target_bb (*target_bb, insn))
5871 {
5872 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
5873
5874 if (sched_verbose)
5875 {
5876 rtx_insn *x;
5877
5878 x = next_real_insn (last_scheduled_insn);
5879 gcc_assert (x);
5880 dump_new_block_header (1, *target_bb, x, tail);
5881 }
5882
5883 last_scheduled_insn = bb_note (*target_bb);
5884 }
5885
5886 if (current_sched_info->begin_move_insn)
5887 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
5888 move_insn (insn, last_scheduled_insn,
5889 current_sched_info->next_tail);
5890 if (!DEBUG_INSN_P (insn))
5891 reemit_notes (insn);
5892 last_scheduled_insn = insn;
5893 }
5894
5895 scheduled_insns.truncate (0);
5896 }
5897
5898 /* Examine all insns on the ready list and queue those which can't be
5899 issued in this cycle. TEMP_STATE is temporary scheduler state we
5900 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
5901 have been issued for the current cycle, which means it is valid to
5902 issue an asm statement.
5903
5904 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
5905 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
5906 we only leave insns which have an INSN_EXACT_TICK. */
5907
5908 static void
5909 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
5910 bool shadows_only_p, bool modulo_epilogue_p)
5911 {
5912 int i, pass;
5913 bool sched_group_found = false;
5914 int min_cost_group = 1;
5915
5916 if (sched_fusion)
5917 return;
5918
5919 for (i = 0; i < ready.n_ready; i++)
5920 {
5921 rtx_insn *insn = ready_element (&ready, i);
5922 if (SCHED_GROUP_P (insn))
5923 {
5924 sched_group_found = true;
5925 break;
5926 }
5927 }
5928
5929 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
5930 such an insn first and note its cost, then schedule all other insns
5931 for one cycle later. */
5932 for (pass = sched_group_found ? 0 : 1; pass < 2; )
5933 {
5934 int n = ready.n_ready;
5935 for (i = 0; i < n; i++)
5936 {
5937 rtx_insn *insn = ready_element (&ready, i);
5938 int cost = 0;
5939 const char *reason = "resource conflict";
5940
5941 if (DEBUG_INSN_P (insn))
5942 continue;
5943
5944 if (sched_group_found && !SCHED_GROUP_P (insn))
5945 {
5946 if (pass == 0)
5947 continue;
5948 cost = min_cost_group;
5949 reason = "not in sched group";
5950 }
5951 else if (modulo_epilogue_p
5952 && INSN_EXACT_TICK (insn) == INVALID_TICK)
5953 {
5954 cost = max_insn_queue_index;
5955 reason = "not an epilogue insn";
5956 }
5957 else if (shadows_only_p && !SHADOW_P (insn))
5958 {
5959 cost = 1;
5960 reason = "not a shadow";
5961 }
5962 else if (recog_memoized (insn) < 0)
5963 {
5964 if (!first_cycle_insn_p
5965 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
5966 || asm_noperands (PATTERN (insn)) >= 0))
5967 cost = 1;
5968 reason = "asm";
5969 }
5970 else if (sched_pressure != SCHED_PRESSURE_NONE)
5971 {
5972 if (sched_pressure == SCHED_PRESSURE_MODEL
5973 && INSN_TICK (insn) <= clock_var)
5974 {
5975 memcpy (temp_state, curr_state, dfa_state_size);
5976 if (state_transition (temp_state, insn) >= 0)
5977 INSN_TICK (insn) = clock_var + 1;
5978 }
5979 cost = 0;
5980 }
5981 else
5982 {
5983 int delay_cost = 0;
5984
5985 if (delay_htab)
5986 {
5987 struct delay_pair *delay_entry;
5988 delay_entry
5989 = delay_htab->find_with_hash (insn,
5990 htab_hash_pointer (insn));
5991 while (delay_entry && delay_cost == 0)
5992 {
5993 delay_cost = estimate_shadow_tick (delay_entry);
5994 if (delay_cost > max_insn_queue_index)
5995 delay_cost = max_insn_queue_index;
5996 delay_entry = delay_entry->next_same_i1;
5997 }
5998 }
5999
6000 memcpy (temp_state, curr_state, dfa_state_size);
6001 cost = state_transition (temp_state, insn);
6002 if (cost < 0)
6003 cost = 0;
6004 else if (cost == 0)
6005 cost = 1;
6006 if (cost < delay_cost)
6007 {
6008 cost = delay_cost;
6009 reason = "shadow tick";
6010 }
6011 }
6012 if (cost >= 1)
6013 {
6014 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6015 min_cost_group = cost;
6016 ready_remove (&ready, i);
6017 queue_insn (insn, cost, reason);
6018 if (i + 1 < n)
6019 break;
6020 }
6021 }
6022 if (i == n)
6023 pass++;
6024 }
6025 }
6026
6027 /* Called when we detect that the schedule is impossible. We examine the
6028 backtrack queue to find the earliest insn that caused this condition. */
6029
6030 static struct haifa_saved_data *
6031 verify_shadows (void)
6032 {
6033 struct haifa_saved_data *save, *earliest_fail = NULL;
6034 for (save = backtrack_queue; save; save = save->next)
6035 {
6036 int t;
6037 struct delay_pair *pair = save->delay_pair;
6038 rtx_insn *i1 = pair->i1;
6039
6040 for (; pair; pair = pair->next_same_i1)
6041 {
6042 rtx_insn *i2 = pair->i2;
6043
6044 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6045 continue;
6046
6047 t = INSN_TICK (i1) + pair_delay (pair);
6048 if (t < clock_var)
6049 {
6050 if (sched_verbose >= 2)
6051 fprintf (sched_dump,
6052 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6053 ", not ready\n",
6054 INSN_UID (pair->i1), INSN_UID (pair->i2),
6055 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6056 earliest_fail = save;
6057 break;
6058 }
6059 if (QUEUE_INDEX (i2) >= 0)
6060 {
6061 int queued_for = INSN_TICK (i2);
6062
6063 if (t < queued_for)
6064 {
6065 if (sched_verbose >= 2)
6066 fprintf (sched_dump,
6067 ";;\t\tfailed delay requirements for %d/%d"
6068 " (%d->%d), queued too late\n",
6069 INSN_UID (pair->i1), INSN_UID (pair->i2),
6070 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6071 earliest_fail = save;
6072 break;
6073 }
6074 }
6075 }
6076 }
6077
6078 return earliest_fail;
6079 }
6080
6081 /* Print instructions together with useful scheduling information between
6082 HEAD and TAIL (inclusive). */
6083 static void
6084 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6085 {
6086 fprintf (sched_dump, ";;\t| insn | prio |\n");
6087
6088 rtx_insn *next_tail = NEXT_INSN (tail);
6089 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6090 {
6091 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6092 const char *pattern = (NOTE_P (insn)
6093 ? "note"
6094 : str_pattern_slim (PATTERN (insn)));
6095
6096 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6097 INSN_UID (insn), priority, pattern);
6098
6099 if (sched_verbose >= 4)
6100 {
6101 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6102 fprintf (sched_dump, "nothing");
6103 else
6104 print_reservation (sched_dump, insn);
6105 }
6106 fprintf (sched_dump, "\n");
6107 }
6108 }
6109
6110 /* Use forward list scheduling to rearrange insns of block pointed to by
6111 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6112 region. */
6113
6114 bool
6115 schedule_block (basic_block *target_bb, state_t init_state)
6116 {
6117 int i;
6118 bool success = modulo_ii == 0;
6119 struct sched_block_state ls;
6120 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6121 int sort_p, advance, start_clock_var;
6122
6123 /* Head/tail info for this block. */
6124 rtx_insn *prev_head = current_sched_info->prev_head;
6125 rtx_insn *next_tail = current_sched_info->next_tail;
6126 rtx_insn *head = NEXT_INSN (prev_head);
6127 rtx_insn *tail = PREV_INSN (next_tail);
6128
6129 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6130 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6131 find_modifiable_mems (head, tail);
6132
6133 /* We used to have code to avoid getting parameters moved from hard
6134 argument registers into pseudos.
6135
6136 However, it was removed when it proved to be of marginal benefit
6137 and caused problems because schedule_block and compute_forward_dependences
6138 had different notions of what the "head" insn was. */
6139
6140 gcc_assert (head != tail || INSN_P (head));
6141
6142 haifa_recovery_bb_recently_added_p = false;
6143
6144 backtrack_queue = NULL;
6145
6146 /* Debug info. */
6147 if (sched_verbose)
6148 {
6149 dump_new_block_header (0, *target_bb, head, tail);
6150
6151 if (sched_verbose >= 2)
6152 {
6153 dump_insn_stream (head, tail);
6154 memset (&rank_for_schedule_stats, 0,
6155 sizeof (rank_for_schedule_stats));
6156 }
6157 }
6158
6159 if (init_state == NULL)
6160 state_reset (curr_state);
6161 else
6162 memcpy (curr_state, init_state, dfa_state_size);
6163
6164 /* Clear the ready list. */
6165 ready.first = ready.veclen - 1;
6166 ready.n_ready = 0;
6167 ready.n_debug = 0;
6168
6169 /* It is used for first cycle multipass scheduling. */
6170 temp_state = alloca (dfa_state_size);
6171
6172 if (targetm.sched.init)
6173 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6174
6175 /* We start inserting insns after PREV_HEAD. */
6176 last_scheduled_insn = prev_head;
6177 last_nondebug_scheduled_insn = NULL_RTX;
6178 nonscheduled_insns_begin = NULL;
6179
6180 gcc_assert ((NOTE_P (last_scheduled_insn)
6181 || DEBUG_INSN_P (last_scheduled_insn))
6182 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6183
6184 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6185 queue. */
6186 q_ptr = 0;
6187 q_size = 0;
6188
6189 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6190 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6191
6192 /* Start just before the beginning of time. */
6193 clock_var = -1;
6194
6195 /* We need queue and ready lists and clock_var be initialized
6196 in try_ready () (which is called through init_ready_list ()). */
6197 (*current_sched_info->init_ready_list) ();
6198
6199 if (sched_pressure)
6200 sched_pressure_start_bb (*target_bb);
6201
6202 /* The algorithm is O(n^2) in the number of ready insns at any given
6203 time in the worst case. Before reload we are more likely to have
6204 big lists so truncate them to a reasonable size. */
6205 if (!reload_completed
6206 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6207 {
6208 ready_sort (&ready);
6209
6210 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6211 If there are debug insns, we know they're first. */
6212 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6213 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6214 break;
6215
6216 if (sched_verbose >= 2)
6217 {
6218 fprintf (sched_dump,
6219 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
6220 fprintf (sched_dump,
6221 ";;\t\t before reload => truncated to %d insns\n", i);
6222 }
6223
6224 /* Delay all insns past it for 1 cycle. If debug counter is
6225 activated make an exception for the insn right after
6226 nonscheduled_insns_begin. */
6227 {
6228 rtx_insn *skip_insn;
6229
6230 if (dbg_cnt (sched_insn) == false)
6231 skip_insn = first_nonscheduled_insn ();
6232 else
6233 skip_insn = NULL;
6234
6235 while (i < ready.n_ready)
6236 {
6237 rtx_insn *insn;
6238
6239 insn = ready_remove (&ready, i);
6240
6241 if (insn != skip_insn)
6242 queue_insn (insn, 1, "list truncated");
6243 }
6244 if (skip_insn)
6245 ready_add (&ready, skip_insn, true);
6246 }
6247 }
6248
6249 /* Now we can restore basic block notes and maintain precise cfg. */
6250 restore_bb_notes (*target_bb);
6251
6252 last_clock_var = -1;
6253
6254 advance = 0;
6255
6256 gcc_assert (scheduled_insns.length () == 0);
6257 sort_p = TRUE;
6258 must_backtrack = false;
6259 modulo_insns_scheduled = 0;
6260
6261 ls.modulo_epilogue = false;
6262 ls.first_cycle_insn_p = true;
6263
6264 /* Loop until all the insns in BB are scheduled. */
6265 while ((*current_sched_info->schedule_more_p) ())
6266 {
6267 perform_replacements_new_cycle ();
6268 do
6269 {
6270 start_clock_var = clock_var;
6271
6272 clock_var++;
6273
6274 advance_one_cycle ();
6275
6276 /* Add to the ready list all pending insns that can be issued now.
