make some HAVE_cc0 code always compiled
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "hashtab.h"
135 #include "hash-set.h"
136 #include "vec.h"
137 #include "machmode.h"
138 #include "input.h"
139 #include "function.h"
140 #include "flags.h"
141 #include "insn-config.h"
142 #include "insn-attr.h"
143 #include "except.h"
144 #include "recog.h"
145 #include "dominance.h"
146 #include "cfg.h"
147 #include "cfgrtl.h"
148 #include "cfgbuild.h"
149 #include "predict.h"
150 #include "basic-block.h"
151 #include "sched-int.h"
152 #include "target.h"
153 #include "common/common-target.h"
154 #include "params.h"
155 #include "dbgcnt.h"
156 #include "cfgloop.h"
157 #include "ira.h"
158 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
159 #include "hash-table.h"
160 #include "dumpfile.h"
161
162 #ifdef INSN_SCHEDULING
163
164 /* True if we do register pressure relief through live-range
165 shrinkage. */
166 static bool live_range_shrinkage_p;
167
168 /* Switch on live range shrinkage. */
169 void
170 initialize_live_range_shrinkage (void)
171 {
172 live_range_shrinkage_p = true;
173 }
174
175 /* Switch off live range shrinkage. */
176 void
177 finish_live_range_shrinkage (void)
178 {
179 live_range_shrinkage_p = false;
180 }
181
182 /* issue_rate is the number of insns that can be scheduled in the same
183 machine cycle. It can be defined in the config/mach/mach.h file,
184 otherwise we set it to 1. */
185
186 int issue_rate;
187
188 /* This can be set to true by a backend if the scheduler should not
189 enable a DCE pass. */
190 bool sched_no_dce;
191
192 /* The current initiation interval used when modulo scheduling. */
193 static int modulo_ii;
194
195 /* The maximum number of stages we are prepared to handle. */
196 static int modulo_max_stages;
197
198 /* The number of insns that exist in each iteration of the loop. We use this
199 to detect when we've scheduled all insns from the first iteration. */
200 static int modulo_n_insns;
201
202 /* The current count of insns in the first iteration of the loop that have
203 already been scheduled. */
204 static int modulo_insns_scheduled;
205
206 /* The maximum uid of insns from the first iteration of the loop. */
207 static int modulo_iter0_max_uid;
208
209 /* The number of times we should attempt to backtrack when modulo scheduling.
210 Decreased each time we have to backtrack. */
211 static int modulo_backtracks_left;
212
213 /* The stage in which the last insn from the original loop was
214 scheduled. */
215 static int modulo_last_stage;
216
217 /* sched-verbose controls the amount of debugging output the
218 scheduler prints. It is controlled by -fsched-verbose=N:
219 N>0 and no -DSR : the output is directed to stderr.
220 N>=10 will direct the printouts to stderr (regardless of -dSR).
221 N=1: same as -dSR.
222 N=2: bb's probabilities, detailed ready list info, unit/insn info.
223 N=3: rtl at abort point, control-flow, regions info.
224 N=5: dependences info. */
225
226 int sched_verbose = 0;
227
228 /* Debugging file. All printouts are sent to dump, which is always set,
229 either to stderr, or to the dump listing file (-dRS). */
230 FILE *sched_dump = 0;
231
232 /* This is a placeholder for the scheduler parameters common
233 to all schedulers. */
234 struct common_sched_info_def *common_sched_info;
235
236 #define INSN_TICK(INSN) (HID (INSN)->tick)
237 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
238 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
239 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
240 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
241 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
242 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
243 /* Cached cost of the instruction. Use insn_cost to get cost of the
244 insn. -1 here means that the field is not initialized. */
245 #define INSN_COST(INSN) (HID (INSN)->cost)
246
247 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
248 then it should be recalculated from scratch. */
249 #define INVALID_TICK (-(max_insn_queue_index + 1))
250 /* The minimal value of the INSN_TICK of an instruction. */
251 #define MIN_TICK (-max_insn_queue_index)
252
253 /* Original order of insns in the ready list.
254 Used to keep order of normal insns while separating DEBUG_INSNs. */
255 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
256
257 /* The deciding reason for INSN's place in the ready list. */
258 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
259
260 /* List of important notes we must keep around. This is a pointer to the
261 last element in the list. */
262 rtx_insn *note_list;
263
264 static struct spec_info_def spec_info_var;
265 /* Description of the speculative part of the scheduling.
266 If NULL - no speculation. */
267 spec_info_t spec_info = NULL;
268
269 /* True, if recovery block was added during scheduling of current block.
270 Used to determine, if we need to fix INSN_TICKs. */
271 static bool haifa_recovery_bb_recently_added_p;
272
273 /* True, if recovery block was added during this scheduling pass.
274 Used to determine if we should have empty memory pools of dependencies
275 after finishing current region. */
276 bool haifa_recovery_bb_ever_added_p;
277
278 /* Counters of different types of speculative instructions. */
279 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
280
281 /* Array used in {unlink, restore}_bb_notes. */
282 static rtx_insn **bb_header = 0;
283
284 /* Basic block after which recovery blocks will be created. */
285 static basic_block before_recovery;
286
287 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
288 created it. */
289 basic_block after_recovery;
290
291 /* FALSE if we add bb to another region, so we don't need to initialize it. */
292 bool adding_bb_to_current_region_p = true;
293
294 /* Queues, etc. */
295
296 /* An instruction is ready to be scheduled when all insns preceding it
297 have already been scheduled. It is important to ensure that all
298 insns which use its result will not be executed until its result
299 has been computed. An insn is maintained in one of four structures:
300
301 (P) the "Pending" set of insns which cannot be scheduled until
302 their dependencies have been satisfied.
