[RS6000] Don't restore fixed regs
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "memmodel.h"
134 #include "tm_p.h"
135 #include "insn-config.h"
136 #include "regs.h"
137 #include "ira.h"
138 #include "recog.h"
139 #include "insn-attr.h"
140 #include "cfgrtl.h"
141 #include "cfgbuild.h"
142 #include "sched-int.h"
143 #include "common/common-target.h"
144 #include "params.h"
145 #include "dbgcnt.h"
146 #include "cfgloop.h"
147 #include "dumpfile.h"
148 #include "print-rtl.h"
149
150 #ifdef INSN_SCHEDULING
151
152 /* True if we do register pressure relief through live-range
153 shrinkage. */
154 static bool live_range_shrinkage_p;
155
156 /* Switch on live range shrinkage. */
157 void
158 initialize_live_range_shrinkage (void)
159 {
160 live_range_shrinkage_p = true;
161 }
162
163 /* Switch off live range shrinkage. */
164 void
165 finish_live_range_shrinkage (void)
166 {
167 live_range_shrinkage_p = false;
168 }
169
170 /* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
173
174 int issue_rate;
175
176 /* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178 bool sched_no_dce;
179
180 /* The current initiation interval used when modulo scheduling. */
181 static int modulo_ii;
182
183 /* The maximum number of stages we are prepared to handle. */
184 static int modulo_max_stages;
185
186 /* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188 static int modulo_n_insns;
189
190 /* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192 static int modulo_insns_scheduled;
193
194 /* The maximum uid of insns from the first iteration of the loop. */
195 static int modulo_iter0_max_uid;
196
197 /* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199 static int modulo_backtracks_left;
200
201 /* The stage in which the last insn from the original loop was
202 scheduled. */
203 static int modulo_last_stage;
204
205 /* sched-verbose controls the amount of debugging output the
206 scheduler prints. It is controlled by -fsched-verbose=N:
207 N=0: no debugging output.
208 N=1: default value.
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
211 N=5: dependences info. */
212 int sched_verbose = 0;
213
214 /* Debugging file. All printouts are sent to dump. */
215 FILE *sched_dump = 0;
216
217 /* This is a placeholder for the scheduler parameters common
218 to all schedulers. */
219 struct common_sched_info_def *common_sched_info;
220
221 #define INSN_TICK(INSN) (HID (INSN)->tick)
222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
228 /* Cached cost of the instruction. Use insn_cost to get cost of the
229 insn. -1 here means that the field is not initialized. */
230 #define INSN_COST(INSN) (HID (INSN)->cost)
231
232 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234 #define INVALID_TICK (-(max_insn_queue_index + 1))
235 /* The minimal value of the INSN_TICK of an instruction. */
236 #define MIN_TICK (-max_insn_queue_index)
237
238 /* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
241
242 /* The deciding reason for INSN's place in the ready list. */
243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
244
245 /* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
247 rtx_insn *note_list;
248
249 static struct spec_info_def spec_info_var;
250 /* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
252 spec_info_t spec_info = NULL;
253
254 /* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
256 static bool haifa_recovery_bb_recently_added_p;
257
258 /* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261 bool haifa_recovery_bb_ever_added_p;
262
263 /* Counters of different types of speculative instructions. */
264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
265
266 /* Array used in {unlink, restore}_bb_notes. */
267 static rtx_insn **bb_header = 0;
268
269 /* Basic block after which recovery blocks will be created. */
270 static basic_block before_recovery;
271
272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274 basic_block after_recovery;
275
276 /* FALSE if we add bb to another region, so we don't need to initialize it. */
277 bool adding_bb_to_current_region_p = true;
278
279 /* Queues, etc. */
280
281 /* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
285
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
292
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
295
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
301 insns move from the "Queued" set to the "Ready" list.
302
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
309
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
316
317 /* Implement a circular buffer to delay instructions until sufficient
318 time has passed. For the new pipeline description interface,
319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
320 than maximal time of instruction execution computed by genattr.c on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
323
324 static rtx_insn_list **insn_queue;
325 static int q_ptr = 0;
326 static int q_size = 0;
327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
329
330 #define QUEUE_SCHEDULED (-3)
331 #define QUEUE_NOWHERE (-2)
332 #define QUEUE_READY (-1)
333 /* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
338
339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
340
341 /* The following variable value refers for all current and future
342 reservations of the processor units. */
343 state_t curr_state;
344
345 /* The following variable value is size of memory representing all
346 current and future reservations of the processor units. */
347 size_t dfa_state_size;
348
349 /* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
351 signed char *ready_try = NULL;
352
353 /* The ready list. */
354 struct ready_list ready = {NULL, 0, 0, 0, 0};
355
356 /* The pointer to the ready list (to be removed). */
357 static struct ready_list *readyp = &ready;
358
359 /* Scheduling clock. */
360 static int clock_var;
361
362 /* Clock at which the previous instruction was issued. */
363 static int last_clock_var;
364
365 /* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367 static bool must_backtrack;
368
369 /* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372 int cycle_issued_insns;
373
374 /* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
376 static vec<rtx_insn *> scheduled_insns;
377
378 static int may_trap_exp (const_rtx, int);
379
380 /* Nonzero iff the address is comprised from at most 1 register. */
381 #define CONST_BASED_ADDRESS_P(x) \
382 (REG_P (x) \
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
387
388 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
390
391 \f
392 static int haifa_luid_for_non_insn (rtx x);
393
394 /* Haifa version of sched_info hooks common to all headers. */
395 const struct common_sched_info_def haifa_common_sched_info =
396 {
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
402 };
403
404 /* Mapping from instruction UID to its Logical UID. */
405 vec<int> sched_luids;
406
407 /* Next LUID to assign to an instruction. */
408 int sched_max_luid = 1;
409
410 /* Haifa Instruction Data. */
411 vec<haifa_insn_data_def> h_i_d;
412
413 void (* sched_init_only_bb) (basic_block, basic_block);
414
415 /* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417 basic_block (* sched_split_block) (basic_block, rtx);
418
419 /* Create empty basic block after the specified block. */
420 basic_block (* sched_create_empty_bb) (basic_block);
421
422 /* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424 static int
425 insn_delay (rtx_insn *insn)
426 {
427 return MAX (INSN_TICK (insn) - clock_var, 0);
428 }
429
430 static int
431 may_trap_exp (const_rtx x, int is_store)
432 {
433 enum rtx_code code;
434
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
439 {
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
444 }
445 if (code == MEM)
446 {
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
458 }
459 else
460 {
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
463
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
470 {
471 if (fmt[i] == 'e')
472 {
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
475 }
476 else if (fmt[i] == 'E')
477 {
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 {
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
485 }
486 }
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
489 }
490 return insn_class;
491 }
492 }
493
494 /* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
499 IFREE: load from a globally safe location.
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
503
504 static int
505 haifa_classify_rtx (const_rtx x)
506 {
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
510
511 if (GET_CODE (x) == PARALLEL)
512 {
513 int i, len = XVECLEN (x, 0);
514
515 for (i = len - 1; i >= 0; i--)
516 {
517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
521 }
522 }
523 else
524 {
525 code = GET_CODE (x);
526 switch (code)
527 {
528 case CLOBBER:
529 /* Test if it is a 'store'. */
530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
531 break;
532 case SET:
533 /* Test if it is a store. */
534 tmp_class = may_trap_exp (SET_DEST (x), 1);
535 if (tmp_class == TRAP_RISKY)
536 break;
537 /* Test if it is a load. */
538 tmp_class =
539 WORST_CLASS (tmp_class,
540 may_trap_exp (SET_SRC (x), 0));
541 break;
542 case COND_EXEC:
543 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
544 if (tmp_class == TRAP_RISKY)
545 break;
546 tmp_class = WORST_CLASS (tmp_class,
547 may_trap_exp (COND_EXEC_TEST (x), 0));
548 break;
549 case TRAP_IF:
550 tmp_class = TRAP_RISKY;
551 break;
552 default:;
553 }
554 insn_class = tmp_class;
555 }
556
557 return insn_class;
558 }
559
560 int
561 haifa_classify_insn (const_rtx insn)
562 {
563 return haifa_classify_rtx (PATTERN (insn));
564 }
565 \f
566 /* After the scheduler initialization function has been called, this function
567 can be called to enable modulo scheduling. II is the initiation interval
568 we should use, it affects the delays for delay_pairs that were recorded as
569 separated by a given number of stages.
570
571 MAX_STAGES provides us with a limit
572 after which we give up scheduling; the caller must have unrolled at least
573 as many copies of the loop body and recorded delay_pairs for them.
574
575 INSNS is the number of real (non-debug) insns in one iteration of
576 the loop. MAX_UID can be used to test whether an insn belongs to
577 the first iteration of the loop; all of them have a uid lower than
578 MAX_UID. */
579 void
580 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
581 {
582 modulo_ii = ii;
583 modulo_max_stages = max_stages;
584 modulo_n_insns = insns;
585 modulo_iter0_max_uid = max_uid;
586 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
587 }
588
589 /* A structure to record a pair of insns where the first one is a real
590 insn that has delay slots, and the second is its delayed shadow.
591 I1 is scheduled normally and will emit an assembly instruction,
592 while I2 describes the side effect that takes place at the
593 transition between cycles CYCLES and (CYCLES + 1) after I1. */
594 struct delay_pair
595 {
596 struct delay_pair *next_same_i1;
597 rtx_insn *i1, *i2;
598 int cycles;
599 /* When doing modulo scheduling, we a delay_pair can also be used to
600 show that I1 and I2 are the same insn in a different stage. If that
601 is the case, STAGES will be nonzero. */
602 int stages;
603 };
604
605 /* Helpers for delay hashing. */
606
607 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
608 {
609 typedef void *compare_type;
610 static inline hashval_t hash (const delay_pair *);
611 static inline bool equal (const delay_pair *, const void *);
612 };
613
614 /* Returns a hash value for X, based on hashing just I1. */
615
616 inline hashval_t
617 delay_i1_hasher::hash (const delay_pair *x)
618 {
619 return htab_hash_pointer (x->i1);
620 }
621
622 /* Return true if I1 of pair X is the same as that of pair Y. */
623
624 inline bool
625 delay_i1_hasher::equal (const delay_pair *x, const void *y)
626 {
627 return x->i1 == y;
628 }
629
630 struct delay_i2_hasher : free_ptr_hash <delay_pair>
631 {
632 typedef void *compare_type;
633 static inline hashval_t hash (const delay_pair *);
634 static inline bool equal (const delay_pair *, const void *);
635 };
636
637 /* Returns a hash value for X, based on hashing just I2. */
638
639 inline hashval_t
640 delay_i2_hasher::hash (const delay_pair *x)
641 {
642 return htab_hash_pointer (x->i2);
643 }
644
645 /* Return true if I2 of pair X is the same as that of pair Y. */
646
647 inline bool
648 delay_i2_hasher::equal (const delay_pair *x, const void *y)
649 {
650 return x->i2 == y;
651 }
652
653 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
654 indexed by I2. */
655 static hash_table<delay_i1_hasher> *delay_htab;
656 static hash_table<delay_i2_hasher> *delay_htab_i2;
657
658 /* Called through htab_traverse. Walk the hashtable using I2 as
659 index, and delete all elements involving an UID higher than
660 that pointed to by *DATA. */
661 int
662 haifa_htab_i2_traverse (delay_pair **slot, int *data)
663 {
664 int maxuid = *data;
665 struct delay_pair *p = *slot;
666 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
667 {
668 delay_htab_i2->clear_slot (slot);
669 }
670 return 1;
671 }
672
673 /* Called through htab_traverse. Walk the hashtable using I2 as
674 index, and delete all elements involving an UID higher than
675 that pointed to by *DATA. */
676 int
677 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
678 {
679 int maxuid = *data;
680 struct delay_pair *p, *first, **pprev;
681
682 if (INSN_UID ((*pslot)->i1) >= maxuid)
683 {
684 delay_htab->clear_slot (pslot);
685 return 1;
686 }
687 pprev = &first;
688 for (p = *pslot; p; p = p->next_same_i1)
689 {
690 if (INSN_UID (p->i2) < maxuid)
691 {
692 *pprev = p;
693 pprev = &p->next_same_i1;
694 }
695 }
696 *pprev = NULL;
697 if (first == NULL)
698 delay_htab->clear_slot (pslot);
699 else
700 *pslot = first;
701 return 1;
702 }
703
704 /* Discard all delay pairs which involve an insn with an UID higher
705 than MAX_UID. */
706 void
707 discard_delay_pairs_above (int max_uid)
708 {
709 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
710 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
711 }
712
713 /* This function can be called by a port just before it starts the final
714 scheduling pass. It records the fact that an instruction with delay
715 slots has been split into two insns, I1 and I2. The first one will be
716 scheduled normally and initiates the operation. The second one is a
717 shadow which must follow a specific number of cycles after I1; its only
718 purpose is to show the side effect that occurs at that cycle in the RTL.
719 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
720 while I2 retains the original insn type.
721
722 There are two ways in which the number of cycles can be specified,
723 involving the CYCLES and STAGES arguments to this function. If STAGES
724 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
725 which is multiplied by MODULO_II to give the number of cycles. This is
726 only useful if the caller also calls set_modulo_params to enable modulo
727 scheduling. */
728
729 void
730 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
731 {
732 struct delay_pair *p = XNEW (struct delay_pair);
733 struct delay_pair **slot;
734
735 p->i1 = i1;
736 p->i2 = i2;
737 p->cycles = cycles;
738 p->stages = stages;
739
740 if (!delay_htab)
741 {
742 delay_htab = new hash_table<delay_i1_hasher> (10);
743 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
744 }
745 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
746 p->next_same_i1 = *slot;
747 *slot = p;
748 slot = delay_htab_i2->find_slot (p, INSERT);
749 *slot = p;
750 }
751
752 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
753 and return the other insn if so. Return NULL otherwise. */
754 rtx_insn *
755 real_insn_for_shadow (rtx_insn *insn)
756 {
757 struct delay_pair *pair;
758
759 if (!delay_htab)
760 return NULL;
761
762 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
763 if (!pair || pair->stages > 0)
764 return NULL;
765 return pair->i1;
766 }
767
768 /* For a pair P of insns, return the fixed distance in cycles from the first
769 insn after which the second must be scheduled. */
770 static int
771 pair_delay (struct delay_pair *p)
772 {
773 if (p->stages == 0)
774 return p->cycles;
775 else
776 return p->stages * modulo_ii;
777 }
778
779 /* Given an insn INSN, add a dependence on its delayed shadow if it
780 has one. Also try to find situations where shadows depend on each other
781 and add dependencies to the real insns to limit the amount of backtracking
782 needed. */
783 void
784 add_delay_dependencies (rtx_insn *insn)
785 {
786 struct delay_pair *pair;
787 sd_iterator_def sd_it;
788 dep_t dep;
789
790 if (!delay_htab)
791 return;
792
793 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
794 if (!pair)
795 return;
796 add_dependence (insn, pair->i1, REG_DEP_ANTI);
797 if (pair->stages)
798 return;
799
800 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
801 {
802 rtx_insn *pro = DEP_PRO (dep);
803 struct delay_pair *other_pair
804 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
805 if (!other_pair || other_pair->stages)
806 continue;
807 if (pair_delay (other_pair) >= pair_delay (pair))
808 {
809 if (sched_verbose >= 4)
810 {
811 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
812 INSN_UID (other_pair->i1),
813 INSN_UID (pair->i1));
814 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
815 INSN_UID (pair->i1),
816 INSN_UID (pair->i2),
817 pair_delay (pair));
818 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
819 INSN_UID (other_pair->i1),
820 INSN_UID (other_pair->i2),
821 pair_delay (other_pair));
822 }
823 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
824 }
825 }
826 }
827 \f
828 /* Forward declarations. */
829
830 static int priority (rtx_insn *);
831 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
832 static int rank_for_schedule (const void *, const void *);
833 static void swap_sort (rtx_insn **, int);
834 static void queue_insn (rtx_insn *, int, const char *);
835 static int schedule_insn (rtx_insn *);
836 static void adjust_priority (rtx_insn *);
837 static void advance_one_cycle (void);
838 static void extend_h_i_d (void);
839
840
841 /* Notes handling mechanism:
842 =========================
843 Generally, NOTES are saved before scheduling and restored after scheduling.
844 The scheduler distinguishes between two types of notes:
845
846 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
847 Before scheduling a region, a pointer to the note is added to the insn
848 that follows or precedes it. (This happens as part of the data dependence
849 computation). After scheduling an insn, the pointer contained in it is
850 used for regenerating the corresponding note (in reemit_notes).
851
852 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
853 these notes are put in a list (in rm_other_notes() and
854 unlink_other_notes ()). After scheduling the block, these notes are
855 inserted at the beginning of the block (in schedule_block()). */
856
857 static void ready_add (struct ready_list *, rtx_insn *, bool);
858 static rtx_insn *ready_remove_first (struct ready_list *);
859 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
860
861 static void queue_to_ready (struct ready_list *);
862 static int early_queue_to_ready (state_t, struct ready_list *);
863
864 /* The following functions are used to implement multi-pass scheduling
865 on the first cycle. */
866 static rtx_insn *ready_remove (struct ready_list *, int);
867 static void ready_remove_insn (rtx_insn *);
868
869 static void fix_inter_tick (rtx_insn *, rtx_insn *);
870 static int fix_tick_ready (rtx_insn *);
871 static void change_queue_index (rtx_insn *, int);
872
873 /* The following functions are used to implement scheduling of data/control
874 speculative instructions. */
875
876 static void extend_h_i_d (void);
877 static void init_h_i_d (rtx_insn *);
878 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
879 static void generate_recovery_code (rtx_insn *);
880 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
881 static void begin_speculative_block (rtx_insn *);
882 static void add_to_speculative_block (rtx_insn *);
883 static void init_before_recovery (basic_block *);
884 static void create_check_block_twin (rtx_insn *, bool);
885 static void fix_recovery_deps (basic_block);
886 static bool haifa_change_pattern (rtx_insn *, rtx);
887 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
888 static void restore_bb_notes (basic_block);
889 static void fix_jump_move (rtx_insn *);
890 static void move_block_after_check (rtx_insn *);
891 static void move_succs (vec<edge, va_gc> **, basic_block);
892 static void sched_remove_insn (rtx_insn *);
893 static void clear_priorities (rtx_insn *, rtx_vec_t *);
894 static void calc_priorities (rtx_vec_t);
895 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
896
897 #endif /* INSN_SCHEDULING */
898 \f
899 /* Point to state used for the current scheduling pass. */
900 struct haifa_sched_info *current_sched_info;
901 \f
902 #ifndef INSN_SCHEDULING
903 void
904 schedule_insns (void)
905 {
906 }
907 #else
908
909 /* Do register pressure sensitive insn scheduling if the flag is set
910 up. */
911 enum sched_pressure_algorithm sched_pressure;
912
913 /* Map regno -> its pressure class. The map defined only when
914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
915 enum reg_class *sched_regno_pressure_class;
916
917 /* The current register pressure. Only elements corresponding pressure
918 classes are defined. */
919 static int curr_reg_pressure[N_REG_CLASSES];
920
921 /* Saved value of the previous array. */
922 static int saved_reg_pressure[N_REG_CLASSES];
923
924 /* Register living at given scheduling point. */
925 static bitmap curr_reg_live;
926
927 /* Saved value of the previous array. */
928 static bitmap saved_reg_live;
929
930 /* Registers mentioned in the current region. */
931 static bitmap region_ref_regs;
932
933 /* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
934 static bitmap tmp_bitmap;
935
936 /* Effective number of available registers of a given class (see comment
937 in sched_pressure_start_bb). */
938 static int sched_class_regs_num[N_REG_CLASSES];
939 /* Number of call_saved_regs and fixed_regs. Helpers for calculating of
940 sched_class_regs_num. */
941 static int call_saved_regs_num[N_REG_CLASSES];
942 static int fixed_regs_num[N_REG_CLASSES];
943
944 /* Initiate register pressure relative info for scheduling the current
945 region. Currently it is only clearing register mentioned in the
946 current region. */
947 void
948 sched_init_region_reg_pressure_info (void)
949 {
950 bitmap_clear (region_ref_regs);
951 }
952
953 /* PRESSURE[CL] describes the pressure on register class CL. Update it
954 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
955 LIVE tracks the set of live registers; if it is null, assume that
956 every birth or death is genuine. */
957 static inline void
958 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
959 {
960 enum reg_class pressure_class;
961
962 pressure_class = sched_regno_pressure_class[regno];
963 if (regno >= FIRST_PSEUDO_REGISTER)
964 {
965 if (pressure_class != NO_REGS)
966 {
967 if (birth_p)
968 {
969 if (!live || bitmap_set_bit (live, regno))
970 pressure[pressure_class]
971 += (ira_reg_class_max_nregs
972 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
973 }
974 else
975 {
976 if (!live || bitmap_clear_bit (live, regno))
977 pressure[pressure_class]
978 -= (ira_reg_class_max_nregs
979 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
980 }
981 }
982 }
983 else if (pressure_class != NO_REGS
984 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
985 {
986 if (birth_p)
987 {
988 if (!live || bitmap_set_bit (live, regno))
989 pressure[pressure_class]++;
990 }
991 else
992 {
993 if (!live || bitmap_clear_bit (live, regno))
994 pressure[pressure_class]--;
995 }
996 }
997 }
998
999 /* Initiate current register pressure related info from living
1000 registers given by LIVE. */
1001 static void
1002 initiate_reg_pressure_info (bitmap live)
1003 {
1004 int i;
1005 unsigned int j;
1006 bitmap_iterator bi;
1007
1008 for (i = 0; i < ira_pressure_classes_num; i++)
1009 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1010 bitmap_clear (curr_reg_live);
1011 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1012 if (sched_pressure == SCHED_PRESSURE_MODEL
1013 || current_nr_blocks == 1
1014 || bitmap_bit_p (region_ref_regs, j))
1015 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1016 }
1017
1018 /* Mark registers in X as mentioned in the current region. */
1019 static void
1020 setup_ref_regs (rtx x)
1021 {
1022 int i, j;
1023 const RTX_CODE code = GET_CODE (x);
1024 const char *fmt;
1025
1026 if (REG_P (x))
1027 {
1028 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1029 return;
1030 }
1031 fmt = GET_RTX_FORMAT (code);
1032 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1033 if (fmt[i] == 'e')
1034 setup_ref_regs (XEXP (x, i));
1035 else if (fmt[i] == 'E')
1036 {
1037 for (j = 0; j < XVECLEN (x, i); j++)
1038 setup_ref_regs (XVECEXP (x, i, j));
1039 }
1040 }
1041
1042 /* Initiate current register pressure related info at the start of
1043 basic block BB. */
1044 static void
1045 initiate_bb_reg_pressure_info (basic_block bb)
1046 {
1047 unsigned int i ATTRIBUTE_UNUSED;
1048 rtx_insn *insn;
1049
1050 if (current_nr_blocks > 1)
1051 FOR_BB_INSNS (bb, insn)
1052 if (NONDEBUG_INSN_P (insn))
1053 setup_ref_regs (PATTERN (insn));
1054 initiate_reg_pressure_info (df_get_live_in (bb));
1055 if (bb_has_eh_pred (bb))
1056 for (i = 0; ; ++i)
1057 {
1058 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1059
1060 if (regno == INVALID_REGNUM)
1061 break;
1062 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1063 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1064 regno, true);
1065 }
1066 }
1067
1068 /* Save current register pressure related info. */
1069 static void
1070 save_reg_pressure (void)
1071 {
1072 int i;
1073
1074 for (i = 0; i < ira_pressure_classes_num; i++)
1075 saved_reg_pressure[ira_pressure_classes[i]]
1076 = curr_reg_pressure[ira_pressure_classes[i]];
1077 bitmap_copy (saved_reg_live, curr_reg_live);
1078 }
1079
1080 /* Restore saved register pressure related info. */
1081 static void
1082 restore_reg_pressure (void)
1083 {
1084 int i;
1085
1086 for (i = 0; i < ira_pressure_classes_num; i++)
1087 curr_reg_pressure[ira_pressure_classes[i]]
1088 = saved_reg_pressure[ira_pressure_classes[i]];
1089 bitmap_copy (curr_reg_live, saved_reg_live);
1090 }
1091
1092 /* Return TRUE if the register is dying after its USE. */
1093 static bool
1094 dying_use_p (struct reg_use_data *use)
1095 {
1096 struct reg_use_data *next;
1097
1098 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1099 if (NONDEBUG_INSN_P (next->insn)
1100 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1101 return false;
1102 return true;
1103 }
1104
1105 /* Print info about the current register pressure and its excess for
1106 each pressure class. */
1107 static void
1108 print_curr_reg_pressure (void)
1109 {
1110 int i;
1111 enum reg_class cl;
1112
1113 fprintf (sched_dump, ";;\t");
1114 for (i = 0; i < ira_pressure_classes_num; i++)
1115 {
1116 cl = ira_pressure_classes[i];
1117 gcc_assert (curr_reg_pressure[cl] >= 0);
1118 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1119 curr_reg_pressure[cl],
1120 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1121 }
1122 fprintf (sched_dump, "\n");
1123 }
1124 \f
1125 /* Determine if INSN has a condition that is clobbered if a register
1126 in SET_REGS is modified. */
1127 static bool
1128 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1129 {
1130 rtx pat = PATTERN (insn);
1131 gcc_assert (GET_CODE (pat) == COND_EXEC);
1132 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1133 {
1134 sd_iterator_def sd_it;
1135 dep_t dep;
1136 haifa_change_pattern (insn, ORIG_PAT (insn));
1137 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1138 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1139 TODO_SPEC (insn) = HARD_DEP;
1140 if (sched_verbose >= 2)
1141 fprintf (sched_dump,
1142 ";;\t\tdequeue insn %s because of clobbered condition\n",
1143 (*current_sched_info->print_insn) (insn, 0));
1144 return true;
1145 }
1146
1147 return false;
1148 }
1149
1150 /* This function should be called after modifying the pattern of INSN,
1151 to update scheduler data structures as needed. */
1152 static void
1153 update_insn_after_change (rtx_insn *insn)
1154 {
1155 sd_iterator_def sd_it;
1156 dep_t dep;
1157
1158 dfa_clear_single_insn_cache (insn);
1159
1160 sd_it = sd_iterator_start (insn,
1161 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1162 while (sd_iterator_cond (&sd_it, &dep))
1163 {
1164 DEP_COST (dep) = UNKNOWN_DEP_COST;
1165 sd_iterator_next (&sd_it);
1166 }
1167
1168 /* Invalidate INSN_COST, so it'll be recalculated. */
1169 INSN_COST (insn) = -1;
1170 /* Invalidate INSN_TICK, so it'll be recalculated. */
1171 INSN_TICK (insn) = INVALID_TICK;
1172
1173 /* Invalidate autoprefetch data entry. */
1174 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1175 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1176 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1177 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1178 }
1179
1180
1181 /* Two VECs, one to hold dependencies for which pattern replacements
1182 need to be applied or restored at the start of the next cycle, and
1183 another to hold an integer that is either one, to apply the
1184 corresponding replacement, or zero to restore it. */
1185 static vec<dep_t> next_cycle_replace_deps;
1186 static vec<int> next_cycle_apply;
1187
1188 static void apply_replacement (dep_t, bool);
1189 static void restore_pattern (dep_t, bool);
1190
1191 /* Look at the remaining dependencies for insn NEXT, and compute and return
1192 the TODO_SPEC value we should use for it. This is called after one of
1193 NEXT's dependencies has been resolved.
1194 We also perform pattern replacements for predication, and for broken
1195 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1196 false. */
1197
1198 static ds_t
1199 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1200 {
1201 ds_t new_ds;
1202 sd_iterator_def sd_it;
1203 dep_t dep, modify_dep = NULL;
1204 int n_spec = 0;
1205 int n_control = 0;
1206 int n_replace = 0;
1207 bool first_p = true;
1208
1209 if (sd_lists_empty_p (next, SD_LIST_BACK))
1210 /* NEXT has all its dependencies resolved. */
1211 return 0;
1212
1213 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1214 return HARD_DEP;
1215
1216 /* If NEXT is intended to sit adjacent to this instruction, we don't
1217 want to try to break any dependencies. Treat it as a HARD_DEP. */
1218 if (SCHED_GROUP_P (next))
1219 return HARD_DEP;
1220
1221 /* Now we've got NEXT with speculative deps only.
1222 1. Look at the deps to see what we have to do.
1223 2. Check if we can do 'todo'. */
1224 new_ds = 0;
1225
1226 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1227 {
1228 rtx_insn *pro = DEP_PRO (dep);
1229 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1230
1231 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1232 continue;
1233
1234 if (ds)
1235 {
1236 n_spec++;
1237 if (first_p)
1238 {
1239 first_p = false;
1240
1241 new_ds = ds;
1242 }
1243 else
1244 new_ds = ds_merge (new_ds, ds);
1245 }
1246 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1247 {
1248 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1249 {
1250 n_control++;
1251 modify_dep = dep;
1252 }
1253 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1254 }
1255 else if (DEP_REPLACE (dep) != NULL)
1256 {
1257 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1258 {
1259 n_replace++;
1260 modify_dep = dep;
1261 }
1262 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1263 }
1264 }
1265
1266 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1267 {
1268 if (!dbg_cnt (sched_breakdep))
1269 return HARD_DEP;
1270 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1271 {
1272 struct dep_replacement *desc = DEP_REPLACE (dep);
1273 if (desc != NULL)
1274 {
1275 if (desc->insn == next && !for_backtrack)
1276 {
1277 gcc_assert (n_replace == 1);
1278 apply_replacement (dep, true);
1279 }
1280 DEP_STATUS (dep) |= DEP_CANCELLED;
1281 }
1282 }
1283 return 0;
1284 }
1285
1286 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1287 {
1288 rtx_insn *pro, *other;
1289 rtx new_pat;
1290 rtx cond = NULL_RTX;
1291 bool success;
1292 rtx_insn *prev = NULL;
1293 int i;
1294 unsigned regno;
1295
1296 if ((current_sched_info->flags & DO_PREDICATION) == 0
1297 || (ORIG_PAT (next) != NULL_RTX
1298 && PREDICATED_PAT (next) == NULL_RTX))
1299 return HARD_DEP;
1300
1301 pro = DEP_PRO (modify_dep);
1302 other = real_insn_for_shadow (pro);
1303 if (other != NULL_RTX)
1304 pro = other;
1305
1306 cond = sched_get_reverse_condition_uncached (pro);
1307 regno = REGNO (XEXP (cond, 0));
1308
1309 /* Find the last scheduled insn that modifies the condition register.
1310 We can stop looking once we find the insn we depend on through the
1311 REG_DEP_CONTROL; if the condition register isn't modified after it,
1312 we know that it still has the right value. */
1313 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1314 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1315 {
1316 HARD_REG_SET t;
1317
1318 find_all_hard_reg_sets (prev, &t, true);
1319 if (TEST_HARD_REG_BIT (t, regno))
1320 return HARD_DEP;
1321 if (prev == pro)
1322 break;
1323 }
1324 if (ORIG_PAT (next) == NULL_RTX)
1325 {
1326 ORIG_PAT (next) = PATTERN (next);
1327
1328 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1329 success = haifa_change_pattern (next, new_pat);
1330 if (!success)
1331 return HARD_DEP;
1332 PREDICATED_PAT (next) = new_pat;
1333 }
1334 else if (PATTERN (next) != PREDICATED_PAT (next))
1335 {
1336 bool success = haifa_change_pattern (next,
1337 PREDICATED_PAT (next));
1338 gcc_assert (success);
1339 }
1340 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1341 return DEP_CONTROL;
1342 }
1343
1344 if (PREDICATED_PAT (next) != NULL_RTX)
1345 {
1346 int tick = INSN_TICK (next);
1347 bool success = haifa_change_pattern (next,
1348 ORIG_PAT (next));
1349 INSN_TICK (next) = tick;
1350 gcc_assert (success);
1351 }
1352
1353 /* We can't handle the case where there are both speculative and control
1354 dependencies, so we return HARD_DEP in such a case. Also fail if
1355 we have speculative dependencies with not enough points, or more than
1356 one control dependency. */
1357 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1358 || (n_spec > 0
1359 /* Too few points? */
1360 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1361 || n_control > 0
1362 || n_replace > 0)
1363 return HARD_DEP;
1364
1365 return new_ds;
1366 }
1367 \f
1368 /* Pointer to the last instruction scheduled. */
1369 static rtx_insn *last_scheduled_insn;
1370
1371 /* Pointer to the last nondebug instruction scheduled within the
1372 block, or the prev_head of the scheduling block. Used by
1373 rank_for_schedule, so that insns independent of the last scheduled
1374 insn will be preferred over dependent instructions. */
1375 static rtx_insn *last_nondebug_scheduled_insn;
1376
1377 /* Pointer that iterates through the list of unscheduled insns if we
1378 have a dbg_cnt enabled. It always points at an insn prior to the
1379 first unscheduled one. */
1380 static rtx_insn *nonscheduled_insns_begin;
1381
1382 /* Compute cost of executing INSN.