6277 If there are no ready insns, increment clock until one
6278 is ready and add all pending insns at that point to the ready
6279 list. */
6280 queue_to_ready (&ready);
6281
6282 gcc_assert (ready.n_ready);
6283
6284 if (sched_verbose >= 2)
6285 {
6286 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6287 debug_ready_list (&ready);
6288 }
6289 advance -= clock_var - start_clock_var;
6290 }
6291 while (advance > 0);
6292
6293 if (ls.modulo_epilogue)
6294 {
6295 int stage = clock_var / modulo_ii;
6296 if (stage > modulo_last_stage * 2 + 2)
6297 {
6298 if (sched_verbose >= 2)
6299 fprintf (sched_dump,
6300 ";;\t\tmodulo scheduled succeeded at II %d\n",
6301 modulo_ii);
6302 success = true;
6303 goto end_schedule;
6304 }
6305 }
6306 else if (modulo_ii > 0)
6307 {
6308 int stage = clock_var / modulo_ii;
6309 if (stage > modulo_max_stages)
6310 {
6311 if (sched_verbose >= 2)
6312 fprintf (sched_dump,
6313 ";;\t\tfailing schedule due to excessive stages\n");
6314 goto end_schedule;
6315 }
6316 if (modulo_n_insns == modulo_insns_scheduled
6317 && stage > modulo_last_stage)
6318 {
6319 if (sched_verbose >= 2)
6320 fprintf (sched_dump,
6321 ";;\t\tfound kernel after %d stages, II %d\n",
6322 stage, modulo_ii);
6323 ls.modulo_epilogue = true;
6324 }
6325 }
6326
6327 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6328 if (ready.n_ready == 0)
6329 continue;
6330 if (must_backtrack)
6331 goto do_backtrack;
6332
6333 ls.shadows_only_p = false;
6334 cycle_issued_insns = 0;
6335 ls.can_issue_more = issue_rate;
6336 for (;;)
6337 {
6338 rtx_insn *insn;
6339 int cost;
6340 bool asm_p;
6341
6342 if (sort_p && ready.n_ready > 0)
6343 {
6344 /* Sort the ready list based on priority. This must be
6345 done every iteration through the loop, as schedule_insn
6346 may have readied additional insns that will not be
6347 sorted correctly. */
6348 ready_sort (&ready);
6349
6350 if (sched_verbose >= 2)
6351 {
6352 fprintf (sched_dump,
6353 ";;\t\tReady list after ready_sort: ");
6354 debug_ready_list (&ready);
6355 }
6356 }
6357
6358 /* We don't want md sched reorder to even see debug isns, so put
6359 them out right away. */
6360 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6361 && (*current_sched_info->schedule_more_p) ())
6362 {
6363 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6364 {
6365 rtx_insn *insn = ready_remove_first (&ready);
6366 gcc_assert (DEBUG_INSN_P (insn));
6367 (*current_sched_info->begin_schedule_ready) (insn);
6368 scheduled_insns.safe_push (insn);
6369 last_scheduled_insn = insn;
6370 advance = schedule_insn (insn);
6371 gcc_assert (advance == 0);
6372 if (ready.n_ready > 0)
6373 ready_sort (&ready);
6374 }
6375 }
6376
6377 if (ls.first_cycle_insn_p && !ready.n_ready)
6378 break;
6379
6380 resume_after_backtrack:
6381 /* Allow the target to reorder the list, typically for
6382 better instruction bundling. */
6383 if (sort_p
6384 && (ready.n_ready == 0
6385 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6386 {
6387 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6388 ls.can_issue_more
6389 = targetm.sched.reorder (sched_dump, sched_verbose,
6390 ready_lastpos (&ready),
6391 &ready.n_ready, clock_var);
6392 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6393 ls.can_issue_more
6394 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6395 ready.n_ready
6396 ? ready_lastpos (&ready) : NULL,
6397 &ready.n_ready, clock_var);
6398 }
6399
6400 restart_choose_ready:
6401 if (sched_verbose >= 2)
6402 {
6403 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6404 clock_var);
6405 debug_ready_list (&ready);
6406 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6407 print_curr_reg_pressure ();
6408 }
6409
6410 if (ready.n_ready == 0
6411 && ls.can_issue_more
6412 && reload_completed)
6413 {
6414 /* Allow scheduling insns directly from the queue in case
6415 there's nothing better to do (ready list is empty) but
6416 there are still vacant dispatch slots in the current cycle. */
6417 if (sched_verbose >= 6)
6418 fprintf (sched_dump,";;\t\tSecond chance\n");
6419 memcpy (temp_state, curr_state, dfa_state_size);
6420 if (early_queue_to_ready (temp_state, &ready))
6421 ready_sort (&ready);
6422 }
6423
6424 if (ready.n_ready == 0
6425 || !ls.can_issue_more
6426 || state_dead_lock_p (curr_state)
6427 || !(*current_sched_info->schedule_more_p) ())
6428 break;
6429
6430 /* Select and remove the insn from the ready list. */
6431 if (sort_p)
6432 {
6433 int res;
6434
6435 insn = NULL;
6436 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6437
6438 if (res < 0)
6439 /* Finish cycle. */
6440 break;
6441 if (res > 0)
6442 goto restart_choose_ready;
6443
6444 gcc_assert (insn != NULL_RTX);
6445 }
6446 else
6447 insn = ready_remove_first (&ready);
6448
6449 if (sched_pressure != SCHED_PRESSURE_NONE
6450 && INSN_TICK (insn) > clock_var)
6451 {
6452 ready_add (&ready, insn, true);
6453 advance = 1;
6454 break;
6455 }
6456
6457 if (targetm.sched.dfa_new_cycle
6458 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6459 insn, last_clock_var,
6460 clock_var, &sort_p))
6461 /* SORT_P is used by the target to override sorting
6462 of the ready list. This is needed when the target
6463 has modified its internal structures expecting that
6464 the insn will be issued next. As we need the insn
6465 to have the highest priority (so it will be returned by
6466 the ready_remove_first call above), we invoke
6467 ready_add (&ready, insn, true).
6468 But, still, there is one issue: INSN can be later
6469 discarded by scheduler's front end through
6470 current_sched_info->can_schedule_ready_p, hence, won't
6471 be issued next. */
6472 {
6473 ready_add (&ready, insn, true);
6474 break;
6475 }
6476
6477 sort_p = TRUE;
6478
6479 if (current_sched_info->can_schedule_ready_p
6480 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6481 /* We normally get here only if we don't want to move
6482 insn from the split block. */
6483 {
6484 TODO_SPEC (insn) = DEP_POSTPONED;
6485 goto restart_choose_ready;
6486 }
6487
6488 if (delay_htab)
6489 {
6490 /* If this insn is the first part of a delay-slot pair, record a
6491 backtrack point. */
6492 struct delay_pair *delay_entry;
6493 delay_entry
6494 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6495 if (delay_entry)
6496 {
6497 save_backtrack_point (delay_entry, ls);
6498 if (sched_verbose >= 2)
6499 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6500 }
6501 }
6502
6503 /* DECISION is made. */
6504
6505 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6506 {
6507 modulo_insns_scheduled++;
6508 modulo_last_stage = clock_var / modulo_ii;
6509 }
6510 if (TODO_SPEC (insn) & SPECULATIVE)
6511 generate_recovery_code (insn);
6512
6513 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6514 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6515
6516 /* Update counters, etc in the scheduler's front end. */
6517 (*current_sched_info->begin_schedule_ready) (insn);
6518 scheduled_insns.safe_push (insn);
6519 gcc_assert (NONDEBUG_INSN_P (insn));
6520 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6521
6522 if (recog_memoized (insn) >= 0)
6523 {
6524 memcpy (temp_state, curr_state, dfa_state_size);
6525 cost = state_transition (curr_state, insn);
6526 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6527 gcc_assert (cost < 0);
6528 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6529 cycle_issued_insns++;
6530 asm_p = false;
6531 }
6532 else
6533 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6534 || asm_noperands (PATTERN (insn)) >= 0);
6535
6536 if (targetm.sched.variable_issue)
6537 ls.can_issue_more =
6538 targetm.sched.variable_issue (sched_dump, sched_verbose,
6539 insn, ls.can_issue_more);
6540 /* A naked CLOBBER or USE generates no instruction, so do
6541 not count them against the issue rate. */
6542 else if (GET_CODE (PATTERN (insn)) != USE
6543 && GET_CODE (PATTERN (insn)) != CLOBBER)
6544 ls.can_issue_more--;
6545 advance = schedule_insn (insn);
6546
6547 if (SHADOW_P (insn))
6548 ls.shadows_only_p = true;
6549
6550 /* After issuing an asm insn we should start a new cycle. */
6551 if (advance == 0 && asm_p)
6552 advance = 1;
6553
6554 if (must_backtrack)
6555 break;
6556
6557 if (advance != 0)
6558 break;
6559
6560 ls.first_cycle_insn_p = false;
6561 if (ready.n_ready > 0)
6562 prune_ready_list (temp_state, false, ls.shadows_only_p,
6563 ls.modulo_epilogue);
6564 }
6565
6566 do_backtrack:
6567 if (!must_backtrack)
6568 for (i = 0; i < ready.n_ready; i++)
6569 {
6570 rtx_insn *insn = ready_element (&ready, i);
6571 if (INSN_EXACT_TICK (insn) == clock_var)
6572 {
6573 must_backtrack = true;
6574 clock_var++;
6575 break;
6576 }
6577 }
6578 if (must_backtrack && modulo_ii > 0)
6579 {
6580 if (modulo_backtracks_left == 0)
6581 goto end_schedule;
6582 modulo_backtracks_left--;
6583 }
6584 while (must_backtrack)
6585 {
6586 struct haifa_saved_data *failed;
6587 rtx_insn *failed_insn;
6588
6589 must_backtrack = false;
6590 failed = verify_shadows ();
6591 gcc_assert (failed);
6592
6593 failed_insn = failed->delay_pair->i1;
6594 /* Clear these queues. */
6595 perform_replacements_new_cycle ();
6596 toggle_cancelled_flags (false);
6597 unschedule_insns_until (failed_insn);
6598 while (failed != backtrack_queue)
6599 free_topmost_backtrack_point (true);
6600 restore_last_backtrack_point (&ls);
6601 if (sched_verbose >= 2)
6602 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6603 /* Delay by at least a cycle. This could cause additional
6604 backtracking. */
6605 queue_insn (failed_insn, 1, "backtracked");
6606 advance = 0;
6607 if (must_backtrack)
6608 continue;
6609 if (ready.n_ready > 0)
6610 goto resume_after_backtrack;
6611 else
6612 {
6613 if (clock_var == 0 && ls.first_cycle_insn_p)
6614 goto end_schedule;
6615 advance = 1;
6616 break;
6617 }
6618 }
6619 ls.first_cycle_insn_p = true;
6620 }
6621 if (ls.modulo_epilogue)
6622 success = true;
6623 end_schedule:
6624 if (!ls.first_cycle_insn_p || advance)
6625 advance_one_cycle ();
6626 perform_replacements_new_cycle ();
6627 if (modulo_ii > 0)
6628 {
6629 /* Once again, debug insn suckiness: they can be on the ready list
6630 even if they have unresolved dependencies. To make our view
6631 of the world consistent, remove such "ready" insns. */
6632 restart_debug_insn_loop:
