gcc-gdb-test.exp (gdb-test): Reorder matchers to give more consistent results.
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
27
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
36
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
41
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
56
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
59
60 1. choose insn with the longest path to end of bb, ties
61 broken by
62 2. choose insn with least contribution to register pressure,
63 ties broken by
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
67 broken by
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
72
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
79
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
83
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using insn backward dependences
86 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
87 INSN_FORW_DEPS the purpose of forward list scheduling.
88
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
96 utilization.
97
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
101 of this case.
102
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
107
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
111
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
116
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
120
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
126 \f
127 #include "config.h"
128 #include "system.h"
129 #include "coretypes.h"
130 #include "tm.h"
131 #include "diagnostic-core.h"
132 #include "rtl.h"
133 #include "tm_p.h"
134 #include "hard-reg-set.h"
135 #include "regs.h"
136 #include "function.h"
137 #include "flags.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
140 #include "except.h"
141 #include "recog.h"
142 #include "sched-int.h"
143 #include "target.h"
144 #include "output.h"
145 #include "params.h"
146 #include "vecprim.h"
147 #include "dbgcnt.h"
148 #include "cfgloop.h"
149 #include "ira.h"
150 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
151
152 #ifdef INSN_SCHEDULING
153
154 /* issue_rate is the number of insns that can be scheduled in the same
155 machine cycle. It can be defined in the config/mach/mach.h file,
156 otherwise we set it to 1. */
157
158 int issue_rate;
159
160 /* sched-verbose controls the amount of debugging output the
161 scheduler prints. It is controlled by -fsched-verbose=N:
162 N>0 and no -DSR : the output is directed to stderr.
163 N>=10 will direct the printouts to stderr (regardless of -dSR).
164 N=1: same as -dSR.
165 N=2: bb's probabilities, detailed ready list info, unit/insn info.
166 N=3: rtl at abort point, control-flow, regions info.
167 N=5: dependences info. */
168
169 int sched_verbose = 0;
170
171 /* Debugging file. All printouts are sent to dump, which is always set,
172 either to stderr, or to the dump listing file (-dRS). */
173 FILE *sched_dump = 0;
174
175 /* This is a placeholder for the scheduler parameters common
176 to all schedulers. */
177 struct common_sched_info_def *common_sched_info;
178
179 #define INSN_TICK(INSN) (HID (INSN)->tick)
180 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
181
182 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
183 then it should be recalculated from scratch. */
184 #define INVALID_TICK (-(max_insn_queue_index + 1))
185 /* The minimal value of the INSN_TICK of an instruction. */
186 #define MIN_TICK (-max_insn_queue_index)
187
188 /* List of important notes we must keep around. This is a pointer to the
189 last element in the list. */
190 rtx note_list;
191
192 static struct spec_info_def spec_info_var;
193 /* Description of the speculative part of the scheduling.
194 If NULL - no speculation. */
195 spec_info_t spec_info = NULL;
196
197 /* True, if recovery block was added during scheduling of current block.
198 Used to determine, if we need to fix INSN_TICKs. */
199 static bool haifa_recovery_bb_recently_added_p;
200
201 /* True, if recovery block was added during this scheduling pass.
202 Used to determine if we should have empty memory pools of dependencies
203 after finishing current region. */
204 bool haifa_recovery_bb_ever_added_p;
205
206 /* Counters of different types of speculative instructions. */
207 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
208
209 /* Array used in {unlink, restore}_bb_notes. */
210 static rtx *bb_header = 0;
211
212 /* Basic block after which recovery blocks will be created. */
213 static basic_block before_recovery;
214
215 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
216 created it. */
217 basic_block after_recovery;
218
219 /* FALSE if we add bb to another region, so we don't need to initialize it. */
220 bool adding_bb_to_current_region_p = true;
221
222 /* Queues, etc. */
223
224 /* An instruction is ready to be scheduled when all insns preceding it
225 have already been scheduled. It is important to ensure that all
226 insns which use its result will not be executed until its result
227 has been computed. An insn is maintained in one of four structures:
228
229 (P) the "Pending" set of insns which cannot be scheduled until
230 their dependencies have been satisfied.
231 (Q) the "Queued" set of insns that can be scheduled when sufficient
232 time has passed.
233 (R) the "Ready" list of unscheduled, uncommitted insns.
234 (S) the "Scheduled" list of insns.
235
236 Initially, all insns are either "Pending" or "Ready" depending on
237 whether their dependencies are satisfied.
238
239 Insns move from the "Ready" list to the "Scheduled" list as they
240 are committed to the schedule. As this occurs, the insns in the
241 "Pending" list have their dependencies satisfied and move to either
242 the "Ready" list or the "Queued" set depending on whether
243 sufficient time has passed to make them ready. As time passes,
244 insns move from the "Queued" set to the "Ready" list.
245
246 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
247 unscheduled insns, i.e., those that are ready, queued, and pending.
248 The "Queued" set (Q) is implemented by the variable `insn_queue'.
249 The "Ready" list (R) is implemented by the variables `ready' and
250 `n_ready'.
251 The "Scheduled" list (S) is the new insn chain built by this pass.
252
253 The transition (R->S) is implemented in the scheduling loop in
254 `schedule_block' when the best insn to schedule is chosen.
255 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
256 insns move from the ready list to the scheduled list.
257 The transition (Q->R) is implemented in 'queue_to_insn' as time
258 passes or stalls are introduced. */
259
260 /* Implement a circular buffer to delay instructions until sufficient
261 time has passed. For the new pipeline description interface,
262 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
263 than maximal time of instruction execution computed by genattr.c on
264 the base maximal time of functional unit reservations and getting a
265 result. This is the longest time an insn may be queued. */
266
267 static rtx *insn_queue;
268 static int q_ptr = 0;
269 static int q_size = 0;
270 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
271 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
272
273 #define QUEUE_SCHEDULED (-3)
274 #define QUEUE_NOWHERE (-2)
275 #define QUEUE_READY (-1)
276 /* QUEUE_SCHEDULED - INSN is scheduled.
277 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
278 queue or ready list.
279 QUEUE_READY - INSN is in ready list.
280 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
281
282 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
283
284 /* The following variable value refers for all current and future
285 reservations of the processor units. */
286 state_t curr_state;
287
288 /* The following variable value is size of memory representing all
289 current and future reservations of the processor units. */
290 size_t dfa_state_size;
291
292 /* The following array is used to find the best insn from ready when
293 the automaton pipeline interface is used. */
294 char *ready_try = NULL;
295
296 /* The ready list. */
297 struct ready_list ready = {NULL, 0, 0, 0, 0};
298
299 /* The pointer to the ready list (to be removed). */
300 static struct ready_list *readyp = &ready;
301
302 /* Scheduling clock. */
303 static int clock_var;
304
305 /* This records the actual schedule. It is built up during the main phase
306 of schedule_block, and afterwards used to reorder the insns in the RTL. */
307 static VEC(rtx, heap) *scheduled_insns;
308
309 static int may_trap_exp (const_rtx, int);
310
311 /* Nonzero iff the address is comprised from at most 1 register. */
312 #define CONST_BASED_ADDRESS_P(x) \
313 (REG_P (x) \
314 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
315 || (GET_CODE (x) == LO_SUM)) \
316 && (CONSTANT_P (XEXP (x, 0)) \
317 || CONSTANT_P (XEXP (x, 1)))))
318
319 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
320 as found by analyzing insn's expression. */
321
322 \f
323 static int haifa_luid_for_non_insn (rtx x);
324
325 /* Haifa version of sched_info hooks common to all headers. */
326 const struct common_sched_info_def haifa_common_sched_info =
327 {
328 NULL, /* fix_recovery_cfg */
329 NULL, /* add_block */
330 NULL, /* estimate_number_of_insns */
331 haifa_luid_for_non_insn, /* luid_for_non_insn */
332 SCHED_PASS_UNKNOWN /* sched_pass_id */
333 };
334
335 const struct sched_scan_info_def *sched_scan_info;
336
337 /* Mapping from instruction UID to its Logical UID. */
338 VEC (int, heap) *sched_luids = NULL;
339
340 /* Next LUID to assign to an instruction. */
341 int sched_max_luid = 1;
342
343 /* Haifa Instruction Data. */
344 VEC (haifa_insn_data_def, heap) *h_i_d = NULL;
345
346 void (* sched_init_only_bb) (basic_block, basic_block);
347
348 /* Split block function. Different schedulers might use different functions
349 to handle their internal data consistent. */
350 basic_block (* sched_split_block) (basic_block, rtx);
351
352 /* Create empty basic block after the specified block. */
353 basic_block (* sched_create_empty_bb) (basic_block);
354
355 static int
356 may_trap_exp (const_rtx x, int is_store)
357 {
358 enum rtx_code code;
359
360 if (x == 0)
361 return TRAP_FREE;
362 code = GET_CODE (x);
363 if (is_store)
364 {
365 if (code == MEM && may_trap_p (x))
366 return TRAP_RISKY;
367 else
368 return TRAP_FREE;
369 }
370 if (code == MEM)
371 {
372 /* The insn uses memory: a volatile load. */
373 if (MEM_VOLATILE_P (x))
374 return IRISKY;
375 /* An exception-free load. */
376 if (!may_trap_p (x))
377 return IFREE;
378 /* A load with 1 base register, to be further checked. */
379 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
380 return PFREE_CANDIDATE;
381 /* No info on the load, to be further checked. */
382 return PRISKY_CANDIDATE;
383 }
384 else
385 {
386 const char *fmt;
387 int i, insn_class = TRAP_FREE;
388
389 /* Neither store nor load, check if it may cause a trap. */
390 if (may_trap_p (x))
391 return TRAP_RISKY;
392 /* Recursive step: walk the insn... */
393 fmt = GET_RTX_FORMAT (code);
394 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
395 {
396 if (fmt[i] == 'e')
397 {
398 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
399 insn_class = WORST_CLASS (insn_class, tmp_class);
400 }
401 else if (fmt[i] == 'E')
402 {
403 int j;
404 for (j = 0; j < XVECLEN (x, i); j++)
405 {
406 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
407 insn_class = WORST_CLASS (insn_class, tmp_class);
408 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
409 break;
410 }
411 }
412 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
413 break;
414 }
415 return insn_class;
416 }
417 }
418
419 /* Classifies rtx X of an insn for the purpose of verifying that X can be
420 executed speculatively (and consequently the insn can be moved
421 speculatively), by examining X, returning:
422 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
423 TRAP_FREE: non-load insn.
424 IFREE: load from a globally safe location.
425 IRISKY: volatile load.
426 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
427 being either PFREE or PRISKY. */
428
429 static int
430 haifa_classify_rtx (const_rtx x)
431 {
432 int tmp_class = TRAP_FREE;
433 int insn_class = TRAP_FREE;
434 enum rtx_code code;
435
436 if (GET_CODE (x) == PARALLEL)
437 {
438 int i, len = XVECLEN (x, 0);
439
440 for (i = len - 1; i >= 0; i--)
441 {
442 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
443 insn_class = WORST_CLASS (insn_class, tmp_class);
444 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
445 break;
446 }
447 }
448 else
449 {
450 code = GET_CODE (x);
451 switch (code)
452 {
453 case CLOBBER:
454 /* Test if it is a 'store'. */
455 tmp_class = may_trap_exp (XEXP (x, 0), 1);
456 break;
457 case SET:
458 /* Test if it is a store. */
459 tmp_class = may_trap_exp (SET_DEST (x), 1);
460 if (tmp_class == TRAP_RISKY)
461 break;
462 /* Test if it is a load. */
463 tmp_class =
464 WORST_CLASS (tmp_class,
465 may_trap_exp (SET_SRC (x), 0));
466 break;
467 case COND_EXEC:
468 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
469 if (tmp_class == TRAP_RISKY)
470 break;
471 tmp_class = WORST_CLASS (tmp_class,
472 may_trap_exp (COND_EXEC_TEST (x), 0));
473 break;
474 case TRAP_IF:
475 tmp_class = TRAP_RISKY;
476 break;
477 default:;
478 }
479 insn_class = tmp_class;
480 }
481
482 return insn_class;
483 }
484
485 int
486 haifa_classify_insn (const_rtx insn)
487 {
488 return haifa_classify_rtx (PATTERN (insn));
489 }
490
491 /* Forward declarations. */
492
493 static int priority (rtx);
494 static int rank_for_schedule (const void *, const void *);
495 static void swap_sort (rtx *, int);
496 static void queue_insn (rtx, int, const char *);
497 static int schedule_insn (rtx);
498 static void adjust_priority (rtx);
499 static void advance_one_cycle (void);
500 static void extend_h_i_d (void);
501
502
503 /* Notes handling mechanism:
504 =========================
505 Generally, NOTES are saved before scheduling and restored after scheduling.
506 The scheduler distinguishes between two types of notes:
507
508 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
509 Before scheduling a region, a pointer to the note is added to the insn
510 that follows or precedes it. (This happens as part of the data dependence
511 computation). After scheduling an insn, the pointer contained in it is
512 used for regenerating the corresponding note (in reemit_notes).
513
514 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
515 these notes are put in a list (in rm_other_notes() and
516 unlink_other_notes ()). After scheduling the block, these notes are
517 inserted at the beginning of the block (in schedule_block()). */
518
519 static void ready_add (struct ready_list *, rtx, bool);
520 static rtx ready_remove_first (struct ready_list *);
521 static rtx ready_remove_first_dispatch (struct ready_list *ready);
522
523 static void queue_to_ready (struct ready_list *);
524 static int early_queue_to_ready (state_t, struct ready_list *);
525
526 static void debug_ready_list (struct ready_list *);
527
528 /* The following functions are used to implement multi-pass scheduling
529 on the first cycle. */
530 static rtx ready_remove (struct ready_list *, int);
531 static void ready_remove_insn (rtx);
532
533 static void fix_inter_tick (rtx, rtx);
534 static int fix_tick_ready (rtx);
535 static void change_queue_index (rtx, int);
536
537 /* The following functions are used to implement scheduling of data/control
538 speculative instructions. */
539
540 static void extend_h_i_d (void);
541 static void init_h_i_d (rtx);
542 static void generate_recovery_code (rtx);
543 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
544 static void begin_speculative_block (rtx);
545 static void add_to_speculative_block (rtx);
546 static void init_before_recovery (basic_block *);
547 static void create_check_block_twin (rtx, bool);
548 static void fix_recovery_deps (basic_block);
549 static void haifa_change_pattern (rtx, rtx);
550 static void dump_new_block_header (int, basic_block, rtx, rtx);
551 static void restore_bb_notes (basic_block);
552 static void fix_jump_move (rtx);
553 static void move_block_after_check (rtx);
554 static void move_succs (VEC(edge,gc) **, basic_block);
555 static void sched_remove_insn (rtx);
556 static void clear_priorities (rtx, rtx_vec_t *);
557 static void calc_priorities (rtx_vec_t);
558 static void add_jump_dependencies (rtx, rtx);
559 #ifdef ENABLE_CHECKING
560 static int has_edge_p (VEC(edge,gc) *, int);
561 static void check_cfg (rtx, rtx);
562 #endif
563
564 #endif /* INSN_SCHEDULING */
565 \f
566 /* Point to state used for the current scheduling pass. */
567 struct haifa_sched_info *current_sched_info;
568 \f
569 #ifndef INSN_SCHEDULING
570 void
571 schedule_insns (void)
572 {
573 }
574 #else
575
576 /* Do register pressure sensitive insn scheduling if the flag is set
577 up. */
578 bool sched_pressure_p;
579
580 /* Map regno -> its pressure class. The map defined only when
581 SCHED_PRESSURE_P is true. */
582 enum reg_class *sched_regno_pressure_class;
583
584 /* The current register pressure. Only elements corresponding pressure
585 classes are defined. */
586 static int curr_reg_pressure[N_REG_CLASSES];
587
588 /* Saved value of the previous array. */
589 static int saved_reg_pressure[N_REG_CLASSES];
590
591 /* Register living at given scheduling point. */
592 static bitmap curr_reg_live;
593
594 /* Saved value of the previous array. */
595 static bitmap saved_reg_live;
596
597 /* Registers mentioned in the current region. */
598 static bitmap region_ref_regs;
599
600 /* Initiate register pressure relative info for scheduling the current
601 region. Currently it is only clearing register mentioned in the
602 current region. */
603 void
604 sched_init_region_reg_pressure_info (void)
605 {
606 bitmap_clear (region_ref_regs);
607 }
608
609 /* Update current register pressure related info after birth (if
610 BIRTH_P) or death of register REGNO. */
611 static void
612 mark_regno_birth_or_death (int regno, bool birth_p)
613 {
614 enum reg_class pressure_class;
615
616 pressure_class = sched_regno_pressure_class[regno];
617 if (regno >= FIRST_PSEUDO_REGISTER)
618 {
619 if (pressure_class != NO_REGS)
620 {
621 if (birth_p)
622 {
623 bitmap_set_bit (curr_reg_live, regno);
624 curr_reg_pressure[pressure_class]
625 += (ira_reg_class_max_nregs
626 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
627 }
628 else
629 {
630 bitmap_clear_bit (curr_reg_live, regno);
631 curr_reg_pressure[pressure_class]
632 -= (ira_reg_class_max_nregs
633 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
634 }
635 }
636 }
637 else if (pressure_class != NO_REGS
638 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
639 {
640 if (birth_p)
641 {
642 bitmap_set_bit (curr_reg_live, regno);
643 curr_reg_pressure[pressure_class]++;
644 }
645 else
646 {
647 bitmap_clear_bit (curr_reg_live, regno);
648 curr_reg_pressure[pressure_class]--;
649 }
650 }
651 }
652
653 /* Initiate current register pressure related info from living
654 registers given by LIVE. */
655 static void
656 initiate_reg_pressure_info (bitmap live)
657 {
658 int i;
659 unsigned int j;
660 bitmap_iterator bi;
661
662 for (i = 0; i < ira_pressure_classes_num; i++)
663 curr_reg_pressure[ira_pressure_classes[i]] = 0;
664 bitmap_clear (curr_reg_live);
665 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
666 if (current_nr_blocks == 1 || bitmap_bit_p (region_ref_regs, j))
667 mark_regno_birth_or_death (j, true);
668 }
669
670 /* Mark registers in X as mentioned in the current region. */
671 static void
672 setup_ref_regs (rtx x)
673 {
674 int i, j, regno;
675 const RTX_CODE code = GET_CODE (x);
676 const char *fmt;
677
678 if (REG_P (x))
679 {
680 regno = REGNO (x);
681 if (HARD_REGISTER_NUM_P (regno))
682 bitmap_set_range (region_ref_regs, regno,
683 hard_regno_nregs[regno][GET_MODE (x)]);
684 else
685 bitmap_set_bit (region_ref_regs, REGNO (x));
686 return;
687 }
688 fmt = GET_RTX_FORMAT (code);
689 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
690 if (fmt[i] == 'e')
691 setup_ref_regs (XEXP (x, i));
692 else if (fmt[i] == 'E')
693 {
694 for (j = 0; j < XVECLEN (x, i); j++)
695 setup_ref_regs (XVECEXP (x, i, j));
696 }
697 }
698
699 /* Initiate current register pressure related info at the start of
700 basic block BB. */
701 static void
702 initiate_bb_reg_pressure_info (basic_block bb)
703 {
704 unsigned int i ATTRIBUTE_UNUSED;
705 rtx insn;
706
707 if (current_nr_blocks > 1)
708 FOR_BB_INSNS (bb, insn)
709 if (NONDEBUG_INSN_P (insn))
710 setup_ref_regs (PATTERN (insn));
711 initiate_reg_pressure_info (df_get_live_in (bb));
712 #ifdef EH_RETURN_DATA_REGNO
713 if (bb_has_eh_pred (bb))
714 for (i = 0; ; ++i)
715 {
716 unsigned int regno = EH_RETURN_DATA_REGNO (i);
717
718 if (regno == INVALID_REGNUM)
719 break;
720 if (! bitmap_bit_p (df_get_live_in (bb), regno))
721 mark_regno_birth_or_death (regno, true);
722 }
723 #endif
724 }
725
726 /* Save current register pressure related info. */
727 static void
728 save_reg_pressure (void)
729 {
730 int i;
731
732 for (i = 0; i < ira_pressure_classes_num; i++)
733 saved_reg_pressure[ira_pressure_classes[i]]
734 = curr_reg_pressure[ira_pressure_classes[i]];
735 bitmap_copy (saved_reg_live, curr_reg_live);
736 }
737
738 /* Restore saved register pressure related info. */
739 static void
740 restore_reg_pressure (void)
741 {
742 int i;
743
744 for (i = 0; i < ira_pressure_classes_num; i++)
745 curr_reg_pressure[ira_pressure_classes[i]]
746 = saved_reg_pressure[ira_pressure_classes[i]];
747 bitmap_copy (curr_reg_live, saved_reg_live);
748 }
749
750 /* Return TRUE if the register is dying after its USE. */
751 static bool
752 dying_use_p (struct reg_use_data *use)
753 {
754 struct reg_use_data *next;
755
756 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
757 if (NONDEBUG_INSN_P (next->insn)
758 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
759 return false;
760 return true;
761 }
762
763 /* Print info about the current register pressure and its excess for
764 each pressure class. */
765 static void
766 print_curr_reg_pressure (void)
767 {
768 int i;
769 enum reg_class cl;
770
771 fprintf (sched_dump, ";;\t");
772 for (i = 0; i < ira_pressure_classes_num; i++)
773 {
774 cl = ira_pressure_classes[i];
775 gcc_assert (curr_reg_pressure[cl] >= 0);
776 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
777 curr_reg_pressure[cl],
778 curr_reg_pressure[cl] - ira_available_class_regs[cl]);
779 }
780 fprintf (sched_dump, "\n");
781 }
782
783 /* Pointer to the last instruction scheduled. */
784 static rtx last_scheduled_insn;
785
786 /* Pointer to the last nondebug instruction scheduled within the
787 block, or the prev_head of the scheduling block. Used by
788 rank_for_schedule, so that insns independent of the last scheduled
789 insn will be preferred over dependent instructions. */
790 static rtx last_nondebug_scheduled_insn;
791
792 /* Pointer that iterates through the list of unscheduled insns if we
793 have a dbg_cnt enabled. It always points at an insn prior to the
794 first unscheduled one. */
795 static rtx nonscheduled_insns_begin;
796
797 /* Cached cost of the instruction. Use below function to get cost of the
798 insn. -1 here means that the field is not initialized. */
799 #define INSN_COST(INSN) (HID (INSN)->cost)
800
801 /* Compute cost of executing INSN.
