intrinsic.h (gfc_check_selected_real_kind, [...]): Update prototypes.
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
27
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
36
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
41
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
56
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
59
60 1. choose insn with the longest path to end of bb, ties
61 broken by
62 2. choose insn with least contribution to register pressure,
63 ties broken by
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
67 broken by
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
72
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
79
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
83
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using insn backward dependences
86 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
87 INSN_FORW_DEPS the purpose of forward list scheduling.
88
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
96 utilization.
97
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
101 of this case.
102
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
107
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
111
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
116
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
120
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
126 \f
127 #include "config.h"
128 #include "system.h"
129 #include "coretypes.h"
130 #include "tm.h"
131 #include "toplev.h"
132 #include "rtl.h"
133 #include "tm_p.h"
134 #include "hard-reg-set.h"
135 #include "regs.h"
136 #include "function.h"
137 #include "flags.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
140 #include "except.h"
141 #include "toplev.h"
142 #include "recog.h"
143 #include "sched-int.h"
144 #include "target.h"
145 #include "output.h"
146 #include "params.h"
147 #include "vecprim.h"
148 #include "dbgcnt.h"
149 #include "cfgloop.h"
150 #include "ira.h"
151 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
152
153 #ifdef INSN_SCHEDULING
154
155 /* issue_rate is the number of insns that can be scheduled in the same
156 machine cycle. It can be defined in the config/mach/mach.h file,
157 otherwise we set it to 1. */
158
159 int issue_rate;
160
161 /* sched-verbose controls the amount of debugging output the
162 scheduler prints. It is controlled by -fsched-verbose=N:
163 N>0 and no -DSR : the output is directed to stderr.
164 N>=10 will direct the printouts to stderr (regardless of -dSR).
165 N=1: same as -dSR.
166 N=2: bb's probabilities, detailed ready list info, unit/insn info.
167 N=3: rtl at abort point, control-flow, regions info.
168 N=5: dependences info. */
169
170 static int sched_verbose_param = 0;
171 int sched_verbose = 0;
172
173 /* Debugging file. All printouts are sent to dump, which is always set,
174 either to stderr, or to the dump listing file (-dRS). */
175 FILE *sched_dump = 0;
176
177 /* fix_sched_param() is called from toplev.c upon detection
178 of the -fsched-verbose=N option. */
179
180 void
181 fix_sched_param (const char *param, const char *val)
182 {
183 if (!strcmp (param, "verbose"))
184 sched_verbose_param = atoi (val);
185 else
186 warning (0, "fix_sched_param: unknown param: %s", param);
187 }
188
189 /* This is a placeholder for the scheduler parameters common
190 to all schedulers. */
191 struct common_sched_info_def *common_sched_info;
192
193 #define INSN_TICK(INSN) (HID (INSN)->tick)
194 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
195
196 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
197 then it should be recalculated from scratch. */
198 #define INVALID_TICK (-(max_insn_queue_index + 1))
199 /* The minimal value of the INSN_TICK of an instruction. */
200 #define MIN_TICK (-max_insn_queue_index)
201
202 /* Issue points are used to distinguish between instructions in max_issue ().
203 For now, all instructions are equally good. */
204 #define ISSUE_POINTS(INSN) 1
205
206 /* List of important notes we must keep around. This is a pointer to the
207 last element in the list. */
208 rtx note_list;
209
210 static struct spec_info_def spec_info_var;
211 /* Description of the speculative part of the scheduling.
212 If NULL - no speculation. */
213 spec_info_t spec_info = NULL;
214
215 /* True, if recovery block was added during scheduling of current block.
216 Used to determine, if we need to fix INSN_TICKs. */
217 static bool haifa_recovery_bb_recently_added_p;
218
219 /* True, if recovery block was added during this scheduling pass.
220 Used to determine if we should have empty memory pools of dependencies
221 after finishing current region. */
222 bool haifa_recovery_bb_ever_added_p;
223
224 /* Counters of different types of speculative instructions. */
225 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
226
227 /* Array used in {unlink, restore}_bb_notes. */
228 static rtx *bb_header = 0;
229
230 /* Basic block after which recovery blocks will be created. */
231 static basic_block before_recovery;
232
233 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
234 created it. */
235 basic_block after_recovery;
236
237 /* FALSE if we add bb to another region, so we don't need to initialize it. */
238 bool adding_bb_to_current_region_p = true;
239
240 /* Queues, etc. */
241
242 /* An instruction is ready to be scheduled when all insns preceding it
243 have already been scheduled. It is important to ensure that all
244 insns which use its result will not be executed until its result
245 has been computed. An insn is maintained in one of four structures:
246
247 (P) the "Pending" set of insns which cannot be scheduled until
248 their dependencies have been satisfied.
249 (Q) the "Queued" set of insns that can be scheduled when sufficient
250 time has passed.
251 (R) the "Ready" list of unscheduled, uncommitted insns.
252 (S) the "Scheduled" list of insns.
253
254 Initially, all insns are either "Pending" or "Ready" depending on
255 whether their dependencies are satisfied.
256
257 Insns move from the "Ready" list to the "Scheduled" list as they
258 are committed to the schedule. As this occurs, the insns in the
259 "Pending" list have their dependencies satisfied and move to either
260 the "Ready" list or the "Queued" set depending on whether
261 sufficient time has passed to make them ready. As time passes,
262 insns move from the "Queued" set to the "Ready" list.
263
264 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
265 unscheduled insns, i.e., those that are ready, queued, and pending.
266 The "Queued" set (Q) is implemented by the variable `insn_queue'.
267 The "Ready" list (R) is implemented by the variables `ready' and
268 `n_ready'.
269 The "Scheduled" list (S) is the new insn chain built by this pass.
270
271 The transition (R->S) is implemented in the scheduling loop in
272 `schedule_block' when the best insn to schedule is chosen.
273 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
274 insns move from the ready list to the scheduled list.
275 The transition (Q->R) is implemented in 'queue_to_insn' as time
276 passes or stalls are introduced. */
277
278 /* Implement a circular buffer to delay instructions until sufficient
279 time has passed. For the new pipeline description interface,
280 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
281 than maximal time of instruction execution computed by genattr.c on
282 the base maximal time of functional unit reservations and getting a
283 result. This is the longest time an insn may be queued. */
284
285 static rtx *insn_queue;
286 static int q_ptr = 0;
287 static int q_size = 0;
288 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
289 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
290
291 #define QUEUE_SCHEDULED (-3)
292 #define QUEUE_NOWHERE (-2)
293 #define QUEUE_READY (-1)
294 /* QUEUE_SCHEDULED - INSN is scheduled.
295 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
296 queue or ready list.
297 QUEUE_READY - INSN is in ready list.
298 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
299
300 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
301
302 /* The following variable value refers for all current and future
303 reservations of the processor units. */
304 state_t curr_state;
305
306 /* The following variable value is size of memory representing all
307 current and future reservations of the processor units. */
308 size_t dfa_state_size;
309
310 /* The following array is used to find the best insn from ready when
311 the automaton pipeline interface is used. */
312 char *ready_try = NULL;
313
314 /* The ready list. */
315 struct ready_list ready = {NULL, 0, 0, 0, 0};
316
317 /* The pointer to the ready list (to be removed). */
318 static struct ready_list *readyp = &ready;
319
320 /* Scheduling clock. */
321 static int clock_var;
322
323 static int may_trap_exp (const_rtx, int);
324
325 /* Nonzero iff the address is comprised from at most 1 register. */
326 #define CONST_BASED_ADDRESS_P(x) \
327 (REG_P (x) \
328 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
329 || (GET_CODE (x) == LO_SUM)) \
330 && (CONSTANT_P (XEXP (x, 0)) \
331 || CONSTANT_P (XEXP (x, 1)))))
332
333 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
334 as found by analyzing insn's expression. */
335
336 \f
337 static int haifa_luid_for_non_insn (rtx x);
338
339 /* Haifa version of sched_info hooks common to all headers. */
340 const struct common_sched_info_def haifa_common_sched_info =
341 {
342 NULL, /* fix_recovery_cfg */
343 NULL, /* add_block */
344 NULL, /* estimate_number_of_insns */
345 haifa_luid_for_non_insn, /* luid_for_non_insn */
346 SCHED_PASS_UNKNOWN /* sched_pass_id */
347 };
348
349 const struct sched_scan_info_def *sched_scan_info;
350
351 /* Mapping from instruction UID to its Logical UID. */
352 VEC (int, heap) *sched_luids = NULL;
353
354 /* Next LUID to assign to an instruction. */
355 int sched_max_luid = 1;
356
357 /* Haifa Instruction Data. */
358 VEC (haifa_insn_data_def, heap) *h_i_d = NULL;
359
360 void (* sched_init_only_bb) (basic_block, basic_block);
361
362 /* Split block function. Different schedulers might use different functions
363 to handle their internal data consistent. */
364 basic_block (* sched_split_block) (basic_block, rtx);
365
366 /* Create empty basic block after the specified block. */
367 basic_block (* sched_create_empty_bb) (basic_block);
368
369 static int
370 may_trap_exp (const_rtx x, int is_store)
371 {
372 enum rtx_code code;
373
374 if (x == 0)
375 return TRAP_FREE;
376 code = GET_CODE (x);
377 if (is_store)
378 {
379 if (code == MEM && may_trap_p (x))
380 return TRAP_RISKY;
381 else
382 return TRAP_FREE;
383 }
384 if (code == MEM)
385 {
386 /* The insn uses memory: a volatile load. */
387 if (MEM_VOLATILE_P (x))
388 return IRISKY;
389 /* An exception-free load. */
390 if (!may_trap_p (x))
391 return IFREE;
392 /* A load with 1 base register, to be further checked. */
393 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
394 return PFREE_CANDIDATE;
395 /* No info on the load, to be further checked. */
396 return PRISKY_CANDIDATE;
397 }
398 else
399 {
400 const char *fmt;
401 int i, insn_class = TRAP_FREE;
402
403 /* Neither store nor load, check if it may cause a trap. */
404 if (may_trap_p (x))
405 return TRAP_RISKY;
406 /* Recursive step: walk the insn... */
407 fmt = GET_RTX_FORMAT (code);
408 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
409 {
410 if (fmt[i] == 'e')
411 {
412 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
413 insn_class = WORST_CLASS (insn_class, tmp_class);
414 }
415 else if (fmt[i] == 'E')
416 {
417 int j;
418 for (j = 0; j < XVECLEN (x, i); j++)
419 {
420 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
421 insn_class = WORST_CLASS (insn_class, tmp_class);
422 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
423 break;
424 }
425 }
426 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
427 break;
428 }
429 return insn_class;
430 }
431 }
432
433 /* Classifies rtx X of an insn for the purpose of verifying that X can be
434 executed speculatively (and consequently the insn can be moved
435 speculatively), by examining X, returning:
436 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
437 TRAP_FREE: non-load insn.
438 IFREE: load from a globally safe location.
439 IRISKY: volatile load.
440 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
441 being either PFREE or PRISKY. */
442
443 static int
444 haifa_classify_rtx (const_rtx x)
445 {
446 int tmp_class = TRAP_FREE;
447 int insn_class = TRAP_FREE;
448 enum rtx_code code;
449
450 if (GET_CODE (x) == PARALLEL)
451 {
452 int i, len = XVECLEN (x, 0);
453
454 for (i = len - 1; i >= 0; i--)
455 {
456 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
457 insn_class = WORST_CLASS (insn_class, tmp_class);
458 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
459 break;
460 }
461 }
462 else
463 {
464 code = GET_CODE (x);
465 switch (code)
466 {
467 case CLOBBER:
468 /* Test if it is a 'store'. */
469 tmp_class = may_trap_exp (XEXP (x, 0), 1);
470 break;
471 case SET:
472 /* Test if it is a store. */
473 tmp_class = may_trap_exp (SET_DEST (x), 1);
474 if (tmp_class == TRAP_RISKY)
475 break;
476 /* Test if it is a load. */
477 tmp_class =
478 WORST_CLASS (tmp_class,
479 may_trap_exp (SET_SRC (x), 0));
480 break;
481 case COND_EXEC:
482 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
483 if (tmp_class == TRAP_RISKY)
484 break;
485 tmp_class = WORST_CLASS (tmp_class,
486 may_trap_exp (COND_EXEC_TEST (x), 0));
487 break;
488 case TRAP_IF:
489 tmp_class = TRAP_RISKY;
490 break;
491 default:;
492 }
493 insn_class = tmp_class;
494 }
495
496 return insn_class;
497 }
498
499 int
500 haifa_classify_insn (const_rtx insn)
501 {
502 return haifa_classify_rtx (PATTERN (insn));
503 }
504
505 /* Forward declarations. */
506
507 static int priority (rtx);
508 static int rank_for_schedule (const void *, const void *);
509 static void swap_sort (rtx *, int);
510 static void queue_insn (rtx, int);
511 static int schedule_insn (rtx);
512 static void adjust_priority (rtx);
513 static void advance_one_cycle (void);
514 static void extend_h_i_d (void);
515
516
517 /* Notes handling mechanism:
518 =========================
519 Generally, NOTES are saved before scheduling and restored after scheduling.
520 The scheduler distinguishes between two types of notes:
521
522 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
523 Before scheduling a region, a pointer to the note is added to the insn
524 that follows or precedes it. (This happens as part of the data dependence
525 computation). After scheduling an insn, the pointer contained in it is
526 used for regenerating the corresponding note (in reemit_notes).
527
528 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
529 these notes are put in a list (in rm_other_notes() and
530 unlink_other_notes ()). After scheduling the block, these notes are
531 inserted at the beginning of the block (in schedule_block()). */
532
533 static void ready_add (struct ready_list *, rtx, bool);
534 static rtx ready_remove_first (struct ready_list *);
535
536 static void queue_to_ready (struct ready_list *);
537 static int early_queue_to_ready (state_t, struct ready_list *);
538
539 static void debug_ready_list (struct ready_list *);
540
541 /* The following functions are used to implement multi-pass scheduling
542 on the first cycle. */
543 static rtx ready_remove (struct ready_list *, int);
544 static void ready_remove_insn (rtx);
545
546 static int choose_ready (struct ready_list *, rtx *);
547
548 static void fix_inter_tick (rtx, rtx);
549 static int fix_tick_ready (rtx);
550 static void change_queue_index (rtx, int);
551
552 /* The following functions are used to implement scheduling of data/control
553 speculative instructions. */
554
555 static void extend_h_i_d (void);
556 static void init_h_i_d (rtx);
557 static void generate_recovery_code (rtx);
558 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
559 static void begin_speculative_block (rtx);
560 static void add_to_speculative_block (rtx);
561 static void init_before_recovery (basic_block *);
562 static void create_check_block_twin (rtx, bool);
563 static void fix_recovery_deps (basic_block);
564 static void haifa_change_pattern (rtx, rtx);
565 static void dump_new_block_header (int, basic_block, rtx, rtx);
566 static void restore_bb_notes (basic_block);
567 static void fix_jump_move (rtx);
568 static void move_block_after_check (rtx);
569 static void move_succs (VEC(edge,gc) **, basic_block);
570 static void sched_remove_insn (rtx);
571 static void clear_priorities (rtx, rtx_vec_t *);
572 static void calc_priorities (rtx_vec_t);
573 static void add_jump_dependencies (rtx, rtx);
574 #ifdef ENABLE_CHECKING
575 static int has_edge_p (VEC(edge,gc) *, int);
576 static void check_cfg (rtx, rtx);
577 #endif
578
579 #endif /* INSN_SCHEDULING */
580 \f
581 /* Point to state used for the current scheduling pass. */
582 struct haifa_sched_info *current_sched_info;
583 \f
584 #ifndef INSN_SCHEDULING
585 void
586 schedule_insns (void)
587 {
588 }
589 #else
590
591 /* Do register pressure sensitive insn scheduling if the flag is set
592 up. */
593 bool sched_pressure_p;
594
595 /* Map regno -> its cover class. The map defined only when
596 SCHED_PRESSURE_P is true. */
597 enum reg_class *sched_regno_cover_class;
598
599 /* The current register pressure. Only elements corresponding cover
600 classes are defined. */
601 static int curr_reg_pressure[N_REG_CLASSES];
602
603 /* Saved value of the previous array. */
604 static int saved_reg_pressure[N_REG_CLASSES];
605
606 /* Register living at given scheduling point. */
607 static bitmap curr_reg_live;
608
609 /* Saved value of the previous array. */
610 static bitmap saved_reg_live;
611
612 /* Registers mentioned in the current region. */
613 static bitmap region_ref_regs;
614
615 /* Initiate register pressure relative info for scheduling the current
616 region. Currently it is only clearing register mentioned in the
617 current region. */
618 void
619 sched_init_region_reg_pressure_info (void)
620 {
621 bitmap_clear (region_ref_regs);
622 }
623
624 /* Update current register pressure related info after birth (if
625 BIRTH_P) or death of register REGNO. */
626 static void
627 mark_regno_birth_or_death (int regno, bool birth_p)
628 {
629 enum reg_class cover_class;
630
631 cover_class = sched_regno_cover_class[regno];
632 if (regno >= FIRST_PSEUDO_REGISTER)
633 {
634 if (cover_class != NO_REGS)
635 {
636 if (birth_p)
637 {
638 bitmap_set_bit (curr_reg_live, regno);
639 curr_reg_pressure[cover_class]
640 += ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
641 }
642 else
643 {
644 bitmap_clear_bit (curr_reg_live, regno);
645 curr_reg_pressure[cover_class]
646 -= ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
647 }
648 }
649 }
650 else if (cover_class != NO_REGS
651 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
652 {
653 if (birth_p)
654 {
655 bitmap_set_bit (curr_reg_live, regno);
656 curr_reg_pressure[cover_class]++;
657 }
658 else
659 {
660 bitmap_clear_bit (curr_reg_live, regno);
661 curr_reg_pressure[cover_class]--;
662 }
663 }
664 }
665
666 /* Initiate current register pressure related info from living
667 registers given by LIVE. */
668 static void
669 initiate_reg_pressure_info (bitmap live)
670 {
671 int i;
672 unsigned int j;
673 bitmap_iterator bi;
674
675 for (i = 0; i < ira_reg_class_cover_size; i++)
676 curr_reg_pressure[ira_reg_class_cover[i]] = 0;
677 bitmap_clear (curr_reg_live);
678 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
679 if (current_nr_blocks == 1 || bitmap_bit_p (region_ref_regs, j))
680 mark_regno_birth_or_death (j, true);
681 }
682
683 /* Mark registers in X as mentioned in the current region. */
684 static void
685 setup_ref_regs (rtx x)
686 {
687 int i, j, regno;
688 const RTX_CODE code = GET_CODE (x);
689 const char *fmt;
690
691 if (REG_P (x))
692 {
693 regno = REGNO (x);
694 if (regno >= FIRST_PSEUDO_REGISTER)
695 bitmap_set_bit (region_ref_regs, REGNO (x));
696 else
697 for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
698 bitmap_set_bit (region_ref_regs, regno + i);
699 return;
700 }
701 fmt = GET_RTX_FORMAT (code);
702 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
703 if (fmt[i] == 'e')
704 setup_ref_regs (XEXP (x, i));
705 else if (fmt[i] == 'E')
706 {
707 for (j = 0; j < XVECLEN (x, i); j++)
708 setup_ref_regs (XVECEXP (x, i, j));
709 }
710 }
711
712 /* Initiate current register pressure related info at the start of
713 basic block BB. */
714 static void
715 initiate_bb_reg_pressure_info (basic_block bb)
716 {
717 unsigned int i;
718 rtx insn;
719
720 if (current_nr_blocks > 1)
721 FOR_BB_INSNS (bb, insn)
722 if (NONDEBUG_INSN_P (insn))
723 setup_ref_regs (PATTERN (insn));
724 initiate_reg_pressure_info (df_get_live_in (bb));
725 #ifdef EH_RETURN_DATA_REGNO
726 if (bb_has_eh_pred (bb))
727 for (i = 0; ; ++i)
728 {
729 unsigned int regno = EH_RETURN_DATA_REGNO (i);
730
731 if (regno == INVALID_REGNUM)
732 break;
733 if (! bitmap_bit_p (df_get_live_in (bb), regno))
734 mark_regno_birth_or_death (regno, true);
735 }
736 #endif
737 }
738
739 /* Save current register pressure related info. */
740 static void
741 save_reg_pressure (void)
742 {
743 int i;
744
745 for (i = 0; i < ira_reg_class_cover_size; i++)
746 saved_reg_pressure[ira_reg_class_cover[i]]
747 = curr_reg_pressure[ira_reg_class_cover[i]];
748 bitmap_copy (saved_reg_live, curr_reg_live);
749 }
750
751 /* Restore saved register pressure related info. */
752 static void
753 restore_reg_pressure (void)
754 {
755 int i;
756
757 for (i = 0; i < ira_reg_class_cover_size; i++)
758 curr_reg_pressure[ira_reg_class_cover[i]]
759 = saved_reg_pressure[ira_reg_class_cover[i]];
760 bitmap_copy (curr_reg_live, saved_reg_live);
761 }
762
763 /* Return TRUE if the register is dying after its USE. */
764 static bool
765 dying_use_p (struct reg_use_data *use)
766 {
767 struct reg_use_data *next;
768
769 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
770 if (NONDEBUG_INSN_P (next->insn)
771 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
772 return false;
773 return true;
774 }
775
776 /* Print info about the current register pressure and its excess for
777 each cover class. */
778 static void
779 print_curr_reg_pressure (void)
780 {
781 int i;
782 enum reg_class cl;
783
784 fprintf (sched_dump, ";;\t");
785 for (i = 0; i < ira_reg_class_cover_size; i++)
786 {
787 cl = ira_reg_class_cover[i];
788 gcc_assert (curr_reg_pressure[cl] >= 0);
789 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
790 curr_reg_pressure[cl],
791 curr_reg_pressure[cl] - ira_available_class_regs[cl]);
792 }
793 fprintf (sched_dump, "\n");
794 }
795
796 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
797 so that insns independent of the last scheduled insn will be preferred
798 over dependent instructions. */
799
800 static rtx last_scheduled_insn;
801
802 /* Cached cost of the instruction. Use below function to get cost of the
803 insn. -1 here means that the field is not initialized. */
804 #define INSN_COST(INSN) (HID (INSN)->cost)
805
806 /* Compute cost of executing INSN.