6633 for (i = ready.n_ready - 1; i >= 0; i--)
6634 {
6635 rtx_insn *x;
6636
6637 x = ready_element (&ready, i);
6638 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6639 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6640 {
6641 ready_remove (&ready, i);
6642 goto restart_debug_insn_loop;
6643 }
6644 }
6645 for (i = ready.n_ready - 1; i >= 0; i--)
6646 {
6647 rtx_insn *x;
6648
6649 x = ready_element (&ready, i);
6650 resolve_dependencies (x);
6651 }
6652 for (i = 0; i <= max_insn_queue_index; i++)
6653 {
6654 rtx_insn_list *link;
6655 while ((link = insn_queue[i]) != NULL)
6656 {
6657 rtx_insn *x = link->insn ();
6658 insn_queue[i] = link->next ();
6659 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6660 free_INSN_LIST_node (link);
6661 resolve_dependencies (x);
6662 }
6663 }
6664 }
6665
6666 if (!success)
6667 undo_all_replacements ();
6668
6669 /* Debug info. */
6670 if (sched_verbose)
6671 {
6672 fprintf (sched_dump, ";;\tReady list (final): ");
6673 debug_ready_list (&ready);
6674 }
6675
6676 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6677 /* Sanity check -- queue must be empty now. Meaningless if region has
6678 multiple bbs. */
6679 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6680 else if (modulo_ii == 0)
6681 {
6682 /* We must maintain QUEUE_INDEX between blocks in region. */
6683 for (i = ready.n_ready - 1; i >= 0; i--)
6684 {
6685 rtx_insn *x;
6686
6687 x = ready_element (&ready, i);
6688 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6689 TODO_SPEC (x) = HARD_DEP;
6690 }
6691
6692 if (q_size)
6693 for (i = 0; i <= max_insn_queue_index; i++)
6694 {
6695 rtx_insn_list *link;
6696 for (link = insn_queue[i]; link; link = link->next ())
6697 {
6698 rtx_insn *x;
6699
6700 x = link->insn ();
6701 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6702 TODO_SPEC (x) = HARD_DEP;
6703 }
6704 free_INSN_LIST_list (&insn_queue[i]);
6705 }
6706 }
6707
6708 if (sched_pressure == SCHED_PRESSURE_MODEL)
6709 model_end_schedule ();
6710
6711 if (success)
6712 {
6713 commit_schedule (prev_head, tail, target_bb);
6714 if (sched_verbose)
6715 fprintf (sched_dump, ";; total time = %d\n", clock_var);
6716 }
6717 else
6718 last_scheduled_insn = tail;
6719
6720 scheduled_insns.truncate (0);
6721
6722 if (!current_sched_info->queue_must_finish_empty
6723 || haifa_recovery_bb_recently_added_p)
6724 {
6725 /* INSN_TICK (minimum clock tick at which the insn becomes
6726 ready) may be not correct for the insn in the subsequent
6727 blocks of the region. We should use a correct value of
6728 `clock_var' or modify INSN_TICK. It is better to keep
6729 clock_var value equal to 0 at the start of a basic block.
6730 Therefore we modify INSN_TICK here. */
6731 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
6732 }
6733
6734 if (targetm.sched.finish)
6735 {
6736 targetm.sched.finish (sched_dump, sched_verbose);
6737 /* Target might have added some instructions to the scheduled block
6738 in its md_finish () hook. These new insns don't have any data
6739 initialized and to identify them we extend h_i_d so that they'll
6740 get zero luids. */
6741 sched_extend_luids ();
6742 }
6743
6744 /* Update head/tail boundaries. */
6745 head = NEXT_INSN (prev_head);
6746 tail = last_scheduled_insn;
6747
6748 if (sched_verbose)
6749 {
6750 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
6751 INSN_UID (head), INSN_UID (tail));
6752
6753 if (sched_verbose >= 2)
6754 {
6755 dump_insn_stream (head, tail);
6756 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
6757 NULL);
6758 }
6759
6760 fprintf (sched_dump, "\n");
6761 }
6762
6763 head = restore_other_notes (head, NULL);
6764
6765 current_sched_info->head = head;
6766 current_sched_info->tail = tail;
6767
6768 free_backtrack_queue ();
6769
6770 return success;
6771 }
6772 \f
6773 /* Set_priorities: compute priority of each insn in the block. */
6774
6775 int
6776 set_priorities (rtx_insn *head, rtx_insn *tail)
6777 {
6778 rtx_insn *insn;
6779 int n_insn;
6780 int sched_max_insns_priority =
6781 current_sched_info->sched_max_insns_priority;
6782 rtx_insn *prev_head;
6783
6784 if (head == tail && ! INSN_P (head))
6785 gcc_unreachable ();
6786
6787 n_insn = 0;
6788
6789 prev_head = PREV_INSN (head);
6790 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
6791 {
6792 if (!INSN_P (insn))
6793 continue;
6794
6795 n_insn++;
6796 (void) priority (insn);
6797
6798 gcc_assert (INSN_PRIORITY_KNOWN (insn));
6799
6800 sched_max_insns_priority = MAX (sched_max_insns_priority,
6801 INSN_PRIORITY (insn));
6802 }
6803
6804 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
6805
6806 return n_insn;
6807 }
6808
6809 /* Set dump and sched_verbose for the desired debugging output. If no
6810 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
6811 For -fsched-verbose=N, N>=10, print everything to stderr. */
6812 void
6813 setup_sched_dump (void)
6814 {
6815 sched_verbose = sched_verbose_param;
6816 if (sched_verbose_param == 0 && dump_file)
6817 sched_verbose = 1;
6818 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
6819 ? stderr : dump_file);
6820 }
6821
6822 /* Allocate data for register pressure sensitive scheduling. */
6823 static void
6824 alloc_global_sched_pressure_data (void)
6825 {
6826 if (sched_pressure != SCHED_PRESSURE_NONE)
6827 {
6828 int i, max_regno = max_reg_num ();
6829
6830 if (sched_dump != NULL)
6831 /* We need info about pseudos for rtl dumps about pseudo
6832 classes and costs. */
6833 regstat_init_n_sets_and_refs ();
6834 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
6835 sched_regno_pressure_class
6836 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
6837 for (i = 0; i < max_regno; i++)
6838 sched_regno_pressure_class[i]
6839 = (i < FIRST_PSEUDO_REGISTER
6840 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
6841 : ira_pressure_class_translate[reg_allocno_class (i)]);
6842 curr_reg_live = BITMAP_ALLOC (NULL);
6843 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6844 {
6845 saved_reg_live = BITMAP_ALLOC (NULL);
6846 region_ref_regs = BITMAP_ALLOC (NULL);
6847 }
6848
6849 /* Calculate number of CALL_USED_REGS in register classes that
6850 we calculate register pressure for. */
6851 for (int c = 0; c < ira_pressure_classes_num; ++c)
6852 {
6853 enum reg_class cl = ira_pressure_classes[c];
6854
6855 call_used_regs_num[cl] = 0;
6856
6857 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
6858 if (call_used_regs[ira_class_hard_regs[cl][i]])
6859 ++call_used_regs_num[cl];
6860 }
6861 }
6862 }
6863
6864 /* Free data for register pressure sensitive scheduling. Also called
6865 from schedule_region when stopping sched-pressure early. */
6866 void
6867 free_global_sched_pressure_data (void)
6868 {
6869 if (sched_pressure != SCHED_PRESSURE_NONE)
6870 {
6871 if (regstat_n_sets_and_refs != NULL)
6872 regstat_free_n_sets_and_refs ();
6873 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6874 {
6875 BITMAP_FREE (region_ref_regs);
6876 BITMAP_FREE (saved_reg_live);
6877 }
6878 BITMAP_FREE (curr_reg_live);
6879 free (sched_regno_pressure_class);
6880 }
6881 }
6882
6883 /* Initialize some global state for the scheduler. This function works
6884 with the common data shared between all the schedulers. It is called
6885 from the scheduler specific initialization routine. */
6886
6887 void
6888 sched_init (void)
6889 {
6890 /* Disable speculative loads in their presence if cc0 defined. */
6891 #ifdef HAVE_cc0
6892 flag_schedule_speculative_load = 0;
6893 #endif
6894
6895 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6896 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
6897
6898 if (live_range_shrinkage_p)
6899 sched_pressure = SCHED_PRESSURE_WEIGHTED;
6900 else if (flag_sched_pressure
6901 && !reload_completed
6902 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
6903 sched_pressure = ((enum sched_pressure_algorithm)
6904 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
6905 else
6906 sched_pressure = SCHED_PRESSURE_NONE;
6907
6908 if (sched_pressure != SCHED_PRESSURE_NONE)
6909 ira_setup_eliminable_regset ();
6910
6911 /* Initialize SPEC_INFO. */
6912 if (targetm.sched.set_sched_flags)
6913 {
6914 spec_info = &spec_info_var;
6915 targetm.sched.set_sched_flags (spec_info);
6916
6917 if (spec_info->mask != 0)
6918 {
6919 spec_info->data_weakness_cutoff =
6920 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
6921 spec_info->control_weakness_cutoff =
6922 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
6923 * REG_BR_PROB_BASE) / 100;
6924 }
6925 else
6926 /* So we won't read anything accidentally. */
6927 spec_info = NULL;
6928
6929 }
6930 else
6931 /* So we won't read anything accidentally. */
6932 spec_info = 0;
6933
6934 /* Initialize issue_rate. */
6935 if (targetm.sched.issue_rate)
6936 issue_rate = targetm.sched.issue_rate ();
6937 else
6938 issue_rate = 1;
6939
6940 if (targetm.sched.first_cycle_multipass_dfa_lookahead
6941 /* Don't use max_issue with reg_pressure scheduling. Multipass
6942 scheduling and reg_pressure scheduling undo each other's decisions. */
6943 && sched_pressure == SCHED_PRESSURE_NONE)
6944 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
6945 else
6946 dfa_lookahead = 0;
6947
6948 /* Set to "0" so that we recalculate. */
6949 max_lookahead_tries = 0;
6950
6951 if (targetm.sched.init_dfa_pre_cycle_insn)
6952 targetm.sched.init_dfa_pre_cycle_insn ();
6953
6954 if (targetm.sched.init_dfa_post_cycle_insn)
6955 targetm.sched.init_dfa_post_cycle_insn ();
6956
6957 dfa_start ();
6958 dfa_state_size = state_size ();
6959
6960 init_alias_analysis ();
6961
6962 if (!sched_no_dce)
6963 df_set_flags (DF_LR_RUN_DCE);
6964 df_note_add_problem ();
6965
6966 /* More problems needed for interloop dep calculation in SMS. */
6967 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
6968 {
6969 df_rd_add_problem ();
6970 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
6971 }
6972
6973 df_analyze ();
6974
6975 /* Do not run DCE after reload, as this can kill nops inserted
6976 by bundling. */
6977 if (reload_completed)
6978 df_clear_flags (DF_LR_RUN_DCE);
6979
6980 regstat_compute_calls_crossed ();
6981
6982 if (targetm.sched.init_global)
6983 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
6984
6985 alloc_global_sched_pressure_data ();
6986
6987 curr_state = xmalloc (dfa_state_size);