1383 This is the number of cycles between instruction issue and
1384 instruction results. */
1385 int
1386 insn_cost (rtx_insn *insn)
1387 {
1388 int cost;
1389
1390 if (sched_fusion)
1391 return 0;
1392
1393 if (sel_sched_p ())
1394 {
1395 if (recog_memoized (insn) < 0)
1396 return 0;
1397
1398 cost = insn_default_latency (insn);
1399 if (cost < 0)
1400 cost = 0;
1401
1402 return cost;
1403 }
1404
1405 cost = INSN_COST (insn);
1406
1407 if (cost < 0)
1408 {
1409 /* A USE insn, or something else we don't need to
1410 understand. We can't pass these directly to
1411 result_ready_cost or insn_default_latency because it will
1412 trigger a fatal error for unrecognizable insns. */
1413 if (recog_memoized (insn) < 0)
1414 {
1415 INSN_COST (insn) = 0;
1416 return 0;
1417 }
1418 else
1419 {
1420 cost = insn_default_latency (insn);
1421 if (cost < 0)
1422 cost = 0;
1423
1424 INSN_COST (insn) = cost;
1425 }
1426 }
1427
1428 return cost;
1429 }
1430
1431 /* Compute cost of dependence LINK.
1432 This is the number of cycles between instruction issue and
1433 instruction results.
1434 ??? We also use this function to call recog_memoized on all insns. */
1435 int
1436 dep_cost_1 (dep_t link, dw_t dw)
1437 {
1438 rtx_insn *insn = DEP_PRO (link);
1439 rtx_insn *used = DEP_CON (link);
1440 int cost;
1441
1442 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1443 return DEP_COST (link);
1444
1445 if (delay_htab)
1446 {
1447 struct delay_pair *delay_entry;
1448 delay_entry
1449 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1450 if (delay_entry)
1451 {
1452 if (delay_entry->i1 == insn)
1453 {
1454 DEP_COST (link) = pair_delay (delay_entry);
1455 return DEP_COST (link);
1456 }
1457 }
1458 }
1459
1460 /* A USE insn should never require the value used to be computed.
1461 This allows the computation of a function's result and parameter
1462 values to overlap the return and call. We don't care about the
1463 dependence cost when only decreasing register pressure. */
1464 if (recog_memoized (used) < 0)
1465 {
1466 cost = 0;
1467 recog_memoized (insn);
1468 }
1469 else
1470 {
1471 enum reg_note dep_type = DEP_TYPE (link);
1472
1473 cost = insn_cost (insn);
1474
1475 if (INSN_CODE (insn) >= 0)
1476 {
1477 if (dep_type == REG_DEP_ANTI)
1478 cost = 0;
1479 else if (dep_type == REG_DEP_OUTPUT)
1480 {
1481 cost = (insn_default_latency (insn)
1482 - insn_default_latency (used));
1483 if (cost <= 0)
1484 cost = 1;
1485 }
1486 else if (bypass_p (insn))
1487 cost = insn_latency (insn, used);
1488 }
1489
1490
1491 if (targetm.sched.adjust_cost)
1492 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1493 dw);
1494
1495 if (cost < 0)
1496 cost = 0;
1497 }
1498
1499 DEP_COST (link) = cost;
1500 return cost;
1501 }
1502
1503 /* Compute cost of dependence LINK.
1504 This is the number of cycles between instruction issue and
1505 instruction results. */
1506 int
1507 dep_cost (dep_t link)
1508 {
1509 return dep_cost_1 (link, 0);
1510 }
1511
1512 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1513 INSN_PRIORITY explicitly. */
1514 void
1515 increase_insn_priority (rtx_insn *insn, int amount)
1516 {
1517 if (!sel_sched_p ())
1518 {
1519 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1520 if (INSN_PRIORITY_KNOWN (insn))
1521 INSN_PRIORITY (insn) += amount;
1522 }
1523 else
1524 {
1525 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1526 Use EXPR_PRIORITY instead. */
1527 sel_add_to_insn_priority (insn, amount);
1528 }
1529 }
1530
1531 /* Return 'true' if DEP should be included in priority calculations. */
1532 static bool
1533 contributes_to_priority_p (dep_t dep)
1534 {
1535 if (DEBUG_INSN_P (DEP_CON (dep))
1536 || DEBUG_INSN_P (DEP_PRO (dep)))
1537 return false;
1538
1539 /* Critical path is meaningful in block boundaries only. */
1540 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1541 DEP_PRO (dep)))
1542 return false;
1543
1544 if (DEP_REPLACE (dep) != NULL)
1545 return false;
1546
1547 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1548 then speculative instructions will less likely be
1549 scheduled. That is because the priority of
1550 their producers will increase, and, thus, the
1551 producers will more likely be scheduled, thus,
1552 resolving the dependence. */
1553 if (sched_deps_info->generate_spec_deps
1554 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1555 && (DEP_STATUS (dep) & SPECULATIVE))
1556 return false;
1557
1558 return true;
1559 }
1560
1561 /* Compute the number of nondebug deps in list LIST for INSN. */
1562
1563 static int
1564 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1565 {
1566 sd_iterator_def sd_it;
1567 dep_t dep;
1568 int dbgcount = 0, nodbgcount = 0;
1569
1570 if (!MAY_HAVE_DEBUG_INSNS)
1571 return sd_lists_size (insn, list);
1572
1573 FOR_EACH_DEP (insn, list, sd_it, dep)
1574 {
1575 if (DEBUG_INSN_P (DEP_CON (dep)))
1576 dbgcount++;
1577 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1578 nodbgcount++;
1579 }
1580
1581 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1582
1583 return nodbgcount;
1584 }
1585
1586 bool sched_fusion;
1587
1588 /* Compute the priority number for INSN. */
1589 static int
1590 priority (rtx_insn *insn)
1591 {
1592 if (! INSN_P (insn))
1593 return 0;
1594
1595 /* We should not be interested in priority of an already scheduled insn. */
1596 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1597
1598 if (!INSN_PRIORITY_KNOWN (insn))
1599 {
1600 int this_priority = -1;
1601
1602 if (sched_fusion)
1603 {
1604 int this_fusion_priority;
1605
1606 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1607 &this_fusion_priority, &this_priority);
1608 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1609 }
1610 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1611 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1612 some forward deps but all of them are ignored by
1613 contributes_to_priority hook. At the moment we set priority of
1614 such insn to 0. */
1615 this_priority = insn_cost (insn);
1616 else
1617 {
1618 rtx_insn *prev_first, *twin;
1619 basic_block rec;
1620
1621 /* For recovery check instructions we calculate priority slightly
1622 different than that of normal instructions. Instead of walking
1623 through INSN_FORW_DEPS (check) list, we walk through
1624 INSN_FORW_DEPS list of each instruction in the corresponding
1625 recovery block. */
1626
1627 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1628 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1629 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1630 {
1631 prev_first = PREV_INSN (insn);
1632 twin = insn;
1633 }
1634 else
1635 {
1636 prev_first = NEXT_INSN (BB_HEAD (rec));
1637 twin = PREV_INSN (BB_END (rec));
1638 }
1639
1640 do
1641 {
1642 sd_iterator_def sd_it;
1643 dep_t dep;
1644
1645 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1646 {
1647 rtx_insn *next;
1648 int next_priority;
1649
1650 next = DEP_CON (dep);
1651
1652 if (BLOCK_FOR_INSN (next) != rec)
1653 {
1654 int cost;
1655
1656 if (!contributes_to_priority_p (dep))
1657 continue;
1658
1659 if (twin == insn)
1660 cost = dep_cost (dep);
1661 else
1662 {
1663 struct _dep _dep1, *dep1 = &_dep1;
1664
1665 init_dep (dep1, insn, next, REG_DEP_ANTI);
1666
1667 cost = dep_cost (dep1);
1668 }
1669
1670 next_priority = cost + priority (next);
1671
1672 if (next_priority > this_priority)
1673 this_priority = next_priority;
1674 }
1675 }
1676
1677 twin = PREV_INSN (twin);
1678 }
1679 while (twin != prev_first);
1680 }
1681
1682 if (this_priority < 0)
1683 {
1684 gcc_assert (this_priority == -1);
1685
1686 this_priority = insn_cost (insn);
1687 }
1688
1689 INSN_PRIORITY (insn) = this_priority;
1690 INSN_PRIORITY_STATUS (insn) = 1;
1691 }
1692
1693 return INSN_PRIORITY (insn);
1694 }
1695 \f
1696 /* Macros and functions for keeping the priority queue sorted, and
1697 dealing with queuing and dequeuing of instructions. */
1698
1699 /* For each pressure class CL, set DEATH[CL] to the number of registers
1700 in that class that die in INSN. */
1701
1702 static void
1703 calculate_reg_deaths (rtx_insn *insn, int *death)
1704 {
1705 int i;
1706 struct reg_use_data *use;
1707
1708 for (i = 0; i < ira_pressure_classes_num; i++)
1709 death[ira_pressure_classes[i]] = 0;
1710 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1711 if (dying_use_p (use))
1712 mark_regno_birth_or_death (0, death, use->regno, true);
1713 }
1714
1715 /* Setup info about the current register pressure impact of scheduling
1716 INSN at the current scheduling point. */
1717 static void
1718 setup_insn_reg_pressure_info (rtx_insn *insn)
1719 {
1720 int i, change, before, after, hard_regno;
1721 int excess_cost_change;
1722 machine_mode mode;
1723 enum reg_class cl;
1724 struct reg_pressure_data *pressure_info;
1725 int *max_reg_pressure;
1726 static int death[N_REG_CLASSES];
1727
1728 gcc_checking_assert (!DEBUG_INSN_P (insn));
1729
1730 excess_cost_change = 0;
1731 calculate_reg_deaths (insn, death);
1732 pressure_info = INSN_REG_PRESSURE (insn);
1733 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1734 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1735 for (i = 0; i < ira_pressure_classes_num; i++)
1736 {
1737 cl = ira_pressure_classes[i];
1738 gcc_assert (curr_reg_pressure[cl] >= 0);
1739 change = (int) pressure_info[i].set_increase - death[cl];
1740 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1741 after = MAX (0, max_reg_pressure[i] + change
1742 - sched_class_regs_num[cl]);
1743 hard_regno = ira_class_hard_regs[cl][0];
1744 gcc_assert (hard_regno >= 0);
1745 mode = reg_raw_mode[hard_regno];
1746 excess_cost_change += ((after - before)
1747 * (ira_memory_move_cost[mode][cl][0]
1748 + ira_memory_move_cost[mode][cl][1]));
1749 }
1750 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1751 }
1752 \f
1753 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1754 It tries to make the scheduler take register pressure into account
1755 without introducing too many unnecessary stalls. It hooks into the
1756 main scheduling algorithm at several points:
1757
1758 - Before scheduling starts, model_start_schedule constructs a
1759 "model schedule" for the current block. This model schedule is
1760 chosen solely to keep register pressure down. It does not take the
1761 target's pipeline or the original instruction order into account,
1762 except as a tie-breaker. It also doesn't work to a particular
1763 pressure limit.
1764
1765 This model schedule gives us an idea of what pressure can be
1766 achieved for the block and gives us an example of a schedule that
1767 keeps to that pressure. It also makes the final schedule less
1768 dependent on the original instruction order. This is important
1769 because the original order can either be "wide" (many values live
1770 at once, such as in user-scheduled code) or "narrow" (few values
1771 live at once, such as after loop unrolling, where several
1772 iterations are executed sequentially).
1773
1774 We do not apply this model schedule to the rtx stream. We simply
1775 record it in model_schedule. We also compute the maximum pressure,
1776 MP, that was seen during this schedule.
1777
1778 - Instructions are added to the ready queue even if they require
1779 a stall. The length of the stall is instead computed as:
1780
1781 MAX (INSN_TICK (INSN) - clock_var, 0)
1782
1783 (= insn_delay). This allows rank_for_schedule to choose between
1784 introducing a deliberate stall or increasing pressure.
1785
1786 - Before sorting the ready queue, model_set_excess_costs assigns
1787 a pressure-based cost to each ready instruction in the queue.
1788 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1789 (ECC for short) and is effectively measured in cycles.
1790
1791 - rank_for_schedule ranks instructions based on:
1792
1793 ECC (insn) + insn_delay (insn)
1794
1795 then as:
1796
1797 insn_delay (insn)
1798
1799 So, for example, an instruction X1 with an ECC of 1 that can issue
1800 now will win over an instruction X0 with an ECC of zero that would
1801 introduce a stall of one cycle. However, an instruction X2 with an
1802 ECC of 2 that can issue now will lose to both X0 and X1.
1803
1804 - When an instruction is scheduled, model_recompute updates the model
1805 schedule with the new pressures (some of which might now exceed the
1806 original maximum pressure MP). model_update_limit_points then searches
1807 for the new point of maximum pressure, if not already known. */
1808
1809 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1810 from surrounding debug information. */
1811 #define MODEL_BAR \
1812 ";;\t\t+------------------------------------------------------\n"
1813
1814 /* Information about the pressure on a particular register class at a
1815 particular point of the model schedule. */
1816 struct model_pressure_data {
1817 /* The pressure at this point of the model schedule, or -1 if the
1818 point is associated with an instruction that has already been
1819 scheduled. */
1820 int ref_pressure;
1821
1822 /* The maximum pressure during or after this point of the model schedule. */
1823 int max_pressure;
1824 };
1825
1826 /* Per-instruction information that is used while building the model
1827 schedule. Here, "schedule" refers to the model schedule rather
1828 than the main schedule. */
1829 struct model_insn_info {
1830 /* The instruction itself. */
1831 rtx_insn *insn;
1832
1833 /* If this instruction is in model_worklist, these fields link to the
1834 previous (higher-priority) and next (lower-priority) instructions
1835 in the list. */
1836 struct model_insn_info *prev;
1837 struct model_insn_info *next;
1838
1839 /* While constructing the schedule, QUEUE_INDEX describes whether an
1840 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1841 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1842 old_queue records the value that QUEUE_INDEX had before scheduling
1843 started, so that we can restore it once the schedule is complete. */
1844 int old_queue;
1845
1846 /* The relative importance of an unscheduled instruction. Higher
1847 values indicate greater importance. */
1848 unsigned int model_priority;
1849
1850 /* The length of the longest path of satisfied true dependencies
1851 that leads to this instruction. */
1852 unsigned int depth;
1853
1854 /* The length of the longest path of dependencies of any kind
1855 that leads from this instruction. */
1856 unsigned int alap;
1857
1858 /* The number of predecessor nodes that must still be scheduled. */
1859 int unscheduled_preds;
1860 };
1861
1862 /* Information about the pressure limit for a particular register class.
1863 This structure is used when applying a model schedule to the main
1864 schedule. */
1865 struct model_pressure_limit {
1866 /* The maximum register pressure seen in the original model schedule. */
1867 int orig_pressure;
1868
1869 /* The maximum register pressure seen in the current model schedule
1870 (which excludes instructions that have already been scheduled). */
1871 int pressure;
1872
1873 /* The point of the current model schedule at which PRESSURE is first
1874 reached. It is set to -1 if the value needs to be recomputed. */
1875 int point;
1876 };
1877
1878 /* Describes a particular way of measuring register pressure. */
1879 struct model_pressure_group {
1880 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1881 struct model_pressure_limit limits[N_REG_CLASSES];
1882
1883 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1884 on register class ira_pressure_classes[PCI] at point POINT of the
1885 current model schedule. A POINT of model_num_insns describes the
1886 pressure at the end of the schedule. */
1887 struct model_pressure_data *model;
1888 };
1889
1890 /* Index POINT gives the instruction at point POINT of the model schedule.
1891 This array doesn't change during main scheduling. */
1892 static vec<rtx_insn *> model_schedule;
1893
1894 /* The list of instructions in the model worklist, sorted in order of
1895 decreasing priority. */
1896 static struct model_insn_info *model_worklist;
1897
1898 /* Index I describes the instruction with INSN_LUID I. */
1899 static struct model_insn_info *model_insns;
1900
1901 /* The number of instructions in the model schedule. */
1902 static int model_num_insns;
1903
1904 /* The index of the first instruction in model_schedule that hasn't yet been
1905 added to the main schedule, or model_num_insns if all of them have. */
1906 static int model_curr_point;
1907
1908 /* Describes the pressure before each instruction in the model schedule. */
1909 static struct model_pressure_group model_before_pressure;
1910
1911 /* The first unused model_priority value (as used in model_insn_info). */
1912 static unsigned int model_next_priority;
1913
1914
1915 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1916 at point POINT of the model schedule. */
1917 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1918 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1919
1920 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1921 after point POINT of the model schedule. */
1922 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1923 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1924
1925 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1926 of the model schedule. */
1927 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1928 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1929
1930 /* Information about INSN that is used when creating the model schedule. */
1931 #define MODEL_INSN_INFO(INSN) \
1932 (&model_insns[INSN_LUID (INSN)])
1933
1934 /* The instruction at point POINT of the model schedule. */
1935 #define MODEL_INSN(POINT) \
1936 (model_schedule[POINT])
1937
1938
1939 /* Return INSN's index in the model schedule, or model_num_insns if it
1940 doesn't belong to that schedule. */
1941
1942 static int
1943 model_index (rtx_insn *insn)
1944 {
1945 if (INSN_MODEL_INDEX (insn) == 0)
1946 return model_num_insns;
1947 return INSN_MODEL_INDEX (insn) - 1;
1948 }
1949
1950 /* Make sure that GROUP->limits is up-to-date for the current point
1951 of the model schedule. */
1952
1953 static void
1954 model_update_limit_points_in_group (struct model_pressure_group *group)
1955 {
1956 int pci, max_pressure, point;
1957
1958 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1959 {
1960 /* We may have passed the final point at which the pressure in
1961 group->limits[pci].pressure was reached. Update the limit if so. */
1962 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1963 group->limits[pci].pressure = max_pressure;
1964
1965 /* Find the point at which MAX_PRESSURE is first reached. We need
1966 to search in three cases:
1967
1968 - We've already moved past the previous pressure point.
1969 In this case we search forward from model_curr_point.
1970
1971 - We scheduled the previous point of maximum pressure ahead of
1972 its position in the model schedule, but doing so didn't bring
1973 the pressure point earlier. In this case we search forward
1974 from that previous pressure point.
1975
1976 - Scheduling an instruction early caused the maximum pressure
1977 to decrease. In this case we will have set the pressure
1978 point to -1, and we search forward from model_curr_point. */
1979 point = MAX (group->limits[pci].point, model_curr_point);
1980 while (point < model_num_insns
1981 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1982 point++;
1983 group->limits[pci].point = point;
1984
1985 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1986 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1987 }
1988 }
1989
1990 /* Make sure that all register-pressure limits are up-to-date for the
1991 current position in the model schedule. */
1992
1993 static void
1994 model_update_limit_points (void)
1995 {
1996 model_update_limit_points_in_group (&model_before_pressure);
1997 }
1998
1999 /* Return the model_index of the last unscheduled use in chain USE
2000 outside of USE's instruction. Return -1 if there are no other uses,
2001 or model_num_insns if the register is live at the end of the block. */
2002
2003 static int
2004 model_last_use_except (struct reg_use_data *use)
2005 {
2006 struct reg_use_data *next;
2007 int last, index;
2008
2009 last = -1;
2010 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2011 if (NONDEBUG_INSN_P (next->insn)
2012 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2013 {
2014 index = model_index (next->insn);
2015 if (index == model_num_insns)
2016 return model_num_insns;
2017 if (last < index)
2018 last = index;
2019 }
2020 return last;
2021 }
2022
2023 /* An instruction with model_index POINT has just been scheduled, and it
2024 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2025 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2026 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2027
2028 static void
2029 model_start_update_pressure (struct model_pressure_group *group,
2030 int point, int pci, int delta)
2031 {
2032 int next_max_pressure;
2033
2034 if (point == model_num_insns)
2035 {
2036 /* The instruction wasn't part of the model schedule; it was moved
2037 from a different block. Update the pressure for the end of
2038 the model schedule. */
2039 MODEL_REF_PRESSURE (group, point, pci) += delta;
2040 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2041 }
2042 else
2043 {
2044 /* Record that this instruction has been scheduled. Nothing now
2045 changes between POINT and POINT + 1, so get the maximum pressure
2046 from the latter. If the maximum pressure decreases, the new
2047 pressure point may be before POINT. */
2048 MODEL_REF_PRESSURE (group, point, pci) = -1;
2049 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2050 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2051 {
2052 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2053 if (group->limits[pci].point == point)
2054 group->limits[pci].point = -1;
2055 }
2056 }
2057 }
2058
2059 /* Record that scheduling a later instruction has changed the pressure
2060 at point POINT of the model schedule by DELTA (which might be 0).
2061 Update GROUP accordingly. Return nonzero if these changes might
2062 trigger changes to previous points as well. */
2063
2064 static int
2065 model_update_pressure (struct model_pressure_group *group,
2066 int point, int pci, int delta)
2067 {
2068 int ref_pressure, max_pressure, next_max_pressure;
2069
2070 /* If POINT hasn't yet been scheduled, update its pressure. */
2071 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2072 if (ref_pressure >= 0 && delta != 0)
2073 {
2074 ref_pressure += delta;
2075 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2076
2077 /* Check whether the maximum pressure in the overall schedule
2078 has increased. (This means that the MODEL_MAX_PRESSURE of
2079 every point <= POINT will need to increase too; see below.) */
2080 if (group->limits[pci].pressure < ref_pressure)
2081 group->limits[pci].pressure = ref_pressure;
2082
2083 /* If we are at maximum pressure, and the maximum pressure
2084 point was previously unknown or later than POINT,
2085 bring it forward. */
2086 if (group->limits[pci].pressure == ref_pressure
2087 && !IN_RANGE (group->limits[pci].point, 0, point))
2088 group->limits[pci].point = point;
2089
2090 /* If POINT used to be the point of maximum pressure, but isn't
2091 any longer, we need to recalculate it using a forward walk. */
2092 if (group->limits[pci].pressure > ref_pressure
2093 && group->limits[pci].point == point)
2094 group->limits[pci].point = -1;
2095 }
2096
2097 /* Update the maximum pressure at POINT. Changes here might also
2098 affect the maximum pressure at POINT - 1. */
2099 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2100 max_pressure = MAX (ref_pressure, next_max_pressure);
2101 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2102 {
2103 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2104 return 1;
2105 }
2106 return 0;
2107 }
2108
2109 /* INSN has just been scheduled. Update the model schedule accordingly. */
2110
2111 static void
2112 model_recompute (rtx_insn *insn)
2113 {
2114 struct {
2115 int last_use;
2116 int regno;
2117 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2118 struct reg_use_data *use;
2119 struct reg_pressure_data *reg_pressure;
2120 int delta[N_REG_CLASSES];
2121 int pci, point, mix, new_last, cl, ref_pressure, queue;
2122 unsigned int i, num_uses, num_pending_births;
2123 bool print_p;
2124
2125 /* The destinations of INSN were previously live from POINT onwards, but are
2126 now live from model_curr_point onwards. Set up DELTA accordingly. */
2127 point = model_index (insn);
2128 reg_pressure = INSN_REG_PRESSURE (insn);
2129 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2130 {
2131 cl = ira_pressure_classes[pci];
2132 delta[cl] = reg_pressure[pci].set_increase;
2133 }
2134
2135 /* Record which registers previously died at POINT, but which now die
2136 before POINT. Adjust DELTA so that it represents the effect of
2137 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2138 registers that will be born in the range [model_curr_point, POINT). */
2139 num_uses = 0;
2140 num_pending_births = 0;
2141 bitmap_clear (tmp_bitmap);
2142 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2143 {
2144 new_last = model_last_use_except (use);
2145 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
2146 {
2147 gcc_assert (num_uses < ARRAY_SIZE (uses));
2148 uses[num_uses].last_use = new_last;
2149 uses[num_uses].regno = use->regno;
2150 /* This register is no longer live after POINT - 1. */
2151 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2152 num_uses++;
2153 if (new_last >= 0)
2154 num_pending_births++;
2155 }
2156 }
2157
2158 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2159 Also set each group pressure limit for POINT. */
2160 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2161 {
2162 cl = ira_pressure_classes[pci];
2163 model_start_update_pressure (&model_before_pressure,
2164 point, pci, delta[cl]);
2165 }
2166
2167 /* Walk the model schedule backwards, starting immediately before POINT. */
2168 print_p = false;
2169 if (point != model_curr_point)
2170 do
2171 {
2172 point--;
2173 insn = MODEL_INSN (point);
2174 queue = QUEUE_INDEX (insn);
2175
2176 if (queue != QUEUE_SCHEDULED)
2177 {
2178 /* DELTA describes the effect of the move on the register pressure
2179 after POINT. Make it describe the effect on the pressure
2180 before POINT. */
2181 i = 0;
2182 while (i < num_uses)
2183 {
2184 if (uses[i].last_use == point)
2185 {
2186 /* This register is now live again. */
2187 mark_regno_birth_or_death (NULL, delta,
2188 uses[i].regno, true);
2189
2190 /* Remove this use from the array. */
2191 uses[i] = uses[num_uses - 1];
2192 num_uses--;
2193 num_pending_births--;
2194 }
2195 else
2196 i++;
2197 }
2198
2199 if (sched_verbose >= 5)
2200 {
2201 if (!print_p)
2202 {
2203 fprintf (sched_dump, MODEL_BAR);
2204 fprintf (sched_dump, ";;\t\t| New pressure for model"
2205 " schedule\n");
2206 fprintf (sched_dump, MODEL_BAR);
2207 print_p = true;
2208 }
2209
2210 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2211 point, INSN_UID (insn),
2212 str_pattern_slim (PATTERN (insn)));
2213 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2214 {
2215 cl = ira_pressure_classes[pci];
2216 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2217 point, pci);
2218 fprintf (sched_dump, " %s:[%d->%d]",
2219 reg_class_names[ira_pressure_classes[pci]],
2220 ref_pressure, ref_pressure + delta[cl]);
2221 }
2222 fprintf (sched_dump, "\n");
2223 }
2224 }
2225
2226 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2227 might have changed as well. */
2228 mix = num_pending_births;
2229 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2230 {
2231 cl = ira_pressure_classes[pci];
2232 mix |= delta[cl];
2233 mix |= model_update_pressure (&model_before_pressure,
2234 point, pci, delta[cl]);
2235 }
2236 }
2237 while (mix && point > model_curr_point);
2238
2239 if (print_p)
2240 fprintf (sched_dump, MODEL_BAR);
2241 }
2242
2243 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2244 check whether the insn's pattern needs restoring. */
2245 static bool
2246 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2247 {
2248 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2249 return false;
2250
2251 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2252 {
2253 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2254 gcc_assert (next == DEP_CON (dep));
2255 }
2256 else
2257 {
2258 struct dep_replacement *desc = DEP_REPLACE (dep);
2259 if (desc->insn != next)
2260 {
2261 gcc_assert (*desc->loc == desc->orig);
2262 return false;
2263 }
2264 }
2265 return true;
2266 }
2267 \f
2268 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2269 pressure on CL from P to P'. We use this to calculate a "base ECC",
2270 baseECC (CL, X), for each pressure class CL and each instruction X.
2271 Supposing X changes the pressure on CL from P to P', and that the
2272 maximum pressure on CL in the current model schedule is MP', then:
2273
2274 * if X occurs before or at the next point of maximum pressure in
2275 the model schedule and P' > MP', then:
2276
2277 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2278
2279 The idea is that the pressure after scheduling a fixed set of
2280 instructions -- in this case, the set up to and including the
2281 next maximum pressure point -- is going to be the same regardless
2282 of the order; we simply want to keep the intermediate pressure
2283 under control. Thus X has a cost of zero unless scheduling it
2284 now would exceed MP'.
2285
2286 If all increases in the set are by the same amount, no zero-cost
2287 instruction will ever cause the pressure to exceed MP'. However,
2288 if X is instead moved past an instruction X' with pressure in the
2289 range (MP' - (P' - P), MP'), the pressure at X' will increase
2290 beyond MP'. Since baseECC is very much a heuristic anyway,
2291 it doesn't seem worth the overhead of tracking cases like these.
2292
2293 The cost of exceeding MP' is always based on the original maximum
2294 pressure MP. This is so that going 2 registers over the original
2295 limit has the same cost regardless of whether it comes from two
2296 separate +1 deltas or from a single +2 delta.
2297
2298 * if X occurs after the next point of maximum pressure in the model
2299 schedule and P' > P, then:
2300
2301 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2302
2303 That is, if we move X forward across a point of maximum pressure,
2304 and if X increases the pressure by P' - P, then we conservatively
2305 assume that scheduling X next would increase the maximum pressure
2306 by P' - P. Again, the cost of doing this is based on the original
2307 maximum pressure MP, for the same reason as above.
2308
2309 * if P' < P, P > MP, and X occurs at or after the next point of
2310 maximum pressure, then:
2311
2312 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2313
2314 That is, if we have already exceeded the original maximum pressure MP,
2315 and if X might reduce the maximum pressure again -- or at least push
2316 it further back, and thus allow more scheduling freedom -- it is given
2317 a negative cost to reflect the improvement.
2318
2319 * otherwise,
2320
2321 baseECC (CL, X) = 0
2322
2323 In this case, X is not expected to affect the maximum pressure MP',
2324 so it has zero cost.
2325
2326 We then create a combined value baseECC (X) that is the sum of
2327 baseECC (CL, X) for each pressure class CL.
2328
2329 baseECC (X) could itself be used as the ECC value described above.
2330 However, this is often too conservative, in the sense that it
2331 tends to make high-priority instructions that increase pressure
2332 wait too long in cases where introducing a spill would be better.
2333 For this reason the final ECC is a priority-adjusted form of
2334 baseECC (X). Specifically, we calculate:
2335
2336 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2337 baseP = MAX { P (X) | baseECC (X) <= 0 }
2338
2339 Then:
2340
2341 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2342
2343 Thus an instruction's effect on pressure is ignored if it has a high
2344 enough priority relative to the ones that don't increase pressure.
2345 Negative values of baseECC (X) do not increase the priority of X
2346 itself, but they do make it harder for other instructions to
2347 increase the pressure further.
2348
2349 This pressure cost is deliberately timid. The intention has been
2350 to choose a heuristic that rarely interferes with the normal list
2351 scheduler in cases where that scheduler would produce good code.
2352 We simply want to curb some of its worst excesses. */
2353
2354 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2355
2356 Here we use the very simplistic cost model that every register above
2357 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2358 measures instead, such as one based on MEMORY_MOVE_COST. However:
2359
2360 (1) In order for an instruction to be scheduled, the higher cost
2361 would need to be justified in a single saving of that many stalls.
2362 This is overly pessimistic, because the benefit of spilling is
2363 often to avoid a sequence of several short stalls rather than
2364 a single long one.
2365
2366 (2) The cost is still arbitrary. Because we are not allocating
2367 registers during scheduling, we have no way of knowing for
2368 sure how many memory accesses will be required by each spill,
2369 where the spills will be placed within the block, or even
2370 which block(s) will contain the spills.
2371
2372 So a higher cost than 1 is often too conservative in practice,
2373 forcing blocks to contain unnecessary stalls instead of spill code.
2374 The simple cost below seems to be the best compromise. It reduces
2375 the interference with the normal list scheduler, which helps make
2376 it more suitable for a default-on option. */
2377
2378 static int
2379 model_spill_cost (int cl, int from, int to)
2380 {
2381 from = MAX (from, sched_class_regs_num[cl]);
2382 return MAX (to, from) - from;
2383 }
2384
2385 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2386 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2387 P' = P + DELTA. */
2388
2389 static int
2390 model_excess_group_cost (struct model_pressure_group *group,
2391 int point, int pci, int delta)
2392 {
2393 int pressure, cl;
2394
2395 cl = ira_pressure_classes[pci];
2396 if (delta < 0 && point >= group->limits[pci].point)
2397 {
2398 pressure = MAX (group->limits[pci].orig_pressure,
2399 curr_reg_pressure[cl] + delta);
2400 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2401 }
2402
2403 if (delta > 0)
2404 {
2405 if (point > group->limits[pci].point)
2406 pressure = group->limits[pci].pressure + delta;
2407 else
2408 pressure = curr_reg_pressure[cl] + delta;
2409
2410 if (pressure > group->limits[pci].pressure)
2411 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2412 pressure);
2413 }
2414
2415 return 0;
2416 }
2417
2418 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2419 if PRINT_P. */
2420
2421 static int
2422 model_excess_cost (rtx_insn *insn, bool print_p)
2423 {
2424 int point, pci, cl, cost, this_cost, delta;
2425 struct reg_pressure_data *insn_reg_pressure;
2426 int insn_death[N_REG_CLASSES];
2427
2428 calculate_reg_deaths (insn, insn_death);
2429 point = model_index (insn);
2430 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2431 cost = 0;
2432
2433 if (print_p)
2434 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2435 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2436
2437 /* Sum up the individual costs for each register class. */
2438 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2439 {
2440 cl = ira_pressure_classes[pci];
2441 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2442 this_cost = model_excess_group_cost (&model_before_pressure,
2443 point, pci, delta);
2444 cost += this_cost;
2445 if (print_p)
2446 fprintf (sched_dump, " %s:[%d base cost %d]",
2447 reg_class_names[cl], delta, this_cost);
2448 }
2449
2450 if (print_p)
2451 fprintf (sched_dump, "\n");
2452
2453 return cost;
2454 }
2455
2456 /* Dump the next points of maximum pressure for GROUP. */
2457
2458 static void
2459 model_dump_pressure_points (struct model_pressure_group *group)
2460 {
2461 int pci, cl;
2462
2463 fprintf (sched_dump, ";;\t\t| pressure points");
2464 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2465 {
2466 cl = ira_pressure_classes[pci];
2467 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2468 curr_reg_pressure[cl], group->limits[pci].pressure);
2469 if (group->limits[pci].point < model_num_insns)
2470 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2471 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2472 else
2473 fprintf (sched_dump, "end]");
2474 }
2475 fprintf (sched_dump, "\n");
2476 }
2477
2478 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2479
2480 static void
2481 model_set_excess_costs (rtx_insn **insns, int count)
2482 {
2483 int i, cost, priority_base, priority;
2484 bool print_p;
2485
2486 /* Record the baseECC value for each instruction in the model schedule,
2487 except that negative costs are converted to zero ones now rather than
2488 later. Do not assign a cost to debug instructions, since they must
2489 not change code-generation decisions. Experiments suggest we also
2490 get better results by not assigning a cost to instructions from
2491 a different block.