807 This is the number of cycles between instruction issue and
808 instruction results. */
809 int
810 insn_cost (rtx insn)
811 {
812 int cost;
813
814 if (sel_sched_p ())
815 {
816 if (recog_memoized (insn) < 0)
817 return 0;
818
819 cost = insn_default_latency (insn);
820 if (cost < 0)
821 cost = 0;
822
823 return cost;
824 }
825
826 cost = INSN_COST (insn);
827
828 if (cost < 0)
829 {
830 /* A USE insn, or something else we don't need to
831 understand. We can't pass these directly to
832 result_ready_cost or insn_default_latency because it will
833 trigger a fatal error for unrecognizable insns. */
834 if (recog_memoized (insn) < 0)
835 {
836 INSN_COST (insn) = 0;
837 return 0;
838 }
839 else
840 {
841 cost = insn_default_latency (insn);
842 if (cost < 0)
843 cost = 0;
844
845 INSN_COST (insn) = cost;
846 }
847 }
848
849 return cost;
850 }
851
852 /* Compute cost of dependence LINK.
853 This is the number of cycles between instruction issue and
854 instruction results.
855 ??? We also use this function to call recog_memoized on all insns. */
856 int
857 dep_cost_1 (dep_t link, dw_t dw)
858 {
859 rtx insn = DEP_PRO (link);
860 rtx used = DEP_CON (link);
861 int cost;
862
863 /* A USE insn should never require the value used to be computed.
864 This allows the computation of a function's result and parameter
865 values to overlap the return and call. We don't care about the
866 the dependence cost when only decreasing register pressure. */
867 if (recog_memoized (used) < 0)
868 {
869 cost = 0;
870 recog_memoized (insn);
871 }
872 else
873 {
874 enum reg_note dep_type = DEP_TYPE (link);
875
876 cost = insn_cost (insn);
877
878 if (INSN_CODE (insn) >= 0)
879 {
880 if (dep_type == REG_DEP_ANTI)
881 cost = 0;
882 else if (dep_type == REG_DEP_OUTPUT)
883 {
884 cost = (insn_default_latency (insn)
885 - insn_default_latency (used));
886 if (cost <= 0)
887 cost = 1;
888 }
889 else if (bypass_p (insn))
890 cost = insn_latency (insn, used);
891 }
892
893
894 if (targetm.sched.adjust_cost_2)
895 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
896 dw);
897 else if (targetm.sched.adjust_cost != NULL)
898 {
899 /* This variable is used for backward compatibility with the
900 targets. */
901 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
902
903 /* Make it self-cycled, so that if some tries to walk over this
904 incomplete list he/she will be caught in an endless loop. */
905 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
906
907 /* Targets use only REG_NOTE_KIND of the link. */
908 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
909
910 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
911 insn, cost);
912
913 free_INSN_LIST_node (dep_cost_rtx_link);
914 }
915
916 if (cost < 0)
917 cost = 0;
918 }
919
920 return cost;
921 }
922
923 /* Compute cost of dependence LINK.
924 This is the number of cycles between instruction issue and
925 instruction results. */
926 int
927 dep_cost (dep_t link)
928 {
929 return dep_cost_1 (link, 0);
930 }
931
932 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
933 INSN_PRIORITY explicitly. */
934 void
935 increase_insn_priority (rtx insn, int amount)
936 {
937 if (!sel_sched_p ())
938 {
939 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
940 if (INSN_PRIORITY_KNOWN (insn))
941 INSN_PRIORITY (insn) += amount;
942 }
943 else
944 {
945 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
946 Use EXPR_PRIORITY instead. */
947 sel_add_to_insn_priority (insn, amount);
948 }
949 }
950
951 /* Return 'true' if DEP should be included in priority calculations. */
952 static bool
953 contributes_to_priority_p (dep_t dep)
954 {
955 if (DEBUG_INSN_P (DEP_CON (dep))
956 || DEBUG_INSN_P (DEP_PRO (dep)))
957 return false;
958
959 /* Critical path is meaningful in block boundaries only. */
960 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
961 DEP_PRO (dep)))
962 return false;
963
964 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
965 then speculative instructions will less likely be
966 scheduled. That is because the priority of
967 their producers will increase, and, thus, the
968 producers will more likely be scheduled, thus,
969 resolving the dependence. */
970 if (sched_deps_info->generate_spec_deps
971 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
972 && (DEP_STATUS (dep) & SPECULATIVE))
973 return false;
974
975 return true;
976 }
977
978 /* Compute the number of nondebug forward deps of an insn. */
979
980 static int
981 dep_list_size (rtx insn)
982 {
983 sd_iterator_def sd_it;
984 dep_t dep;
985 int dbgcount = 0, nodbgcount = 0;
986
987 if (!MAY_HAVE_DEBUG_INSNS)
988 return sd_lists_size (insn, SD_LIST_FORW);
989
990 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
991 {
992 if (DEBUG_INSN_P (DEP_CON (dep)))
993 dbgcount++;
994 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
995 nodbgcount++;
996 }
997
998 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, SD_LIST_FORW));
999
1000 return nodbgcount;
1001 }
1002
1003 /* Compute the priority number for INSN. */
1004 static int
1005 priority (rtx insn)
1006 {
1007 if (! INSN_P (insn))
1008 return 0;
1009
1010 /* We should not be interested in priority of an already scheduled insn. */
1011 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1012
1013 if (!INSN_PRIORITY_KNOWN (insn))
1014 {
1015 int this_priority = -1;
1016
1017 if (dep_list_size (insn) == 0)
1018 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1019 some forward deps but all of them are ignored by
1020 contributes_to_priority hook. At the moment we set priority of
1021 such insn to 0. */
1022 this_priority = insn_cost (insn);
1023 else
1024 {
1025 rtx prev_first, twin;
1026 basic_block rec;
1027
1028 /* For recovery check instructions we calculate priority slightly
1029 different than that of normal instructions. Instead of walking
1030 through INSN_FORW_DEPS (check) list, we walk through
1031 INSN_FORW_DEPS list of each instruction in the corresponding
1032 recovery block. */
1033
1034 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1035 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1036 if (!rec || rec == EXIT_BLOCK_PTR)
1037 {
1038 prev_first = PREV_INSN (insn);
1039 twin = insn;
1040 }
1041 else
1042 {
1043 prev_first = NEXT_INSN (BB_HEAD (rec));
1044 twin = PREV_INSN (BB_END (rec));
1045 }
1046
1047 do
1048 {
1049 sd_iterator_def sd_it;
1050 dep_t dep;
1051
1052 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1053 {
1054 rtx next;
1055 int next_priority;
1056
1057 next = DEP_CON (dep);
1058
1059 if (BLOCK_FOR_INSN (next) != rec)
1060 {
1061 int cost;
1062
1063 if (!contributes_to_priority_p (dep))
1064 continue;
1065
1066 if (twin == insn)
1067 cost = dep_cost (dep);
1068 else
1069 {
1070 struct _dep _dep1, *dep1 = &_dep1;
1071
1072 init_dep (dep1, insn, next, REG_DEP_ANTI);
1073
1074 cost = dep_cost (dep1);
1075 }
1076
1077 next_priority = cost + priority (next);
1078
1079 if (next_priority > this_priority)
1080 this_priority = next_priority;
1081 }
1082 }
1083
1084 twin = PREV_INSN (twin);
1085 }
1086 while (twin != prev_first);
1087 }
1088
1089 if (this_priority < 0)
1090 {
1091 gcc_assert (this_priority == -1);
1092
1093 this_priority = insn_cost (insn);
1094 }
1095
1096 INSN_PRIORITY (insn) = this_priority;
1097 INSN_PRIORITY_STATUS (insn) = 1;
1098 }
1099
1100 return INSN_PRIORITY (insn);
1101 }
1102 \f
1103 /* Macros and functions for keeping the priority queue sorted, and
1104 dealing with queuing and dequeuing of instructions. */
1105
1106 #define SCHED_SORT(READY, N_READY) \
1107 do { if ((N_READY) == 2) \
1108 swap_sort (READY, N_READY); \
1109 else if ((N_READY) > 2) \
1110 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1111 while (0)
1112
1113 /* Setup info about the current register pressure impact of scheduling
1114 INSN at the current scheduling point. */
1115 static void
1116 setup_insn_reg_pressure_info (rtx insn)
1117 {
1118 int i, change, before, after, hard_regno;
1119 int excess_cost_change;
1120 enum machine_mode mode;
1121 enum reg_class cl;
1122 struct reg_pressure_data *pressure_info;
1123 int *max_reg_pressure;
1124 struct reg_use_data *use;
1125 static int death[N_REG_CLASSES];
1126
1127 gcc_checking_assert (!DEBUG_INSN_P (insn));
1128
1129 excess_cost_change = 0;
1130 for (i = 0; i < ira_reg_class_cover_size; i++)
1131 death[ira_reg_class_cover[i]] = 0;
1132 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1133 if (dying_use_p (use))
1134 {
1135 cl = sched_regno_cover_class[use->regno];
1136 if (use->regno < FIRST_PSEUDO_REGISTER)
1137 death[cl]++;
1138 else
1139 death[cl] += ira_reg_class_nregs[cl][PSEUDO_REGNO_MODE (use->regno)];
1140 }
1141 pressure_info = INSN_REG_PRESSURE (insn);
1142 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1143 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1144 for (i = 0; i < ira_reg_class_cover_size; i++)
1145 {
1146 cl = ira_reg_class_cover[i];
1147 gcc_assert (curr_reg_pressure[cl] >= 0);
1148 change = (int) pressure_info[i].set_increase - death[cl];
1149 before = MAX (0, max_reg_pressure[i] - ira_available_class_regs[cl]);
1150 after = MAX (0, max_reg_pressure[i] + change
1151 - ira_available_class_regs[cl]);
1152 hard_regno = ira_class_hard_regs[cl][0];
1153 gcc_assert (hard_regno >= 0);
1154 mode = reg_raw_mode[hard_regno];
1155 excess_cost_change += ((after - before)
1156 * (ira_memory_move_cost[mode][cl][0]
1157 + ira_memory_move_cost[mode][cl][1]));
1158 }
1159 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1160 }
1161
1162 /* Returns a positive value if x is preferred; returns a negative value if
1163 y is preferred. Should never return 0, since that will make the sort
1164 unstable. */
1165
1166 static int
1167 rank_for_schedule (const void *x, const void *y)
1168 {
1169 rtx tmp = *(const rtx *) y;
1170 rtx tmp2 = *(const rtx *) x;
1171 rtx last;
1172 int tmp_class, tmp2_class;
1173 int val, priority_val, info_val;
1174
1175 if (MAY_HAVE_DEBUG_INSNS)
1176 {
1177 /* Schedule debug insns as early as possible. */
1178 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
1179 return -1;
1180 else if (DEBUG_INSN_P (tmp2))
1181 return 1;
1182 }
1183
1184 /* The insn in a schedule group should be issued the first. */
1185 if (flag_sched_group_heuristic &&
1186 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
1187 return SCHED_GROUP_P (tmp2) ? 1 : -1;
1188
1189 /* Make sure that priority of TMP and TMP2 are initialized. */
1190 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
1191
1192 if (sched_pressure_p)
1193 {
1194 int diff;
1195
1196 /* Prefer insn whose scheduling results in the smallest register
1197 pressure excess. */
1198 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
1199 + (INSN_TICK (tmp) > clock_var
1200 ? INSN_TICK (tmp) - clock_var : 0)
1201 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
1202 - (INSN_TICK (tmp2) > clock_var
1203 ? INSN_TICK (tmp2) - clock_var : 0))) != 0)
1204 return diff;
1205 }
1206
1207
1208 if (sched_pressure_p
1209 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
1210 {
1211 if (INSN_TICK (tmp) <= clock_var)
1212 return -1;
1213 else if (INSN_TICK (tmp2) <= clock_var)
1214 return 1;
1215 else
1216 return INSN_TICK (tmp) - INSN_TICK (tmp2);
1217 }
1218 /* Prefer insn with higher priority. */
1219 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
1220
1221 if (flag_sched_critical_path_heuristic && priority_val)
1222 return priority_val;
1223
1224 /* Prefer speculative insn with greater dependencies weakness. */
1225 if (flag_sched_spec_insn_heuristic && spec_info)
1226 {
1227 ds_t ds1, ds2;
1228 dw_t dw1, dw2;
1229 int dw;
1230
1231 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
1232 if (ds1)
1233 dw1 = ds_weak (ds1);
1234 else
1235 dw1 = NO_DEP_WEAK;
1236
1237 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
1238 if (ds2)
1239 dw2 = ds_weak (ds2);
1240 else
1241 dw2 = NO_DEP_WEAK;
1242
1243 dw = dw2 - dw1;
1244 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
1245 return dw;
1246 }
1247
1248 info_val = (*current_sched_info->rank) (tmp, tmp2);
1249 if(flag_sched_rank_heuristic && info_val)
1250 return info_val;
1251
1252 if (flag_sched_last_insn_heuristic)
1253 {
1254 last = last_scheduled_insn;
1255
1256 if (DEBUG_INSN_P (last) && last != current_sched_info->prev_head)
1257 do
1258 last = PREV_INSN (last);
1259 while (!NONDEBUG_INSN_P (last)
1260 && last != current_sched_info->prev_head);
1261 }
1262
1263 /* Compare insns based on their relation to the last scheduled
1264 non-debug insn. */
1265 if (flag_sched_last_insn_heuristic && NONDEBUG_INSN_P (last))
1266 {
1267 dep_t dep1;
1268 dep_t dep2;
1269
1270 /* Classify the instructions into three classes:
1271 1) Data dependent on last schedule insn.
1272 2) Anti/Output dependent on last scheduled insn.
1273 3) Independent of last scheduled insn, or has latency of one.
1274 Choose the insn from the highest numbered class if different. */
1275 dep1 = sd_find_dep_between (last, tmp, true);
1276
1277 if (dep1 == NULL || dep_cost (dep1) == 1)
1278 tmp_class = 3;
1279 else if (/* Data dependence. */
1280 DEP_TYPE (dep1) == REG_DEP_TRUE)
1281 tmp_class = 1;
1282 else
1283 tmp_class = 2;
1284
1285 dep2 = sd_find_dep_between (last, tmp2, true);
1286
1287 if (dep2 == NULL || dep_cost (dep2) == 1)
1288 tmp2_class = 3;
1289 else if (/* Data dependence. */
1290 DEP_TYPE (dep2) == REG_DEP_TRUE)
1291 tmp2_class = 1;
1292 else
1293 tmp2_class = 2;
1294
1295 if ((val = tmp2_class - tmp_class))
1296 return val;
1297 }
1298
1299 /* Prefer the insn which has more later insns that depend on it.
1300 This gives the scheduler more freedom when scheduling later
1301 instructions at the expense of added register pressure. */
1302
1303 val = (dep_list_size (tmp2) - dep_list_size (tmp));
1304
1305 if (flag_sched_dep_count_heuristic && val != 0)
1306 return val;
1307
1308 /* If insns are equally good, sort by INSN_LUID (original insn order),
1309 so that we make the sort stable. This minimizes instruction movement,
1310 thus minimizing sched's effect on debugging and cross-jumping. */
1311 return INSN_LUID (tmp) - INSN_LUID (tmp2);
1312 }
1313
1314 /* Resort the array A in which only element at index N may be out of order. */
1315
1316 HAIFA_INLINE static void
1317 swap_sort (rtx *a, int n)
1318 {
1319 rtx insn = a[n - 1];
1320 int i = n - 2;
1321
1322 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
1323 {
1324 a[i + 1] = a[i];
1325 i -= 1;
1326 }
1327 a[i + 1] = insn;
1328 }
1329
1330 /* Add INSN to the insn queue so that it can be executed at least
1331 N_CYCLES after the currently executing insn. Preserve insns
1332 chain for debugging purposes. */
1333
1334 HAIFA_INLINE static void
1335 queue_insn (rtx insn, int n_cycles)
1336 {
1337 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
1338 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
1339
1340 gcc_assert (n_cycles <= max_insn_queue_index);
1341 gcc_assert (!DEBUG_INSN_P (insn));
1342
1343 insn_queue[next_q] = link;
1344 q_size += 1;
1345
1346 if (sched_verbose >= 2)
1347 {
1348 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
1349 (*current_sched_info->print_insn) (insn, 0));
1350
1351 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
1352 }
1353
1354 QUEUE_INDEX (insn) = next_q;
1355 }
1356
1357 /* Remove INSN from queue. */
1358 static void
1359 queue_remove (rtx insn)
1360 {
1361 gcc_assert (QUEUE_INDEX (insn) >= 0);
1362 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
1363 q_size--;
1364 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
1365 }
1366
1367 /* Return a pointer to the bottom of the ready list, i.e. the insn
1368 with the lowest priority. */
1369
1370 rtx *
1371 ready_lastpos (struct ready_list *ready)
1372 {
1373 gcc_assert (ready->n_ready >= 1);
1374 return ready->vec + ready->first - ready->n_ready + 1;
1375 }
1376
1377 /* Add an element INSN to the ready list so that it ends up with the
1378 lowest/highest priority depending on FIRST_P. */
1379
1380 HAIFA_INLINE static void
1381 ready_add (struct ready_list *ready, rtx insn, bool first_p)
1382 {
1383 if (!first_p)
1384 {
1385 if (ready->first == ready->n_ready)
1386 {
1387 memmove (ready->vec + ready->veclen - ready->n_ready,
1388 ready_lastpos (ready),
1389 ready->n_ready * sizeof (rtx));
1390 ready->first = ready->veclen - 1;
1391 }
1392 ready->vec[ready->first - ready->n_ready] = insn;
1393 }
1394 else
1395 {
1396 if (ready->first == ready->veclen - 1)
1397 {
1398 if (ready->n_ready)
1399 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1400 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
1401 ready_lastpos (ready),
1402 ready->n_ready * sizeof (rtx));
1403 ready->first = ready->veclen - 2;
1404 }
1405 ready->vec[++(ready->first)] = insn;
1406 }
1407
1408 ready->n_ready++;
1409 if (DEBUG_INSN_P (insn))
1410 ready->n_debug++;
1411
1412 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
1413 QUEUE_INDEX (insn) = QUEUE_READY;
1414 }
1415
1416 /* Remove the element with the highest priority from the ready list and
1417 return it. */
1418
1419 HAIFA_INLINE static rtx
1420 ready_remove_first (struct ready_list *ready)
1421 {
1422 rtx t;
1423
1424 gcc_assert (ready->n_ready);
1425 t = ready->vec[ready->first--];
1426 ready->n_ready--;
1427 if (DEBUG_INSN_P (t))
1428 ready->n_debug--;
1429 /* If the queue becomes empty, reset it. */
1430 if (ready->n_ready == 0)
1431 ready->first = ready->veclen - 1;
1432
1433 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
1434 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1435
1436 return t;
1437 }
1438
1439 /* The following code implements multi-pass scheduling for the first
1440 cycle. In other words, we will try to choose ready insn which
1441 permits to start maximum number of insns on the same cycle. */
1442
1443 /* Return a pointer to the element INDEX from the ready. INDEX for
1444 insn with the highest priority is 0, and the lowest priority has
1445 N_READY - 1. */
1446
1447 rtx
1448 ready_element (struct ready_list *ready, int index)
1449 {
1450 gcc_assert (ready->n_ready && index < ready->n_ready);
1451
1452 return ready->vec[ready->first - index];
1453 }
1454
1455 /* Remove the element INDEX from the ready list and return it. INDEX
1456 for insn with the highest priority is 0, and the lowest priority
1457 has N_READY - 1. */
1458
1459 HAIFA_INLINE static rtx
1460 ready_remove (struct ready_list *ready, int index)
1461 {
1462 rtx t;
1463 int i;
1464
1465 if (index == 0)
1466 return ready_remove_first (ready);
1467 gcc_assert (ready->n_ready && index < ready->n_ready);
1468 t = ready->vec[ready->first - index];
1469 ready->n_ready--;
1470 if (DEBUG_INSN_P (t))
1471 ready->n_debug--;
1472 for (i = index; i < ready->n_ready; i++)
1473 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1474 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1475 return t;
1476 }
1477
1478 /* Remove INSN from the ready list. */
1479 static void
1480 ready_remove_insn (rtx insn)
1481 {
1482 int i;
1483
1484 for (i = 0; i < readyp->n_ready; i++)
1485 if (ready_element (readyp, i) == insn)
1486 {
1487 ready_remove (readyp, i);
1488 return;
1489 }
1490 gcc_unreachable ();
1491 }
1492
1493 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1494 macro. */
1495
1496 void
1497 ready_sort (struct ready_list *ready)
1498 {
1499 int i;
1500 rtx *first = ready_lastpos (ready);
1501
1502 if (sched_pressure_p)
1503 {
1504 for (i = 0; i < ready->n_ready; i++)
1505 if (!DEBUG_INSN_P (first[i]))
1506 setup_insn_reg_pressure_info (first[i]);
1507 }
1508 SCHED_SORT (first, ready->n_ready);
1509 }
1510
1511 /* PREV is an insn that is ready to execute. Adjust its priority if that
1512 will help shorten or lengthen register lifetimes as appropriate. Also
1513 provide a hook for the target to tweak itself. */
1514
1515 HAIFA_INLINE static void
1516 adjust_priority (rtx prev)
1517 {
1518 /* ??? There used to be code here to try and estimate how an insn
1519 affected register lifetimes, but it did it by looking at REG_DEAD
1520 notes, which we removed in schedule_region. Nor did it try to
1521 take into account register pressure or anything useful like that.