6988 }
6989
6990 static void haifa_init_only_bb (basic_block, basic_block);
6991
6992 /* Initialize data structures specific to the Haifa scheduler. */
6993 void
6994 haifa_sched_init (void)
6995 {
6996 setup_sched_dump ();
6997 sched_init ();
6998
6999 scheduled_insns.create (0);
7000
7001 if (spec_info != NULL)
7002 {
7003 sched_deps_info->use_deps_list = 1;
7004 sched_deps_info->generate_spec_deps = 1;
7005 }
7006
7007 /* Initialize luids, dependency caches, target and h_i_d for the
7008 whole function. */
7009 {
7010 bb_vec_t bbs;
7011 bbs.create (n_basic_blocks_for_fn (cfun));
7012 basic_block bb;
7013
7014 sched_init_bbs ();
7015
7016 FOR_EACH_BB_FN (bb, cfun)
7017 bbs.quick_push (bb);
7018 sched_init_luids (bbs);
7019 sched_deps_init (true);
7020 sched_extend_target ();
7021 haifa_init_h_i_d (bbs);
7022
7023 bbs.release ();
7024 }
7025
7026 sched_init_only_bb = haifa_init_only_bb;
7027 sched_split_block = sched_split_block_1;
7028 sched_create_empty_bb = sched_create_empty_bb_1;
7029 haifa_recovery_bb_ever_added_p = false;
7030
7031 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7032 before_recovery = 0;
7033 after_recovery = 0;
7034
7035 modulo_ii = 0;
7036 }
7037
7038 /* Finish work with the data specific to the Haifa scheduler. */
7039 void
7040 haifa_sched_finish (void)
7041 {
7042 sched_create_empty_bb = NULL;
7043 sched_split_block = NULL;
7044 sched_init_only_bb = NULL;
7045
7046 if (spec_info && spec_info->dump)
7047 {
7048 char c = reload_completed ? 'a' : 'b';
7049
7050 fprintf (spec_info->dump,
7051 ";; %s:\n", current_function_name ());
7052
7053 fprintf (spec_info->dump,
7054 ";; Procedure %cr-begin-data-spec motions == %d\n",
7055 c, nr_begin_data);
7056 fprintf (spec_info->dump,
7057 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7058 c, nr_be_in_data);
7059 fprintf (spec_info->dump,
7060 ";; Procedure %cr-begin-control-spec motions == %d\n",
7061 c, nr_begin_control);
7062 fprintf (spec_info->dump,
7063 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7064 c, nr_be_in_control);
7065 }
7066
7067 scheduled_insns.release ();
7068
7069 /* Finalize h_i_d, dependency caches, and luids for the whole
7070 function. Target will be finalized in md_global_finish (). */
7071 sched_deps_finish ();
7072 sched_finish_luids ();
7073 current_sched_info = NULL;
7074 sched_finish ();
7075 }
7076
7077 /* Free global data used during insn scheduling. This function works with
7078 the common data shared between the schedulers. */
7079
7080 void
7081 sched_finish (void)
7082 {
7083 haifa_finish_h_i_d ();
7084 free_global_sched_pressure_data ();
7085 free (curr_state);
7086
7087 if (targetm.sched.finish_global)
7088 targetm.sched.finish_global (sched_dump, sched_verbose);
7089
7090 end_alias_analysis ();
7091
7092 regstat_free_calls_crossed ();
7093
7094 dfa_finish ();
7095 }
7096
7097 /* Free all delay_pair structures that were recorded. */
7098 void
7099 free_delay_pairs (void)
7100 {
7101 if (delay_htab)
7102 {
7103 delay_htab->empty ();
7104 delay_htab_i2->empty ();
7105 }
7106 }
7107
7108 /* Fix INSN_TICKs of the instructions in the current block as well as
7109 INSN_TICKs of their dependents.
7110 HEAD and TAIL are the begin and the end of the current scheduled block. */
7111 static void
7112 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7113 {
7114 /* Set of instructions with corrected INSN_TICK. */
7115 bitmap_head processed;
7116 /* ??? It is doubtful if we should assume that cycle advance happens on
7117 basic block boundaries. Basically insns that are unconditionally ready
7118 on the start of the block are more preferable then those which have
7119 a one cycle dependency over insn from the previous block. */
7120 int next_clock = clock_var + 1;
7121
7122 bitmap_initialize (&processed, 0);
7123
7124 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7125 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7126 across different blocks. */
7127 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7128 {
7129 if (INSN_P (head))
7130 {
7131 int tick;
7132 sd_iterator_def sd_it;
7133 dep_t dep;
7134
7135 tick = INSN_TICK (head);
7136 gcc_assert (tick >= MIN_TICK);
7137
7138 /* Fix INSN_TICK of instruction from just scheduled block. */
7139 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7140 {
7141 tick -= next_clock;
7142
7143 if (tick < MIN_TICK)
7144 tick = MIN_TICK;
7145
7146 INSN_TICK (head) = tick;
7147 }
7148
7149 if (DEBUG_INSN_P (head))
7150 continue;
7151
7152 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7153 {
7154 rtx_insn *next;
7155
7156 next = DEP_CON (dep);
7157 tick = INSN_TICK (next);
7158
7159 if (tick != INVALID_TICK
7160 /* If NEXT has its INSN_TICK calculated, fix it.
7161 If not - it will be properly calculated from
7162 scratch later in fix_tick_ready. */
7163 && bitmap_set_bit (&processed, INSN_LUID (next)))
7164 {
7165 tick -= next_clock;
7166
7167 if (tick < MIN_TICK)
7168 tick = MIN_TICK;
7169
7170 if (tick > INTER_TICK (next))
7171 INTER_TICK (next) = tick;
7172 else
7173 tick = INTER_TICK (next);
7174
7175 INSN_TICK (next) = tick;
7176 }
7177 }
7178 }
7179 }
7180 bitmap_clear (&processed);
7181 }
7182
7183 /* Check if NEXT is ready to be added to the ready or queue list.
7184 If "yes", add it to the proper list.
7185 Returns:
7186 -1 - is not ready yet,
7187 0 - added to the ready list,
7188 0 < N - queued for N cycles. */
7189 int
7190 try_ready (rtx_insn *next)
7191 {
7192 ds_t old_ts, new_ts;
7193
7194 old_ts = TODO_SPEC (next);
7195
7196 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7197 && (old_ts == HARD_DEP
7198 || old_ts == DEP_POSTPONED
7199 || (old_ts & SPECULATIVE)
7200 || old_ts == DEP_CONTROL));
7201
7202 new_ts = recompute_todo_spec (next, false);
7203
7204 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7205 gcc_assert (new_ts == old_ts
7206 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7207 else if (current_sched_info->new_ready)
7208 new_ts = current_sched_info->new_ready (next, new_ts);
7209
7210 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7211 have its original pattern or changed (speculative) one. This is due
7212 to changing ebb in region scheduling.
7213 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7214 has speculative pattern.
7215
7216 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7217 control-speculative NEXT could have been discarded by sched-rgn.c
7218 (the same case as when discarded by can_schedule_ready_p ()). */
7219
7220 if ((new_ts & SPECULATIVE)
7221 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7222 need to change anything. */
7223 && new_ts != old_ts)
7224 {
7225 int res;
7226 rtx new_pat;
7227
7228 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7229
7230 res = haifa_speculate_insn (next, new_ts, &new_pat);
7231
7232 switch (res)
7233 {
7234 case -1:
7235 /* It would be nice to change DEP_STATUS of all dependences,
7236 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7237 so we won't reanalyze anything. */
7238 new_ts = HARD_DEP;
7239 break;
7240
7241 case 0:
7242 /* We follow the rule, that every speculative insn
7243 has non-null ORIG_PAT. */
7244 if (!ORIG_PAT (next))
7245 ORIG_PAT (next) = PATTERN (next);
7246 break;
7247
7248 case 1:
7249 if (!ORIG_PAT (next))
7250 /* If we gonna to overwrite the original pattern of insn,
7251 save it. */
7252 ORIG_PAT (next) = PATTERN (next);
7253
7254 res = haifa_change_pattern (next, new_pat);
7255 gcc_assert (res);
7256 break;
7257
7258 default:
7259 gcc_unreachable ();
7260 }
7261 }
7262
7263 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7264 either correct (new_ts & SPECULATIVE),
7265 or we simply don't care (new_ts & HARD_DEP). */
7266
7267 gcc_assert (!ORIG_PAT (next)
7268 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7269
7270 TODO_SPEC (next) = new_ts;
7271
7272 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7273 {
7274 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7275 control-speculative NEXT could have been discarded by sched-rgn.c
7276 (the same case as when discarded by can_schedule_ready_p ()). */
7277 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7278
7279 change_queue_index (next, QUEUE_NOWHERE);
7280
7281 return -1;
7282 }
7283 else if (!(new_ts & BEGIN_SPEC)
7284 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7285 && !IS_SPECULATION_CHECK_P (next))
7286 /* We should change pattern of every previously speculative
7287 instruction - and we determine if NEXT was speculative by using
7288 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7289 pat too, so skip them. */
7290 {
7291 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7292 gcc_assert (success);
7293 ORIG_PAT (next) = 0;
7294 }
7295
7296 if (sched_verbose >= 2)
7297 {
7298 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7299 (*current_sched_info->print_insn) (next, 0));
7300
7301 if (spec_info && spec_info->dump)
7302 {
7303 if (new_ts & BEGIN_DATA)
7304 fprintf (spec_info->dump, "; data-spec;");
7305 if (new_ts & BEGIN_CONTROL)
7306 fprintf (spec_info->dump, "; control-spec;");
7307 if (new_ts & BE_IN_CONTROL)
7308 fprintf (spec_info->dump, "; in-control-spec;");
7309 }
7310 if (TODO_SPEC (next) & DEP_CONTROL)
7311 fprintf (sched_dump, " predicated");
7312 fprintf (sched_dump, "\n");
7313 }
7314
7315 adjust_priority (next);
7316
7317 return fix_tick_ready (next);
7318 }
7319
7320 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7321 static int
7322 fix_tick_ready (rtx_insn *next)
7323 {
7324 int tick, delay;
7325
7326 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7327 {
7328 int full_p;
7329 sd_iterator_def sd_it;
7330 dep_t dep;
7331
7332 tick = INSN_TICK (next);
7333 /* if tick is not equal to INVALID_TICK, then update
7334 INSN_TICK of NEXT with the most recent resolved dependence
7335 cost. Otherwise, recalculate from scratch. */
7336 full_p = (tick == INVALID_TICK);
7337
7338 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7339 {
7340 rtx_insn *pro = DEP_PRO (dep);
7341 int tick1;
7342
7343 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7344
7345 tick1 = INSN_TICK (pro) + dep_cost (dep);
7346 if (tick1 > tick)
7347 tick = tick1;
7348
7349 if (!full_p)
7350 break;
7351 }
7352 }
7353 else
7354 tick = -1;
7355
7356 INSN_TICK (next) = tick;