303 (Q) the "Queued" set of insns that can be scheduled when sufficient
304 time has passed.
305 (R) the "Ready" list of unscheduled, uncommitted insns.
306 (S) the "Scheduled" list of insns.
307
308 Initially, all insns are either "Pending" or "Ready" depending on
309 whether their dependencies are satisfied.
310
311 Insns move from the "Ready" list to the "Scheduled" list as they
312 are committed to the schedule. As this occurs, the insns in the
313 "Pending" list have their dependencies satisfied and move to either
314 the "Ready" list or the "Queued" set depending on whether
315 sufficient time has passed to make them ready. As time passes,
316 insns move from the "Queued" set to the "Ready" list.
317
318 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
319 unscheduled insns, i.e., those that are ready, queued, and pending.
320 The "Queued" set (Q) is implemented by the variable `insn_queue'.
321 The "Ready" list (R) is implemented by the variables `ready' and
322 `n_ready'.
323 The "Scheduled" list (S) is the new insn chain built by this pass.
324
325 The transition (R->S) is implemented in the scheduling loop in
326 `schedule_block' when the best insn to schedule is chosen.
327 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
328 insns move from the ready list to the scheduled list.
329 The transition (Q->R) is implemented in 'queue_to_insn' as time
330 passes or stalls are introduced. */
331
332 /* Implement a circular buffer to delay instructions until sufficient
333 time has passed. For the new pipeline description interface,
334 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
335 than maximal time of instruction execution computed by genattr.c on
336 the base maximal time of functional unit reservations and getting a
337 result. This is the longest time an insn may be queued. */
338
339 static rtx_insn_list **insn_queue;
340 static int q_ptr = 0;
341 static int q_size = 0;
342 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
343 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
344
345 #define QUEUE_SCHEDULED (-3)
346 #define QUEUE_NOWHERE (-2)
347 #define QUEUE_READY (-1)
348 /* QUEUE_SCHEDULED - INSN is scheduled.
349 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
350 queue or ready list.
351 QUEUE_READY - INSN is in ready list.
352 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
353
354 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
355
356 /* The following variable value refers for all current and future
357 reservations of the processor units. */
358 state_t curr_state;
359
360 /* The following variable value is size of memory representing all
361 current and future reservations of the processor units. */
362 size_t dfa_state_size;
363
364 /* The following array is used to find the best insn from ready when
365 the automaton pipeline interface is used. */
366 signed char *ready_try = NULL;
367
368 /* The ready list. */
369 struct ready_list ready = {NULL, 0, 0, 0, 0};
370
371 /* The pointer to the ready list (to be removed). */
372 static struct ready_list *readyp = &ready;
373
374 /* Scheduling clock. */
375 static int clock_var;
376
377 /* Clock at which the previous instruction was issued. */
378 static int last_clock_var;
379
380 /* Set to true if, when queuing a shadow insn, we discover that it would be
381 scheduled too late. */
382 static bool must_backtrack;
383
384 /* The following variable value is number of essential insns issued on
385 the current cycle. An insn is essential one if it changes the
386 processors state. */
387 int cycle_issued_insns;
388
389 /* This records the actual schedule. It is built up during the main phase
390 of schedule_block, and afterwards used to reorder the insns in the RTL. */
391 static vec<rtx_insn *> scheduled_insns;
392
393 static int may_trap_exp (const_rtx, int);
394
395 /* Nonzero iff the address is comprised from at most 1 register. */
396 #define CONST_BASED_ADDRESS_P(x) \
397 (REG_P (x) \
398 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
399 || (GET_CODE (x) == LO_SUM)) \
400 && (CONSTANT_P (XEXP (x, 0)) \
401 || CONSTANT_P (XEXP (x, 1)))))
402
403 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
404 as found by analyzing insn's expression. */
405
406 \f
407 static int haifa_luid_for_non_insn (rtx x);
408
409 /* Haifa version of sched_info hooks common to all headers. */
410 const struct common_sched_info_def haifa_common_sched_info =
411 {
412 NULL, /* fix_recovery_cfg */
413 NULL, /* add_block */
414 NULL, /* estimate_number_of_insns */
415 haifa_luid_for_non_insn, /* luid_for_non_insn */
416 SCHED_PASS_UNKNOWN /* sched_pass_id */
417 };
418
419 /* Mapping from instruction UID to its Logical UID. */
420 vec<int> sched_luids = vNULL;
421
422 /* Next LUID to assign to an instruction. */
423 int sched_max_luid = 1;
424
425 /* Haifa Instruction Data. */
426 vec<haifa_insn_data_def> h_i_d = vNULL;
427
428 void (* sched_init_only_bb) (basic_block, basic_block);
429
430 /* Split block function. Different schedulers might use different functions
431 to handle their internal data consistent. */
432 basic_block (* sched_split_block) (basic_block, rtx);
433
434 /* Create empty basic block after the specified block. */
435 basic_block (* sched_create_empty_bb) (basic_block);
436
437 /* Return the number of cycles until INSN is expected to be ready.