2492
2493 Set PRIORITY_BASE to baseP in the block comment above. This is the
2494 maximum priority of the "cheap" instructions, which should always
2495 include the next model instruction. */
2496 priority_base = 0;
2497 print_p = false;
2498 for (i = 0; i < count; i++)
2499 if (INSN_MODEL_INDEX (insns[i]))
2500 {
2501 if (sched_verbose >= 6 && !print_p)
2502 {
2503 fprintf (sched_dump, MODEL_BAR);
2504 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2505 model_dump_pressure_points (&model_before_pressure);
2506 fprintf (sched_dump, MODEL_BAR);
2507 print_p = true;
2508 }
2509 cost = model_excess_cost (insns[i], print_p);
2510 if (cost <= 0)
2511 {
2512 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2513 priority_base = MAX (priority_base, priority);
2514 cost = 0;
2515 }
2516 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2517 }
2518 if (print_p)
2519 fprintf (sched_dump, MODEL_BAR);
2520
2521 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2522 instruction. */
2523 for (i = 0; i < count; i++)
2524 {
2525 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2526 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2527 if (cost > 0 && priority > priority_base)
2528 {
2529 cost += priority_base - priority;
2530 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2531 }
2532 }
2533 }
2534 \f
2535
2536 /* Enum of rank_for_schedule heuristic decisions. */
2537 enum rfs_decision {
2538 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2539 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2540 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2541 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2542 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2543
2544 /* Corresponding strings for print outs. */
2545 static const char *rfs_str[RFS_N] = {
2546 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2547 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2548 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2549 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2550 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2551
2552 /* Statistical breakdown of rank_for_schedule decisions. */
2553 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2554 static rank_for_schedule_stats_t rank_for_schedule_stats;
2555
2556 /* Return the result of comparing insns TMP and TMP2 and update
2557 Rank_For_Schedule statistics. */
2558 static int
2559 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2560 {
2561 ++rank_for_schedule_stats.stats[decision];
2562 if (result < 0)
2563 INSN_LAST_RFS_WIN (tmp) = decision;
2564 else if (result > 0)
2565 INSN_LAST_RFS_WIN (tmp2) = decision;
2566 else
2567 gcc_unreachable ();
2568 return result;
2569 }
2570
2571 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2572 keeping normal insns in original order. */
2573
2574 static int
2575 rank_for_schedule_debug (const void *x, const void *y)
2576 {
2577 rtx_insn *tmp = *(rtx_insn * const *) y;
2578 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2579
2580 /* Schedule debug insns as early as possible. */
2581 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2582 return -1;
2583 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2584 return 1;
2585 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2586 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2587 else
2588 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2589 }
2590
2591 /* Returns a positive value if x is preferred; returns a negative value if
2592 y is preferred. Should never return 0, since that will make the sort
2593 unstable. */
2594
2595 static int
2596 rank_for_schedule (const void *x, const void *y)
2597 {
2598 rtx_insn *tmp = *(rtx_insn * const *) y;
2599 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2600 int tmp_class, tmp2_class;
2601 int val, priority_val, info_val, diff;
2602
2603 if (live_range_shrinkage_p)
2604 {
2605 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2606 code. */
2607 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2608 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2609 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2610 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2611 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2612 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2613 /* Sort by INSN_LUID (original insn order), so that we make the
2614 sort stable. This minimizes instruction movement, thus
2615 minimizing sched's effect on debugging and cross-jumping. */
2616 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2617 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2618 }
2619
2620 /* The insn in a schedule group should be issued the first. */
2621 if (flag_sched_group_heuristic &&
2622 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2623 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2624 tmp, tmp2);
2625
2626 /* Make sure that priority of TMP and TMP2 are initialized. */
2627 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2628
2629 if (sched_fusion)
2630 {
2631 /* The instruction that has the same fusion priority as the last
2632 instruction is the instruction we picked next. If that is not
2633 the case, we sort ready list firstly by fusion priority, then
2634 by priority, and at last by INSN_LUID. */
2635 int a = INSN_FUSION_PRIORITY (tmp);
2636 int b = INSN_FUSION_PRIORITY (tmp2);
2637 int last = -1;
2638
2639 if (last_nondebug_scheduled_insn
2640 && !NOTE_P (last_nondebug_scheduled_insn)
2641 && BLOCK_FOR_INSN (tmp)
2642 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2643 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2644
2645 if (a != last && b != last)
2646 {
2647 if (a == b)
2648 {
2649 a = INSN_PRIORITY (tmp);
2650 b = INSN_PRIORITY (tmp2);
2651 }
2652 if (a != b)
2653 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2654 else
2655 return rfs_result (RFS_FUSION,
2656 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2657 }
2658 else if (a == b)
2659 {
2660 gcc_assert (last_nondebug_scheduled_insn
2661 && !NOTE_P (last_nondebug_scheduled_insn));
2662 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2663
2664 a = abs (INSN_PRIORITY (tmp) - last);
2665 b = abs (INSN_PRIORITY (tmp2) - last);
2666 if (a != b)
2667 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2668 else
2669 return rfs_result (RFS_FUSION,
2670 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2671 }
2672 else if (a == last)
2673 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2674 else
2675 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2676 }
2677
2678 if (sched_pressure != SCHED_PRESSURE_NONE)
2679 {
2680 /* Prefer insn whose scheduling results in the smallest register
2681 pressure excess. */
2682 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2683 + insn_delay (tmp)
2684 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2685 - insn_delay (tmp2))))
2686 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2687 }
2688
2689 if (sched_pressure != SCHED_PRESSURE_NONE
2690 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2691 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2692 {
2693 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2694 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2695 }
2696
2697 /* If we are doing backtracking in this schedule, prefer insns that
2698 have forward dependencies with negative cost against an insn that
2699 was already scheduled. */
2700 if (current_sched_info->flags & DO_BACKTRACKING)
2701 {
2702 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2703 if (priority_val)
2704 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2705 }
2706
2707 /* Prefer insn with higher priority. */
2708 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2709
2710 if (flag_sched_critical_path_heuristic && priority_val)
2711 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2712
2713 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2714 {
2715 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2716 if (autopref != 0)
2717 return autopref;
2718 }
2719
2720 /* Prefer speculative insn with greater dependencies weakness. */
2721 if (flag_sched_spec_insn_heuristic && spec_info)
2722 {
2723 ds_t ds1, ds2;
2724 dw_t dw1, dw2;
2725 int dw;
2726
2727 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2728 if (ds1)
2729 dw1 = ds_weak (ds1);
2730 else
2731 dw1 = NO_DEP_WEAK;
2732
2733 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2734 if (ds2)
2735 dw2 = ds_weak (ds2);
2736 else
2737 dw2 = NO_DEP_WEAK;
2738
2739 dw = dw2 - dw1;
2740 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2741 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2742 }
2743
2744 info_val = (*current_sched_info->rank) (tmp, tmp2);
2745 if (flag_sched_rank_heuristic && info_val)
2746 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2747
2748 /* Compare insns based on their relation to the last scheduled
2749 non-debug insn. */
2750 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2751 {
2752 dep_t dep1;
2753 dep_t dep2;
2754 rtx_insn *last = last_nondebug_scheduled_insn;
2755
2756 /* Classify the instructions into three classes:
2757 1) Data dependent on last schedule insn.
2758 2) Anti/Output dependent on last scheduled insn.
2759 3) Independent of last scheduled insn, or has latency of one.
2760 Choose the insn from the highest numbered class if different. */
2761 dep1 = sd_find_dep_between (last, tmp, true);
2762
2763 if (dep1 == NULL || dep_cost (dep1) == 1)
2764 tmp_class = 3;
2765 else if (/* Data dependence. */
2766 DEP_TYPE (dep1) == REG_DEP_TRUE)
2767 tmp_class = 1;
2768 else
2769 tmp_class = 2;
2770
2771 dep2 = sd_find_dep_between (last, tmp2, true);
2772
2773 if (dep2 == NULL || dep_cost (dep2) == 1)
2774 tmp2_class = 3;
2775 else if (/* Data dependence. */
2776 DEP_TYPE (dep2) == REG_DEP_TRUE)
2777 tmp2_class = 1;
2778 else
2779 tmp2_class = 2;
2780
2781 if ((val = tmp2_class - tmp_class))
2782 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2783 }
2784
2785 /* Prefer instructions that occur earlier in the model schedule. */
2786 if (sched_pressure == SCHED_PRESSURE_MODEL
2787 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2788 {
2789 diff = model_index (tmp) - model_index (tmp2);
2790 gcc_assert (diff != 0);
2791 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2792 }
2793
2794 /* Prefer the insn which has more later insns that depend on it.
2795 This gives the scheduler more freedom when scheduling later
2796 instructions at the expense of added register pressure. */
2797
2798 val = (dep_list_size (tmp2, SD_LIST_FORW)
2799 - dep_list_size (tmp, SD_LIST_FORW));
2800
2801 if (flag_sched_dep_count_heuristic && val != 0)
2802 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2803
2804 /* If insns are equally good, sort by INSN_LUID (original insn order),
2805 so that we make the sort stable. This minimizes instruction movement,
2806 thus minimizing sched's effect on debugging and cross-jumping. */
2807 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2808 }
2809
2810 /* Resort the array A in which only element at index N may be out of order. */
2811
2812 HAIFA_INLINE static void
2813 swap_sort (rtx_insn **a, int n)
2814 {
2815 rtx_insn *insn = a[n - 1];
2816 int i = n - 2;
2817
2818 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2819 {
2820 a[i + 1] = a[i];
2821 i -= 1;
2822 }
2823 a[i + 1] = insn;
2824 }
2825
2826 /* Add INSN to the insn queue so that it can be executed at least
2827 N_CYCLES after the currently executing insn. Preserve insns
2828 chain for debugging purposes. REASON will be printed in debugging
2829 output. */
2830
2831 HAIFA_INLINE static void
2832 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2833 {
2834 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2835 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2836 int new_tick;
2837
2838 gcc_assert (n_cycles <= max_insn_queue_index);
2839 gcc_assert (!DEBUG_INSN_P (insn));
2840
2841 insn_queue[next_q] = link;
2842 q_size += 1;
2843
2844 if (sched_verbose >= 2)
2845 {
2846 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2847 (*current_sched_info->print_insn) (insn, 0));
2848
2849 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2850 }
2851
2852 QUEUE_INDEX (insn) = next_q;
2853
2854 if (current_sched_info->flags & DO_BACKTRACKING)
2855 {
2856 new_tick = clock_var + n_cycles;
2857 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2858 INSN_TICK (insn) = new_tick;
2859
2860 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2861 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2862 {
2863 must_backtrack = true;
2864 if (sched_verbose >= 2)
2865 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2866 }
2867 }
2868 }
2869
2870 /* Remove INSN from queue. */
2871 static void
2872 queue_remove (rtx_insn *insn)
2873 {
2874 gcc_assert (QUEUE_INDEX (insn) >= 0);
2875 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2876 q_size--;
2877 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2878 }
2879
2880 /* Return a pointer to the bottom of the ready list, i.e. the insn
2881 with the lowest priority. */
2882
2883 rtx_insn **
2884 ready_lastpos (struct ready_list *ready)
2885 {
2886 gcc_assert (ready->n_ready >= 1);
2887 return ready->vec + ready->first - ready->n_ready + 1;
2888 }
2889
2890 /* Add an element INSN to the ready list so that it ends up with the
2891 lowest/highest priority depending on FIRST_P. */
2892
2893 HAIFA_INLINE static void
2894 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2895 {
2896 if (!first_p)
2897 {
2898 if (ready->first == ready->n_ready)
2899 {
2900 memmove (ready->vec + ready->veclen - ready->n_ready,
2901 ready_lastpos (ready),
2902 ready->n_ready * sizeof (rtx));
2903 ready->first = ready->veclen - 1;
2904 }
2905 ready->vec[ready->first - ready->n_ready] = insn;
2906 }
2907 else
2908 {
2909 if (ready->first == ready->veclen - 1)
2910 {
2911 if (ready->n_ready)
2912 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2913 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2914 ready_lastpos (ready),
2915 ready->n_ready * sizeof (rtx));
2916 ready->first = ready->veclen - 2;
2917 }
2918 ready->vec[++(ready->first)] = insn;
2919 }
2920
2921 ready->n_ready++;
2922 if (DEBUG_INSN_P (insn))
2923 ready->n_debug++;
2924
2925 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2926 QUEUE_INDEX (insn) = QUEUE_READY;
2927
2928 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2929 && INSN_EXACT_TICK (insn) < clock_var)
2930 {
2931 must_backtrack = true;
2932 }
2933 }
2934
2935 /* Remove the element with the highest priority from the ready list and
2936 return it. */
2937
2938 HAIFA_INLINE static rtx_insn *
2939 ready_remove_first (struct ready_list *ready)
2940 {
2941 rtx_insn *t;
2942
2943 gcc_assert (ready->n_ready);
2944 t = ready->vec[ready->first--];
2945 ready->n_ready--;
2946 if (DEBUG_INSN_P (t))
2947 ready->n_debug--;
2948 /* If the queue becomes empty, reset it. */
2949 if (ready->n_ready == 0)
2950 ready->first = ready->veclen - 1;
2951
2952 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2953 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2954
2955 return t;
2956 }
2957
2958 /* The following code implements multi-pass scheduling for the first
2959 cycle. In other words, we will try to choose ready insn which
2960 permits to start maximum number of insns on the same cycle. */
2961
2962 /* Return a pointer to the element INDEX from the ready. INDEX for
2963 insn with the highest priority is 0, and the lowest priority has
2964 N_READY - 1. */
2965
2966 rtx_insn *
2967 ready_element (struct ready_list *ready, int index)
2968 {
2969 gcc_assert (ready->n_ready && index < ready->n_ready);
2970
2971 return ready->vec[ready->first - index];
2972 }
2973
2974 /* Remove the element INDEX from the ready list and return it. INDEX
2975 for insn with the highest priority is 0, and the lowest priority
2976 has N_READY - 1. */
2977
2978 HAIFA_INLINE static rtx_insn *
2979 ready_remove (struct ready_list *ready, int index)
2980 {
2981 rtx_insn *t;
2982 int i;
2983
2984 if (index == 0)
2985 return ready_remove_first (ready);
2986 gcc_assert (ready->n_ready && index < ready->n_ready);
2987 t = ready->vec[ready->first - index];
2988 ready->n_ready--;
2989 if (DEBUG_INSN_P (t))
2990 ready->n_debug--;
2991 for (i = index; i < ready->n_ready; i++)
2992 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2993 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2994 return t;
2995 }
2996
2997 /* Remove INSN from the ready list. */
2998 static void
2999 ready_remove_insn (rtx_insn *insn)
3000 {
3001 int i;
3002
3003 for (i = 0; i < readyp->n_ready; i++)
3004 if (ready_element (readyp, i) == insn)
3005 {
3006 ready_remove (readyp, i);
3007 return;
3008 }
3009 gcc_unreachable ();
3010 }
3011
3012 /* Calculate difference of two statistics set WAS and NOW.
3013 Result returned in WAS. */
3014 static void
3015 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3016 const rank_for_schedule_stats_t *now)
3017 {
3018 for (int i = 0; i < RFS_N; ++i)
3019 was->stats[i] = now->stats[i] - was->stats[i];
3020 }
3021
3022 /* Print rank_for_schedule statistics. */
3023 static void
3024 print_rank_for_schedule_stats (const char *prefix,
3025 const rank_for_schedule_stats_t *stats,
3026 struct ready_list *ready)
3027 {
3028 for (int i = 0; i < RFS_N; ++i)
3029 if (stats->stats[i])
3030 {
3031 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3032
3033 if (ready != NULL)
3034 /* Print out insns that won due to RFS_<I>. */
3035 {
3036 rtx_insn **p = ready_lastpos (ready);
3037
3038 fprintf (sched_dump, ":");
3039 /* Start with 1 since least-priority insn didn't have any wins. */
3040 for (int j = 1; j < ready->n_ready; ++j)
3041 if (INSN_LAST_RFS_WIN (p[j]) == i)
3042 fprintf (sched_dump, " %s",
3043 (*current_sched_info->print_insn) (p[j], 0));
3044 }
3045 fprintf (sched_dump, "\n");
3046 }
3047 }
3048
3049 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3050 of array. */
3051 static void
3052 ready_sort_debug (struct ready_list *ready)
3053 {
3054 int i;
3055 rtx_insn **first = ready_lastpos (ready);
3056
3057 for (i = 0; i < ready->n_ready; ++i)
3058 if (!DEBUG_INSN_P (first[i]))
3059 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3060
3061 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3062 }
3063
3064 /* Sort non-debug insns in the ready list READY by ascending priority.
3065 Assumes that all debug insns are separated from the real insns. */
3066 static void
3067 ready_sort_real (struct ready_list *ready)
3068 {
3069 int i;
3070 rtx_insn **first = ready_lastpos (ready);
3071 int n_ready_real = ready->n_ready - ready->n_debug;
3072
3073 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3074 for (i = 0; i < n_ready_real; ++i)
3075 setup_insn_reg_pressure_info (first[i]);
3076 else if (sched_pressure == SCHED_PRESSURE_MODEL
3077 && model_curr_point < model_num_insns)
3078 model_set_excess_costs (first, n_ready_real);
3079
3080 rank_for_schedule_stats_t stats1;
3081 if (sched_verbose >= 4)
3082 stats1 = rank_for_schedule_stats;
3083
3084 if (n_ready_real == 2)
3085 swap_sort (first, n_ready_real);
3086 else if (n_ready_real > 2)
3087 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3088
3089 if (sched_verbose >= 4)
3090 {
3091 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3092 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3093 }
3094 }
3095
3096 /* Sort the ready list READY by ascending priority. */
3097 static void
3098 ready_sort (struct ready_list *ready)
3099 {
3100 if (ready->n_debug > 0)
3101 ready_sort_debug (ready);
3102 else
3103 ready_sort_real (ready);
3104 }
3105
3106 /* PREV is an insn that is ready to execute. Adjust its priority if that
3107 will help shorten or lengthen register lifetimes as appropriate. Also
3108 provide a hook for the target to tweak itself. */
3109
3110 HAIFA_INLINE static void
3111 adjust_priority (rtx_insn *prev)
3112 {
3113 /* ??? There used to be code here to try and estimate how an insn
3114 affected register lifetimes, but it did it by looking at REG_DEAD
3115 notes, which we removed in schedule_region. Nor did it try to
3116 take into account register pressure or anything useful like that.
3117
3118 Revisit when we have a machine model to work with and not before. */
3119
3120 if (targetm.sched.adjust_priority)
3121 INSN_PRIORITY (prev) =
3122 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3123 }
3124
3125 /* Advance DFA state STATE on one cycle. */
3126 void
3127 advance_state (state_t state)
3128 {
3129 if (targetm.sched.dfa_pre_advance_cycle)
3130 targetm.sched.dfa_pre_advance_cycle ();
3131
3132 if (targetm.sched.dfa_pre_cycle_insn)
3133 state_transition (state,
3134 targetm.sched.dfa_pre_cycle_insn ());
3135
3136 state_transition (state, NULL);
3137
3138 if (targetm.sched.dfa_post_cycle_insn)
3139 state_transition (state,
3140 targetm.sched.dfa_post_cycle_insn ());
3141
3142 if (targetm.sched.dfa_post_advance_cycle)
3143 targetm.sched.dfa_post_advance_cycle ();
3144 }
3145
3146 /* Advance time on one cycle. */
3147 HAIFA_INLINE static void
3148 advance_one_cycle (void)
3149 {
3150 advance_state (curr_state);
3151 if (sched_verbose >= 4)
3152 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3153 }
3154
3155 /* Update register pressure after scheduling INSN. */
3156 static void
3157 update_register_pressure (rtx_insn *insn)
3158 {
3159 struct reg_use_data *use;
3160 struct reg_set_data *set;
3161
3162 gcc_checking_assert (!DEBUG_INSN_P (insn));
3163
3164 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3165 if (dying_use_p (use))
3166 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3167 use->regno, false);
3168 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3169 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3170 set->regno, true);
3171 }
3172
3173 /* Set up or update (if UPDATE_P) max register pressure (see its
3174 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3175 after insn AFTER. */
3176 static void
3177 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3178 {
3179 int i, p;
3180 bool eq_p;
3181 rtx_insn *insn;
3182 static int max_reg_pressure[N_REG_CLASSES];
3183
3184 save_reg_pressure ();
3185 for (i = 0; i < ira_pressure_classes_num; i++)
3186 max_reg_pressure[ira_pressure_classes[i]]
3187 = curr_reg_pressure[ira_pressure_classes[i]];
3188 for (insn = NEXT_INSN (after);
3189 insn != NULL_RTX && ! BARRIER_P (insn)
3190 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3191 insn = NEXT_INSN (insn))
3192 if (NONDEBUG_INSN_P (insn))
3193 {
3194 eq_p = true;
3195 for (i = 0; i < ira_pressure_classes_num; i++)
3196 {
3197 p = max_reg_pressure[ira_pressure_classes[i]];
3198 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3199 {
3200 eq_p = false;
3201 INSN_MAX_REG_PRESSURE (insn)[i]
3202 = max_reg_pressure[ira_pressure_classes[i]];
3203 }
3204 }
3205 if (update_p && eq_p)
3206 break;
3207 update_register_pressure (insn);
3208 for (i = 0; i < ira_pressure_classes_num; i++)
3209 if (max_reg_pressure[ira_pressure_classes[i]]
3210 < curr_reg_pressure[ira_pressure_classes[i]])
3211 max_reg_pressure[ira_pressure_classes[i]]
3212 = curr_reg_pressure[ira_pressure_classes[i]];
3213 }
3214 restore_reg_pressure ();
3215 }
3216
3217 /* Update the current register pressure after scheduling INSN. Update
3218 also max register pressure for unscheduled insns of the current
3219 BB. */
3220 static void
3221 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3222 {
3223 int i;
3224 int before[N_REG_CLASSES];
3225
3226 for (i = 0; i < ira_pressure_classes_num; i++)
3227 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3228 update_register_pressure (insn);
3229 for (i = 0; i < ira_pressure_classes_num; i++)
3230 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3231 break;
3232 if (i < ira_pressure_classes_num)
3233 setup_insn_max_reg_pressure (insn, true);
3234 }
3235
3236 /* Set up register pressure at the beginning of basic block BB whose
3237 insns starting after insn AFTER. Set up also max register pressure
3238 for all insns of the basic block. */
3239 void
3240 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3241 {
3242 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3243 initiate_bb_reg_pressure_info (bb);
3244 setup_insn_max_reg_pressure (after, false);
3245 }
3246 \f
3247 /* If doing predication while scheduling, verify whether INSN, which
3248 has just been scheduled, clobbers the conditions of any
3249 instructions that must be predicated in order to break their
3250 dependencies. If so, remove them from the queues so that they will
3251 only be scheduled once their control dependency is resolved. */
3252
3253 static void
3254 check_clobbered_conditions (rtx_insn *insn)
3255 {
3256 HARD_REG_SET t;
3257 int i;
3258
3259 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3260 return;
3261
3262 find_all_hard_reg_sets (insn, &t, true);
3263
3264 restart:
3265 for (i = 0; i < ready.n_ready; i++)
3266 {
3267 rtx_insn *x = ready_element (&ready, i);
3268 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3269 {
3270 ready_remove_insn (x);
3271 goto restart;
3272 }
3273 }
3274 for (i = 0; i <= max_insn_queue_index; i++)
3275 {
3276 rtx_insn_list *link;
3277 int q = NEXT_Q_AFTER (q_ptr, i);
3278
3279 restart_queue:
3280 for (link = insn_queue[q]; link; link = link->next ())
3281 {
3282 rtx_insn *x = link->insn ();
3283 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3284 {
3285 queue_remove (x);
3286 goto restart_queue;
3287 }
3288 }
3289 }
3290 }
3291 \f
3292 /* Return (in order):
3293
3294 - positive if INSN adversely affects the pressure on one
3295 register class
3296
3297 - negative if INSN reduces the pressure on one register class
3298
3299 - 0 if INSN doesn't affect the pressure on any register class. */
3300
3301 static int
3302 model_classify_pressure (struct model_insn_info *insn)
3303 {
3304 struct reg_pressure_data *reg_pressure;
3305 int death[N_REG_CLASSES];
3306 int pci, cl, sum;
3307
3308 calculate_reg_deaths (insn->insn, death);
3309 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3310 sum = 0;
3311 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3312 {
3313 cl = ira_pressure_classes[pci];
3314 if (death[cl] < reg_pressure[pci].set_increase)
3315 return 1;
3316 sum += reg_pressure[pci].set_increase - death[cl];
3317 }
3318 return sum;
3319 }
3320
3321 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3322
3323 static int
3324 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3325 {
3326 unsigned int height1, height2;
3327 unsigned int priority1, priority2;
3328
3329 /* Prefer instructions with a higher model priority. */
3330 if (insn1->model_priority != insn2->model_priority)
3331 return insn1->model_priority > insn2->model_priority;
3332
3333 /* Combine the length of the longest path of satisfied true dependencies
3334 that leads to each instruction (depth) with the length of the longest
3335 path of any dependencies that leads from the instruction (alap).
3336 Prefer instructions with the greatest combined length. If the combined
3337 lengths are equal, prefer instructions with the greatest depth.
3338
3339 The idea is that, if we have a set S of "equal" instructions that each
3340 have ALAP value X, and we pick one such instruction I, any true-dependent
3341 successors of I that have ALAP value X - 1 should be preferred over S.
3342 This encourages the schedule to be "narrow" rather than "wide".
3343 However, if I is a low-priority instruction that we decided to
3344 schedule because of its model_classify_pressure, and if there
3345 is a set of higher-priority instructions T, the aforementioned
3346 successors of I should not have the edge over T. */
3347 height1 = insn1->depth + insn1->alap;
3348 height2 = insn2->depth + insn2->alap;
3349 if (height1 != height2)
3350 return height1 > height2;
3351 if (insn1->depth != insn2->depth)
3352 return insn1->depth > insn2->depth;
3353
3354 /* We have no real preference between INSN1 an INSN2 as far as attempts
3355 to reduce pressure go. Prefer instructions with higher priorities. */
3356 priority1 = INSN_PRIORITY (insn1->insn);
3357 priority2 = INSN_PRIORITY (insn2->insn);
3358 if (priority1 != priority2)
3359 return priority1 > priority2;
3360
3361 /* Use the original rtl sequence as a tie-breaker. */
3362 return insn1 < insn2;
3363 }
3364
3365 /* Add INSN to the model worklist immediately after PREV. Add it to the
3366 beginning of the list if PREV is null. */
3367
3368 static void
3369 model_add_to_worklist_at (struct model_insn_info *insn,
3370 struct model_insn_info *prev)
3371 {
3372 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3373 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3374
3375 insn->prev = prev;
3376 if (prev)
3377 {
3378 insn->next = prev->next;
3379 prev->next = insn;
3380 }
3381 else
3382 {
3383 insn->next = model_worklist;
3384 model_worklist = insn;
3385 }
3386 if (insn->next)
3387 insn->next->prev = insn;
3388 }
3389
3390 /* Remove INSN from the model worklist. */
3391
3392 static void
3393 model_remove_from_worklist (struct model_insn_info *insn)
3394 {
3395 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3396 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3397
3398 if (insn->prev)
3399 insn->prev->next = insn->next;
3400 else
3401 model_worklist = insn->next;
3402 if (insn->next)
3403 insn->next->prev = insn->prev;
3404 }
3405
3406 /* Add INSN to the model worklist. Start looking for a suitable position
3407 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3408 insns either side. A null PREV indicates the beginning of the list and
3409 a null NEXT indicates the end. */
3410
3411 static void
3412 model_add_to_worklist (struct model_insn_info *insn,
3413 struct model_insn_info *prev,
3414 struct model_insn_info *next)
3415 {
3416 int count;
3417
3418 count = MAX_SCHED_READY_INSNS;
3419 if (count > 0 && prev && model_order_p (insn, prev))
3420 do
3421 {
3422 count--;
3423 prev = prev->prev;
3424 }
3425 while (count > 0 && prev && model_order_p (insn, prev));
3426 else
3427 while (count > 0 && next && model_order_p (next, insn))
3428 {
3429 count--;
3430 prev = next;
3431 next = next->next;
3432 }
3433 model_add_to_worklist_at (insn, prev);
3434 }
3435
3436 /* INSN may now have a higher priority (in the model_order_p sense)
3437 than before. Move it up the worklist if necessary. */
3438
3439 static void
3440 model_promote_insn (struct model_insn_info *insn)
3441 {
3442 struct model_insn_info *prev;
3443 int count;
3444
3445 prev = insn->prev;
3446 count = MAX_SCHED_READY_INSNS;
3447 while (count > 0 && prev && model_order_p (insn, prev))
3448 {
3449 count--;
3450 prev = prev->prev;
3451 }
3452 if (prev != insn->prev)
3453 {
3454 model_remove_from_worklist (insn);
3455 model_add_to_worklist_at (insn, prev);
3456 }
3457 }
3458
3459 /* Add INSN to the end of the model schedule. */
3460
3461 static void
3462 model_add_to_schedule (rtx_insn *insn)
3463 {
3464 unsigned int point;
3465
3466 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3467 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3468
3469 point = model_schedule.length ();
3470 model_schedule.quick_push (insn);
3471 INSN_MODEL_INDEX (insn) = point + 1;
3472 }
3473
3474 /* Analyze the instructions that are to be scheduled, setting up
3475 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3476 instructions to model_worklist. */
3477
3478 static void
3479 model_analyze_insns (void)
3480 {
3481 rtx_insn *start, *end, *iter;
3482 sd_iterator_def sd_it;
3483 dep_t dep;
3484 struct model_insn_info *insn, *con;
3485
3486 model_num_insns = 0;
3487 start = PREV_INSN (current_sched_info->next_tail);
3488 end = current_sched_info->prev_head;
3489 for (iter = start; iter != end; iter = PREV_INSN (iter))
3490 if (NONDEBUG_INSN_P (iter))
3491 {
3492 insn = MODEL_INSN_INFO (iter);
3493 insn->insn = iter;
3494 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3495 {
3496 con = MODEL_INSN_INFO (DEP_CON (dep));
3497 if (con->insn && insn->alap < con->alap + 1)
3498 insn->alap = con->alap + 1;
3499 }
3500
3501 insn->old_queue = QUEUE_INDEX (iter);
3502 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3503
3504 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3505 if (insn->unscheduled_preds == 0)
3506 model_add_to_worklist (insn, NULL, model_worklist);
3507
3508 model_num_insns++;
3509 }
3510 }
3511
3512 /* The global state describes the register pressure at the start of the
3513 model schedule. Initialize GROUP accordingly. */
3514
3515 static void
3516 model_init_pressure_group (struct model_pressure_group *group)
3517 {
3518 int pci, cl;
3519
3520 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3521 {
3522 cl = ira_pressure_classes[pci];
3523 group->limits[pci].pressure = curr_reg_pressure[cl];
3524 group->limits[pci].point = 0;
3525 }
3526 /* Use index model_num_insns to record the state after the last
3527 instruction in the model schedule. */
3528 group->model = XNEWVEC (struct model_pressure_data,
3529 (model_num_insns + 1) * ira_pressure_classes_num);
3530 }
3531
3532 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3533 Update the maximum pressure for the whole schedule. */
3534
3535 static void
3536 model_record_pressure (struct model_pressure_group *group,
3537 int point, int pci, int pressure)
3538 {
3539 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3540 if (group->limits[pci].pressure < pressure)
3541 {
3542 group->limits[pci].pressure = pressure;
3543 group->limits[pci].point = point;
3544 }
3545 }
3546
3547 /* INSN has just been added to the end of the model schedule. Record its
3548 register-pressure information. */
3549
3550 static void
3551 model_record_pressures (struct model_insn_info *insn)
3552 {
3553 struct reg_pressure_data *reg_pressure;
3554 int point, pci, cl, delta;
3555 int death[N_REG_CLASSES];
3556
3557 point = model_index (insn->insn);
3558 if (sched_verbose >= 2)
3559 {
3560 if (point == 0)
3561 {
3562 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3563 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3564 }
3565 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3566 point, INSN_UID (insn->insn), insn->model_priority,
3567 insn->depth + insn->alap, insn->depth,
3568 INSN_PRIORITY (insn->insn),
3569 str_pattern_slim (PATTERN (insn->insn)));
3570 }
3571 calculate_reg_deaths (insn->insn, death);
3572 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3573 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3574 {
3575 cl = ira_pressure_classes[pci];
3576 delta = reg_pressure[pci].set_increase - death[cl];
3577 if (sched_verbose >= 2)
3578 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3579 curr_reg_pressure[cl], delta);
3580 model_record_pressure (&model_before_pressure, point, pci,
3581 curr_reg_pressure[cl]);
3582 }
3583 if (sched_verbose >= 2)
3584 fprintf (sched_dump, "\n");
3585 }
3586
3587 /* All instructions have been added to the model schedule. Record the
3588 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3589
3590 static void
3591 model_record_final_pressures (struct model_pressure_group *group)
3592 {
3593 int point, pci, max_pressure, ref_pressure, cl;
3594
3595 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3596 {
3597 /* Record the final pressure for this class. */
3598 cl = ira_pressure_classes[pci];
3599 point = model_num_insns;
3600 ref_pressure = curr_reg_pressure[cl];
3601 model_record_pressure (group, point, pci, ref_pressure);
3602
3603 /* Record the original maximum pressure. */
3604 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3605
3606 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3607 max_pressure = ref_pressure;
3608 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3609 while (point > 0)
3610 {
3611 point--;
3612 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3613 max_pressure = MAX (max_pressure, ref_pressure);
3614 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3615 }
3616 }
3617 }
3618
3619 /* Update all successors of INSN, given that INSN has just been scheduled. */
3620
3621 static void
3622 model_add_successors_to_worklist (struct model_insn_info *insn)
3623 {
3624 sd_iterator_def sd_it;
3625 struct model_insn_info *con;
3626 dep_t dep;
3627
3628 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3629 {
3630 con = MODEL_INSN_INFO (DEP_CON (dep));
3631 /* Ignore debug instructions, and instructions from other blocks. */
3632 if (con->insn)
3633 {
3634 con->unscheduled_preds--;
3635
3636 /* Update the depth field of each true-dependent successor.