7357
7358 delay = tick - clock_var;
7359 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7360 delay = QUEUE_READY;
7361
7362 change_queue_index (next, delay);
7363
7364 return delay;
7365 }
7366
7367 /* Move NEXT to the proper queue list with (DELAY >= 1),
7368 or add it to the ready list (DELAY == QUEUE_READY),
7369 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7370 static void
7371 change_queue_index (rtx_insn *next, int delay)
7372 {
7373 int i = QUEUE_INDEX (next);
7374
7375 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7376 && delay != 0);
7377 gcc_assert (i != QUEUE_SCHEDULED);
7378
7379 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7380 || (delay < 0 && delay == i))
7381 /* We have nothing to do. */
7382 return;
7383
7384 /* Remove NEXT from wherever it is now. */
7385 if (i == QUEUE_READY)
7386 ready_remove_insn (next);
7387 else if (i >= 0)
7388 queue_remove (next);
7389
7390 /* Add it to the proper place. */
7391 if (delay == QUEUE_READY)
7392 ready_add (readyp, next, false);
7393 else if (delay >= 1)
7394 queue_insn (next, delay, "change queue index");
7395
7396 if (sched_verbose >= 2)
7397 {
7398 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7399 (*current_sched_info->print_insn) (next, 0));
7400
7401 if (delay == QUEUE_READY)
7402 fprintf (sched_dump, " into ready\n");
7403 else if (delay >= 1)
7404 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7405 else
7406 fprintf (sched_dump, " removed from ready or queue lists\n");
7407 }
7408 }
7409
7410 static int sched_ready_n_insns = -1;
7411
7412 /* Initialize per region data structures. */
7413 void
7414 sched_extend_ready_list (int new_sched_ready_n_insns)
7415 {
7416 int i;
7417
7418 if (sched_ready_n_insns == -1)
7419 /* At the first call we need to initialize one more choice_stack
7420 entry. */
7421 {
7422 i = 0;
7423 sched_ready_n_insns = 0;
7424 scheduled_insns.reserve (new_sched_ready_n_insns);
7425 }
7426 else
7427 i = sched_ready_n_insns + 1;
7428
7429 ready.veclen = new_sched_ready_n_insns + issue_rate;
7430 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7431
7432 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7433
7434 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7435 sched_ready_n_insns,
7436 sizeof (*ready_try));
7437
7438 /* We allocate +1 element to save initial state in the choice_stack[0]
7439 entry. */
7440 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7441 new_sched_ready_n_insns + 1);
7442
7443 for (; i <= new_sched_ready_n_insns; i++)
7444 {
7445 choice_stack[i].state = xmalloc (dfa_state_size);
7446
7447 if (targetm.sched.first_cycle_multipass_init)
7448 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7449 .target_data));
7450 }
7451
7452 sched_ready_n_insns = new_sched_ready_n_insns;
7453 }
7454
7455 /* Free per region data structures. */
7456 void
7457 sched_finish_ready_list (void)
7458 {
7459 int i;
7460
7461 free (ready.vec);
7462 ready.vec = NULL;
7463 ready.veclen = 0;
7464
7465 free (ready_try);
7466 ready_try = NULL;
7467
7468 for (i = 0; i <= sched_ready_n_insns; i++)
7469 {
7470 if (targetm.sched.first_cycle_multipass_fini)
7471 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7472 .target_data));
7473
7474 free (choice_stack [i].state);
7475 }
7476 free (choice_stack);
7477 choice_stack = NULL;
7478
7479 sched_ready_n_insns = -1;
7480 }
7481
7482 static int
7483 haifa_luid_for_non_insn (rtx x)
7484 {
7485 gcc_assert (NOTE_P (x) || LABEL_P (x));
7486
7487 return 0;
7488 }
7489
7490 /* Generates recovery code for INSN. */
7491 static void
7492 generate_recovery_code (rtx_insn *insn)
7493 {
7494 if (TODO_SPEC (insn) & BEGIN_SPEC)
7495 begin_speculative_block (insn);
7496
7497 /* Here we have insn with no dependencies to
7498 instructions other then CHECK_SPEC ones. */
7499
7500 if (TODO_SPEC (insn) & BE_IN_SPEC)
7501 add_to_speculative_block (insn);
7502 }
7503
7504 /* Helper function.
7505 Tries to add speculative dependencies of type FS between instructions
7506 in deps_list L and TWIN. */
7507 static void
7508 process_insn_forw_deps_be_in_spec (rtx insn, rtx_insn *twin, ds_t fs)
7509 {
7510 sd_iterator_def sd_it;
7511 dep_t dep;
7512
7513 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7514 {
7515 ds_t ds;
7516 rtx_insn *consumer;
7517
7518 consumer = DEP_CON (dep);
7519
7520 ds = DEP_STATUS (dep);
7521
7522 if (/* If we want to create speculative dep. */
7523 fs
7524 /* And we can do that because this is a true dep. */
7525 && (ds & DEP_TYPES) == DEP_TRUE)
7526 {
7527 gcc_assert (!(ds & BE_IN_SPEC));
7528
7529 if (/* If this dep can be overcome with 'begin speculation'. */
7530 ds & BEGIN_SPEC)
7531 /* Then we have a choice: keep the dep 'begin speculative'
7532 or transform it into 'be in speculative'. */
7533 {
7534 if (/* In try_ready we assert that if insn once became ready
7535 it can be removed from the ready (or queue) list only
7536 due to backend decision. Hence we can't let the
7537 probability of the speculative dep to decrease. */
7538 ds_weak (ds) <= ds_weak (fs))
7539 {
7540 ds_t new_ds;
7541
7542 new_ds = (ds & ~BEGIN_SPEC) | fs;
7543
7544 if (/* consumer can 'be in speculative'. */
7545 sched_insn_is_legitimate_for_speculation_p (consumer,
7546 new_ds))
7547 /* Transform it to be in speculative. */
7548 ds = new_ds;
7549 }
7550 }
7551 else
7552 /* Mark the dep as 'be in speculative'. */
7553 ds |= fs;
7554 }
7555
7556 {
7557 dep_def _new_dep, *new_dep = &_new_dep;
7558
7559 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7560 sd_add_dep (new_dep, false);
7561 }
7562 }
7563 }
7564
7565 /* Generates recovery code for BEGIN speculative INSN. */
7566 static void
7567 begin_speculative_block (rtx_insn *insn)
7568 {
7569 if (TODO_SPEC (insn) & BEGIN_DATA)
7570 nr_begin_data++;
7571 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7572 nr_begin_control++;
7573
7574 create_check_block_twin (insn, false);
7575
7576 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7577 }
7578
7579 static void haifa_init_insn (rtx_insn *);
7580
7581 /* Generates recovery code for BE_IN speculative INSN. */
7582 static void
7583 add_to_speculative_block (rtx_insn *insn)
7584 {
7585 ds_t ts;
7586 sd_iterator_def sd_it;
7587 dep_t dep;
7588 rtx_insn_list *twins = NULL;
7589 rtx_vec_t priorities_roots;
7590
7591 ts = TODO_SPEC (insn);
7592 gcc_assert (!(ts & ~BE_IN_SPEC));
7593
7594 if (ts & BE_IN_DATA)
7595 nr_be_in_data++;
7596 if (ts & BE_IN_CONTROL)
7597 nr_be_in_control++;
7598
7599 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7600 gcc_assert (!TODO_SPEC (insn));
7601
7602 DONE_SPEC (insn) |= ts;
7603
7604 /* First we convert all simple checks to branchy. */
7605 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7606 sd_iterator_cond (&sd_it, &dep);)
7607 {
7608 rtx_insn *check = DEP_PRO (dep);
7609
7610 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7611 {
7612 create_check_block_twin (check, true);
7613
7614 /* Restart search. */
7615 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7616 }
7617 else
7618 /* Continue search. */
7619 sd_iterator_next (&sd_it);
7620 }
7621
7622 priorities_roots.create (0);
7623 clear_priorities (insn, &priorities_roots);
7624
7625 while (1)
7626 {
7627 rtx_insn *check, *twin;
7628 basic_block rec;
7629
7630 /* Get the first backward dependency of INSN. */
7631 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7632 if (!sd_iterator_cond (&sd_it, &dep))
7633 /* INSN has no backward dependencies left. */
7634 break;
7635
7636 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7637 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7638 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7639
7640 check = DEP_PRO (dep);
7641
7642 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7643 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7644
7645 rec = BLOCK_FOR_INSN (check);
7646
7647 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7648 haifa_init_insn (twin);
7649
7650 sd_copy_back_deps (twin, insn, true);
7651
7652 if (sched_verbose && spec_info->dump)
7653 /* INSN_BB (insn) isn't determined for twin insns yet.
7654 So we can't use current_sched_info->print_insn. */
7655 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7656 INSN_UID (twin), rec->index);
7657
7658 twins = alloc_INSN_LIST (twin, twins);
7659
7660 /* Add dependences between TWIN and all appropriate
7661 instructions from REC. */
7662 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7663 {
7664 rtx_insn *pro = DEP_PRO (dep);
7665
7666 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7667
7668 /* INSN might have dependencies from the instructions from
7669 several recovery blocks. At this iteration we process those
7670 producers that reside in REC. */
7671 if (BLOCK_FOR_INSN (pro) == rec)
7672 {
7673 dep_def _new_dep, *new_dep = &_new_dep;
7674
7675 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7676 sd_add_dep (new_dep, false);
7677 }
7678 }
7679
7680 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7681
7682 /* Remove all dependencies between INSN and insns in REC. */
7683 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7684 sd_iterator_cond (&sd_it, &dep);)
7685 {
7686 rtx_insn *pro = DEP_PRO (dep);
7687
7688 if (BLOCK_FOR_INSN (pro) == rec)
7689 sd_delete_dep (sd_it);
7690 else
7691 sd_iterator_next (&sd_it);
7692 }
7693 }
7694
7695 /* We couldn't have added the dependencies between INSN and TWINS earlier
7696 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7697 while (twins)
7698 {
7699 rtx_insn *twin;
7700 rtx_insn_list *next_node;
7701
7702 twin = twins->insn ();
7703
7704 {
7705 dep_def _new_dep, *new_dep = &_new_dep;
7706
7707 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7708 sd_add_dep (new_dep, false);
7709 }
7710
7711 next_node = twins->next ();
7712 free_INSN_LIST_node (twins);
7713 twins = next_node;
7714 }
7715
7716 calc_priorities (priorities_roots);
7717 priorities_roots.release ();
7718 }
7719
7720 /* Extends and fills with zeros (only the new part) array pointed to by P. */
7721 void *
7722 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
7723 {
7724 gcc_assert (new_nmemb >= old_nmemb);
7725 p = XRESIZEVAR (void, p, new_nmemb * size);
7726 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
7727 return p;
7728 }
7729
7730 /* Helper function.