1522
1523 Revisit when we have a machine model to work with and not before. */
1524
1525 if (targetm.sched.adjust_priority)
1526 INSN_PRIORITY (prev) =
1527 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
1528 }
1529
1530 /* Advance DFA state STATE on one cycle. */
1531 void
1532 advance_state (state_t state)
1533 {
1534 if (targetm.sched.dfa_pre_advance_cycle)
1535 targetm.sched.dfa_pre_advance_cycle ();
1536
1537 if (targetm.sched.dfa_pre_cycle_insn)
1538 state_transition (state,
1539 targetm.sched.dfa_pre_cycle_insn ());
1540
1541 state_transition (state, NULL);
1542
1543 if (targetm.sched.dfa_post_cycle_insn)
1544 state_transition (state,
1545 targetm.sched.dfa_post_cycle_insn ());
1546
1547 if (targetm.sched.dfa_post_advance_cycle)
1548 targetm.sched.dfa_post_advance_cycle ();
1549 }
1550
1551 /* Advance time on one cycle. */
1552 HAIFA_INLINE static void
1553 advance_one_cycle (void)
1554 {
1555 advance_state (curr_state);
1556 if (sched_verbose >= 6)
1557 fprintf (sched_dump, ";;\tAdvanced a state.\n");
1558 }
1559
1560 /* Clock at which the previous instruction was issued. */
1561 static int last_clock_var;
1562
1563 /* Update register pressure after scheduling INSN. */
1564 static void
1565 update_register_pressure (rtx insn)
1566 {
1567 struct reg_use_data *use;
1568 struct reg_set_data *set;
1569
1570 gcc_checking_assert (!DEBUG_INSN_P (insn));
1571
1572 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1573 if (dying_use_p (use) && bitmap_bit_p (curr_reg_live, use->regno))
1574 mark_regno_birth_or_death (use->regno, false);
1575 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
1576 mark_regno_birth_or_death (set->regno, true);
1577 }
1578
1579 /* Set up or update (if UPDATE_P) max register pressure (see its
1580 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
1581 after insn AFTER. */
1582 static void
1583 setup_insn_max_reg_pressure (rtx after, bool update_p)
1584 {
1585 int i, p;
1586 bool eq_p;
1587 rtx insn;
1588 static int max_reg_pressure[N_REG_CLASSES];
1589
1590 save_reg_pressure ();
1591 for (i = 0; i < ira_reg_class_cover_size; i++)
1592 max_reg_pressure[ira_reg_class_cover[i]]
1593 = curr_reg_pressure[ira_reg_class_cover[i]];
1594 for (insn = NEXT_INSN (after);
1595 insn != NULL_RTX && ! BARRIER_P (insn)
1596 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
1597 insn = NEXT_INSN (insn))
1598 if (NONDEBUG_INSN_P (insn))
1599 {
1600 eq_p = true;
1601 for (i = 0; i < ira_reg_class_cover_size; i++)
1602 {
1603 p = max_reg_pressure[ira_reg_class_cover[i]];
1604 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
1605 {
1606 eq_p = false;
1607 INSN_MAX_REG_PRESSURE (insn)[i]
1608 = max_reg_pressure[ira_reg_class_cover[i]];
1609 }
1610 }
1611 if (update_p && eq_p)
1612 break;
1613 update_register_pressure (insn);
1614 for (i = 0; i < ira_reg_class_cover_size; i++)
1615 if (max_reg_pressure[ira_reg_class_cover[i]]
1616 < curr_reg_pressure[ira_reg_class_cover[i]])
1617 max_reg_pressure[ira_reg_class_cover[i]]
1618 = curr_reg_pressure[ira_reg_class_cover[i]];
1619 }
1620 restore_reg_pressure ();
1621 }
1622
1623 /* Update the current register pressure after scheduling INSN. Update
1624 also max register pressure for unscheduled insns of the current
1625 BB. */
1626 static void
1627 update_reg_and_insn_max_reg_pressure (rtx insn)
1628 {
1629 int i;
1630 int before[N_REG_CLASSES];
1631
1632 for (i = 0; i < ira_reg_class_cover_size; i++)
1633 before[i] = curr_reg_pressure[ira_reg_class_cover[i]];
1634 update_register_pressure (insn);
1635 for (i = 0; i < ira_reg_class_cover_size; i++)
1636 if (curr_reg_pressure[ira_reg_class_cover[i]] != before[i])
1637 break;
1638 if (i < ira_reg_class_cover_size)
1639 setup_insn_max_reg_pressure (insn, true);
1640 }
1641
1642 /* Set up register pressure at the beginning of basic block BB whose
1643 insns starting after insn AFTER. Set up also max register pressure
1644 for all insns of the basic block. */
1645 void
1646 sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
1647 {
1648 gcc_assert (sched_pressure_p);
1649 initiate_bb_reg_pressure_info (bb);
1650 setup_insn_max_reg_pressure (after, false);
1651 }
1652
1653 /* INSN is the "currently executing insn". Launch each insn which was
1654 waiting on INSN. READY is the ready list which contains the insns
1655 that are ready to fire. CLOCK is the current cycle. The function
1656 returns necessary cycle advance after issuing the insn (it is not
1657 zero for insns in a schedule group). */
1658
1659 static int
1660 schedule_insn (rtx insn)
1661 {
1662 sd_iterator_def sd_it;
1663 dep_t dep;
1664 int i;
1665 int advance = 0;
1666
1667 if (sched_verbose >= 1)
1668 {
1669 struct reg_pressure_data *pressure_info;
1670 char buf[2048];
1671
1672 print_insn (buf, insn, 0);
1673 buf[40] = 0;
1674 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
1675
1676 if (recog_memoized (insn) < 0)
1677 fprintf (sched_dump, "nothing");
1678 else
1679 print_reservation (sched_dump, insn);
1680 pressure_info = INSN_REG_PRESSURE (insn);
1681 if (pressure_info != NULL)
1682 {
1683 fputc (':', sched_dump);
1684 for (i = 0; i < ira_reg_class_cover_size; i++)
1685 fprintf (sched_dump, "%s%+d(%d)",
1686 reg_class_names[ira_reg_class_cover[i]],
1687 pressure_info[i].set_increase, pressure_info[i].change);
1688 }
1689 fputc ('\n', sched_dump);
1690 }
1691
1692 if (sched_pressure_p && !DEBUG_INSN_P (insn))
1693 update_reg_and_insn_max_reg_pressure (insn);
1694
1695 /* Scheduling instruction should have all its dependencies resolved and
1696 should have been removed from the ready list. */
1697 gcc_assert (sd_lists_empty_p (insn, SD_LIST_BACK));
1698
1699 /* Reset debug insns invalidated by moving this insn. */
1700 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
1701 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1702 sd_iterator_cond (&sd_it, &dep);)
1703 {
1704 rtx dbg = DEP_PRO (dep);
1705 struct reg_use_data *use, *next;
1706
1707 gcc_assert (DEBUG_INSN_P (dbg));
1708
1709 if (sched_verbose >= 6)
1710 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
1711 INSN_UID (dbg));
1712
1713 /* ??? Rather than resetting the debug insn, we might be able
1714 to emit a debug temp before the just-scheduled insn, but
1715 this would involve checking that the expression at the
1716 point of the debug insn is equivalent to the expression
1717 before the just-scheduled insn. They might not be: the
1718 expression in the debug insn may depend on other insns not
1719 yet scheduled that set MEMs, REGs or even other debug
1720 insns. It's not clear that attempting to preserve debug
1721 information in these cases is worth the effort, given how
1722 uncommon these resets are and the likelihood that the debug
1723 temps introduced won't survive the schedule change. */
1724 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
1725 df_insn_rescan (dbg);
1726
1727 /* Unknown location doesn't use any registers. */
1728 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
1729 {
1730 struct reg_use_data *prev = use;
1731
1732 /* Remove use from the cyclic next_regno_use chain first. */
1733 while (prev->next_regno_use != use)
1734 prev = prev->next_regno_use;
1735 prev->next_regno_use = use->next_regno_use;
1736 next = use->next_insn_use;
1737 free (use);
1738 }
1739 INSN_REG_USE_LIST (dbg) = NULL;
1740
1741 /* We delete rather than resolve these deps, otherwise we
1742 crash in sched_free_deps(), because forward deps are
1743 expected to be released before backward deps. */
1744 sd_delete_dep (sd_it);
1745 }
1746
1747 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
1748 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
1749
1750 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
1751 if (INSN_TICK (insn) > clock_var)
1752 /* INSN has been prematurely moved from the queue to the ready list.
1753 This is possible only if following flag is set. */
1754 gcc_assert (flag_sched_stalled_insns);
1755
1756 /* ??? Probably, if INSN is scheduled prematurely, we should leave
1757 INSN_TICK untouched. This is a machine-dependent issue, actually. */
1758 INSN_TICK (insn) = clock_var;
1759
1760 /* Update dependent instructions. */
1761 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
1762 sd_iterator_cond (&sd_it, &dep);)
1763 {
1764 rtx next = DEP_CON (dep);
1765
1766 /* Resolve the dependence between INSN and NEXT.
1767 sd_resolve_dep () moves current dep to another list thus
1768 advancing the iterator. */
1769 sd_resolve_dep (sd_it);
1770
1771 /* Don't bother trying to mark next as ready if insn is a debug
1772 insn. If insn is the last hard dependency, it will have
1773 already been discounted. */
1774 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
1775 continue;
1776
1777 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
1778 {
1779 int effective_cost;
1780
1781 effective_cost = try_ready (next);
1782
1783 if (effective_cost >= 0
1784 && SCHED_GROUP_P (next)
1785 && advance < effective_cost)
1786 advance = effective_cost;
1787 }
1788 else
1789 /* Check always has only one forward dependence (to the first insn in
1790 the recovery block), therefore, this will be executed only once. */
1791 {
1792 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
1793 fix_recovery_deps (RECOVERY_BLOCK (insn));
1794 }
1795 }
1796
1797 /* This is the place where scheduler doesn't *basically* need backward and
1798 forward dependencies for INSN anymore. Nevertheless they are used in
1799 heuristics in rank_for_schedule (), early_queue_to_ready () and in
1800 some targets (e.g. rs6000). Thus the earliest place where we *can*
1801 remove dependencies is after targetm.sched.md_finish () call in
1802 schedule_block (). But, on the other side, the safest place to remove
1803 dependencies is when we are finishing scheduling entire region. As we
1804 don't generate [many] dependencies during scheduling itself, we won't
1805 need memory until beginning of next region.
1806 Bottom line: Dependencies are removed for all insns in the end of
1807 scheduling the region. */
1808
1809 /* Annotate the instruction with issue information -- TImode
1810 indicates that the instruction is expected not to be able
1811 to issue on the same cycle as the previous insn. A machine
1812 may use this information to decide how the instruction should
1813 be aligned. */
1814 if (issue_rate > 1
1815 && GET_CODE (PATTERN (insn)) != USE
1816 && GET_CODE (PATTERN (insn)) != CLOBBER
1817 && !DEBUG_INSN_P (insn))
1818 {
1819 if (reload_completed)
1820 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
1821 last_clock_var = clock_var;
1822 }
1823
1824 return advance;
1825 }
1826
1827 /* Functions for handling of notes. */
1828
1829 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
1830 void
1831 concat_note_lists (rtx from_end, rtx *to_endp)
1832 {
1833 rtx from_start;
1834
1835 /* It's easy when have nothing to concat. */
1836 if (from_end == NULL)
1837 return;
1838
1839 /* It's also easy when destination is empty. */
1840 if (*to_endp == NULL)
1841 {
1842 *to_endp = from_end;
1843 return;
1844 }
1845
1846 from_start = from_end;
1847 while (PREV_INSN (from_start) != NULL)
1848 from_start = PREV_INSN (from_start);
1849
1850 PREV_INSN (from_start) = *to_endp;
1851 NEXT_INSN (*to_endp) = from_start;
1852 *to_endp = from_end;
1853 }
1854
1855 /* Delete notes between HEAD and TAIL and put them in the chain
1856 of notes ended by NOTE_LIST. */
1857 void
1858 remove_notes (rtx head, rtx tail)
1859 {
1860 rtx next_tail, insn, next;
1861
1862 note_list = 0;
1863 if (head == tail && !INSN_P (head))
1864 return;
1865
1866 next_tail = NEXT_INSN (tail);
1867 for (insn = head; insn != next_tail; insn = next)
1868 {
1869 next = NEXT_INSN (insn);
1870 if (!NOTE_P (insn))
1871 continue;
1872
1873 switch (NOTE_KIND (insn))
1874 {
1875 case NOTE_INSN_BASIC_BLOCK:
1876 continue;
1877
1878 case NOTE_INSN_EPILOGUE_BEG:
1879 if (insn != tail)
1880 {
1881 remove_insn (insn);
1882 add_reg_note (next, REG_SAVE_NOTE,
1883 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
1884 break;
1885 }
1886 /* FALLTHRU */
1887
1888 default:
1889 remove_insn (insn);
1890
1891 /* Add the note to list that ends at NOTE_LIST. */
1892 PREV_INSN (insn) = note_list;
1893 NEXT_INSN (insn) = NULL_RTX;
1894 if (note_list)
1895 NEXT_INSN (note_list) = insn;
1896 note_list = insn;
1897 break;
1898 }
1899
1900 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
1901 }
1902 }
1903
1904
1905 /* Return the head and tail pointers of ebb starting at BEG and ending
1906 at END. */
1907 void
1908 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
1909 {
1910 rtx beg_head = BB_HEAD (beg);
1911 rtx beg_tail = BB_END (beg);
1912 rtx end_head = BB_HEAD (end);
1913 rtx end_tail = BB_END (end);
1914
1915 /* Don't include any notes or labels at the beginning of the BEG
1916 basic block, or notes at the end of the END basic blocks. */
1917
1918 if (LABEL_P (beg_head))
1919 beg_head = NEXT_INSN (beg_head);
1920
1921 while (beg_head != beg_tail)
1922 if (NOTE_P (beg_head) || BOUNDARY_DEBUG_INSN_P (beg_head))
1923 beg_head = NEXT_INSN (beg_head);
1924 else
1925 break;
1926
1927 *headp = beg_head;
1928
1929 if (beg == end)
1930 end_head = beg_head;
1931 else if (LABEL_P (end_head))
1932 end_head = NEXT_INSN (end_head);
1933
1934 while (end_head != end_tail)
1935 if (NOTE_P (end_tail) || BOUNDARY_DEBUG_INSN_P (end_tail))
1936 end_tail = PREV_INSN (end_tail);
1937 else
1938 break;
1939
1940 *tailp = end_tail;
1941 }
1942
1943 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1944
1945 int
1946 no_real_insns_p (const_rtx head, const_rtx tail)
1947 {
1948 while (head != NEXT_INSN (tail))
1949 {
1950 if (!NOTE_P (head) && !LABEL_P (head)
1951 && !BOUNDARY_DEBUG_INSN_P (head))
1952 return 0;
1953 head = NEXT_INSN (head);
1954 }
1955 return 1;
1956 }
1957
1958 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1959 previously found among the insns. Insert them just before HEAD. */
1960 rtx
1961 restore_other_notes (rtx head, basic_block head_bb)
1962 {
1963 if (note_list != 0)
1964 {
1965 rtx note_head = note_list;
1966
1967 if (head)
1968 head_bb = BLOCK_FOR_INSN (head);
1969 else
1970 head = NEXT_INSN (bb_note (head_bb));
1971
1972 while (PREV_INSN (note_head))
1973 {
1974 set_block_for_insn (note_head, head_bb);
1975 note_head = PREV_INSN (note_head);
1976 }
1977 /* In the above cycle we've missed this note. */
1978 set_block_for_insn (note_head, head_bb);
1979
1980 PREV_INSN (note_head) = PREV_INSN (head);
1981 NEXT_INSN (PREV_INSN (head)) = note_head;
1982 PREV_INSN (head) = note_list;
1983 NEXT_INSN (note_list) = head;
1984
1985 if (BLOCK_FOR_INSN (head) != head_bb)
1986 BB_END (head_bb) = note_list;
1987
1988 head = note_head;
1989 }
1990
1991 return head;
1992 }
1993
1994 /* Move insns that became ready to fire from queue to ready list. */
1995
1996 static void
1997 queue_to_ready (struct ready_list *ready)
1998 {
1999 rtx insn;
2000 rtx link;
2001 rtx skip_insn;
2002
2003 q_ptr = NEXT_Q (q_ptr);
2004
2005 if (dbg_cnt (sched_insn) == false)
2006 {
2007 /* If debug counter is activated do not requeue insn next after
2008 last_scheduled_insn. */
2009 skip_insn = next_nonnote_insn (last_scheduled_insn);
2010 while (skip_insn && DEBUG_INSN_P (skip_insn))
2011 skip_insn = next_nonnote_insn (skip_insn);
2012 }
2013 else
2014 skip_insn = NULL_RTX;
2015
2016 /* Add all pending insns that can be scheduled without stalls to the
2017 ready list. */
2018 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
2019 {
2020 insn = XEXP (link, 0);
2021 q_size -= 1;
2022
2023 if (sched_verbose >= 2)
2024 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
2025 (*current_sched_info->print_insn) (insn, 0));
2026
2027 /* If the ready list is full, delay the insn for 1 cycle.
2028 See the comment in schedule_block for the rationale. */
2029 if (!reload_completed
2030 && ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
2031 && !SCHED_GROUP_P (insn)
2032 && insn != skip_insn)
2033 {
2034 if (sched_verbose >= 2)
2035 fprintf (sched_dump, "requeued because ready full\n");
2036 queue_insn (insn, 1);
2037 }
2038 else
2039 {
2040 ready_add (ready, insn, false);
2041 if (sched_verbose >= 2)
2042 fprintf (sched_dump, "moving to ready without stalls\n");
2043 }
2044 }
2045 free_INSN_LIST_list (&insn_queue[q_ptr]);
2046
2047 /* If there are no ready insns, stall until one is ready and add all
2048 of the pending insns at that point to the ready list. */
2049 if (ready->n_ready == 0)
2050 {
2051 int stalls;
2052
2053 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
2054 {
2055 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
2056 {
2057 for (; link; link = XEXP (link, 1))
2058 {
2059 insn = XEXP (link, 0);
2060 q_size -= 1;
2061
2062 if (sched_verbose >= 2)
2063 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
2064 (*current_sched_info->print_insn) (insn, 0));
2065
2066 ready_add (ready, insn, false);
2067 if (sched_verbose >= 2)
2068 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
2069 }
2070 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
2071
2072 advance_one_cycle ();
2073
2074 break;
2075 }
2076
2077 advance_one_cycle ();
2078 }
2079
2080 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
2081 clock_var += stalls;
2082 }
2083 }
2084
2085 /* Used by early_queue_to_ready. Determines whether it is "ok" to
2086 prematurely move INSN from the queue to the ready list. Currently,
2087 if a target defines the hook 'is_costly_dependence', this function
2088 uses the hook to check whether there exist any dependences which are
2089 considered costly by the target, between INSN and other insns that
2090 have already been scheduled. Dependences are checked up to Y cycles
2091 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
2092 controlling this value.