3637 Increasing the depth gives them a higher priority than
3638 before. */
3639 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3640 {
3641 con->depth = insn->depth + 1;
3642 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3643 model_promote_insn (con);
3644 }
3645
3646 /* If this is a true dependency, or if there are no remaining
3647 dependencies for CON (meaning that CON only had non-true
3648 dependencies), make sure that CON is on the worklist.
3649 We don't bother otherwise because it would tend to fill the
3650 worklist with a lot of low-priority instructions that are not
3651 yet ready to issue. */
3652 if ((con->depth > 0 || con->unscheduled_preds == 0)
3653 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3654 model_add_to_worklist (con, insn, insn->next);
3655 }
3656 }
3657 }
3658
3659 /* Give INSN a higher priority than any current instruction, then give
3660 unscheduled predecessors of INSN a higher priority still. If any of
3661 those predecessors are not on the model worklist, do the same for its
3662 predecessors, and so on. */
3663
3664 static void
3665 model_promote_predecessors (struct model_insn_info *insn)
3666 {
3667 struct model_insn_info *pro, *first;
3668 sd_iterator_def sd_it;
3669 dep_t dep;
3670
3671 if (sched_verbose >= 7)
3672 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3673 INSN_UID (insn->insn), model_next_priority);
3674 insn->model_priority = model_next_priority++;
3675 model_remove_from_worklist (insn);
3676 model_add_to_worklist_at (insn, NULL);
3677
3678 first = NULL;
3679 for (;;)
3680 {
3681 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3682 {
3683 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3684 /* The first test is to ignore debug instructions, and instructions
3685 from other blocks. */
3686 if (pro->insn
3687 && pro->model_priority != model_next_priority
3688 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3689 {
3690 pro->model_priority = model_next_priority;
3691 if (sched_verbose >= 7)
3692 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3693 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3694 {
3695 /* PRO is already in the worklist, but it now has
3696 a higher priority than before. Move it at the
3697 appropriate place. */
3698 model_remove_from_worklist (pro);
3699 model_add_to_worklist (pro, NULL, model_worklist);
3700 }
3701 else
3702 {
3703 /* PRO isn't in the worklist. Recursively process
3704 its predecessors until we find one that is. */
3705 pro->next = first;
3706 first = pro;
3707 }
3708 }
3709 }
3710 if (!first)
3711 break;
3712 insn = first;
3713 first = insn->next;
3714 }
3715 if (sched_verbose >= 7)
3716 fprintf (sched_dump, " = %d\n", model_next_priority);
3717 model_next_priority++;
3718 }
3719
3720 /* Pick one instruction from model_worklist and process it. */
3721
3722 static void
3723 model_choose_insn (void)
3724 {
3725 struct model_insn_info *insn, *fallback;
3726 int count;
3727
3728 if (sched_verbose >= 7)
3729 {
3730 fprintf (sched_dump, ";;\t+--- worklist:\n");
3731 insn = model_worklist;
3732 count = MAX_SCHED_READY_INSNS;
3733 while (count > 0 && insn)
3734 {
3735 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3736 INSN_UID (insn->insn), insn->model_priority,
3737 insn->depth + insn->alap, insn->depth,
3738 INSN_PRIORITY (insn->insn));
3739 count--;
3740 insn = insn->next;
3741 }
3742 }
3743
3744 /* Look for a ready instruction whose model_classify_priority is zero
3745 or negative, picking the highest-priority one. Adding such an
3746 instruction to the schedule now should do no harm, and may actually
3747 do some good.
3748
3749 Failing that, see whether there is an instruction with the highest
3750 extant model_priority that is not yet ready, but which would reduce
3751 pressure if it became ready. This is designed to catch cases like:
3752
3753 (set (mem (reg R1)) (reg R2))
3754
3755 where the instruction is the last remaining use of R1 and where the
3756 value of R2 is not yet available (or vice versa). The death of R1
3757 means that this instruction already reduces pressure. It is of
3758 course possible that the computation of R2 involves other registers
3759 that are hard to kill, but such cases are rare enough for this
3760 heuristic to be a win in general.
3761
3762 Failing that, just pick the highest-priority instruction in the
3763 worklist. */
3764 count = MAX_SCHED_READY_INSNS;
3765 insn = model_worklist;
3766 fallback = 0;
3767 for (;;)
3768 {
3769 if (count == 0 || !insn)
3770 {
3771 insn = fallback ? fallback : model_worklist;
3772 break;
3773 }
3774 if (insn->unscheduled_preds)
3775 {
3776 if (model_worklist->model_priority == insn->model_priority
3777 && !fallback
3778 && model_classify_pressure (insn) < 0)
3779 fallback = insn;
3780 }
3781 else
3782 {
3783 if (model_classify_pressure (insn) <= 0)
3784 break;
3785 }
3786 count--;
3787 insn = insn->next;
3788 }
3789
3790 if (sched_verbose >= 7 && insn != model_worklist)
3791 {
3792 if (insn->unscheduled_preds)
3793 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3794 INSN_UID (insn->insn));
3795 else
3796 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3797 INSN_UID (insn->insn));
3798 }
3799 if (insn->unscheduled_preds)
3800 /* INSN isn't yet ready to issue. Give all its predecessors the
3801 highest priority. */
3802 model_promote_predecessors (insn);
3803 else
3804 {
3805 /* INSN is ready. Add it to the end of model_schedule and
3806 process its successors. */
3807 model_add_successors_to_worklist (insn);
3808 model_remove_from_worklist (insn);
3809 model_add_to_schedule (insn->insn);
3810 model_record_pressures (insn);
3811 update_register_pressure (insn->insn);
3812 }
3813 }
3814
3815 /* Restore all QUEUE_INDEXs to the values that they had before
3816 model_start_schedule was called. */
3817
3818 static void
3819 model_reset_queue_indices (void)
3820 {
3821 unsigned int i;
3822 rtx_insn *insn;
3823
3824 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3825 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3826 }
3827
3828 /* We have calculated the model schedule and spill costs. Print a summary
3829 to sched_dump. */
3830
3831 static void
3832 model_dump_pressure_summary (void)
3833 {
3834 int pci, cl;
3835
3836 fprintf (sched_dump, ";; Pressure summary:");
3837 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3838 {
3839 cl = ira_pressure_classes[pci];
3840 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3841 model_before_pressure.limits[pci].pressure);
3842 }
3843 fprintf (sched_dump, "\n\n");
3844 }
3845
3846 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3847 scheduling region. */
3848
3849 static void
3850 model_start_schedule (basic_block bb)
3851 {
3852 model_next_priority = 1;
3853 model_schedule.create (sched_max_luid);
3854 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3855
3856 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3857 initiate_reg_pressure_info (df_get_live_in (bb));
3858
3859 model_analyze_insns ();
3860 model_init_pressure_group (&model_before_pressure);
3861 while (model_worklist)
3862 model_choose_insn ();
3863 gcc_assert (model_num_insns == (int) model_schedule.length ());
3864 if (sched_verbose >= 2)
3865 fprintf (sched_dump, "\n");
3866
3867 model_record_final_pressures (&model_before_pressure);
3868 model_reset_queue_indices ();
3869
3870 XDELETEVEC (model_insns);
3871
3872 model_curr_point = 0;
3873 initiate_reg_pressure_info (df_get_live_in (bb));
3874 if (sched_verbose >= 1)
3875 model_dump_pressure_summary ();
3876 }
3877
3878 /* Free the information associated with GROUP. */
3879
3880 static void
3881 model_finalize_pressure_group (struct model_pressure_group *group)
3882 {
3883 XDELETEVEC (group->model);
3884 }
3885
3886 /* Free the information created by model_start_schedule. */
3887
3888 static void
3889 model_end_schedule (void)
3890 {
3891 model_finalize_pressure_group (&model_before_pressure);
3892 model_schedule.release ();
3893 }
3894
3895 /* Prepare reg pressure scheduling for basic block BB. */
3896 static void
3897 sched_pressure_start_bb (basic_block bb)
3898 {
3899 /* Set the number of available registers for each class taking into account
3900 relative probability of current basic block versus function prologue and
3901 epilogue.
3902 * If the basic block executes much more often than the prologue/epilogue
3903 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3904 nil, so the effective number of available registers is
3905 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
3906 * If the basic block executes as often as the prologue/epilogue,
3907 then spill in the block is as costly as in the prologue, so the effective
3908 number of available registers is
3909 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3910 - call_saved_regs_num[cl]).
3911 Note that all-else-equal, we prefer to spill in the prologue, since that
3912 allows "extra" registers for other basic blocks of the function.
3913 * If the basic block is on the cold path of the function and executes
3914 rarely, then we should always prefer to spill in the block, rather than
3915 in the prologue/epilogue. The effective number of available register is
3916 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3917 - call_saved_regs_num[cl]). */
3918 {
3919 int i;
3920 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3921 int bb_freq = bb->frequency;
3922
3923 if (bb_freq == 0)
3924 {
3925 if (entry_freq == 0)
3926 entry_freq = bb_freq = 1;
3927 }
3928 if (bb_freq < entry_freq)
3929 bb_freq = entry_freq;
3930
3931 for (i = 0; i < ira_pressure_classes_num; ++i)
3932 {
3933 enum reg_class cl = ira_pressure_classes[i];
3934 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3935 - fixed_regs_num[cl];
3936 sched_class_regs_num[cl]
3937 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
3938 }
3939 }
3940
3941 if (sched_pressure == SCHED_PRESSURE_MODEL)
3942 model_start_schedule (bb);
3943 }
3944 \f
3945 /* A structure that holds local state for the loop in schedule_block. */
3946 struct sched_block_state
3947 {
3948 /* True if no real insns have been scheduled in the current cycle. */
3949 bool first_cycle_insn_p;
3950 /* True if a shadow insn has been scheduled in the current cycle, which
3951 means that no more normal insns can be issued. */
3952 bool shadows_only_p;
3953 /* True if we're winding down a modulo schedule, which means that we only
3954 issue insns with INSN_EXACT_TICK set. */
3955 bool modulo_epilogue;
3956 /* Initialized with the machine's issue rate every cycle, and updated
3957 by calls to the variable_issue hook. */
3958 int can_issue_more;
3959 };
3960
3961 /* INSN is the "currently executing insn". Launch each insn which was
3962 waiting on INSN. READY is the ready list which contains the insns
3963 that are ready to fire. CLOCK is the current cycle. The function
3964 returns necessary cycle advance after issuing the insn (it is not
3965 zero for insns in a schedule group). */
3966
3967 static int
3968 schedule_insn (rtx_insn *insn)
3969 {
3970 sd_iterator_def sd_it;
3971 dep_t dep;
3972 int i;
3973 int advance = 0;
3974
3975 if (sched_verbose >= 1)
3976 {
3977 struct reg_pressure_data *pressure_info;
3978 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3979 clock_var, (*current_sched_info->print_insn) (insn, 1),
3980 str_pattern_slim (PATTERN (insn)));
3981
3982 if (recog_memoized (insn) < 0)
3983 fprintf (sched_dump, "nothing");
3984 else
3985 print_reservation (sched_dump, insn);
3986 pressure_info = INSN_REG_PRESSURE (insn);
3987 if (pressure_info != NULL)
3988 {
3989 fputc (':', sched_dump);
3990 for (i = 0; i < ira_pressure_classes_num; i++)
3991 fprintf (sched_dump, "%s%s%+d(%d)",
3992 scheduled_insns.length () > 1
3993 && INSN_LUID (insn)
3994 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3995 reg_class_names[ira_pressure_classes[i]],
3996 pressure_info[i].set_increase, pressure_info[i].change);
3997 }
3998 if (sched_pressure == SCHED_PRESSURE_MODEL
3999 && model_curr_point < model_num_insns
4000 && model_index (insn) == model_curr_point)
4001 fprintf (sched_dump, ":model %d", model_curr_point);
4002 fputc ('\n', sched_dump);
4003 }
4004
4005 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4006 update_reg_and_insn_max_reg_pressure (insn);
4007
4008 /* Scheduling instruction should have all its dependencies resolved and
4009 should have been removed from the ready list. */
4010 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4011
4012 /* Reset debug insns invalidated by moving this insn. */
4013 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4014 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4015 sd_iterator_cond (&sd_it, &dep);)
4016 {
4017 rtx_insn *dbg = DEP_PRO (dep);
4018 struct reg_use_data *use, *next;
4019
4020 if (DEP_STATUS (dep) & DEP_CANCELLED)
4021 {
4022 sd_iterator_next (&sd_it);
4023 continue;
4024 }
4025
4026 gcc_assert (DEBUG_INSN_P (dbg));
4027
4028 if (sched_verbose >= 6)
4029 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4030 INSN_UID (dbg));
4031
4032 /* ??? Rather than resetting the debug insn, we might be able
4033 to emit a debug temp before the just-scheduled insn, but
4034 this would involve checking that the expression at the
4035 point of the debug insn is equivalent to the expression
4036 before the just-scheduled insn. They might not be: the
4037 expression in the debug insn may depend on other insns not
4038 yet scheduled that set MEMs, REGs or even other debug
4039 insns. It's not clear that attempting to preserve debug
4040 information in these cases is worth the effort, given how
4041 uncommon these resets are and the likelihood that the debug
4042 temps introduced won't survive the schedule change. */
4043 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4044 df_insn_rescan (dbg);
4045
4046 /* Unknown location doesn't use any registers. */
4047 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4048 {
4049 struct reg_use_data *prev = use;
4050
4051 /* Remove use from the cyclic next_regno_use chain first. */
4052 while (prev->next_regno_use != use)
4053 prev = prev->next_regno_use;
4054 prev->next_regno_use = use->next_regno_use;
4055 next = use->next_insn_use;
4056 free (use);
4057 }
4058 INSN_REG_USE_LIST (dbg) = NULL;
4059
4060 /* We delete rather than resolve these deps, otherwise we
4061 crash in sched_free_deps(), because forward deps are
4062 expected to be released before backward deps. */
4063 sd_delete_dep (sd_it);
4064 }
4065
4066 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4067 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4068
4069 if (sched_pressure == SCHED_PRESSURE_MODEL
4070 && model_curr_point < model_num_insns
4071 && NONDEBUG_INSN_P (insn))
4072 {
4073 if (model_index (insn) == model_curr_point)
4074 do
4075 model_curr_point++;
4076 while (model_curr_point < model_num_insns
4077 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4078 == QUEUE_SCHEDULED));
4079 else
4080 model_recompute (insn);
4081 model_update_limit_points ();
4082 update_register_pressure (insn);
4083 if (sched_verbose >= 2)
4084 print_curr_reg_pressure ();
4085 }
4086
4087 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4088 if (INSN_TICK (insn) > clock_var)
4089 /* INSN has been prematurely moved from the queue to the ready list.
4090 This is possible only if following flags are set. */
4091 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4092
4093 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4094 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4095 INSN_TICK (insn) = clock_var;
4096
4097 check_clobbered_conditions (insn);
4098
4099 /* Update dependent instructions. First, see if by scheduling this insn
4100 now we broke a dependence in a way that requires us to change another
4101 insn. */
4102 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4103 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4104 {
4105 struct dep_replacement *desc = DEP_REPLACE (dep);
4106 rtx_insn *pro = DEP_PRO (dep);
4107 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4108 && desc != NULL && desc->insn == pro)
4109 apply_replacement (dep, false);
4110 }
4111
4112 /* Go through and resolve forward dependencies. */
4113 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4114 sd_iterator_cond (&sd_it, &dep);)
4115 {
4116 rtx_insn *next = DEP_CON (dep);
4117 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4118
4119 /* Resolve the dependence between INSN and NEXT.
4120 sd_resolve_dep () moves current dep to another list thus
4121 advancing the iterator. */
4122 sd_resolve_dep (sd_it);
4123
4124 if (cancelled)
4125 {
4126 if (must_restore_pattern_p (next, dep))
4127 restore_pattern (dep, false);
4128 continue;
4129 }
4130
4131 /* Don't bother trying to mark next as ready if insn is a debug
4132 insn. If insn is the last hard dependency, it will have
4133 already been discounted. */
4134 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4135 continue;
4136
4137 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4138 {
4139 int effective_cost;
4140
4141 effective_cost = try_ready (next);
4142
4143 if (effective_cost >= 0
4144 && SCHED_GROUP_P (next)
4145 && advance < effective_cost)
4146 advance = effective_cost;
4147 }
4148 else
4149 /* Check always has only one forward dependence (to the first insn in
4150 the recovery block), therefore, this will be executed only once. */
4151 {
4152 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4153 fix_recovery_deps (RECOVERY_BLOCK (insn));
4154 }
4155 }
4156
4157 /* Annotate the instruction with issue information -- TImode
4158 indicates that the instruction is expected not to be able
4159 to issue on the same cycle as the previous insn. A machine
4160 may use this information to decide how the instruction should
4161 be aligned. */
4162 if (issue_rate > 1
4163 && GET_CODE (PATTERN (insn)) != USE
4164 && GET_CODE (PATTERN (insn)) != CLOBBER
4165 && !DEBUG_INSN_P (insn))
4166 {
4167 if (reload_completed)
4168 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4169 last_clock_var = clock_var;
4170 }
4171
4172 if (nonscheduled_insns_begin != NULL_RTX)
4173 /* Indicate to debug counters that INSN is scheduled. */
4174 nonscheduled_insns_begin = insn;
4175
4176 return advance;
4177 }
4178
4179 /* Functions for handling of notes. */
4180
4181 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4182 void
4183 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4184 {
4185 rtx_insn *from_start;
4186
4187 /* It's easy when have nothing to concat. */
4188 if (from_end == NULL)
4189 return;
4190
4191 /* It's also easy when destination is empty. */
4192 if (*to_endp == NULL)
4193 {
4194 *to_endp = from_end;
4195 return;
4196 }
4197
4198 from_start = from_end;
4199 while (PREV_INSN (from_start) != NULL)
4200 from_start = PREV_INSN (from_start);
4201
4202 SET_PREV_INSN (from_start) = *to_endp;
4203 SET_NEXT_INSN (*to_endp) = from_start;
4204 *to_endp = from_end;
4205 }
4206
4207 /* Delete notes between HEAD and TAIL and put them in the chain
4208 of notes ended by NOTE_LIST. */
4209 void
4210 remove_notes (rtx_insn *head, rtx_insn *tail)
4211 {
4212 rtx_insn *next_tail, *insn, *next;
4213
4214 note_list = 0;
4215 if (head == tail && !INSN_P (head))
4216 return;
4217
4218 next_tail = NEXT_INSN (tail);
4219 for (insn = head; insn != next_tail; insn = next)
4220 {
4221 next = NEXT_INSN (insn);
4222 if (!NOTE_P (insn))
4223 continue;
4224
4225 switch (NOTE_KIND (insn))
4226 {
4227 case NOTE_INSN_BASIC_BLOCK:
4228 continue;
4229
4230 case NOTE_INSN_EPILOGUE_BEG:
4231 if (insn != tail)
4232 {
4233 remove_insn (insn);
4234 add_reg_note (next, REG_SAVE_NOTE,
4235 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4236 break;
4237 }
4238 /* FALLTHRU */
4239
4240 default:
4241 remove_insn (insn);
4242
4243 /* Add the note to list that ends at NOTE_LIST. */
4244 SET_PREV_INSN (insn) = note_list;
4245 SET_NEXT_INSN (insn) = NULL_RTX;
4246 if (note_list)
4247 SET_NEXT_INSN (note_list) = insn;
4248 note_list = insn;
4249 break;
4250 }
4251
4252 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4253 }
4254 }
4255
4256 /* A structure to record enough data to allow us to backtrack the scheduler to
4257 a previous state. */
4258 struct haifa_saved_data
4259 {
4260 /* Next entry on the list. */
4261 struct haifa_saved_data *next;
4262
4263 /* Backtracking is associated with scheduling insns that have delay slots.
4264 DELAY_PAIR points to the structure that contains the insns involved, and
4265 the number of cycles between them. */
4266 struct delay_pair *delay_pair;
4267
4268 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4269 void *fe_saved_data;
4270 /* Data used by the backend. */
4271 void *be_saved_data;
4272
4273 /* Copies of global state. */
4274 int clock_var, last_clock_var;
4275 struct ready_list ready;
4276 state_t curr_state;
4277
4278 rtx_insn *last_scheduled_insn;
4279 rtx_insn *last_nondebug_scheduled_insn;
4280 rtx_insn *nonscheduled_insns_begin;
4281 int cycle_issued_insns;
4282
4283 /* Copies of state used in the inner loop of schedule_block. */
4284 struct sched_block_state sched_block;
4285
4286 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4287 to 0 when restoring. */
4288 int q_size;
4289 rtx_insn_list **insn_queue;
4290
4291 /* Describe pattern replacements that occurred since this backtrack point
4292 was queued. */
4293 vec<dep_t> replacement_deps;
4294 vec<int> replace_apply;
4295
4296 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4297 point. */
4298 vec<dep_t> next_cycle_deps;
4299 vec<int> next_cycle_apply;
4300 };
4301
4302 /* A record, in reverse order, of all scheduled insns which have delay slots
4303 and may require backtracking. */
4304 static struct haifa_saved_data *backtrack_queue;
4305
4306 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4307 to SET_P. */
4308 static void
4309 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4310 {
4311 sd_iterator_def sd_it;
4312 dep_t dep;
4313 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4314 {
4315 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4316 }
4317 }
4318
4319 /* Save the current scheduler state so that we can backtrack to it
4320 later if necessary. PAIR gives the insns that make it necessary to
4321 save this point. SCHED_BLOCK is the local state of schedule_block
4322 that need to be saved. */
4323 static void
4324 save_backtrack_point (struct delay_pair *pair,
4325 struct sched_block_state sched_block)
4326 {
4327 int i;
4328 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4329
4330 save->curr_state = xmalloc (dfa_state_size);
4331 memcpy (save->curr_state, curr_state, dfa_state_size);
4332
4333 save->ready.first = ready.first;
4334 save->ready.n_ready = ready.n_ready;
4335 save->ready.n_debug = ready.n_debug;
4336 save->ready.veclen = ready.veclen;
4337 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4338 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4339
4340 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4341 save->q_size = q_size;
4342 for (i = 0; i <= max_insn_queue_index; i++)
4343 {
4344 int q = NEXT_Q_AFTER (q_ptr, i);
4345 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4346 }
4347
4348 save->clock_var = clock_var;
4349 save->last_clock_var = last_clock_var;
4350 save->cycle_issued_insns = cycle_issued_insns;
4351 save->last_scheduled_insn = last_scheduled_insn;
4352 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4353 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4354
4355 save->sched_block = sched_block;
4356
4357 save->replacement_deps.create (0);
4358 save->replace_apply.create (0);
4359 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4360 save->next_cycle_apply = next_cycle_apply.copy ();
4361
4362 if (current_sched_info->save_state)
4363 save->fe_saved_data = (*current_sched_info->save_state) ();
4364
4365 if (targetm.sched.alloc_sched_context)
4366 {
4367 save->be_saved_data = targetm.sched.alloc_sched_context ();
4368 targetm.sched.init_sched_context (save->be_saved_data, false);
4369 }
4370 else
4371 save->be_saved_data = NULL;
4372
4373 save->delay_pair = pair;
4374
4375 save->next = backtrack_queue;
4376 backtrack_queue = save;
4377
4378 while (pair)
4379 {
4380 mark_backtrack_feeds (pair->i2, 1);
4381 INSN_TICK (pair->i2) = INVALID_TICK;
4382 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4383 SHADOW_P (pair->i2) = pair->stages == 0;
4384 pair = pair->next_same_i1;
4385 }
4386 }
4387
4388 /* Walk the ready list and all queues. If any insns have unresolved backwards
4389 dependencies, these must be cancelled deps, broken by predication. Set or
4390 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4391
4392 static void
4393 toggle_cancelled_flags (bool set)
4394 {
4395 int i;
4396 sd_iterator_def sd_it;
4397 dep_t dep;
4398
4399 if (ready.n_ready > 0)
4400 {
4401 rtx_insn **first = ready_lastpos (&ready);
4402 for (i = 0; i < ready.n_ready; i++)
4403 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4404 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4405 {
4406 if (set)
4407 DEP_STATUS (dep) |= DEP_CANCELLED;
4408 else
4409 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4410 }
4411 }
4412 for (i = 0; i <= max_insn_queue_index; i++)
4413 {
4414 int q = NEXT_Q_AFTER (q_ptr, i);
4415 rtx_insn_list *link;
4416 for (link = insn_queue[q]; link; link = link->next ())
4417 {
4418 rtx_insn *insn = link->insn ();
4419 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4420 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4421 {
4422 if (set)
4423 DEP_STATUS (dep) |= DEP_CANCELLED;
4424 else
4425 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4426 }
4427 }
4428 }
4429 }
4430
4431 /* Undo the replacements that have occurred after backtrack point SAVE
4432 was placed. */
4433 static void
4434 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4435 {
4436 while (!save->replacement_deps.is_empty ())
4437 {
4438 dep_t dep = save->replacement_deps.pop ();
4439 int apply_p = save->replace_apply.pop ();
4440
4441 if (apply_p)
4442 restore_pattern (dep, true);
4443 else
4444 apply_replacement (dep, true);
4445 }
4446 save->replacement_deps.release ();
4447 save->replace_apply.release ();
4448 }
4449
4450 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4451 Restore their dependencies to an unresolved state, and mark them as
4452 queued nowhere. */
4453
4454 static void
4455 unschedule_insns_until (rtx_insn *insn)
4456 {
4457 auto_vec<rtx_insn *> recompute_vec;
4458
4459 /* Make two passes over the insns to be unscheduled. First, we clear out
4460 dependencies and other trivial bookkeeping. */
4461 for (;;)
4462 {
4463 rtx_insn *last;
4464 sd_iterator_def sd_it;
4465 dep_t dep;
4466
4467 last = scheduled_insns.pop ();
4468
4469 /* This will be changed by restore_backtrack_point if the insn is in
4470 any queue. */
4471 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4472 if (last != insn)
4473 INSN_TICK (last) = INVALID_TICK;
4474
4475 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4476 modulo_insns_scheduled--;
4477
4478 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4479 sd_iterator_cond (&sd_it, &dep);)
4480 {
4481 rtx_insn *con = DEP_CON (dep);
4482 sd_unresolve_dep (sd_it);
4483 if (!MUST_RECOMPUTE_SPEC_P (con))
4484 {
4485 MUST_RECOMPUTE_SPEC_P (con) = 1;
4486 recompute_vec.safe_push (con);
4487 }
4488 }
4489
4490 if (last == insn)
4491 break;
4492 }
4493
4494 /* A second pass, to update ready and speculation status for insns
4495 depending on the unscheduled ones. The first pass must have
4496 popped the scheduled_insns vector up to the point where we
4497 restart scheduling, as recompute_todo_spec requires it to be
4498 up-to-date. */
4499 while (!recompute_vec.is_empty ())
4500 {
4501 rtx_insn *con;
4502
4503 con = recompute_vec.pop ();
4504 MUST_RECOMPUTE_SPEC_P (con) = 0;
4505 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4506 {
4507 TODO_SPEC (con) = HARD_DEP;
4508 INSN_TICK (con) = INVALID_TICK;
4509 if (PREDICATED_PAT (con) != NULL_RTX)
4510 haifa_change_pattern (con, ORIG_PAT (con));
4511 }
4512 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4513 TODO_SPEC (con) = recompute_todo_spec (con, true);
4514 }
4515 }
4516
4517 /* Restore scheduler state from the topmost entry on the backtracking queue.
4518 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4519 overwrite with the saved data.
4520 The caller must already have called unschedule_insns_until. */
4521
4522 static void
4523 restore_last_backtrack_point (struct sched_block_state *psched_block)
4524 {
4525 int i;
4526 struct haifa_saved_data *save = backtrack_queue;
4527
4528 backtrack_queue = save->next;
4529
4530 if (current_sched_info->restore_state)
4531 (*current_sched_info->restore_state) (save->fe_saved_data);
4532
4533 if (targetm.sched.alloc_sched_context)
4534 {
4535 targetm.sched.set_sched_context (save->be_saved_data);
4536 targetm.sched.free_sched_context (save->be_saved_data);
4537 }
4538
4539 /* Do this first since it clobbers INSN_TICK of the involved
4540 instructions. */
4541 undo_replacements_for_backtrack (save);
4542
4543 /* Clear the QUEUE_INDEX of everything in the ready list or one
4544 of the queues. */
4545 if (ready.n_ready > 0)
4546 {
4547 rtx_insn **first = ready_lastpos (&ready);
4548 for (i = 0; i < ready.n_ready; i++)
4549 {
4550 rtx_insn *insn = first[i];
4551 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4552 INSN_TICK (insn) = INVALID_TICK;
4553 }
4554 }
4555 for (i = 0; i <= max_insn_queue_index; i++)
4556 {
4557 int q = NEXT_Q_AFTER (q_ptr, i);
4558
4559 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4560 {
4561 rtx_insn *x = link->insn ();
4562 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4563 INSN_TICK (x) = INVALID_TICK;
4564 }
4565 free_INSN_LIST_list (&insn_queue[q]);
4566 }
4567
4568 free (ready.vec);
4569 ready = save->ready;
4570
4571 if (ready.n_ready > 0)
4572 {
4573 rtx_insn **first = ready_lastpos (&ready);
4574 for (i = 0; i < ready.n_ready; i++)
4575 {
4576 rtx_insn *insn = first[i];
4577 QUEUE_INDEX (insn) = QUEUE_READY;
4578 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4579 INSN_TICK (insn) = save->clock_var;
4580 }
4581 }
4582
4583 q_ptr = 0;
4584 q_size = save->q_size;
4585 for (i = 0; i <= max_insn_queue_index; i++)
4586 {
4587 int q = NEXT_Q_AFTER (q_ptr, i);
4588
4589 insn_queue[q] = save->insn_queue[q];
4590
4591 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4592 {
4593 rtx_insn *x = link->insn ();
4594 QUEUE_INDEX (x) = i;
4595 TODO_SPEC (x) = recompute_todo_spec (x, true);
4596 INSN_TICK (x) = save->clock_var + i;
4597 }
4598 }
4599 free (save->insn_queue);
4600
4601 toggle_cancelled_flags (true);
4602
4603 clock_var = save->clock_var;
4604 last_clock_var = save->last_clock_var;
4605 cycle_issued_insns = save->cycle_issued_insns;
4606 last_scheduled_insn = save->last_scheduled_insn;
4607 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4608 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4609
4610 *psched_block = save->sched_block;
4611
4612 memcpy (curr_state, save->curr_state, dfa_state_size);
4613 free (save->curr_state);
4614
4615 mark_backtrack_feeds (save->delay_pair->i2, 0);
4616
4617 gcc_assert (next_cycle_replace_deps.is_empty ());
4618 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4619 next_cycle_apply = save->next_cycle_apply.copy ();
4620
4621 free (save);
4622
4623 for (save = backtrack_queue; save; save = save->next)
4624 {
4625 mark_backtrack_feeds (save->delay_pair->i2, 1);
4626 }
4627 }
4628
4629 /* Discard all data associated with the topmost entry in the backtrack
4630 queue. If RESET_TICK is false, we just want to free the data. If true,
4631 we are doing this because we discovered a reason to backtrack. In the
4632 latter case, also reset the INSN_TICK for the shadow insn. */
4633 static void
4634 free_topmost_backtrack_point (bool reset_tick)
4635 {
4636 struct haifa_saved_data *save = backtrack_queue;
4637 int i;
4638
4639 backtrack_queue = save->next;
4640
4641 if (reset_tick)
4642 {
4643 struct delay_pair *pair = save->delay_pair;
4644 while (pair)
4645 {
4646 INSN_TICK (pair->i2) = INVALID_TICK;
4647 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4648 pair = pair->next_same_i1;
4649 }
4650 undo_replacements_for_backtrack (save);
4651 }
4652 else
4653 {
4654 save->replacement_deps.release ();
4655 save->replace_apply.release ();
4656 }
4657
4658 if (targetm.sched.free_sched_context)
4659 targetm.sched.free_sched_context (save->be_saved_data);
4660 if (current_sched_info->restore_state)
4661 free (save->fe_saved_data);
4662 for (i = 0; i <= max_insn_queue_index; i++)
4663 free_INSN_LIST_list (&save->insn_queue[i]);
4664 free (save->insn_queue);
4665 free (save->curr_state);
4666 free (save->ready.vec);
4667 free (save);
4668 }
4669
4670 /* Free the entire backtrack queue. */
4671 static void
4672 free_backtrack_queue (void)
4673 {
4674 while (backtrack_queue)
4675 free_topmost_backtrack_point (false);
4676 }
4677
4678 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4679 may have to postpone the replacement until the start of the next cycle,
4680 at which point we will be called again with IMMEDIATELY true. This is
4681 only done for machines which have instruction packets with explicit
4682 parallelism however. */
4683 static void
4684 apply_replacement (dep_t dep, bool immediately)
4685 {
4686 struct dep_replacement *desc = DEP_REPLACE (dep);
4687 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4688 {
4689 next_cycle_replace_deps.safe_push (dep);
4690 next_cycle_apply.safe_push (1);
4691 }
4692 else
4693 {
4694 bool success;
4695
4696 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4697 return;
4698
4699 if (sched_verbose >= 5)
4700 fprintf (sched_dump, "applying replacement for insn %d\n",
4701 INSN_UID (desc->insn));
4702
4703 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4704 gcc_assert (success);
4705
4706 update_insn_after_change (desc->insn);
4707 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4708 fix_tick_ready (desc->insn);
4709
4710 if (backtrack_queue != NULL)
4711 {
4712 backtrack_queue->replacement_deps.safe_push (dep);
4713 backtrack_queue->replace_apply.safe_push (1);
4714 }
4715 }
4716 }
4717
4718 /* We have determined that a pattern involved in DEP must be restored.