7731 Find fallthru edge from PRED. */
7732 edge
7733 find_fallthru_edge_from (basic_block pred)
7734 {
7735 edge e;
7736 basic_block succ;
7737
7738 succ = pred->next_bb;
7739 gcc_assert (succ->prev_bb == pred);
7740
7741 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
7742 {
7743 e = find_fallthru_edge (pred->succs);
7744
7745 if (e)
7746 {
7747 gcc_assert (e->dest == succ);
7748 return e;
7749 }
7750 }
7751 else
7752 {
7753 e = find_fallthru_edge (succ->preds);
7754
7755 if (e)
7756 {
7757 gcc_assert (e->src == pred);
7758 return e;
7759 }
7760 }
7761
7762 return NULL;
7763 }
7764
7765 /* Extend per basic block data structures. */
7766 static void
7767 sched_extend_bb (void)
7768 {
7769 /* The following is done to keep current_sched_info->next_tail non null. */
7770 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
7771 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
7772 if (NEXT_INSN (end) == 0
7773 || (!NOTE_P (insn)
7774 && !LABEL_P (insn)
7775 /* Don't emit a NOTE if it would end up before a BARRIER. */
7776 && !BARRIER_P (NEXT_INSN (end))))
7777 {
7778 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
7779 /* Make note appear outside BB. */
7780 set_block_for_insn (note, NULL);
7781 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
7782 }
7783 }
7784
7785 /* Init per basic block data structures. */
7786 void
7787 sched_init_bbs (void)
7788 {
7789 sched_extend_bb ();
7790 }
7791
7792 /* Initialize BEFORE_RECOVERY variable. */
7793 static void
7794 init_before_recovery (basic_block *before_recovery_ptr)
7795 {
7796 basic_block last;
7797 edge e;
7798
7799 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7800 e = find_fallthru_edge_from (last);
7801
7802 if (e)
7803 {
7804 /* We create two basic blocks:
7805 1. Single instruction block is inserted right after E->SRC
7806 and has jump to
7807 2. Empty block right before EXIT_BLOCK.
7808 Between these two blocks recovery blocks will be emitted. */
7809
7810 basic_block single, empty;
7811 rtx_insn *x;
7812 rtx label;
7813
7814 /* If the fallthrough edge to exit we've found is from the block we've
7815 created before, don't do anything more. */
7816 if (last == after_recovery)
7817 return;
7818
7819 adding_bb_to_current_region_p = false;
7820
7821 single = sched_create_empty_bb (last);
7822 empty = sched_create_empty_bb (single);
7823
7824 /* Add new blocks to the root loop. */
7825 if (current_loops != NULL)
7826 {
7827 add_bb_to_loop (single, (*current_loops->larray)[0]);
7828 add_bb_to_loop (empty, (*current_loops->larray)[0]);
7829 }
7830
7831 single->count = last->count;
7832 empty->count = last->count;
7833 single->frequency = last->frequency;
7834 empty->frequency = last->frequency;
7835 BB_COPY_PARTITION (single, last);
7836 BB_COPY_PARTITION (empty, last);
7837
7838 redirect_edge_succ (e, single);
7839 make_single_succ_edge (single, empty, 0);
7840 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
7841 EDGE_FALLTHRU);
7842
7843 label = block_label (empty);
7844 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
7845 JUMP_LABEL (x) = label;
7846 LABEL_NUSES (label)++;
7847 haifa_init_insn (x);
7848
7849 emit_barrier_after (x);
7850
7851 sched_init_only_bb (empty, NULL);
7852 sched_init_only_bb (single, NULL);
7853 sched_extend_bb ();
7854
7855 adding_bb_to_current_region_p = true;
7856 before_recovery = single;
7857 after_recovery = empty;
7858
7859 if (before_recovery_ptr)
7860 *before_recovery_ptr = before_recovery;
7861
7862 if (sched_verbose >= 2 && spec_info->dump)
7863 fprintf (spec_info->dump,
7864 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
7865 last->index, single->index, empty->index);
7866 }
7867 else
7868 before_recovery = last;
7869 }
7870
7871 /* Returns new recovery block. */
7872 basic_block
7873 sched_create_recovery_block (basic_block *before_recovery_ptr)
7874 {
7875 rtx label;
7876 rtx_insn *barrier;
7877 basic_block rec;
7878
7879 haifa_recovery_bb_recently_added_p = true;
7880 haifa_recovery_bb_ever_added_p = true;
7881
7882 init_before_recovery (before_recovery_ptr);
7883
7884 barrier = get_last_bb_insn (before_recovery);
7885 gcc_assert (BARRIER_P (barrier));
7886
7887 label = emit_label_after (gen_label_rtx (), barrier);
7888
7889 rec = create_basic_block (label, label, before_recovery);
7890
7891 /* A recovery block always ends with an unconditional jump. */
7892 emit_barrier_after (BB_END (rec));
7893
7894 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
7895 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
7896
7897 if (sched_verbose && spec_info->dump)
7898 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
7899 rec->index);
7900
7901 return rec;
7902 }
7903
7904 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
7905 and emit necessary jumps. */
7906 void
7907 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
7908 basic_block second_bb)
7909 {
7910 rtx label;
7911 rtx jump;
7912 int edge_flags;
7913
7914 /* This is fixing of incoming edge. */
7915 /* ??? Which other flags should be specified? */
7916 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
7917 /* Partition type is the same, if it is "unpartitioned". */
7918 edge_flags = EDGE_CROSSING;
7919 else
7920 edge_flags = 0;
7921
7922 make_edge (first_bb, rec, edge_flags);
7923 label = block_label (second_bb);
7924 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
7925 JUMP_LABEL (jump) = label;
7926 LABEL_NUSES (label)++;
7927
7928 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
7929 /* Partition type is the same, if it is "unpartitioned". */
7930 {
7931 /* Rewritten from cfgrtl.c. */
7932 if (flag_reorder_blocks_and_partition
7933 && targetm_common.have_named_sections)
7934 {
7935 /* We don't need the same note for the check because
7936 any_condjump_p (check) == true. */
7937 CROSSING_JUMP_P (jump) = 1;
7938 }
7939 edge_flags = EDGE_CROSSING;
7940 }
7941 else
7942 edge_flags = 0;
7943
7944 make_single_succ_edge (rec, second_bb, edge_flags);
7945 if (dom_info_available_p (CDI_DOMINATORS))
7946 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
7947 }
7948
7949 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
7950 INSN is a simple check, that should be converted to branchy one. */
7951 static void
7952 create_check_block_twin (rtx_insn *insn, bool mutate_p)
7953 {
7954 basic_block rec;
7955 rtx_insn *label, *check, *twin;
7956 rtx check_pat;
7957 ds_t fs;
7958 sd_iterator_def sd_it;
7959 dep_t dep;
7960 dep_def _new_dep, *new_dep = &_new_dep;
7961 ds_t todo_spec;
7962
7963 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
7964
7965 if (!mutate_p)
7966 todo_spec = TODO_SPEC (insn);
7967 else
7968 {
7969 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
7970 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
7971
7972 todo_spec = CHECK_SPEC (insn);
7973 }
7974
7975 todo_spec &= SPECULATIVE;
7976
7977 /* Create recovery block. */
7978 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
7979 {
7980 rec = sched_create_recovery_block (NULL);
7981 label = BB_HEAD (rec);
7982 }
7983 else
7984 {
7985 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
7986 label = NULL;
7987 }
7988
7989 /* Emit CHECK. */
7990 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
7991
7992 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7993 {
7994 /* To have mem_reg alive at the beginning of second_bb,
7995 we emit check BEFORE insn, so insn after splitting
7996 insn will be at the beginning of second_bb, which will
7997 provide us with the correct life information. */
7998 check = emit_jump_insn_before (check_pat, insn);
7999 JUMP_LABEL (check) = label;
8000 LABEL_NUSES (label)++;
8001 }
8002 else
8003 check = emit_insn_before (check_pat, insn);
8004
8005 /* Extend data structures. */
8006 haifa_init_insn (check);
8007
8008 /* CHECK is being added to current region. Extend ready list. */
8009 gcc_assert (sched_ready_n_insns != -1);
8010 sched_extend_ready_list (sched_ready_n_insns + 1);
8011
8012 if (current_sched_info->add_remove_insn)
8013 current_sched_info->add_remove_insn (insn, 0);
8014
8015 RECOVERY_BLOCK (check) = rec;
8016
8017 if (sched_verbose && spec_info->dump)
8018 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8019 (*current_sched_info->print_insn) (check, 0));
8020
8021 gcc_assert (ORIG_PAT (insn));
8022
8023 /* Initialize TWIN (twin is a duplicate of original instruction
8024 in the recovery block). */
8025 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8026 {
8027 sd_iterator_def sd_it;
8028 dep_t dep;
8029
8030 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8031 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8032 {
8033 struct _dep _dep2, *dep2 = &_dep2;
8034
8035 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8036
8037 sd_add_dep (dep2, true);
8038 }
8039
8040 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8041 haifa_init_insn (twin);
8042
8043 if (sched_verbose && spec_info->dump)
8044 /* INSN_BB (insn) isn't determined for twin insns yet.
8045 So we can't use current_sched_info->print_insn. */
8046 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8047 INSN_UID (twin), rec->index);
8048 }
8049 else
8050 {
8051 ORIG_PAT (check) = ORIG_PAT (insn);
8052 HAS_INTERNAL_DEP (check) = 1;
8053 twin = check;
8054 /* ??? We probably should change all OUTPUT dependencies to
8055 (TRUE | OUTPUT). */
8056 }
8057
8058 /* Copy all resolved back dependencies of INSN to TWIN. This will
8059 provide correct value for INSN_TICK (TWIN). */
8060 sd_copy_back_deps (twin, insn, true);
8061
8062 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8063 /* In case of branchy check, fix CFG. */
8064 {
8065 basic_block first_bb, second_bb;
8066 rtx_insn *jump;
8067
8068 first_bb = BLOCK_FOR_INSN (check);
8069 second_bb = sched_split_block (first_bb, check);
8070
8071 sched_create_recovery_edges (first_bb, rec, second_bb);
8072
8073 sched_init_only_bb (second_bb, first_bb);
8074 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8075
8076 jump = BB_END (rec);
8077 haifa_init_insn (jump);
8078 }
8079
8080 /* Move backward dependences from INSN to CHECK and
8081 move forward dependences from INSN to TWIN. */
8082
8083 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8084 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8085 {
8086 rtx_insn *pro = DEP_PRO (dep);
8087 ds_t ds;
8088
8089 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8090 check --TRUE--> producer ??? or ANTI ???