802 This is the number of cycles between instruction issue and
803 instruction results. */
804 int
805 insn_cost (rtx insn)
806 {
807 int cost;
808
809 if (sel_sched_p ())
810 {
811 if (recog_memoized (insn) < 0)
812 return 0;
813
814 cost = insn_default_latency (insn);
815 if (cost < 0)
816 cost = 0;
817
818 return cost;
819 }
820
821 cost = INSN_COST (insn);
822
823 if (cost < 0)
824 {
825 /* A USE insn, or something else we don't need to
826 understand. We can't pass these directly to
827 result_ready_cost or insn_default_latency because it will
828 trigger a fatal error for unrecognizable insns. */
829 if (recog_memoized (insn) < 0)
830 {
831 INSN_COST (insn) = 0;
832 return 0;
833 }
834 else
835 {
836 cost = insn_default_latency (insn);
837 if (cost < 0)
838 cost = 0;
839
840 INSN_COST (insn) = cost;
841 }
842 }
843
844 return cost;
845 }
846
847 /* Compute cost of dependence LINK.
848 This is the number of cycles between instruction issue and
849 instruction results.
850 ??? We also use this function to call recog_memoized on all insns. */
851 int
852 dep_cost_1 (dep_t link, dw_t dw)
853 {
854 rtx insn = DEP_PRO (link);
855 rtx used = DEP_CON (link);
856 int cost;
857
858 /* A USE insn should never require the value used to be computed.
859 This allows the computation of a function's result and parameter
860 values to overlap the return and call. We don't care about the
861 dependence cost when only decreasing register pressure. */
862 if (recog_memoized (used) < 0)
863 {
864 cost = 0;
865 recog_memoized (insn);
866 }
867 else
868 {
869 enum reg_note dep_type = DEP_TYPE (link);
870
871 cost = insn_cost (insn);
872
873 if (INSN_CODE (insn) >= 0)
874 {
875 if (dep_type == REG_DEP_ANTI)
876 cost = 0;
877 else if (dep_type == REG_DEP_OUTPUT)
878 {
879 cost = (insn_default_latency (insn)
880 - insn_default_latency (used));
881 if (cost <= 0)
882 cost = 1;
883 }
884 else if (bypass_p (insn))
885 cost = insn_latency (insn, used);
886 }
887
888
889 if (targetm.sched.adjust_cost_2)
890 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
891 dw);
892 else if (targetm.sched.adjust_cost != NULL)
893 {
894 /* This variable is used for backward compatibility with the
895 targets. */
896 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
897
898 /* Make it self-cycled, so that if some tries to walk over this
899 incomplete list he/she will be caught in an endless loop. */
900 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
901
902 /* Targets use only REG_NOTE_KIND of the link. */
903 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
904
905 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
906 insn, cost);
907
908 free_INSN_LIST_node (dep_cost_rtx_link);
909 }
910
911 if (cost < 0)
912 cost = 0;
913 }
914
915 return cost;
916 }
917
918 /* Compute cost of dependence LINK.
919 This is the number of cycles between instruction issue and
920 instruction results. */
921 int
922 dep_cost (dep_t link)
923 {
924 return dep_cost_1 (link, 0);
925 }
926
927 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
928 INSN_PRIORITY explicitly. */
929 void
930 increase_insn_priority (rtx insn, int amount)
931 {
932 if (!sel_sched_p ())
933 {
934 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
935 if (INSN_PRIORITY_KNOWN (insn))
936 INSN_PRIORITY (insn) += amount;
937 }
938 else
939 {
940 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
941 Use EXPR_PRIORITY instead. */
942 sel_add_to_insn_priority (insn, amount);
943 }
944 }
945
946 /* Return 'true' if DEP should be included in priority calculations. */
947 static bool
948 contributes_to_priority_p (dep_t dep)
949 {
950 if (DEBUG_INSN_P (DEP_CON (dep))
951 || DEBUG_INSN_P (DEP_PRO (dep)))
952 return false;
953
954 /* Critical path is meaningful in block boundaries only. */
955 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
956 DEP_PRO (dep)))
957 return false;
958
959 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
960 then speculative instructions will less likely be
961 scheduled. That is because the priority of
962 their producers will increase, and, thus, the
963 producers will more likely be scheduled, thus,
964 resolving the dependence. */
965 if (sched_deps_info->generate_spec_deps
966 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
967 && (DEP_STATUS (dep) & SPECULATIVE))
968 return false;
969
970 return true;
971 }
972
973 /* Compute the number of nondebug forward deps of an insn. */
974
975 static int
976 dep_list_size (rtx insn)
977 {
978 sd_iterator_def sd_it;
979 dep_t dep;
980 int dbgcount = 0, nodbgcount = 0;
981
982 if (!MAY_HAVE_DEBUG_INSNS)
983 return sd_lists_size (insn, SD_LIST_FORW);
984
985 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
986 {
987 if (DEBUG_INSN_P (DEP_CON (dep)))
988 dbgcount++;
989 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
990 nodbgcount++;
991 }
992
993 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, SD_LIST_FORW));
994
995 return nodbgcount;
996 }
997
998 /* Compute the priority number for INSN. */
999 static int
1000 priority (rtx insn)
1001 {
1002 if (! INSN_P (insn))
1003 return 0;
1004
1005 /* We should not be interested in priority of an already scheduled insn. */
1006 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1007
1008 if (!INSN_PRIORITY_KNOWN (insn))
1009 {
1010 int this_priority = -1;
1011
1012 if (dep_list_size (insn) == 0)
1013 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1014 some forward deps but all of them are ignored by
1015 contributes_to_priority hook. At the moment we set priority of
1016 such insn to 0. */
1017 this_priority = insn_cost (insn);
1018 else
1019 {
1020 rtx prev_first, twin;
1021 basic_block rec;
1022
1023 /* For recovery check instructions we calculate priority slightly
1024 different than that of normal instructions. Instead of walking
1025 through INSN_FORW_DEPS (check) list, we walk through
1026 INSN_FORW_DEPS list of each instruction in the corresponding
1027 recovery block. */
1028
1029 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1030 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1031 if (!rec || rec == EXIT_BLOCK_PTR)
1032 {
1033 prev_first = PREV_INSN (insn);
1034 twin = insn;
1035 }
1036 else
1037 {
1038 prev_first = NEXT_INSN (BB_HEAD (rec));
1039 twin = PREV_INSN (BB_END (rec));
1040 }
1041
1042 do
1043 {
1044 sd_iterator_def sd_it;
1045 dep_t dep;
1046
1047 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1048 {
1049 rtx next;
1050 int next_priority;
1051
1052 next = DEP_CON (dep);
1053
1054 if (BLOCK_FOR_INSN (next) != rec)
1055 {
1056 int cost;
1057
1058 if (!contributes_to_priority_p (dep))
1059 continue;
1060
1061 if (twin == insn)
1062 cost = dep_cost (dep);
1063 else
1064 {
1065 struct _dep _dep1, *dep1 = &_dep1;
1066
1067 init_dep (dep1, insn, next, REG_DEP_ANTI);
1068
1069 cost = dep_cost (dep1);
1070 }
1071
1072 next_priority = cost + priority (next);
1073
1074 if (next_priority > this_priority)
1075 this_priority = next_priority;
1076 }
1077 }
1078
1079 twin = PREV_INSN (twin);
1080 }
1081 while (twin != prev_first);
1082 }
1083
1084 if (this_priority < 0)
1085 {
1086 gcc_assert (this_priority == -1);
1087
1088 this_priority = insn_cost (insn);
1089 }
1090
1091 INSN_PRIORITY (insn) = this_priority;
1092 INSN_PRIORITY_STATUS (insn) = 1;
1093 }
1094
1095 return INSN_PRIORITY (insn);
1096 }
1097 \f
1098 /* Macros and functions for keeping the priority queue sorted, and
1099 dealing with queuing and dequeuing of instructions. */
1100
1101 #define SCHED_SORT(READY, N_READY) \
1102 do { if ((N_READY) == 2) \
1103 swap_sort (READY, N_READY); \
1104 else if ((N_READY) > 2) \
1105 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1106 while (0)
1107
1108 /* Setup info about the current register pressure impact of scheduling
1109 INSN at the current scheduling point. */
1110 static void
1111 setup_insn_reg_pressure_info (rtx insn)
1112 {
1113 int i, change, before, after, hard_regno;
1114 int excess_cost_change;
1115 enum machine_mode mode;
1116 enum reg_class cl;
1117 struct reg_pressure_data *pressure_info;
1118 int *max_reg_pressure;
1119 struct reg_use_data *use;
1120 static int death[N_REG_CLASSES];
1121
1122 gcc_checking_assert (!DEBUG_INSN_P (insn));
1123
1124 excess_cost_change = 0;
1125 for (i = 0; i < ira_pressure_classes_num; i++)
1126 death[ira_pressure_classes[i]] = 0;
1127 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1128 if (dying_use_p (use))
1129 {
1130 cl = sched_regno_pressure_class[use->regno];
1131 if (use->regno < FIRST_PSEUDO_REGISTER)
1132 death[cl]++;
1133 else
1134 death[cl]
1135 += ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (use->regno)];
1136 }
1137 pressure_info = INSN_REG_PRESSURE (insn);
1138 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1139 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1140 for (i = 0; i < ira_pressure_classes_num; i++)
1141 {
1142 cl = ira_pressure_classes[i];
1143 gcc_assert (curr_reg_pressure[cl] >= 0);
1144 change = (int) pressure_info[i].set_increase - death[cl];
1145 before = MAX (0, max_reg_pressure[i] - ira_available_class_regs[cl]);
1146 after = MAX (0, max_reg_pressure[i] + change
1147 - ira_available_class_regs[cl]);
1148 hard_regno = ira_class_hard_regs[cl][0];
1149 gcc_assert (hard_regno >= 0);
1150 mode = reg_raw_mode[hard_regno];
1151 excess_cost_change += ((after - before)
1152 * (ira_memory_move_cost[mode][cl][0]
1153 + ira_memory_move_cost[mode][cl][1]));
1154 }
1155 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1156 }
1157
1158 /* Returns a positive value if x is preferred; returns a negative value if
1159 y is preferred. Should never return 0, since that will make the sort
1160 unstable. */
1161
1162 static int
1163 rank_for_schedule (const void *x, const void *y)
1164 {
1165 rtx tmp = *(const rtx *) y;
1166 rtx tmp2 = *(const rtx *) x;
1167 int tmp_class, tmp2_class;
1168 int val, priority_val, info_val;
1169
1170 if (MAY_HAVE_DEBUG_INSNS)
1171 {
1172 /* Schedule debug insns as early as possible. */
1173 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
1174 return -1;
1175 else if (DEBUG_INSN_P (tmp2))
1176 return 1;
1177 }
1178
1179 /* The insn in a schedule group should be issued the first. */
1180 if (flag_sched_group_heuristic &&
1181 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
1182 return SCHED_GROUP_P (tmp2) ? 1 : -1;
1183
1184 /* Make sure that priority of TMP and TMP2 are initialized. */
1185 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
1186
1187 if (sched_pressure_p)
1188 {
1189 int diff;
1190
1191 /* Prefer insn whose scheduling results in the smallest register
1192 pressure excess. */
1193 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
1194 + (INSN_TICK (tmp) > clock_var
1195 ? INSN_TICK (tmp) - clock_var : 0)
1196 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
1197 - (INSN_TICK (tmp2) > clock_var
1198 ? INSN_TICK (tmp2) - clock_var : 0))) != 0)
1199 return diff;
1200 }
1201
1202
1203 if (sched_pressure_p
1204 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
1205 {
1206 if (INSN_TICK (tmp) <= clock_var)
1207 return -1;
1208 else if (INSN_TICK (tmp2) <= clock_var)
1209 return 1;
1210 else
1211 return INSN_TICK (tmp) - INSN_TICK (tmp2);
1212 }
1213 /* Prefer insn with higher priority. */
1214 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
1215
1216 if (flag_sched_critical_path_heuristic && priority_val)
1217 return priority_val;
1218
1219 /* Prefer speculative insn with greater dependencies weakness. */
1220 if (flag_sched_spec_insn_heuristic && spec_info)
1221 {
1222 ds_t ds1, ds2;
1223 dw_t dw1, dw2;
1224 int dw;
1225
1226 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
1227 if (ds1)
1228 dw1 = ds_weak (ds1);
1229 else
1230 dw1 = NO_DEP_WEAK;
1231
1232 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
1233 if (ds2)
1234 dw2 = ds_weak (ds2);
1235 else
1236 dw2 = NO_DEP_WEAK;
1237
1238 dw = dw2 - dw1;
1239 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
1240 return dw;
1241 }
1242
1243 info_val = (*current_sched_info->rank) (tmp, tmp2);
1244 if(flag_sched_rank_heuristic && info_val)
1245 return info_val;
1246
1247 /* Compare insns based on their relation to the last scheduled
1248 non-debug insn. */
1249 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
1250 {
1251 dep_t dep1;
1252 dep_t dep2;
1253 rtx last = last_nondebug_scheduled_insn;
1254
1255 /* Classify the instructions into three classes:
1256 1) Data dependent on last schedule insn.
1257 2) Anti/Output dependent on last scheduled insn.
1258 3) Independent of last scheduled insn, or has latency of one.
1259 Choose the insn from the highest numbered class if different. */
1260 dep1 = sd_find_dep_between (last, tmp, true);
1261
1262 if (dep1 == NULL || dep_cost (dep1) == 1)
1263 tmp_class = 3;
1264 else if (/* Data dependence. */
1265 DEP_TYPE (dep1) == REG_DEP_TRUE)
1266 tmp_class = 1;
1267 else
1268 tmp_class = 2;
1269
1270 dep2 = sd_find_dep_between (last, tmp2, true);
1271
1272 if (dep2 == NULL || dep_cost (dep2) == 1)
1273 tmp2_class = 3;
1274 else if (/* Data dependence. */
1275 DEP_TYPE (dep2) == REG_DEP_TRUE)
1276 tmp2_class = 1;
1277 else
1278 tmp2_class = 2;
1279
1280 if ((val = tmp2_class - tmp_class))
1281 return val;
1282 }
1283
1284 /* Prefer the insn which has more later insns that depend on it.
1285 This gives the scheduler more freedom when scheduling later
1286 instructions at the expense of added register pressure. */
1287
1288 val = (dep_list_size (tmp2) - dep_list_size (tmp));
1289
1290 if (flag_sched_dep_count_heuristic && val != 0)
1291 return val;
1292
1293 /* If insns are equally good, sort by INSN_LUID (original insn order),
1294 so that we make the sort stable. This minimizes instruction movement,
1295 thus minimizing sched's effect on debugging and cross-jumping. */
1296 return INSN_LUID (tmp) - INSN_LUID (tmp2);
1297 }
1298
1299 /* Resort the array A in which only element at index N may be out of order. */
1300
1301 HAIFA_INLINE static void
1302 swap_sort (rtx *a, int n)
1303 {
1304 rtx insn = a[n - 1];
1305 int i = n - 2;
1306
1307 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
1308 {
1309 a[i + 1] = a[i];
1310 i -= 1;
1311 }
1312 a[i + 1] = insn;
1313 }
1314
1315 /* Add INSN to the insn queue so that it can be executed at least
1316 N_CYCLES after the currently executing insn. Preserve insns
1317 chain for debugging purposes. REASON will be printed in debugging
1318 output. */
1319
1320 HAIFA_INLINE static void
1321 queue_insn (rtx insn, int n_cycles, const char *reason)
1322 {
1323 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
1324 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
1325
1326 gcc_assert (n_cycles <= max_insn_queue_index);
1327 gcc_assert (!DEBUG_INSN_P (insn));
1328
1329 insn_queue[next_q] = link;
1330 q_size += 1;
1331
1332 if (sched_verbose >= 2)
1333 {
1334 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
1335 (*current_sched_info->print_insn) (insn, 0));
1336
1337 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
1338 }
1339
1340 QUEUE_INDEX (insn) = next_q;
1341 }
1342
1343 /* Remove INSN from queue. */
1344 static void
1345 queue_remove (rtx insn)
1346 {
1347 gcc_assert (QUEUE_INDEX (insn) >= 0);
1348 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
1349 q_size--;
1350 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
1351 }
1352
1353 /* Return a pointer to the bottom of the ready list, i.e. the insn
1354 with the lowest priority. */
1355
1356 rtx *
1357 ready_lastpos (struct ready_list *ready)
1358 {
1359 gcc_assert (ready->n_ready >= 1);
1360 return ready->vec + ready->first - ready->n_ready + 1;
1361 }
1362
1363 /* Add an element INSN to the ready list so that it ends up with the
1364 lowest/highest priority depending on FIRST_P. */
1365
1366 HAIFA_INLINE static void
1367 ready_add (struct ready_list *ready, rtx insn, bool first_p)
1368 {
1369 if (!first_p)
1370 {
1371 if (ready->first == ready->n_ready)
1372 {
1373 memmove (ready->vec + ready->veclen - ready->n_ready,
1374 ready_lastpos (ready),
1375 ready->n_ready * sizeof (rtx));
1376 ready->first = ready->veclen - 1;
1377 }
1378 ready->vec[ready->first - ready->n_ready] = insn;
1379 }
1380 else
1381 {
1382 if (ready->first == ready->veclen - 1)
1383 {
1384 if (ready->n_ready)
1385 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1386 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
1387 ready_lastpos (ready),
1388 ready->n_ready * sizeof (rtx));
1389 ready->first = ready->veclen - 2;
1390 }
1391 ready->vec[++(ready->first)] = insn;
1392 }
1393
1394 ready->n_ready++;
1395 if (DEBUG_INSN_P (insn))
1396 ready->n_debug++;
1397
1398 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
1399 QUEUE_INDEX (insn) = QUEUE_READY;
1400 }
1401
1402 /* Remove the element with the highest priority from the ready list and
1403 return it. */
1404
1405 HAIFA_INLINE static rtx
1406 ready_remove_first (struct ready_list *ready)
1407 {
1408 rtx t;
1409
1410 gcc_assert (ready->n_ready);
1411 t = ready->vec[ready->first--];
1412 ready->n_ready--;
1413 if (DEBUG_INSN_P (t))
1414 ready->n_debug--;
1415 /* If the queue becomes empty, reset it. */
1416 if (ready->n_ready == 0)
1417 ready->first = ready->veclen - 1;
1418
1419 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
1420 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1421
1422 return t;
1423 }
1424
1425 /* The following code implements multi-pass scheduling for the first
1426 cycle. In other words, we will try to choose ready insn which
1427 permits to start maximum number of insns on the same cycle. */
1428
1429 /* Return a pointer to the element INDEX from the ready. INDEX for
1430 insn with the highest priority is 0, and the lowest priority has
1431 N_READY - 1. */
1432
1433 rtx
1434 ready_element (struct ready_list *ready, int index)
1435 {
1436 gcc_assert (ready->n_ready && index < ready->n_ready);
1437
1438 return ready->vec[ready->first - index];
1439 }
1440
1441 /* Remove the element INDEX from the ready list and return it. INDEX
1442 for insn with the highest priority is 0, and the lowest priority
1443 has N_READY - 1. */
1444
1445 HAIFA_INLINE static rtx
1446 ready_remove (struct ready_list *ready, int index)
1447 {
1448 rtx t;
1449 int i;
1450
1451 if (index == 0)
1452 return ready_remove_first (ready);
1453 gcc_assert (ready->n_ready && index < ready->n_ready);
1454 t = ready->vec[ready->first - index];
1455 ready->n_ready--;
1456 if (DEBUG_INSN_P (t))
1457 ready->n_debug--;
1458 for (i = index; i < ready->n_ready; i++)
1459 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1460 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1461 return t;
1462 }
1463
1464 /* Remove INSN from the ready list. */
1465 static void
1466 ready_remove_insn (rtx insn)
1467 {
1468 int i;
1469
1470 for (i = 0; i < readyp->n_ready; i++)
1471 if (ready_element (readyp, i) == insn)
1472 {
1473 ready_remove (readyp, i);
1474 return;
1475 }
1476 gcc_unreachable ();
1477 }
1478
1479 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1480 macro. */
1481
1482 void
1483 ready_sort (struct ready_list *ready)
1484 {
1485 int i;
1486 rtx *first = ready_lastpos (ready);
1487
1488 if (sched_pressure_p)
1489 {
1490 for (i = 0; i < ready->n_ready; i++)
1491 if (!DEBUG_INSN_P (first[i]))
1492 setup_insn_reg_pressure_info (first[i]);
1493 }
1494 SCHED_SORT (first, ready->n_ready);
1495 }
1496
1497 /* PREV is an insn that is ready to execute. Adjust its priority if that
1498 will help shorten or lengthen register lifetimes as appropriate. Also
1499 provide a hook for the target to tweak itself. */
1500
1501 HAIFA_INLINE static void
1502 adjust_priority (rtx prev)
1503 {
1504 /* ??? There used to be code here to try and estimate how an insn
1505 affected register lifetimes, but it did it by looking at REG_DEAD
1506 notes, which we removed in schedule_region. Nor did it try to
1507 take into account register pressure or anything useful like that.