4719 If IMMEDIATELY is false, we may have to postpone the replacement
4720 until the start of the next cycle, at which point we will be called
4721 again with IMMEDIATELY true. */
4722 static void
4723 restore_pattern (dep_t dep, bool immediately)
4724 {
4725 rtx_insn *next = DEP_CON (dep);
4726 int tick = INSN_TICK (next);
4727
4728 /* If we already scheduled the insn, the modified version is
4729 correct. */
4730 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4731 return;
4732
4733 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4734 {
4735 next_cycle_replace_deps.safe_push (dep);
4736 next_cycle_apply.safe_push (0);
4737 return;
4738 }
4739
4740
4741 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4742 {
4743 if (sched_verbose >= 5)
4744 fprintf (sched_dump, "restoring pattern for insn %d\n",
4745 INSN_UID (next));
4746 haifa_change_pattern (next, ORIG_PAT (next));
4747 }
4748 else
4749 {
4750 struct dep_replacement *desc = DEP_REPLACE (dep);
4751 bool success;
4752
4753 if (sched_verbose >= 5)
4754 fprintf (sched_dump, "restoring pattern for insn %d\n",
4755 INSN_UID (desc->insn));
4756 tick = INSN_TICK (desc->insn);
4757
4758 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4759 gcc_assert (success);
4760 update_insn_after_change (desc->insn);
4761 if (backtrack_queue != NULL)
4762 {
4763 backtrack_queue->replacement_deps.safe_push (dep);
4764 backtrack_queue->replace_apply.safe_push (0);
4765 }
4766 }
4767 INSN_TICK (next) = tick;
4768 if (TODO_SPEC (next) == DEP_POSTPONED)
4769 return;
4770
4771 if (sd_lists_empty_p (next, SD_LIST_BACK))
4772 TODO_SPEC (next) = 0;
4773 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4774 TODO_SPEC (next) = HARD_DEP;
4775 }
4776
4777 /* Perform pattern replacements that were queued up until the next
4778 cycle. */
4779 static void
4780 perform_replacements_new_cycle (void)
4781 {
4782 int i;
4783 dep_t dep;
4784 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4785 {
4786 int apply_p = next_cycle_apply[i];
4787 if (apply_p)
4788 apply_replacement (dep, true);
4789 else
4790 restore_pattern (dep, true);
4791 }
4792 next_cycle_replace_deps.truncate (0);
4793 next_cycle_apply.truncate (0);
4794 }
4795
4796 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4797 instructions we've previously encountered, a set bit prevents
4798 recursion. BUDGET is a limit on how far ahead we look, it is
4799 reduced on recursive calls. Return true if we produced a good
4800 estimate, or false if we exceeded the budget. */
4801 static bool
4802 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4803 {
4804 sd_iterator_def sd_it;
4805 dep_t dep;
4806 int earliest = INSN_TICK (insn);
4807
4808 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4809 {
4810 rtx_insn *pro = DEP_PRO (dep);
4811 int t;
4812
4813 if (DEP_STATUS (dep) & DEP_CANCELLED)
4814 continue;
4815
4816 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4817 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4818 else
4819 {
4820 int cost = dep_cost (dep);
4821 if (cost >= budget)
4822 return false;
4823 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4824 {
4825 if (!estimate_insn_tick (processed, pro, budget - cost))
4826 return false;
4827 }
4828 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4829 t = INSN_TICK_ESTIMATE (pro) + cost;
4830 if (earliest == INVALID_TICK || t > earliest)
4831 earliest = t;
4832 }
4833 }
4834 bitmap_set_bit (processed, INSN_LUID (insn));
4835 INSN_TICK_ESTIMATE (insn) = earliest;
4836 return true;
4837 }
4838
4839 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4840 infinite resources) the cycle in which the delayed shadow can be issued.
4841 Return the number of cycles that must pass before the real insn can be
4842 issued in order to meet this constraint. */
4843 static int
4844 estimate_shadow_tick (struct delay_pair *p)
4845 {
4846 auto_bitmap processed;
4847 int t;
4848 bool cutoff;
4849
4850 cutoff = !estimate_insn_tick (processed, p->i2,
4851 max_insn_queue_index + pair_delay (p));
4852 if (cutoff)
4853 return max_insn_queue_index;
4854 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4855 if (t > 0)
4856 return t;
4857 return 0;
4858 }
4859
4860 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4861 recursively resolve all its forward dependencies. */
4862 static void
4863 resolve_dependencies (rtx_insn *insn)
4864 {
4865 sd_iterator_def sd_it;
4866 dep_t dep;
4867
4868 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4869 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4870 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4871 return;
4872
4873 if (sched_verbose >= 4)
4874 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4875
4876 if (QUEUE_INDEX (insn) >= 0)
4877 queue_remove (insn);
4878
4879 scheduled_insns.safe_push (insn);
4880
4881 /* Update dependent instructions. */
4882 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4883 sd_iterator_cond (&sd_it, &dep);)
4884 {
4885 rtx_insn *next = DEP_CON (dep);
4886
4887 if (sched_verbose >= 4)
4888 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4889 INSN_UID (next));
4890
4891 /* Resolve the dependence between INSN and NEXT.
4892 sd_resolve_dep () moves current dep to another list thus
4893 advancing the iterator. */
4894 sd_resolve_dep (sd_it);
4895
4896 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4897 {
4898 resolve_dependencies (next);
4899 }
4900 else
4901 /* Check always has only one forward dependence (to the first insn in
4902 the recovery block), therefore, this will be executed only once. */
4903 {
4904 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4905 }
4906 }
4907 }
4908
4909
4910 /* Return the head and tail pointers of ebb starting at BEG and ending
4911 at END. */
4912 void
4913 get_ebb_head_tail (basic_block beg, basic_block end,
4914 rtx_insn **headp, rtx_insn **tailp)
4915 {
4916 rtx_insn *beg_head = BB_HEAD (beg);
4917 rtx_insn * beg_tail = BB_END (beg);
4918 rtx_insn * end_head = BB_HEAD (end);
4919 rtx_insn * end_tail = BB_END (end);
4920
4921 /* Don't include any notes or labels at the beginning of the BEG
4922 basic block, or notes at the end of the END basic blocks. */
4923
4924 if (LABEL_P (beg_head))
4925 beg_head = NEXT_INSN (beg_head);
4926
4927 while (beg_head != beg_tail)
4928 if (NOTE_P (beg_head))
4929 beg_head = NEXT_INSN (beg_head);
4930 else if (DEBUG_INSN_P (beg_head))
4931 {
4932 rtx_insn * note, *next;
4933
4934 for (note = NEXT_INSN (beg_head);
4935 note != beg_tail;
4936 note = next)
4937 {
4938 next = NEXT_INSN (note);
4939 if (NOTE_P (note))
4940 {
4941 if (sched_verbose >= 9)
4942 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4943
4944 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4945
4946 if (BLOCK_FOR_INSN (note) != beg)
4947 df_insn_change_bb (note, beg);
4948 }
4949 else if (!DEBUG_INSN_P (note))
4950 break;
4951 }
4952
4953 break;
4954 }
4955 else
4956 break;
4957
4958 *headp = beg_head;
4959
4960 if (beg == end)
4961 end_head = beg_head;
4962 else if (LABEL_P (end_head))
4963 end_head = NEXT_INSN (end_head);
4964
4965 while (end_head != end_tail)
4966 if (NOTE_P (end_tail))
4967 end_tail = PREV_INSN (end_tail);
4968 else if (DEBUG_INSN_P (end_tail))
4969 {
4970 rtx_insn * note, *prev;
4971
4972 for (note = PREV_INSN (end_tail);
4973 note != end_head;
4974 note = prev)
4975 {
4976 prev = PREV_INSN (note);
4977 if (NOTE_P (note))
4978 {
4979 if (sched_verbose >= 9)
4980 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4981
4982 reorder_insns_nobb (note, note, end_tail);
4983
4984 if (end_tail == BB_END (end))
4985 BB_END (end) = note;
4986
4987 if (BLOCK_FOR_INSN (note) != end)
4988 df_insn_change_bb (note, end);
4989 }
4990 else if (!DEBUG_INSN_P (note))
4991 break;
4992 }
4993
4994 break;
4995 }
4996 else
4997 break;
4998
4999 *tailp = end_tail;
5000 }
5001
5002 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5003
5004 int
5005 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5006 {
5007 while (head != NEXT_INSN (tail))
5008 {
5009 if (!NOTE_P (head) && !LABEL_P (head))
5010 return 0;
5011 head = NEXT_INSN (head);
5012 }
5013 return 1;
5014 }
5015
5016 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5017 previously found among the insns. Insert them just before HEAD. */
5018 rtx_insn *
5019 restore_other_notes (rtx_insn *head, basic_block head_bb)
5020 {
5021 if (note_list != 0)
5022 {
5023 rtx_insn *note_head = note_list;
5024
5025 if (head)
5026 head_bb = BLOCK_FOR_INSN (head);
5027 else
5028 head = NEXT_INSN (bb_note (head_bb));
5029
5030 while (PREV_INSN (note_head))
5031 {
5032 set_block_for_insn (note_head, head_bb);
5033 note_head = PREV_INSN (note_head);
5034 }
5035 /* In the above cycle we've missed this note. */
5036 set_block_for_insn (note_head, head_bb);
5037
5038 SET_PREV_INSN (note_head) = PREV_INSN (head);
5039 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5040 SET_PREV_INSN (head) = note_list;
5041 SET_NEXT_INSN (note_list) = head;
5042
5043 if (BLOCK_FOR_INSN (head) != head_bb)
5044 BB_END (head_bb) = note_list;
5045
5046 head = note_head;
5047 }
5048
5049 return head;
5050 }
5051
5052 /* When we know we are going to discard the schedule due to a failed attempt
5053 at modulo scheduling, undo all replacements. */
5054 static void
5055 undo_all_replacements (void)
5056 {
5057 rtx_insn *insn;
5058 int i;
5059
5060 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5061 {
5062 sd_iterator_def sd_it;
5063 dep_t dep;
5064
5065 /* See if we must undo a replacement. */
5066 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5067 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5068 {
5069 struct dep_replacement *desc = DEP_REPLACE (dep);
5070 if (desc != NULL)
5071 validate_change (desc->insn, desc->loc, desc->orig, 0);
5072 }
5073 }
5074 }
5075
5076 /* Return first non-scheduled insn in the current scheduling block.
5077 This is mostly used for debug-counter purposes. */
5078 static rtx_insn *
5079 first_nonscheduled_insn (void)
5080 {
5081 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5082 ? nonscheduled_insns_begin
5083 : current_sched_info->prev_head);
5084
5085 do
5086 {
5087 insn = next_nonnote_nondebug_insn (insn);
5088 }
5089 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5090
5091 return insn;
5092 }
5093
5094 /* Move insns that became ready to fire from queue to ready list. */
5095
5096 static void
5097 queue_to_ready (struct ready_list *ready)
5098 {
5099 rtx_insn *insn;
5100 rtx_insn_list *link;
5101 rtx_insn *skip_insn;
5102
5103 q_ptr = NEXT_Q (q_ptr);
5104
5105 if (dbg_cnt (sched_insn) == false)
5106 /* If debug counter is activated do not requeue the first
5107 nonscheduled insn. */
5108 skip_insn = first_nonscheduled_insn ();
5109 else
5110 skip_insn = NULL;
5111
5112 /* Add all pending insns that can be scheduled without stalls to the
5113 ready list. */
5114 for (link = insn_queue[q_ptr]; link; link = link->next ())
5115 {
5116 insn = link->insn ();
5117 q_size -= 1;
5118
5119 if (sched_verbose >= 2)
5120 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5121 (*current_sched_info->print_insn) (insn, 0));
5122
5123 /* If the ready list is full, delay the insn for 1 cycle.
5124 See the comment in schedule_block for the rationale. */
5125 if (!reload_completed
5126 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5127 || (sched_pressure == SCHED_PRESSURE_MODEL
5128 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5129 instructions too. */
5130 && model_index (insn) > (model_curr_point
5131 + MAX_SCHED_READY_INSNS)))
5132 && !(sched_pressure == SCHED_PRESSURE_MODEL
5133 && model_curr_point < model_num_insns
5134 /* Always allow the next model instruction to issue. */
5135 && model_index (insn) == model_curr_point)
5136 && !SCHED_GROUP_P (insn)
5137 && insn != skip_insn)
5138 {
5139 if (sched_verbose >= 2)
5140 fprintf (sched_dump, "keeping in queue, ready full\n");
5141 queue_insn (insn, 1, "ready full");
5142 }
5143 else
5144 {
5145 ready_add (ready, insn, false);
5146 if (sched_verbose >= 2)
5147 fprintf (sched_dump, "moving to ready without stalls\n");
5148 }
5149 }
5150 free_INSN_LIST_list (&insn_queue[q_ptr]);
5151
5152 /* If there are no ready insns, stall until one is ready and add all
5153 of the pending insns at that point to the ready list. */
5154 if (ready->n_ready == 0)
5155 {
5156 int stalls;
5157
5158 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5159 {
5160 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5161 {
5162 for (; link; link = link->next ())
5163 {
5164 insn = link->insn ();
5165 q_size -= 1;
5166
5167 if (sched_verbose >= 2)
5168 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5169 (*current_sched_info->print_insn) (insn, 0));
5170
5171 ready_add (ready, insn, false);
5172 if (sched_verbose >= 2)
5173 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5174 }
5175 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5176
5177 advance_one_cycle ();
5178
5179 break;
5180 }
5181
5182 advance_one_cycle ();
5183 }
5184
5185 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5186 clock_var += stalls;
5187 if (sched_verbose >= 2)
5188 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5189 stalls, clock_var);
5190 }
5191 }
5192
5193 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5194 prematurely move INSN from the queue to the ready list. Currently,
5195 if a target defines the hook 'is_costly_dependence', this function
5196 uses the hook to check whether there exist any dependences which are
5197 considered costly by the target, between INSN and other insns that
5198 have already been scheduled. Dependences are checked up to Y cycles
5199 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5200 controlling this value.
5201 (Other considerations could be taken into account instead (or in
5202 addition) depending on user flags and target hooks. */
5203
5204 static bool
5205 ok_for_early_queue_removal (rtx_insn *insn)
5206 {
5207 if (targetm.sched.is_costly_dependence)
5208 {
5209 int n_cycles;
5210 int i = scheduled_insns.length ();
5211 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5212 {
5213 while (i-- > 0)
5214 {
5215 int cost;
5216
5217 rtx_insn *prev_insn = scheduled_insns[i];
5218
5219 if (!NOTE_P (prev_insn))
5220 {
5221 dep_t dep;
5222
5223 dep = sd_find_dep_between (prev_insn, insn, true);
5224
5225 if (dep != NULL)
5226 {
5227 cost = dep_cost (dep);
5228
5229 if (targetm.sched.is_costly_dependence (dep, cost,
5230 flag_sched_stalled_insns_dep - n_cycles))
5231 return false;
5232 }
5233 }
5234
5235 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5236 break;
5237 }
5238
5239 if (i == 0)
5240 break;
5241 }
5242 }
5243
5244 return true;
5245 }
5246
5247
5248 /* Remove insns from the queue, before they become "ready" with respect
5249 to FU latency considerations. */
5250
5251 static int
5252 early_queue_to_ready (state_t state, struct ready_list *ready)
5253 {
5254 rtx_insn *insn;
5255 rtx_insn_list *link;
5256 rtx_insn_list *next_link;
5257 rtx_insn_list *prev_link;
5258 bool move_to_ready;
5259 int cost;
5260 state_t temp_state = alloca (dfa_state_size);
5261 int stalls;
5262 int insns_removed = 0;
5263
5264 /*
5265 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5266 function:
5267
5268 X == 0: There is no limit on how many queued insns can be removed
5269 prematurely. (flag_sched_stalled_insns = -1).
5270
5271 X >= 1: Only X queued insns can be removed prematurely in each
5272 invocation. (flag_sched_stalled_insns = X).
5273
5274 Otherwise: Early queue removal is disabled.
5275 (flag_sched_stalled_insns = 0)
5276 */
5277
5278 if (! flag_sched_stalled_insns)
5279 return 0;
5280
5281 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5282 {
5283 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5284 {
5285 if (sched_verbose > 6)
5286 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5287
5288 prev_link = 0;
5289 while (link)
5290 {
5291 next_link = link->next ();
5292 insn = link->insn ();
5293 if (insn && sched_verbose > 6)
5294 print_rtl_single (sched_dump, insn);
5295
5296 memcpy (temp_state, state, dfa_state_size);
5297 if (recog_memoized (insn) < 0)
5298 /* non-negative to indicate that it's not ready
5299 to avoid infinite Q->R->Q->R... */
5300 cost = 0;
5301 else
5302 cost = state_transition (temp_state, insn);
5303
5304 if (sched_verbose >= 6)
5305 fprintf (sched_dump, "transition cost = %d\n", cost);
5306
5307 move_to_ready = false;
5308 if (cost < 0)
5309 {
5310 move_to_ready = ok_for_early_queue_removal (insn);
5311 if (move_to_ready == true)
5312 {
5313 /* move from Q to R */
5314 q_size -= 1;
5315 ready_add (ready, insn, false);
5316
5317 if (prev_link)
5318 XEXP (prev_link, 1) = next_link;
5319 else
5320 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5321
5322 free_INSN_LIST_node (link);
5323
5324 if (sched_verbose >= 2)
5325 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5326 (*current_sched_info->print_insn) (insn, 0));
5327
5328 insns_removed++;
5329 if (insns_removed == flag_sched_stalled_insns)
5330 /* Remove no more than flag_sched_stalled_insns insns
5331 from Q at a time. */
5332 return insns_removed;
5333 }
5334 }
5335
5336 if (move_to_ready == false)
5337 prev_link = link;
5338
5339 link = next_link;
5340 } /* while link */
5341 } /* if link */
5342
5343 } /* for stalls.. */
5344
5345 return insns_removed;
5346 }
5347
5348
5349 /* Print the ready list for debugging purposes.
5350 If READY_TRY is non-zero then only print insns that max_issue
5351 will consider. */
5352 static void
5353 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5354 {
5355 rtx_insn **p;
5356 int i;
5357
5358 if (ready->n_ready == 0)
5359 {
5360 fprintf (sched_dump, "\n");
5361 return;
5362 }
5363
5364 p = ready_lastpos (ready);
5365 for (i = 0; i < ready->n_ready; i++)
5366 {
5367 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5368 continue;
5369
5370 fprintf (sched_dump, " %s:%d",
5371 (*current_sched_info->print_insn) (p[i], 0),
5372 INSN_LUID (p[i]));
5373 if (sched_pressure != SCHED_PRESSURE_NONE)
5374 fprintf (sched_dump, "(cost=%d",
5375 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5376 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5377 if (INSN_TICK (p[i]) > clock_var)
5378 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5379 if (sched_pressure == SCHED_PRESSURE_MODEL)
5380 fprintf (sched_dump, ":idx=%d",
5381 model_index (p[i]));
5382 if (sched_pressure != SCHED_PRESSURE_NONE)
5383 fprintf (sched_dump, ")");
5384 }
5385 fprintf (sched_dump, "\n");
5386 }
5387
5388 /* Print the ready list. Callable from debugger. */
5389 static void
5390 debug_ready_list (struct ready_list *ready)
5391 {
5392 debug_ready_list_1 (ready, NULL);
5393 }
5394
5395 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5396 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5397 replaces the epilogue note in the correct basic block. */
5398 void
5399 reemit_notes (rtx_insn *insn)
5400 {
5401 rtx note;
5402 rtx_insn *last = insn;
5403
5404 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5405 {
5406 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5407 {
5408 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5409
5410 last = emit_note_before (note_type, last);
5411 remove_note (insn, note);
5412 }
5413 }
5414 }
5415
5416 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5417 static void
5418 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5419 {
5420 if (PREV_INSN (insn) != last)
5421 {
5422 basic_block bb;
5423 rtx_insn *note;
5424 int jump_p = 0;
5425
5426 bb = BLOCK_FOR_INSN (insn);
5427
5428 /* BB_HEAD is either LABEL or NOTE. */
5429 gcc_assert (BB_HEAD (bb) != insn);
5430
5431 if (BB_END (bb) == insn)
5432 /* If this is last instruction in BB, move end marker one
5433 instruction up. */
5434 {
5435 /* Jumps are always placed at the end of basic block. */
5436 jump_p = control_flow_insn_p (insn);
5437
5438 gcc_assert (!jump_p
5439 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5440 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5441 || (common_sched_info->sched_pass_id
5442 == SCHED_EBB_PASS));
5443
5444 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5445
5446 BB_END (bb) = PREV_INSN (insn);
5447 }
5448
5449 gcc_assert (BB_END (bb) != last);
5450
5451 if (jump_p)
5452 /* We move the block note along with jump. */
5453 {
5454 gcc_assert (nt);
5455
5456 note = NEXT_INSN (insn);
5457 while (NOTE_NOT_BB_P (note) && note != nt)
5458 note = NEXT_INSN (note);
5459
5460 if (note != nt
5461 && (LABEL_P (note)
5462 || BARRIER_P (note)))
5463 note = NEXT_INSN (note);
5464
5465 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5466 }
5467 else
5468 note = insn;
5469
5470 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5471 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5472
5473 SET_NEXT_INSN (note) = NEXT_INSN (last);
5474 SET_PREV_INSN (NEXT_INSN (last)) = note;
5475
5476 SET_NEXT_INSN (last) = insn;
5477 SET_PREV_INSN (insn) = last;
5478
5479 bb = BLOCK_FOR_INSN (last);
5480
5481 if (jump_p)
5482 {
5483 fix_jump_move (insn);
5484
5485 if (BLOCK_FOR_INSN (insn) != bb)
5486 move_block_after_check (insn);
5487
5488 gcc_assert (BB_END (bb) == last);
5489 }
5490
5491 df_insn_change_bb (insn, bb);
5492
5493 /* Update BB_END, if needed. */
5494 if (BB_END (bb) == last)
5495 BB_END (bb) = insn;
5496 }
5497
5498 SCHED_GROUP_P (insn) = 0;
5499 }
5500
5501 /* Return true if scheduling INSN will finish current clock cycle. */
5502 static bool
5503 insn_finishes_cycle_p (rtx_insn *insn)
5504 {
5505 if (SCHED_GROUP_P (insn))
5506 /* After issuing INSN, rest of the sched_group will be forced to issue
5507 in order. Don't make any plans for the rest of cycle. */
5508 return true;
5509
5510 /* Finishing the block will, apparently, finish the cycle. */
5511 if (current_sched_info->insn_finishes_block_p
5512 && current_sched_info->insn_finishes_block_p (insn))
5513 return true;
5514
5515 return false;
5516 }
5517
5518 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5519 we're expecting a memory WRITE or not, check that the insn is relevant to
5520 the autoprefetcher modelling code. Return true iff that is the case.
5521 If it is relevant, record the base register of the memory op in BASE and
5522 the offset in OFFSET. */
5523
5524 static bool
5525 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5526 {
5527 if (GET_CODE (pat) != SET)
5528 return false;
5529
5530 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5531 if (!MEM_P (mem))
5532 return false;
5533
5534 struct address_info info;
5535 decompose_mem_address (&info, mem);
5536
5537 /* TODO: Currently only (base+const) addressing is supported. */
5538 if (info.base == NULL || !REG_P (*info.base)
5539 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5540 return false;
5541
5542 *base = *info.base;
5543 *offset = info.disp ? INTVAL (*info.disp) : 0;
5544 return true;
5545 }
5546
5547 /* Functions to model cache auto-prefetcher.
5548
5549 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5550 memory prefetches if it sees instructions with consequitive memory accesses
5551 in the instruction stream. Details of such hardware units are not published,
5552 so we can only guess what exactly is going on there.
5553 In the scheduler, we model abstract auto-prefetcher. If there are memory
5554 insns in the ready list (or the queue) that have same memory base, but
5555 different offsets, then we delay the insns with larger offsets until insns
5556 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5557 is "1", then we look at the ready list; if it is N>1, then we also look
5558 through N-1 queue entries.
5559 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5560 among its heuristics.
5561 Param value of "-1" disables modelling of the auto-prefetcher. */
5562
5563 /* Initialize autoprefetcher model data for INSN. */
5564 static void
5565 autopref_multipass_init (const rtx_insn *insn, int write)
5566 {
5567 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5568
5569 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5570 data->base = NULL_RTX;
5571 data->min_offset = 0;
5572 data->max_offset = 0;
5573 data->multi_mem_insn_p = false;
5574 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5575 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5576
5577 rtx pat = PATTERN (insn);
5578
5579 /* We have a multi-set insn like a load-multiple or store-multiple.
5580 We care about these as long as all the memory ops inside the PARALLEL
5581 have the same base register. We care about the minimum and maximum
5582 offsets from that base but don't check for the order of those offsets
5583 within the PARALLEL insn itself. */
5584 if (GET_CODE (pat) == PARALLEL)
5585 {
5586 int n_elems = XVECLEN (pat, 0);
5587
5588 int i = 0;
5589 rtx prev_base = NULL_RTX;
5590 int min_offset = 0;
5591 int max_offset = 0;
5592
5593 for (i = 0; i < n_elems; i++)
5594 {
5595 rtx set = XVECEXP (pat, 0, i);
5596 if (GET_CODE (set) != SET)
5597 return;
5598
5599 rtx base = NULL_RTX;
5600 int offset = 0;
5601 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5602 return;
5603
5604 if (i == 0)
5605 {
5606 prev_base = base;
5607 min_offset = offset;
5608 max_offset = offset;
5609 }
5610 /* Ensure that all memory operations in the PARALLEL use the same
5611 base register. */
5612 else if (REGNO (base) != REGNO (prev_base))
5613 return;
5614 else
5615 {
5616 min_offset = MIN (min_offset, offset);
5617 max_offset = MAX (max_offset, offset);
5618 }
5619 }
5620
5621 /* If we reached here then we have a valid PARALLEL of multiple memory
5622 ops with prev_base as the base and min_offset and max_offset
5623 containing the offsets range. */
5624 gcc_assert (prev_base);
5625 data->base = prev_base;
5626 data->min_offset = min_offset;
5627 data->max_offset = max_offset;
5628 data->multi_mem_insn_p = true;
5629 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5630
5631 return;
5632 }
5633
5634 /* Otherwise this is a single set memory operation. */
5635 rtx set = single_set (insn);
5636 if (set == NULL_RTX)
5637 return;
5638
5639 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5640 &data->min_offset))
5641 return;
5642
5643 /* This insn is relevant for the auto-prefetcher.
5644 The base and offset fields will have been filled in the
5645 analyze_set_insn_for_autopref call above. */
5646 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5647 }
5648
5649
5650 /* Helper for autopref_rank_for_schedule. Given the data of two
5651 insns relevant to the auto-prefetcher modelling code DATA1 and DATA2
5652 return their comparison result. Return 0 if there is no sensible
5653 ranking order for the two insns. */
5654
5655 static int
5656 autopref_rank_data (autopref_multipass_data_t data1,
5657 autopref_multipass_data_t data2)
5658 {
5659 /* Simple case when both insns are simple single memory ops. */
5660 if (!data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5661 return data1->min_offset - data2->min_offset;
5662
5663 /* Two load/store multiple insns. Return 0 if the offset ranges
5664 overlap and the difference between the minimum offsets otherwise. */
5665 else if (data1->multi_mem_insn_p && data2->multi_mem_insn_p)
5666 {
5667 int min1 = data1->min_offset;
5668 int max1 = data1->max_offset;
5669 int min2 = data2->min_offset;
5670 int max2 = data2->max_offset;
5671
5672 if (max1 < min2 || min1 > max2)
5673 return min1 - min2;
5674 else
5675 return 0;
5676 }
5677
5678 /* The other two cases is a pair of a load/store multiple and
5679 a simple memory op. Return 0 if the single op's offset is within the
5680 range of the multi-op insn and the difference between the single offset
5681 and the minimum offset of the multi-set insn otherwise. */
5682 else if (data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5683 {
5684 int max1 = data1->max_offset;
5685 int min1 = data1->min_offset;
5686
5687 if (data2->min_offset >= min1
5688 && data2->min_offset <= max1)
5689 return 0;
5690 else
5691 return min1 - data2->min_offset;
5692 }
5693 else
5694 {
5695 int max2 = data2->max_offset;
5696 int min2 = data2->min_offset;
5697
5698 if (data1->min_offset >= min2
5699 && data1->min_offset <= max2)
5700 return 0;
5701 else
5702 return data1->min_offset - min2;
5703 }
5704 }
5705
5706 /* Helper function for rank_for_schedule sorting. */
5707 static int
5708 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5709 {
5710 for (int write = 0; write < 2; ++write)
5711 {
5712 autopref_multipass_data_t data1
5713 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5714 autopref_multipass_data_t data2
5715 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5716
5717 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5718 autopref_multipass_init (insn1, write);
5719 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5720 continue;
5721
5722 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5723 autopref_multipass_init (insn2, write);
5724 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5725 continue;
5726
5727 if (!rtx_equal_p (data1->base, data2->base))
5728 continue;
5729
5730 return autopref_rank_data (data1, data2);
5731 }
5732
5733 return 0;
5734 }
5735
5736 /* True if header of debug dump was printed. */
5737 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5738
5739 /* Helper for autopref_multipass_dfa_lookahead_guard.
5740 Return "1" if INSN1 should be delayed in favor of INSN2. */
5741 static int
5742 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5743 const rtx_insn *insn2, int write)
5744 {
5745 autopref_multipass_data_t data1
5746 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5747 autopref_multipass_data_t data2
5748 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5749
5750 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5751 autopref_multipass_init (insn2, write);
5752 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5753 return 0;
5754
5755 if (rtx_equal_p (data1->base, data2->base)
5756 && autopref_rank_data (data1, data2) > 0)
5757 {
5758 if (sched_verbose >= 2)
5759 {
5760 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5761 {
5762 fprintf (sched_dump,
5763 ";;\t\tnot trying in max_issue due to autoprefetch "
5764 "model: ");
5765 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5766 }
5767
5768 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5769 }
5770
5771 return 1;
5772 }
5773
5774 return 0;
5775 }
5776
5777 /* General note:
5778
5779 We could have also hooked autoprefetcher model into
5780 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5781 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5782 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5783 unblocked). We don't bother about this yet because target of interest
5784 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5785
5786 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5787 Return "1" if INSN1 should not be considered in max_issue due to
5788 auto-prefetcher considerations. */
5789 int
5790 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5791 {
5792 int r = 0;
5793
5794 /* Exit early if the param forbids this or if we're not entering here through
5795 normal haifa scheduling. This can happen if selective scheduling is
5796 explicitly enabled. */
5797 if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5798 return 0;
5799
5800 if (sched_verbose >= 2 && ready_index == 0)
5801 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5802
5803 for (int write = 0; write < 2; ++write)
5804 {
5805 autopref_multipass_data_t data1
5806 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5807
5808 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5809 autopref_multipass_init (insn1, write);
5810 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5811 continue;
5812
5813 if (ready_index == 0
5814 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5815 /* We allow only a single delay on priviledged instructions.