8091 twin --TRUE--> producer
8092 twin --ANTI--> check
8093
8094 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8095 check --ANTI--> producer
8096 twin --ANTI--> producer
8097 twin --ANTI--> check
8098
8099 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8100 check ~~TRUE~~> producer
8101 twin ~~TRUE~~> producer
8102 twin --ANTI--> check */
8103
8104 ds = DEP_STATUS (dep);
8105
8106 if (ds & BEGIN_SPEC)
8107 {
8108 gcc_assert (!mutate_p);
8109 ds &= ~BEGIN_SPEC;
8110 }
8111
8112 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8113 sd_add_dep (new_dep, false);
8114
8115 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8116 {
8117 DEP_CON (new_dep) = twin;
8118 sd_add_dep (new_dep, false);
8119 }
8120 }
8121
8122 /* Second, remove backward dependencies of INSN. */
8123 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8124 sd_iterator_cond (&sd_it, &dep);)
8125 {
8126 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8127 || mutate_p)
8128 /* We can delete this dep because we overcome it with
8129 BEGIN_SPECULATION. */
8130 sd_delete_dep (sd_it);
8131 else
8132 sd_iterator_next (&sd_it);
8133 }
8134
8135 /* Future Speculations. Determine what BE_IN speculations will be like. */
8136 fs = 0;
8137
8138 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8139 here. */
8140
8141 gcc_assert (!DONE_SPEC (insn));
8142
8143 if (!mutate_p)
8144 {
8145 ds_t ts = TODO_SPEC (insn);
8146
8147 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8148 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8149
8150 /* Luckiness of future speculations solely depends upon initial
8151 BEGIN speculation. */
8152 if (ts & BEGIN_DATA)
8153 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8154 if (ts & BEGIN_CONTROL)
8155 fs = set_dep_weak (fs, BE_IN_CONTROL,
8156 get_dep_weak (ts, BEGIN_CONTROL));
8157 }
8158 else
8159 CHECK_SPEC (check) = CHECK_SPEC (insn);
8160
8161 /* Future speculations: call the helper. */
8162 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8163
8164 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8165 {
8166 /* Which types of dependencies should we use here is,
8167 generally, machine-dependent question... But, for now,
8168 it is not. */
8169
8170 if (!mutate_p)
8171 {
8172 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8173 sd_add_dep (new_dep, false);
8174
8175 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8176 sd_add_dep (new_dep, false);
8177 }
8178 else
8179 {
8180 if (spec_info->dump)
8181 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8182 (*current_sched_info->print_insn) (insn, 0));
8183
8184 /* Remove all dependencies of the INSN. */
8185 {
8186 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8187 | SD_LIST_BACK
8188 | SD_LIST_RES_BACK));
8189 while (sd_iterator_cond (&sd_it, &dep))
8190 sd_delete_dep (sd_it);
8191 }
8192
8193 /* If former check (INSN) already was moved to the ready (or queue)
8194 list, add new check (CHECK) there too. */
8195 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8196 try_ready (check);
8197
8198 /* Remove old check from instruction stream and free its
8199 data. */
8200 sched_remove_insn (insn);
8201 }
8202
8203 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8204 sd_add_dep (new_dep, false);
8205 }
8206 else
8207 {
8208 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8209 sd_add_dep (new_dep, false);
8210 }
8211
8212 if (!mutate_p)
8213 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8214 because it'll be done later in add_to_speculative_block. */
8215 {
8216 rtx_vec_t priorities_roots = rtx_vec_t ();
8217
8218 clear_priorities (twin, &priorities_roots);
8219 calc_priorities (priorities_roots);
8220 priorities_roots.release ();
8221 }
8222 }
8223
8224 /* Removes dependency between instructions in the recovery block REC
8225 and usual region instructions. It keeps inner dependences so it
8226 won't be necessary to recompute them. */
8227 static void
8228 fix_recovery_deps (basic_block rec)
8229 {
8230 rtx_insn *note, *insn, *jump;
8231 rtx_insn_list *ready_list = 0;
8232 bitmap_head in_ready;
8233 rtx_insn_list *link;
8234
8235 bitmap_initialize (&in_ready, 0);
8236
8237 /* NOTE - a basic block note. */
8238 note = NEXT_INSN (BB_HEAD (rec));
8239 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8240 insn = BB_END (rec);
8241 gcc_assert (JUMP_P (insn));
8242 insn = PREV_INSN (insn);
8243
8244 do
8245 {
8246 sd_iterator_def sd_it;
8247 dep_t dep;
8248
8249 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8250 sd_iterator_cond (&sd_it, &dep);)
8251 {
8252 rtx_insn *consumer = DEP_CON (dep);
8253
8254 if (BLOCK_FOR_INSN (consumer) != rec)
8255 {
8256 sd_delete_dep (sd_it);
8257
8258 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8259 ready_list = alloc_INSN_LIST (consumer, ready_list);
8260 }
8261 else
8262 {
8263 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8264
8265 sd_iterator_next (&sd_it);
8266 }
8267 }
8268
8269 insn = PREV_INSN (insn);
8270 }
8271 while (insn != note);
8272
8273 bitmap_clear (&in_ready);
8274
8275 /* Try to add instructions to the ready or queue list. */
8276 for (link = ready_list; link; link = link->next ())
8277 try_ready (link->insn ());
8278 free_INSN_LIST_list (&ready_list);
8279
8280 /* Fixing jump's dependences. */
8281 insn = BB_HEAD (rec);
8282 jump = BB_END (rec);
8283
8284 gcc_assert (LABEL_P (insn));
8285 insn = NEXT_INSN (insn);
8286
8287 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8288 add_jump_dependencies (insn, jump);
8289 }
8290
8291 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8292 instruction data. */
8293 static bool
8294 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8295 {
8296 int t;
8297
8298 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8299 if (!t)
8300 return false;
8301
8302 update_insn_after_change (insn);
8303 return true;
8304 }
8305
8306 /* -1 - can't speculate,
8307 0 - for speculation with REQUEST mode it is OK to use
8308 current instruction pattern,
8309 1 - need to change pattern for *NEW_PAT to be speculative. */
8310 int
8311 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8312 {
8313 gcc_assert (current_sched_info->flags & DO_SPECULATION
8314 && (request & SPECULATIVE)
8315 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8316
8317 if ((request & spec_info->mask) != request)
8318 return -1;
8319
8320 if (request & BE_IN_SPEC
8321 && !(request & BEGIN_SPEC))
8322 return 0;
8323
8324 return targetm.sched.speculate_insn (insn, request, new_pat);
8325 }
8326
8327 static int
8328 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8329 {
8330 gcc_assert (sched_deps_info->generate_spec_deps
8331 && !IS_SPECULATION_CHECK_P (insn));
8332
8333 if (HAS_INTERNAL_DEP (insn)
8334 || SCHED_GROUP_P (insn))
8335 return -1;
8336
8337 return sched_speculate_insn (insn, request, new_pat);
8338 }
8339
8340 /* Print some information about block BB, which starts with HEAD and
8341 ends with TAIL, before scheduling it.
8342 I is zero, if scheduler is about to start with the fresh ebb. */
8343 static void
8344 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8345 {
8346 if (!i)
8347 fprintf (sched_dump,
8348 ";; ======================================================\n");
8349 else
8350 fprintf (sched_dump,
8351 ";; =====================ADVANCING TO=====================\n");
8352 fprintf (sched_dump,
8353 ";; -- basic block %d from %d to %d -- %s reload\n",
8354 bb->index, INSN_UID (head), INSN_UID (tail),
8355 (reload_completed ? "after" : "before"));
8356 fprintf (sched_dump,
8357 ";; ======================================================\n");
8358 fprintf (sched_dump, "\n");
8359 }
8360
8361 /* Unlink basic block notes and labels and saves them, so they
8362 can be easily restored. We unlink basic block notes in EBB to
8363 provide back-compatibility with the previous code, as target backends
8364 assume, that there'll be only instructions between
8365 current_sched_info->{head and tail}. We restore these notes as soon
8366 as we can.
8367 FIRST (LAST) is the first (last) basic block in the ebb.
8368 NB: In usual case (FIRST == LAST) nothing is really done. */
8369 void
8370 unlink_bb_notes (basic_block first, basic_block last)
8371 {
8372 /* We DON'T unlink basic block notes of the first block in the ebb. */
8373 if (first == last)
8374 return;
8375
8376 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8377
8378 /* Make a sentinel. */
8379 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8380 bb_header[last->next_bb->index] = 0;
8381
8382 first = first->next_bb;
8383 do
8384 {
8385 rtx_insn *prev, *label, *note, *next;
8386
8387 label = BB_HEAD (last);
8388 if (LABEL_P (label))
8389 note = NEXT_INSN (label);
8390 else
8391 note = label;
8392 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8393
8394 prev = PREV_INSN (label);
8395 next = NEXT_INSN (note);
8396 gcc_assert (prev && next);
8397
8398 SET_NEXT_INSN (prev) = next;
8399 SET_PREV_INSN (next) = prev;
8400
8401 bb_header[last->index] = label;
8402
8403 if (last == first)
8404 break;
8405
8406 last = last->prev_bb;
8407 }
8408 while (1);
8409 }
8410
8411 /* Restore basic block notes.
8412 FIRST is the first basic block in the ebb. */
8413 static void
8414 restore_bb_notes (basic_block first)
8415 {
8416 if (!bb_header)
8417 return;
8418
8419 /* We DON'T unlink basic block notes of the first block in the ebb. */
8420 first = first->next_bb;
8421 /* Remember: FIRST is actually a second basic block in the ebb. */
8422
8423 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8424 && bb_header[first->index])
8425 {
8426 rtx_insn *prev, *label, *note, *next;
8427
8428 label = bb_header[first->index];
8429 prev = PREV_INSN (label);
8430 next = NEXT_INSN (prev);
8431
8432 if (LABEL_P (label))
8433 note = NEXT_INSN (label);
8434 else
8435 note = label;
8436 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8437
8438 bb_header[first->index] = 0;
8439
8440 SET_NEXT_INSN (prev) = label;
8441 SET_NEXT_INSN (note) = next;
8442 SET_PREV_INSN (next) = note;
8443
8444 first = first->next_bb;
8445 }
8446
8447 free (bb_header);
8448 bb_header = 0;
8449 }
8450
8451 /* Helper function.
8452 Fix CFG after both in- and inter-block movement of
8453 control_flow_insn_p JUMP. */
8454 static void
8455 fix_jump_move (rtx_insn *jump)
8456 {
8457 basic_block bb, jump_bb, jump_bb_next;
8458
8459 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8460 jump_bb = BLOCK_FOR_INSN (jump);
8461 jump_bb_next = jump_bb->next_bb;
8462
8463 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8464 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8465
8466 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8467 /* if jump_bb_next is not empty. */
8468 BB_END (jump_bb) = BB_END (jump_bb_next);
8469
8470 if (BB_END (bb) != PREV_INSN (jump))
8471 /* Then there are instruction after jump that should be placed
8472 to jump_bb_next. */
8473 BB_END (jump_bb_next) = BB_END (bb);
8474 else
8475 /* Otherwise jump_bb_next is empty. */
8476 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8477
8478 /* To make assertion in move_insn happy. */
8479 BB_END (bb) = PREV_INSN (jump);
8480
8481 update_bb_for_insn (jump_bb_next);
8482 }
8483
8484 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8485 static void
8486 move_block_after_check (rtx_insn *jump)
8487 {
8488 basic_block bb, jump_bb, jump_bb_next;
8489 vec<edge, va_gc> *t;
8490
8491 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8492 jump_bb = BLOCK_FOR_INSN (jump);
8493 jump_bb_next = jump_bb->next_bb;
8494
8495 update_bb_for_insn (jump_bb);
8496
8497 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8498 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8499
8500 unlink_block (jump_bb_next);
8501 link_block (jump_bb_next, bb);
8502
8503 t = bb->succs;
8504 bb->succs = 0;
8505 move_succs (&(jump_bb->succs), bb);
8506 move_succs (&(jump_bb_next->succs), jump_bb);
8507 move_succs (&t, jump_bb_next);
8508
8509 df_mark_solutions_dirty ();
8510
8511 common_sched_info->fix_recovery_cfg
8512 (bb->index, jump_bb->index, jump_bb_next->index);
8513 }
8514
8515 /* Helper function for move_block_after_check.