1508
1509 Revisit when we have a machine model to work with and not before. */
1510
1511 if (targetm.sched.adjust_priority)
1512 INSN_PRIORITY (prev) =
1513 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
1514 }
1515
1516 /* Advance DFA state STATE on one cycle. */
1517 void
1518 advance_state (state_t state)
1519 {
1520 if (targetm.sched.dfa_pre_advance_cycle)
1521 targetm.sched.dfa_pre_advance_cycle ();
1522
1523 if (targetm.sched.dfa_pre_cycle_insn)
1524 state_transition (state,
1525 targetm.sched.dfa_pre_cycle_insn ());
1526
1527 state_transition (state, NULL);
1528
1529 if (targetm.sched.dfa_post_cycle_insn)
1530 state_transition (state,
1531 targetm.sched.dfa_post_cycle_insn ());
1532
1533 if (targetm.sched.dfa_post_advance_cycle)
1534 targetm.sched.dfa_post_advance_cycle ();
1535 }
1536
1537 /* Advance time on one cycle. */
1538 HAIFA_INLINE static void
1539 advance_one_cycle (void)
1540 {
1541 advance_state (curr_state);
1542 if (sched_verbose >= 6)
1543 fprintf (sched_dump, ";;\tAdvanced a state.\n");
1544 }
1545
1546 /* Clock at which the previous instruction was issued. */
1547 static int last_clock_var;
1548
1549 /* Update register pressure after scheduling INSN. */
1550 static void
1551 update_register_pressure (rtx insn)
1552 {
1553 struct reg_use_data *use;
1554 struct reg_set_data *set;
1555
1556 gcc_checking_assert (!DEBUG_INSN_P (insn));
1557
1558 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1559 if (dying_use_p (use) && bitmap_bit_p (curr_reg_live, use->regno))
1560 mark_regno_birth_or_death (use->regno, false);
1561 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
1562 mark_regno_birth_or_death (set->regno, true);
1563 }
1564
1565 /* Set up or update (if UPDATE_P) max register pressure (see its
1566 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
1567 after insn AFTER. */
1568 static void
1569 setup_insn_max_reg_pressure (rtx after, bool update_p)
1570 {
1571 int i, p;
1572 bool eq_p;
1573 rtx insn;
1574 static int max_reg_pressure[N_REG_CLASSES];
1575
1576 save_reg_pressure ();
1577 for (i = 0; i < ira_pressure_classes_num; i++)
1578 max_reg_pressure[ira_pressure_classes[i]]
1579 = curr_reg_pressure[ira_pressure_classes[i]];
1580 for (insn = NEXT_INSN (after);
1581 insn != NULL_RTX && ! BARRIER_P (insn)
1582 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
1583 insn = NEXT_INSN (insn))
1584 if (NONDEBUG_INSN_P (insn))
1585 {
1586 eq_p = true;
1587 for (i = 0; i < ira_pressure_classes_num; i++)
1588 {
1589 p = max_reg_pressure[ira_pressure_classes[i]];
1590 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
1591 {
1592 eq_p = false;
1593 INSN_MAX_REG_PRESSURE (insn)[i]
1594 = max_reg_pressure[ira_pressure_classes[i]];
1595 }
1596 }
1597 if (update_p && eq_p)
1598 break;
1599 update_register_pressure (insn);
1600 for (i = 0; i < ira_pressure_classes_num; i++)
1601 if (max_reg_pressure[ira_pressure_classes[i]]
1602 < curr_reg_pressure[ira_pressure_classes[i]])
1603 max_reg_pressure[ira_pressure_classes[i]]
1604 = curr_reg_pressure[ira_pressure_classes[i]];
1605 }
1606 restore_reg_pressure ();
1607 }
1608
1609 /* Update the current register pressure after scheduling INSN. Update
1610 also max register pressure for unscheduled insns of the current
1611 BB. */
1612 static void
1613 update_reg_and_insn_max_reg_pressure (rtx insn)
1614 {
1615 int i;
1616 int before[N_REG_CLASSES];
1617
1618 for (i = 0; i < ira_pressure_classes_num; i++)
1619 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
1620 update_register_pressure (insn);
1621 for (i = 0; i < ira_pressure_classes_num; i++)
1622 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
1623 break;
1624 if (i < ira_pressure_classes_num)
1625 setup_insn_max_reg_pressure (insn, true);
1626 }
1627
1628 /* Set up register pressure at the beginning of basic block BB whose
1629 insns starting after insn AFTER. Set up also max register pressure
1630 for all insns of the basic block. */
1631 void
1632 sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
1633 {
1634 gcc_assert (sched_pressure_p);
1635 initiate_bb_reg_pressure_info (bb);
1636 setup_insn_max_reg_pressure (after, false);
1637 }
1638
1639 /* INSN is the "currently executing insn". Launch each insn which was
1640 waiting on INSN. READY is the ready list which contains the insns
1641 that are ready to fire. CLOCK is the current cycle. The function
1642 returns necessary cycle advance after issuing the insn (it is not
1643 zero for insns in a schedule group). */
1644
1645 static int
1646 schedule_insn (rtx insn)
1647 {
1648 sd_iterator_def sd_it;
1649 dep_t dep;
1650 int i;
1651 int advance = 0;
1652
1653 if (sched_verbose >= 1)
1654 {
1655 struct reg_pressure_data *pressure_info;
1656 char buf[2048];
1657
1658 print_insn (buf, insn, 0);
1659 buf[40] = 0;
1660 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
1661
1662 if (recog_memoized (insn) < 0)
1663 fprintf (sched_dump, "nothing");
1664 else
1665 print_reservation (sched_dump, insn);
1666 pressure_info = INSN_REG_PRESSURE (insn);
1667 if (pressure_info != NULL)
1668 {
1669 fputc (':', sched_dump);
1670 for (i = 0; i < ira_pressure_classes_num; i++)
1671 fprintf (sched_dump, "%s%+d(%d)",
1672 reg_class_names[ira_pressure_classes[i]],
1673 pressure_info[i].set_increase, pressure_info[i].change);
1674 }
1675 fputc ('\n', sched_dump);
1676 }
1677
1678 if (sched_pressure_p && !DEBUG_INSN_P (insn))
1679 update_reg_and_insn_max_reg_pressure (insn);
1680
1681 /* Scheduling instruction should have all its dependencies resolved and
1682 should have been removed from the ready list. */
1683 gcc_assert (sd_lists_empty_p (insn, SD_LIST_BACK));
1684
1685 /* Reset debug insns invalidated by moving this insn. */
1686 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
1687 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1688 sd_iterator_cond (&sd_it, &dep);)
1689 {
1690 rtx dbg = DEP_PRO (dep);
1691 struct reg_use_data *use, *next;
1692
1693 gcc_assert (DEBUG_INSN_P (dbg));
1694
1695 if (sched_verbose >= 6)
1696 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
1697 INSN_UID (dbg));
1698
1699 /* ??? Rather than resetting the debug insn, we might be able
1700 to emit a debug temp before the just-scheduled insn, but
1701 this would involve checking that the expression at the
1702 point of the debug insn is equivalent to the expression
1703 before the just-scheduled insn. They might not be: the
1704 expression in the debug insn may depend on other insns not
1705 yet scheduled that set MEMs, REGs or even other debug
1706 insns. It's not clear that attempting to preserve debug
1707 information in these cases is worth the effort, given how
1708 uncommon these resets are and the likelihood that the debug
1709 temps introduced won't survive the schedule change. */
1710 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
1711 df_insn_rescan (dbg);
1712
1713 /* Unknown location doesn't use any registers. */
1714 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
1715 {
1716 struct reg_use_data *prev = use;
1717
1718 /* Remove use from the cyclic next_regno_use chain first. */
1719 while (prev->next_regno_use != use)
1720 prev = prev->next_regno_use;
1721 prev->next_regno_use = use->next_regno_use;
1722 next = use->next_insn_use;
1723 free (use);
1724 }
1725 INSN_REG_USE_LIST (dbg) = NULL;
1726
1727 /* We delete rather than resolve these deps, otherwise we
1728 crash in sched_free_deps(), because forward deps are
1729 expected to be released before backward deps. */
1730 sd_delete_dep (sd_it);
1731 }
1732
1733 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
1734 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
1735
1736 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
1737 if (INSN_TICK (insn) > clock_var)
1738 /* INSN has been prematurely moved from the queue to the ready list.
1739 This is possible only if following flag is set. */
1740 gcc_assert (flag_sched_stalled_insns);
1741
1742 /* ??? Probably, if INSN is scheduled prematurely, we should leave
1743 INSN_TICK untouched. This is a machine-dependent issue, actually. */
1744 INSN_TICK (insn) = clock_var;
1745
1746 /* Update dependent instructions. */
1747 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
1748 sd_iterator_cond (&sd_it, &dep);)
1749 {
1750 rtx next = DEP_CON (dep);
1751
1752 /* Resolve the dependence between INSN and NEXT.
1753 sd_resolve_dep () moves current dep to another list thus
1754 advancing the iterator. */
1755 sd_resolve_dep (sd_it);
1756
1757 /* Don't bother trying to mark next as ready if insn is a debug
1758 insn. If insn is the last hard dependency, it will have
1759 already been discounted. */
1760 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
1761 continue;
1762
1763 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
1764 {
1765 int effective_cost;
1766
1767 effective_cost = try_ready (next);
1768
1769 if (effective_cost >= 0
1770 && SCHED_GROUP_P (next)
1771 && advance < effective_cost)
1772 advance = effective_cost;
1773 }
1774 else
1775 /* Check always has only one forward dependence (to the first insn in
1776 the recovery block), therefore, this will be executed only once. */
1777 {
1778 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
1779 fix_recovery_deps (RECOVERY_BLOCK (insn));
1780 }
1781 }
1782
1783 /* This is the place where scheduler doesn't *basically* need backward and
1784 forward dependencies for INSN anymore. Nevertheless they are used in
1785 heuristics in rank_for_schedule (), early_queue_to_ready () and in
1786 some targets (e.g. rs6000). Thus the earliest place where we *can*
1787 remove dependencies is after targetm.sched.finish () call in
1788 schedule_block (). But, on the other side, the safest place to remove
1789 dependencies is when we are finishing scheduling entire region. As we
1790 don't generate [many] dependencies during scheduling itself, we won't
1791 need memory until beginning of next region.
1792 Bottom line: Dependencies are removed for all insns in the end of
1793 scheduling the region. */
1794
1795 /* Annotate the instruction with issue information -- TImode
1796 indicates that the instruction is expected not to be able
1797 to issue on the same cycle as the previous insn. A machine
1798 may use this information to decide how the instruction should
1799 be aligned. */
1800 if (issue_rate > 1
1801 && GET_CODE (PATTERN (insn)) != USE
1802 && GET_CODE (PATTERN (insn)) != CLOBBER
1803 && !DEBUG_INSN_P (insn))
1804 {
1805 if (reload_completed)
1806 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
1807 last_clock_var = clock_var;
1808 }
1809
1810 return advance;
1811 }
1812
1813 /* Functions for handling of notes. */
1814
1815 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
1816 void
1817 concat_note_lists (rtx from_end, rtx *to_endp)
1818 {
1819 rtx from_start;
1820
1821 /* It's easy when have nothing to concat. */
1822 if (from_end == NULL)
1823 return;
1824
1825 /* It's also easy when destination is empty. */
1826 if (*to_endp == NULL)
1827 {
1828 *to_endp = from_end;
1829 return;
1830 }
1831
1832 from_start = from_end;
1833 while (PREV_INSN (from_start) != NULL)
1834 from_start = PREV_INSN (from_start);
1835
1836 PREV_INSN (from_start) = *to_endp;
1837 NEXT_INSN (*to_endp) = from_start;
1838 *to_endp = from_end;
1839 }
1840
1841 /* Delete notes between HEAD and TAIL and put them in the chain
1842 of notes ended by NOTE_LIST. */
1843 void
1844 remove_notes (rtx head, rtx tail)
1845 {
1846 rtx next_tail, insn, next;
1847
1848 note_list = 0;
1849 if (head == tail && !INSN_P (head))
1850 return;
1851
1852 next_tail = NEXT_INSN (tail);
1853 for (insn = head; insn != next_tail; insn = next)
1854 {
1855 next = NEXT_INSN (insn);
1856 if (!NOTE_P (insn))
1857 continue;
1858
1859 switch (NOTE_KIND (insn))
1860 {
1861 case NOTE_INSN_BASIC_BLOCK:
1862 continue;
1863
1864 case NOTE_INSN_EPILOGUE_BEG:
1865 if (insn != tail)
1866 {
1867 remove_insn (insn);
1868 add_reg_note (next, REG_SAVE_NOTE,
1869 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
1870 break;
1871 }
1872 /* FALLTHRU */
1873
1874 default:
1875 remove_insn (insn);
1876
1877 /* Add the note to list that ends at NOTE_LIST. */
1878 PREV_INSN (insn) = note_list;
1879 NEXT_INSN (insn) = NULL_RTX;
1880 if (note_list)
1881 NEXT_INSN (note_list) = insn;
1882 note_list = insn;
1883 break;
1884 }
1885
1886 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
1887 }
1888 }
1889
1890
1891 /* Return the head and tail pointers of ebb starting at BEG and ending
1892 at END. */
1893 void
1894 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
1895 {
1896 rtx beg_head = BB_HEAD (beg);
1897 rtx beg_tail = BB_END (beg);
1898 rtx end_head = BB_HEAD (end);
1899 rtx end_tail = BB_END (end);
1900
1901 /* Don't include any notes or labels at the beginning of the BEG
1902 basic block, or notes at the end of the END basic blocks. */
1903
1904 if (LABEL_P (beg_head))
1905 beg_head = NEXT_INSN (beg_head);
1906
1907 while (beg_head != beg_tail)
1908 if (NOTE_P (beg_head))
1909 beg_head = NEXT_INSN (beg_head);
1910 else if (DEBUG_INSN_P (beg_head))
1911 {
1912 rtx note, next;
1913
1914 for (note = NEXT_INSN (beg_head);
1915 note != beg_tail;
1916 note = next)
1917 {
1918 next = NEXT_INSN (note);
1919 if (NOTE_P (note))
1920 {
1921 if (sched_verbose >= 9)
1922 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
1923
1924 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
1925
1926 if (BLOCK_FOR_INSN (note) != beg)
1927 df_insn_change_bb (note, beg);
1928 }
1929 else if (!DEBUG_INSN_P (note))
1930 break;
1931 }
1932
1933 break;
1934 }
1935 else
1936 break;
1937
1938 *headp = beg_head;
1939
1940 if (beg == end)
1941 end_head = beg_head;
1942 else if (LABEL_P (end_head))
1943 end_head = NEXT_INSN (end_head);
1944
1945 while (end_head != end_tail)
1946 if (NOTE_P (end_tail))
1947 end_tail = PREV_INSN (end_tail);
1948 else if (DEBUG_INSN_P (end_tail))
1949 {
1950 rtx note, prev;
1951
1952 for (note = PREV_INSN (end_tail);
1953 note != end_head;
1954 note = prev)
1955 {
1956 prev = PREV_INSN (note);
1957 if (NOTE_P (note))
1958 {
1959 if (sched_verbose >= 9)
1960 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
1961
1962 reorder_insns_nobb (note, note, end_tail);
1963
1964 if (end_tail == BB_END (end))
1965 BB_END (end) = note;
1966
1967 if (BLOCK_FOR_INSN (note) != end)
1968 df_insn_change_bb (note, end);
1969 }
1970 else if (!DEBUG_INSN_P (note))
1971 break;
1972 }
1973
1974 break;
1975 }
1976 else
1977 break;
1978
1979 *tailp = end_tail;
1980 }
1981
1982 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1983
1984 int
1985 no_real_insns_p (const_rtx head, const_rtx tail)
1986 {
1987 while (head != NEXT_INSN (tail))
1988 {
1989 if (!NOTE_P (head) && !LABEL_P (head))
1990 return 0;
1991 head = NEXT_INSN (head);
1992 }
1993 return 1;
1994 }
1995
1996 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1997 previously found among the insns. Insert them just before HEAD. */
1998 rtx
1999 restore_other_notes (rtx head, basic_block head_bb)
2000 {
2001 if (note_list != 0)
2002 {
2003 rtx note_head = note_list;
2004
2005 if (head)
2006 head_bb = BLOCK_FOR_INSN (head);
2007 else
2008 head = NEXT_INSN (bb_note (head_bb));
2009
2010 while (PREV_INSN (note_head))
2011 {
2012 set_block_for_insn (note_head, head_bb);
2013 note_head = PREV_INSN (note_head);
2014 }
2015 /* In the above cycle we've missed this note. */
2016 set_block_for_insn (note_head, head_bb);
2017
2018 PREV_INSN (note_head) = PREV_INSN (head);
2019 NEXT_INSN (PREV_INSN (head)) = note_head;
2020 PREV_INSN (head) = note_list;
2021 NEXT_INSN (note_list) = head;
2022
2023 if (BLOCK_FOR_INSN (head) != head_bb)
2024 BB_END (head_bb) = note_list;
2025
2026 head = note_head;
2027 }
2028
2029 return head;
2030 }
2031
2032 /* Move insns that became ready to fire from queue to ready list. */
2033
2034 static void
2035 queue_to_ready (struct ready_list *ready)
2036 {
2037 rtx insn;
2038 rtx link;
2039 rtx skip_insn;
2040
2041 q_ptr = NEXT_Q (q_ptr);
2042
2043 if (dbg_cnt (sched_insn) == false)
2044 {
2045 /* If debug counter is activated do not requeue the first
2046 nonscheduled insn. */
2047 skip_insn = nonscheduled_insns_begin;
2048 do
2049 {
2050 skip_insn = next_nonnote_nondebug_insn (skip_insn);
2051 }
2052 while (QUEUE_INDEX (skip_insn) == QUEUE_SCHEDULED);
2053 }
2054 else
2055 skip_insn = NULL_RTX;
2056
2057 /* Add all pending insns that can be scheduled without stalls to the
2058 ready list. */
2059 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
2060 {
2061 insn = XEXP (link, 0);
2062 q_size -= 1;
2063
2064 if (sched_verbose >= 2)
2065 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
2066 (*current_sched_info->print_insn) (insn, 0));
2067
2068 /* If the ready list is full, delay the insn for 1 cycle.
2069 See the comment in schedule_block for the rationale. */
2070 if (!reload_completed
2071 && ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
2072 && !SCHED_GROUP_P (insn)
2073 && insn != skip_insn)
2074 queue_insn (insn, 1, "ready full");
2075 else
2076 {
2077 ready_add (ready, insn, false);
2078 if (sched_verbose >= 2)
2079 fprintf (sched_dump, "moving to ready without stalls\n");
2080 }
2081 }
2082 free_INSN_LIST_list (&insn_queue[q_ptr]);
2083
2084 /* If there are no ready insns, stall until one is ready and add all
2085 of the pending insns at that point to the ready list. */
2086 if (ready->n_ready == 0)
2087 {
2088 int stalls;
2089
2090 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
2091 {
2092 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
2093 {
2094 for (; link; link = XEXP (link, 1))
2095 {
2096 insn = XEXP (link, 0);
2097 q_size -= 1;
2098
2099 if (sched_verbose >= 2)
2100 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
2101 (*current_sched_info->print_insn) (insn, 0));
2102
2103 ready_add (ready, insn, false);
2104 if (sched_verbose >= 2)
2105 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
2106 }
2107 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
2108
2109 advance_one_cycle ();
2110
2111 break;
2112 }
2113
2114 advance_one_cycle ();
2115 }
2116
2117 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
2118 clock_var += stalls;
2119 }
2120 }
2121
2122 /* Used by early_queue_to_ready. Determines whether it is "ok" to
2123 prematurely move INSN from the queue to the ready list. Currently,
2124 if a target defines the hook 'is_costly_dependence', this function
2125 uses the hook to check whether there exist any dependences which are
2126 considered costly by the target, between INSN and other insns that
2127 have already been scheduled. Dependences are checked up to Y cycles
2128 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
2129 controlling this value.
2130 (Other considerations could be taken into account instead (or in
2131 addition) depending on user flags and target hooks. */
2132
2133 static bool
2134 ok_for_early_queue_removal (rtx insn)
2135 {
2136 if (targetm.sched.is_costly_dependence)
2137 {
2138 rtx prev_insn;
2139 int n_cycles;
2140 int i = VEC_length (rtx, scheduled_insns);
2141 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
2142 {
2143 while (i-- > 0)
2144 {
2145 int cost;
2146
2147 prev_insn = VEC_index (rtx, scheduled_insns, i);
2148
2149 if (!NOTE_P (prev_insn))
2150 {
2151 dep_t dep;
2152
2153 dep = sd_find_dep_between (prev_insn, insn, true);
2154
2155 if (dep != NULL)
2156 {
2157 cost = dep_cost (dep);
2158
2159 if (targetm.sched.is_costly_dependence (dep, cost,
2160 flag_sched_stalled_insns_dep - n_cycles))
2161 return false;
2162 }
2163 }
2164
2165 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
2166 break;
2167 }
2168
2169 if (i == 0)
2170 break;
2171 }
2172 }
2173
2174 return true;
2175 }
2176
2177
2178 /* Remove insns from the queue, before they become "ready" with respect
2179 to FU latency considerations. */
2180
2181 static int
2182 early_queue_to_ready (state_t state, struct ready_list *ready)
2183 {
2184 rtx insn;
2185 rtx link;
2186 rtx next_link;
2187 rtx prev_link;
2188 bool move_to_ready;
2189 int cost;
2190 state_t temp_state = alloca (dfa_state_size);
2191 int stalls;
2192 int insns_removed = 0;
2193
2194 /*
2195 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
2196 function:
2197
2198 X == 0: There is no limit on how many queued insns can be removed
2199 prematurely. (flag_sched_stalled_insns = -1).