5816 Doing otherwise would cause infinite loop. */
5817 {
5818 if (sched_verbose >= 2)
5819 {
5820 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5821 {
5822 fprintf (sched_dump,
5823 ";;\t\tnot trying in max_issue due to autoprefetch "
5824 "model: ");
5825 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5826 }
5827
5828 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5829 }
5830 continue;
5831 }
5832
5833 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5834 {
5835 rtx_insn *insn2 = get_ready_element (i2);
5836 if (insn1 == insn2)
5837 continue;
5838 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5839 if (r)
5840 {
5841 if (ready_index == 0)
5842 {
5843 r = -1;
5844 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5845 }
5846 goto finish;
5847 }
5848 }
5849
5850 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5851 continue;
5852
5853 /* Everything from the current queue slot should have been moved to
5854 the ready list. */
5855 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5856
5857 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5858 if (n_stalls > max_insn_queue_index)
5859 n_stalls = max_insn_queue_index;
5860
5861 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5862 {
5863 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5864 link != NULL_RTX;
5865 link = link->next ())
5866 {
5867 rtx_insn *insn2 = link->insn ();
5868 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5869 write);
5870 if (r)
5871 {
5872 /* Queue INSN1 until INSN2 can issue. */
5873 r = -stalls;
5874 if (ready_index == 0)
5875 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5876 goto finish;
5877 }
5878 }
5879 }
5880 }
5881
5882 finish:
5883 if (sched_verbose >= 2
5884 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5885 && (ready_index == ready.n_ready - 1 || r < 0))
5886 /* This does not /always/ trigger. We don't output EOL if the last
5887 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5888 called. We can live with this. */
5889 fprintf (sched_dump, "\n");
5890
5891 return r;
5892 }
5893
5894 /* Define type for target data used in multipass scheduling. */
5895 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5896 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5897 #endif
5898 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5899
5900 /* The following structure describe an entry of the stack of choices. */
5901 struct choice_entry
5902 {
5903 /* Ordinal number of the issued insn in the ready queue. */
5904 int index;
5905 /* The number of the rest insns whose issues we should try. */
5906 int rest;
5907 /* The number of issued essential insns. */
5908 int n;
5909 /* State after issuing the insn. */
5910 state_t state;
5911 /* Target-specific data. */
5912 first_cycle_multipass_data_t target_data;
5913 };
5914
5915 /* The following array is used to implement a stack of choices used in
5916 function max_issue. */
5917 static struct choice_entry *choice_stack;
5918
5919 /* This holds the value of the target dfa_lookahead hook. */
5920 int dfa_lookahead;
5921
5922 /* The following variable value is maximal number of tries of issuing
5923 insns for the first cycle multipass insn scheduling. We define
5924 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5925 need this constraint if all real insns (with non-negative codes)
5926 had reservations because in this case the algorithm complexity is
5927 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5928 might be incomplete and such insn might occur. For such
5929 descriptions, the complexity of algorithm (without the constraint)
5930 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5931 static int max_lookahead_tries;
5932
5933 /* The following function returns maximal (or close to maximal) number
5934 of insns which can be issued on the same cycle and one of which
5935 insns is insns with the best rank (the first insn in READY). To
5936 make this function tries different samples of ready insns. READY
5937 is current queue `ready'. Global array READY_TRY reflects what
5938 insns are already issued in this try. The function stops immediately,
5939 if it reached the such a solution, that all instruction can be issued.
5940 INDEX will contain index of the best insn in READY. The following
5941 function is used only for first cycle multipass scheduling.
5942
5943 PRIVILEGED_N >= 0
5944
5945 This function expects recognized insns only. All USEs,
5946 CLOBBERs, etc must be filtered elsewhere. */
5947 int
5948 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5949 bool first_cycle_insn_p, int *index)
5950 {
5951 int n, i, all, n_ready, best, delay, tries_num;
5952 int more_issue;
5953 struct choice_entry *top;
5954 rtx_insn *insn;
5955
5956 if (sched_fusion)
5957 return 0;
5958
5959 n_ready = ready->n_ready;
5960 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5961 && privileged_n <= n_ready);
5962
5963 /* Init MAX_LOOKAHEAD_TRIES. */
5964 if (max_lookahead_tries == 0)
5965 {
5966 max_lookahead_tries = 100;
5967 for (i = 0; i < issue_rate; i++)
5968 max_lookahead_tries *= dfa_lookahead;
5969 }
5970
5971 /* Init max_points. */
5972 more_issue = issue_rate - cycle_issued_insns;
5973 gcc_assert (more_issue >= 0);
5974
5975 /* The number of the issued insns in the best solution. */
5976 best = 0;
5977
5978 top = choice_stack;
5979
5980 /* Set initial state of the search. */
5981 memcpy (top->state, state, dfa_state_size);
5982 top->rest = dfa_lookahead;
5983 top->n = 0;
5984 if (targetm.sched.first_cycle_multipass_begin)
5985 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5986 ready_try, n_ready,
5987 first_cycle_insn_p);
5988
5989 /* Count the number of the insns to search among. */
5990 for (all = i = 0; i < n_ready; i++)
5991 if (!ready_try [i])
5992 all++;
5993
5994 if (sched_verbose >= 2)
5995 {
5996 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5997 debug_ready_list_1 (ready, ready_try);
5998 }
5999
6000 /* I is the index of the insn to try next. */
6001 i = 0;
6002 tries_num = 0;
6003 for (;;)
6004 {
6005 if (/* If we've reached a dead end or searched enough of what we have
6006 been asked... */
6007 top->rest == 0
6008 /* or have nothing else to try... */
6009 || i >= n_ready
6010 /* or should not issue more. */
6011 || top->n >= more_issue)
6012 {
6013 /* ??? (... || i == n_ready). */
6014 gcc_assert (i <= n_ready);
6015
6016 /* We should not issue more than issue_rate instructions. */
6017 gcc_assert (top->n <= more_issue);
6018
6019 if (top == choice_stack)
6020 break;
6021
6022 if (best < top - choice_stack)
6023 {
6024 if (privileged_n)
6025 {
6026 n = privileged_n;
6027 /* Try to find issued privileged insn. */
6028 while (n && !ready_try[--n])
6029 ;
6030 }
6031
6032 if (/* If all insns are equally good... */
6033 privileged_n == 0
6034 /* Or a privileged insn will be issued. */
6035 || ready_try[n])
6036 /* Then we have a solution. */
6037 {
6038 best = top - choice_stack;
6039 /* This is the index of the insn issued first in this
6040 solution. */
6041 *index = choice_stack [1].index;
6042 if (top->n == more_issue || best == all)
6043 break;
6044 }
6045 }
6046
6047 /* Set ready-list index to point to the last insn
6048 ('i++' below will advance it to the next insn). */
6049 i = top->index;
6050
6051 /* Backtrack. */
6052 ready_try [i] = 0;
6053
6054 if (targetm.sched.first_cycle_multipass_backtrack)
6055 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
6056 ready_try, n_ready);
6057
6058 top--;
6059 memcpy (state, top->state, dfa_state_size);
6060 }
6061 else if (!ready_try [i])
6062 {
6063 tries_num++;
6064 if (tries_num > max_lookahead_tries)
6065 break;
6066 insn = ready_element (ready, i);
6067 delay = state_transition (state, insn);
6068 if (delay < 0)
6069 {
6070 if (state_dead_lock_p (state)
6071 || insn_finishes_cycle_p (insn))
6072 /* We won't issue any more instructions in the next
6073 choice_state. */
6074 top->rest = 0;
6075 else
6076 top->rest--;
6077
6078 n = top->n;
6079 if (memcmp (top->state, state, dfa_state_size) != 0)
6080 n++;
6081
6082 /* Advance to the next choice_entry. */
6083 top++;
6084 /* Initialize it. */
6085 top->rest = dfa_lookahead;
6086 top->index = i;
6087 top->n = n;
6088 memcpy (top->state, state, dfa_state_size);
6089 ready_try [i] = 1;
6090
6091 if (targetm.sched.first_cycle_multipass_issue)
6092 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6093 ready_try, n_ready,
6094 insn,
6095 &((top - 1)
6096 ->target_data));
6097
6098 i = -1;
6099 }
6100 }
6101
6102 /* Increase ready-list index. */
6103 i++;
6104 }
6105
6106 if (targetm.sched.first_cycle_multipass_end)
6107 targetm.sched.first_cycle_multipass_end (best != 0
6108 ? &choice_stack[1].target_data
6109 : NULL);
6110
6111 /* Restore the original state of the DFA. */
6112 memcpy (state, choice_stack->state, dfa_state_size);
6113
6114 return best;
6115 }
6116
6117 /* The following function chooses insn from READY and modifies
6118 READY. The following function is used only for first
6119 cycle multipass scheduling.
6120 Return:
6121 -1 if cycle should be advanced,
6122 0 if INSN_PTR is set to point to the desirable insn,
6123 1 if choose_ready () should be restarted without advancing the cycle. */
6124 static int
6125 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6126 rtx_insn **insn_ptr)
6127 {
6128 if (dbg_cnt (sched_insn) == false)
6129 {
6130 if (nonscheduled_insns_begin == NULL_RTX)
6131 nonscheduled_insns_begin = current_sched_info->prev_head;
6132
6133 rtx_insn *insn = first_nonscheduled_insn ();
6134
6135 if (QUEUE_INDEX (insn) == QUEUE_READY)
6136 /* INSN is in the ready_list. */
6137 {
6138 ready_remove_insn (insn);
6139 *insn_ptr = insn;
6140 return 0;
6141 }
6142
6143 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6144 gcc_assert (QUEUE_INDEX (insn) >= 0);
6145 return -1;
6146 }
6147
6148 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6149 || DEBUG_INSN_P (ready_element (ready, 0)))
6150 {
6151 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6152 *insn_ptr = ready_remove_first_dispatch (ready);
6153 else
6154 *insn_ptr = ready_remove_first (ready);
6155
6156 return 0;
6157 }
6158 else
6159 {
6160 /* Try to choose the best insn. */
6161 int index = 0, i;
6162 rtx_insn *insn;
6163
6164 insn = ready_element (ready, 0);
6165 if (INSN_CODE (insn) < 0)
6166 {
6167 *insn_ptr = ready_remove_first (ready);
6168 return 0;
6169 }
6170
6171 /* Filter the search space. */
6172 for (i = 0; i < ready->n_ready; i++)
6173 {
6174 ready_try[i] = 0;
6175
6176 insn = ready_element (ready, i);
6177
6178 /* If this insn is recognizable we should have already
6179 recognized it earlier.
6180 ??? Not very clear where this is supposed to be done.
6181 See dep_cost_1. */
6182 gcc_checking_assert (INSN_CODE (insn) >= 0
6183 || recog_memoized (insn) < 0);
6184 if (INSN_CODE (insn) < 0)
6185 {
6186 /* Non-recognized insns at position 0 are handled above. */
6187 gcc_assert (i > 0);
6188 ready_try[i] = 1;
6189 continue;
6190 }
6191
6192 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6193 {
6194 ready_try[i]
6195 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6196 (insn, i));
6197
6198 if (ready_try[i] < 0)
6199 /* Queue instruction for several cycles.
6200 We need to restart choose_ready as we have changed
6201 the ready list. */
6202 {
6203 change_queue_index (insn, -ready_try[i]);
6204 return 1;
6205 }
6206
6207 /* Make sure that we didn't end up with 0'th insn filtered out.
6208 Don't be tempted to make life easier for backends and just
6209 requeue 0'th insn if (ready_try[0] == 0) and restart
6210 choose_ready. Backends should be very considerate about
6211 requeueing instructions -- especially the highest priority
6212 one at position 0. */
6213 gcc_assert (ready_try[i] == 0 || i > 0);
6214 if (ready_try[i])
6215 continue;
6216 }
6217
6218 gcc_assert (ready_try[i] == 0);
6219 /* INSN made it through the scrutiny of filters! */
6220 }
6221
6222 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6223 {
6224 *insn_ptr = ready_remove_first (ready);
6225 if (sched_verbose >= 4)
6226 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6227 (*current_sched_info->print_insn) (*insn_ptr, 0));
6228 return 0;
6229 }
6230 else
6231 {
6232 if (sched_verbose >= 4)
6233 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6234 (*current_sched_info->print_insn)
6235 (ready_element (ready, index), 0));
6236
6237 *insn_ptr = ready_remove (ready, index);
6238 return 0;
6239 }
6240 }
6241 }
6242
6243 /* This function is called when we have successfully scheduled a
6244 block. It uses the schedule stored in the scheduled_insns vector
6245 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6246 append the scheduled insns; TAIL is the insn after the scheduled
6247 block. TARGET_BB is the argument passed to schedule_block. */
6248
6249 static void
6250 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6251 {
6252 unsigned int i;
6253 rtx_insn *insn;
6254
6255 last_scheduled_insn = prev_head;
6256 for (i = 0;
6257 scheduled_insns.iterate (i, &insn);
6258 i++)
6259 {
6260 if (control_flow_insn_p (last_scheduled_insn)
6261 || current_sched_info->advance_target_bb (*target_bb, insn))
6262 {
6263 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6264
6265 if (sched_verbose)
6266 {
6267 rtx_insn *x;
6268
6269 x = next_real_insn (last_scheduled_insn);
6270 gcc_assert (x);
6271 dump_new_block_header (1, *target_bb, x, tail);
6272 }
6273
6274 last_scheduled_insn = bb_note (*target_bb);
6275 }
6276
6277 if (current_sched_info->begin_move_insn)
6278 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6279 move_insn (insn, last_scheduled_insn,
6280 current_sched_info->next_tail);
6281 if (!DEBUG_INSN_P (insn))
6282 reemit_notes (insn);
6283 last_scheduled_insn = insn;
6284 }
6285
6286 scheduled_insns.truncate (0);
6287 }
6288
6289 /* Examine all insns on the ready list and queue those which can't be
6290 issued in this cycle. TEMP_STATE is temporary scheduler state we
6291 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6292 have been issued for the current cycle, which means it is valid to
6293 issue an asm statement.
6294
6295 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6296 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6297 we only leave insns which have an INSN_EXACT_TICK. */
6298
6299 static void
6300 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6301 bool shadows_only_p, bool modulo_epilogue_p)
6302 {
6303 int i, pass;
6304 bool sched_group_found = false;
6305 int min_cost_group = 1;
6306
6307 if (sched_fusion)
6308 return;
6309
6310 for (i = 0; i < ready.n_ready; i++)
6311 {
6312 rtx_insn *insn = ready_element (&ready, i);
6313 if (SCHED_GROUP_P (insn))
6314 {
6315 sched_group_found = true;
6316 break;
6317 }
6318 }
6319
6320 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6321 such an insn first and note its cost, then schedule all other insns
6322 for one cycle later. */
6323 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6324 {
6325 int n = ready.n_ready;
6326 for (i = 0; i < n; i++)
6327 {
6328 rtx_insn *insn = ready_element (&ready, i);
6329 int cost = 0;
6330 const char *reason = "resource conflict";
6331
6332 if (DEBUG_INSN_P (insn))
6333 continue;
6334
6335 if (sched_group_found && !SCHED_GROUP_P (insn))
6336 {
6337 if (pass == 0)
6338 continue;
6339 cost = min_cost_group;
6340 reason = "not in sched group";
6341 }
6342 else if (modulo_epilogue_p
6343 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6344 {
6345 cost = max_insn_queue_index;
6346 reason = "not an epilogue insn";
6347 }
6348 else if (shadows_only_p && !SHADOW_P (insn))
6349 {
6350 cost = 1;
6351 reason = "not a shadow";
6352 }
6353 else if (recog_memoized (insn) < 0)
6354 {
6355 if (!first_cycle_insn_p
6356 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6357 || asm_noperands (PATTERN (insn)) >= 0))
6358 cost = 1;
6359 reason = "asm";
6360 }
6361 else if (sched_pressure != SCHED_PRESSURE_NONE)
6362 {
6363 if (sched_pressure == SCHED_PRESSURE_MODEL
6364 && INSN_TICK (insn) <= clock_var)
6365 {
6366 memcpy (temp_state, curr_state, dfa_state_size);
6367 if (state_transition (temp_state, insn) >= 0)
6368 INSN_TICK (insn) = clock_var + 1;
6369 }
6370 cost = 0;
6371 }
6372 else
6373 {
6374 int delay_cost = 0;
6375
6376 if (delay_htab)
6377 {
6378 struct delay_pair *delay_entry;
6379 delay_entry
6380 = delay_htab->find_with_hash (insn,
6381 htab_hash_pointer (insn));
6382 while (delay_entry && delay_cost == 0)
6383 {
6384 delay_cost = estimate_shadow_tick (delay_entry);
6385 if (delay_cost > max_insn_queue_index)
6386 delay_cost = max_insn_queue_index;
6387 delay_entry = delay_entry->next_same_i1;
6388 }
6389 }
6390
6391 memcpy (temp_state, curr_state, dfa_state_size);
6392 cost = state_transition (temp_state, insn);
6393 if (cost < 0)
6394 cost = 0;
6395 else if (cost == 0)
6396 cost = 1;
6397 if (cost < delay_cost)
6398 {
6399 cost = delay_cost;
6400 reason = "shadow tick";
6401 }
6402 }
6403 if (cost >= 1)
6404 {
6405 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6406 min_cost_group = cost;
6407 ready_remove (&ready, i);
6408 /* Normally we'd want to queue INSN for COST cycles. However,
6409 if SCHED_GROUP_P is set, then we must ensure that nothing
6410 else comes between INSN and its predecessor. If there is
6411 some other insn ready to fire on the next cycle, then that
6412 invariant would be broken.
6413
6414 So when SCHED_GROUP_P is set, just queue this insn for a
6415 single cycle. */
6416 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6417 if (i + 1 < n)
6418 break;
6419 }
6420 }
6421 if (i == n)
6422 pass++;
6423 }
6424 }
6425
6426 /* Called when we detect that the schedule is impossible. We examine the
6427 backtrack queue to find the earliest insn that caused this condition. */
6428
6429 static struct haifa_saved_data *
6430 verify_shadows (void)
6431 {
6432 struct haifa_saved_data *save, *earliest_fail = NULL;
6433 for (save = backtrack_queue; save; save = save->next)
6434 {
6435 int t;
6436 struct delay_pair *pair = save->delay_pair;
6437 rtx_insn *i1 = pair->i1;
6438
6439 for (; pair; pair = pair->next_same_i1)
6440 {
6441 rtx_insn *i2 = pair->i2;
6442
6443 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6444 continue;
6445
6446 t = INSN_TICK (i1) + pair_delay (pair);
6447 if (t < clock_var)
6448 {
6449 if (sched_verbose >= 2)
6450 fprintf (sched_dump,
6451 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6452 ", not ready\n",
6453 INSN_UID (pair->i1), INSN_UID (pair->i2),
6454 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6455 earliest_fail = save;
6456 break;
6457 }
6458 if (QUEUE_INDEX (i2) >= 0)
6459 {
6460 int queued_for = INSN_TICK (i2);
6461
6462 if (t < queued_for)
6463 {
6464 if (sched_verbose >= 2)
6465 fprintf (sched_dump,
6466 ";;\t\tfailed delay requirements for %d/%d"
6467 " (%d->%d), queued too late\n",
6468 INSN_UID (pair->i1), INSN_UID (pair->i2),
6469 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6470 earliest_fail = save;
6471 break;
6472 }
6473 }
6474 }
6475 }
6476
6477 return earliest_fail;
6478 }
6479
6480 /* Print instructions together with useful scheduling information between
6481 HEAD and TAIL (inclusive). */
6482 static void
6483 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6484 {
6485 fprintf (sched_dump, ";;\t| insn | prio |\n");
6486
6487 rtx_insn *next_tail = NEXT_INSN (tail);
6488 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6489 {
6490 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6491 const char *pattern = (NOTE_P (insn)
6492 ? "note"
6493 : str_pattern_slim (PATTERN (insn)));
6494
6495 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6496 INSN_UID (insn), priority, pattern);
6497
6498 if (sched_verbose >= 4)
6499 {
6500 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
6501 fprintf (sched_dump, "nothing");
6502 else
6503 print_reservation (sched_dump, insn);
6504 }
6505 fprintf (sched_dump, "\n");
6506 }
6507 }
6508
6509 /* Use forward list scheduling to rearrange insns of block pointed to by
6510 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6511 region. */
6512
6513 bool
6514 schedule_block (basic_block *target_bb, state_t init_state)
6515 {
6516 int i;
6517 bool success = modulo_ii == 0;
6518 struct sched_block_state ls;
6519 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6520 int sort_p, advance, start_clock_var;
6521
6522 /* Head/tail info for this block. */
6523 rtx_insn *prev_head = current_sched_info->prev_head;
6524 rtx_insn *next_tail = current_sched_info->next_tail;
6525 rtx_insn *head = NEXT_INSN (prev_head);
6526 rtx_insn *tail = PREV_INSN (next_tail);
6527
6528 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6529 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6530 find_modifiable_mems (head, tail);
6531
6532 /* We used to have code to avoid getting parameters moved from hard
6533 argument registers into pseudos.
6534
6535 However, it was removed when it proved to be of marginal benefit
6536 and caused problems because schedule_block and compute_forward_dependences
6537 had different notions of what the "head" insn was. */
6538
6539 gcc_assert (head != tail || INSN_P (head));
6540
6541 haifa_recovery_bb_recently_added_p = false;
6542
6543 backtrack_queue = NULL;
6544
6545 /* Debug info. */
6546 if (sched_verbose)
6547 {
6548 dump_new_block_header (0, *target_bb, head, tail);
6549
6550 if (sched_verbose >= 2)
6551 {
6552 dump_insn_stream (head, tail);
6553 memset (&rank_for_schedule_stats, 0,
6554 sizeof (rank_for_schedule_stats));
6555 }
6556 }
6557
6558 if (init_state == NULL)
6559 state_reset (curr_state);
6560 else
6561 memcpy (curr_state, init_state, dfa_state_size);
6562
6563 /* Clear the ready list. */
6564 ready.first = ready.veclen - 1;
6565 ready.n_ready = 0;
6566 ready.n_debug = 0;
6567
6568 /* It is used for first cycle multipass scheduling. */
6569 temp_state = alloca (dfa_state_size);
6570
6571 if (targetm.sched.init)
6572 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6573
6574 /* We start inserting insns after PREV_HEAD. */
6575 last_scheduled_insn = prev_head;
6576 last_nondebug_scheduled_insn = NULL;
6577 nonscheduled_insns_begin = NULL;
6578
6579 gcc_assert ((NOTE_P (last_scheduled_insn)
6580 || DEBUG_INSN_P (last_scheduled_insn))
6581 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6582
6583 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6584 queue. */
6585 q_ptr = 0;
6586 q_size = 0;
6587
6588 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6589 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6590
6591 /* Start just before the beginning of time. */
6592 clock_var = -1;
6593
6594 /* We need queue and ready lists and clock_var be initialized
6595 in try_ready () (which is called through init_ready_list ()). */
6596 (*current_sched_info->init_ready_list) ();
6597
6598 if (sched_pressure)
6599 sched_pressure_start_bb (*target_bb);
6600
6601 /* The algorithm is O(n^2) in the number of ready insns at any given
6602 time in the worst case. Before reload we are more likely to have
6603 big lists so truncate them to a reasonable size. */
6604 if (!reload_completed
6605 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6606 {
6607 ready_sort_debug (&ready);
6608 ready_sort_real (&ready);
6609
6610 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6611 If there are debug insns, we know they're first. */
6612 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6613 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6614 break;
6615
6616 if (sched_verbose >= 2)
6617 {
6618 fprintf (sched_dump,
6619 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6620 debug_ready_list (&ready);
6621 fprintf (sched_dump,
6622 ";;\t\t before reload => truncated to %d insns\n", i);
6623 }
6624
6625 /* Delay all insns past it for 1 cycle. If debug counter is
6626 activated make an exception for the insn right after
6627 nonscheduled_insns_begin. */
6628 {
6629 rtx_insn *skip_insn;
6630
6631 if (dbg_cnt (sched_insn) == false)
6632 skip_insn = first_nonscheduled_insn ();
6633 else
6634 skip_insn = NULL;
6635
6636 while (i < ready.n_ready)
6637 {
6638 rtx_insn *insn;
6639
6640 insn = ready_remove (&ready, i);
6641
6642 if (insn != skip_insn)
6643 queue_insn (insn, 1, "list truncated");
6644 }
6645 if (skip_insn)
6646 ready_add (&ready, skip_insn, true);
6647 }
6648 }
6649
6650 /* Now we can restore basic block notes and maintain precise cfg. */
6651 restore_bb_notes (*target_bb);
6652
6653 last_clock_var = -1;
6654
6655 advance = 0;
6656
6657 gcc_assert (scheduled_insns.length () == 0);
6658 sort_p = TRUE;
6659 must_backtrack = false;
6660 modulo_insns_scheduled = 0;
6661
6662 ls.modulo_epilogue = false;
6663 ls.first_cycle_insn_p = true;
6664
6665 /* Loop until all the insns in BB are scheduled. */
6666 while ((*current_sched_info->schedule_more_p) ())
6667 {
6668 perform_replacements_new_cycle ();
6669 do
6670 {
6671 start_clock_var = clock_var;
6672
6673 clock_var++;
6674
6675 advance_one_cycle ();
6676
6677 /* Add to the ready list all pending insns that can be issued now.
6678 If there are no ready insns, increment clock until one
6679 is ready and add all pending insns at that point to the ready
6680 list. */
6681 queue_to_ready (&ready);
6682
6683 gcc_assert (ready.n_ready);
6684
6685 if (sched_verbose >= 2)
6686 {
6687 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6688 debug_ready_list (&ready);
6689 }
6690 advance -= clock_var - start_clock_var;
6691 }
6692 while (advance > 0);
6693
6694 if (ls.modulo_epilogue)
6695 {
6696 int stage = clock_var / modulo_ii;
6697 if (stage > modulo_last_stage * 2 + 2)
6698 {
6699 if (sched_verbose >= 2)
6700 fprintf (sched_dump,
6701 ";;\t\tmodulo scheduled succeeded at II %d\n",
6702 modulo_ii);
6703 success = true;
6704 goto end_schedule;
6705 }
6706 }
6707 else if (modulo_ii > 0)
6708 {
6709 int stage = clock_var / modulo_ii;
6710 if (stage > modulo_max_stages)
6711 {
6712 if (sched_verbose >= 2)
6713 fprintf (sched_dump,
6714 ";;\t\tfailing schedule due to excessive stages\n");
6715 goto end_schedule;
6716 }
6717 if (modulo_n_insns == modulo_insns_scheduled
6718 && stage > modulo_last_stage)
6719 {
6720 if (sched_verbose >= 2)
6721 fprintf (sched_dump,
6722 ";;\t\tfound kernel after %d stages, II %d\n",
6723 stage, modulo_ii);
6724 ls.modulo_epilogue = true;
6725 }
6726 }
6727
6728 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6729 if (ready.n_ready == 0)
6730 continue;
6731 if (must_backtrack)
6732 goto do_backtrack;
6733
6734 ls.shadows_only_p = false;
6735 cycle_issued_insns = 0;
6736 ls.can_issue_more = issue_rate;
6737 for (;;)
6738 {
6739 rtx_insn *insn;
6740 int cost;
6741 bool asm_p;
6742
6743 if (sort_p && ready.n_ready > 0)
6744 {
6745 /* Sort the ready list based on priority. This must be
6746 done every iteration through the loop, as schedule_insn
6747 may have readied additional insns that will not be
6748 sorted correctly. */
6749 ready_sort (&ready);
6750
6751 if (sched_verbose >= 2)
6752 {
6753 fprintf (sched_dump,
6754 ";;\t\tReady list after ready_sort: ");
6755 debug_ready_list (&ready);
6756 }
6757 }
6758
6759 /* We don't want md sched reorder to even see debug isns, so put
6760 them out right away. */
6761 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6762 && (*current_sched_info->schedule_more_p) ())
6763 {
6764 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6765 {
6766 rtx_insn *insn = ready_remove_first (&ready);
6767 gcc_assert (DEBUG_INSN_P (insn));
6768 (*current_sched_info->begin_schedule_ready) (insn);
6769 scheduled_insns.safe_push (insn);
6770 last_scheduled_insn = insn;
6771 advance = schedule_insn (insn);
6772 gcc_assert (advance == 0);
6773 if (ready.n_ready > 0)
6774 ready_sort (&ready);
6775 }
6776 }
6777
6778 if (ls.first_cycle_insn_p && !ready.n_ready)
6779 break;
6780
6781 resume_after_backtrack:
6782 /* Allow the target to reorder the list, typically for
6783 better instruction bundling. */
6784 if (sort_p
6785 && (ready.n_ready == 0
6786 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6787 {
6788 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6789 ls.can_issue_more
6790 = targetm.sched.reorder (sched_dump, sched_verbose,
6791 ready_lastpos (&ready),
6792 &ready.n_ready, clock_var);
6793 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6794 ls.can_issue_more
6795 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6796 ready.n_ready
6797 ? ready_lastpos (&ready) : NULL,
6798 &ready.n_ready, clock_var);
6799 }
6800
6801 restart_choose_ready:
6802 if (sched_verbose >= 2)
6803 {
6804 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6805 clock_var);
6806 debug_ready_list (&ready);
6807 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6808 print_curr_reg_pressure ();
6809 }
6810
6811 if (ready.n_ready == 0
6812 && ls.can_issue_more
6813 && reload_completed)
6814 {
6815 /* Allow scheduling insns directly from the queue in case
6816 there's nothing better to do (ready list is empty) but
6817 there are still vacant dispatch slots in the current cycle. */
6818 if (sched_verbose >= 6)
6819 fprintf (sched_dump,";;\t\tSecond chance\n");
6820 memcpy (temp_state, curr_state, dfa_state_size);
6821 if (early_queue_to_ready (temp_state, &ready))
6822 ready_sort (&ready);
6823 }
6824
6825 if (ready.n_ready == 0
6826 || !ls.can_issue_more
6827 || state_dead_lock_p (curr_state)
6828 || !(*current_sched_info->schedule_more_p) ())
6829 break;
6830
6831 /* Select and remove the insn from the ready list. */
6832 if (sort_p)
6833 {
6834 int res;
6835
6836 insn = NULL;
6837 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6838
6839 if (res < 0)
6840 /* Finish cycle. */
6841 break;
6842 if (res > 0)
6843 goto restart_choose_ready;
6844
6845 gcc_assert (insn != NULL_RTX);
6846 }
6847 else
6848 insn = ready_remove_first (&ready);
6849
6850 if (sched_pressure != SCHED_PRESSURE_NONE
6851 && INSN_TICK (insn) > clock_var)
6852 {
6853 ready_add (&ready, insn, true);
6854 advance = 1;
6855 break;
6856 }
6857
6858 if (targetm.sched.dfa_new_cycle
6859 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6860 insn, last_clock_var,
6861 clock_var, &sort_p))
6862 /* SORT_P is used by the target to override sorting
6863 of the ready list. This is needed when the target
6864 has modified its internal structures expecting that
6865 the insn will be issued next. As we need the insn
6866 to have the highest priority (so it will be returned by
6867 the ready_remove_first call above), we invoke
6868 ready_add (&ready, insn, true).