8516 This functions attaches edge vector pointed to by SUCCSP to
8517 block TO. */
8518 static void
8519 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8520 {
8521 edge e;
8522 edge_iterator ei;
8523
8524 gcc_assert (to->succs == 0);
8525
8526 to->succs = *succsp;
8527
8528 FOR_EACH_EDGE (e, ei, to->succs)
8529 e->src = to;
8530
8531 *succsp = 0;
8532 }
8533
8534 /* Remove INSN from the instruction stream.
8535 INSN should have any dependencies. */
8536 static void
8537 sched_remove_insn (rtx_insn *insn)
8538 {
8539 sd_finish_insn (insn);
8540
8541 change_queue_index (insn, QUEUE_NOWHERE);
8542 current_sched_info->add_remove_insn (insn, 1);
8543 delete_insn (insn);
8544 }
8545
8546 /* Clear priorities of all instructions, that are forward dependent on INSN.
8547 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8548 be invoked to initialize all cleared priorities. */
8549 static void
8550 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8551 {
8552 sd_iterator_def sd_it;
8553 dep_t dep;
8554 bool insn_is_root_p = true;
8555
8556 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8557
8558 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8559 {
8560 rtx_insn *pro = DEP_PRO (dep);
8561
8562 if (INSN_PRIORITY_STATUS (pro) >= 0
8563 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8564 {
8565 /* If DEP doesn't contribute to priority then INSN itself should
8566 be added to priority roots. */
8567 if (contributes_to_priority_p (dep))
8568 insn_is_root_p = false;
8569
8570 INSN_PRIORITY_STATUS (pro) = -1;
8571 clear_priorities (pro, roots_ptr);
8572 }
8573 }
8574
8575 if (insn_is_root_p)
8576 roots_ptr->safe_push (insn);
8577 }
8578
8579 /* Recompute priorities of instructions, whose priorities might have been
8580 changed. ROOTS is a vector of instructions whose priority computation will
8581 trigger initialization of all cleared priorities. */
8582 static void
8583 calc_priorities (rtx_vec_t roots)
8584 {
8585 int i;
8586 rtx_insn *insn;
8587
8588 FOR_EACH_VEC_ELT (roots, i, insn)
8589 priority (insn);
8590 }
8591
8592
8593 /* Add dependences between JUMP and other instructions in the recovery
8594 block. INSN is the first insn the recovery block. */
8595 static void
8596 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8597 {
8598 do
8599 {
8600 insn = NEXT_INSN (insn);
8601 if (insn == jump)
8602 break;
8603
8604 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8605 {
8606 dep_def _new_dep, *new_dep = &_new_dep;
8607
8608 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8609 sd_add_dep (new_dep, false);
8610 }
8611 }
8612 while (1);
8613
8614 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8615 }
8616
8617 /* Extend data structures for logical insn UID. */
8618 void
8619 sched_extend_luids (void)
8620 {
8621 int new_luids_max_uid = get_max_uid () + 1;
8622
8623 sched_luids.safe_grow_cleared (new_luids_max_uid);
8624 }
8625
8626 /* Initialize LUID for INSN. */
8627 void
8628 sched_init_insn_luid (rtx_insn *insn)
8629 {
8630 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8631 int luid;
8632
8633 if (i >= 0)
8634 {
8635 luid = sched_max_luid;
8636 sched_max_luid += i;
8637 }
8638 else
8639 luid = -1;
8640
8641 SET_INSN_LUID (insn, luid);
8642 }
8643
8644 /* Initialize luids for BBS.
8645 The hook common_sched_info->luid_for_non_insn () is used to determine
8646 if notes, labels, etc. need luids. */
8647 void
8648 sched_init_luids (bb_vec_t bbs)
8649 {
8650 int i;
8651 basic_block bb;
8652
8653 sched_extend_luids ();
8654 FOR_EACH_VEC_ELT (bbs, i, bb)
8655 {
8656 rtx_insn *insn;
8657
8658 FOR_BB_INSNS (bb, insn)
8659 sched_init_insn_luid (insn);
8660 }
8661 }
8662
8663 /* Free LUIDs. */
8664 void
8665 sched_finish_luids (void)
8666 {
8667 sched_luids.release ();
8668 sched_max_luid = 1;
8669 }
8670
8671 /* Return logical uid of INSN. Helpful while debugging. */
8672 int
8673 insn_luid (rtx_insn *insn)
8674 {
8675 return INSN_LUID (insn);
8676 }
8677
8678 /* Extend per insn data in the target. */
8679 void
8680 sched_extend_target (void)
8681 {
8682 if (targetm.sched.h_i_d_extended)
8683 targetm.sched.h_i_d_extended ();
8684 }
8685
8686 /* Extend global scheduler structures (those, that live across calls to
8687 schedule_block) to include information about just emitted INSN. */
8688 static void
8689 extend_h_i_d (void)
8690 {
8691 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8692 if (reserve > 0
8693 && ! h_i_d.space (reserve))
8694 {
8695 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8696 sched_extend_target ();
8697 }
8698 }
8699
8700 /* Initialize h_i_d entry of the INSN with default values.
8701 Values, that are not explicitly initialized here, hold zero. */
8702 static void
8703 init_h_i_d (rtx_insn *insn)
8704 {
8705 if (INSN_LUID (insn) > 0)
8706 {
8707 INSN_COST (insn) = -1;
8708 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8709 INSN_TICK (insn) = INVALID_TICK;
8710 INSN_EXACT_TICK (insn) = INVALID_TICK;
8711 INTER_TICK (insn) = INVALID_TICK;
8712 TODO_SPEC (insn) = HARD_DEP;
8713 }
8714 }
8715
8716 /* Initialize haifa_insn_data for BBS. */
8717 void
8718 haifa_init_h_i_d (bb_vec_t bbs)
8719 {
8720 int i;
8721 basic_block bb;
8722
8723 extend_h_i_d ();
8724 FOR_EACH_VEC_ELT (bbs, i, bb)
8725 {
8726 rtx_insn *insn;
8727
8728 FOR_BB_INSNS (bb, insn)
8729 init_h_i_d (insn);
8730 }
8731 }
8732
8733 /* Finalize haifa_insn_data. */
8734 void
8735 haifa_finish_h_i_d (void)
8736 {
8737 int i;
8738 haifa_insn_data_t data;
8739 struct reg_use_data *use, *next;
8740
8741 FOR_EACH_VEC_ELT (h_i_d, i, data)
8742 {
8743 free (data->max_reg_pressure);
8744 free (data->reg_pressure);
8745 for (use = data->reg_use_list; use != NULL; use = next)
8746 {
8747 next = use->next_insn_use;
8748 free (use);
8749 }
8750 }
8751 h_i_d.release ();
8752 }
8753
8754 /* Init data for the new insn INSN. */
8755 static void
8756 haifa_init_insn (rtx_insn *insn)
8757 {
8758 gcc_assert (insn != NULL);
8759
8760 sched_extend_luids ();
8761 sched_init_insn_luid (insn);
8762 sched_extend_target ();
8763 sched_deps_init (false);
8764 extend_h_i_d ();
8765 init_h_i_d (insn);
8766
8767 if (adding_bb_to_current_region_p)
8768 {
8769 sd_init_insn (insn);
8770
8771 /* Extend dependency caches by one element. */
8772 extend_dependency_caches (1, false);
8773 }
8774 if (sched_pressure != SCHED_PRESSURE_NONE)
8775 init_insn_reg_pressure_info (insn);
8776 }
8777
8778 /* Init data for the new basic block BB which comes after AFTER. */
8779 static void
8780 haifa_init_only_bb (basic_block bb, basic_block after)
8781 {
8782 gcc_assert (bb != NULL);
8783
8784 sched_init_bbs ();
8785
8786 if (common_sched_info->add_block)
8787 /* This changes only data structures of the front-end. */
8788 common_sched_info->add_block (bb, after);
8789 }
8790
8791 /* A generic version of sched_split_block (). */
8792 basic_block
8793 sched_split_block_1 (basic_block first_bb, rtx after)
8794 {
8795 edge e;
8796
8797 e = split_block (first_bb, after);
8798 gcc_assert (e->src == first_bb);
8799
8800 /* sched_split_block emits note if *check == BB_END. Probably it
8801 is better to rip that note off. */
8802
8803 return e->dest;
8804 }
8805
8806 /* A generic version of sched_create_empty_bb (). */
8807 basic_block
8808 sched_create_empty_bb_1 (basic_block after)
8809 {
8810 return create_empty_bb (after);
8811 }
8812
8813 /* Insert PAT as an INSN into the schedule and update the necessary data
8814 structures to account for it. */
8815 rtx_insn *
8816 sched_emit_insn (rtx pat)
8817 {
8818 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
8819 haifa_init_insn (insn);
8820
8821 if (current_sched_info->add_remove_insn)
8822 current_sched_info->add_remove_insn (insn, 0);
8823
8824 (*current_sched_info->begin_schedule_ready) (insn);
8825 scheduled_insns.safe_push (insn);
8826
8827 last_scheduled_insn = insn;
8828 return insn;
8829 }
8830
8831 /* This function returns a candidate satisfying dispatch constraints from
8832 the ready list. */
8833
8834 static rtx_insn *
8835 ready_remove_first_dispatch (struct ready_list *ready)
8836 {
8837 int i;
8838 rtx_insn *insn = ready_element (ready, 0);
8839
8840 if (ready->n_ready == 1
8841 || !INSN_P (insn)
8842 || INSN_CODE (insn) < 0
8843 || !active_insn_p (insn)
8844 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8845 return ready_remove_first (ready);
8846
8847 for (i = 1; i < ready->n_ready; i++)
8848 {
8849 insn = ready_element (ready, i);
8850
8851 if (!INSN_P (insn)
8852 || INSN_CODE (insn) < 0
8853 || !active_insn_p (insn))
8854 continue;
8855
8856 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8857 {
8858 /* Return ith element of ready. */
8859 insn = ready_remove (ready, i);
8860 return insn;
8861 }
8862 }
8863
8864 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
8865 return ready_remove_first (ready);
8866
8867 for (i = 1; i < ready->n_ready; i++)
8868 {
8869 insn = ready_element (ready, i);
8870
8871 if (!INSN_P (insn)
8872 || INSN_CODE (insn) < 0
8873 || !active_insn_p (insn))
8874 continue;
8875
8876 /* Return i-th element of ready. */
8877 if (targetm.sched.dispatch (insn, IS_CMP))
8878 return ready_remove (ready, i);
8879 }
8880
8881 return ready_remove_first (ready);
8882 }
8883
8884 /* Get number of ready insn in the ready list. */
8885
8886 int
8887 number_in_ready (void)
8888 {
8889 return ready.n_ready;
8890 }
8891
8892 /* Get number of ready's in the ready list. */
8893
8894 rtx_insn *
8895 get_ready_element (int i)
8896 {
8897 return ready_element (&ready, i);
8898 }
8899
8900 #endif /* INSN_SCHEDULING */