2200
2201 X >= 1: Only X queued insns can be removed prematurely in each
2202 invocation. (flag_sched_stalled_insns = X).
2203
2204 Otherwise: Early queue removal is disabled.
2205 (flag_sched_stalled_insns = 0)
2206 */
2207
2208 if (! flag_sched_stalled_insns)
2209 return 0;
2210
2211 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
2212 {
2213 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
2214 {
2215 if (sched_verbose > 6)
2216 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
2217
2218 prev_link = 0;
2219 while (link)
2220 {
2221 next_link = XEXP (link, 1);
2222 insn = XEXP (link, 0);
2223 if (insn && sched_verbose > 6)
2224 print_rtl_single (sched_dump, insn);
2225
2226 memcpy (temp_state, state, dfa_state_size);
2227 if (recog_memoized (insn) < 0)
2228 /* non-negative to indicate that it's not ready
2229 to avoid infinite Q->R->Q->R... */
2230 cost = 0;
2231 else
2232 cost = state_transition (temp_state, insn);
2233
2234 if (sched_verbose >= 6)
2235 fprintf (sched_dump, "transition cost = %d\n", cost);
2236
2237 move_to_ready = false;
2238 if (cost < 0)
2239 {
2240 move_to_ready = ok_for_early_queue_removal (insn);
2241 if (move_to_ready == true)
2242 {
2243 /* move from Q to R */
2244 q_size -= 1;
2245 ready_add (ready, insn, false);
2246
2247 if (prev_link)
2248 XEXP (prev_link, 1) = next_link;
2249 else
2250 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
2251
2252 free_INSN_LIST_node (link);
2253
2254 if (sched_verbose >= 2)
2255 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
2256 (*current_sched_info->print_insn) (insn, 0));
2257
2258 insns_removed++;
2259 if (insns_removed == flag_sched_stalled_insns)
2260 /* Remove no more than flag_sched_stalled_insns insns
2261 from Q at a time. */
2262 return insns_removed;
2263 }
2264 }
2265
2266 if (move_to_ready == false)
2267 prev_link = link;
2268
2269 link = next_link;
2270 } /* while link */
2271 } /* if link */
2272
2273 } /* for stalls.. */
2274
2275 return insns_removed;
2276 }
2277
2278
2279 /* Print the ready list for debugging purposes. Callable from debugger. */
2280
2281 static void
2282 debug_ready_list (struct ready_list *ready)
2283 {
2284 rtx *p;
2285 int i;
2286
2287 if (ready->n_ready == 0)
2288 {
2289 fprintf (sched_dump, "\n");
2290 return;
2291 }
2292
2293 p = ready_lastpos (ready);
2294 for (i = 0; i < ready->n_ready; i++)
2295 {
2296 fprintf (sched_dump, " %s:%d",
2297 (*current_sched_info->print_insn) (p[i], 0),
2298 INSN_LUID (p[i]));
2299 if (sched_pressure_p)
2300 fprintf (sched_dump, "(cost=%d",
2301 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
2302 if (INSN_TICK (p[i]) > clock_var)
2303 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
2304 if (sched_pressure_p)
2305 fprintf (sched_dump, ")");
2306 }
2307 fprintf (sched_dump, "\n");
2308 }
2309
2310 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
2311 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
2312 replaces the epilogue note in the correct basic block. */
2313 void
2314 reemit_notes (rtx insn)
2315 {
2316 rtx note, last = insn;
2317
2318 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2319 {
2320 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
2321 {
2322 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
2323
2324 last = emit_note_before (note_type, last);
2325 remove_note (insn, note);
2326 }
2327 }
2328 }
2329
2330 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
2331 static void
2332 move_insn (rtx insn, rtx last, rtx nt)
2333 {
2334 if (PREV_INSN (insn) != last)
2335 {
2336 basic_block bb;
2337 rtx note;
2338 int jump_p = 0;
2339
2340 bb = BLOCK_FOR_INSN (insn);
2341
2342 /* BB_HEAD is either LABEL or NOTE. */
2343 gcc_assert (BB_HEAD (bb) != insn);
2344
2345 if (BB_END (bb) == insn)
2346 /* If this is last instruction in BB, move end marker one
2347 instruction up. */
2348 {
2349 /* Jumps are always placed at the end of basic block. */
2350 jump_p = control_flow_insn_p (insn);
2351
2352 gcc_assert (!jump_p
2353 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
2354 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
2355 || (common_sched_info->sched_pass_id
2356 == SCHED_EBB_PASS));
2357
2358 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
2359
2360 BB_END (bb) = PREV_INSN (insn);
2361 }
2362
2363 gcc_assert (BB_END (bb) != last);
2364
2365 if (jump_p)
2366 /* We move the block note along with jump. */
2367 {
2368 gcc_assert (nt);
2369
2370 note = NEXT_INSN (insn);
2371 while (NOTE_NOT_BB_P (note) && note != nt)
2372 note = NEXT_INSN (note);
2373
2374 if (note != nt
2375 && (LABEL_P (note)
2376 || BARRIER_P (note)))
2377 note = NEXT_INSN (note);
2378
2379 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
2380 }
2381 else
2382 note = insn;
2383
2384 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
2385 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
2386
2387 NEXT_INSN (note) = NEXT_INSN (last);
2388 PREV_INSN (NEXT_INSN (last)) = note;
2389
2390 NEXT_INSN (last) = insn;
2391 PREV_INSN (insn) = last;
2392
2393 bb = BLOCK_FOR_INSN (last);
2394
2395 if (jump_p)
2396 {
2397 fix_jump_move (insn);
2398
2399 if (BLOCK_FOR_INSN (insn) != bb)
2400 move_block_after_check (insn);
2401
2402 gcc_assert (BB_END (bb) == last);
2403 }
2404
2405 df_insn_change_bb (insn, bb);
2406
2407 /* Update BB_END, if needed. */
2408 if (BB_END (bb) == last)
2409 BB_END (bb) = insn;
2410 }
2411
2412 SCHED_GROUP_P (insn) = 0;
2413 }
2414
2415 /* Return true if scheduling INSN will finish current clock cycle. */
2416 static bool
2417 insn_finishes_cycle_p (rtx insn)
2418 {
2419 if (SCHED_GROUP_P (insn))
2420 /* After issuing INSN, rest of the sched_group will be forced to issue
2421 in order. Don't make any plans for the rest of cycle. */
2422 return true;
2423
2424 /* Finishing the block will, apparently, finish the cycle. */
2425 if (current_sched_info->insn_finishes_block_p
2426 && current_sched_info->insn_finishes_block_p (insn))
2427 return true;
2428
2429 return false;
2430 }
2431
2432 /* Define type for target data used in multipass scheduling. */
2433 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
2434 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
2435 #endif
2436 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
2437
2438 /* The following structure describe an entry of the stack of choices. */
2439 struct choice_entry
2440 {
2441 /* Ordinal number of the issued insn in the ready queue. */
2442 int index;
2443 /* The number of the rest insns whose issues we should try. */
2444 int rest;
2445 /* The number of issued essential insns. */
2446 int n;
2447 /* State after issuing the insn. */
2448 state_t state;
2449 /* Target-specific data. */
2450 first_cycle_multipass_data_t target_data;
2451 };
2452
2453 /* The following array is used to implement a stack of choices used in
2454 function max_issue. */
2455 static struct choice_entry *choice_stack;
2456
2457 /* The following variable value is number of essential insns issued on
2458 the current cycle. An insn is essential one if it changes the
2459 processors state. */
2460 int cycle_issued_insns;
2461
2462 /* This holds the value of the target dfa_lookahead hook. */
2463 int dfa_lookahead;
2464
2465 /* The following variable value is maximal number of tries of issuing
2466 insns for the first cycle multipass insn scheduling. We define
2467 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
2468 need this constraint if all real insns (with non-negative codes)
2469 had reservations because in this case the algorithm complexity is
2470 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
2471 might be incomplete and such insn might occur. For such
2472 descriptions, the complexity of algorithm (without the constraint)
2473 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
2474 static int max_lookahead_tries;
2475
2476 /* The following value is value of hook
2477 `first_cycle_multipass_dfa_lookahead' at the last call of
2478 `max_issue'. */
2479 static int cached_first_cycle_multipass_dfa_lookahead = 0;
2480
2481 /* The following value is value of `issue_rate' at the last call of
2482 `sched_init'. */
2483 static int cached_issue_rate = 0;
2484
2485 /* The following function returns maximal (or close to maximal) number
2486 of insns which can be issued on the same cycle and one of which
2487 insns is insns with the best rank (the first insn in READY). To
2488 make this function tries different samples of ready insns. READY
2489 is current queue `ready'. Global array READY_TRY reflects what
2490 insns are already issued in this try. The function stops immediately,
2491 if it reached the such a solution, that all instruction can be issued.
2492 INDEX will contain index of the best insn in READY. The following
2493 function is used only for first cycle multipass scheduling.
2494
2495 PRIVILEGED_N >= 0
2496
2497 This function expects recognized insns only. All USEs,
2498 CLOBBERs, etc must be filtered elsewhere. */
2499 int
2500 max_issue (struct ready_list *ready, int privileged_n, state_t state,
2501 bool first_cycle_insn_p, int *index)
2502 {
2503 int n, i, all, n_ready, best, delay, tries_num;
2504 int more_issue;
2505 struct choice_entry *top;
2506 rtx insn;
2507
2508 n_ready = ready->n_ready;
2509 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
2510 && privileged_n <= n_ready);
2511
2512 /* Init MAX_LOOKAHEAD_TRIES. */
2513 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
2514 {
2515 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
2516 max_lookahead_tries = 100;
2517 for (i = 0; i < issue_rate; i++)
2518 max_lookahead_tries *= dfa_lookahead;
2519 }
2520
2521 /* Init max_points. */
2522 more_issue = issue_rate - cycle_issued_insns;
2523 gcc_assert (more_issue >= 0);
2524
2525 /* The number of the issued insns in the best solution. */
2526 best = 0;
2527
2528 top = choice_stack;
2529
2530 /* Set initial state of the search. */
2531 memcpy (top->state, state, dfa_state_size);
2532 top->rest = dfa_lookahead;
2533 top->n = 0;
2534 if (targetm.sched.first_cycle_multipass_begin)
2535 targetm.sched.first_cycle_multipass_begin (&top->target_data,
2536 ready_try, n_ready,
2537 first_cycle_insn_p);
2538
2539 /* Count the number of the insns to search among. */
2540 for (all = i = 0; i < n_ready; i++)
2541 if (!ready_try [i])
2542 all++;
2543
2544 /* I is the index of the insn to try next. */
2545 i = 0;
2546 tries_num = 0;
2547 for (;;)
2548 {
2549 if (/* If we've reached a dead end or searched enough of what we have
2550 been asked... */
2551 top->rest == 0
2552 /* or have nothing else to try... */
2553 || i >= n_ready
2554 /* or should not issue more. */
2555 || top->n >= more_issue)
2556 {
2557 /* ??? (... || i == n_ready). */
2558 gcc_assert (i <= n_ready);
2559
2560 /* We should not issue more than issue_rate instructions. */
2561 gcc_assert (top->n <= more_issue);
2562
2563 if (top == choice_stack)
2564 break;
2565
2566 if (best < top - choice_stack)
2567 {
2568 if (privileged_n)
2569 {
2570 n = privileged_n;
2571 /* Try to find issued privileged insn. */
2572 while (n && !ready_try[--n]);
2573 }
2574
2575 if (/* If all insns are equally good... */
2576 privileged_n == 0
2577 /* Or a privileged insn will be issued. */
2578 || ready_try[n])
2579 /* Then we have a solution. */
2580 {
2581 best = top - choice_stack;
2582 /* This is the index of the insn issued first in this
2583 solution. */
2584 *index = choice_stack [1].index;
2585 if (top->n == more_issue || best == all)
2586 break;
2587 }
2588 }
2589
2590 /* Set ready-list index to point to the last insn
2591 ('i++' below will advance it to the next insn). */
2592 i = top->index;
2593
2594 /* Backtrack. */
2595 ready_try [i] = 0;
2596
2597 if (targetm.sched.first_cycle_multipass_backtrack)
2598 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
2599 ready_try, n_ready);
2600
2601 top--;
2602 memcpy (state, top->state, dfa_state_size);
2603 }
2604 else if (!ready_try [i])
2605 {
2606 tries_num++;
2607 if (tries_num > max_lookahead_tries)
2608 break;
2609 insn = ready_element (ready, i);
2610 delay = state_transition (state, insn);
2611 if (delay < 0)
2612 {
2613 if (state_dead_lock_p (state)
2614 || insn_finishes_cycle_p (insn))
2615 /* We won't issue any more instructions in the next
2616 choice_state. */
2617 top->rest = 0;
2618 else
2619 top->rest--;
2620
2621 n = top->n;
2622 if (memcmp (top->state, state, dfa_state_size) != 0)
2623 n++;
2624
2625 /* Advance to the next choice_entry. */
2626 top++;
2627 /* Initialize it. */
2628 top->rest = dfa_lookahead;
2629 top->index = i;
2630 top->n = n;
2631 memcpy (top->state, state, dfa_state_size);
2632 ready_try [i] = 1;
2633
2634 if (targetm.sched.first_cycle_multipass_issue)
2635 targetm.sched.first_cycle_multipass_issue (&top->target_data,
2636 ready_try, n_ready,
2637 insn,
2638 &((top - 1)
2639 ->target_data));
2640
2641 i = -1;
2642 }
2643 }
2644
2645 /* Increase ready-list index. */
2646 i++;
2647 }
2648
2649 if (targetm.sched.first_cycle_multipass_end)
2650 targetm.sched.first_cycle_multipass_end (best != 0
2651 ? &choice_stack[1].target_data
2652 : NULL);
2653
2654 /* Restore the original state of the DFA. */
2655 memcpy (state, choice_stack->state, dfa_state_size);
2656
2657 return best;
2658 }
2659
2660 /* The following function chooses insn from READY and modifies
2661 READY. The following function is used only for first
2662 cycle multipass scheduling.
2663 Return:
2664 -1 if cycle should be advanced,
2665 0 if INSN_PTR is set to point to the desirable insn,
2666 1 if choose_ready () should be restarted without advancing the cycle. */
2667 static int
2668 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
2669 rtx *insn_ptr)
2670 {
2671 int lookahead;
2672
2673 if (dbg_cnt (sched_insn) == false)
2674 {
2675 rtx insn = nonscheduled_insns_begin;
2676 do
2677 {
2678 insn = next_nonnote_insn (insn);
2679 }
2680 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
2681
2682 if (QUEUE_INDEX (insn) == QUEUE_READY)
2683 /* INSN is in the ready_list. */
2684 {
2685 nonscheduled_insns_begin = insn;
2686 ready_remove_insn (insn);
2687 *insn_ptr = insn;
2688 return 0;
2689 }
2690
2691 /* INSN is in the queue. Advance cycle to move it to the ready list. */
2692 return -1;
2693 }
2694
2695 lookahead = 0;
2696
2697 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
2698 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
2699 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
2700 || DEBUG_INSN_P (ready_element (ready, 0)))
2701 {
2702 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
2703 *insn_ptr = ready_remove_first_dispatch (ready);
2704 else
2705 *insn_ptr = ready_remove_first (ready);
2706
2707 return 0;
2708 }
2709 else
2710 {
2711 /* Try to choose the better insn. */
2712 int index = 0, i, n;
2713 rtx insn;
2714 int try_data = 1, try_control = 1;
2715 ds_t ts;
2716
2717 insn = ready_element (ready, 0);
2718 if (INSN_CODE (insn) < 0)
2719 {
2720 *insn_ptr = ready_remove_first (ready);
2721 return 0;
2722 }
2723
2724 if (spec_info
2725 && spec_info->flags & (PREFER_NON_DATA_SPEC
2726 | PREFER_NON_CONTROL_SPEC))
2727 {
2728 for (i = 0, n = ready->n_ready; i < n; i++)
2729 {
2730 rtx x;
2731 ds_t s;
2732
2733 x = ready_element (ready, i);
2734 s = TODO_SPEC (x);
2735
2736 if (spec_info->flags & PREFER_NON_DATA_SPEC
2737 && !(s & DATA_SPEC))
2738 {
2739 try_data = 0;
2740 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
2741 || !try_control)
2742 break;
2743 }
2744
2745 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
2746 && !(s & CONTROL_SPEC))
2747 {
2748 try_control = 0;
2749 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
2750 break;
2751 }
2752 }
2753 }
2754
2755 ts = TODO_SPEC (insn);
2756 if ((ts & SPECULATIVE)
2757 && (((!try_data && (ts & DATA_SPEC))
2758 || (!try_control && (ts & CONTROL_SPEC)))
2759 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2760 && !targetm.sched
2761 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
2762 /* Discard speculative instruction that stands first in the ready
2763 list. */
2764 {
2765 change_queue_index (insn, 1);
2766 return 1;
2767 }
2768
2769 ready_try[0] = 0;
2770
2771 for (i = 1; i < ready->n_ready; i++)
2772 {
2773 insn = ready_element (ready, i);
2774
2775 ready_try [i]
2776 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2777 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
2778 }
2779
2780 /* Let the target filter the search space. */
2781 for (i = 1; i < ready->n_ready; i++)
2782 if (!ready_try[i])
2783 {
2784 insn = ready_element (ready, i);
2785
2786 /* If this insn is recognizable we should have already
2787 recognized it earlier.
2788 ??? Not very clear where this is supposed to be done.
2789 See dep_cost_1. */
2790 gcc_checking_assert (INSN_CODE (insn) >= 0
2791 || recog_memoized (insn) < 0);
2792
2793 ready_try [i]
2794 = (/* INSN_CODE check can be omitted here as it is also done later
2795 in max_issue (). */
2796 INSN_CODE (insn) < 0
2797 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2798 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2799 (insn)));
2800 }
2801
2802 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
2803 {
2804 *insn_ptr = ready_remove_first (ready);
2805 if (sched_verbose >= 4)
2806 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
2807 (*current_sched_info->print_insn) (*insn_ptr, 0));
2808 return 0;
2809 }
2810 else
2811 {
2812 if (sched_verbose >= 4)
2813 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
2814 (*current_sched_info->print_insn)
2815 (ready_element (ready, index), 0));
2816
2817 *insn_ptr = ready_remove (ready, index);
2818 return 0;
2819 }
2820 }
2821 }
2822
2823 /* This function is called when we have successfully scheduled a
2824 block. It uses the schedule stored in the scheduled_insns vector
2825 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
2826 append the scheduled insns; TAIL is the insn after the scheduled
2827 block. TARGET_BB is the argument passed to schedule_block. */
2828
2829 static void
2830 commit_schedule (rtx prev_head, rtx tail, basic_block *target_bb)
2831 {
2832 unsigned int i;
2833 rtx insn;
2834
2835 last_scheduled_insn = prev_head;
2836 for (i = 0;
2837 VEC_iterate (rtx, scheduled_insns, i, insn);
2838 i++)
2839 {
2840 if (control_flow_insn_p (last_scheduled_insn)
2841 || current_sched_info->advance_target_bb (*target_bb, insn))
2842 {
2843 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
2844
2845 if (sched_verbose)
2846 {
2847 rtx x;
2848
2849 x = next_real_insn (last_scheduled_insn);
2850 gcc_assert (x);
2851 dump_new_block_header (1, *target_bb, x, tail);
2852 }
2853
2854 last_scheduled_insn = bb_note (*target_bb);
2855 }
2856
2857 if (current_sched_info->begin_move_insn)
2858 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
2859 move_insn (insn, last_scheduled_insn,
2860 current_sched_info->next_tail);
2861 if (!DEBUG_INSN_P (insn))
2862 reemit_notes (insn);
2863 last_scheduled_insn = insn;
2864 }
2865
2866 VEC_truncate (rtx, scheduled_insns, 0);
2867 }
2868
2869 /* Examine all insns on the ready list and queue those which can't be
2870 issued in this cycle. TEMP_STATE is temporary scheduler state we
2871 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
2872 have been issued for the current cycle, which means it is valid to
2873 issue an asm statement. */
2874
2875 static void
2876 prune_ready_list (state_t temp_state, bool first_cycle_insn_p)
2877 {
2878 int i;
2879
2880 restart:
2881 for (i = 0; i < ready.n_ready; i++)
2882 {
2883 rtx insn = ready_element (&ready, i);
2884 int cost = 0;
2885 const char *reason = "resource conflict";
2886
2887 if (recog_memoized (insn) < 0)
2888 {
2889 if (!first_cycle_insn_p
2890 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
2891 || asm_noperands (PATTERN (insn)) >= 0))
2892 cost = 1;
2893 reason = "asm";
2894 }
2895 else if (sched_pressure_p)
2896 cost = 0;
2897 else
2898 {
2899 memcpy (temp_state, curr_state, dfa_state_size);
2900 cost = state_transition (temp_state, insn);
2901 if (cost < 0)
2902 cost = 0;
2903 else if (cost == 0)
2904 cost = 1;
2905 }
2906 if (cost >= 1)
2907 {
2908 ready_remove (&ready, i);
2909 queue_insn (insn, cost, reason);
2910 goto restart;
2911 }
2912 }
2913 }
2914
2915 /* Use forward list scheduling to rearrange insns of block pointed to by
2916 TARGET_BB, possibly bringing insns from subsequent blocks in the same
2917 region. */
2918
2919 void
2920 schedule_block (basic_block *target_bb)
2921 {
2922 int i;
2923 bool first_cycle_insn_p;
2924 int can_issue_more;
2925 state_t temp_state = NULL; /* It is used for multipass scheduling. */
2926 int sort_p, advance, start_clock_var;
2927
2928 /* Head/tail info for this block. */
2929 rtx prev_head = current_sched_info->prev_head;
2930 rtx next_tail = current_sched_info->next_tail;
2931 rtx head = NEXT_INSN (prev_head);
2932 rtx tail = PREV_INSN (next_tail);
2933
2934 /* We used to have code to avoid getting parameters moved from hard
2935 argument registers into pseudos.