6869 But, still, there is one issue: INSN can be later
6870 discarded by scheduler's front end through
6871 current_sched_info->can_schedule_ready_p, hence, won't
6872 be issued next. */
6873 {
6874 ready_add (&ready, insn, true);
6875 break;
6876 }
6877
6878 sort_p = TRUE;
6879
6880 if (current_sched_info->can_schedule_ready_p
6881 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6882 /* We normally get here only if we don't want to move
6883 insn from the split block. */
6884 {
6885 TODO_SPEC (insn) = DEP_POSTPONED;
6886 goto restart_choose_ready;
6887 }
6888
6889 if (delay_htab)
6890 {
6891 /* If this insn is the first part of a delay-slot pair, record a
6892 backtrack point. */
6893 struct delay_pair *delay_entry;
6894 delay_entry
6895 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6896 if (delay_entry)
6897 {
6898 save_backtrack_point (delay_entry, ls);
6899 if (sched_verbose >= 2)
6900 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6901 }
6902 }
6903
6904 /* DECISION is made. */
6905
6906 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6907 {
6908 modulo_insns_scheduled++;
6909 modulo_last_stage = clock_var / modulo_ii;
6910 }
6911 if (TODO_SPEC (insn) & SPECULATIVE)
6912 generate_recovery_code (insn);
6913
6914 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6915 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6916
6917 /* Update counters, etc in the scheduler's front end. */
6918 (*current_sched_info->begin_schedule_ready) (insn);
6919 scheduled_insns.safe_push (insn);
6920 gcc_assert (NONDEBUG_INSN_P (insn));
6921 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6922
6923 if (recog_memoized (insn) >= 0)
6924 {
6925 memcpy (temp_state, curr_state, dfa_state_size);
6926 cost = state_transition (curr_state, insn);
6927 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6928 gcc_assert (cost < 0);
6929 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6930 cycle_issued_insns++;
6931 asm_p = false;
6932 }
6933 else
6934 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6935 || asm_noperands (PATTERN (insn)) >= 0);
6936
6937 if (targetm.sched.variable_issue)
6938 ls.can_issue_more =
6939 targetm.sched.variable_issue (sched_dump, sched_verbose,
6940 insn, ls.can_issue_more);
6941 /* A naked CLOBBER or USE generates no instruction, so do
6942 not count them against the issue rate. */
6943 else if (GET_CODE (PATTERN (insn)) != USE
6944 && GET_CODE (PATTERN (insn)) != CLOBBER)
6945 ls.can_issue_more--;
6946 advance = schedule_insn (insn);
6947
6948 if (SHADOW_P (insn))
6949 ls.shadows_only_p = true;
6950
6951 /* After issuing an asm insn we should start a new cycle. */
6952 if (advance == 0 && asm_p)
6953 advance = 1;
6954
6955 if (must_backtrack)
6956 break;
6957
6958 if (advance != 0)
6959 break;
6960
6961 ls.first_cycle_insn_p = false;
6962 if (ready.n_ready > 0)
6963 prune_ready_list (temp_state, false, ls.shadows_only_p,
6964 ls.modulo_epilogue);
6965 }
6966
6967 do_backtrack:
6968 if (!must_backtrack)
6969 for (i = 0; i < ready.n_ready; i++)
6970 {
6971 rtx_insn *insn = ready_element (&ready, i);
6972 if (INSN_EXACT_TICK (insn) == clock_var)
6973 {
6974 must_backtrack = true;
6975 clock_var++;
6976 break;
6977 }
6978 }
6979 if (must_backtrack && modulo_ii > 0)
6980 {
6981 if (modulo_backtracks_left == 0)
6982 goto end_schedule;
6983 modulo_backtracks_left--;
6984 }
6985 while (must_backtrack)
6986 {
6987 struct haifa_saved_data *failed;
6988 rtx_insn *failed_insn;
6989
6990 must_backtrack = false;
6991 failed = verify_shadows ();
6992 gcc_assert (failed);
6993
6994 failed_insn = failed->delay_pair->i1;
6995 /* Clear these queues. */
6996 perform_replacements_new_cycle ();
6997 toggle_cancelled_flags (false);
6998 unschedule_insns_until (failed_insn);
6999 while (failed != backtrack_queue)
7000 free_topmost_backtrack_point (true);
7001 restore_last_backtrack_point (&ls);
7002 if (sched_verbose >= 2)
7003 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
7004 /* Delay by at least a cycle. This could cause additional
7005 backtracking. */
7006 queue_insn (failed_insn, 1, "backtracked");
7007 advance = 0;
7008 if (must_backtrack)
7009 continue;
7010 if (ready.n_ready > 0)
7011 goto resume_after_backtrack;
7012 else
7013 {
7014 if (clock_var == 0 && ls.first_cycle_insn_p)
7015 goto end_schedule;
7016 advance = 1;
7017 break;
7018 }
7019 }
7020 ls.first_cycle_insn_p = true;
7021 }
7022 if (ls.modulo_epilogue)
7023 success = true;
7024 end_schedule:
7025 if (!ls.first_cycle_insn_p || advance)
7026 advance_one_cycle ();
7027 perform_replacements_new_cycle ();
7028 if (modulo_ii > 0)
7029 {
7030 /* Once again, debug insn suckiness: they can be on the ready list
7031 even if they have unresolved dependencies. To make our view
7032 of the world consistent, remove such "ready" insns. */
7033 restart_debug_insn_loop:
7034 for (i = ready.n_ready - 1; i >= 0; i--)
7035 {
7036 rtx_insn *x;
7037
7038 x = ready_element (&ready, i);
7039 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
7040 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
7041 {
7042 ready_remove (&ready, i);
7043 goto restart_debug_insn_loop;
7044 }
7045 }
7046 for (i = ready.n_ready - 1; i >= 0; i--)
7047 {
7048 rtx_insn *x;
7049
7050 x = ready_element (&ready, i);
7051 resolve_dependencies (x);
7052 }
7053 for (i = 0; i <= max_insn_queue_index; i++)
7054 {
7055 rtx_insn_list *link;
7056 while ((link = insn_queue[i]) != NULL)
7057 {
7058 rtx_insn *x = link->insn ();
7059 insn_queue[i] = link->next ();
7060 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7061 free_INSN_LIST_node (link);
7062 resolve_dependencies (x);
7063 }
7064 }
7065 }
7066
7067 if (!success)
7068 undo_all_replacements ();
7069
7070 /* Debug info. */
7071 if (sched_verbose)
7072 {
7073 fprintf (sched_dump, ";;\tReady list (final): ");
7074 debug_ready_list (&ready);
7075 }
7076
7077 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7078 /* Sanity check -- queue must be empty now. Meaningless if region has
7079 multiple bbs. */
7080 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7081 else if (modulo_ii == 0)
7082 {
7083 /* We must maintain QUEUE_INDEX between blocks in region. */
7084 for (i = ready.n_ready - 1; i >= 0; i--)
7085 {
7086 rtx_insn *x;
7087
7088 x = ready_element (&ready, i);
7089 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7090 TODO_SPEC (x) = HARD_DEP;
7091 }
7092
7093 if (q_size)
7094 for (i = 0; i <= max_insn_queue_index; i++)
7095 {
7096 rtx_insn_list *link;
7097 for (link = insn_queue[i]; link; link = link->next ())
7098 {
7099 rtx_insn *x;
7100
7101 x = link->insn ();
7102 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7103 TODO_SPEC (x) = HARD_DEP;
7104 }
7105 free_INSN_LIST_list (&insn_queue[i]);
7106 }
7107 }
7108
7109 if (sched_pressure == SCHED_PRESSURE_MODEL)
7110 model_end_schedule ();
7111
7112 if (success)
7113 {
7114 commit_schedule (prev_head, tail, target_bb);
7115 if (sched_verbose)
7116 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7117 }
7118 else
7119 last_scheduled_insn = tail;
7120
7121 scheduled_insns.truncate (0);
7122
7123 if (!current_sched_info->queue_must_finish_empty
7124 || haifa_recovery_bb_recently_added_p)
7125 {
7126 /* INSN_TICK (minimum clock tick at which the insn becomes
7127 ready) may be not correct for the insn in the subsequent
7128 blocks of the region. We should use a correct value of
7129 `clock_var' or modify INSN_TICK. It is better to keep
7130 clock_var value equal to 0 at the start of a basic block.
7131 Therefore we modify INSN_TICK here. */
7132 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7133 }
7134
7135 if (targetm.sched.finish)
7136 {
7137 targetm.sched.finish (sched_dump, sched_verbose);
7138 /* Target might have added some instructions to the scheduled block
7139 in its md_finish () hook. These new insns don't have any data
7140 initialized and to identify them we extend h_i_d so that they'll
7141 get zero luids. */
7142 sched_extend_luids ();
7143 }
7144
7145 /* Update head/tail boundaries. */
7146 head = NEXT_INSN (prev_head);
7147 tail = last_scheduled_insn;
7148
7149 if (sched_verbose)
7150 {
7151 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7152 INSN_UID (head), INSN_UID (tail));
7153
7154 if (sched_verbose >= 2)
7155 {
7156 dump_insn_stream (head, tail);
7157 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7158 NULL);
7159 }
7160
7161 fprintf (sched_dump, "\n");
7162 }
7163
7164 head = restore_other_notes (head, NULL);
7165
7166 current_sched_info->head = head;
7167 current_sched_info->tail = tail;
7168
7169 free_backtrack_queue ();
7170
7171 return success;
7172 }
7173 \f
7174 /* Set_priorities: compute priority of each insn in the block. */
7175
7176 int
7177 set_priorities (rtx_insn *head, rtx_insn *tail)
7178 {
7179 rtx_insn *insn;
7180 int n_insn;
7181 int sched_max_insns_priority =
7182 current_sched_info->sched_max_insns_priority;
7183 rtx_insn *prev_head;
7184
7185 if (head == tail && ! INSN_P (head))
7186 gcc_unreachable ();
7187
7188 n_insn = 0;
7189
7190 prev_head = PREV_INSN (head);
7191 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7192 {
7193 if (!INSN_P (insn))
7194 continue;
7195
7196 n_insn++;
7197 (void) priority (insn);
7198
7199 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7200
7201 sched_max_insns_priority = MAX (sched_max_insns_priority,
7202 INSN_PRIORITY (insn));
7203 }
7204
7205 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7206
7207 return n_insn;
7208 }
7209
7210 /* Set sched_dump and sched_verbose for the desired debugging output. */
7211 void
7212 setup_sched_dump (void)
7213 {
7214 sched_verbose = sched_verbose_param;
7215 sched_dump = dump_file;
7216 if (!dump_file)
7217 sched_verbose = 0;
7218 }
7219
7220 /* Allocate data for register pressure sensitive scheduling. */
7221 static void
7222 alloc_global_sched_pressure_data (void)
7223 {
7224 if (sched_pressure != SCHED_PRESSURE_NONE)
7225 {
7226 int i, max_regno = max_reg_num ();
7227
7228 if (sched_dump != NULL)
7229 /* We need info about pseudos for rtl dumps about pseudo
7230 classes and costs. */
7231 regstat_init_n_sets_and_refs ();
7232 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7233 sched_regno_pressure_class
7234 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7235 for (i = 0; i < max_regno; i++)
7236 sched_regno_pressure_class[i]
7237 = (i < FIRST_PSEUDO_REGISTER
7238 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7239 : ira_pressure_class_translate[reg_allocno_class (i)]);
7240 curr_reg_live = BITMAP_ALLOC (NULL);
7241 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7242 {
7243 saved_reg_live = BITMAP_ALLOC (NULL);
7244 region_ref_regs = BITMAP_ALLOC (NULL);
7245 }
7246 if (sched_pressure == SCHED_PRESSURE_MODEL)
7247 tmp_bitmap = BITMAP_ALLOC (NULL);
7248
7249 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7250 that we calculate register pressure for. */
7251 for (int c = 0; c < ira_pressure_classes_num; ++c)
7252 {
7253 enum reg_class cl = ira_pressure_classes[c];
7254
7255 call_saved_regs_num[cl] = 0;
7256 fixed_regs_num[cl] = 0;
7257
7258 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7259 if (!call_used_regs[ira_class_hard_regs[cl][i]])
7260 ++call_saved_regs_num[cl];
7261 else if (fixed_regs[ira_class_hard_regs[cl][i]])
7262 ++fixed_regs_num[cl];
7263 }
7264 }
7265 }
7266
7267 /* Free data for register pressure sensitive scheduling. Also called
7268 from schedule_region when stopping sched-pressure early. */
7269 void
7270 free_global_sched_pressure_data (void)
7271 {
7272 if (sched_pressure != SCHED_PRESSURE_NONE)
7273 {
7274 if (regstat_n_sets_and_refs != NULL)
7275 regstat_free_n_sets_and_refs ();
7276 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7277 {
7278 BITMAP_FREE (region_ref_regs);
7279 BITMAP_FREE (saved_reg_live);
7280 }
7281 if (sched_pressure == SCHED_PRESSURE_MODEL)
7282 BITMAP_FREE (tmp_bitmap);
7283 BITMAP_FREE (curr_reg_live);
7284 free (sched_regno_pressure_class);
7285 }
7286 }
7287
7288 /* Initialize some global state for the scheduler. This function works
7289 with the common data shared between all the schedulers. It is called
7290 from the scheduler specific initialization routine. */
7291
7292 void
7293 sched_init (void)
7294 {
7295 /* Disable speculative loads in their presence if cc0 defined. */
7296 if (HAVE_cc0)
7297 flag_schedule_speculative_load = 0;
7298
7299 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7300 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7301
7302 if (live_range_shrinkage_p)
7303 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7304 else if (flag_sched_pressure
7305 && !reload_completed
7306 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7307 sched_pressure = ((enum sched_pressure_algorithm)
7308 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7309 else
7310 sched_pressure = SCHED_PRESSURE_NONE;
7311
7312 if (sched_pressure != SCHED_PRESSURE_NONE)
7313 ira_setup_eliminable_regset ();
7314
7315 /* Initialize SPEC_INFO. */
7316 if (targetm.sched.set_sched_flags)
7317 {
7318 spec_info = &spec_info_var;
7319 targetm.sched.set_sched_flags (spec_info);
7320
7321 if (spec_info->mask != 0)
7322 {
7323 spec_info->data_weakness_cutoff =
7324 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7325 spec_info->control_weakness_cutoff =
7326 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7327 * REG_BR_PROB_BASE) / 100;
7328 }
7329 else
7330 /* So we won't read anything accidentally. */
7331 spec_info = NULL;
7332
7333 }
7334 else
7335 /* So we won't read anything accidentally. */
7336 spec_info = 0;
7337
7338 /* Initialize issue_rate. */
7339 if (targetm.sched.issue_rate)
7340 issue_rate = targetm.sched.issue_rate ();
7341 else
7342 issue_rate = 1;
7343
7344 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7345 /* Don't use max_issue with reg_pressure scheduling. Multipass
7346 scheduling and reg_pressure scheduling undo each other's decisions. */
7347 && sched_pressure == SCHED_PRESSURE_NONE)
7348 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7349 else
7350 dfa_lookahead = 0;
7351
7352 /* Set to "0" so that we recalculate. */
7353 max_lookahead_tries = 0;
7354
7355 if (targetm.sched.init_dfa_pre_cycle_insn)
7356 targetm.sched.init_dfa_pre_cycle_insn ();
7357
7358 if (targetm.sched.init_dfa_post_cycle_insn)
7359 targetm.sched.init_dfa_post_cycle_insn ();
7360
7361 dfa_start ();
7362 dfa_state_size = state_size ();
7363
7364 init_alias_analysis ();
7365
7366 if (!sched_no_dce)
7367 df_set_flags (DF_LR_RUN_DCE);
7368 df_note_add_problem ();
7369
7370 /* More problems needed for interloop dep calculation in SMS. */
7371 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7372 {
7373 df_rd_add_problem ();
7374 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7375 }
7376
7377 df_analyze ();
7378
7379 /* Do not run DCE after reload, as this can kill nops inserted
7380 by bundling. */
7381 if (reload_completed)
7382 df_clear_flags (DF_LR_RUN_DCE);
7383
7384 regstat_compute_calls_crossed ();
7385
7386 if (targetm.sched.init_global)
7387 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7388
7389 alloc_global_sched_pressure_data ();
7390
7391 curr_state = xmalloc (dfa_state_size);
7392 }
7393
7394 static void haifa_init_only_bb (basic_block, basic_block);
7395
7396 /* Initialize data structures specific to the Haifa scheduler. */
7397 void
7398 haifa_sched_init (void)
7399 {
7400 setup_sched_dump ();
7401 sched_init ();
7402
7403 scheduled_insns.create (0);
7404
7405 if (spec_info != NULL)
7406 {
7407 sched_deps_info->use_deps_list = 1;
7408 sched_deps_info->generate_spec_deps = 1;
7409 }
7410
7411 /* Initialize luids, dependency caches, target and h_i_d for the
7412 whole function. */
7413 {
7414 sched_init_bbs ();
7415
7416 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7417 basic_block bb;
7418 FOR_EACH_BB_FN (bb, cfun)
7419 bbs.quick_push (bb);
7420 sched_init_luids (bbs);
7421 sched_deps_init (true);
7422 sched_extend_target ();
7423 haifa_init_h_i_d (bbs);
7424 }
7425
7426 sched_init_only_bb = haifa_init_only_bb;
7427 sched_split_block = sched_split_block_1;
7428 sched_create_empty_bb = sched_create_empty_bb_1;
7429 haifa_recovery_bb_ever_added_p = false;
7430
7431 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7432 before_recovery = 0;
7433 after_recovery = 0;
7434
7435 modulo_ii = 0;
7436 }
7437
7438 /* Finish work with the data specific to the Haifa scheduler. */
7439 void
7440 haifa_sched_finish (void)
7441 {
7442 sched_create_empty_bb = NULL;
7443 sched_split_block = NULL;
7444 sched_init_only_bb = NULL;
7445
7446 if (spec_info && spec_info->dump)
7447 {
7448 char c = reload_completed ? 'a' : 'b';
7449
7450 fprintf (spec_info->dump,
7451 ";; %s:\n", current_function_name ());
7452
7453 fprintf (spec_info->dump,
7454 ";; Procedure %cr-begin-data-spec motions == %d\n",
7455 c, nr_begin_data);
7456 fprintf (spec_info->dump,
7457 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7458 c, nr_be_in_data);
7459 fprintf (spec_info->dump,
7460 ";; Procedure %cr-begin-control-spec motions == %d\n",
7461 c, nr_begin_control);
7462 fprintf (spec_info->dump,
7463 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7464 c, nr_be_in_control);
7465 }
7466
7467 scheduled_insns.release ();
7468
7469 /* Finalize h_i_d, dependency caches, and luids for the whole
7470 function. Target will be finalized in md_global_finish (). */
7471 sched_deps_finish ();
7472 sched_finish_luids ();
7473 current_sched_info = NULL;
7474 insn_queue = NULL;
7475 sched_finish ();
7476 }
7477
7478 /* Free global data used during insn scheduling. This function works with
7479 the common data shared between the schedulers. */
7480
7481 void
7482 sched_finish (void)
7483 {
7484 haifa_finish_h_i_d ();
7485 free_global_sched_pressure_data ();
7486 free (curr_state);
7487
7488 if (targetm.sched.finish_global)
7489 targetm.sched.finish_global (sched_dump, sched_verbose);
7490
7491 end_alias_analysis ();
7492
7493 regstat_free_calls_crossed ();
7494
7495 dfa_finish ();
7496 }
7497
7498 /* Free all delay_pair structures that were recorded. */
7499 void
7500 free_delay_pairs (void)
7501 {
7502 if (delay_htab)
7503 {
7504 delay_htab->empty ();
7505 delay_htab_i2->empty ();
7506 }
7507 }
7508
7509 /* Fix INSN_TICKs of the instructions in the current block as well as
7510 INSN_TICKs of their dependents.
7511 HEAD and TAIL are the begin and the end of the current scheduled block. */
7512 static void
7513 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7514 {
7515 /* Set of instructions with corrected INSN_TICK. */
7516 auto_bitmap processed;
7517 /* ??? It is doubtful if we should assume that cycle advance happens on
7518 basic block boundaries. Basically insns that are unconditionally ready
7519 on the start of the block are more preferable then those which have
7520 a one cycle dependency over insn from the previous block. */
7521 int next_clock = clock_var + 1;
7522
7523 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7524 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7525 across different blocks. */
7526 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7527 {
7528 if (INSN_P (head))
7529 {
7530 int tick;
7531 sd_iterator_def sd_it;
7532 dep_t dep;
7533
7534 tick = INSN_TICK (head);
7535 gcc_assert (tick >= MIN_TICK);
7536
7537 /* Fix INSN_TICK of instruction from just scheduled block. */
7538 if (bitmap_set_bit (processed, INSN_LUID (head)))
7539 {
7540 tick -= next_clock;
7541
7542 if (tick < MIN_TICK)
7543 tick = MIN_TICK;
7544
7545 INSN_TICK (head) = tick;
7546 }
7547
7548 if (DEBUG_INSN_P (head))
7549 continue;
7550
7551 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7552 {
7553 rtx_insn *next;
7554
7555 next = DEP_CON (dep);
7556 tick = INSN_TICK (next);
7557
7558 if (tick != INVALID_TICK
7559 /* If NEXT has its INSN_TICK calculated, fix it.
7560 If not - it will be properly calculated from
7561 scratch later in fix_tick_ready. */
7562 && bitmap_set_bit (processed, INSN_LUID (next)))
7563 {
7564 tick -= next_clock;
7565
7566 if (tick < MIN_TICK)
7567 tick = MIN_TICK;
7568
7569 if (tick > INTER_TICK (next))
7570 INTER_TICK (next) = tick;
7571 else
7572 tick = INTER_TICK (next);
7573
7574 INSN_TICK (next) = tick;
7575 }
7576 }
7577 }
7578 }
7579 }
7580
7581 /* Check if NEXT is ready to be added to the ready or queue list.
7582 If "yes", add it to the proper list.
7583 Returns:
7584 -1 - is not ready yet,
7585 0 - added to the ready list,
7586 0 < N - queued for N cycles. */
7587 int
7588 try_ready (rtx_insn *next)
7589 {
7590 ds_t old_ts, new_ts;
7591
7592 old_ts = TODO_SPEC (next);
7593
7594 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7595 && (old_ts == HARD_DEP
7596 || old_ts == DEP_POSTPONED
7597 || (old_ts & SPECULATIVE)
7598 || old_ts == DEP_CONTROL));
7599
7600 new_ts = recompute_todo_spec (next, false);
7601
7602 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7603 gcc_assert (new_ts == old_ts
7604 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7605 else if (current_sched_info->new_ready)
7606 new_ts = current_sched_info->new_ready (next, new_ts);
7607
7608 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7609 have its original pattern or changed (speculative) one. This is due
7610 to changing ebb in region scheduling.
7611 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7612 has speculative pattern.
7613
7614 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7615 control-speculative NEXT could have been discarded by sched-rgn.c
7616 (the same case as when discarded by can_schedule_ready_p ()). */
7617
7618 if ((new_ts & SPECULATIVE)
7619 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7620 need to change anything. */
7621 && new_ts != old_ts)
7622 {
7623 int res;
7624 rtx new_pat;
7625
7626 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7627
7628 res = haifa_speculate_insn (next, new_ts, &new_pat);
7629
7630 switch (res)
7631 {
7632 case -1:
7633 /* It would be nice to change DEP_STATUS of all dependences,
7634 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7635 so we won't reanalyze anything. */
7636 new_ts = HARD_DEP;
7637 break;
7638
7639 case 0:
7640 /* We follow the rule, that every speculative insn
7641 has non-null ORIG_PAT. */
7642 if (!ORIG_PAT (next))
7643 ORIG_PAT (next) = PATTERN (next);
7644 break;
7645
7646 case 1:
7647 if (!ORIG_PAT (next))
7648 /* If we gonna to overwrite the original pattern of insn,
7649 save it. */
7650 ORIG_PAT (next) = PATTERN (next);
7651
7652 res = haifa_change_pattern (next, new_pat);
7653 gcc_assert (res);
7654 break;
7655
7656 default:
7657 gcc_unreachable ();
7658 }
7659 }
7660
7661 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7662 either correct (new_ts & SPECULATIVE),
7663 or we simply don't care (new_ts & HARD_DEP). */
7664
7665 gcc_assert (!ORIG_PAT (next)
7666 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7667
7668 TODO_SPEC (next) = new_ts;
7669
7670 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7671 {
7672 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7673 control-speculative NEXT could have been discarded by sched-rgn.c
7674 (the same case as when discarded by can_schedule_ready_p ()). */
7675 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7676
7677 change_queue_index (next, QUEUE_NOWHERE);
7678
7679 return -1;
7680 }
7681 else if (!(new_ts & BEGIN_SPEC)
7682 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7683 && !IS_SPECULATION_CHECK_P (next))
7684 /* We should change pattern of every previously speculative
7685 instruction - and we determine if NEXT was speculative by using
7686 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7687 pat too, so skip them. */
7688 {
7689 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7690 gcc_assert (success);
7691 ORIG_PAT (next) = 0;
7692 }
7693
7694 if (sched_verbose >= 2)
7695 {
7696 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7697 (*current_sched_info->print_insn) (next, 0));
7698
7699 if (spec_info && spec_info->dump)
7700 {
7701 if (new_ts & BEGIN_DATA)
7702 fprintf (spec_info->dump, "; data-spec;");
7703 if (new_ts & BEGIN_CONTROL)
7704 fprintf (spec_info->dump, "; control-spec;");
7705 if (new_ts & BE_IN_CONTROL)
7706 fprintf (spec_info->dump, "; in-control-spec;");
7707 }
7708 if (TODO_SPEC (next) & DEP_CONTROL)
7709 fprintf (sched_dump, " predicated");
7710 fprintf (sched_dump, "\n");
7711 }
7712
7713 adjust_priority (next);
7714
7715 return fix_tick_ready (next);
7716 }
7717
7718 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7719 static int
7720 fix_tick_ready (rtx_insn *next)
7721 {
7722 int tick, delay;
7723
7724 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7725 {
7726 int full_p;
7727 sd_iterator_def sd_it;
7728 dep_t dep;
7729
7730 tick = INSN_TICK (next);
7731 /* if tick is not equal to INVALID_TICK, then update
7732 INSN_TICK of NEXT with the most recent resolved dependence
7733 cost. Otherwise, recalculate from scratch. */
7734 full_p = (tick == INVALID_TICK);
7735
7736 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7737 {
7738 rtx_insn *pro = DEP_PRO (dep);
7739 int tick1;
7740
7741 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7742
7743 tick1 = INSN_TICK (pro) + dep_cost (dep);
7744 if (tick1 > tick)
7745 tick = tick1;
7746
7747 if (!full_p)
7748 break;
7749 }
7750 }
7751 else
7752 tick = -1;
7753
7754 INSN_TICK (next) = tick;
7755
7756 delay = tick - clock_var;
7757 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7758 delay = QUEUE_READY;
7759
7760 change_queue_index (next, delay);
7761
7762 return delay;
7763 }
7764
7765 /* Move NEXT to the proper queue list with (DELAY >= 1),
7766 or add it to the ready list (DELAY == QUEUE_READY),
7767 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7768 static void
7769 change_queue_index (rtx_insn *next, int delay)
7770 {
7771 int i = QUEUE_INDEX (next);
7772
7773 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7774 && delay != 0);
7775 gcc_assert (i != QUEUE_SCHEDULED);
7776
7777 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7778 || (delay < 0 && delay == i))
7779 /* We have nothing to do. */
7780 return;
7781
7782 /* Remove NEXT from wherever it is now. */
7783 if (i == QUEUE_READY)
7784 ready_remove_insn (next);
7785 else if (i >= 0)
7786 queue_remove (next);
7787
7788 /* Add it to the proper place. */
7789 if (delay == QUEUE_READY)
7790 ready_add (readyp, next, false);
7791 else if (delay >= 1)
7792 queue_insn (next, delay, "change queue index");
7793
7794 if (sched_verbose >= 2)
7795 {
7796 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7797 (*current_sched_info->print_insn) (next, 0));
7798
7799 if (delay == QUEUE_READY)
7800 fprintf (sched_dump, " into ready\n");
7801 else if (delay >= 1)
7802 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7803 else
7804 fprintf (sched_dump, " removed from ready or queue lists\n");
7805 }
7806 }
7807
7808 static int sched_ready_n_insns = -1;
7809
7810 /* Initialize per region data structures. */
7811 void
7812 sched_extend_ready_list (int new_sched_ready_n_insns)
7813 {
7814 int i;
7815
7816 if (sched_ready_n_insns == -1)
7817 /* At the first call we need to initialize one more choice_stack
7818 entry. */
7819 {
7820 i = 0;
7821 sched_ready_n_insns = 0;
7822 scheduled_insns.reserve (new_sched_ready_n_insns);
7823 }
7824 else
7825 i = sched_ready_n_insns + 1;
7826
7827 ready.veclen = new_sched_ready_n_insns + issue_rate;
7828 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7829
7830 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7831
7832 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7833 sched_ready_n_insns,
7834 sizeof (*ready_try));
7835
7836 /* We allocate +1 element to save initial state in the choice_stack[0]
7837 entry. */
7838 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7839 new_sched_ready_n_insns + 1);
7840
7841 for (; i <= new_sched_ready_n_insns; i++)
7842 {
7843 choice_stack[i].state = xmalloc (dfa_state_size);
7844
7845 if (targetm.sched.first_cycle_multipass_init)
7846 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7847 .target_data));
7848 }
7849
7850 sched_ready_n_insns = new_sched_ready_n_insns;
7851 }
7852
7853 /* Free per region data structures. */
7854 void
7855 sched_finish_ready_list (void)
7856 {
7857 int i;
7858
7859 free (ready.vec);
7860 ready.vec = NULL;
7861 ready.veclen = 0;
7862
7863 free (ready_try);
7864 ready_try = NULL;
7865
7866 for (i = 0; i <= sched_ready_n_insns; i++)
7867 {
7868 if (targetm.sched.first_cycle_multipass_fini)
7869 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7870 .target_data));
7871
7872 free (choice_stack [i].state);
7873 }
7874 free (choice_stack);
7875 choice_stack = NULL;
7876
7877 sched_ready_n_insns = -1;
7878 }
7879
7880 static int
7881 haifa_luid_for_non_insn (rtx x)
7882 {
7883 gcc_assert (NOTE_P (x) || LABEL_P (x));
7884
7885 return 0;
7886 }
7887
7888 /* Generates recovery code for INSN. */
7889 static void
7890 generate_recovery_code (rtx_insn *insn)
7891 {
7892 if (TODO_SPEC (insn) & BEGIN_SPEC)
7893 begin_speculative_block (insn);
7894
7895 /* Here we have insn with no dependencies to
7896 instructions other then CHECK_SPEC ones. */
7897
7898 if (TODO_SPEC (insn) & BE_IN_SPEC)
7899 add_to_speculative_block (insn);
7900 }
7901
7902 /* Helper function.
7903 Tries to add speculative dependencies of type FS between instructions
7904 in deps_list L and TWIN. */
7905 static void
7906 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7907 {
7908 sd_iterator_def sd_it;
7909 dep_t dep;
7910
7911 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7912 {
7913 ds_t ds;
7914 rtx_insn *consumer;
7915
7916 consumer = DEP_CON (dep);
7917
7918 ds = DEP_STATUS (dep);
7919
7920 if (/* If we want to create speculative dep. */
7921 fs
7922 /* And we can do that because this is a true dep. */
7923 && (ds & DEP_TYPES) == DEP_TRUE)
7924 {
7925 gcc_assert (!(ds & BE_IN_SPEC));
7926
7927 if (/* If this dep can be overcome with 'begin speculation'. */
7928 ds & BEGIN_SPEC)
7929 /* Then we have a choice: keep the dep 'begin speculative'
7930 or transform it into 'be in speculative'. */
7931 {
7932 if (/* In try_ready we assert that if insn once became ready
7933 it can be removed from the ready (or queue) list only
7934 due to backend decision. Hence we can't let the
7935 probability of the speculative dep to decrease. */
7936 ds_weak (ds) <= ds_weak (fs))
7937 {
7938 ds_t new_ds;
7939
7940 new_ds = (ds & ~BEGIN_SPEC) | fs;
7941
7942 if (/* consumer can 'be in speculative'. */
7943 sched_insn_is_legitimate_for_speculation_p (consumer,
7944 new_ds))
7945 /* Transform it to be in speculative. */
7946 ds = new_ds;
7947 }
7948 }
7949 else
7950 /* Mark the dep as 'be in speculative'. */
7951 ds |= fs;
7952 }
7953
7954 {
7955 dep_def _new_dep, *new_dep = &_new_dep;
7956
7957 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7958 sd_add_dep (new_dep, false);
7959 }
7960 }
7961 }
7962
7963 /* Generates recovery code for BEGIN speculative INSN. */
7964 static void
7965 begin_speculative_block (rtx_insn *insn)
7966 {
7967 if (TODO_SPEC (insn) & BEGIN_DATA)
7968 nr_begin_data++;
7969 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7970 nr_begin_control++;
7971
7972 create_check_block_twin (insn, false);
7973
7974 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7975 }
7976
7977 static void haifa_init_insn (rtx_insn *);
7978
7979 /* Generates recovery code for BE_IN speculative INSN. */
7980 static void
7981 add_to_speculative_block (rtx_insn *insn)
7982 {
7983 ds_t ts;
7984 sd_iterator_def sd_it;
7985 dep_t dep;
7986 auto_vec<rtx_insn *, 10> twins;
7987
7988 ts = TODO_SPEC (insn);
7989 gcc_assert (!(ts & ~BE_IN_SPEC));
7990
7991 if (ts & BE_IN_DATA)
7992 nr_be_in_data++;
7993 if (ts & BE_IN_CONTROL)
7994 nr_be_in_control++;
7995
7996 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7997 gcc_assert (!TODO_SPEC (insn));
7998
7999 DONE_SPEC (insn) |= ts;
8000
8001 /* First we convert all simple checks to branchy. */
8002 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8003 sd_iterator_cond (&sd_it, &dep);)
8004 {
8005 rtx_insn *check = DEP_PRO (dep);
8006
8007 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
8008 {
8009 create_check_block_twin (check, true);
8010
8011 /* Restart search. */
8012 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8013 }
8014 else
8015 /* Continue search. */
8016 sd_iterator_next (&sd_it);
8017 }
8018
8019 auto_vec<rtx_insn *> priorities_roots;
8020 clear_priorities (insn, &priorities_roots);
8021
8022 while (1)
8023 {
8024 rtx_insn *check, *twin;
8025 basic_block rec;
8026
8027 /* Get the first backward dependency of INSN. */
8028 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8029 if (!sd_iterator_cond (&sd_it, &dep))
8030 /* INSN has no backward dependencies left. */
8031 break;
8032
8033 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
8034 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
8035 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8036
8037 check = DEP_PRO (dep);
8038
8039 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
8040 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
8041
8042 rec = BLOCK_FOR_INSN (check);
8043
8044 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
8045 haifa_init_insn (twin);
8046
8047 sd_copy_back_deps (twin, insn, true);
8048
8049 if (sched_verbose && spec_info->dump)
8050 /* INSN_BB (insn) isn't determined for twin insns yet.
8051 So we can't use current_sched_info->print_insn. */
8052 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8053 INSN_UID (twin), rec->index);
8054
8055 twins.safe_push (twin);
8056
8057 /* Add dependences between TWIN and all appropriate
8058 instructions from REC. */
8059 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
8060 {
8061 rtx_insn *pro = DEP_PRO (dep);
8062
8063 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8064
8065 /* INSN might have dependencies from the instructions from
8066 several recovery blocks. At this iteration we process those
8067 producers that reside in REC. */
8068 if (BLOCK_FOR_INSN (pro) == rec)
8069 {
8070 dep_def _new_dep, *new_dep = &_new_dep;
8071
8072 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8073 sd_add_dep (new_dep, false);
8074 }
8075 }
8076
8077 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8078
8079 /* Remove all dependencies between INSN and insns in REC. */
8080 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8081 sd_iterator_cond (&sd_it, &dep);)
8082 {
8083 rtx_insn *pro = DEP_PRO (dep);
8084
8085 if (BLOCK_FOR_INSN (pro) == rec)
8086 sd_delete_dep (sd_it);
8087 else
8088 sd_iterator_next (&sd_it);
8089 }
8090 }
8091
8092 /* We couldn't have added the dependencies between INSN and TWINS earlier
8093 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8094 unsigned int i;
8095 rtx_insn *twin;
8096 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8097 {
8098 dep_def _new_dep, *new_dep = &_new_dep;
8099
8100 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8101 sd_add_dep (new_dep, false);
8102 }
8103
8104 calc_priorities (priorities_roots);
8105 }
8106
8107 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8108 void *
8109 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8110 {
8111 gcc_assert (new_nmemb >= old_nmemb);
8112 p = XRESIZEVAR (void, p, new_nmemb * size);
8113 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8114 return p;
8115 }
8116
8117 /* Helper function.