2093 (Other considerations could be taken into account instead (or in
2094 addition) depending on user flags and target hooks. */
2095
2096 static bool
2097 ok_for_early_queue_removal (rtx insn)
2098 {
2099 int n_cycles;
2100 rtx prev_insn = last_scheduled_insn;
2101
2102 if (targetm.sched.is_costly_dependence)
2103 {
2104 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
2105 {
2106 for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
2107 {
2108 int cost;
2109
2110 if (prev_insn == current_sched_info->prev_head)
2111 {
2112 prev_insn = NULL;
2113 break;
2114 }
2115
2116 if (!NOTE_P (prev_insn))
2117 {
2118 dep_t dep;
2119
2120 dep = sd_find_dep_between (prev_insn, insn, true);
2121
2122 if (dep != NULL)
2123 {
2124 cost = dep_cost (dep);
2125
2126 if (targetm.sched.is_costly_dependence (dep, cost,
2127 flag_sched_stalled_insns_dep - n_cycles))
2128 return false;
2129 }
2130 }
2131
2132 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
2133 break;
2134 }
2135
2136 if (!prev_insn)
2137 break;
2138 prev_insn = PREV_INSN (prev_insn);
2139 }
2140 }
2141
2142 return true;
2143 }
2144
2145
2146 /* Remove insns from the queue, before they become "ready" with respect
2147 to FU latency considerations. */
2148
2149 static int
2150 early_queue_to_ready (state_t state, struct ready_list *ready)
2151 {
2152 rtx insn;
2153 rtx link;
2154 rtx next_link;
2155 rtx prev_link;
2156 bool move_to_ready;
2157 int cost;
2158 state_t temp_state = alloca (dfa_state_size);
2159 int stalls;
2160 int insns_removed = 0;
2161
2162 /*
2163 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
2164 function:
2165
2166 X == 0: There is no limit on how many queued insns can be removed
2167 prematurely. (flag_sched_stalled_insns = -1).
2168
2169 X >= 1: Only X queued insns can be removed prematurely in each
2170 invocation. (flag_sched_stalled_insns = X).
2171
2172 Otherwise: Early queue removal is disabled.
2173 (flag_sched_stalled_insns = 0)
2174 */
2175
2176 if (! flag_sched_stalled_insns)
2177 return 0;
2178
2179 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
2180 {
2181 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
2182 {
2183 if (sched_verbose > 6)
2184 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
2185
2186 prev_link = 0;
2187 while (link)
2188 {
2189 next_link = XEXP (link, 1);
2190 insn = XEXP (link, 0);
2191 if (insn && sched_verbose > 6)
2192 print_rtl_single (sched_dump, insn);
2193
2194 memcpy (temp_state, state, dfa_state_size);
2195 if (recog_memoized (insn) < 0)
2196 /* non-negative to indicate that it's not ready
2197 to avoid infinite Q->R->Q->R... */
2198 cost = 0;
2199 else
2200 cost = state_transition (temp_state, insn);
2201
2202 if (sched_verbose >= 6)
2203 fprintf (sched_dump, "transition cost = %d\n", cost);
2204
2205 move_to_ready = false;
2206 if (cost < 0)
2207 {
2208 move_to_ready = ok_for_early_queue_removal (insn);
2209 if (move_to_ready == true)
2210 {
2211 /* move from Q to R */
2212 q_size -= 1;
2213 ready_add (ready, insn, false);
2214
2215 if (prev_link)
2216 XEXP (prev_link, 1) = next_link;
2217 else
2218 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
2219
2220 free_INSN_LIST_node (link);
2221
2222 if (sched_verbose >= 2)
2223 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
2224 (*current_sched_info->print_insn) (insn, 0));
2225
2226 insns_removed++;
2227 if (insns_removed == flag_sched_stalled_insns)
2228 /* Remove no more than flag_sched_stalled_insns insns
2229 from Q at a time. */
2230 return insns_removed;
2231 }
2232 }
2233
2234 if (move_to_ready == false)
2235 prev_link = link;
2236
2237 link = next_link;
2238 } /* while link */
2239 } /* if link */
2240
2241 } /* for stalls.. */
2242
2243 return insns_removed;
2244 }
2245
2246
2247 /* Print the ready list for debugging purposes. Callable from debugger. */
2248
2249 static void
2250 debug_ready_list (struct ready_list *ready)
2251 {
2252 rtx *p;
2253 int i;
2254
2255 if (ready->n_ready == 0)
2256 {
2257 fprintf (sched_dump, "\n");
2258 return;
2259 }
2260
2261 p = ready_lastpos (ready);
2262 for (i = 0; i < ready->n_ready; i++)
2263 {
2264 fprintf (sched_dump, " %s:%d",
2265 (*current_sched_info->print_insn) (p[i], 0),
2266 INSN_LUID (p[i]));
2267 if (sched_pressure_p)
2268 fprintf (sched_dump, "(cost=%d",
2269 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
2270 if (INSN_TICK (p[i]) > clock_var)
2271 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
2272 if (sched_pressure_p)
2273 fprintf (sched_dump, ")");
2274 }
2275 fprintf (sched_dump, "\n");
2276 }
2277
2278 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
2279 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
2280 replaces the epilogue note in the correct basic block. */
2281 void
2282 reemit_notes (rtx insn)
2283 {
2284 rtx note, last = insn;
2285
2286 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2287 {
2288 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
2289 {
2290 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
2291
2292 last = emit_note_before (note_type, last);
2293 remove_note (insn, note);
2294 }
2295 }
2296 }
2297
2298 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
2299 static void
2300 move_insn (rtx insn, rtx last, rtx nt)
2301 {
2302 if (PREV_INSN (insn) != last)
2303 {
2304 basic_block bb;
2305 rtx note;
2306 int jump_p = 0;
2307
2308 bb = BLOCK_FOR_INSN (insn);
2309
2310 /* BB_HEAD is either LABEL or NOTE. */
2311 gcc_assert (BB_HEAD (bb) != insn);
2312
2313 if (BB_END (bb) == insn)
2314 /* If this is last instruction in BB, move end marker one
2315 instruction up. */
2316 {
2317 /* Jumps are always placed at the end of basic block. */
2318 jump_p = control_flow_insn_p (insn);
2319
2320 gcc_assert (!jump_p
2321 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
2322 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
2323 || (common_sched_info->sched_pass_id
2324 == SCHED_EBB_PASS));
2325
2326 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
2327
2328 BB_END (bb) = PREV_INSN (insn);
2329 }
2330
2331 gcc_assert (BB_END (bb) != last);
2332
2333 if (jump_p)
2334 /* We move the block note along with jump. */
2335 {
2336 gcc_assert (nt);
2337
2338 note = NEXT_INSN (insn);
2339 while (NOTE_NOT_BB_P (note) && note != nt)
2340 note = NEXT_INSN (note);
2341
2342 if (note != nt
2343 && (LABEL_P (note)
2344 || BARRIER_P (note)))
2345 note = NEXT_INSN (note);
2346
2347 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
2348 }
2349 else
2350 note = insn;
2351
2352 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
2353 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
2354
2355 NEXT_INSN (note) = NEXT_INSN (last);
2356 PREV_INSN (NEXT_INSN (last)) = note;
2357
2358 NEXT_INSN (last) = insn;
2359 PREV_INSN (insn) = last;
2360
2361 bb = BLOCK_FOR_INSN (last);
2362
2363 if (jump_p)
2364 {
2365 fix_jump_move (insn);
2366
2367 if (BLOCK_FOR_INSN (insn) != bb)
2368 move_block_after_check (insn);
2369
2370 gcc_assert (BB_END (bb) == last);
2371 }
2372
2373 df_insn_change_bb (insn, bb);
2374
2375 /* Update BB_END, if needed. */
2376 if (BB_END (bb) == last)
2377 BB_END (bb) = insn;
2378 }
2379
2380 SCHED_GROUP_P (insn) = 0;
2381 }
2382
2383 /* Return true if scheduling INSN will finish current clock cycle. */
2384 static bool
2385 insn_finishes_cycle_p (rtx insn)
2386 {
2387 if (SCHED_GROUP_P (insn))
2388 /* After issuing INSN, rest of the sched_group will be forced to issue
2389 in order. Don't make any plans for the rest of cycle. */
2390 return true;
2391
2392 /* Finishing the block will, apparently, finish the cycle. */
2393 if (current_sched_info->insn_finishes_block_p
2394 && current_sched_info->insn_finishes_block_p (insn))
2395 return true;
2396
2397 return false;
2398 }
2399
2400 /* The following structure describe an entry of the stack of choices. */
2401 struct choice_entry
2402 {
2403 /* Ordinal number of the issued insn in the ready queue. */
2404 int index;
2405 /* The number of the rest insns whose issues we should try. */
2406 int rest;
2407 /* The number of issued essential insns. */
2408 int n;
2409 /* State after issuing the insn. */
2410 state_t state;
2411 };
2412
2413 /* The following array is used to implement a stack of choices used in
2414 function max_issue. */
2415 static struct choice_entry *choice_stack;
2416
2417 /* The following variable value is number of essential insns issued on
2418 the current cycle. An insn is essential one if it changes the
2419 processors state. */
2420 int cycle_issued_insns;
2421
2422 /* This holds the value of the target dfa_lookahead hook. */
2423 int dfa_lookahead;
2424
2425 /* The following variable value is maximal number of tries of issuing
2426 insns for the first cycle multipass insn scheduling. We define
2427 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
2428 need this constraint if all real insns (with non-negative codes)
2429 had reservations because in this case the algorithm complexity is
2430 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
2431 might be incomplete and such insn might occur. For such
2432 descriptions, the complexity of algorithm (without the constraint)
2433 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
2434 static int max_lookahead_tries;
2435
2436 /* The following value is value of hook
2437 `first_cycle_multipass_dfa_lookahead' at the last call of
2438 `max_issue'. */
2439 static int cached_first_cycle_multipass_dfa_lookahead = 0;
2440
2441 /* The following value is value of `issue_rate' at the last call of
2442 `sched_init'. */
2443 static int cached_issue_rate = 0;
2444
2445 /* The following function returns maximal (or close to maximal) number
2446 of insns which can be issued on the same cycle and one of which
2447 insns is insns with the best rank (the first insn in READY). To
2448 make this function tries different samples of ready insns. READY
2449 is current queue `ready'. Global array READY_TRY reflects what
2450 insns are already issued in this try. MAX_POINTS is the sum of points
2451 of all instructions in READY. The function stops immediately,
2452 if it reached the such a solution, that all instruction can be issued.
2453 INDEX will contain index of the best insn in READY. The following
2454 function is used only for first cycle multipass scheduling.
2455
2456 PRIVILEGED_N >= 0
2457
2458 This function expects recognized insns only. All USEs,
2459 CLOBBERs, etc must be filtered elsewhere. */
2460 int
2461 max_issue (struct ready_list *ready, int privileged_n, state_t state,
2462 int *index)
2463 {
2464 int n, i, all, n_ready, best, delay, tries_num, max_points;
2465 int more_issue;
2466 struct choice_entry *top;
2467 rtx insn;
2468
2469 n_ready = ready->n_ready;
2470 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
2471 && privileged_n <= n_ready);
2472
2473 /* Init MAX_LOOKAHEAD_TRIES. */
2474 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
2475 {
2476 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
2477 max_lookahead_tries = 100;
2478 for (i = 0; i < issue_rate; i++)
2479 max_lookahead_tries *= dfa_lookahead;
2480 }
2481
2482 /* Init max_points. */
2483 max_points = 0;
2484 more_issue = issue_rate - cycle_issued_insns;
2485
2486 /* ??? We used to assert here that we never issue more insns than issue_rate.
2487 However, some targets (e.g. MIPS/SB1) claim lower issue rate than can be
2488 achieved to get better performance. Until these targets are fixed to use
2489 scheduler hooks to manipulate insns priority instead, the assert should
2490 be disabled.
2491
2492 gcc_assert (more_issue >= 0); */
2493
2494 for (i = 0; i < n_ready; i++)
2495 if (!ready_try [i])
2496 {
2497 if (more_issue-- > 0)
2498 max_points += ISSUE_POINTS (ready_element (ready, i));
2499 else
2500 break;
2501 }
2502
2503 /* The number of the issued insns in the best solution. */
2504 best = 0;
2505
2506 top = choice_stack;
2507
2508 /* Set initial state of the search. */
2509 memcpy (top->state, state, dfa_state_size);
2510 top->rest = dfa_lookahead;
2511 top->n = 0;
2512
2513 /* Count the number of the insns to search among. */
2514 for (all = i = 0; i < n_ready; i++)
2515 if (!ready_try [i])
2516 all++;
2517
2518 /* I is the index of the insn to try next. */
2519 i = 0;
2520 tries_num = 0;
2521 for (;;)
2522 {
2523 if (/* If we've reached a dead end or searched enough of what we have
2524 been asked... */
2525 top->rest == 0
2526 /* Or have nothing else to try. */
2527 || i >= n_ready)
2528 {
2529 /* ??? (... || i == n_ready). */
2530 gcc_assert (i <= n_ready);
2531
2532 if (top == choice_stack)
2533 break;
2534
2535 if (best < top - choice_stack)
2536 {
2537 if (privileged_n)
2538 {
2539 n = privileged_n;
2540 /* Try to find issued privileged insn. */
2541 while (n && !ready_try[--n]);
2542 }
2543
2544 if (/* If all insns are equally good... */
2545 privileged_n == 0
2546 /* Or a privileged insn will be issued. */
2547 || ready_try[n])
2548 /* Then we have a solution. */
2549 {
2550 best = top - choice_stack;
2551 /* This is the index of the insn issued first in this
2552 solution. */
2553 *index = choice_stack [1].index;
2554 if (top->n == max_points || best == all)
2555 break;
2556 }
2557 }
2558
2559 /* Set ready-list index to point to the last insn
2560 ('i++' below will advance it to the next insn). */
2561 i = top->index;
2562
2563 /* Backtrack. */
2564 ready_try [i] = 0;
2565 top--;
2566 memcpy (state, top->state, dfa_state_size);
2567 }
2568 else if (!ready_try [i])
2569 {
2570 tries_num++;
2571 if (tries_num > max_lookahead_tries)
2572 break;
2573 insn = ready_element (ready, i);
2574 delay = state_transition (state, insn);
2575 if (delay < 0)
2576 {
2577 if (state_dead_lock_p (state)
2578 || insn_finishes_cycle_p (insn))
2579 /* We won't issue any more instructions in the next
2580 choice_state. */
2581 top->rest = 0;
2582 else
2583 top->rest--;
2584
2585 n = top->n;
2586 if (memcmp (top->state, state, dfa_state_size) != 0)
2587 n += ISSUE_POINTS (insn);
2588
2589 /* Advance to the next choice_entry. */
2590 top++;
2591 /* Initialize it. */
2592 top->rest = dfa_lookahead;
2593 top->index = i;
2594 top->n = n;
2595 memcpy (top->state, state, dfa_state_size);
2596
2597 ready_try [i] = 1;
2598 i = -1;
2599 }
2600 }
2601
2602 /* Increase ready-list index. */
2603 i++;
2604 }
2605
2606 /* Restore the original state of the DFA. */
2607 memcpy (state, choice_stack->state, dfa_state_size);
2608
2609 return best;
2610 }
2611
2612 /* The following function chooses insn from READY and modifies
2613 READY. The following function is used only for first
2614 cycle multipass scheduling.
2615 Return:
2616 -1 if cycle should be advanced,
2617 0 if INSN_PTR is set to point to the desirable insn,
2618 1 if choose_ready () should be restarted without advancing the cycle. */
2619 static int
2620 choose_ready (struct ready_list *ready, rtx *insn_ptr)
2621 {
2622 int lookahead;
2623
2624 if (dbg_cnt (sched_insn) == false)
2625 {
2626 rtx insn;
2627
2628 insn = next_nonnote_insn (last_scheduled_insn);
2629
2630 if (QUEUE_INDEX (insn) == QUEUE_READY)
2631 /* INSN is in the ready_list. */
2632 {
2633 ready_remove_insn (insn);
2634 *insn_ptr = insn;
2635 return 0;
2636 }
2637
2638 /* INSN is in the queue. Advance cycle to move it to the ready list. */
2639 return -1;
2640 }
2641
2642 lookahead = 0;
2643
2644 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
2645 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
2646 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
2647 || DEBUG_INSN_P (ready_element (ready, 0)))
2648 {
2649 *insn_ptr = ready_remove_first (ready);
2650 return 0;
2651 }
2652 else
2653 {
2654 /* Try to choose the better insn. */
2655 int index = 0, i, n;
2656 rtx insn;
2657 int try_data = 1, try_control = 1;
2658 ds_t ts;
2659
2660 insn = ready_element (ready, 0);
2661 if (INSN_CODE (insn) < 0)
2662 {
2663 *insn_ptr = ready_remove_first (ready);
2664 return 0;
2665 }
2666
2667 if (spec_info
2668 && spec_info->flags & (PREFER_NON_DATA_SPEC
2669 | PREFER_NON_CONTROL_SPEC))
2670 {
2671 for (i = 0, n = ready->n_ready; i < n; i++)
2672 {
2673 rtx x;
2674 ds_t s;
2675
2676 x = ready_element (ready, i);
2677 s = TODO_SPEC (x);
2678
2679 if (spec_info->flags & PREFER_NON_DATA_SPEC
2680 && !(s & DATA_SPEC))
2681 {
2682 try_data = 0;
2683 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
2684 || !try_control)
2685 break;
2686 }
2687
2688 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
2689 && !(s & CONTROL_SPEC))
2690 {
2691 try_control = 0;
2692 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
2693 break;
2694 }
2695 }
2696 }
2697
2698 ts = TODO_SPEC (insn);
2699 if ((ts & SPECULATIVE)
2700 && (((!try_data && (ts & DATA_SPEC))
2701 || (!try_control && (ts & CONTROL_SPEC)))
2702 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2703 && !targetm.sched
2704 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
2705 /* Discard speculative instruction that stands first in the ready
2706 list. */
2707 {
2708 change_queue_index (insn, 1);
2709 return 1;
2710 }
2711
2712 ready_try[0] = 0;
2713
2714 for (i = 1; i < ready->n_ready; i++)
2715 {
2716 insn = ready_element (ready, i);
2717
2718 ready_try [i]
2719 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2720 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
2721 }
2722
2723 /* Let the target filter the search space. */
2724 for (i = 1; i < ready->n_ready; i++)
2725 if (!ready_try[i])
2726 {
2727 insn = ready_element (ready, i);
2728
2729 #ifdef ENABLE_CHECKING
2730 /* If this insn is recognizable we should have already
2731 recognized it earlier.
2732 ??? Not very clear where this is supposed to be done.
2733 See dep_cost_1. */
2734 gcc_assert (INSN_CODE (insn) >= 0
2735 || recog_memoized (insn) < 0);
2736 #endif
2737
2738 ready_try [i]
2739 = (/* INSN_CODE check can be omitted here as it is also done later
2740 in max_issue (). */
2741 INSN_CODE (insn) < 0
2742 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2743 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2744 (insn)));
2745 }
2746
2747 if (max_issue (ready, 1, curr_state, &index) == 0)
2748 {
2749 *insn_ptr = ready_remove_first (ready);
2750 if (sched_verbose >= 4)
2751 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
2752 (*current_sched_info->print_insn) (*insn_ptr, 0));
2753 return 0;
2754 }
2755 else
2756 {
2757 if (sched_verbose >= 4)
2758 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
2759 (*current_sched_info->print_insn)
2760 (ready_element (ready, index), 0));
2761
2762 *insn_ptr = ready_remove (ready, index);
2763 return 0;
2764 }
2765 }
2766 }
2767
2768 /* Use forward list scheduling to rearrange insns of block pointed to by
2769 TARGET_BB, possibly bringing insns from subsequent blocks in the same
2770 region. */
2771
2772 void
2773 schedule_block (basic_block *target_bb)
2774 {
2775 int i, first_cycle_insn_p;
2776 int can_issue_more;
2777 state_t temp_state = NULL; /* It is used for multipass scheduling. */
2778 int sort_p, advance, start_clock_var;
2779
2780 /* Head/tail info for this block. */
2781 rtx prev_head = current_sched_info->prev_head;
2782 rtx next_tail = current_sched_info->next_tail;
2783 rtx head = NEXT_INSN (prev_head);
2784 rtx tail = PREV_INSN (next_tail);
2785
2786 /* We used to have code to avoid getting parameters moved from hard
2787 argument registers into pseudos.