438 Return zero if it already is. */
439 static int
440 insn_delay (rtx_insn *insn)
441 {
442 return MAX (INSN_TICK (insn) - clock_var, 0);
443 }
444
445 static int
446 may_trap_exp (const_rtx x, int is_store)
447 {
448 enum rtx_code code;
449
450 if (x == 0)
451 return TRAP_FREE;
452 code = GET_CODE (x);
453 if (is_store)
454 {
455 if (code == MEM && may_trap_p (x))
456 return TRAP_RISKY;
457 else
458 return TRAP_FREE;
459 }
460 if (code == MEM)
461 {
462 /* The insn uses memory: a volatile load. */
463 if (MEM_VOLATILE_P (x))
464 return IRISKY;
465 /* An exception-free load. */
466 if (!may_trap_p (x))
467 return IFREE;
468 /* A load with 1 base register, to be further checked. */
469 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
470 return PFREE_CANDIDATE;
471 /* No info on the load, to be further checked. */
472 return PRISKY_CANDIDATE;
473 }
474 else
475 {
476 const char *fmt;
477 int i, insn_class = TRAP_FREE;
478
479 /* Neither store nor load, check if it may cause a trap. */
480 if (may_trap_p (x))
481 return TRAP_RISKY;
482 /* Recursive step: walk the insn... */
483 fmt = GET_RTX_FORMAT (code);
484 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
485 {
486 if (fmt[i] == 'e')
487 {
488 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
489 insn_class = WORST_CLASS (insn_class, tmp_class);
490 }
491 else if (fmt[i] == 'E')
492 {
493 int j;
494 for (j = 0; j < XVECLEN (x, i); j++)
495 {
496 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
497 insn_class = WORST_CLASS (insn_class, tmp_class);
498 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
499 break;
500 }
501 }
502 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
503 break;
504 }
505 return insn_class;
506 }
507 }
508
509 /* Classifies rtx X of an insn for the purpose of verifying that X can be
510 executed speculatively (and consequently the insn can be moved
511 speculatively), by examining X, returning:
512 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
513 TRAP_FREE: non-load insn.
514 IFREE: load from a globally safe location.
515 IRISKY: volatile load.
516 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
517 being either PFREE or PRISKY. */
518
519 static int
520 haifa_classify_rtx (const_rtx x)
521 {
522 int tmp_class = TRAP_FREE;
523 int insn_class = TRAP_FREE;
524 enum rtx_code code;
525
526 if (GET_CODE (x) == PARALLEL)
527 {
528 int i, len = XVECLEN (x, 0);
529
530 for (i = len - 1; i >= 0; i--)
531 {
532 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
533 insn_class = WORST_CLASS (insn_class, tmp_class);
534 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
535 break;
536 }
537 }
538 else
539 {
540 code = GET_CODE (x);
541 switch (code)
542 {
543 case CLOBBER:
544 /* Test if it is a 'store'. */
545 tmp_class = may_trap_exp (XEXP (x, 0), 1);
546 break;
547 case SET:
548 /* Test if it is a store. */
549 tmp_class = may_trap_exp (SET_DEST (x), 1);
550 if (tmp_class == TRAP_RISKY)
551 break;
552 /* Test if it is a load. */
553 tmp_class =
554 WORST_CLASS (tmp_class,
555 may_trap_exp (SET_SRC (x), 0));
556 break;
557 case COND_EXEC:
558 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
559 if (tmp_class == TRAP_RISKY)
560 break;
561 tmp_class = WORST_CLASS (tmp_class,
562 may_trap_exp (COND_EXEC_TEST (x), 0));
563 break;
564 case TRAP_IF:
565 tmp_class = TRAP_RISKY;
566 break;
567 default:;
568 }
569 insn_class = tmp_class;
570 }
571
572 return insn_class;
573 }
574
575 int
576 haifa_classify_insn (const_rtx insn)
577 {
578 return haifa_classify_rtx (PATTERN (insn));
579 }
580 \f
581 /* After the scheduler initialization function has been called, this function
582 can be called to enable modulo scheduling. II is the initiation interval
583 we should use, it affects the delays for delay_pairs that were recorded as
584 separated by a given number of stages.
585
586 MAX_STAGES provides us with a limit
587 after which we give up scheduling; the caller must have unrolled at least
588 as many copies of the loop body and recorded delay_pairs for them.
589
590 INSNS is the number of real (non-debug) insns in one iteration of
591 the loop. MAX_UID can be used to test whether an insn belongs to
592 the first iteration of the loop; all of them have a uid lower than
593 MAX_UID. */
594 void
595 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
596 {
597 modulo_ii = ii;
598 modulo_max_stages = max_stages;
599 modulo_n_insns = insns;
600 modulo_iter0_max_uid = max_uid;
601 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
602 }
603
604 /* A structure to record a pair of insns where the first one is a real
605 insn that has delay slots, and the second is its delayed shadow.