8118 Find fallthru edge from PRED. */
8119 edge
8120 find_fallthru_edge_from (basic_block pred)
8121 {
8122 edge e;
8123 basic_block succ;
8124
8125 succ = pred->next_bb;
8126 gcc_assert (succ->prev_bb == pred);
8127
8128 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8129 {
8130 e = find_fallthru_edge (pred->succs);
8131
8132 if (e)
8133 {
8134 gcc_assert (e->dest == succ);
8135 return e;
8136 }
8137 }
8138 else
8139 {
8140 e = find_fallthru_edge (succ->preds);
8141
8142 if (e)
8143 {
8144 gcc_assert (e->src == pred);
8145 return e;
8146 }
8147 }
8148
8149 return NULL;
8150 }
8151
8152 /* Extend per basic block data structures. */
8153 static void
8154 sched_extend_bb (void)
8155 {
8156 /* The following is done to keep current_sched_info->next_tail non null. */
8157 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8158 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8159 if (NEXT_INSN (end) == 0
8160 || (!NOTE_P (insn)
8161 && !LABEL_P (insn)
8162 /* Don't emit a NOTE if it would end up before a BARRIER. */
8163 && !BARRIER_P (NEXT_INSN (end))))
8164 {
8165 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8166 /* Make note appear outside BB. */
8167 set_block_for_insn (note, NULL);
8168 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8169 }
8170 }
8171
8172 /* Init per basic block data structures. */
8173 void
8174 sched_init_bbs (void)
8175 {
8176 sched_extend_bb ();
8177 }
8178
8179 /* Initialize BEFORE_RECOVERY variable. */
8180 static void
8181 init_before_recovery (basic_block *before_recovery_ptr)
8182 {
8183 basic_block last;
8184 edge e;
8185
8186 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8187 e = find_fallthru_edge_from (last);
8188
8189 if (e)
8190 {
8191 /* We create two basic blocks:
8192 1. Single instruction block is inserted right after E->SRC
8193 and has jump to
8194 2. Empty block right before EXIT_BLOCK.
8195 Between these two blocks recovery blocks will be emitted. */
8196
8197 basic_block single, empty;
8198
8199 /* If the fallthrough edge to exit we've found is from the block we've
8200 created before, don't do anything more. */
8201 if (last == after_recovery)
8202 return;
8203
8204 adding_bb_to_current_region_p = false;
8205
8206 single = sched_create_empty_bb (last);
8207 empty = sched_create_empty_bb (single);
8208
8209 /* Add new blocks to the root loop. */
8210 if (current_loops != NULL)
8211 {
8212 add_bb_to_loop (single, (*current_loops->larray)[0]);
8213 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8214 }
8215
8216 single->count = last->count;
8217 empty->count = last->count;
8218 single->frequency = last->frequency;
8219 empty->frequency = last->frequency;
8220 BB_COPY_PARTITION (single, last);
8221 BB_COPY_PARTITION (empty, last);
8222
8223 redirect_edge_succ (e, single);
8224 make_single_succ_edge (single, empty, 0);
8225 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8226 EDGE_FALLTHRU);
8227
8228 rtx_code_label *label = block_label (empty);
8229 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8230 BB_END (single));
8231 JUMP_LABEL (x) = label;
8232 LABEL_NUSES (label)++;
8233 haifa_init_insn (x);
8234
8235 emit_barrier_after (x);
8236
8237 sched_init_only_bb (empty, NULL);
8238 sched_init_only_bb (single, NULL);
8239 sched_extend_bb ();
8240
8241 adding_bb_to_current_region_p = true;
8242 before_recovery = single;
8243 after_recovery = empty;
8244
8245 if (before_recovery_ptr)
8246 *before_recovery_ptr = before_recovery;
8247
8248 if (sched_verbose >= 2 && spec_info->dump)
8249 fprintf (spec_info->dump,
8250 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8251 last->index, single->index, empty->index);
8252 }
8253 else
8254 before_recovery = last;
8255 }
8256
8257 /* Returns new recovery block. */
8258 basic_block
8259 sched_create_recovery_block (basic_block *before_recovery_ptr)
8260 {
8261 rtx_insn *barrier;
8262 basic_block rec;
8263
8264 haifa_recovery_bb_recently_added_p = true;
8265 haifa_recovery_bb_ever_added_p = true;
8266
8267 init_before_recovery (before_recovery_ptr);
8268
8269 barrier = get_last_bb_insn (before_recovery);
8270 gcc_assert (BARRIER_P (barrier));
8271
8272 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8273
8274 rec = create_basic_block (label, label, before_recovery);
8275
8276 /* A recovery block always ends with an unconditional jump. */
8277 emit_barrier_after (BB_END (rec));
8278
8279 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8280 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8281
8282 if (sched_verbose && spec_info->dump)
8283 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8284 rec->index);
8285
8286 return rec;
8287 }
8288
8289 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8290 and emit necessary jumps. */
8291 void
8292 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8293 basic_block second_bb)
8294 {
8295 int edge_flags;
8296
8297 /* This is fixing of incoming edge. */
8298 /* ??? Which other flags should be specified? */
8299 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8300 /* Partition type is the same, if it is "unpartitioned". */
8301 edge_flags = EDGE_CROSSING;
8302 else
8303 edge_flags = 0;
8304
8305 edge e2 = single_succ_edge (first_bb);
8306 edge e = make_edge (first_bb, rec, edge_flags);
8307
8308 /* TODO: The actual probability can be determined and is computed as
8309 'todo_spec' variable in create_check_block_twin and
8310 in sel-sched.c `check_ds' in create_speculation_check. */
8311 e->probability = profile_probability::very_unlikely ();
8312 e->count = first_bb->count.apply_probability (e->probability);
8313 rec->count = e->count;
8314 rec->frequency = EDGE_FREQUENCY (e);
8315 e2->probability = e->probability.invert ();
8316 e2->count = first_bb->count - e2->count;
8317
8318 rtx_code_label *label = block_label (second_bb);
8319 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8320 BB_END (rec));
8321 JUMP_LABEL (jump) = label;
8322 LABEL_NUSES (label)++;
8323
8324 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8325 /* Partition type is the same, if it is "unpartitioned". */
8326 {
8327 /* Rewritten from cfgrtl.c. */
8328 if (crtl->has_bb_partition && targetm_common.have_named_sections)
8329 {
8330 /* We don't need the same note for the check because
8331 any_condjump_p (check) == true. */
8332 CROSSING_JUMP_P (jump) = 1;
8333 }
8334 edge_flags = EDGE_CROSSING;
8335 }
8336 else
8337 edge_flags = 0;
8338
8339 make_single_succ_edge (rec, second_bb, edge_flags);
8340 if (dom_info_available_p (CDI_DOMINATORS))
8341 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8342 }
8343
8344 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8345 INSN is a simple check, that should be converted to branchy one. */
8346 static void
8347 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8348 {
8349 basic_block rec;
8350 rtx_insn *label, *check, *twin;
8351 rtx check_pat;
8352 ds_t fs;
8353 sd_iterator_def sd_it;
8354 dep_t dep;
8355 dep_def _new_dep, *new_dep = &_new_dep;
8356 ds_t todo_spec;
8357
8358 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8359
8360 if (!mutate_p)
8361 todo_spec = TODO_SPEC (insn);
8362 else
8363 {
8364 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8365 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8366
8367 todo_spec = CHECK_SPEC (insn);
8368 }
8369
8370 todo_spec &= SPECULATIVE;
8371
8372 /* Create recovery block. */
8373 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8374 {
8375 rec = sched_create_recovery_block (NULL);
8376 label = BB_HEAD (rec);
8377 }
8378 else
8379 {
8380 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8381 label = NULL;
8382 }
8383
8384 /* Emit CHECK. */
8385 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8386
8387 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8388 {
8389 /* To have mem_reg alive at the beginning of second_bb,
8390 we emit check BEFORE insn, so insn after splitting
8391 insn will be at the beginning of second_bb, which will
8392 provide us with the correct life information. */
8393 check = emit_jump_insn_before (check_pat, insn);
8394 JUMP_LABEL (check) = label;
8395 LABEL_NUSES (label)++;
8396 }
8397 else
8398 check = emit_insn_before (check_pat, insn);
8399
8400 /* Extend data structures. */
8401 haifa_init_insn (check);
8402
8403 /* CHECK is being added to current region. Extend ready list. */
8404 gcc_assert (sched_ready_n_insns != -1);
8405 sched_extend_ready_list (sched_ready_n_insns + 1);
8406
8407 if (current_sched_info->add_remove_insn)
8408 current_sched_info->add_remove_insn (insn, 0);
8409
8410 RECOVERY_BLOCK (check) = rec;
8411
8412 if (sched_verbose && spec_info->dump)
8413 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8414 (*current_sched_info->print_insn) (check, 0));
8415
8416 gcc_assert (ORIG_PAT (insn));
8417
8418 /* Initialize TWIN (twin is a duplicate of original instruction
8419 in the recovery block). */
8420 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8421 {
8422 sd_iterator_def sd_it;
8423 dep_t dep;
8424
8425 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8426 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8427 {
8428 struct _dep _dep2, *dep2 = &_dep2;
8429
8430 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8431
8432 sd_add_dep (dep2, true);
8433 }
8434
8435 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8436 haifa_init_insn (twin);
8437
8438 if (sched_verbose && spec_info->dump)
8439 /* INSN_BB (insn) isn't determined for twin insns yet.
8440 So we can't use current_sched_info->print_insn. */
8441 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8442 INSN_UID (twin), rec->index);
8443 }
8444 else
8445 {
8446 ORIG_PAT (check) = ORIG_PAT (insn);
8447 HAS_INTERNAL_DEP (check) = 1;
8448 twin = check;
8449 /* ??? We probably should change all OUTPUT dependencies to
8450 (TRUE | OUTPUT). */
8451 }
8452
8453 /* Copy all resolved back dependencies of INSN to TWIN. This will
8454 provide correct value for INSN_TICK (TWIN). */
8455 sd_copy_back_deps (twin, insn, true);
8456
8457 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8458 /* In case of branchy check, fix CFG. */
8459 {
8460 basic_block first_bb, second_bb;
8461 rtx_insn *jump;
8462
8463 first_bb = BLOCK_FOR_INSN (check);
8464 second_bb = sched_split_block (first_bb, check);
8465
8466 sched_create_recovery_edges (first_bb, rec, second_bb);
8467
8468 sched_init_only_bb (second_bb, first_bb);
8469 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8470
8471 jump = BB_END (rec);
8472 haifa_init_insn (jump);
8473 }
8474
8475 /* Move backward dependences from INSN to CHECK and
8476 move forward dependences from INSN to TWIN. */
8477
8478 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8479 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8480 {
8481 rtx_insn *pro = DEP_PRO (dep);
8482 ds_t ds;
8483
8484 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8485 check --TRUE--> producer ??? or ANTI ???
8486 twin --TRUE--> producer
8487 twin --ANTI--> check
8488
8489 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8490 check --ANTI--> producer
8491 twin --ANTI--> producer
8492 twin --ANTI--> check
8493
8494 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8495 check ~~TRUE~~> producer
8496 twin ~~TRUE~~> producer
8497 twin --ANTI--> check */
8498
8499 ds = DEP_STATUS (dep);
8500
8501 if (ds & BEGIN_SPEC)
8502 {
8503 gcc_assert (!mutate_p);
8504 ds &= ~BEGIN_SPEC;
8505 }
8506
8507 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8508 sd_add_dep (new_dep, false);
8509
8510 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8511 {
8512 DEP_CON (new_dep) = twin;
8513 sd_add_dep (new_dep, false);
8514 }
8515 }
8516
8517 /* Second, remove backward dependencies of INSN. */
8518 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8519 sd_iterator_cond (&sd_it, &dep);)
8520 {
8521 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8522 || mutate_p)
8523 /* We can delete this dep because we overcome it with
8524 BEGIN_SPECULATION. */
8525 sd_delete_dep (sd_it);
8526 else
8527 sd_iterator_next (&sd_it);
8528 }
8529
8530 /* Future Speculations. Determine what BE_IN speculations will be like. */
8531 fs = 0;
8532
8533 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8534 here. */
8535
8536 gcc_assert (!DONE_SPEC (insn));
8537
8538 if (!mutate_p)
8539 {
8540 ds_t ts = TODO_SPEC (insn);
8541
8542 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8543 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8544
8545 /* Luckiness of future speculations solely depends upon initial
8546 BEGIN speculation. */
8547 if (ts & BEGIN_DATA)
8548 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8549 if (ts & BEGIN_CONTROL)
8550 fs = set_dep_weak (fs, BE_IN_CONTROL,
8551 get_dep_weak (ts, BEGIN_CONTROL));
8552 }
8553 else
8554 CHECK_SPEC (check) = CHECK_SPEC (insn);
8555
8556 /* Future speculations: call the helper. */
8557 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8558
8559 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8560 {
8561 /* Which types of dependencies should we use here is,
8562 generally, machine-dependent question... But, for now,
8563 it is not. */
8564
8565 if (!mutate_p)
8566 {
8567 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8568 sd_add_dep (new_dep, false);
8569
8570 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8571 sd_add_dep (new_dep, false);
8572 }
8573 else
8574 {
8575 if (spec_info->dump)
8576 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8577 (*current_sched_info->print_insn) (insn, 0));
8578
8579 /* Remove all dependencies of the INSN. */
8580 {
8581 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8582 | SD_LIST_BACK
8583 | SD_LIST_RES_BACK));
8584 while (sd_iterator_cond (&sd_it, &dep))
8585 sd_delete_dep (sd_it);
8586 }
8587
8588 /* If former check (INSN) already was moved to the ready (or queue)
8589 list, add new check (CHECK) there too. */
8590 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8591 try_ready (check);
8592
8593 /* Remove old check from instruction stream and free its
8594 data. */
8595 sched_remove_insn (insn);
8596 }
8597
8598 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8599 sd_add_dep (new_dep, false);
8600 }
8601 else
8602 {
8603 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8604 sd_add_dep (new_dep, false);
8605 }
8606
8607 if (!mutate_p)
8608 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8609 because it'll be done later in add_to_speculative_block. */
8610 {
8611 auto_vec<rtx_insn *> priorities_roots;
8612
8613 clear_priorities (twin, &priorities_roots);
8614 calc_priorities (priorities_roots);
8615 }
8616 }
8617
8618 /* Removes dependency between instructions in the recovery block REC
8619 and usual region instructions. It keeps inner dependences so it
8620 won't be necessary to recompute them. */
8621 static void
8622 fix_recovery_deps (basic_block rec)
8623 {
8624 rtx_insn *note, *insn, *jump;
8625 auto_vec<rtx_insn *, 10> ready_list;
8626 auto_bitmap in_ready;
8627
8628 /* NOTE - a basic block note. */
8629 note = NEXT_INSN (BB_HEAD (rec));
8630 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8631 insn = BB_END (rec);
8632 gcc_assert (JUMP_P (insn));
8633 insn = PREV_INSN (insn);
8634
8635 do
8636 {
8637 sd_iterator_def sd_it;
8638 dep_t dep;
8639
8640 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8641 sd_iterator_cond (&sd_it, &dep);)
8642 {
8643 rtx_insn *consumer = DEP_CON (dep);
8644
8645 if (BLOCK_FOR_INSN (consumer) != rec)
8646 {
8647 sd_delete_dep (sd_it);
8648
8649 if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
8650 ready_list.safe_push (consumer);
8651 }
8652 else
8653 {
8654 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8655
8656 sd_iterator_next (&sd_it);
8657 }
8658 }
8659
8660 insn = PREV_INSN (insn);
8661 }
8662 while (insn != note);
8663
8664 /* Try to add instructions to the ready or queue list. */
8665 unsigned int i;
8666 rtx_insn *temp;
8667 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8668 try_ready (temp);
8669
8670 /* Fixing jump's dependences. */
8671 insn = BB_HEAD (rec);
8672 jump = BB_END (rec);
8673
8674 gcc_assert (LABEL_P (insn));
8675 insn = NEXT_INSN (insn);
8676
8677 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8678 add_jump_dependencies (insn, jump);
8679 }
8680
8681 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8682 instruction data. */
8683 static bool
8684 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8685 {
8686 int t;
8687
8688 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8689 if (!t)
8690 return false;
8691
8692 update_insn_after_change (insn);
8693 return true;
8694 }
8695
8696 /* -1 - can't speculate,
8697 0 - for speculation with REQUEST mode it is OK to use
8698 current instruction pattern,
8699 1 - need to change pattern for *NEW_PAT to be speculative. */
8700 int
8701 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8702 {
8703 gcc_assert (current_sched_info->flags & DO_SPECULATION
8704 && (request & SPECULATIVE)
8705 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8706
8707 if ((request & spec_info->mask) != request)
8708 return -1;
8709
8710 if (request & BE_IN_SPEC
8711 && !(request & BEGIN_SPEC))
8712 return 0;
8713
8714 return targetm.sched.speculate_insn (insn, request, new_pat);
8715 }
8716
8717 static int
8718 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8719 {
8720 gcc_assert (sched_deps_info->generate_spec_deps
8721 && !IS_SPECULATION_CHECK_P (insn));
8722
8723 if (HAS_INTERNAL_DEP (insn)
8724 || SCHED_GROUP_P (insn))
8725 return -1;
8726
8727 return sched_speculate_insn (insn, request, new_pat);
8728 }
8729
8730 /* Print some information about block BB, which starts with HEAD and
8731 ends with TAIL, before scheduling it.
8732 I is zero, if scheduler is about to start with the fresh ebb. */
8733 static void
8734 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8735 {
8736 if (!i)
8737 fprintf (sched_dump,
8738 ";; ======================================================\n");
8739 else
8740 fprintf (sched_dump,
8741 ";; =====================ADVANCING TO=====================\n");
8742 fprintf (sched_dump,
8743 ";; -- basic block %d from %d to %d -- %s reload\n",
8744 bb->index, INSN_UID (head), INSN_UID (tail),
8745 (reload_completed ? "after" : "before"));
8746 fprintf (sched_dump,
8747 ";; ======================================================\n");
8748 fprintf (sched_dump, "\n");
8749 }
8750
8751 /* Unlink basic block notes and labels and saves them, so they
8752 can be easily restored. We unlink basic block notes in EBB to
8753 provide back-compatibility with the previous code, as target backends
8754 assume, that there'll be only instructions between
8755 current_sched_info->{head and tail}. We restore these notes as soon
8756 as we can.
8757 FIRST (LAST) is the first (last) basic block in the ebb.
8758 NB: In usual case (FIRST == LAST) nothing is really done. */
8759 void
8760 unlink_bb_notes (basic_block first, basic_block last)
8761 {
8762 /* We DON'T unlink basic block notes of the first block in the ebb. */
8763 if (first == last)
8764 return;
8765
8766 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8767
8768 /* Make a sentinel. */
8769 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8770 bb_header[last->next_bb->index] = 0;
8771
8772 first = first->next_bb;
8773 do
8774 {
8775 rtx_insn *prev, *label, *note, *next;
8776
8777 label = BB_HEAD (last);
8778 if (LABEL_P (label))
8779 note = NEXT_INSN (label);
8780 else
8781 note = label;
8782 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8783
8784 prev = PREV_INSN (label);
8785 next = NEXT_INSN (note);
8786 gcc_assert (prev && next);
8787
8788 SET_NEXT_INSN (prev) = next;
8789 SET_PREV_INSN (next) = prev;
8790
8791 bb_header[last->index] = label;
8792
8793 if (last == first)
8794 break;
8795
8796 last = last->prev_bb;
8797 }
8798 while (1);
8799 }
8800
8801 /* Restore basic block notes.
8802 FIRST is the first basic block in the ebb. */
8803 static void
8804 restore_bb_notes (basic_block first)
8805 {
8806 if (!bb_header)
8807 return;
8808
8809 /* We DON'T unlink basic block notes of the first block in the ebb. */
8810 first = first->next_bb;
8811 /* Remember: FIRST is actually a second basic block in the ebb. */
8812
8813 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8814 && bb_header[first->index])
8815 {
8816 rtx_insn *prev, *label, *note, *next;
8817
8818 label = bb_header[first->index];
8819 prev = PREV_INSN (label);
8820 next = NEXT_INSN (prev);
8821
8822 if (LABEL_P (label))
8823 note = NEXT_INSN (label);
8824 else
8825 note = label;
8826 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8827
8828 bb_header[first->index] = 0;
8829
8830 SET_NEXT_INSN (prev) = label;
8831 SET_NEXT_INSN (note) = next;
8832 SET_PREV_INSN (next) = note;
8833
8834 first = first->next_bb;
8835 }
8836
8837 free (bb_header);
8838 bb_header = 0;
8839 }
8840
8841 /* Helper function.
8842 Fix CFG after both in- and inter-block movement of
8843 control_flow_insn_p JUMP. */
8844 static void
8845 fix_jump_move (rtx_insn *jump)
8846 {
8847 basic_block bb, jump_bb, jump_bb_next;
8848
8849 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8850 jump_bb = BLOCK_FOR_INSN (jump);
8851 jump_bb_next = jump_bb->next_bb;
8852
8853 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8854 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8855
8856 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8857 /* if jump_bb_next is not empty. */
8858 BB_END (jump_bb) = BB_END (jump_bb_next);
8859
8860 if (BB_END (bb) != PREV_INSN (jump))
8861 /* Then there are instruction after jump that should be placed
8862 to jump_bb_next. */
8863 BB_END (jump_bb_next) = BB_END (bb);
8864 else
8865 /* Otherwise jump_bb_next is empty. */
8866 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8867
8868 /* To make assertion in move_insn happy. */
8869 BB_END (bb) = PREV_INSN (jump);
8870
8871 update_bb_for_insn (jump_bb_next);
8872 }
8873
8874 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8875 static void
8876 move_block_after_check (rtx_insn *jump)
8877 {
8878 basic_block bb, jump_bb, jump_bb_next;
8879 vec<edge, va_gc> *t;
8880
8881 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8882 jump_bb = BLOCK_FOR_INSN (jump);
8883 jump_bb_next = jump_bb->next_bb;
8884
8885 update_bb_for_insn (jump_bb);
8886
8887 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8888 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8889
8890 unlink_block (jump_bb_next);
8891 link_block (jump_bb_next, bb);
8892
8893 t = bb->succs;
8894 bb->succs = 0;
8895 move_succs (&(jump_bb->succs), bb);
8896 move_succs (&(jump_bb_next->succs), jump_bb);
8897 move_succs (&t, jump_bb_next);
8898
8899 df_mark_solutions_dirty ();
8900
8901 common_sched_info->fix_recovery_cfg
8902 (bb->index, jump_bb->index, jump_bb_next->index);
8903 }
8904
8905 /* Helper function for move_block_after_check.
8906 This functions attaches edge vector pointed to by SUCCSP to
8907 block TO. */
8908 static void
8909 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8910 {
8911 edge e;
8912 edge_iterator ei;
8913
8914 gcc_assert (to->succs == 0);
8915
8916 to->succs = *succsp;
8917
8918 FOR_EACH_EDGE (e, ei, to->succs)
8919 e->src = to;
8920
8921 *succsp = 0;
8922 }
8923
8924 /* Remove INSN from the instruction stream.
8925 INSN should have any dependencies. */
8926 static void
8927 sched_remove_insn (rtx_insn *insn)
8928 {
8929 sd_finish_insn (insn);
8930
8931 change_queue_index (insn, QUEUE_NOWHERE);
8932 current_sched_info->add_remove_insn (insn, 1);
8933 delete_insn (insn);
8934 }
8935
8936 /* Clear priorities of all instructions, that are forward dependent on INSN.
8937 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8938 be invoked to initialize all cleared priorities. */
8939 static void
8940 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8941 {
8942 sd_iterator_def sd_it;
8943 dep_t dep;
8944 bool insn_is_root_p = true;
8945
8946 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8947
8948 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8949 {
8950 rtx_insn *pro = DEP_PRO (dep);
8951
8952 if (INSN_PRIORITY_STATUS (pro) >= 0
8953 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8954 {
8955 /* If DEP doesn't contribute to priority then INSN itself should
8956 be added to priority roots. */
8957 if (contributes_to_priority_p (dep))
8958 insn_is_root_p = false;
8959
8960 INSN_PRIORITY_STATUS (pro) = -1;
8961 clear_priorities (pro, roots_ptr);
8962 }
8963 }
8964
8965 if (insn_is_root_p)
8966 roots_ptr->safe_push (insn);
8967 }
8968
8969 /* Recompute priorities of instructions, whose priorities might have been
8970 changed. ROOTS is a vector of instructions whose priority computation will
8971 trigger initialization of all cleared priorities. */
8972 static void
8973 calc_priorities (rtx_vec_t roots)
8974 {
8975 int i;
8976 rtx_insn *insn;
8977
8978 FOR_EACH_VEC_ELT (roots, i, insn)
8979 priority (insn);
8980 }
8981
8982
8983 /* Add dependences between JUMP and other instructions in the recovery
8984 block. INSN is the first insn the recovery block. */
8985 static void
8986 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8987 {
8988 do
8989 {
8990 insn = NEXT_INSN (insn);
8991 if (insn == jump)
8992 break;
8993
8994 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8995 {
8996 dep_def _new_dep, *new_dep = &_new_dep;
8997
8998 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8999 sd_add_dep (new_dep, false);
9000 }
9001 }
9002 while (1);
9003
9004 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
9005 }
9006
9007 /* Extend data structures for logical insn UID. */
9008 void
9009 sched_extend_luids (void)
9010 {
9011 int new_luids_max_uid = get_max_uid () + 1;
9012
9013 sched_luids.safe_grow_cleared (new_luids_max_uid);
9014 }
9015
9016 /* Initialize LUID for INSN. */
9017 void
9018 sched_init_insn_luid (rtx_insn *insn)
9019 {
9020 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
9021 int luid;
9022
9023 if (i >= 0)
9024 {
9025 luid = sched_max_luid;
9026 sched_max_luid += i;
9027 }
9028 else
9029 luid = -1;
9030
9031 SET_INSN_LUID (insn, luid);
9032 }
9033
9034 /* Initialize luids for BBS.
9035 The hook common_sched_info->luid_for_non_insn () is used to determine
9036 if notes, labels, etc. need luids. */
9037 void
9038 sched_init_luids (bb_vec_t bbs)
9039 {
9040 int i;
9041 basic_block bb;
9042
9043 sched_extend_luids ();
9044 FOR_EACH_VEC_ELT (bbs, i, bb)
9045 {
9046 rtx_insn *insn;
9047
9048 FOR_BB_INSNS (bb, insn)
9049 sched_init_insn_luid (insn);
9050 }
9051 }
9052
9053 /* Free LUIDs. */
9054 void
9055 sched_finish_luids (void)
9056 {
9057 sched_luids.release ();
9058 sched_max_luid = 1;
9059 }
9060
9061 /* Return logical uid of INSN. Helpful while debugging. */
9062 int
9063 insn_luid (rtx_insn *insn)
9064 {
9065 return INSN_LUID (insn);
9066 }
9067
9068 /* Extend per insn data in the target. */
9069 void
9070 sched_extend_target (void)
9071 {
9072 if (targetm.sched.h_i_d_extended)
9073 targetm.sched.h_i_d_extended ();
9074 }
9075
9076 /* Extend global scheduler structures (those, that live across calls to
9077 schedule_block) to include information about just emitted INSN. */
9078 static void
9079 extend_h_i_d (void)
9080 {
9081 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9082 if (reserve > 0
9083 && ! h_i_d.space (reserve))
9084 {
9085 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9086 sched_extend_target ();
9087 }
9088 }
9089
9090 /* Initialize h_i_d entry of the INSN with default values.
9091 Values, that are not explicitly initialized here, hold zero. */
9092 static void
9093 init_h_i_d (rtx_insn *insn)
9094 {
9095 if (INSN_LUID (insn) > 0)
9096 {
9097 INSN_COST (insn) = -1;
9098 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9099 INSN_TICK (insn) = INVALID_TICK;
9100 INSN_EXACT_TICK (insn) = INVALID_TICK;
9101 INTER_TICK (insn) = INVALID_TICK;
9102 TODO_SPEC (insn) = HARD_DEP;
9103 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9104 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9105 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9106 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9107 }
9108 }
9109
9110 /* Initialize haifa_insn_data for BBS. */
9111 void
9112 haifa_init_h_i_d (bb_vec_t bbs)
9113 {
9114 int i;
9115 basic_block bb;
9116
9117 extend_h_i_d ();
9118 FOR_EACH_VEC_ELT (bbs, i, bb)
9119 {
9120 rtx_insn *insn;
9121
9122 FOR_BB_INSNS (bb, insn)
9123 init_h_i_d (insn);
9124 }
9125 }
9126
9127 /* Finalize haifa_insn_data. */
9128 void
9129 haifa_finish_h_i_d (void)
9130 {
9131 int i;
9132 haifa_insn_data_t data;
9133 reg_use_data *use, *next_use;
9134 reg_set_data *set, *next_set;
9135
9136 FOR_EACH_VEC_ELT (h_i_d, i, data)
9137 {
9138 free (data->max_reg_pressure);
9139 free (data->reg_pressure);
9140 for (use = data->reg_use_list; use != NULL; use = next_use)
9141 {
9142 next_use = use->next_insn_use;
9143 free (use);
9144 }
9145 for (set = data->reg_set_list; set != NULL; set = next_set)
9146 {
9147 next_set = set->next_insn_set;
9148 free (set);
9149 }
9150
9151 }
9152 h_i_d.release ();
9153 }
9154
9155 /* Init data for the new insn INSN. */
9156 static void
9157 haifa_init_insn (rtx_insn *insn)
9158 {
9159 gcc_assert (insn != NULL);
9160
9161 sched_extend_luids ();
9162 sched_init_insn_luid (insn);
9163 sched_extend_target ();
9164 sched_deps_init (false);
9165 extend_h_i_d ();
9166 init_h_i_d (insn);
9167
9168 if (adding_bb_to_current_region_p)
9169 {
9170 sd_init_insn (insn);
9171
9172 /* Extend dependency caches by one element. */
9173 extend_dependency_caches (1, false);
9174 }
9175 if (sched_pressure != SCHED_PRESSURE_NONE)
9176 init_insn_reg_pressure_info (insn);
9177 }
9178
9179 /* Init data for the new basic block BB which comes after AFTER. */
9180 static void
9181 haifa_init_only_bb (basic_block bb, basic_block after)
9182 {
9183 gcc_assert (bb != NULL);
9184
9185 sched_init_bbs ();
9186
9187 if (common_sched_info->add_block)
9188 /* This changes only data structures of the front-end. */
9189 common_sched_info->add_block (bb, after);
9190 }
9191
9192 /* A generic version of sched_split_block (). */
9193 basic_block
9194 sched_split_block_1 (basic_block first_bb, rtx after)
9195 {
9196 edge e;
9197
9198 e = split_block (first_bb, after);
9199 gcc_assert (e->src == first_bb);
9200
9201 /* sched_split_block emits note if *check == BB_END. Probably it
9202 is better to rip that note off. */
9203
9204 return e->dest;
9205 }
9206
9207 /* A generic version of sched_create_empty_bb (). */
9208 basic_block
9209 sched_create_empty_bb_1 (basic_block after)
9210 {
9211 return create_empty_bb (after);
9212 }
9213
9214 /* Insert PAT as an INSN into the schedule and update the necessary data
9215 structures to account for it. */
9216 rtx_insn *
9217 sched_emit_insn (rtx pat)
9218 {
9219 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9220 haifa_init_insn (insn);
9221
9222 if (current_sched_info->add_remove_insn)
9223 current_sched_info->add_remove_insn (insn, 0);
9224
9225 (*current_sched_info->begin_schedule_ready) (insn);
9226 scheduled_insns.safe_push (insn);
9227
9228 last_scheduled_insn = insn;
9229 return insn;
9230 }
9231
9232 /* This function returns a candidate satisfying dispatch constraints from
9233 the ready list. */
9234
9235 static rtx_insn *
9236 ready_remove_first_dispatch (struct ready_list *ready)
9237 {
9238 int i;
9239 rtx_insn *insn = ready_element (ready, 0);
9240
9241 if (ready->n_ready == 1
9242 || !INSN_P (insn)
9243 || INSN_CODE (insn) < 0
9244 || !active_insn_p (insn)
9245 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9246 return ready_remove_first (ready);
9247
9248 for (i = 1; i < ready->n_ready; i++)
9249 {
9250 insn = ready_element (ready, i);
9251
9252 if (!INSN_P (insn)
9253 || INSN_CODE (insn) < 0
9254 || !active_insn_p (insn))
9255 continue;
9256
9257 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9258 {
9259 /* Return ith element of ready. */
9260 insn = ready_remove (ready, i);
9261 return insn;
9262 }
9263 }
9264
9265 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9266 return ready_remove_first (ready);
9267
9268 for (i = 1; i < ready->n_ready; i++)
9269 {
9270 insn = ready_element (ready, i);
9271
9272 if (!INSN_P (insn)
9273 || INSN_CODE (insn) < 0
9274 || !active_insn_p (insn))
9275 continue;
9276
9277 /* Return i-th element of ready. */
9278 if (targetm.sched.dispatch (insn, IS_CMP))
9279 return ready_remove (ready, i);
9280 }
9281
9282 return ready_remove_first (ready);
9283 }
9284
9285 /* Get number of ready insn in the ready list. */
9286
9287 int
9288 number_in_ready (void)
9289 {
9290 return ready.n_ready;
9291 }
9292
9293 /* Get number of ready's in the ready list. */
9294
9295 rtx_insn *
9296 get_ready_element (int i)
9297 {
9298 return ready_element (&ready, i);
9299 }
9300
9301 #endif /* INSN_SCHEDULING */