2936
2937 However, it was removed when it proved to be of marginal benefit
2938 and caused problems because schedule_block and compute_forward_dependences
2939 had different notions of what the "head" insn was. */
2940
2941 gcc_assert (head != tail || INSN_P (head));
2942
2943 haifa_recovery_bb_recently_added_p = false;
2944
2945 /* Debug info. */
2946 if (sched_verbose)
2947 dump_new_block_header (0, *target_bb, head, tail);
2948
2949 state_reset (curr_state);
2950
2951 /* Clear the ready list. */
2952 ready.first = ready.veclen - 1;
2953 ready.n_ready = 0;
2954 ready.n_debug = 0;
2955
2956 /* It is used for first cycle multipass scheduling. */
2957 temp_state = alloca (dfa_state_size);
2958
2959 if (targetm.sched.init)
2960 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
2961
2962 /* We start inserting insns after PREV_HEAD. */
2963 last_scheduled_insn = nonscheduled_insns_begin = prev_head;
2964 last_nondebug_scheduled_insn = NULL_RTX;
2965
2966 gcc_assert ((NOTE_P (last_scheduled_insn)
2967 || DEBUG_INSN_P (last_scheduled_insn))
2968 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
2969
2970 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
2971 queue. */
2972 q_ptr = 0;
2973 q_size = 0;
2974
2975 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
2976 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
2977
2978 /* Start just before the beginning of time. */
2979 clock_var = -1;
2980
2981 /* We need queue and ready lists and clock_var be initialized
2982 in try_ready () (which is called through init_ready_list ()). */
2983 (*current_sched_info->init_ready_list) ();
2984
2985 /* The algorithm is O(n^2) in the number of ready insns at any given
2986 time in the worst case. Before reload we are more likely to have
2987 big lists so truncate them to a reasonable size. */
2988 if (!reload_completed
2989 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
2990 {
2991 ready_sort (&ready);
2992
2993 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
2994 If there are debug insns, we know they're first. */
2995 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
2996 if (!SCHED_GROUP_P (ready_element (&ready, i)))
2997 break;
2998
2999 if (sched_verbose >= 2)
3000 {
3001 fprintf (sched_dump,
3002 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
3003 fprintf (sched_dump,
3004 ";;\t\t before reload => truncated to %d insns\n", i);
3005 }
3006
3007 /* Delay all insns past it for 1 cycle. If debug counter is
3008 activated make an exception for the insn right after
3009 nonscheduled_insns_begin. */
3010 {
3011 rtx skip_insn;
3012
3013 if (dbg_cnt (sched_insn) == false)
3014 skip_insn = next_nonnote_insn (nonscheduled_insns_begin);
3015 else
3016 skip_insn = NULL_RTX;
3017
3018 while (i < ready.n_ready)
3019 {
3020 rtx insn;
3021
3022 insn = ready_remove (&ready, i);
3023
3024 if (insn != skip_insn)
3025 queue_insn (insn, 1, "list truncated");
3026 }
3027 if (skip_insn)
3028 ready_add (&ready, skip_insn, true);
3029 }
3030 }
3031
3032 /* Now we can restore basic block notes and maintain precise cfg. */
3033 restore_bb_notes (*target_bb);
3034
3035 last_clock_var = -1;
3036
3037 advance = 0;
3038
3039 gcc_assert (VEC_length (rtx, scheduled_insns) == 0);
3040 sort_p = TRUE;
3041 /* Loop until all the insns in BB are scheduled. */
3042 while ((*current_sched_info->schedule_more_p) ())
3043 {
3044 do
3045 {
3046 start_clock_var = clock_var;
3047
3048 clock_var++;
3049
3050 advance_one_cycle ();
3051
3052 /* Add to the ready list all pending insns that can be issued now.
3053 If there are no ready insns, increment clock until one
3054 is ready and add all pending insns at that point to the ready
3055 list. */
3056 queue_to_ready (&ready);
3057
3058 gcc_assert (ready.n_ready);
3059
3060 if (sched_verbose >= 2)
3061 {
3062 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
3063 debug_ready_list (&ready);
3064 }
3065 advance -= clock_var - start_clock_var;
3066 }
3067 while (advance > 0);
3068
3069 prune_ready_list (temp_state, true);
3070 if (ready.n_ready == 0)
3071 continue;
3072
3073 if (sort_p)
3074 {
3075 /* Sort the ready list based on priority. */
3076 ready_sort (&ready);
3077
3078 if (sched_verbose >= 2)
3079 {
3080 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
3081 debug_ready_list (&ready);
3082 }
3083 }
3084
3085 /* We don't want md sched reorder to even see debug isns, so put
3086 them out right away. */
3087 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
3088 {
3089 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
3090 {
3091 rtx insn = ready_remove_first (&ready);
3092 gcc_assert (DEBUG_INSN_P (insn));
3093 (*current_sched_info->begin_schedule_ready) (insn);
3094 VEC_safe_push (rtx, heap, scheduled_insns, insn);
3095 last_scheduled_insn = insn;
3096 advance = schedule_insn (insn);
3097 gcc_assert (advance == 0);
3098 if (ready.n_ready > 0)
3099 ready_sort (&ready);
3100 }
3101
3102 if (!ready.n_ready)
3103 continue;
3104 }
3105
3106 /* Allow the target to reorder the list, typically for
3107 better instruction bundling. */
3108 if (sort_p && targetm.sched.reorder
3109 && (ready.n_ready == 0
3110 || !SCHED_GROUP_P (ready_element (&ready, 0))))
3111 can_issue_more =
3112 targetm.sched.reorder (sched_dump, sched_verbose,
3113 ready_lastpos (&ready),
3114 &ready.n_ready, clock_var);
3115 else
3116 can_issue_more = issue_rate;
3117
3118 first_cycle_insn_p = true;
3119 cycle_issued_insns = 0;
3120 for (;;)
3121 {
3122 rtx insn;
3123 int cost;
3124 bool asm_p = false;
3125
3126 if (sched_verbose >= 2)
3127 {
3128 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
3129 clock_var);
3130 debug_ready_list (&ready);
3131 if (sched_pressure_p)
3132 print_curr_reg_pressure ();
3133 }
3134
3135 if (ready.n_ready == 0
3136 && can_issue_more
3137 && reload_completed)
3138 {
3139 /* Allow scheduling insns directly from the queue in case
3140 there's nothing better to do (ready list is empty) but
3141 there are still vacant dispatch slots in the current cycle. */
3142 if (sched_verbose >= 6)
3143 fprintf (sched_dump,";;\t\tSecond chance\n");
3144 memcpy (temp_state, curr_state, dfa_state_size);
3145 if (early_queue_to_ready (temp_state, &ready))
3146 ready_sort (&ready);
3147 }
3148
3149 if (ready.n_ready == 0
3150 || !can_issue_more
3151 || state_dead_lock_p (curr_state)
3152 || !(*current_sched_info->schedule_more_p) ())
3153 break;
3154
3155 /* Select and remove the insn from the ready list. */
3156 if (sort_p)
3157 {
3158 int res;
3159
3160 insn = NULL_RTX;
3161 res = choose_ready (&ready, first_cycle_insn_p, &insn);
3162
3163 if (res < 0)
3164 /* Finish cycle. */
3165 break;
3166 if (res > 0)
3167 /* Restart choose_ready (). */
3168 continue;
3169
3170 gcc_assert (insn != NULL_RTX);
3171 }
3172 else
3173 insn = ready_remove_first (&ready);
3174
3175 if (sched_pressure_p && INSN_TICK (insn) > clock_var)
3176 {
3177 ready_add (&ready, insn, true);
3178 advance = 1;
3179 break;
3180 }
3181
3182 if (targetm.sched.dfa_new_cycle
3183 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
3184 insn, last_clock_var,
3185 clock_var, &sort_p))
3186 /* SORT_P is used by the target to override sorting
3187 of the ready list. This is needed when the target
3188 has modified its internal structures expecting that
3189 the insn will be issued next. As we need the insn
3190 to have the highest priority (so it will be returned by
3191 the ready_remove_first call above), we invoke
3192 ready_add (&ready, insn, true).
3193 But, still, there is one issue: INSN can be later
3194 discarded by scheduler's front end through
3195 current_sched_info->can_schedule_ready_p, hence, won't
3196 be issued next. */
3197 {
3198 ready_add (&ready, insn, true);
3199 break;
3200 }
3201
3202 sort_p = TRUE;
3203
3204 if (current_sched_info->can_schedule_ready_p
3205 && ! (*current_sched_info->can_schedule_ready_p) (insn))
3206 /* We normally get here only if we don't want to move
3207 insn from the split block. */
3208 {
3209 TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
3210 continue;
3211 }
3212
3213 /* DECISION is made. */
3214
3215 if (TODO_SPEC (insn) & SPECULATIVE)
3216 generate_recovery_code (insn);
3217
3218 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
3219 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
3220
3221 /* Update counters, etc in the scheduler's front end. */
3222 (*current_sched_info->begin_schedule_ready) (insn);
3223 VEC_safe_push (rtx, heap, scheduled_insns, insn);
3224 gcc_assert (NONDEBUG_INSN_P (insn));
3225 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
3226
3227 if (recog_memoized (insn) >= 0)
3228 {
3229 memcpy (temp_state, curr_state, dfa_state_size);
3230 cost = state_transition (curr_state, insn);
3231 if (!sched_pressure_p)
3232 gcc_assert (cost < 0);
3233 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
3234 cycle_issued_insns++;
3235 asm_p = false;
3236 }
3237 else
3238 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
3239 || asm_noperands (PATTERN (insn)) >= 0);
3240
3241 if (targetm.sched.variable_issue)
3242 can_issue_more =
3243 targetm.sched.variable_issue (sched_dump, sched_verbose,
3244 insn, can_issue_more);
3245 /* A naked CLOBBER or USE generates no instruction, so do
3246 not count them against the issue rate. */
3247 else if (GET_CODE (PATTERN (insn)) != USE
3248 && GET_CODE (PATTERN (insn)) != CLOBBER)
3249 can_issue_more--;
3250 advance = schedule_insn (insn);
3251
3252 /* After issuing an asm insn we should start a new cycle. */
3253 if (advance == 0 && asm_p)
3254 advance = 1;
3255 if (advance != 0)
3256 break;
3257
3258 first_cycle_insn_p = false;
3259
3260 if (ready.n_ready > 0)
3261 prune_ready_list (temp_state, false);
3262
3263 /* Sort the ready list based on priority. This must be
3264 redone here, as schedule_insn may have readied additional
3265 insns that will not be sorted correctly. */
3266 if (ready.n_ready > 0)
3267 ready_sort (&ready);
3268
3269 /* Quickly go through debug insns such that md sched
3270 reorder2 doesn't have to deal with debug insns. */
3271 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
3272 && (*current_sched_info->schedule_more_p) ())
3273 {
3274 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
3275 {
3276 insn = ready_remove_first (&ready);
3277 gcc_assert (DEBUG_INSN_P (insn));
3278 (*current_sched_info->begin_schedule_ready) (insn);
3279 VEC_safe_push (rtx, heap, scheduled_insns, insn);
3280 advance = schedule_insn (insn);
3281 last_scheduled_insn = insn;
3282 gcc_assert (advance == 0);
3283 if (ready.n_ready > 0)
3284 ready_sort (&ready);
3285 }
3286 }
3287
3288 if (targetm.sched.reorder2
3289 && (ready.n_ready == 0
3290 || !SCHED_GROUP_P (ready_element (&ready, 0))))
3291 {
3292 can_issue_more =
3293 targetm.sched.reorder2 (sched_dump, sched_verbose,
3294 ready.n_ready
3295 ? ready_lastpos (&ready) : NULL,
3296 &ready.n_ready, clock_var);
3297 }
3298 }
3299 }
3300
3301 /* Debug info. */
3302 if (sched_verbose)
3303 {
3304 fprintf (sched_dump, ";;\tReady list (final): ");
3305 debug_ready_list (&ready);
3306 }
3307
3308 if (current_sched_info->queue_must_finish_empty)
3309 /* Sanity check -- queue must be empty now. Meaningless if region has
3310 multiple bbs. */
3311 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
3312 else
3313 {
3314 /* We must maintain QUEUE_INDEX between blocks in region. */
3315 for (i = ready.n_ready - 1; i >= 0; i--)
3316 {
3317 rtx x;
3318
3319 x = ready_element (&ready, i);
3320 QUEUE_INDEX (x) = QUEUE_NOWHERE;
3321 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
3322 }
3323
3324 if (q_size)
3325 for (i = 0; i <= max_insn_queue_index; i++)
3326 {
3327 rtx link;
3328 for (link = insn_queue[i]; link; link = XEXP (link, 1))
3329 {
3330 rtx x;
3331
3332 x = XEXP (link, 0);
3333 QUEUE_INDEX (x) = QUEUE_NOWHERE;
3334 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
3335 }
3336 free_INSN_LIST_list (&insn_queue[i]);
3337 }
3338 }
3339
3340 commit_schedule (prev_head, tail, target_bb);
3341 if (sched_verbose)
3342 fprintf (sched_dump, ";; total time = %d\n", clock_var);
3343
3344 if (!current_sched_info->queue_must_finish_empty
3345 || haifa_recovery_bb_recently_added_p)
3346 {
3347 /* INSN_TICK (minimum clock tick at which the insn becomes
3348 ready) may be not correct for the insn in the subsequent
3349 blocks of the region. We should use a correct value of
3350 `clock_var' or modify INSN_TICK. It is better to keep
3351 clock_var value equal to 0 at the start of a basic block.
3352 Therefore we modify INSN_TICK here. */
3353 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
3354 }
3355
3356 if (targetm.sched.finish)
3357 {
3358 targetm.sched.finish (sched_dump, sched_verbose);
3359 /* Target might have added some instructions to the scheduled block
3360 in its md_finish () hook. These new insns don't have any data
3361 initialized and to identify them we extend h_i_d so that they'll
3362 get zero luids. */
3363 sched_init_luids (NULL, NULL, NULL, NULL);
3364 }
3365
3366 if (sched_verbose)
3367 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
3368 INSN_UID (head), INSN_UID (tail));
3369
3370 /* Update head/tail boundaries. */
3371 head = NEXT_INSN (prev_head);
3372 tail = last_scheduled_insn;
3373
3374 head = restore_other_notes (head, NULL);
3375
3376 current_sched_info->head = head;
3377 current_sched_info->tail = tail;
3378 }
3379 \f
3380 /* Set_priorities: compute priority of each insn in the block. */
3381
3382 int
3383 set_priorities (rtx head, rtx tail)
3384 {
3385 rtx insn;
3386 int n_insn;
3387 int sched_max_insns_priority =
3388 current_sched_info->sched_max_insns_priority;
3389 rtx prev_head;
3390
3391 if (head == tail && ! INSN_P (head))
3392 gcc_unreachable ();
3393
3394 n_insn = 0;
3395
3396 prev_head = PREV_INSN (head);
3397 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
3398 {
3399 if (!INSN_P (insn))
3400 continue;
3401
3402 n_insn++;
3403 (void) priority (insn);
3404
3405 gcc_assert (INSN_PRIORITY_KNOWN (insn));
3406
3407 sched_max_insns_priority = MAX (sched_max_insns_priority,
3408 INSN_PRIORITY (insn));
3409 }
3410
3411 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
3412
3413 return n_insn;
3414 }
3415
3416 /* Set dump and sched_verbose for the desired debugging output. If no
3417 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
3418 For -fsched-verbose=N, N>=10, print everything to stderr. */
3419 void
3420 setup_sched_dump (void)
3421 {
3422 sched_verbose = sched_verbose_param;
3423 if (sched_verbose_param == 0 && dump_file)
3424 sched_verbose = 1;
3425 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
3426 ? stderr : dump_file);
3427 }
3428
3429 /* Initialize some global state for the scheduler. This function works
3430 with the common data shared between all the schedulers. It is called
3431 from the scheduler specific initialization routine. */
3432
3433 void
3434 sched_init (void)
3435 {
3436 /* Disable speculative loads in their presence if cc0 defined. */
3437 #ifdef HAVE_cc0
3438 flag_schedule_speculative_load = 0;
3439 #endif
3440
3441 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
3442 targetm.sched.dispatch_do (NULL_RTX, DISPATCH_INIT);
3443
3444 sched_pressure_p = (flag_sched_pressure && ! reload_completed
3445 && common_sched_info->sched_pass_id == SCHED_RGN_PASS);
3446
3447 if (sched_pressure_p)
3448 ira_setup_eliminable_regset ();
3449
3450 /* Initialize SPEC_INFO. */
3451 if (targetm.sched.set_sched_flags)
3452 {
3453 spec_info = &spec_info_var;
3454 targetm.sched.set_sched_flags (spec_info);
3455
3456 if (spec_info->mask != 0)
3457 {
3458 spec_info->data_weakness_cutoff =
3459 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
3460 spec_info->control_weakness_cutoff =
3461 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
3462 * REG_BR_PROB_BASE) / 100;
3463 }
3464 else
3465 /* So we won't read anything accidentally. */
3466 spec_info = NULL;
3467
3468 }
3469 else
3470 /* So we won't read anything accidentally. */
3471 spec_info = 0;
3472
3473 /* Initialize issue_rate. */
3474 if (targetm.sched.issue_rate)
3475 issue_rate = targetm.sched.issue_rate ();
3476 else
3477 issue_rate = 1;
3478
3479 if (cached_issue_rate != issue_rate)
3480 {
3481 cached_issue_rate = issue_rate;
3482 /* To invalidate max_lookahead_tries: */
3483 cached_first_cycle_multipass_dfa_lookahead = 0;
3484 }
3485
3486 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
3487 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
3488 else
3489 dfa_lookahead = 0;
3490
3491 if (targetm.sched.init_dfa_pre_cycle_insn)
3492 targetm.sched.init_dfa_pre_cycle_insn ();
3493
3494 if (targetm.sched.init_dfa_post_cycle_insn)
3495 targetm.sched.init_dfa_post_cycle_insn ();
3496
3497 dfa_start ();
3498 dfa_state_size = state_size ();
3499
3500 init_alias_analysis ();
3501
3502 df_set_flags (DF_LR_RUN_DCE);
3503 df_note_add_problem ();
3504
3505 /* More problems needed for interloop dep calculation in SMS. */
3506 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
3507 {
3508 df_rd_add_problem ();
3509 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
3510 }
3511
3512 df_analyze ();
3513
3514 /* Do not run DCE after reload, as this can kill nops inserted
3515 by bundling. */
3516 if (reload_completed)
3517 df_clear_flags (DF_LR_RUN_DCE);
3518
3519 regstat_compute_calls_crossed ();
3520
3521 if (targetm.sched.init_global)
3522 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
3523
3524 if (sched_pressure_p)
3525 {
3526 int i, max_regno = max_reg_num ();
3527
3528 ira_set_pseudo_classes (sched_verbose ? sched_dump : NULL);
3529 sched_regno_pressure_class
3530 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
3531 for (i = 0; i < max_regno; i++)
3532 sched_regno_pressure_class[i]
3533 = (i < FIRST_PSEUDO_REGISTER
3534 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
3535 : ira_pressure_class_translate[reg_allocno_class (i)]);
3536 curr_reg_live = BITMAP_ALLOC (NULL);
3537 saved_reg_live = BITMAP_ALLOC (NULL);
3538 region_ref_regs = BITMAP_ALLOC (NULL);
3539 }
3540
3541 curr_state = xmalloc (dfa_state_size);
3542 }
3543
3544 static void haifa_init_only_bb (basic_block, basic_block);
3545
3546 /* Initialize data structures specific to the Haifa scheduler. */
3547 void
3548 haifa_sched_init (void)
3549 {
3550 setup_sched_dump ();
3551 sched_init ();
3552
3553 scheduled_insns = VEC_alloc (rtx, heap, 0);
3554
3555 if (spec_info != NULL)
3556 {
3557 sched_deps_info->use_deps_list = 1;
3558 sched_deps_info->generate_spec_deps = 1;
3559 }
3560
3561 /* Initialize luids, dependency caches, target and h_i_d for the
3562 whole function. */
3563 {
3564 bb_vec_t bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
3565 basic_block bb;
3566
3567 sched_init_bbs ();
3568
3569 FOR_EACH_BB (bb)
3570 VEC_quick_push (basic_block, bbs, bb);
3571 sched_init_luids (bbs, NULL, NULL, NULL);
3572 sched_deps_init (true);
3573 sched_extend_target ();
3574 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
3575
3576 VEC_free (basic_block, heap, bbs);
3577 }
3578
3579 sched_init_only_bb = haifa_init_only_bb;
3580 sched_split_block = sched_split_block_1;
3581 sched_create_empty_bb = sched_create_empty_bb_1;
3582 haifa_recovery_bb_ever_added_p = false;
3583
3584 #ifdef ENABLE_CHECKING
3585 /* This is used preferably for finding bugs in check_cfg () itself.