606 I1 is scheduled normally and will emit an assembly instruction,
607 while I2 describes the side effect that takes place at the
608 transition between cycles CYCLES and (CYCLES + 1) after I1. */
609 struct delay_pair
610 {
611 struct delay_pair *next_same_i1;
612 rtx_insn *i1, *i2;
613 int cycles;
614 /* When doing modulo scheduling, we a delay_pair can also be used to
615 show that I1 and I2 are the same insn in a different stage. If that
616 is the case, STAGES will be nonzero. */
617 int stages;
618 };
619
620 /* Helpers for delay hashing. */
621
622 struct delay_i1_hasher : typed_noop_remove <delay_pair>
623 {
624 typedef delay_pair *value_type;
625 typedef void *compare_type;
626 static inline hashval_t hash (const delay_pair *);
627 static inline bool equal (const delay_pair *, const void *);
628 };
629
630 /* Returns a hash value for X, based on hashing just I1. */
631
632 inline hashval_t
633 delay_i1_hasher::hash (const delay_pair *x)
634 {
635 return htab_hash_pointer (x->i1);
636 }
637
638 /* Return true if I1 of pair X is the same as that of pair Y. */
639
640 inline bool
641 delay_i1_hasher::equal (const delay_pair *x, const void *y)
642 {
643 return x->i1 == y;
644 }
645
646 struct delay_i2_hasher : typed_free_remove <delay_pair>
647 {
648 typedef delay_pair *value_type;
649 typedef void *compare_type;
650 static inline hashval_t hash (const delay_pair *);
651 static inline bool equal (const delay_pair *, const void *);
652 };
653
654 /* Returns a hash value for X, based on hashing just I2. */
655
656 inline hashval_t
657 delay_i2_hasher::hash (const delay_pair *x)
658 {
659 return htab_hash_pointer (x->i2);
660 }
661
662 /* Return true if I2 of pair X is the same as that of pair Y. */
663
664 inline bool
665 delay_i2_hasher::equal (const delay_pair *x, const void *y)
666 {
667 return x->i2 == y;
668 }
669
670 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
671 indexed by I2. */
672 static hash_table<delay_i1_hasher> *delay_htab;
673 static hash_table<delay_i2_hasher> *delay_htab_i2;
674
675 /* Called through htab_traverse. Walk the hashtable using I2 as
676 index, and delete all elements involving an UID higher than
677 that pointed to by *DATA. */
678 int
679 haifa_htab_i2_traverse (delay_pair **slot, int *data)
680 {
681 int maxuid = *data;
682 struct delay_pair *p = *slot;
683 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
684 {
685 delay_htab_i2->clear_slot (slot);
686 }
687 return 1;
688 }
689
690 /* Called through htab_traverse. Walk the hashtable using I2 as
691 index, and delete all elements involving an UID higher than
692 that pointed to by *DATA. */
693 int
694 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
695 {
696 int maxuid = *data;
697 struct delay_pair *p, *first, **pprev;
698
699 if (INSN_UID ((*pslot)->i1) >= maxuid)
700 {
701 delay_htab->clear_slot (pslot);
702 return 1;
703 }
704 pprev = &first;
705 for (p = *pslot; p; p = p->next_same_i1)
706 {
707 if (INSN_UID (p->i2) < maxuid)
708 {
709 *pprev = p;
710 pprev = &p->next_same_i1;
711 }
712 }
713 *pprev = NULL;
714 if (first == NULL)
715 delay_htab->clear_slot (pslot);
716 else
717 *pslot = first;
718 return 1;
719 }
720
721 /* Discard all delay pairs which involve an insn with an UID higher
722 than MAX_UID. */
723 void
724 discard_delay_pairs_above (int max_uid)
725 {
726 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
727 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
728 }
729
730 /* This function can be called by a port just before it starts the final
731 scheduling pass. It records the fact that an instruction with delay
732 slots has been split into two insns, I1 and I2. The first one will be
733 scheduled normally and initiates the operation. The second one is a
734 shadow which must follow a specific number of cycles after I1; its only
735 purpose is to show the side effect that occurs at that cycle in the RTL.
736 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
737 while I2 retains the original insn type.