2788
2789 However, it was removed when it proved to be of marginal benefit
2790 and caused problems because schedule_block and compute_forward_dependences
2791 had different notions of what the "head" insn was. */
2792
2793 gcc_assert (head != tail || INSN_P (head));
2794
2795 haifa_recovery_bb_recently_added_p = false;
2796
2797 /* Debug info. */
2798 if (sched_verbose)
2799 dump_new_block_header (0, *target_bb, head, tail);
2800
2801 state_reset (curr_state);
2802
2803 /* Clear the ready list. */
2804 ready.first = ready.veclen - 1;
2805 ready.n_ready = 0;
2806 ready.n_debug = 0;
2807
2808 /* It is used for first cycle multipass scheduling. */
2809 temp_state = alloca (dfa_state_size);
2810
2811 if (targetm.sched.md_init)
2812 targetm.sched.md_init (sched_dump, sched_verbose, ready.veclen);
2813
2814 /* We start inserting insns after PREV_HEAD. */
2815 last_scheduled_insn = prev_head;
2816
2817 gcc_assert ((NOTE_P (last_scheduled_insn)
2818 || BOUNDARY_DEBUG_INSN_P (last_scheduled_insn))
2819 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
2820
2821 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
2822 queue. */
2823 q_ptr = 0;
2824 q_size = 0;
2825
2826 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
2827 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
2828
2829 /* Start just before the beginning of time. */
2830 clock_var = -1;
2831
2832 /* We need queue and ready lists and clock_var be initialized
2833 in try_ready () (which is called through init_ready_list ()). */
2834 (*current_sched_info->init_ready_list) ();
2835
2836 /* The algorithm is O(n^2) in the number of ready insns at any given
2837 time in the worst case. Before reload we are more likely to have
2838 big lists so truncate them to a reasonable size. */
2839 if (!reload_completed
2840 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
2841 {
2842 ready_sort (&ready);
2843
2844 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
2845 If there are debug insns, we know they're first. */
2846 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
2847 if (!SCHED_GROUP_P (ready_element (&ready, i)))
2848 break;
2849
2850 if (sched_verbose >= 2)
2851 {
2852 fprintf (sched_dump,
2853 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
2854 fprintf (sched_dump,
2855 ";;\t\t before reload => truncated to %d insns\n", i);
2856 }
2857
2858 /* Delay all insns past it for 1 cycle. If debug counter is
2859 activated make an exception for the insn right after
2860 last_scheduled_insn. */
2861 {
2862 rtx skip_insn;
2863
2864 if (dbg_cnt (sched_insn) == false)
2865 skip_insn = next_nonnote_insn (last_scheduled_insn);
2866 else
2867 skip_insn = NULL_RTX;
2868
2869 while (i < ready.n_ready)
2870 {
2871 rtx insn;
2872
2873 insn = ready_remove (&ready, i);
2874
2875 if (insn != skip_insn)
2876 queue_insn (insn, 1);
2877 }
2878 }
2879 }
2880
2881 /* Now we can restore basic block notes and maintain precise cfg. */
2882 restore_bb_notes (*target_bb);
2883
2884 last_clock_var = -1;
2885
2886 advance = 0;
2887
2888 sort_p = TRUE;
2889 /* Loop until all the insns in BB are scheduled. */
2890 while ((*current_sched_info->schedule_more_p) ())
2891 {
2892 do
2893 {
2894 start_clock_var = clock_var;
2895
2896 clock_var++;
2897
2898 advance_one_cycle ();
2899
2900 /* Add to the ready list all pending insns that can be issued now.
2901 If there are no ready insns, increment clock until one
2902 is ready and add all pending insns at that point to the ready
2903 list. */
2904 queue_to_ready (&ready);
2905
2906 gcc_assert (ready.n_ready);
2907
2908 if (sched_verbose >= 2)
2909 {
2910 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
2911 debug_ready_list (&ready);
2912 }
2913 advance -= clock_var - start_clock_var;
2914 }
2915 while (advance > 0);
2916
2917 if (sort_p)
2918 {
2919 /* Sort the ready list based on priority. */
2920 ready_sort (&ready);
2921
2922 if (sched_verbose >= 2)
2923 {
2924 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
2925 debug_ready_list (&ready);
2926 }
2927 }
2928
2929 /* We don't want md sched reorder to even see debug isns, so put
2930 them out right away. */
2931 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
2932 {
2933 if (control_flow_insn_p (last_scheduled_insn))
2934 {
2935 *target_bb = current_sched_info->advance_target_bb
2936 (*target_bb, 0);
2937
2938 if (sched_verbose)
2939 {
2940 rtx x;
2941
2942 x = next_real_insn (last_scheduled_insn);
2943 gcc_assert (x);
2944 dump_new_block_header (1, *target_bb, x, tail);
2945 }
2946
2947 last_scheduled_insn = bb_note (*target_bb);
2948 }
2949
2950 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
2951 {
2952 rtx insn = ready_remove_first (&ready);
2953 gcc_assert (DEBUG_INSN_P (insn));
2954 (*current_sched_info->begin_schedule_ready) (insn,
2955 last_scheduled_insn);
2956 move_insn (insn, last_scheduled_insn,
2957 current_sched_info->next_tail);
2958 last_scheduled_insn = insn;
2959 advance = schedule_insn (insn);
2960 gcc_assert (advance == 0);
2961 if (ready.n_ready > 0)
2962 ready_sort (&ready);
2963 }
2964
2965 if (!ready.n_ready)
2966 continue;
2967 }
2968
2969 /* Allow the target to reorder the list, typically for
2970 better instruction bundling. */
2971 if (sort_p && targetm.sched.reorder
2972 && (ready.n_ready == 0
2973 || !SCHED_GROUP_P (ready_element (&ready, 0))))
2974 can_issue_more =
2975 targetm.sched.reorder (sched_dump, sched_verbose,
2976 ready_lastpos (&ready),
2977 &ready.n_ready, clock_var);
2978 else
2979 can_issue_more = issue_rate;
2980
2981 first_cycle_insn_p = 1;
2982 cycle_issued_insns = 0;
2983 for (;;)
2984 {
2985 rtx insn;
2986 int cost;
2987 bool asm_p = false;
2988
2989 if (sched_verbose >= 2)
2990 {
2991 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
2992 clock_var);
2993 debug_ready_list (&ready);
2994 if (sched_pressure_p)
2995 print_curr_reg_pressure ();
2996 }
2997
2998 if (ready.n_ready == 0
2999 && can_issue_more
3000 && reload_completed)
3001 {
3002 /* Allow scheduling insns directly from the queue in case
3003 there's nothing better to do (ready list is empty) but
3004 there are still vacant dispatch slots in the current cycle. */
3005 if (sched_verbose >= 6)
3006 fprintf (sched_dump,";;\t\tSecond chance\n");
3007 memcpy (temp_state, curr_state, dfa_state_size);
3008 if (early_queue_to_ready (temp_state, &ready))
3009 ready_sort (&ready);
3010 }
3011
3012 if (ready.n_ready == 0
3013 || !can_issue_more
3014 || state_dead_lock_p (curr_state)
3015 || !(*current_sched_info->schedule_more_p) ())
3016 break;
3017
3018 /* Select and remove the insn from the ready list. */
3019 if (sort_p)
3020 {
3021 int res;
3022
3023 insn = NULL_RTX;
3024 res = choose_ready (&ready, &insn);
3025
3026 if (res < 0)
3027 /* Finish cycle. */
3028 break;
3029 if (res > 0)
3030 /* Restart choose_ready (). */
3031 continue;
3032
3033 gcc_assert (insn != NULL_RTX);
3034 }
3035 else
3036 insn = ready_remove_first (&ready);
3037
3038 if (sched_pressure_p && INSN_TICK (insn) > clock_var)
3039 {
3040 ready_add (&ready, insn, true);
3041 advance = 1;
3042 break;
3043 }
3044
3045 if (targetm.sched.dfa_new_cycle
3046 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
3047 insn, last_clock_var,
3048 clock_var, &sort_p))
3049 /* SORT_P is used by the target to override sorting
3050 of the ready list. This is needed when the target
3051 has modified its internal structures expecting that
3052 the insn will be issued next. As we need the insn
3053 to have the highest priority (so it will be returned by
3054 the ready_remove_first call above), we invoke
3055 ready_add (&ready, insn, true).
3056 But, still, there is one issue: INSN can be later
3057 discarded by scheduler's front end through
3058 current_sched_info->can_schedule_ready_p, hence, won't
3059 be issued next. */
3060 {
3061 ready_add (&ready, insn, true);
3062 break;
3063 }
3064
3065 sort_p = TRUE;
3066 memcpy (temp_state, curr_state, dfa_state_size);
3067 if (recog_memoized (insn) < 0)
3068 {
3069 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
3070 || asm_noperands (PATTERN (insn)) >= 0);
3071 if (!first_cycle_insn_p && asm_p)
3072 /* This is asm insn which is tried to be issued on the
3073 cycle not first. Issue it on the next cycle. */
3074 cost = 1;
3075 else
3076 /* A USE insn, or something else we don't need to
3077 understand. We can't pass these directly to
3078 state_transition because it will trigger a
3079 fatal error for unrecognizable insns. */
3080 cost = 0;
3081 }
3082 else if (sched_pressure_p)
3083 cost = 0;
3084 else
3085 {
3086 cost = state_transition (temp_state, insn);
3087 if (cost < 0)
3088 cost = 0;
3089 else if (cost == 0)
3090 cost = 1;
3091 }
3092
3093 if (cost >= 1)
3094 {
3095 queue_insn (insn, cost);
3096 if (SCHED_GROUP_P (insn))
3097 {
3098 advance = cost;
3099 break;
3100 }
3101
3102 continue;
3103 }
3104
3105 if (current_sched_info->can_schedule_ready_p
3106 && ! (*current_sched_info->can_schedule_ready_p) (insn))
3107 /* We normally get here only if we don't want to move
3108 insn from the split block. */
3109 {
3110 TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
3111 continue;
3112 }
3113
3114 /* DECISION is made. */
3115
3116 if (TODO_SPEC (insn) & SPECULATIVE)
3117 generate_recovery_code (insn);
3118
3119 if (control_flow_insn_p (last_scheduled_insn)
3120 /* This is used to switch basic blocks by request
3121 from scheduler front-end (actually, sched-ebb.c only).
3122 This is used to process blocks with single fallthru
3123 edge. If succeeding block has jump, it [jump] will try
3124 move at the end of current bb, thus corrupting CFG. */
3125 || current_sched_info->advance_target_bb (*target_bb, insn))
3126 {
3127 *target_bb = current_sched_info->advance_target_bb
3128 (*target_bb, 0);
3129
3130 if (sched_verbose)
3131 {
3132 rtx x;
3133
3134 x = next_real_insn (last_scheduled_insn);
3135 gcc_assert (x);
3136 dump_new_block_header (1, *target_bb, x, tail);
3137 }
3138
3139 last_scheduled_insn = bb_note (*target_bb);
3140 }
3141
3142 /* Update counters, etc in the scheduler's front end. */
3143 (*current_sched_info->begin_schedule_ready) (insn,
3144 last_scheduled_insn);
3145
3146 move_insn (insn, last_scheduled_insn, current_sched_info->next_tail);
3147 reemit_notes (insn);
3148 last_scheduled_insn = insn;
3149
3150 if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
3151 {
3152 cycle_issued_insns++;
3153 memcpy (curr_state, temp_state, dfa_state_size);
3154 }
3155
3156 if (targetm.sched.variable_issue)
3157 can_issue_more =
3158 targetm.sched.variable_issue (sched_dump, sched_verbose,
3159 insn, can_issue_more);
3160 /* A naked CLOBBER or USE generates no instruction, so do
3161 not count them against the issue rate. */
3162 else if (GET_CODE (PATTERN (insn)) != USE
3163 && GET_CODE (PATTERN (insn)) != CLOBBER)
3164 can_issue_more--;
3165 advance = schedule_insn (insn);
3166
3167 /* After issuing an asm insn we should start a new cycle. */
3168 if (advance == 0 && asm_p)
3169 advance = 1;
3170 if (advance != 0)
3171 break;
3172
3173 first_cycle_insn_p = 0;
3174
3175 /* Sort the ready list based on priority. This must be
3176 redone here, as schedule_insn may have readied additional
3177 insns that will not be sorted correctly. */
3178 if (ready.n_ready > 0)
3179 ready_sort (&ready);
3180
3181 /* Quickly go through debug insns such that md sched
3182 reorder2 doesn't have to deal with debug insns. */
3183 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
3184 && (*current_sched_info->schedule_more_p) ())
3185 {
3186 if (control_flow_insn_p (last_scheduled_insn))
3187 {
3188 *target_bb = current_sched_info->advance_target_bb
3189 (*target_bb, 0);
3190
3191 if (sched_verbose)
3192 {
3193 rtx x;
3194
3195 x = next_real_insn (last_scheduled_insn);
3196 gcc_assert (x);
3197 dump_new_block_header (1, *target_bb, x, tail);
3198 }
3199
3200 last_scheduled_insn = bb_note (*target_bb);
3201 }
3202
3203 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
3204 {
3205 insn = ready_remove_first (&ready);
3206 gcc_assert (DEBUG_INSN_P (insn));
3207 (*current_sched_info->begin_schedule_ready)
3208 (insn, last_scheduled_insn);
3209 move_insn (insn, last_scheduled_insn,
3210 current_sched_info->next_tail);
3211 advance = schedule_insn (insn);
3212 last_scheduled_insn = insn;
3213 gcc_assert (advance == 0);
3214 if (ready.n_ready > 0)
3215 ready_sort (&ready);
3216 }
3217 }
3218
3219 if (targetm.sched.reorder2
3220 && (ready.n_ready == 0
3221 || !SCHED_GROUP_P (ready_element (&ready, 0))))
3222 {
3223 can_issue_more =
3224 targetm.sched.reorder2 (sched_dump, sched_verbose,
3225 ready.n_ready
3226 ? ready_lastpos (&ready) : NULL,
3227 &ready.n_ready, clock_var);
3228 }
3229 }
3230 }
3231
3232 /* Debug info. */
3233 if (sched_verbose)
3234 {
3235 fprintf (sched_dump, ";;\tReady list (final): ");
3236 debug_ready_list (&ready);
3237 }
3238
3239 if (current_sched_info->queue_must_finish_empty)
3240 /* Sanity check -- queue must be empty now. Meaningless if region has
3241 multiple bbs. */
3242 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
3243 else
3244 {
3245 /* We must maintain QUEUE_INDEX between blocks in region. */
3246 for (i = ready.n_ready - 1; i >= 0; i--)
3247 {
3248 rtx x;
3249
3250 x = ready_element (&ready, i);
3251 QUEUE_INDEX (x) = QUEUE_NOWHERE;
3252 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
3253 }
3254
3255 if (q_size)
3256 for (i = 0; i <= max_insn_queue_index; i++)
3257 {
3258 rtx link;
3259 for (link = insn_queue[i]; link; link = XEXP (link, 1))
3260 {
3261 rtx x;
3262
3263 x = XEXP (link, 0);
3264 QUEUE_INDEX (x) = QUEUE_NOWHERE;
3265 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
3266 }
3267 free_INSN_LIST_list (&insn_queue[i]);
3268 }
3269 }
3270
3271 if (sched_verbose)
3272 fprintf (sched_dump, ";; total time = %d\n", clock_var);
3273
3274 if (!current_sched_info->queue_must_finish_empty
3275 || haifa_recovery_bb_recently_added_p)
3276 {
3277 /* INSN_TICK (minimum clock tick at which the insn becomes
3278 ready) may be not correct for the insn in the subsequent
3279 blocks of the region. We should use a correct value of
3280 `clock_var' or modify INSN_TICK. It is better to keep
3281 clock_var value equal to 0 at the start of a basic block.
3282 Therefore we modify INSN_TICK here. */
3283 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
3284 }
3285
3286 if (targetm.sched.md_finish)
3287 {
3288 targetm.sched.md_finish (sched_dump, sched_verbose);
3289 /* Target might have added some instructions to the scheduled block
3290 in its md_finish () hook. These new insns don't have any data
3291 initialized and to identify them we extend h_i_d so that they'll
3292 get zero luids. */
3293 sched_init_luids (NULL, NULL, NULL, NULL);
3294 }
3295
3296 if (sched_verbose)
3297 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
3298 INSN_UID (head), INSN_UID (tail));
3299
3300 /* Update head/tail boundaries. */
3301 head = NEXT_INSN (prev_head);
3302 tail = last_scheduled_insn;
3303
3304 head = restore_other_notes (head, NULL);
3305
3306 current_sched_info->head = head;
3307 current_sched_info->tail = tail;
3308 }
3309 \f
3310 /* Set_priorities: compute priority of each insn in the block. */
3311
3312 int
3313 set_priorities (rtx head, rtx tail)
3314 {
3315 rtx insn;
3316 int n_insn;
3317 int sched_max_insns_priority =
3318 current_sched_info->sched_max_insns_priority;
3319 rtx prev_head;
3320
3321 if (head == tail && (! INSN_P (head) || BOUNDARY_DEBUG_INSN_P (head)))
3322 gcc_unreachable ();
3323
3324 n_insn = 0;
3325
3326 prev_head = PREV_INSN (head);
3327 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
3328 {
3329 if (!INSN_P (insn))
3330 continue;
3331
3332 n_insn++;
3333 (void) priority (insn);
3334
3335 gcc_assert (INSN_PRIORITY_KNOWN (insn));
3336
3337 sched_max_insns_priority = MAX (sched_max_insns_priority,
3338 INSN_PRIORITY (insn));
3339 }
3340
3341 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
3342
3343 return n_insn;
3344 }
3345
3346 /* Set dump and sched_verbose for the desired debugging output. If no
3347 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
3348 For -fsched-verbose=N, N>=10, print everything to stderr. */
3349 void
3350 setup_sched_dump (void)
3351 {
3352 sched_verbose = sched_verbose_param;
3353 if (sched_verbose_param == 0 && dump_file)
3354 sched_verbose = 1;
3355 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
3356 ? stderr : dump_file);
3357 }
3358
3359 /* Initialize some global state for the scheduler. This function works
3360 with the common data shared between all the schedulers. It is called
3361 from the scheduler specific initialization routine. */
3362
3363 void
3364 sched_init (void)
3365 {
3366 /* Disable speculative loads in their presence if cc0 defined. */
3367 #ifdef HAVE_cc0
3368 flag_schedule_speculative_load = 0;
3369 #endif
3370
3371 sched_pressure_p = (flag_sched_pressure && ! reload_completed
3372 && common_sched_info->sched_pass_id == SCHED_RGN_PASS);
3373 if (sched_pressure_p)
3374 ira_setup_eliminable_regset ();
3375
3376 /* Initialize SPEC_INFO. */
3377 if (targetm.sched.set_sched_flags)
3378 {
3379 spec_info = &spec_info_var;
3380 targetm.sched.set_sched_flags (spec_info);
3381
3382 if (spec_info->mask != 0)
3383 {
3384 spec_info->data_weakness_cutoff =
3385 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
3386 spec_info->control_weakness_cutoff =
3387 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
3388 * REG_BR_PROB_BASE) / 100;
3389 }
3390 else
3391 /* So we won't read anything accidentally. */
3392 spec_info = NULL;
3393
3394 }
3395 else
3396 /* So we won't read anything accidentally. */
3397 spec_info = 0;
3398
3399 /* Initialize issue_rate. */
3400 if (targetm.sched.issue_rate)
3401 issue_rate = targetm.sched.issue_rate ();
3402 else
3403 issue_rate = 1;
3404
3405 if (cached_issue_rate != issue_rate)
3406 {
3407 cached_issue_rate = issue_rate;
3408 /* To invalidate max_lookahead_tries: */
3409 cached_first_cycle_multipass_dfa_lookahead = 0;
3410 }
3411
3412 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
3413 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
3414 else
3415 dfa_lookahead = 0;
3416
3417 if (targetm.sched.init_dfa_pre_cycle_insn)
3418 targetm.sched.init_dfa_pre_cycle_insn ();
3419
3420 if (targetm.sched.init_dfa_post_cycle_insn)
3421 targetm.sched.init_dfa_post_cycle_insn ();
3422
3423 dfa_start ();
3424 dfa_state_size = state_size ();
3425
3426 init_alias_analysis ();
3427
3428 df_set_flags (DF_LR_RUN_DCE);
3429 df_note_add_problem ();
3430
3431 /* More problems needed for interloop dep calculation in SMS. */
3432 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
3433 {
3434 df_rd_add_problem ();
3435 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
3436 }
3437
3438 df_analyze ();
3439
3440 /* Do not run DCE after reload, as this can kill nops inserted
3441 by bundling. */
3442 if (reload_completed)
3443 df_clear_flags (DF_LR_RUN_DCE);
3444
3445 regstat_compute_calls_crossed ();
3446
3447 if (targetm.sched.md_init_global)
3448 targetm.sched.md_init_global (sched_dump, sched_verbose,
3449 get_max_uid () + 1);
3450
3451 if (sched_pressure_p)
3452 {
3453 int i, max_regno = max_reg_num ();
3454
3455 ira_set_pseudo_classes (sched_verbose ? sched_dump : NULL);
3456 sched_regno_cover_class
3457 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
3458 for (i = 0; i < max_regno; i++)
3459 sched_regno_cover_class[i]
3460 = (i < FIRST_PSEUDO_REGISTER
3461 ? ira_class_translate[REGNO_REG_CLASS (i)]
3462 : reg_cover_class (i));
3463 curr_reg_live = BITMAP_ALLOC (NULL);
3464 saved_reg_live = BITMAP_ALLOC (NULL);
3465 region_ref_regs = BITMAP_ALLOC (NULL);
3466 }
3467
3468 curr_state = xmalloc (dfa_state_size);
3469 }
3470
3471 static void haifa_init_only_bb (basic_block, basic_block);
3472
3473 /* Initialize data structures specific to the Haifa scheduler. */
3474 void
3475 haifa_sched_init (void)
3476 {
3477 setup_sched_dump ();
3478 sched_init ();
3479
3480 if (spec_info != NULL)
3481 {
3482 sched_deps_info->use_deps_list = 1;
3483 sched_deps_info->generate_spec_deps = 1;
3484 }
3485
3486 /* Initialize luids, dependency caches, target and h_i_d for the
3487 whole function. */
3488 {
3489 bb_vec_t bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
3490 basic_block bb;
3491
3492 sched_init_bbs ();
3493
3494 FOR_EACH_BB (bb)
3495 VEC_quick_push (basic_block, bbs, bb);
3496 sched_init_luids (bbs, NULL, NULL, NULL);
3497 sched_deps_init (true);
3498 sched_extend_target ();
3499 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
3500
3501 VEC_free (basic_block, heap, bbs);
3502 }
3503
3504 sched_init_only_bb = haifa_init_only_bb;
3505 sched_split_block = sched_split_block_1;
3506 sched_create_empty_bb = sched_create_empty_bb_1;
3507 haifa_recovery_bb_ever_added_p = false;
3508
3509 #ifdef ENABLE_CHECKING
3510 /* This is used preferably for finding bugs in check_cfg () itself.