3586 We must call sched_bbs_init () before check_cfg () because check_cfg ()
3587 assumes that the last insn in the last bb has a non-null successor. */
3588 check_cfg (0, 0);
3589 #endif
3590
3591 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
3592 before_recovery = 0;
3593 after_recovery = 0;
3594 }
3595
3596 /* Finish work with the data specific to the Haifa scheduler. */
3597 void
3598 haifa_sched_finish (void)
3599 {
3600 sched_create_empty_bb = NULL;
3601 sched_split_block = NULL;
3602 sched_init_only_bb = NULL;
3603
3604 if (spec_info && spec_info->dump)
3605 {
3606 char c = reload_completed ? 'a' : 'b';
3607
3608 fprintf (spec_info->dump,
3609 ";; %s:\n", current_function_name ());
3610
3611 fprintf (spec_info->dump,
3612 ";; Procedure %cr-begin-data-spec motions == %d\n",
3613 c, nr_begin_data);
3614 fprintf (spec_info->dump,
3615 ";; Procedure %cr-be-in-data-spec motions == %d\n",
3616 c, nr_be_in_data);
3617 fprintf (spec_info->dump,
3618 ";; Procedure %cr-begin-control-spec motions == %d\n",
3619 c, nr_begin_control);
3620 fprintf (spec_info->dump,
3621 ";; Procedure %cr-be-in-control-spec motions == %d\n",
3622 c, nr_be_in_control);
3623 }
3624
3625 VEC_free (rtx, heap, scheduled_insns);
3626
3627 /* Finalize h_i_d, dependency caches, and luids for the whole
3628 function. Target will be finalized in md_global_finish (). */
3629 sched_deps_finish ();
3630 sched_finish_luids ();
3631 current_sched_info = NULL;
3632 sched_finish ();
3633 }
3634
3635 /* Free global data used during insn scheduling. This function works with
3636 the common data shared between the schedulers. */
3637
3638 void
3639 sched_finish (void)
3640 {
3641 haifa_finish_h_i_d ();
3642 if (sched_pressure_p)
3643 {
3644 free (sched_regno_pressure_class);
3645 BITMAP_FREE (region_ref_regs);
3646 BITMAP_FREE (saved_reg_live);
3647 BITMAP_FREE (curr_reg_live);
3648 }
3649 free (curr_state);
3650
3651 if (targetm.sched.finish_global)
3652 targetm.sched.finish_global (sched_dump, sched_verbose);
3653
3654 end_alias_analysis ();
3655
3656 regstat_free_calls_crossed ();
3657
3658 dfa_finish ();
3659
3660 #ifdef ENABLE_CHECKING
3661 /* After reload ia64 backend clobbers CFG, so can't check anything. */
3662 if (!reload_completed)
3663 check_cfg (0, 0);
3664 #endif
3665 }
3666
3667 /* Fix INSN_TICKs of the instructions in the current block as well as
3668 INSN_TICKs of their dependents.
3669 HEAD and TAIL are the begin and the end of the current scheduled block. */
3670 static void
3671 fix_inter_tick (rtx head, rtx tail)
3672 {
3673 /* Set of instructions with corrected INSN_TICK. */
3674 bitmap_head processed;
3675 /* ??? It is doubtful if we should assume that cycle advance happens on
3676 basic block boundaries. Basically insns that are unconditionally ready
3677 on the start of the block are more preferable then those which have
3678 a one cycle dependency over insn from the previous block. */
3679 int next_clock = clock_var + 1;
3680
3681 bitmap_initialize (&processed, 0);
3682
3683 /* Iterates over scheduled instructions and fix their INSN_TICKs and
3684 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
3685 across different blocks. */
3686 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
3687 {
3688 if (INSN_P (head))
3689 {
3690 int tick;
3691 sd_iterator_def sd_it;
3692 dep_t dep;
3693
3694 tick = INSN_TICK (head);
3695 gcc_assert (tick >= MIN_TICK);
3696
3697 /* Fix INSN_TICK of instruction from just scheduled block. */
3698 if (bitmap_set_bit (&processed, INSN_LUID (head)))
3699 {
3700 tick -= next_clock;
3701
3702 if (tick < MIN_TICK)
3703 tick = MIN_TICK;
3704
3705 INSN_TICK (head) = tick;
3706 }
3707
3708 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
3709 {
3710 rtx next;
3711
3712 next = DEP_CON (dep);
3713 tick = INSN_TICK (next);
3714
3715 if (tick != INVALID_TICK
3716 /* If NEXT has its INSN_TICK calculated, fix it.
3717 If not - it will be properly calculated from
3718 scratch later in fix_tick_ready. */
3719 && bitmap_set_bit (&processed, INSN_LUID (next)))
3720 {
3721 tick -= next_clock;
3722
3723 if (tick < MIN_TICK)
3724 tick = MIN_TICK;
3725
3726 if (tick > INTER_TICK (next))
3727 INTER_TICK (next) = tick;
3728 else
3729 tick = INTER_TICK (next);
3730
3731 INSN_TICK (next) = tick;
3732 }
3733 }
3734 }
3735 }
3736 bitmap_clear (&processed);
3737 }
3738
3739 static int haifa_speculate_insn (rtx, ds_t, rtx *);
3740
3741 /* Check if NEXT is ready to be added to the ready or queue list.
3742 If "yes", add it to the proper list.
3743 Returns:
3744 -1 - is not ready yet,
3745 0 - added to the ready list,
3746 0 < N - queued for N cycles. */
3747 int
3748 try_ready (rtx next)
3749 {
3750 ds_t old_ts, *ts;
3751
3752 ts = &TODO_SPEC (next);
3753 old_ts = *ts;
3754
3755 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP))
3756 && ((old_ts & HARD_DEP)
3757 || (old_ts & SPECULATIVE)));
3758
3759 if (sd_lists_empty_p (next, SD_LIST_BACK))
3760 /* NEXT has all its dependencies resolved. */
3761 {
3762 /* Remove HARD_DEP bit from NEXT's status. */
3763 *ts &= ~HARD_DEP;
3764
3765 if (current_sched_info->flags & DO_SPECULATION)
3766 /* Remove all speculative bits from NEXT's status. */
3767 *ts &= ~SPECULATIVE;
3768 }
3769 else
3770 {
3771 /* One of the NEXT's dependencies has been resolved.
3772 Recalculate NEXT's status. */
3773
3774 *ts &= ~SPECULATIVE & ~HARD_DEP;
3775
3776 if (sd_lists_empty_p (next, SD_LIST_HARD_BACK))
3777 /* Now we've got NEXT with speculative deps only.
3778 1. Look at the deps to see what we have to do.
3779 2. Check if we can do 'todo'. */
3780 {
3781 sd_iterator_def sd_it;
3782 dep_t dep;
3783 bool first_p = true;
3784
3785 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
3786 {
3787 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
3788
3789 if (DEBUG_INSN_P (DEP_PRO (dep))
3790 && !DEBUG_INSN_P (next))
3791 continue;
3792
3793 if (first_p)
3794 {
3795 first_p = false;
3796
3797 *ts = ds;
3798 }
3799 else
3800 *ts = ds_merge (*ts, ds);
3801 }
3802
3803 if (ds_weak (*ts) < spec_info->data_weakness_cutoff)
3804 /* Too few points. */
3805 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3806 }
3807 else
3808 *ts |= HARD_DEP;
3809 }
3810
3811 if (*ts & HARD_DEP)
3812 gcc_assert (*ts == old_ts
3813 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
3814 else if (current_sched_info->new_ready)
3815 *ts = current_sched_info->new_ready (next, *ts);
3816
3817 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
3818 have its original pattern or changed (speculative) one. This is due
3819 to changing ebb in region scheduling.
3820 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
3821 has speculative pattern.
3822
3823 We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
3824 control-speculative NEXT could have been discarded by sched-rgn.c
3825 (the same case as when discarded by can_schedule_ready_p ()). */
3826
3827 if ((*ts & SPECULATIVE)
3828 /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
3829 need to change anything. */
3830 && *ts != old_ts)
3831 {
3832 int res;
3833 rtx new_pat;
3834
3835 gcc_assert ((*ts & SPECULATIVE) && !(*ts & ~SPECULATIVE));
3836
3837 res = haifa_speculate_insn (next, *ts, &new_pat);
3838
3839 switch (res)
3840 {
3841 case -1:
3842 /* It would be nice to change DEP_STATUS of all dependences,
3843 which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
3844 so we won't reanalyze anything. */
3845 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3846 break;
3847
3848 case 0:
3849 /* We follow the rule, that every speculative insn
3850 has non-null ORIG_PAT. */
3851 if (!ORIG_PAT (next))
3852 ORIG_PAT (next) = PATTERN (next);
3853 break;
3854
3855 case 1:
3856 if (!ORIG_PAT (next))
3857 /* If we gonna to overwrite the original pattern of insn,
3858 save it. */
3859 ORIG_PAT (next) = PATTERN (next);
3860
3861 haifa_change_pattern (next, new_pat);
3862 break;
3863
3864 default:
3865 gcc_unreachable ();
3866 }
3867 }
3868
3869 /* We need to restore pattern only if (*ts == 0), because otherwise it is
3870 either correct (*ts & SPECULATIVE),
3871 or we simply don't care (*ts & HARD_DEP). */
3872
3873 gcc_assert (!ORIG_PAT (next)
3874 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
3875
3876 if (*ts & HARD_DEP)
3877 {
3878 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
3879 control-speculative NEXT could have been discarded by sched-rgn.c
3880 (the same case as when discarded by can_schedule_ready_p ()). */
3881 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
3882
3883 change_queue_index (next, QUEUE_NOWHERE);
3884 return -1;
3885 }
3886 else if (!(*ts & BEGIN_SPEC) && ORIG_PAT (next) && !IS_SPECULATION_CHECK_P (next))
3887 /* We should change pattern of every previously speculative
3888 instruction - and we determine if NEXT was speculative by using
3889 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
3890 pat too, so skip them. */
3891 {
3892 haifa_change_pattern (next, ORIG_PAT (next));
3893 ORIG_PAT (next) = 0;
3894 }
3895
3896 if (sched_verbose >= 2)
3897 {
3898 int s = TODO_SPEC (next);
3899
3900 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
3901 (*current_sched_info->print_insn) (next, 0));
3902
3903 if (spec_info && spec_info->dump)
3904 {
3905 if (s & BEGIN_DATA)
3906 fprintf (spec_info->dump, "; data-spec;");
3907 if (s & BEGIN_CONTROL)
3908 fprintf (spec_info->dump, "; control-spec;");
3909 if (s & BE_IN_CONTROL)
3910 fprintf (spec_info->dump, "; in-control-spec;");
3911 }
3912
3913 fprintf (sched_dump, "\n");
3914 }
3915
3916 adjust_priority (next);
3917
3918 return fix_tick_ready (next);
3919 }
3920
3921 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
3922 static int
3923 fix_tick_ready (rtx next)
3924 {
3925 int tick, delay;
3926
3927 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
3928 {
3929 int full_p;
3930 sd_iterator_def sd_it;
3931 dep_t dep;
3932
3933 tick = INSN_TICK (next);
3934 /* if tick is not equal to INVALID_TICK, then update
3935 INSN_TICK of NEXT with the most recent resolved dependence
3936 cost. Otherwise, recalculate from scratch. */
3937 full_p = (tick == INVALID_TICK);
3938
3939 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
3940 {
3941 rtx pro = DEP_PRO (dep);
3942 int tick1;
3943
3944 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
3945
3946 tick1 = INSN_TICK (pro) + dep_cost (dep);
3947 if (tick1 > tick)
3948 tick = tick1;
3949
3950 if (!full_p)
3951 break;
3952 }
3953 }
3954 else
3955 tick = -1;
3956
3957 INSN_TICK (next) = tick;
3958
3959 delay = tick - clock_var;
3960 if (delay <= 0 || sched_pressure_p)
3961 delay = QUEUE_READY;
3962
3963 change_queue_index (next, delay);
3964
3965 return delay;
3966 }
3967
3968 /* Move NEXT to the proper queue list with (DELAY >= 1),
3969 or add it to the ready list (DELAY == QUEUE_READY),
3970 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
3971 static void
3972 change_queue_index (rtx next, int delay)
3973 {
3974 int i = QUEUE_INDEX (next);
3975
3976 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
3977 && delay != 0);
3978 gcc_assert (i != QUEUE_SCHEDULED);
3979
3980 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
3981 || (delay < 0 && delay == i))
3982 /* We have nothing to do. */
3983 return;
3984
3985 /* Remove NEXT from wherever it is now. */
3986 if (i == QUEUE_READY)
3987 ready_remove_insn (next);
3988 else if (i >= 0)
3989 queue_remove (next);
3990
3991 /* Add it to the proper place. */
3992 if (delay == QUEUE_READY)
3993 ready_add (readyp, next, false);
3994 else if (delay >= 1)
3995 queue_insn (next, delay, "change queue index");
3996
3997 if (sched_verbose >= 2)
3998 {
3999 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
4000 (*current_sched_info->print_insn) (next, 0));
4001
4002 if (delay == QUEUE_READY)
4003 fprintf (sched_dump, " into ready\n");
4004 else if (delay >= 1)
4005 fprintf (sched_dump, " into queue with cost=%d\n", delay);
4006 else
4007 fprintf (sched_dump, " removed from ready or queue lists\n");
4008 }
4009 }
4010
4011 static int sched_ready_n_insns = -1;
4012
4013 /* Initialize per region data structures. */
4014 void
4015 sched_extend_ready_list (int new_sched_ready_n_insns)
4016 {
4017 int i;
4018
4019 if (sched_ready_n_insns == -1)
4020 /* At the first call we need to initialize one more choice_stack
4021 entry. */
4022 {
4023 i = 0;
4024 sched_ready_n_insns = 0;
4025 VEC_reserve (rtx, heap, scheduled_insns, new_sched_ready_n_insns);
4026 }
4027 else
4028 i = sched_ready_n_insns + 1;
4029
4030 ready.veclen = new_sched_ready_n_insns + issue_rate;
4031 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
4032
4033 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
4034
4035 ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
4036 sched_ready_n_insns, sizeof (*ready_try));
4037
4038 /* We allocate +1 element to save initial state in the choice_stack[0]
4039 entry. */
4040 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
4041 new_sched_ready_n_insns + 1);
4042
4043 for (; i <= new_sched_ready_n_insns; i++)
4044 {
4045 choice_stack[i].state = xmalloc (dfa_state_size);
4046
4047 if (targetm.sched.first_cycle_multipass_init)
4048 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
4049 .target_data));
4050 }
4051
4052 sched_ready_n_insns = new_sched_ready_n_insns;
4053 }
4054
4055 /* Free per region data structures. */
4056 void
4057 sched_finish_ready_list (void)
4058 {
4059 int i;
4060
4061 free (ready.vec);
4062 ready.vec = NULL;
4063 ready.veclen = 0;
4064
4065 free (ready_try);
4066 ready_try = NULL;
4067
4068 for (i = 0; i <= sched_ready_n_insns; i++)
4069 {
4070 if (targetm.sched.first_cycle_multipass_fini)
4071 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
4072 .target_data));
4073
4074 free (choice_stack [i].state);
4075 }
4076 free (choice_stack);
4077 choice_stack = NULL;
4078
4079 sched_ready_n_insns = -1;
4080 }
4081
4082 static int
4083 haifa_luid_for_non_insn (rtx x)
4084 {
4085 gcc_assert (NOTE_P (x) || LABEL_P (x));
4086
4087 return 0;
4088 }
4089
4090 /* Generates recovery code for INSN. */
4091 static void
4092 generate_recovery_code (rtx insn)
4093 {
4094 if (TODO_SPEC (insn) & BEGIN_SPEC)
4095 begin_speculative_block (insn);
4096
4097 /* Here we have insn with no dependencies to
4098 instructions other then CHECK_SPEC ones. */
4099
4100 if (TODO_SPEC (insn) & BE_IN_SPEC)
4101 add_to_speculative_block (insn);
4102 }
4103
4104 /* Helper function.
4105 Tries to add speculative dependencies of type FS between instructions
4106 in deps_list L and TWIN. */
4107 static void
4108 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
4109 {
4110 sd_iterator_def sd_it;
4111 dep_t dep;
4112
4113 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
4114 {
4115 ds_t ds;
4116 rtx consumer;
4117
4118 consumer = DEP_CON (dep);
4119
4120 ds = DEP_STATUS (dep);
4121
4122 if (/* If we want to create speculative dep. */
4123 fs
4124 /* And we can do that because this is a true dep. */
4125 && (ds & DEP_TYPES) == DEP_TRUE)
4126 {
4127 gcc_assert (!(ds & BE_IN_SPEC));
4128
4129 if (/* If this dep can be overcome with 'begin speculation'. */
4130 ds & BEGIN_SPEC)
4131 /* Then we have a choice: keep the dep 'begin speculative'
4132 or transform it into 'be in speculative'. */
4133 {
4134 if (/* In try_ready we assert that if insn once became ready
4135 it can be removed from the ready (or queue) list only
4136 due to backend decision. Hence we can't let the
4137 probability of the speculative dep to decrease. */
4138 ds_weak (ds) <= ds_weak (fs))
4139 {
4140 ds_t new_ds;
4141
4142 new_ds = (ds & ~BEGIN_SPEC) | fs;
4143
4144 if (/* consumer can 'be in speculative'. */
4145 sched_insn_is_legitimate_for_speculation_p (consumer,
4146 new_ds))
4147 /* Transform it to be in speculative. */
4148 ds = new_ds;
4149 }
4150 }
4151 else
4152 /* Mark the dep as 'be in speculative'. */
4153 ds |= fs;
4154 }
4155
4156 {
4157 dep_def _new_dep, *new_dep = &_new_dep;
4158
4159 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
4160 sd_add_dep (new_dep, false);
4161 }
4162 }
4163 }
4164
4165 /* Generates recovery code for BEGIN speculative INSN. */
4166 static void
4167 begin_speculative_block (rtx insn)
4168 {
4169 if (TODO_SPEC (insn) & BEGIN_DATA)
4170 nr_begin_data++;
4171 if (TODO_SPEC (insn) & BEGIN_CONTROL)
4172 nr_begin_control++;
4173
4174 create_check_block_twin (insn, false);
4175
4176 TODO_SPEC (insn) &= ~BEGIN_SPEC;
4177 }
4178
4179 static void haifa_init_insn (rtx);
4180
4181 /* Generates recovery code for BE_IN speculative INSN. */
4182 static void
4183 add_to_speculative_block (rtx insn)
4184 {
4185 ds_t ts;
4186 sd_iterator_def sd_it;
4187 dep_t dep;
4188 rtx twins = NULL;
4189 rtx_vec_t priorities_roots;
4190
4191 ts = TODO_SPEC (insn);
4192 gcc_assert (!(ts & ~BE_IN_SPEC));
4193
4194 if (ts & BE_IN_DATA)
4195 nr_be_in_data++;
4196 if (ts & BE_IN_CONTROL)
4197 nr_be_in_control++;
4198
4199 TODO_SPEC (insn) &= ~BE_IN_SPEC;
4200 gcc_assert (!TODO_SPEC (insn));
4201
4202 DONE_SPEC (insn) |= ts;
4203
4204 /* First we convert all simple checks to branchy. */
4205 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4206 sd_iterator_cond (&sd_it, &dep);)
4207 {
4208 rtx check = DEP_PRO (dep);
4209
4210 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
4211 {
4212 create_check_block_twin (check, true);
4213
4214 /* Restart search. */
4215 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4216 }
4217 else
4218 /* Continue search. */
4219 sd_iterator_next (&sd_it);
4220 }
4221
4222 priorities_roots = NULL;
4223 clear_priorities (insn, &priorities_roots);
4224
4225 while (1)
4226 {
4227 rtx check, twin;
4228 basic_block rec;
4229
4230 /* Get the first backward dependency of INSN. */
4231 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4232 if (!sd_iterator_cond (&sd_it, &dep))
4233 /* INSN has no backward dependencies left. */
4234 break;
4235
4236 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
4237 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
4238 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
4239
4240 check = DEP_PRO (dep);
4241
4242 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
4243 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
4244
4245 rec = BLOCK_FOR_INSN (check);
4246
4247 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
4248 haifa_init_insn (twin);
4249
4250 sd_copy_back_deps (twin, insn, true);
4251
4252 if (sched_verbose && spec_info->dump)
4253 /* INSN_BB (insn) isn't determined for twin insns yet.
4254 So we can't use current_sched_info->print_insn. */
4255 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
4256 INSN_UID (twin), rec->index);
4257
4258 twins = alloc_INSN_LIST (twin, twins);
4259
4260 /* Add dependences between TWIN and all appropriate
4261 instructions from REC. */
4262 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
4263 {
4264 rtx pro = DEP_PRO (dep);
4265
4266 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
4267
4268 /* INSN might have dependencies from the instructions from
4269 several recovery blocks. At this iteration we process those
4270 producers that reside in REC. */
4271 if (BLOCK_FOR_INSN (pro) == rec)
4272 {
4273 dep_def _new_dep, *new_dep = &_new_dep;
4274
4275 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
4276 sd_add_dep (new_dep, false);
4277 }
4278 }
4279
4280 process_insn_forw_deps_be_in_spec (insn, twin, ts);
4281
4282 /* Remove all dependencies between INSN and insns in REC. */
4283 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4284 sd_iterator_cond (&sd_it, &dep);)
4285 {
4286 rtx pro = DEP_PRO (dep);
4287
4288 if (BLOCK_FOR_INSN (pro) == rec)
4289 sd_delete_dep (sd_it);
4290 else
4291 sd_iterator_next (&sd_it);
4292 }
4293 }
4294
4295 /* We couldn't have added the dependencies between INSN and TWINS earlier
4296 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
4297 while (twins)
4298 {
4299 rtx twin;
4300
4301 twin = XEXP (twins, 0);
4302
4303 {
4304 dep_def _new_dep, *new_dep = &_new_dep;
4305
4306 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
4307 sd_add_dep (new_dep, false);
4308 }
4309
4310 twin = XEXP (twins, 1);
4311 free_INSN_LIST_node (twins);
4312 twins = twin;
4313 }
4314
4315 calc_priorities (priorities_roots);
4316 VEC_free (rtx, heap, priorities_roots);
4317 }
4318
4319 /* Extends and fills with zeros (only the new part) array pointed to by P. */
4320 void *
4321 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
4322 {
4323 gcc_assert (new_nmemb >= old_nmemb);
4324 p = XRESIZEVAR (void, p, new_nmemb * size);
4325 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
4326 return p;
4327 }
4328
4329 /* Helper function.