738
739 There are two ways in which the number of cycles can be specified,
740 involving the CYCLES and STAGES arguments to this function. If STAGES
741 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
742 which is multiplied by MODULO_II to give the number of cycles. This is
743 only useful if the caller also calls set_modulo_params to enable modulo
744 scheduling. */
745
746 void
747 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
748 {
749 struct delay_pair *p = XNEW (struct delay_pair);
750 struct delay_pair **slot;
751
752 p->i1 = i1;
753 p->i2 = i2;
754 p->cycles = cycles;
755 p->stages = stages;
756
757 if (!delay_htab)
758 {
759 delay_htab = new hash_table<delay_i1_hasher> (10);
760 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
761 }
762 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
763 p->next_same_i1 = *slot;
764 *slot = p;
765 slot = delay_htab_i2->find_slot (p, INSERT);
766 *slot = p;
767 }
768
769 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
770 and return the other insn if so. Return NULL otherwise. */
771 rtx_insn *
772 real_insn_for_shadow (rtx_insn *insn)
773 {
774 struct delay_pair *pair;
775
776 if (!delay_htab)
777 return NULL;
778
779 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
780 if (!pair || pair->stages > 0)
781 return NULL;
782 return pair->i1;
783 }
784
785 /* For a pair P of insns, return the fixed distance in cycles from the first
786 insn after which the second must be scheduled. */
787 static int
788 pair_delay (struct delay_pair *p)
789 {
790 if (p->stages == 0)
791 return p->cycles;
792 else
793 return p->stages * modulo_ii;
794 }
795
796 /* Given an insn INSN, add a dependence on its delayed shadow if it
797 has one. Also try to find situations where shadows depend on each other
798 and add dependencies to the real insns to limit the amount of backtracking
799 needed. */
800 void
801 add_delay_dependencies (rtx_insn *insn)
802 {
803 struct delay_pair *pair;
804 sd_iterator_def sd_it;
805 dep_t dep;
806
807 if (!delay_htab)
808 return;
809
810 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
811 if (!pair)
812 return;
813 add_dependence (insn, pair->i1, REG_DEP_ANTI);
814 if (pair->stages)
815 return;
816
817 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
818 {
819 rtx_insn *pro = DEP_PRO (dep);
820 struct delay_pair *other_pair
821 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
822 if (!other_pair || other_pair->stages)
823 continue;
824 if (pair_delay (other_pair) >= pair_delay (pair))
825 {
826 if (sched_verbose >= 4)
827 {
828 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
829 INSN_UID (other_pair->i1),
830 INSN_UID (pair->i1));
831 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
832 INSN_UID (pair->i1),
833 INSN_UID (pair->i2),
834 pair_delay (pair));
835 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
836 INSN_UID (other_pair->i1),
837 INSN_UID (other_pair->i2),
838 pair_delay (other_pair));
839 }
840 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
841 }
842 }
843 }
844 \f
845 /* Forward declarations. */
846
847 static int priority (rtx_insn *);
848 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
849 static int rank_for_schedule (const void *, const void *);
850 static void swap_sort (rtx_insn **, int);
851 static void queue_insn (rtx_insn *, int, const char *);
852 static int schedule_insn (rtx_insn *);
853 static void adjust_priority (rtx_insn *);
854 static void advance_one_cycle (void);
855 static void extend_h_i_d (void);
856
857
858 /* Notes handling mechanism:
859 =========================
860 Generally, NOTES are saved before scheduling and restored after scheduling.
861 The scheduler distinguishes between two types of notes:
862
863 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
864 Before scheduling a region, a pointer to the note is added to the insn
865 that follows or precedes it. (This happens as part of the data dependence
866 computation). After scheduling an insn, the pointer contained in it is
867 used for regenerating the corresponding note (in reemit_notes).
868
869 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
870 these notes are put in a list (in rm_other_notes() and
871 unlink_other_notes ()). After scheduling the block, these notes are
872 inserted at the beginning of the block (in schedule_block()). */
873
874 static void ready_add (struct ready_list *, rtx_insn *, bool);
875 static rtx_insn *ready_remove_first (struct ready_list *);
876 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
877
878 static void queue_to_ready (struct ready_list *);
879 static int early_queue_to_ready (state_t, struct ready_list *);
880
881 /* The following functions are used to implement multi-pass scheduling
882 on the first cycle. */
883 static rtx_insn *ready_remove (struct ready_list *, int);
884 static void ready_remove_insn (rtx);
885
886 static void fix_inter_tick (rtx_insn *, rtx_insn *);
887 static int fix_tick_ready (rtx_insn *);
888 static void change_queue_index (rtx_insn *, int);
889
890 /* The following functions are used to implement scheduling of data/control
891 speculative instructions. */
892
893 static void extend_h_i_d (void);
894 static void init_h_i_d (rtx_insn *);
895 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
896 static void generate_recovery_code (rtx_insn *);
897 static void process_insn_forw_deps_be_in_spec (rtx, rtx_insn *, ds_t);