3511 We must call sched_bbs_init () before check_cfg () because check_cfg ()
3512 assumes that the last insn in the last bb has a non-null successor. */
3513 check_cfg (0, 0);
3514 #endif
3515
3516 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
3517 before_recovery = 0;
3518 after_recovery = 0;
3519 }
3520
3521 /* Finish work with the data specific to the Haifa scheduler. */
3522 void
3523 haifa_sched_finish (void)
3524 {
3525 sched_create_empty_bb = NULL;
3526 sched_split_block = NULL;
3527 sched_init_only_bb = NULL;
3528
3529 if (spec_info && spec_info->dump)
3530 {
3531 char c = reload_completed ? 'a' : 'b';
3532
3533 fprintf (spec_info->dump,
3534 ";; %s:\n", current_function_name ());
3535
3536 fprintf (spec_info->dump,
3537 ";; Procedure %cr-begin-data-spec motions == %d\n",
3538 c, nr_begin_data);
3539 fprintf (spec_info->dump,
3540 ";; Procedure %cr-be-in-data-spec motions == %d\n",
3541 c, nr_be_in_data);
3542 fprintf (spec_info->dump,
3543 ";; Procedure %cr-begin-control-spec motions == %d\n",
3544 c, nr_begin_control);
3545 fprintf (spec_info->dump,
3546 ";; Procedure %cr-be-in-control-spec motions == %d\n",
3547 c, nr_be_in_control);
3548 }
3549
3550 /* Finalize h_i_d, dependency caches, and luids for the whole
3551 function. Target will be finalized in md_global_finish (). */
3552 sched_deps_finish ();
3553 sched_finish_luids ();
3554 current_sched_info = NULL;
3555 sched_finish ();
3556 }
3557
3558 /* Free global data used during insn scheduling. This function works with
3559 the common data shared between the schedulers. */
3560
3561 void
3562 sched_finish (void)
3563 {
3564 haifa_finish_h_i_d ();
3565 if (sched_pressure_p)
3566 {
3567 free (sched_regno_cover_class);
3568 BITMAP_FREE (region_ref_regs);
3569 BITMAP_FREE (saved_reg_live);
3570 BITMAP_FREE (curr_reg_live);
3571 }
3572 free (curr_state);
3573
3574 if (targetm.sched.md_finish_global)
3575 targetm.sched.md_finish_global (sched_dump, sched_verbose);
3576
3577 end_alias_analysis ();
3578
3579 regstat_free_calls_crossed ();
3580
3581 dfa_finish ();
3582
3583 #ifdef ENABLE_CHECKING
3584 /* After reload ia64 backend clobbers CFG, so can't check anything. */
3585 if (!reload_completed)
3586 check_cfg (0, 0);
3587 #endif
3588 }
3589
3590 /* Fix INSN_TICKs of the instructions in the current block as well as
3591 INSN_TICKs of their dependents.
3592 HEAD and TAIL are the begin and the end of the current scheduled block. */
3593 static void
3594 fix_inter_tick (rtx head, rtx tail)
3595 {
3596 /* Set of instructions with corrected INSN_TICK. */
3597 bitmap_head processed;
3598 /* ??? It is doubtful if we should assume that cycle advance happens on
3599 basic block boundaries. Basically insns that are unconditionally ready
3600 on the start of the block are more preferable then those which have
3601 a one cycle dependency over insn from the previous block. */
3602 int next_clock = clock_var + 1;
3603
3604 bitmap_initialize (&processed, 0);
3605
3606 /* Iterates over scheduled instructions and fix their INSN_TICKs and
3607 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
3608 across different blocks. */
3609 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
3610 {
3611 if (INSN_P (head))
3612 {
3613 int tick;
3614 sd_iterator_def sd_it;
3615 dep_t dep;
3616
3617 tick = INSN_TICK (head);
3618 gcc_assert (tick >= MIN_TICK);
3619
3620 /* Fix INSN_TICK of instruction from just scheduled block. */
3621 if (!bitmap_bit_p (&processed, INSN_LUID (head)))
3622 {
3623 bitmap_set_bit (&processed, INSN_LUID (head));
3624 tick -= next_clock;
3625
3626 if (tick < MIN_TICK)
3627 tick = MIN_TICK;
3628
3629 INSN_TICK (head) = tick;
3630 }
3631
3632 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
3633 {
3634 rtx next;
3635
3636 next = DEP_CON (dep);
3637 tick = INSN_TICK (next);
3638
3639 if (tick != INVALID_TICK
3640 /* If NEXT has its INSN_TICK calculated, fix it.
3641 If not - it will be properly calculated from
3642 scratch later in fix_tick_ready. */
3643 && !bitmap_bit_p (&processed, INSN_LUID (next)))
3644 {
3645 bitmap_set_bit (&processed, INSN_LUID (next));
3646 tick -= next_clock;
3647
3648 if (tick < MIN_TICK)
3649 tick = MIN_TICK;
3650
3651 if (tick > INTER_TICK (next))
3652 INTER_TICK (next) = tick;
3653 else
3654 tick = INTER_TICK (next);
3655
3656 INSN_TICK (next) = tick;
3657 }
3658 }
3659 }
3660 }
3661 bitmap_clear (&processed);
3662 }
3663
3664 static int haifa_speculate_insn (rtx, ds_t, rtx *);
3665
3666 /* Check if NEXT is ready to be added to the ready or queue list.
3667 If "yes", add it to the proper list.
3668 Returns:
3669 -1 - is not ready yet,
3670 0 - added to the ready list,
3671 0 < N - queued for N cycles. */
3672 int
3673 try_ready (rtx next)
3674 {
3675 ds_t old_ts, *ts;
3676
3677 ts = &TODO_SPEC (next);
3678 old_ts = *ts;
3679
3680 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP))
3681 && ((old_ts & HARD_DEP)
3682 || (old_ts & SPECULATIVE)));
3683
3684 if (sd_lists_empty_p (next, SD_LIST_BACK))
3685 /* NEXT has all its dependencies resolved. */
3686 {
3687 /* Remove HARD_DEP bit from NEXT's status. */
3688 *ts &= ~HARD_DEP;
3689
3690 if (current_sched_info->flags & DO_SPECULATION)
3691 /* Remove all speculative bits from NEXT's status. */
3692 *ts &= ~SPECULATIVE;
3693 }
3694 else
3695 {
3696 /* One of the NEXT's dependencies has been resolved.
3697 Recalculate NEXT's status. */
3698
3699 *ts &= ~SPECULATIVE & ~HARD_DEP;
3700
3701 if (sd_lists_empty_p (next, SD_LIST_HARD_BACK))
3702 /* Now we've got NEXT with speculative deps only.
3703 1. Look at the deps to see what we have to do.
3704 2. Check if we can do 'todo'. */
3705 {
3706 sd_iterator_def sd_it;
3707 dep_t dep;
3708 bool first_p = true;
3709
3710 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
3711 {
3712 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
3713
3714 if (DEBUG_INSN_P (DEP_PRO (dep))
3715 && !DEBUG_INSN_P (next))
3716 continue;
3717
3718 if (first_p)
3719 {
3720 first_p = false;
3721
3722 *ts = ds;
3723 }
3724 else
3725 *ts = ds_merge (*ts, ds);
3726 }
3727
3728 if (ds_weak (*ts) < spec_info->data_weakness_cutoff)
3729 /* Too few points. */
3730 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3731 }
3732 else
3733 *ts |= HARD_DEP;
3734 }
3735
3736 if (*ts & HARD_DEP)
3737 gcc_assert (*ts == old_ts
3738 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
3739 else if (current_sched_info->new_ready)
3740 *ts = current_sched_info->new_ready (next, *ts);
3741
3742 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
3743 have its original pattern or changed (speculative) one. This is due
3744 to changing ebb in region scheduling.
3745 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
3746 has speculative pattern.
3747
3748 We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
3749 control-speculative NEXT could have been discarded by sched-rgn.c
3750 (the same case as when discarded by can_schedule_ready_p ()). */
3751
3752 if ((*ts & SPECULATIVE)
3753 /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
3754 need to change anything. */
3755 && *ts != old_ts)
3756 {
3757 int res;
3758 rtx new_pat;
3759
3760 gcc_assert ((*ts & SPECULATIVE) && !(*ts & ~SPECULATIVE));
3761
3762 res = haifa_speculate_insn (next, *ts, &new_pat);
3763
3764 switch (res)
3765 {
3766 case -1:
3767 /* It would be nice to change DEP_STATUS of all dependences,
3768 which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
3769 so we won't reanalyze anything. */
3770 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3771 break;
3772
3773 case 0:
3774 /* We follow the rule, that every speculative insn
3775 has non-null ORIG_PAT. */
3776 if (!ORIG_PAT (next))
3777 ORIG_PAT (next) = PATTERN (next);
3778 break;
3779
3780 case 1:
3781 if (!ORIG_PAT (next))
3782 /* If we gonna to overwrite the original pattern of insn,
3783 save it. */
3784 ORIG_PAT (next) = PATTERN (next);
3785
3786 haifa_change_pattern (next, new_pat);
3787 break;
3788
3789 default:
3790 gcc_unreachable ();
3791 }
3792 }
3793
3794 /* We need to restore pattern only if (*ts == 0), because otherwise it is
3795 either correct (*ts & SPECULATIVE),
3796 or we simply don't care (*ts & HARD_DEP). */
3797
3798 gcc_assert (!ORIG_PAT (next)
3799 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
3800
3801 if (*ts & HARD_DEP)
3802 {
3803 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
3804 control-speculative NEXT could have been discarded by sched-rgn.c
3805 (the same case as when discarded by can_schedule_ready_p ()). */
3806 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
3807
3808 change_queue_index (next, QUEUE_NOWHERE);
3809 return -1;
3810 }
3811 else if (!(*ts & BEGIN_SPEC) && ORIG_PAT (next) && !IS_SPECULATION_CHECK_P (next))
3812 /* We should change pattern of every previously speculative
3813 instruction - and we determine if NEXT was speculative by using
3814 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
3815 pat too, so skip them. */
3816 {
3817 haifa_change_pattern (next, ORIG_PAT (next));
3818 ORIG_PAT (next) = 0;
3819 }
3820
3821 if (sched_verbose >= 2)
3822 {
3823 int s = TODO_SPEC (next);
3824
3825 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
3826 (*current_sched_info->print_insn) (next, 0));
3827
3828 if (spec_info && spec_info->dump)
3829 {
3830 if (s & BEGIN_DATA)
3831 fprintf (spec_info->dump, "; data-spec;");
3832 if (s & BEGIN_CONTROL)
3833 fprintf (spec_info->dump, "; control-spec;");
3834 if (s & BE_IN_CONTROL)
3835 fprintf (spec_info->dump, "; in-control-spec;");
3836 }
3837
3838 fprintf (sched_dump, "\n");
3839 }
3840
3841 adjust_priority (next);
3842
3843 return fix_tick_ready (next);
3844 }
3845
3846 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
3847 static int
3848 fix_tick_ready (rtx next)
3849 {
3850 int tick, delay;
3851
3852 if (!sd_lists_empty_p (next, SD_LIST_RES_BACK))
3853 {
3854 int full_p;
3855 sd_iterator_def sd_it;
3856 dep_t dep;
3857
3858 tick = INSN_TICK (next);
3859 /* if tick is not equal to INVALID_TICK, then update
3860 INSN_TICK of NEXT with the most recent resolved dependence
3861 cost. Otherwise, recalculate from scratch. */
3862 full_p = (tick == INVALID_TICK);
3863
3864 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
3865 {
3866 rtx pro = DEP_PRO (dep);
3867 int tick1;
3868
3869 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
3870
3871 tick1 = INSN_TICK (pro) + dep_cost (dep);
3872 if (tick1 > tick)
3873 tick = tick1;
3874
3875 if (!full_p)
3876 break;
3877 }
3878 }
3879 else
3880 tick = -1;
3881
3882 INSN_TICK (next) = tick;
3883
3884 delay = tick - clock_var;
3885 if (delay <= 0 || sched_pressure_p)
3886 delay = QUEUE_READY;
3887
3888 change_queue_index (next, delay);
3889
3890 return delay;
3891 }
3892
3893 /* Move NEXT to the proper queue list with (DELAY >= 1),
3894 or add it to the ready list (DELAY == QUEUE_READY),
3895 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
3896 static void
3897 change_queue_index (rtx next, int delay)
3898 {
3899 int i = QUEUE_INDEX (next);
3900
3901 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
3902 && delay != 0);
3903 gcc_assert (i != QUEUE_SCHEDULED);
3904
3905 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
3906 || (delay < 0 && delay == i))
3907 /* We have nothing to do. */
3908 return;
3909
3910 /* Remove NEXT from wherever it is now. */
3911 if (i == QUEUE_READY)
3912 ready_remove_insn (next);
3913 else if (i >= 0)
3914 queue_remove (next);
3915
3916 /* Add it to the proper place. */
3917 if (delay == QUEUE_READY)
3918 ready_add (readyp, next, false);
3919 else if (delay >= 1)
3920 queue_insn (next, delay);
3921
3922 if (sched_verbose >= 2)
3923 {
3924 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
3925 (*current_sched_info->print_insn) (next, 0));
3926
3927 if (delay == QUEUE_READY)
3928 fprintf (sched_dump, " into ready\n");
3929 else if (delay >= 1)
3930 fprintf (sched_dump, " into queue with cost=%d\n", delay);
3931 else
3932 fprintf (sched_dump, " removed from ready or queue lists\n");
3933 }
3934 }
3935
3936 static int sched_ready_n_insns = -1;
3937
3938 /* Initialize per region data structures. */
3939 void
3940 sched_extend_ready_list (int new_sched_ready_n_insns)
3941 {
3942 int i;
3943
3944 if (sched_ready_n_insns == -1)
3945 /* At the first call we need to initialize one more choice_stack
3946 entry. */
3947 {
3948 i = 0;
3949 sched_ready_n_insns = 0;
3950 }
3951 else
3952 i = sched_ready_n_insns + 1;
3953
3954 ready.veclen = new_sched_ready_n_insns + issue_rate;
3955 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
3956
3957 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
3958
3959 ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
3960 sched_ready_n_insns, sizeof (*ready_try));
3961
3962 /* We allocate +1 element to save initial state in the choice_stack[0]
3963 entry. */
3964 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
3965 new_sched_ready_n_insns + 1);
3966
3967 for (; i <= new_sched_ready_n_insns; i++)
3968 choice_stack[i].state = xmalloc (dfa_state_size);
3969
3970 sched_ready_n_insns = new_sched_ready_n_insns;
3971 }
3972
3973 /* Free per region data structures. */
3974 void
3975 sched_finish_ready_list (void)
3976 {
3977 int i;
3978
3979 free (ready.vec);
3980 ready.vec = NULL;
3981 ready.veclen = 0;
3982
3983 free (ready_try);
3984 ready_try = NULL;
3985
3986 for (i = 0; i <= sched_ready_n_insns; i++)
3987 free (choice_stack [i].state);
3988 free (choice_stack);
3989 choice_stack = NULL;
3990
3991 sched_ready_n_insns = -1;
3992 }
3993
3994 static int
3995 haifa_luid_for_non_insn (rtx x)
3996 {
3997 gcc_assert (NOTE_P (x) || LABEL_P (x));
3998
3999 return 0;
4000 }
4001
4002 /* Generates recovery code for INSN. */
4003 static void
4004 generate_recovery_code (rtx insn)
4005 {
4006 if (TODO_SPEC (insn) & BEGIN_SPEC)
4007 begin_speculative_block (insn);
4008
4009 /* Here we have insn with no dependencies to
4010 instructions other then CHECK_SPEC ones. */
4011
4012 if (TODO_SPEC (insn) & BE_IN_SPEC)
4013 add_to_speculative_block (insn);
4014 }
4015
4016 /* Helper function.
4017 Tries to add speculative dependencies of type FS between instructions
4018 in deps_list L and TWIN. */
4019 static void
4020 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
4021 {
4022 sd_iterator_def sd_it;
4023 dep_t dep;
4024
4025 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
4026 {
4027 ds_t ds;
4028 rtx consumer;
4029
4030 consumer = DEP_CON (dep);
4031
4032 ds = DEP_STATUS (dep);
4033
4034 if (/* If we want to create speculative dep. */
4035 fs
4036 /* And we can do that because this is a true dep. */
4037 && (ds & DEP_TYPES) == DEP_TRUE)
4038 {
4039 gcc_assert (!(ds & BE_IN_SPEC));
4040
4041 if (/* If this dep can be overcome with 'begin speculation'. */
4042 ds & BEGIN_SPEC)
4043 /* Then we have a choice: keep the dep 'begin speculative'
4044 or transform it into 'be in speculative'. */
4045 {
4046 if (/* In try_ready we assert that if insn once became ready
4047 it can be removed from the ready (or queue) list only
4048 due to backend decision. Hence we can't let the
4049 probability of the speculative dep to decrease. */
4050 ds_weak (ds) <= ds_weak (fs))
4051 {
4052 ds_t new_ds;
4053
4054 new_ds = (ds & ~BEGIN_SPEC) | fs;
4055
4056 if (/* consumer can 'be in speculative'. */
4057 sched_insn_is_legitimate_for_speculation_p (consumer,
4058 new_ds))
4059 /* Transform it to be in speculative. */
4060 ds = new_ds;
4061 }
4062 }
4063 else
4064 /* Mark the dep as 'be in speculative'. */
4065 ds |= fs;
4066 }
4067
4068 {
4069 dep_def _new_dep, *new_dep = &_new_dep;
4070
4071 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
4072 sd_add_dep (new_dep, false);
4073 }
4074 }
4075 }
4076
4077 /* Generates recovery code for BEGIN speculative INSN. */
4078 static void
4079 begin_speculative_block (rtx insn)
4080 {
4081 if (TODO_SPEC (insn) & BEGIN_DATA)
4082 nr_begin_data++;
4083 if (TODO_SPEC (insn) & BEGIN_CONTROL)
4084 nr_begin_control++;
4085
4086 create_check_block_twin (insn, false);
4087
4088 TODO_SPEC (insn) &= ~BEGIN_SPEC;
4089 }
4090
4091 static void haifa_init_insn (rtx);
4092
4093 /* Generates recovery code for BE_IN speculative INSN. */
4094 static void
4095 add_to_speculative_block (rtx insn)
4096 {
4097 ds_t ts;
4098 sd_iterator_def sd_it;
4099 dep_t dep;
4100 rtx twins = NULL;
4101 rtx_vec_t priorities_roots;
4102
4103 ts = TODO_SPEC (insn);
4104 gcc_assert (!(ts & ~BE_IN_SPEC));
4105
4106 if (ts & BE_IN_DATA)
4107 nr_be_in_data++;
4108 if (ts & BE_IN_CONTROL)
4109 nr_be_in_control++;
4110
4111 TODO_SPEC (insn) &= ~BE_IN_SPEC;
4112 gcc_assert (!TODO_SPEC (insn));
4113
4114 DONE_SPEC (insn) |= ts;
4115
4116 /* First we convert all simple checks to branchy. */
4117 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4118 sd_iterator_cond (&sd_it, &dep);)
4119 {
4120 rtx check = DEP_PRO (dep);
4121
4122 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
4123 {
4124 create_check_block_twin (check, true);
4125
4126 /* Restart search. */
4127 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4128 }
4129 else
4130 /* Continue search. */
4131 sd_iterator_next (&sd_it);
4132 }
4133
4134 priorities_roots = NULL;
4135 clear_priorities (insn, &priorities_roots);
4136
4137 while (1)
4138 {
4139 rtx check, twin;
4140 basic_block rec;
4141
4142 /* Get the first backward dependency of INSN. */
4143 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4144 if (!sd_iterator_cond (&sd_it, &dep))
4145 /* INSN has no backward dependencies left. */
4146 break;
4147
4148 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
4149 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
4150 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
4151
4152 check = DEP_PRO (dep);
4153
4154 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
4155 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
4156
4157 rec = BLOCK_FOR_INSN (check);
4158
4159 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
4160 haifa_init_insn (twin);
4161
4162 sd_copy_back_deps (twin, insn, true);
4163
4164 if (sched_verbose && spec_info->dump)
4165 /* INSN_BB (insn) isn't determined for twin insns yet.