4330 Find fallthru edge from PRED. */
4331 edge
4332 find_fallthru_edge_from (basic_block pred)
4333 {
4334 edge e;
4335 basic_block succ;
4336
4337 succ = pred->next_bb;
4338 gcc_assert (succ->prev_bb == pred);
4339
4340 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
4341 {
4342 e = find_fallthru_edge (pred->succs);
4343
4344 if (e)
4345 {
4346 gcc_assert (e->dest == succ);
4347 return e;
4348 }
4349 }
4350 else
4351 {
4352 e = find_fallthru_edge (succ->preds);
4353
4354 if (e)
4355 {
4356 gcc_assert (e->src == pred);
4357 return e;
4358 }
4359 }
4360
4361 return NULL;
4362 }
4363
4364 /* Extend per basic block data structures. */
4365 static void
4366 sched_extend_bb (void)
4367 {
4368 rtx insn;
4369
4370 /* The following is done to keep current_sched_info->next_tail non null. */
4371 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
4372 if (NEXT_INSN (insn) == 0
4373 || (!NOTE_P (insn)
4374 && !LABEL_P (insn)
4375 /* Don't emit a NOTE if it would end up before a BARRIER. */
4376 && !BARRIER_P (NEXT_INSN (insn))))
4377 {
4378 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
4379 /* Make insn appear outside BB. */
4380 set_block_for_insn (note, NULL);
4381 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
4382 }
4383 }
4384
4385 /* Init per basic block data structures. */
4386 void
4387 sched_init_bbs (void)
4388 {
4389 sched_extend_bb ();
4390 }
4391
4392 /* Initialize BEFORE_RECOVERY variable. */
4393 static void
4394 init_before_recovery (basic_block *before_recovery_ptr)
4395 {
4396 basic_block last;
4397 edge e;
4398
4399 last = EXIT_BLOCK_PTR->prev_bb;
4400 e = find_fallthru_edge_from (last);
4401
4402 if (e)
4403 {
4404 /* We create two basic blocks:
4405 1. Single instruction block is inserted right after E->SRC
4406 and has jump to
4407 2. Empty block right before EXIT_BLOCK.
4408 Between these two blocks recovery blocks will be emitted. */
4409
4410 basic_block single, empty;
4411 rtx x, label;
4412
4413 /* If the fallthrough edge to exit we've found is from the block we've
4414 created before, don't do anything more. */
4415 if (last == after_recovery)
4416 return;
4417
4418 adding_bb_to_current_region_p = false;
4419
4420 single = sched_create_empty_bb (last);
4421 empty = sched_create_empty_bb (single);
4422
4423 /* Add new blocks to the root loop. */
4424 if (current_loops != NULL)
4425 {
4426 add_bb_to_loop (single, VEC_index (loop_p, current_loops->larray, 0));
4427 add_bb_to_loop (empty, VEC_index (loop_p, current_loops->larray, 0));
4428 }
4429
4430 single->count = last->count;
4431 empty->count = last->count;
4432 single->frequency = last->frequency;
4433 empty->frequency = last->frequency;
4434 BB_COPY_PARTITION (single, last);
4435 BB_COPY_PARTITION (empty, last);
4436
4437 redirect_edge_succ (e, single);
4438 make_single_succ_edge (single, empty, 0);
4439 make_single_succ_edge (empty, EXIT_BLOCK_PTR,
4440 EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
4441
4442 label = block_label (empty);
4443 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
4444 JUMP_LABEL (x) = label;
4445 LABEL_NUSES (label)++;
4446 haifa_init_insn (x);
4447
4448 emit_barrier_after (x);
4449
4450 sched_init_only_bb (empty, NULL);
4451 sched_init_only_bb (single, NULL);
4452 sched_extend_bb ();
4453
4454 adding_bb_to_current_region_p = true;
4455 before_recovery = single;
4456 after_recovery = empty;
4457
4458 if (before_recovery_ptr)
4459 *before_recovery_ptr = before_recovery;
4460
4461 if (sched_verbose >= 2 && spec_info->dump)
4462 fprintf (spec_info->dump,
4463 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
4464 last->index, single->index, empty->index);
4465 }
4466 else
4467 before_recovery = last;
4468 }
4469
4470 /* Returns new recovery block. */
4471 basic_block
4472 sched_create_recovery_block (basic_block *before_recovery_ptr)
4473 {
4474 rtx label;
4475 rtx barrier;
4476 basic_block rec;
4477
4478 haifa_recovery_bb_recently_added_p = true;
4479 haifa_recovery_bb_ever_added_p = true;
4480
4481 init_before_recovery (before_recovery_ptr);
4482
4483 barrier = get_last_bb_insn (before_recovery);
4484 gcc_assert (BARRIER_P (barrier));
4485
4486 label = emit_label_after (gen_label_rtx (), barrier);
4487
4488 rec = create_basic_block (label, label, before_recovery);
4489
4490 /* A recovery block always ends with an unconditional jump. */
4491 emit_barrier_after (BB_END (rec));
4492
4493 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
4494 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
4495
4496 if (sched_verbose && spec_info->dump)
4497 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
4498 rec->index);
4499
4500 return rec;
4501 }
4502
4503 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
4504 and emit necessary jumps. */
4505 void
4506 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
4507 basic_block second_bb)
4508 {
4509 rtx label;
4510 rtx jump;
4511 int edge_flags;
4512
4513 /* This is fixing of incoming edge. */
4514 /* ??? Which other flags should be specified? */
4515 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
4516 /* Partition type is the same, if it is "unpartitioned". */
4517 edge_flags = EDGE_CROSSING;
4518 else
4519 edge_flags = 0;
4520
4521 make_edge (first_bb, rec, edge_flags);
4522 label = block_label (second_bb);
4523 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
4524 JUMP_LABEL (jump) = label;
4525 LABEL_NUSES (label)++;
4526
4527 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
4528 /* Partition type is the same, if it is "unpartitioned". */
4529 {
4530 /* Rewritten from cfgrtl.c. */
4531 if (flag_reorder_blocks_and_partition
4532 && targetm.have_named_sections)
4533 {
4534 /* We don't need the same note for the check because
4535 any_condjump_p (check) == true. */
4536 add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
4537 }
4538 edge_flags = EDGE_CROSSING;
4539 }
4540 else
4541 edge_flags = 0;
4542
4543 make_single_succ_edge (rec, second_bb, edge_flags);
4544 if (dom_info_available_p (CDI_DOMINATORS))
4545 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
4546 }
4547
4548 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
4549 INSN is a simple check, that should be converted to branchy one. */
4550 static void
4551 create_check_block_twin (rtx insn, bool mutate_p)
4552 {
4553 basic_block rec;
4554 rtx label, check, twin;
4555 ds_t fs;
4556 sd_iterator_def sd_it;
4557 dep_t dep;
4558 dep_def _new_dep, *new_dep = &_new_dep;
4559 ds_t todo_spec;
4560
4561 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
4562
4563 if (!mutate_p)
4564 todo_spec = TODO_SPEC (insn);
4565 else
4566 {
4567 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
4568 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
4569
4570 todo_spec = CHECK_SPEC (insn);
4571 }
4572
4573 todo_spec &= SPECULATIVE;
4574
4575 /* Create recovery block. */
4576 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
4577 {
4578 rec = sched_create_recovery_block (NULL);
4579 label = BB_HEAD (rec);
4580 }
4581 else
4582 {
4583 rec = EXIT_BLOCK_PTR;
4584 label = NULL_RTX;
4585 }
4586
4587 /* Emit CHECK. */
4588 check = targetm.sched.gen_spec_check (insn, label, todo_spec);
4589
4590 if (rec != EXIT_BLOCK_PTR)
4591 {
4592 /* To have mem_reg alive at the beginning of second_bb,
4593 we emit check BEFORE insn, so insn after splitting
4594 insn will be at the beginning of second_bb, which will
4595 provide us with the correct life information. */
4596 check = emit_jump_insn_before (check, insn);
4597 JUMP_LABEL (check) = label;
4598 LABEL_NUSES (label)++;
4599 }
4600 else
4601 check = emit_insn_before (check, insn);
4602
4603 /* Extend data structures. */
4604 haifa_init_insn (check);
4605
4606 /* CHECK is being added to current region. Extend ready list. */
4607 gcc_assert (sched_ready_n_insns != -1);
4608 sched_extend_ready_list (sched_ready_n_insns + 1);
4609
4610 if (current_sched_info->add_remove_insn)
4611 current_sched_info->add_remove_insn (insn, 0);
4612
4613 RECOVERY_BLOCK (check) = rec;
4614
4615 if (sched_verbose && spec_info->dump)
4616 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
4617 (*current_sched_info->print_insn) (check, 0));
4618
4619 gcc_assert (ORIG_PAT (insn));
4620
4621 /* Initialize TWIN (twin is a duplicate of original instruction
4622 in the recovery block). */
4623 if (rec != EXIT_BLOCK_PTR)
4624 {
4625 sd_iterator_def sd_it;
4626 dep_t dep;
4627
4628 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
4629 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
4630 {
4631 struct _dep _dep2, *dep2 = &_dep2;
4632
4633 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
4634
4635 sd_add_dep (dep2, true);
4636 }
4637
4638 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
4639 haifa_init_insn (twin);
4640
4641 if (sched_verbose && spec_info->dump)
4642 /* INSN_BB (insn) isn't determined for twin insns yet.
4643 So we can't use current_sched_info->print_insn. */
4644 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
4645 INSN_UID (twin), rec->index);
4646 }
4647 else
4648 {
4649 ORIG_PAT (check) = ORIG_PAT (insn);
4650 HAS_INTERNAL_DEP (check) = 1;
4651 twin = check;
4652 /* ??? We probably should change all OUTPUT dependencies to
4653 (TRUE | OUTPUT). */
4654 }
4655
4656 /* Copy all resolved back dependencies of INSN to TWIN. This will
4657 provide correct value for INSN_TICK (TWIN). */
4658 sd_copy_back_deps (twin, insn, true);
4659
4660 if (rec != EXIT_BLOCK_PTR)
4661 /* In case of branchy check, fix CFG. */
4662 {
4663 basic_block first_bb, second_bb;
4664 rtx jump;
4665
4666 first_bb = BLOCK_FOR_INSN (check);
4667 second_bb = sched_split_block (first_bb, check);
4668
4669 sched_create_recovery_edges (first_bb, rec, second_bb);
4670
4671 sched_init_only_bb (second_bb, first_bb);
4672 sched_init_only_bb (rec, EXIT_BLOCK_PTR);
4673
4674 jump = BB_END (rec);
4675 haifa_init_insn (jump);
4676 }
4677
4678 /* Move backward dependences from INSN to CHECK and
4679 move forward dependences from INSN to TWIN. */
4680
4681 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
4682 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4683 {
4684 rtx pro = DEP_PRO (dep);
4685 ds_t ds;
4686
4687 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
4688 check --TRUE--> producer ??? or ANTI ???
4689 twin --TRUE--> producer
4690 twin --ANTI--> check
4691
4692 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
4693 check --ANTI--> producer
4694 twin --ANTI--> producer
4695 twin --ANTI--> check
4696
4697 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
4698 check ~~TRUE~~> producer
4699 twin ~~TRUE~~> producer
4700 twin --ANTI--> check */
4701
4702 ds = DEP_STATUS (dep);
4703
4704 if (ds & BEGIN_SPEC)
4705 {
4706 gcc_assert (!mutate_p);
4707 ds &= ~BEGIN_SPEC;
4708 }
4709
4710 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
4711 sd_add_dep (new_dep, false);
4712
4713 if (rec != EXIT_BLOCK_PTR)
4714 {
4715 DEP_CON (new_dep) = twin;
4716 sd_add_dep (new_dep, false);
4717 }
4718 }
4719
4720 /* Second, remove backward dependencies of INSN. */
4721 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4722 sd_iterator_cond (&sd_it, &dep);)
4723 {
4724 if ((DEP_STATUS (dep) & BEGIN_SPEC)
4725 || mutate_p)
4726 /* We can delete this dep because we overcome it with
4727 BEGIN_SPECULATION. */
4728 sd_delete_dep (sd_it);
4729 else
4730 sd_iterator_next (&sd_it);
4731 }
4732
4733 /* Future Speculations. Determine what BE_IN speculations will be like. */
4734 fs = 0;
4735
4736 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
4737 here. */
4738
4739 gcc_assert (!DONE_SPEC (insn));
4740
4741 if (!mutate_p)
4742 {
4743 ds_t ts = TODO_SPEC (insn);
4744
4745 DONE_SPEC (insn) = ts & BEGIN_SPEC;
4746 CHECK_SPEC (check) = ts & BEGIN_SPEC;
4747
4748 /* Luckiness of future speculations solely depends upon initial
4749 BEGIN speculation. */
4750 if (ts & BEGIN_DATA)
4751 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
4752 if (ts & BEGIN_CONTROL)
4753 fs = set_dep_weak (fs, BE_IN_CONTROL,
4754 get_dep_weak (ts, BEGIN_CONTROL));
4755 }
4756 else
4757 CHECK_SPEC (check) = CHECK_SPEC (insn);
4758
4759 /* Future speculations: call the helper. */
4760 process_insn_forw_deps_be_in_spec (insn, twin, fs);
4761
4762 if (rec != EXIT_BLOCK_PTR)
4763 {
4764 /* Which types of dependencies should we use here is,
4765 generally, machine-dependent question... But, for now,
4766 it is not. */
4767
4768 if (!mutate_p)
4769 {
4770 init_dep (new_dep, insn, check, REG_DEP_TRUE);
4771 sd_add_dep (new_dep, false);
4772
4773 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
4774 sd_add_dep (new_dep, false);
4775 }
4776 else
4777 {
4778 if (spec_info->dump)
4779 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
4780 (*current_sched_info->print_insn) (insn, 0));
4781
4782 /* Remove all dependencies of the INSN. */
4783 {
4784 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
4785 | SD_LIST_BACK
4786 | SD_LIST_RES_BACK));
4787 while (sd_iterator_cond (&sd_it, &dep))
4788 sd_delete_dep (sd_it);
4789 }
4790
4791 /* If former check (INSN) already was moved to the ready (or queue)
4792 list, add new check (CHECK) there too. */
4793 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
4794 try_ready (check);
4795
4796 /* Remove old check from instruction stream and free its
4797 data. */
4798 sched_remove_insn (insn);
4799 }
4800
4801 init_dep (new_dep, check, twin, REG_DEP_ANTI);
4802 sd_add_dep (new_dep, false);
4803 }
4804 else
4805 {
4806 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
4807 sd_add_dep (new_dep, false);
4808 }
4809
4810 if (!mutate_p)
4811 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
4812 because it'll be done later in add_to_speculative_block. */
4813 {
4814 rtx_vec_t priorities_roots = NULL;
4815
4816 clear_priorities (twin, &priorities_roots);
4817 calc_priorities (priorities_roots);
4818 VEC_free (rtx, heap, priorities_roots);
4819 }
4820 }
4821
4822 /* Removes dependency between instructions in the recovery block REC
4823 and usual region instructions. It keeps inner dependences so it
4824 won't be necessary to recompute them. */
4825 static void
4826 fix_recovery_deps (basic_block rec)
4827 {
4828 rtx note, insn, jump, ready_list = 0;
4829 bitmap_head in_ready;
4830 rtx link;
4831
4832 bitmap_initialize (&in_ready, 0);
4833
4834 /* NOTE - a basic block note. */
4835 note = NEXT_INSN (BB_HEAD (rec));
4836 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4837 insn = BB_END (rec);
4838 gcc_assert (JUMP_P (insn));
4839 insn = PREV_INSN (insn);
4840
4841 do
4842 {
4843 sd_iterator_def sd_it;
4844 dep_t dep;
4845
4846 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4847 sd_iterator_cond (&sd_it, &dep);)
4848 {
4849 rtx consumer = DEP_CON (dep);
4850
4851 if (BLOCK_FOR_INSN (consumer) != rec)
4852 {
4853 sd_delete_dep (sd_it);
4854
4855 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
4856 ready_list = alloc_INSN_LIST (consumer, ready_list);
4857 }
4858 else
4859 {
4860 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
4861
4862 sd_iterator_next (&sd_it);
4863 }
4864 }
4865
4866 insn = PREV_INSN (insn);
4867 }
4868 while (insn != note);
4869
4870 bitmap_clear (&in_ready);
4871
4872 /* Try to add instructions to the ready or queue list. */
4873 for (link = ready_list; link; link = XEXP (link, 1))
4874 try_ready (XEXP (link, 0));
4875 free_INSN_LIST_list (&ready_list);
4876
4877 /* Fixing jump's dependences. */
4878 insn = BB_HEAD (rec);
4879 jump = BB_END (rec);
4880
4881 gcc_assert (LABEL_P (insn));
4882 insn = NEXT_INSN (insn);
4883
4884 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4885 add_jump_dependencies (insn, jump);
4886 }
4887
4888 /* Change pattern of INSN to NEW_PAT. */
4889 void
4890 sched_change_pattern (rtx insn, rtx new_pat)
4891 {
4892 int t;
4893
4894 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
4895 gcc_assert (t);
4896 dfa_clear_single_insn_cache (insn);
4897 }
4898
4899 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
4900 instruction data. */
4901 static void
4902 haifa_change_pattern (rtx insn, rtx new_pat)
4903 {
4904 sched_change_pattern (insn, new_pat);
4905
4906 /* Invalidate INSN_COST, so it'll be recalculated. */
4907 INSN_COST (insn) = -1;
4908 /* Invalidate INSN_TICK, so it'll be recalculated. */
4909 INSN_TICK (insn) = INVALID_TICK;
4910 }
4911
4912 /* -1 - can't speculate,
4913 0 - for speculation with REQUEST mode it is OK to use
4914 current instruction pattern,
4915 1 - need to change pattern for *NEW_PAT to be speculative. */
4916 int
4917 sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4918 {
4919 gcc_assert (current_sched_info->flags & DO_SPECULATION
4920 && (request & SPECULATIVE)
4921 && sched_insn_is_legitimate_for_speculation_p (insn, request));
4922
4923 if ((request & spec_info->mask) != request)
4924 return -1;
4925
4926 if (request & BE_IN_SPEC
4927 && !(request & BEGIN_SPEC))
4928 return 0;
4929
4930 return targetm.sched.speculate_insn (insn, request, new_pat);
4931 }
4932
4933 static int
4934 haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4935 {
4936 gcc_assert (sched_deps_info->generate_spec_deps
4937 && !IS_SPECULATION_CHECK_P (insn));
4938
4939 if (HAS_INTERNAL_DEP (insn)
4940 || SCHED_GROUP_P (insn))
4941 return -1;
4942
4943 return sched_speculate_insn (insn, request, new_pat);
4944 }
4945
4946 /* Print some information about block BB, which starts with HEAD and
4947 ends with TAIL, before scheduling it.
4948 I is zero, if scheduler is about to start with the fresh ebb. */
4949 static void
4950 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
4951 {
4952 if (!i)
4953 fprintf (sched_dump,
4954 ";; ======================================================\n");
4955 else
4956 fprintf (sched_dump,
4957 ";; =====================ADVANCING TO=====================\n");
4958 fprintf (sched_dump,
4959 ";; -- basic block %d from %d to %d -- %s reload\n",
4960 bb->index, INSN_UID (head), INSN_UID (tail),
4961 (reload_completed ? "after" : "before"));
4962 fprintf (sched_dump,
4963 ";; ======================================================\n");
4964 fprintf (sched_dump, "\n");
4965 }
4966
4967 /* Unlink basic block notes and labels and saves them, so they
4968 can be easily restored. We unlink basic block notes in EBB to
4969 provide back-compatibility with the previous code, as target backends
4970 assume, that there'll be only instructions between
4971 current_sched_info->{head and tail}. We restore these notes as soon
4972 as we can.
4973 FIRST (LAST) is the first (last) basic block in the ebb.
4974 NB: In usual case (FIRST == LAST) nothing is really done. */
4975 void
4976 unlink_bb_notes (basic_block first, basic_block last)
4977 {
4978 /* We DON'T unlink basic block notes of the first block in the ebb. */
4979 if (first == last)
4980 return;
4981
4982 bb_header = XNEWVEC (rtx, last_basic_block);
4983
4984 /* Make a sentinel. */
4985 if (last->next_bb != EXIT_BLOCK_PTR)
4986 bb_header[last->next_bb->index] = 0;
4987
4988 first = first->next_bb;
4989 do
4990 {
4991 rtx prev, label, note, next;
4992
4993 label = BB_HEAD (last);
4994 if (LABEL_P (label))
4995 note = NEXT_INSN (label);
4996 else
4997 note = label;
4998 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4999
5000 prev = PREV_INSN (label);
5001 next = NEXT_INSN (note);
5002 gcc_assert (prev && next);
5003
5004 NEXT_INSN (prev) = next;
5005 PREV_INSN (next) = prev;
5006
5007 bb_header[last->index] = label;
5008
5009 if (last == first)
5010 break;
5011
5012 last = last->prev_bb;
5013 }
5014 while (1);
5015 }
5016
5017 /* Restore basic block notes.