898 static void begin_speculative_block (rtx_insn *);
899 static void add_to_speculative_block (rtx_insn *);
900 static void init_before_recovery (basic_block *);
901 static void create_check_block_twin (rtx_insn *, bool);
902 static void fix_recovery_deps (basic_block);
903 static bool haifa_change_pattern (rtx_insn *, rtx);
904 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
905 static void restore_bb_notes (basic_block);
906 static void fix_jump_move (rtx_insn *);
907 static void move_block_after_check (rtx_insn *);
908 static void move_succs (vec<edge, va_gc> **, basic_block);
909 static void sched_remove_insn (rtx_insn *);
910 static void clear_priorities (rtx_insn *, rtx_vec_t *);
911 static void calc_priorities (rtx_vec_t);
912 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
913
914 #endif /* INSN_SCHEDULING */
915 \f
916 /* Point to state used for the current scheduling pass. */
917 struct haifa_sched_info *current_sched_info;
918 \f
919 #ifndef INSN_SCHEDULING
920 void
921 schedule_insns (void)
922 {
923 }
924 #else
925
926 /* Do register pressure sensitive insn scheduling if the flag is set
927 up. */
928 enum sched_pressure_algorithm sched_pressure;
929
930 /* Map regno -> its pressure class. The map defined only when
931 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
932 enum reg_class *sched_regno_pressure_class;
933
934 /* The current register pressure. Only elements corresponding pressure
935 classes are defined. */
936 static int curr_reg_pressure[N_REG_CLASSES];
937
938 /* Saved value of the previous array. */
939 static int saved_reg_pressure[N_REG_CLASSES];
940
941 /* Register living at given scheduling point. */
942 static bitmap curr_reg_live;
943
944 /* Saved value of the previous array. */
945 static bitmap saved_reg_live;
946
947 /* Registers mentioned in the current region. */
948 static bitmap region_ref_regs;
949
950 /* Effective number of available registers of a given class (see comment
951 in sched_pressure_start_bb). */
952 static int sched_class_regs_num[N_REG_CLASSES];
953 /* Number of call_used_regs. This is a helper for calculating of
954 sched_class_regs_num. */
955 static int call_used_regs_num[N_REG_CLASSES];
956
957 /* Initiate register pressure relative info for scheduling the current
958 region. Currently it is only clearing register mentioned in the
959 current region. */
960 void
961 sched_init_region_reg_pressure_info (void)
962 {
963 bitmap_clear (region_ref_regs);
964 }
965
966 /* PRESSURE[CL] describes the pressure on register class CL. Update it
967 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
968 LIVE tracks the set of live registers; if it is null, assume that
969 every birth or death is genuine. */
970 static inline void
971 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
972 {
973 enum reg_class pressure_class;
974
975 pressure_class = sched_regno_pressure_class[regno];
976 if (regno >= FIRST_PSEUDO_REGISTER)
977 {
978 if (pressure_class != NO_REGS)
979 {
980 if (birth_p)
981 {
982 if (!live || bitmap_set_bit (live, regno))
983 pressure[pressure_class]
984 += (ira_reg_class_max_nregs
985 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
986 }
987 else
988 {
989 if (!live || bitmap_clear_bit (live, regno))
990 pressure[pressure_class]
991 -= (ira_reg_class_max_nregs
992 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
993 }
994 }
995 }
996 else if (pressure_class != NO_REGS
997 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
998 {
999 if (birth_p)
1000 {
1001 if (!live || bitmap_set_bit (live, regno))
1002 pressure[pressure_class]++;
1003 }
1004 else
1005 {
1006 if (!live || bitmap_clear_bit (live, regno))
1007 pressure[pressure_class]--;
1008 }
1009 }
1010 }
1011
1012 /* Initiate current register pressure related info from living
1013 registers given by LIVE. */
1014 static void
1015 initiate_reg_pressure_info (bitmap live)
1016 {
1017 int i;
1018 unsigned int j;
1019 bitmap_iterator bi;
1020
1021 for (i = 0; i < ira_pressure_classes_num; i++)
1022 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1023 bitmap_clear (curr_reg_live);
1024 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1025 if (sched_pressure == SCHED_PRESSURE_MODEL
1026 || current_nr_blocks == 1
1027 || bitmap_bit_p (region_ref_regs, j))
1028 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1029 }
1030
1031 /* Mark registers in X as mentioned in the current region. */
1032 static void
1033 setup_ref_regs (rtx x)
1034 {
1035 int i, j, regno;
1036 const RTX_CODE code = GET_CODE (x);
1037 const char *fmt;
1038
1039 if (REG_P (x))
1040 {
1041 regno = REGNO (x);
1042 if (HARD_REGISTER_NUM_P (regno))
1043 bitmap_set_range (region_ref_regs, regno,
1044 hard_regno_nregs[regno][GET_MODE (x)]);
1045 else
1046 bitmap_set_bit (region_ref_regs, REGNO (x));
1047 return;
1048 }
1049 fmt = GET_RTX_FORMAT (code);
1050 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1051 if (fmt[i] == 'e')
1052 setup_ref_regs (XEXP (x, i));
1053 else if (fmt[i] == 'E')
1054 {
1055 for (j = 0; j < XVECLEN (x, i); j++)
1056 setup_ref_regs (XVECEXP (x, i, j));
1057 }
1058 }
1059
1060 /* Initiate current register pressure related info at the start of
1061 basic block BB. */
1062 static void
1063 initiate_bb_reg_pressure_info (basic_block bb)
1064 {
1065 unsigned int i ATTRIBUTE_UNUSED;
1066 rtx_insn *insn;
1067
1068 if (current_nr_blocks > 1)
1069 FOR_BB_INSNS (bb, insn)
1070 if (NONDEBUG_INSN_P (insn))