4166 So we can't use current_sched_info->print_insn. */
4167 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
4168 INSN_UID (twin), rec->index);
4169
4170 twins = alloc_INSN_LIST (twin, twins);
4171
4172 /* Add dependences between TWIN and all appropriate
4173 instructions from REC. */
4174 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
4175 {
4176 rtx pro = DEP_PRO (dep);
4177
4178 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
4179
4180 /* INSN might have dependencies from the instructions from
4181 several recovery blocks. At this iteration we process those
4182 producers that reside in REC. */
4183 if (BLOCK_FOR_INSN (pro) == rec)
4184 {
4185 dep_def _new_dep, *new_dep = &_new_dep;
4186
4187 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
4188 sd_add_dep (new_dep, false);
4189 }
4190 }
4191
4192 process_insn_forw_deps_be_in_spec (insn, twin, ts);
4193
4194 /* Remove all dependencies between INSN and insns in REC. */
4195 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4196 sd_iterator_cond (&sd_it, &dep);)
4197 {
4198 rtx pro = DEP_PRO (dep);
4199
4200 if (BLOCK_FOR_INSN (pro) == rec)
4201 sd_delete_dep (sd_it);
4202 else
4203 sd_iterator_next (&sd_it);
4204 }
4205 }
4206
4207 /* We couldn't have added the dependencies between INSN and TWINS earlier
4208 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
4209 while (twins)
4210 {
4211 rtx twin;
4212
4213 twin = XEXP (twins, 0);
4214
4215 {
4216 dep_def _new_dep, *new_dep = &_new_dep;
4217
4218 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
4219 sd_add_dep (new_dep, false);
4220 }
4221
4222 twin = XEXP (twins, 1);
4223 free_INSN_LIST_node (twins);
4224 twins = twin;
4225 }
4226
4227 calc_priorities (priorities_roots);
4228 VEC_free (rtx, heap, priorities_roots);
4229 }
4230
4231 /* Extends and fills with zeros (only the new part) array pointed to by P. */
4232 void *
4233 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
4234 {
4235 gcc_assert (new_nmemb >= old_nmemb);
4236 p = XRESIZEVAR (void, p, new_nmemb * size);
4237 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
4238 return p;
4239 }
4240
4241 /* Helper function.
4242 Find fallthru edge from PRED. */
4243 edge
4244 find_fallthru_edge (basic_block pred)
4245 {
4246 edge e;
4247 edge_iterator ei;
4248 basic_block succ;
4249
4250 succ = pred->next_bb;
4251 gcc_assert (succ->prev_bb == pred);
4252
4253 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
4254 {
4255 FOR_EACH_EDGE (e, ei, pred->succs)
4256 if (e->flags & EDGE_FALLTHRU)
4257 {
4258 gcc_assert (e->dest == succ);
4259 return e;
4260 }
4261 }
4262 else
4263 {
4264 FOR_EACH_EDGE (e, ei, succ->preds)
4265 if (e->flags & EDGE_FALLTHRU)
4266 {
4267 gcc_assert (e->src == pred);
4268 return e;
4269 }
4270 }
4271
4272 return NULL;
4273 }
4274
4275 /* Extend per basic block data structures. */
4276 static void
4277 sched_extend_bb (void)
4278 {
4279 rtx insn;
4280
4281 /* The following is done to keep current_sched_info->next_tail non null. */
4282 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
4283 if (NEXT_INSN (insn) == 0
4284 || (!NOTE_P (insn)
4285 && !LABEL_P (insn)
4286 /* Don't emit a NOTE if it would end up before a BARRIER. */
4287 && !BARRIER_P (NEXT_INSN (insn))))
4288 {
4289 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
4290 /* Make insn appear outside BB. */
4291 set_block_for_insn (note, NULL);
4292 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
4293 }
4294 }
4295
4296 /* Init per basic block data structures. */
4297 void
4298 sched_init_bbs (void)
4299 {
4300 sched_extend_bb ();
4301 }
4302
4303 /* Initialize BEFORE_RECOVERY variable. */
4304 static void
4305 init_before_recovery (basic_block *before_recovery_ptr)
4306 {
4307 basic_block last;
4308 edge e;
4309
4310 last = EXIT_BLOCK_PTR->prev_bb;
4311 e = find_fallthru_edge (last);
4312
4313 if (e)
4314 {
4315 /* We create two basic blocks:
4316 1. Single instruction block is inserted right after E->SRC
4317 and has jump to
4318 2. Empty block right before EXIT_BLOCK.
4319 Between these two blocks recovery blocks will be emitted. */
4320
4321 basic_block single, empty;
4322 rtx x, label;
4323
4324 /* If the fallthrough edge to exit we've found is from the block we've
4325 created before, don't do anything more. */
4326 if (last == after_recovery)
4327 return;
4328
4329 adding_bb_to_current_region_p = false;
4330
4331 single = sched_create_empty_bb (last);
4332 empty = sched_create_empty_bb (single);
4333
4334 /* Add new blocks to the root loop. */
4335 if (current_loops != NULL)
4336 {
4337 add_bb_to_loop (single, VEC_index (loop_p, current_loops->larray, 0));
4338 add_bb_to_loop (empty, VEC_index (loop_p, current_loops->larray, 0));
4339 }
4340
4341 single->count = last->count;
4342 empty->count = last->count;
4343 single->frequency = last->frequency;
4344 empty->frequency = last->frequency;
4345 BB_COPY_PARTITION (single, last);
4346 BB_COPY_PARTITION (empty, last);
4347
4348 redirect_edge_succ (e, single);
4349 make_single_succ_edge (single, empty, 0);
4350 make_single_succ_edge (empty, EXIT_BLOCK_PTR,
4351 EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
4352
4353 label = block_label (empty);
4354 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
4355 JUMP_LABEL (x) = label;
4356 LABEL_NUSES (label)++;
4357 haifa_init_insn (x);
4358
4359 emit_barrier_after (x);
4360
4361 sched_init_only_bb (empty, NULL);
4362 sched_init_only_bb (single, NULL);
4363 sched_extend_bb ();
4364
4365 adding_bb_to_current_region_p = true;
4366 before_recovery = single;
4367 after_recovery = empty;
4368
4369 if (before_recovery_ptr)
4370 *before_recovery_ptr = before_recovery;
4371
4372 if (sched_verbose >= 2 && spec_info->dump)
4373 fprintf (spec_info->dump,
4374 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
4375 last->index, single->index, empty->index);
4376 }
4377 else
4378 before_recovery = last;
4379 }
4380
4381 /* Returns new recovery block. */
4382 basic_block
4383 sched_create_recovery_block (basic_block *before_recovery_ptr)
4384 {
4385 rtx label;
4386 rtx barrier;
4387 basic_block rec;
4388
4389 haifa_recovery_bb_recently_added_p = true;
4390 haifa_recovery_bb_ever_added_p = true;
4391
4392 init_before_recovery (before_recovery_ptr);
4393
4394 barrier = get_last_bb_insn (before_recovery);
4395 gcc_assert (BARRIER_P (barrier));
4396
4397 label = emit_label_after (gen_label_rtx (), barrier);
4398
4399 rec = create_basic_block (label, label, before_recovery);
4400
4401 /* A recovery block always ends with an unconditional jump. */
4402 emit_barrier_after (BB_END (rec));
4403
4404 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
4405 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
4406
4407 if (sched_verbose && spec_info->dump)
4408 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
4409 rec->index);
4410
4411 return rec;
4412 }
4413
4414 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
4415 and emit necessary jumps. */
4416 void
4417 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
4418 basic_block second_bb)
4419 {
4420 rtx label;
4421 rtx jump;
4422 int edge_flags;
4423
4424 /* This is fixing of incoming edge. */
4425 /* ??? Which other flags should be specified? */
4426 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
4427 /* Partition type is the same, if it is "unpartitioned". */
4428 edge_flags = EDGE_CROSSING;
4429 else
4430 edge_flags = 0;
4431
4432 make_edge (first_bb, rec, edge_flags);
4433 label = block_label (second_bb);
4434 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
4435 JUMP_LABEL (jump) = label;
4436 LABEL_NUSES (label)++;
4437
4438 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
4439 /* Partition type is the same, if it is "unpartitioned". */
4440 {
4441 /* Rewritten from cfgrtl.c. */
4442 if (flag_reorder_blocks_and_partition
4443 && targetm.have_named_sections)
4444 {
4445 /* We don't need the same note for the check because
4446 any_condjump_p (check) == true. */
4447 add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
4448 }
4449 edge_flags = EDGE_CROSSING;
4450 }
4451 else
4452 edge_flags = 0;
4453
4454 make_single_succ_edge (rec, second_bb, edge_flags);
4455 }
4456
4457 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
4458 INSN is a simple check, that should be converted to branchy one. */
4459 static void
4460 create_check_block_twin (rtx insn, bool mutate_p)
4461 {
4462 basic_block rec;
4463 rtx label, check, twin;
4464 ds_t fs;
4465 sd_iterator_def sd_it;
4466 dep_t dep;
4467 dep_def _new_dep, *new_dep = &_new_dep;
4468 ds_t todo_spec;
4469
4470 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
4471
4472 if (!mutate_p)
4473 todo_spec = TODO_SPEC (insn);
4474 else
4475 {
4476 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
4477 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
4478
4479 todo_spec = CHECK_SPEC (insn);
4480 }
4481
4482 todo_spec &= SPECULATIVE;
4483
4484 /* Create recovery block. */
4485 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
4486 {
4487 rec = sched_create_recovery_block (NULL);
4488 label = BB_HEAD (rec);
4489 }
4490 else
4491 {
4492 rec = EXIT_BLOCK_PTR;
4493 label = NULL_RTX;
4494 }
4495
4496 /* Emit CHECK. */
4497 check = targetm.sched.gen_spec_check (insn, label, todo_spec);
4498
4499 if (rec != EXIT_BLOCK_PTR)
4500 {
4501 /* To have mem_reg alive at the beginning of second_bb,
4502 we emit check BEFORE insn, so insn after splitting
4503 insn will be at the beginning of second_bb, which will
4504 provide us with the correct life information. */
4505 check = emit_jump_insn_before (check, insn);
4506 JUMP_LABEL (check) = label;
4507 LABEL_NUSES (label)++;
4508 }
4509 else
4510 check = emit_insn_before (check, insn);
4511
4512 /* Extend data structures. */
4513 haifa_init_insn (check);
4514
4515 /* CHECK is being added to current region. Extend ready list. */
4516 gcc_assert (sched_ready_n_insns != -1);
4517 sched_extend_ready_list (sched_ready_n_insns + 1);
4518
4519 if (current_sched_info->add_remove_insn)
4520 current_sched_info->add_remove_insn (insn, 0);
4521
4522 RECOVERY_BLOCK (check) = rec;
4523
4524 if (sched_verbose && spec_info->dump)
4525 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
4526 (*current_sched_info->print_insn) (check, 0));
4527
4528 gcc_assert (ORIG_PAT (insn));
4529
4530 /* Initialize TWIN (twin is a duplicate of original instruction
4531 in the recovery block). */
4532 if (rec != EXIT_BLOCK_PTR)
4533 {
4534 sd_iterator_def sd_it;
4535 dep_t dep;
4536
4537 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
4538 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
4539 {
4540 struct _dep _dep2, *dep2 = &_dep2;
4541
4542 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
4543
4544 sd_add_dep (dep2, true);
4545 }
4546
4547 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
4548 haifa_init_insn (twin);
4549
4550 if (sched_verbose && spec_info->dump)
4551 /* INSN_BB (insn) isn't determined for twin insns yet.
4552 So we can't use current_sched_info->print_insn. */
4553 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
4554 INSN_UID (twin), rec->index);
4555 }
4556 else
4557 {
4558 ORIG_PAT (check) = ORIG_PAT (insn);
4559 HAS_INTERNAL_DEP (check) = 1;
4560 twin = check;
4561 /* ??? We probably should change all OUTPUT dependencies to
4562 (TRUE | OUTPUT). */
4563 }
4564
4565 /* Copy all resolved back dependencies of INSN to TWIN. This will
4566 provide correct value for INSN_TICK (TWIN). */
4567 sd_copy_back_deps (twin, insn, true);
4568
4569 if (rec != EXIT_BLOCK_PTR)
4570 /* In case of branchy check, fix CFG. */
4571 {
4572 basic_block first_bb, second_bb;
4573 rtx jump;
4574
4575 first_bb = BLOCK_FOR_INSN (check);
4576 second_bb = sched_split_block (first_bb, check);
4577
4578 sched_create_recovery_edges (first_bb, rec, second_bb);
4579
4580 sched_init_only_bb (second_bb, first_bb);
4581 sched_init_only_bb (rec, EXIT_BLOCK_PTR);
4582
4583 jump = BB_END (rec);
4584 haifa_init_insn (jump);
4585 }
4586
4587 /* Move backward dependences from INSN to CHECK and
4588 move forward dependences from INSN to TWIN. */
4589
4590 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
4591 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4592 {
4593 rtx pro = DEP_PRO (dep);
4594 ds_t ds;
4595
4596 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
4597 check --TRUE--> producer ??? or ANTI ???
4598 twin --TRUE--> producer
4599 twin --ANTI--> check
4600
4601 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
4602 check --ANTI--> producer
4603 twin --ANTI--> producer
4604 twin --ANTI--> check
4605
4606 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
4607 check ~~TRUE~~> producer
4608 twin ~~TRUE~~> producer
4609 twin --ANTI--> check */
4610
4611 ds = DEP_STATUS (dep);
4612
4613 if (ds & BEGIN_SPEC)
4614 {
4615 gcc_assert (!mutate_p);
4616 ds &= ~BEGIN_SPEC;
4617 }
4618
4619 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
4620 sd_add_dep (new_dep, false);
4621
4622 if (rec != EXIT_BLOCK_PTR)
4623 {
4624 DEP_CON (new_dep) = twin;
4625 sd_add_dep (new_dep, false);
4626 }
4627 }
4628
4629 /* Second, remove backward dependencies of INSN. */
4630 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4631 sd_iterator_cond (&sd_it, &dep);)
4632 {
4633 if ((DEP_STATUS (dep) & BEGIN_SPEC)
4634 || mutate_p)
4635 /* We can delete this dep because we overcome it with
4636 BEGIN_SPECULATION. */
4637 sd_delete_dep (sd_it);
4638 else
4639 sd_iterator_next (&sd_it);
4640 }
4641
4642 /* Future Speculations. Determine what BE_IN speculations will be like. */
4643 fs = 0;
4644
4645 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
4646 here. */
4647
4648 gcc_assert (!DONE_SPEC (insn));
4649
4650 if (!mutate_p)
4651 {
4652 ds_t ts = TODO_SPEC (insn);
4653
4654 DONE_SPEC (insn) = ts & BEGIN_SPEC;
4655 CHECK_SPEC (check) = ts & BEGIN_SPEC;
4656
4657 /* Luckiness of future speculations solely depends upon initial
4658 BEGIN speculation. */
4659 if (ts & BEGIN_DATA)
4660 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
4661 if (ts & BEGIN_CONTROL)
4662 fs = set_dep_weak (fs, BE_IN_CONTROL,
4663 get_dep_weak (ts, BEGIN_CONTROL));
4664 }
4665 else
4666 CHECK_SPEC (check) = CHECK_SPEC (insn);
4667
4668 /* Future speculations: call the helper. */
4669 process_insn_forw_deps_be_in_spec (insn, twin, fs);
4670
4671 if (rec != EXIT_BLOCK_PTR)
4672 {
4673 /* Which types of dependencies should we use here is,
4674 generally, machine-dependent question... But, for now,
4675 it is not. */
4676
4677 if (!mutate_p)
4678 {
4679 init_dep (new_dep, insn, check, REG_DEP_TRUE);
4680 sd_add_dep (new_dep, false);
4681
4682 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
4683 sd_add_dep (new_dep, false);
4684 }
4685 else
4686 {
4687 if (spec_info->dump)
4688 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
4689 (*current_sched_info->print_insn) (insn, 0));
4690
4691 /* Remove all dependencies of the INSN. */
4692 {
4693 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
4694 | SD_LIST_BACK
4695 | SD_LIST_RES_BACK));
4696 while (sd_iterator_cond (&sd_it, &dep))
4697 sd_delete_dep (sd_it);
4698 }
4699
4700 /* If former check (INSN) already was moved to the ready (or queue)
4701 list, add new check (CHECK) there too. */
4702 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
4703 try_ready (check);
4704
4705 /* Remove old check from instruction stream and free its
4706 data. */
4707 sched_remove_insn (insn);
4708 }
4709
4710 init_dep (new_dep, check, twin, REG_DEP_ANTI);
4711 sd_add_dep (new_dep, false);
4712 }
4713 else
4714 {
4715 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
4716 sd_add_dep (new_dep, false);
4717 }
4718
4719 if (!mutate_p)
4720 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
4721 because it'll be done later in add_to_speculative_block. */
4722 {
4723 rtx_vec_t priorities_roots = NULL;
4724
4725 clear_priorities (twin, &priorities_roots);
4726 calc_priorities (priorities_roots);
4727 VEC_free (rtx, heap, priorities_roots);
4728 }
4729 }
4730
4731 /* Removes dependency between instructions in the recovery block REC
4732 and usual region instructions. It keeps inner dependences so it
4733 won't be necessary to recompute them. */
4734 static void
4735 fix_recovery_deps (basic_block rec)
4736 {
4737 rtx note, insn, jump, ready_list = 0;
4738 bitmap_head in_ready;
4739 rtx link;
4740
4741 bitmap_initialize (&in_ready, 0);
4742
4743 /* NOTE - a basic block note. */
4744 note = NEXT_INSN (BB_HEAD (rec));
4745 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4746 insn = BB_END (rec);
4747 gcc_assert (JUMP_P (insn));
4748 insn = PREV_INSN (insn);
4749
4750 do
4751 {
4752 sd_iterator_def sd_it;
4753 dep_t dep;
4754
4755 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4756 sd_iterator_cond (&sd_it, &dep);)
4757 {
4758 rtx consumer = DEP_CON (dep);
4759
4760 if (BLOCK_FOR_INSN (consumer) != rec)
4761 {
4762 sd_delete_dep (sd_it);
4763
4764 if (!bitmap_bit_p (&in_ready, INSN_LUID (consumer)))
4765 {
4766 ready_list = alloc_INSN_LIST (consumer, ready_list);
4767 bitmap_set_bit (&in_ready, INSN_LUID (consumer));
4768 }
4769 }
4770 else
4771 {
4772 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
4773
4774 sd_iterator_next (&sd_it);
4775 }
4776 }
4777
4778 insn = PREV_INSN (insn);
4779 }
4780 while (insn != note);
4781
4782 bitmap_clear (&in_ready);
4783
4784 /* Try to add instructions to the ready or queue list. */
4785 for (link = ready_list; link; link = XEXP (link, 1))
4786 try_ready (XEXP (link, 0));
4787 free_INSN_LIST_list (&ready_list);
4788
4789 /* Fixing jump's dependences. */
4790 insn = BB_HEAD (rec);
4791 jump = BB_END (rec);
4792
4793 gcc_assert (LABEL_P (insn));
4794 insn = NEXT_INSN (insn);
4795
4796 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4797 add_jump_dependencies (insn, jump);
4798 }
4799
4800 /* Change pattern of INSN to NEW_PAT. */
4801 void
4802 sched_change_pattern (rtx insn, rtx new_pat)
4803 {
4804 int t;
4805
4806 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
4807 gcc_assert (t);
4808 dfa_clear_single_insn_cache (insn);
4809 }
4810
4811 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
4812 instruction data. */
4813 static void
4814 haifa_change_pattern (rtx insn, rtx new_pat)
4815 {
4816 sched_change_pattern (insn, new_pat);
4817
4818 /* Invalidate INSN_COST, so it'll be recalculated. */
4819 INSN_COST (insn) = -1;
4820 /* Invalidate INSN_TICK, so it'll be recalculated. */
4821 INSN_TICK (insn) = INVALID_TICK;
4822 }
4823
4824 /* -1 - can't speculate,
4825 0 - for speculation with REQUEST mode it is OK to use
4826 current instruction pattern,
4827 1 - need to change pattern for *NEW_PAT to be speculative. */
4828 int
4829 sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4830 {
4831 gcc_assert (current_sched_info->flags & DO_SPECULATION
4832 && (request & SPECULATIVE)
4833 && sched_insn_is_legitimate_for_speculation_p (insn, request));
4834
4835 if ((request & spec_info->mask) != request)
4836 return -1;
4837
4838 if (request & BE_IN_SPEC
4839 && !(request & BEGIN_SPEC))
4840 return 0;
4841
4842 return targetm.sched.speculate_insn (insn, request, new_pat);
4843 }
4844
4845 static int
4846 haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4847 {
4848 gcc_assert (sched_deps_info->generate_spec_deps
4849 && !IS_SPECULATION_CHECK_P (insn));
4850
4851 if (HAS_INTERNAL_DEP (insn)
4852 || SCHED_GROUP_P (insn))
4853 return -1;
4854
4855 return sched_speculate_insn (insn, request, new_pat);
4856 }
4857
4858 /* Print some information about block BB, which starts with HEAD and
4859 ends with TAIL, before scheduling it.