5018 FIRST is the first basic block in the ebb. */
5019 static void
5020 restore_bb_notes (basic_block first)
5021 {
5022 if (!bb_header)
5023 return;
5024
5025 /* We DON'T unlink basic block notes of the first block in the ebb. */
5026 first = first->next_bb;
5027 /* Remember: FIRST is actually a second basic block in the ebb. */
5028
5029 while (first != EXIT_BLOCK_PTR
5030 && bb_header[first->index])
5031 {
5032 rtx prev, label, note, next;
5033
5034 label = bb_header[first->index];
5035 prev = PREV_INSN (label);
5036 next = NEXT_INSN (prev);
5037
5038 if (LABEL_P (label))
5039 note = NEXT_INSN (label);
5040 else
5041 note = label;
5042 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5043
5044 bb_header[first->index] = 0;
5045
5046 NEXT_INSN (prev) = label;
5047 NEXT_INSN (note) = next;
5048 PREV_INSN (next) = note;
5049
5050 first = first->next_bb;
5051 }
5052
5053 free (bb_header);
5054 bb_header = 0;
5055 }
5056
5057 /* Helper function.
5058 Fix CFG after both in- and inter-block movement of
5059 control_flow_insn_p JUMP. */
5060 static void
5061 fix_jump_move (rtx jump)
5062 {
5063 basic_block bb, jump_bb, jump_bb_next;
5064
5065 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
5066 jump_bb = BLOCK_FOR_INSN (jump);
5067 jump_bb_next = jump_bb->next_bb;
5068
5069 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
5070 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
5071
5072 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
5073 /* if jump_bb_next is not empty. */
5074 BB_END (jump_bb) = BB_END (jump_bb_next);
5075
5076 if (BB_END (bb) != PREV_INSN (jump))
5077 /* Then there are instruction after jump that should be placed
5078 to jump_bb_next. */
5079 BB_END (jump_bb_next) = BB_END (bb);
5080 else
5081 /* Otherwise jump_bb_next is empty. */
5082 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
5083
5084 /* To make assertion in move_insn happy. */
5085 BB_END (bb) = PREV_INSN (jump);
5086
5087 update_bb_for_insn (jump_bb_next);
5088 }
5089
5090 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
5091 static void
5092 move_block_after_check (rtx jump)
5093 {
5094 basic_block bb, jump_bb, jump_bb_next;
5095 VEC(edge,gc) *t;
5096
5097 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
5098 jump_bb = BLOCK_FOR_INSN (jump);
5099 jump_bb_next = jump_bb->next_bb;
5100
5101 update_bb_for_insn (jump_bb);
5102
5103 gcc_assert (IS_SPECULATION_CHECK_P (jump)
5104 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
5105
5106 unlink_block (jump_bb_next);
5107 link_block (jump_bb_next, bb);
5108
5109 t = bb->succs;
5110 bb->succs = 0;
5111 move_succs (&(jump_bb->succs), bb);
5112 move_succs (&(jump_bb_next->succs), jump_bb);
5113 move_succs (&t, jump_bb_next);
5114
5115 df_mark_solutions_dirty ();
5116
5117 common_sched_info->fix_recovery_cfg
5118 (bb->index, jump_bb->index, jump_bb_next->index);
5119 }
5120
5121 /* Helper function for move_block_after_check.
5122 This functions attaches edge vector pointed to by SUCCSP to
5123 block TO. */
5124 static void
5125 move_succs (VEC(edge,gc) **succsp, basic_block to)
5126 {
5127 edge e;
5128 edge_iterator ei;
5129
5130 gcc_assert (to->succs == 0);
5131
5132 to->succs = *succsp;
5133
5134 FOR_EACH_EDGE (e, ei, to->succs)
5135 e->src = to;
5136
5137 *succsp = 0;
5138 }
5139
5140 /* Remove INSN from the instruction stream.
5141 INSN should have any dependencies. */
5142 static void
5143 sched_remove_insn (rtx insn)
5144 {
5145 sd_finish_insn (insn);
5146
5147 change_queue_index (insn, QUEUE_NOWHERE);
5148 current_sched_info->add_remove_insn (insn, 1);
5149 remove_insn (insn);
5150 }
5151
5152 /* Clear priorities of all instructions, that are forward dependent on INSN.
5153 Store in vector pointed to by ROOTS_PTR insns on which priority () should
5154 be invoked to initialize all cleared priorities. */
5155 static void
5156 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
5157 {
5158 sd_iterator_def sd_it;
5159 dep_t dep;
5160 bool insn_is_root_p = true;
5161
5162 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
5163
5164 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
5165 {
5166 rtx pro = DEP_PRO (dep);
5167
5168 if (INSN_PRIORITY_STATUS (pro) >= 0
5169 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
5170 {
5171 /* If DEP doesn't contribute to priority then INSN itself should
5172 be added to priority roots. */
5173 if (contributes_to_priority_p (dep))
5174 insn_is_root_p = false;
5175
5176 INSN_PRIORITY_STATUS (pro) = -1;
5177 clear_priorities (pro, roots_ptr);
5178 }
5179 }
5180
5181 if (insn_is_root_p)
5182 VEC_safe_push (rtx, heap, *roots_ptr, insn);
5183 }
5184
5185 /* Recompute priorities of instructions, whose priorities might have been
5186 changed. ROOTS is a vector of instructions whose priority computation will
5187 trigger initialization of all cleared priorities. */
5188 static void
5189 calc_priorities (rtx_vec_t roots)
5190 {
5191 int i;
5192 rtx insn;
5193
5194 FOR_EACH_VEC_ELT (rtx, roots, i, insn)
5195 priority (insn);
5196 }
5197
5198
5199 /* Add dependences between JUMP and other instructions in the recovery
5200 block. INSN is the first insn the recovery block. */
5201 static void
5202 add_jump_dependencies (rtx insn, rtx jump)
5203 {
5204 do
5205 {
5206 insn = NEXT_INSN (insn);
5207 if (insn == jump)
5208 break;
5209
5210 if (dep_list_size (insn) == 0)
5211 {
5212 dep_def _new_dep, *new_dep = &_new_dep;
5213
5214 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
5215 sd_add_dep (new_dep, false);
5216 }
5217 }
5218 while (1);
5219
5220 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
5221 }
5222
5223 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
5224 rtx
5225 bb_note (basic_block bb)
5226 {
5227 rtx note;
5228
5229 note = BB_HEAD (bb);
5230 if (LABEL_P (note))
5231 note = NEXT_INSN (note);
5232
5233 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5234 return note;
5235 }
5236
5237 #ifdef ENABLE_CHECKING
5238 /* Helper function for check_cfg.
5239 Return nonzero, if edge vector pointed to by EL has edge with TYPE in
5240 its flags. */
5241 static int
5242 has_edge_p (VEC(edge,gc) *el, int type)
5243 {
5244 edge e;
5245 edge_iterator ei;
5246
5247 FOR_EACH_EDGE (e, ei, el)
5248 if (e->flags & type)
5249 return 1;
5250 return 0;
5251 }
5252
5253 /* Search back, starting at INSN, for an insn that is not a
5254 NOTE_INSN_VAR_LOCATION. Don't search beyond HEAD, and return it if
5255 no such insn can be found. */
5256 static inline rtx
5257 prev_non_location_insn (rtx insn, rtx head)
5258 {
5259 while (insn != head && NOTE_P (insn)
5260 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
5261 insn = PREV_INSN (insn);
5262
5263 return insn;
5264 }
5265
5266 /* Check few properties of CFG between HEAD and TAIL.
5267 If HEAD (TAIL) is NULL check from the beginning (till the end) of the
5268 instruction stream. */
5269 static void
5270 check_cfg (rtx head, rtx tail)
5271 {
5272 rtx next_tail;
5273 basic_block bb = 0;
5274 int not_first = 0, not_last;
5275
5276 if (head == NULL)
5277 head = get_insns ();
5278 if (tail == NULL)
5279 tail = get_last_insn ();
5280 next_tail = NEXT_INSN (tail);
5281
5282 do
5283 {
5284 not_last = head != tail;
5285
5286 if (not_first)
5287 gcc_assert (NEXT_INSN (PREV_INSN (head)) == head);
5288 if (not_last)
5289 gcc_assert (PREV_INSN (NEXT_INSN (head)) == head);
5290
5291 if (LABEL_P (head)
5292 || (NOTE_INSN_BASIC_BLOCK_P (head)
5293 && (!not_first
5294 || (not_first && !LABEL_P (PREV_INSN (head))))))
5295 {
5296 gcc_assert (bb == 0);
5297 bb = BLOCK_FOR_INSN (head);
5298 if (bb != 0)
5299 gcc_assert (BB_HEAD (bb) == head);
5300 else
5301 /* This is the case of jump table. See inside_basic_block_p (). */
5302 gcc_assert (LABEL_P (head) && !inside_basic_block_p (head));
5303 }
5304
5305 if (bb == 0)
5306 {
5307 gcc_assert (!inside_basic_block_p (head));
5308 head = NEXT_INSN (head);
5309 }
5310 else
5311 {
5312 gcc_assert (inside_basic_block_p (head)
5313 || NOTE_P (head));
5314 gcc_assert (BLOCK_FOR_INSN (head) == bb);
5315
5316 if (LABEL_P (head))
5317 {
5318 head = NEXT_INSN (head);
5319 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head));
5320 }
5321 else
5322 {
5323 if (control_flow_insn_p (head))
5324 {
5325 gcc_assert (prev_non_location_insn (BB_END (bb), head)
5326 == head);
5327
5328 if (any_uncondjump_p (head))
5329 gcc_assert (EDGE_COUNT (bb->succs) == 1
5330 && BARRIER_P (NEXT_INSN (head)));
5331 else if (any_condjump_p (head))
5332 gcc_assert (/* Usual case. */
5333 (EDGE_COUNT (bb->succs) > 1
5334 && !BARRIER_P (NEXT_INSN (head)))
5335 /* Or jump to the next instruction. */
5336 || (EDGE_COUNT (bb->succs) == 1
5337 && (BB_HEAD (EDGE_I (bb->succs, 0)->dest)
5338 == JUMP_LABEL (head))));
5339 }
5340 if (BB_END (bb) == head)
5341 {
5342 if (EDGE_COUNT (bb->succs) > 1)
5343 gcc_assert (control_flow_insn_p (prev_non_location_insn
5344 (head, BB_HEAD (bb)))
5345 || has_edge_p (bb->succs, EDGE_COMPLEX));
5346 bb = 0;
5347 }
5348
5349 head = NEXT_INSN (head);
5350 }
5351 }
5352
5353 not_first = 1;
5354 }
5355 while (head != next_tail);
5356
5357 gcc_assert (bb == 0);
5358 }
5359
5360 #endif /* ENABLE_CHECKING */
5361
5362 /* Extend per basic block data structures. */
5363 static void
5364 extend_bb (void)
5365 {
5366 if (sched_scan_info->extend_bb)
5367 sched_scan_info->extend_bb ();
5368 }
5369
5370 /* Init data for BB. */
5371 static void
5372 init_bb (basic_block bb)
5373 {
5374 if (sched_scan_info->init_bb)
5375 sched_scan_info->init_bb (bb);
5376 }
5377
5378 /* Extend per insn data structures. */
5379 static void
5380 extend_insn (void)
5381 {
5382 if (sched_scan_info->extend_insn)
5383 sched_scan_info->extend_insn ();
5384 }
5385
5386 /* Init data structures for INSN. */
5387 static void
5388 init_insn (rtx insn)
5389 {
5390 if (sched_scan_info->init_insn)
5391 sched_scan_info->init_insn (insn);
5392 }
5393
5394 /* Init all insns in BB. */
5395 static void
5396 init_insns_in_bb (basic_block bb)
5397 {
5398 rtx insn;
5399
5400 FOR_BB_INSNS (bb, insn)
5401 init_insn (insn);
5402 }
5403
5404 /* A driver function to add a set of basic blocks (BBS),
5405 a single basic block (BB), a set of insns (INSNS) or a single insn (INSN)
5406 to the scheduling region. */
5407 void
5408 sched_scan (const struct sched_scan_info_def *ssi,
5409 bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5410 {
5411 sched_scan_info = ssi;
5412
5413 if (bbs != NULL || bb != NULL)
5414 {
5415 extend_bb ();
5416
5417 if (bbs != NULL)
5418 {
5419 unsigned i;
5420 basic_block x;
5421
5422 FOR_EACH_VEC_ELT (basic_block, bbs, i, x)
5423 init_bb (x);
5424 }
5425
5426 if (bb != NULL)
5427 init_bb (bb);
5428 }
5429
5430 extend_insn ();
5431
5432 if (bbs != NULL)
5433 {
5434 unsigned i;
5435 basic_block x;
5436
5437 FOR_EACH_VEC_ELT (basic_block, bbs, i, x)
5438 init_insns_in_bb (x);
5439 }
5440
5441 if (bb != NULL)
5442 init_insns_in_bb (bb);
5443
5444 if (insns != NULL)
5445 {
5446 unsigned i;
5447 rtx x;
5448
5449 FOR_EACH_VEC_ELT (rtx, insns, i, x)
5450 init_insn (x);
5451 }
5452
5453 if (insn != NULL)
5454 init_insn (insn);
5455 }
5456
5457
5458 /* Extend data structures for logical insn UID. */
5459 static void
5460 luids_extend_insn (void)
5461 {
5462 int new_luids_max_uid = get_max_uid () + 1;
5463
5464 VEC_safe_grow_cleared (int, heap, sched_luids, new_luids_max_uid);
5465 }
5466
5467 /* Initialize LUID for INSN. */
5468 static void
5469 luids_init_insn (rtx insn)
5470 {
5471 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
5472 int luid;
5473
5474 if (i >= 0)
5475 {
5476 luid = sched_max_luid;
5477 sched_max_luid += i;
5478 }
5479 else
5480 luid = -1;
5481
5482 SET_INSN_LUID (insn, luid);
5483 }
5484
5485 /* Initialize luids for BBS, BB, INSNS and INSN.
5486 The hook common_sched_info->luid_for_non_insn () is used to determine
5487 if notes, labels, etc. need luids. */
5488 void
5489 sched_init_luids (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5490 {
5491 const struct sched_scan_info_def ssi =
5492 {
5493 NULL, /* extend_bb */
5494 NULL, /* init_bb */
5495 luids_extend_insn, /* extend_insn */
5496 luids_init_insn /* init_insn */
5497 };
5498
5499 sched_scan (&ssi, bbs, bb, insns, insn);
5500 }
5501
5502 /* Free LUIDs. */
5503 void
5504 sched_finish_luids (void)
5505 {
5506 VEC_free (int, heap, sched_luids);
5507 sched_max_luid = 1;
5508 }
5509
5510 /* Return logical uid of INSN. Helpful while debugging. */
5511 int
5512 insn_luid (rtx insn)
5513 {
5514 return INSN_LUID (insn);
5515 }
5516
5517 /* Extend per insn data in the target. */
5518 void
5519 sched_extend_target (void)
5520 {
5521 if (targetm.sched.h_i_d_extended)
5522 targetm.sched.h_i_d_extended ();
5523 }
5524
5525 /* Extend global scheduler structures (those, that live across calls to
5526 schedule_block) to include information about just emitted INSN. */
5527 static void
5528 extend_h_i_d (void)
5529 {
5530 int reserve = (get_max_uid () + 1
5531 - VEC_length (haifa_insn_data_def, h_i_d));
5532 if (reserve > 0
5533 && ! VEC_space (haifa_insn_data_def, h_i_d, reserve))
5534 {
5535 VEC_safe_grow_cleared (haifa_insn_data_def, heap, h_i_d,
5536 3 * get_max_uid () / 2);
5537 sched_extend_target ();
5538 }
5539 }
5540
5541 /* Initialize h_i_d entry of the INSN with default values.
5542 Values, that are not explicitly initialized here, hold zero. */
5543 static void
5544 init_h_i_d (rtx insn)
5545 {
5546 if (INSN_LUID (insn) > 0)
5547 {
5548 INSN_COST (insn) = -1;
5549 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
5550 INSN_TICK (insn) = INVALID_TICK;
5551 INTER_TICK (insn) = INVALID_TICK;
5552 TODO_SPEC (insn) = HARD_DEP;
5553 }
5554 }
5555
5556 /* Initialize haifa_insn_data for BBS, BB, INSNS and INSN. */
5557 void
5558 haifa_init_h_i_d (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5559 {
5560 const struct sched_scan_info_def ssi =
5561 {
5562 NULL, /* extend_bb */
5563 NULL, /* init_bb */
5564 extend_h_i_d, /* extend_insn */
5565 init_h_i_d /* init_insn */
5566 };
5567
5568 sched_scan (&ssi, bbs, bb, insns, insn);
5569 }
5570
5571 /* Finalize haifa_insn_data. */
5572 void
5573 haifa_finish_h_i_d (void)
5574 {
5575 int i;
5576 haifa_insn_data_t data;
5577 struct reg_use_data *use, *next;
5578
5579 FOR_EACH_VEC_ELT (haifa_insn_data_def, h_i_d, i, data)
5580 {
5581 free (data->reg_pressure);
5582 for (use = data->reg_use_list; use != NULL; use = next)
5583 {
5584 next = use->next_insn_use;
5585 free (use);
5586 }
5587 }
5588 VEC_free (haifa_insn_data_def, heap, h_i_d);
5589 }
5590
5591 /* Init data for the new insn INSN. */
5592 static void
5593 haifa_init_insn (rtx insn)
5594 {
5595 gcc_assert (insn != NULL);
5596
5597 sched_init_luids (NULL, NULL, NULL, insn);
5598 sched_extend_target ();
5599 sched_deps_init (false);
5600 haifa_init_h_i_d (NULL, NULL, NULL, insn);
5601
5602 if (adding_bb_to_current_region_p)
5603 {
5604 sd_init_insn (insn);
5605
5606 /* Extend dependency caches by one element. */
5607 extend_dependency_caches (1, false);
5608 }
5609 if (sched_pressure_p)
5610 init_insn_reg_pressure_info (insn);
5611 }
5612
5613 /* Init data for the new basic block BB which comes after AFTER. */
5614 static void
5615 haifa_init_only_bb (basic_block bb, basic_block after)
5616 {
5617 gcc_assert (bb != NULL);
5618
5619 sched_init_bbs ();
5620
5621 if (common_sched_info->add_block)
5622 /* This changes only data structures of the front-end. */
5623 common_sched_info->add_block (bb, after);
5624 }
5625
5626 /* A generic version of sched_split_block (). */
5627 basic_block
5628 sched_split_block_1 (basic_block first_bb, rtx after)
5629 {
5630 edge e;
5631
5632 e = split_block (first_bb, after);
5633 gcc_assert (e->src == first_bb);
5634
5635 /* sched_split_block emits note if *check == BB_END. Probably it
5636 is better to rip that note off. */
5637
5638 return e->dest;
5639 }
5640
5641 /* A generic version of sched_create_empty_bb (). */
5642 basic_block
5643 sched_create_empty_bb_1 (basic_block after)
5644 {
5645 return create_empty_bb (after);
5646 }
5647
5648 /* Insert PAT as an INSN into the schedule and update the necessary data
5649 structures to account for it. */
5650 rtx
5651 sched_emit_insn (rtx pat)
5652 {
5653 rtx insn = emit_insn_before (pat, nonscheduled_insns_begin);
5654 haifa_init_insn (insn);
5655
5656 if (current_sched_info->add_remove_insn)
5657 current_sched_info->add_remove_insn (insn, 0);
5658
5659 (*current_sched_info->begin_schedule_ready) (insn);
5660 VEC_safe_push (rtx, heap, scheduled_insns, insn);
5661
5662 last_scheduled_insn = insn;
5663 return insn;
5664 }
5665
5666 /* This function returns a candidate satisfying dispatch constraints from
5667 the ready list. */
5668
5669 static rtx
5670 ready_remove_first_dispatch (struct ready_list *ready)
5671 {
5672 int i;
5673 rtx insn = ready_element (ready, 0);
5674
5675 if (ready->n_ready == 1
5676 || INSN_CODE (insn) < 0
5677 || !INSN_P (insn)
5678 || !active_insn_p (insn)
5679 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
5680 return ready_remove_first (ready);
5681
5682 for (i = 1; i < ready->n_ready; i++)
5683 {
5684 insn = ready_element (ready, i);
5685
5686 if (INSN_CODE (insn) < 0
5687 || !INSN_P (insn)
5688 || !active_insn_p (insn))
5689 continue;
5690
5691 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
5692 {
5693 /* Return ith element of ready. */
5694 insn = ready_remove (ready, i);
5695 return insn;
5696 }
5697 }
5698
5699 if (targetm.sched.dispatch (NULL_RTX, DISPATCH_VIOLATION))
5700 return ready_remove_first (ready);
5701
5702 for (i = 1; i < ready->n_ready; i++)
5703 {
5704 insn = ready_element (ready, i);
5705
5706 if (INSN_CODE (insn) < 0
5707 || !INSN_P (insn)
5708 || !active_insn_p (insn))
5709 continue;
5710
5711 /* Return i-th element of ready. */
5712 if (targetm.sched.dispatch (insn, IS_CMP))
5713 return ready_remove (ready, i);
5714 }
5715
5716 return ready_remove_first (ready);
5717 }
5718
5719 /* Get number of ready insn in the ready list. */
5720
5721 int
5722 number_in_ready (void)
5723 {
5724 return ready.n_ready;
5725 }
5726
5727 /* Get number of ready's in the ready list. */
5728
5729 rtx
5730 get_ready_element (int i)
5731 {
5732 return ready_element (&ready, i);
5733 }
5734
5735 #endif /* INSN_SCHEDULING */