1071 setup_ref_regs (PATTERN (insn));
1072 initiate_reg_pressure_info (df_get_live_in (bb));
1073 if (bb_has_eh_pred (bb))
1074 for (i = 0; ; ++i)
1075 {
1076 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1077
1078 if (regno == INVALID_REGNUM)
1079 break;
1080 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1081 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1082 regno, true);
1083 }
1084 }
1085
1086 /* Save current register pressure related info. */
1087 static void
1088 save_reg_pressure (void)
1089 {
1090 int i;
1091
1092 for (i = 0; i < ira_pressure_classes_num; i++)
1093 saved_reg_pressure[ira_pressure_classes[i]]
1094 = curr_reg_pressure[ira_pressure_classes[i]];
1095 bitmap_copy (saved_reg_live, curr_reg_live);
1096 }
1097
1098 /* Restore saved register pressure related info. */
1099 static void
1100 restore_reg_pressure (void)
1101 {
1102 int i;
1103
1104 for (i = 0; i < ira_pressure_classes_num; i++)
1105 curr_reg_pressure[ira_pressure_classes[i]]
1106 = saved_reg_pressure[ira_pressure_classes[i]];
1107 bitmap_copy (curr_reg_live, saved_reg_live);
1108 }
1109
1110 /* Return TRUE if the register is dying after its USE. */
1111 static bool
1112 dying_use_p (struct reg_use_data *use)
1113 {
1114 struct reg_use_data *next;
1115
1116 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1117 if (NONDEBUG_INSN_P (next->insn)
1118 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1119 return false;
1120 return true;
1121 }
1122
1123 /* Print info about the current register pressure and its excess for
1124 each pressure class. */
1125 static void
1126 print_curr_reg_pressure (void)
1127 {
1128 int i;
1129 enum reg_class cl;
1130
1131 fprintf (sched_dump, ";;\t");
1132 for (i = 0; i < ira_pressure_classes_num; i++)
1133 {
1134 cl = ira_pressure_classes[i];
1135 gcc_assert (curr_reg_pressure[cl] >= 0);
1136 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1137 curr_reg_pressure[cl],
1138 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1139 }
1140 fprintf (sched_dump, "\n");
1141 }
1142 \f
1143 /* Determine if INSN has a condition that is clobbered if a register
1144 in SET_REGS is modified. */
1145 static bool
1146 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1147 {
1148 rtx pat = PATTERN (insn);
1149 gcc_assert (GET_CODE (pat) == COND_EXEC);
1150 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1151 {
1152 sd_iterator_def sd_it;
1153 dep_t dep;
1154 haifa_change_pattern (insn, ORIG_PAT (insn));
1155 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1156 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1157 TODO_SPEC (insn) = HARD_DEP;
1158 if (sched_verbose >= 2)
1159 fprintf (sched_dump,
1160 ";;\t\tdequeue insn %s because of clobbered condition\n",
1161 (*current_sched_info->print_insn) (insn, 0));
1162 return true;
1163 }
1164
1165 return false;
1166 }
1167
1168 /* This function should be called after modifying the pattern of INSN,
1169 to update scheduler data structures as needed. */
1170 static void
1171 update_insn_after_change (rtx_insn *insn)
1172 {
1173 sd_iterator_def sd_it;
1174 dep_t dep;
1175
1176 dfa_clear_single_insn_cache (insn);
1177
1178 sd_it = sd_iterator_start (insn,
1179 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1180 while (sd_iterator_cond (&sd_it, &dep))
1181 {
1182 DEP_COST (dep) = UNKNOWN_DEP_COST;
1183 sd_iterator_next (&sd_it);
1184 }
1185
1186 /* Invalidate INSN_COST, so it'll be recalculated. */
1187 INSN_COST (insn) = -1;
1188 /* Invalidate INSN_TICK, so it'll be recalculated. */
1189 INSN_TICK (insn) = INVALID_TICK;
1190
1191 /* Invalidate autoprefetch data entry. */
1192 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1193 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1194 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1195 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1196 }
1197
1198
1199 /* Two VECs, one to hold dependencies for which pattern replacements
1200 need to be applied or restored at the start of the next cycle, and
1201 another to hold an integer that is either one, to apply the
1202 corresponding replacement, or zero to restore it. */
1203 static vec<dep_t> next_cycle_replace_deps;
1204 static vec<int> next_cycle_apply;
1205
1206 static void apply_replacement (dep_t, bool);
1207 static void restore_pattern (dep_t, bool);
1208
1209 /* Look at the remaining dependencies for insn NEXT, and compute and return
1210 the TODO_SPEC value we should use for it. This is called after one of
1211 NEXT's dependencies has been resolved.
1212 We also perform pattern replacements for predication, and for broken
1213 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1214 false. */
1215
1216 static ds_t
1217 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1218 {
1219 ds_t new_ds;
1220 sd_iterator_def sd_it;
1221 dep_t dep, modify_dep = NULL;
1222 int n_spec = 0;
1223 int n_control = 0;
1224 int n_replace = 0;
1225 bool first_p = true;
1226
1227 if (sd_lists_empty_p (next, SD_LIST_BACK))
1228 /* NEXT has all its dependencies resolved. */
1229 return 0;
1230
1231 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1232 return HARD_DEP;
1233
1234 /* If NEXT is intended to sit adjacent to this instruction, we don't
1235 want to try to break any dependencies. Treat it as a HARD_DEP. */
1236 if (SCHED_GROUP_P (next))
1237 return HARD_DEP;
1238
1239 /* Now we've got NEXT with speculative deps only.
1240 1. Look at the deps to see what we have to do.