4860 I is zero, if scheduler is about to start with the fresh ebb. */
4861 static void
4862 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
4863 {
4864 if (!i)
4865 fprintf (sched_dump,
4866 ";; ======================================================\n");
4867 else
4868 fprintf (sched_dump,
4869 ";; =====================ADVANCING TO=====================\n");
4870 fprintf (sched_dump,
4871 ";; -- basic block %d from %d to %d -- %s reload\n",
4872 bb->index, INSN_UID (head), INSN_UID (tail),
4873 (reload_completed ? "after" : "before"));
4874 fprintf (sched_dump,
4875 ";; ======================================================\n");
4876 fprintf (sched_dump, "\n");
4877 }
4878
4879 /* Unlink basic block notes and labels and saves them, so they
4880 can be easily restored. We unlink basic block notes in EBB to
4881 provide back-compatibility with the previous code, as target backends
4882 assume, that there'll be only instructions between
4883 current_sched_info->{head and tail}. We restore these notes as soon
4884 as we can.
4885 FIRST (LAST) is the first (last) basic block in the ebb.
4886 NB: In usual case (FIRST == LAST) nothing is really done. */
4887 void
4888 unlink_bb_notes (basic_block first, basic_block last)
4889 {
4890 /* We DON'T unlink basic block notes of the first block in the ebb. */
4891 if (first == last)
4892 return;
4893
4894 bb_header = XNEWVEC (rtx, last_basic_block);
4895
4896 /* Make a sentinel. */
4897 if (last->next_bb != EXIT_BLOCK_PTR)
4898 bb_header[last->next_bb->index] = 0;
4899
4900 first = first->next_bb;
4901 do
4902 {
4903 rtx prev, label, note, next;
4904
4905 label = BB_HEAD (last);
4906 if (LABEL_P (label))
4907 note = NEXT_INSN (label);
4908 else
4909 note = label;
4910 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4911
4912 prev = PREV_INSN (label);
4913 next = NEXT_INSN (note);
4914 gcc_assert (prev && next);
4915
4916 NEXT_INSN (prev) = next;
4917 PREV_INSN (next) = prev;
4918
4919 bb_header[last->index] = label;
4920
4921 if (last == first)
4922 break;
4923
4924 last = last->prev_bb;
4925 }
4926 while (1);
4927 }
4928
4929 /* Restore basic block notes.
4930 FIRST is the first basic block in the ebb. */
4931 static void
4932 restore_bb_notes (basic_block first)
4933 {
4934 if (!bb_header)
4935 return;
4936
4937 /* We DON'T unlink basic block notes of the first block in the ebb. */
4938 first = first->next_bb;
4939 /* Remember: FIRST is actually a second basic block in the ebb. */
4940
4941 while (first != EXIT_BLOCK_PTR
4942 && bb_header[first->index])
4943 {
4944 rtx prev, label, note, next;
4945
4946 label = bb_header[first->index];
4947 prev = PREV_INSN (label);
4948 next = NEXT_INSN (prev);
4949
4950 if (LABEL_P (label))
4951 note = NEXT_INSN (label);
4952 else
4953 note = label;
4954 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4955
4956 bb_header[first->index] = 0;
4957
4958 NEXT_INSN (prev) = label;
4959 NEXT_INSN (note) = next;
4960 PREV_INSN (next) = note;
4961
4962 first = first->next_bb;
4963 }
4964
4965 free (bb_header);
4966 bb_header = 0;
4967 }
4968
4969 /* Helper function.
4970 Fix CFG after both in- and inter-block movement of
4971 control_flow_insn_p JUMP. */
4972 static void
4973 fix_jump_move (rtx jump)
4974 {
4975 basic_block bb, jump_bb, jump_bb_next;
4976
4977 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
4978 jump_bb = BLOCK_FOR_INSN (jump);
4979 jump_bb_next = jump_bb->next_bb;
4980
4981 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
4982 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
4983
4984 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
4985 /* if jump_bb_next is not empty. */
4986 BB_END (jump_bb) = BB_END (jump_bb_next);
4987
4988 if (BB_END (bb) != PREV_INSN (jump))
4989 /* Then there are instruction after jump that should be placed
4990 to jump_bb_next. */
4991 BB_END (jump_bb_next) = BB_END (bb);
4992 else
4993 /* Otherwise jump_bb_next is empty. */
4994 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
4995
4996 /* To make assertion in move_insn happy. */
4997 BB_END (bb) = PREV_INSN (jump);
4998
4999 update_bb_for_insn (jump_bb_next);
5000 }
5001
5002 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
5003 static void
5004 move_block_after_check (rtx jump)
5005 {
5006 basic_block bb, jump_bb, jump_bb_next;
5007 VEC(edge,gc) *t;
5008
5009 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
5010 jump_bb = BLOCK_FOR_INSN (jump);
5011 jump_bb_next = jump_bb->next_bb;
5012
5013 update_bb_for_insn (jump_bb);
5014
5015 gcc_assert (IS_SPECULATION_CHECK_P (jump)
5016 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
5017
5018 unlink_block (jump_bb_next);
5019 link_block (jump_bb_next, bb);
5020
5021 t = bb->succs;
5022 bb->succs = 0;
5023 move_succs (&(jump_bb->succs), bb);
5024 move_succs (&(jump_bb_next->succs), jump_bb);
5025 move_succs (&t, jump_bb_next);
5026
5027 df_mark_solutions_dirty ();
5028
5029 common_sched_info->fix_recovery_cfg
5030 (bb->index, jump_bb->index, jump_bb_next->index);
5031 }
5032
5033 /* Helper function for move_block_after_check.
5034 This functions attaches edge vector pointed to by SUCCSP to
5035 block TO. */
5036 static void
5037 move_succs (VEC(edge,gc) **succsp, basic_block to)
5038 {
5039 edge e;
5040 edge_iterator ei;
5041
5042 gcc_assert (to->succs == 0);
5043
5044 to->succs = *succsp;
5045
5046 FOR_EACH_EDGE (e, ei, to->succs)
5047 e->src = to;
5048
5049 *succsp = 0;
5050 }
5051
5052 /* Remove INSN from the instruction stream.
5053 INSN should have any dependencies. */
5054 static void
5055 sched_remove_insn (rtx insn)
5056 {
5057 sd_finish_insn (insn);
5058
5059 change_queue_index (insn, QUEUE_NOWHERE);
5060 current_sched_info->add_remove_insn (insn, 1);
5061 remove_insn (insn);
5062 }
5063
5064 /* Clear priorities of all instructions, that are forward dependent on INSN.
5065 Store in vector pointed to by ROOTS_PTR insns on which priority () should
5066 be invoked to initialize all cleared priorities. */
5067 static void
5068 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
5069 {
5070 sd_iterator_def sd_it;
5071 dep_t dep;
5072 bool insn_is_root_p = true;
5073
5074 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
5075
5076 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
5077 {
5078 rtx pro = DEP_PRO (dep);
5079
5080 if (INSN_PRIORITY_STATUS (pro) >= 0
5081 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
5082 {
5083 /* If DEP doesn't contribute to priority then INSN itself should
5084 be added to priority roots. */
5085 if (contributes_to_priority_p (dep))
5086 insn_is_root_p = false;
5087
5088 INSN_PRIORITY_STATUS (pro) = -1;
5089 clear_priorities (pro, roots_ptr);
5090 }
5091 }
5092
5093 if (insn_is_root_p)
5094 VEC_safe_push (rtx, heap, *roots_ptr, insn);
5095 }
5096
5097 /* Recompute priorities of instructions, whose priorities might have been
5098 changed. ROOTS is a vector of instructions whose priority computation will
5099 trigger initialization of all cleared priorities. */
5100 static void
5101 calc_priorities (rtx_vec_t roots)
5102 {
5103 int i;
5104 rtx insn;
5105
5106 for (i = 0; VEC_iterate (rtx, roots, i, insn); i++)
5107 priority (insn);
5108 }
5109
5110
5111 /* Add dependences between JUMP and other instructions in the recovery
5112 block. INSN is the first insn the recovery block. */
5113 static void
5114 add_jump_dependencies (rtx insn, rtx jump)
5115 {
5116 do
5117 {
5118 insn = NEXT_INSN (insn);
5119 if (insn == jump)
5120 break;
5121
5122 if (dep_list_size (insn) == 0)
5123 {
5124 dep_def _new_dep, *new_dep = &_new_dep;
5125
5126 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
5127 sd_add_dep (new_dep, false);
5128 }
5129 }
5130 while (1);
5131
5132 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
5133 }
5134
5135 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
5136 rtx
5137 bb_note (basic_block bb)
5138 {
5139 rtx note;
5140
5141 note = BB_HEAD (bb);
5142 if (LABEL_P (note))
5143 note = NEXT_INSN (note);
5144
5145 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5146 return note;
5147 }
5148
5149 #ifdef ENABLE_CHECKING
5150 /* Helper function for check_cfg.
5151 Return nonzero, if edge vector pointed to by EL has edge with TYPE in
5152 its flags. */
5153 static int
5154 has_edge_p (VEC(edge,gc) *el, int type)
5155 {
5156 edge e;
5157 edge_iterator ei;
5158
5159 FOR_EACH_EDGE (e, ei, el)
5160 if (e->flags & type)
5161 return 1;
5162 return 0;
5163 }
5164
5165 /* Search back, starting at INSN, for an insn that is not a
5166 NOTE_INSN_VAR_LOCATION. Don't search beyond HEAD, and return it if
5167 no such insn can be found. */
5168 static inline rtx
5169 prev_non_location_insn (rtx insn, rtx head)
5170 {
5171 while (insn != head && NOTE_P (insn)
5172 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
5173 insn = PREV_INSN (insn);
5174
5175 return insn;
5176 }
5177
5178 /* Check few properties of CFG between HEAD and TAIL.
5179 If HEAD (TAIL) is NULL check from the beginning (till the end) of the
5180 instruction stream. */
5181 static void
5182 check_cfg (rtx head, rtx tail)
5183 {
5184 rtx next_tail;
5185 basic_block bb = 0;
5186 int not_first = 0, not_last;
5187
5188 if (head == NULL)
5189 head = get_insns ();
5190 if (tail == NULL)
5191 tail = get_last_insn ();
5192 next_tail = NEXT_INSN (tail);
5193
5194 do
5195 {
5196 not_last = head != tail;
5197
5198 if (not_first)
5199 gcc_assert (NEXT_INSN (PREV_INSN (head)) == head);
5200 if (not_last)
5201 gcc_assert (PREV_INSN (NEXT_INSN (head)) == head);
5202
5203 if (LABEL_P (head)
5204 || (NOTE_INSN_BASIC_BLOCK_P (head)
5205 && (!not_first
5206 || (not_first && !LABEL_P (PREV_INSN (head))))))
5207 {
5208 gcc_assert (bb == 0);
5209 bb = BLOCK_FOR_INSN (head);
5210 if (bb != 0)
5211 gcc_assert (BB_HEAD (bb) == head);
5212 else
5213 /* This is the case of jump table. See inside_basic_block_p (). */
5214 gcc_assert (LABEL_P (head) && !inside_basic_block_p (head));
5215 }
5216
5217 if (bb == 0)
5218 {
5219 gcc_assert (!inside_basic_block_p (head));
5220 head = NEXT_INSN (head);
5221 }
5222 else
5223 {
5224 gcc_assert (inside_basic_block_p (head)
5225 || NOTE_P (head));
5226 gcc_assert (BLOCK_FOR_INSN (head) == bb);
5227
5228 if (LABEL_P (head))
5229 {
5230 head = NEXT_INSN (head);
5231 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head));
5232 }
5233 else
5234 {
5235 if (control_flow_insn_p (head))
5236 {
5237 gcc_assert (prev_non_location_insn (BB_END (bb), head)
5238 == head);
5239
5240 if (any_uncondjump_p (head))
5241 gcc_assert (EDGE_COUNT (bb->succs) == 1
5242 && BARRIER_P (NEXT_INSN (head)));
5243 else if (any_condjump_p (head))
5244 gcc_assert (/* Usual case. */
5245 (EDGE_COUNT (bb->succs) > 1
5246 && !BARRIER_P (NEXT_INSN (head)))
5247 /* Or jump to the next instruction. */
5248 || (EDGE_COUNT (bb->succs) == 1
5249 && (BB_HEAD (EDGE_I (bb->succs, 0)->dest)
5250 == JUMP_LABEL (head))));
5251 }
5252 if (BB_END (bb) == head)
5253 {
5254 if (EDGE_COUNT (bb->succs) > 1)
5255 gcc_assert (control_flow_insn_p (prev_non_location_insn
5256 (head, BB_HEAD (bb)))
5257 || has_edge_p (bb->succs, EDGE_COMPLEX));
5258 bb = 0;
5259 }
5260
5261 head = NEXT_INSN (head);
5262 }
5263 }
5264
5265 not_first = 1;
5266 }
5267 while (head != next_tail);
5268
5269 gcc_assert (bb == 0);
5270 }
5271
5272 #endif /* ENABLE_CHECKING */
5273
5274 /* Extend per basic block data structures. */
5275 static void
5276 extend_bb (void)
5277 {
5278 if (sched_scan_info->extend_bb)
5279 sched_scan_info->extend_bb ();
5280 }
5281
5282 /* Init data for BB. */
5283 static void
5284 init_bb (basic_block bb)
5285 {
5286 if (sched_scan_info->init_bb)
5287 sched_scan_info->init_bb (bb);
5288 }
5289
5290 /* Extend per insn data structures. */
5291 static void
5292 extend_insn (void)
5293 {
5294 if (sched_scan_info->extend_insn)
5295 sched_scan_info->extend_insn ();
5296 }
5297
5298 /* Init data structures for INSN. */
5299 static void
5300 init_insn (rtx insn)
5301 {
5302 if (sched_scan_info->init_insn)
5303 sched_scan_info->init_insn (insn);
5304 }
5305
5306 /* Init all insns in BB. */
5307 static void
5308 init_insns_in_bb (basic_block bb)
5309 {
5310 rtx insn;
5311
5312 FOR_BB_INSNS (bb, insn)
5313 init_insn (insn);
5314 }
5315
5316 /* A driver function to add a set of basic blocks (BBS),
5317 a single basic block (BB), a set of insns (INSNS) or a single insn (INSN)
5318 to the scheduling region. */
5319 void
5320 sched_scan (const struct sched_scan_info_def *ssi,
5321 bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5322 {
5323 sched_scan_info = ssi;
5324
5325 if (bbs != NULL || bb != NULL)
5326 {
5327 extend_bb ();
5328
5329 if (bbs != NULL)
5330 {
5331 unsigned i;
5332 basic_block x;
5333
5334 for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
5335 init_bb (x);
5336 }
5337
5338 if (bb != NULL)
5339 init_bb (bb);
5340 }
5341
5342 extend_insn ();
5343
5344 if (bbs != NULL)
5345 {
5346 unsigned i;
5347 basic_block x;
5348
5349 for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
5350 init_insns_in_bb (x);
5351 }
5352
5353 if (bb != NULL)
5354 init_insns_in_bb (bb);
5355
5356 if (insns != NULL)
5357 {
5358 unsigned i;
5359 rtx x;
5360
5361 for (i = 0; VEC_iterate (rtx, insns, i, x); i++)
5362 init_insn (x);
5363 }
5364
5365 if (insn != NULL)
5366 init_insn (insn);
5367 }
5368
5369
5370 /* Extend data structures for logical insn UID. */
5371 static void
5372 luids_extend_insn (void)
5373 {
5374 int new_luids_max_uid = get_max_uid () + 1;
5375
5376 VEC_safe_grow_cleared (int, heap, sched_luids, new_luids_max_uid);
5377 }
5378
5379 /* Initialize LUID for INSN. */
5380 static void
5381 luids_init_insn (rtx insn)
5382 {
5383 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
5384 int luid;
5385
5386 if (i >= 0)
5387 {
5388 luid = sched_max_luid;
5389 sched_max_luid += i;
5390 }
5391 else
5392 luid = -1;
5393
5394 SET_INSN_LUID (insn, luid);
5395 }
5396
5397 /* Initialize luids for BBS, BB, INSNS and INSN.
5398 The hook common_sched_info->luid_for_non_insn () is used to determine
5399 if notes, labels, etc. need luids. */
5400 void
5401 sched_init_luids (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5402 {
5403 const struct sched_scan_info_def ssi =
5404 {
5405 NULL, /* extend_bb */
5406 NULL, /* init_bb */
5407 luids_extend_insn, /* extend_insn */
5408 luids_init_insn /* init_insn */
5409 };
5410
5411 sched_scan (&ssi, bbs, bb, insns, insn);
5412 }
5413
5414 /* Free LUIDs. */
5415 void
5416 sched_finish_luids (void)
5417 {
5418 VEC_free (int, heap, sched_luids);
5419 sched_max_luid = 1;
5420 }
5421
5422 /* Return logical uid of INSN. Helpful while debugging. */
5423 int
5424 insn_luid (rtx insn)
5425 {
5426 return INSN_LUID (insn);
5427 }
5428
5429 /* Extend per insn data in the target. */
5430 void
5431 sched_extend_target (void)
5432 {
5433 if (targetm.sched.h_i_d_extended)
5434 targetm.sched.h_i_d_extended ();
5435 }
5436
5437 /* Extend global scheduler structures (those, that live across calls to
5438 schedule_block) to include information about just emitted INSN. */
5439 static void
5440 extend_h_i_d (void)
5441 {
5442 int reserve = (get_max_uid () + 1
5443 - VEC_length (haifa_insn_data_def, h_i_d));
5444 if (reserve > 0
5445 && ! VEC_space (haifa_insn_data_def, h_i_d, reserve))
5446 {
5447 VEC_safe_grow_cleared (haifa_insn_data_def, heap, h_i_d,
5448 3 * get_max_uid () / 2);
5449 sched_extend_target ();
5450 }
5451 }
5452
5453 /* Initialize h_i_d entry of the INSN with default values.
5454 Values, that are not explicitly initialized here, hold zero. */
5455 static void
5456 init_h_i_d (rtx insn)
5457 {
5458 if (INSN_LUID (insn) > 0)
5459 {
5460 INSN_COST (insn) = -1;
5461 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
5462 INSN_TICK (insn) = INVALID_TICK;
5463 INTER_TICK (insn) = INVALID_TICK;
5464 TODO_SPEC (insn) = HARD_DEP;
5465 }
5466 }
5467
5468 /* Initialize haifa_insn_data for BBS, BB, INSNS and INSN. */
5469 void
5470 haifa_init_h_i_d (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5471 {
5472 const struct sched_scan_info_def ssi =
5473 {
5474 NULL, /* extend_bb */
5475 NULL, /* init_bb */
5476 extend_h_i_d, /* extend_insn */
5477 init_h_i_d /* init_insn */
5478 };
5479
5480 sched_scan (&ssi, bbs, bb, insns, insn);
5481 }
5482
5483 /* Finalize haifa_insn_data. */
5484 void
5485 haifa_finish_h_i_d (void)
5486 {
5487 int i;
5488 haifa_insn_data_t data;
5489 struct reg_use_data *use, *next;
5490
5491 for (i = 0; VEC_iterate (haifa_insn_data_def, h_i_d, i, data); i++)
5492 {
5493 if (data->reg_pressure != NULL)
5494 free (data->reg_pressure);
5495 for (use = data->reg_use_list; use != NULL; use = next)
5496 {
5497 next = use->next_insn_use;
5498 free (use);
5499 }
5500 }
5501 VEC_free (haifa_insn_data_def, heap, h_i_d);
5502 }
5503
5504 /* Init data for the new insn INSN. */
5505 static void
5506 haifa_init_insn (rtx insn)
5507 {
5508 gcc_assert (insn != NULL);
5509
5510 sched_init_luids (NULL, NULL, NULL, insn);
5511 sched_extend_target ();
5512 sched_deps_init (false);
5513 haifa_init_h_i_d (NULL, NULL, NULL, insn);
5514
5515 if (adding_bb_to_current_region_p)
5516 {
5517 sd_init_insn (insn);
5518
5519 /* Extend dependency caches by one element. */
5520 extend_dependency_caches (1, false);
5521 }
5522 }
5523
5524 /* Init data for the new basic block BB which comes after AFTER. */
5525 static void
5526 haifa_init_only_bb (basic_block bb, basic_block after)
5527 {
5528 gcc_assert (bb != NULL);
5529
5530 sched_init_bbs ();
5531
5532 if (common_sched_info->add_block)
5533 /* This changes only data structures of the front-end. */
5534 common_sched_info->add_block (bb, after);
5535 }
5536
5537 /* A generic version of sched_split_block (). */
5538 basic_block
5539 sched_split_block_1 (basic_block first_bb, rtx after)
5540 {
5541 edge e;
5542
5543 e = split_block (first_bb, after);
5544 gcc_assert (e->src == first_bb);
5545
5546 /* sched_split_block emits note if *check == BB_END. Probably it
5547 is better to rip that note off. */
5548
5549 return e->dest;
5550 }
5551
5552 /* A generic version of sched_create_empty_bb (). */
5553 basic_block
5554 sched_create_empty_bb_1 (basic_block after)
5555 {
5556 return create_empty_bb (after);
5557 }
5558
5559 /* Insert PAT as an INSN into the schedule and update the necessary data
5560 structures to account for it. */
5561 rtx
5562 sched_emit_insn (rtx pat)
5563 {
5564 rtx insn = emit_insn_after (pat, last_scheduled_insn);
5565 last_scheduled_insn = insn;
5566 haifa_init_insn (insn);
5567 return insn;
5568 }
5569
5570 #endif /* INSN_SCHEDULING */