1241 2. Check if we can do 'todo'. */
1242 new_ds = 0;
1243
1244 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1245 {
1246 rtx_insn *pro = DEP_PRO (dep);
1247 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1248
1249 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1250 continue;
1251
1252 if (ds)
1253 {
1254 n_spec++;
1255 if (first_p)
1256 {
1257 first_p = false;
1258
1259 new_ds = ds;
1260 }
1261 else
1262 new_ds = ds_merge (new_ds, ds);
1263 }
1264 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1265 {
1266 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1267 {
1268 n_control++;
1269 modify_dep = dep;
1270 }
1271 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1272 }
1273 else if (DEP_REPLACE (dep) != NULL)
1274 {
1275 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1276 {
1277 n_replace++;
1278 modify_dep = dep;
1279 }
1280 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1281 }
1282 }
1283
1284 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1285 {
1286 if (!dbg_cnt (sched_breakdep))
1287 return HARD_DEP;
1288 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1289 {
1290 struct dep_replacement *desc = DEP_REPLACE (dep);
1291 if (desc != NULL)
1292 {
1293 if (desc->insn == next && !for_backtrack)
1294 {
1295 gcc_assert (n_replace == 1);
1296 apply_replacement (dep, true);
1297 }
1298 DEP_STATUS (dep) |= DEP_CANCELLED;
1299 }
1300 }
1301 return 0;
1302 }
1303
1304 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1305 {
1306 rtx_insn *pro, *other;
1307 rtx new_pat;
1308 rtx cond = NULL_RTX;
1309 bool success;
1310 rtx_insn *prev = NULL;
1311 int i;
1312 unsigned regno;
1313
1314 if ((current_sched_info->flags & DO_PREDICATION) == 0
1315 || (ORIG_PAT (next) != NULL_RTX
1316 && PREDICATED_PAT (next) == NULL_RTX))
1317 return HARD_DEP;
1318
1319 pro = DEP_PRO (modify_dep);
1320 other = real_insn_for_shadow (pro);
1321 if (other != NULL_RTX)
1322 pro = other;
1323
1324 cond = sched_get_reverse_condition_uncached (pro);
1325 regno = REGNO (XEXP (cond, 0));
1326
1327 /* Find the last scheduled insn that modifies the condition register.
1328 We can stop looking once we find the insn we depend on through the
1329 REG_DEP_CONTROL; if the condition register isn't modified after it,
1330 we know that it still has the right value. */
1331 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1332 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1333 {
1334 HARD_REG_SET t;
1335
1336 find_all_hard_reg_sets (prev, &t, true);
1337 if (TEST_HARD_REG_BIT (t, regno))
1338 return HARD_DEP;
1339 if (prev == pro)
1340 break;
1341 }
1342 if (ORIG_PAT (next) == NULL_RTX)
1343 {
1344 ORIG_PAT (next) = PATTERN (next);
1345
1346 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1347 success = haifa_change_pattern (next, new_pat);
1348 if (!success)
1349 return HARD_DEP;
1350 PREDICATED_PAT (next) = new_pat;
1351 }
1352 else if (PATTERN (next) != PREDICATED_PAT (next))
1353 {
1354 bool success = haifa_change_pattern (next,
1355 PREDICATED_PAT (next));
1356 gcc_assert (success);
1357 }
1358 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1359 return DEP_CONTROL;
1360 }
1361
1362 if (PREDICATED_PAT (next) != NULL_RTX)
1363 {
1364 int tick = INSN_TICK (next);
1365 bool success = haifa_change_pattern (next,
1366 ORIG_PAT (next));
1367 INSN_TICK (next) = tick;
1368 gcc_assert (success);
1369 }
1370
1371 /* We can't handle the case where there are both speculative and control
1372 dependencies, so we return HARD_DEP in such a case. Also fail if
1373 we have speculative dependencies with not enough points, or more than
1374 one control dependency. */
1375 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1376 || (n_spec > 0
1377 /* Too few points? */
1378 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1379 || n_control > 0
1380 || n_replace > 0)
1381 return HARD_DEP;
1382
1383 return new_ds;
1384 }
1385 \f
1386 /* Pointer to the last instruction scheduled. */
1387 static rtx_insn *last_scheduled_insn;
1388
1389 /* Pointer to the last nondebug instruction scheduled within the
1390 block, or the prev_head of the scheduling block. Used by
1391 rank_for_schedule, so that insns independent of the last scheduled
1392 insn will be preferred over dependent instructions. */
1393 static rtx last_nondebug_scheduled_insn;
1394
1395 /* Pointer that iterates through the list of unscheduled insns if we
1396 have a dbg_cnt enabled. It always points at an insn prior to the
1397 first unscheduled one. */
1398 static rtx_insn *nonscheduled_insns_begin;
1399
1400 /* Compute cost of executing INSN.
1401 This is the number of cycles between instruction issue and
1402 instruction results. */
1403 int
1404 insn_cost (rtx_insn *insn)
1405 {
1406 int cost;
1407
1408 if (sched_fusion)
1409 return 0;
1410
1411 if (sel_sched_p ())
1412 {
1413 if (recog_memoized (insn) < 0)
1414 return 0;
1415
1416 cost = insn_default_latency (insn);
1417 if (cost < 0)
1418 cost = 0;
1419
1420 return cost;
1421 }
1422
1423 cost = INSN_COST (insn);
1424
1425 if (cost < 0)
1426 {
1427 /* A USE insn, or something else we don't need to
1428 understand. We can't pass these directly to
1429 result_ready_cost or insn_default_latency because it will
1430 trigger a fatal error for unrecognizable insns. */
1431 if (recog_memoized (insn) < 0)
1432 {
1433 INSN_COST (insn) = 0;
1434 return 0;
1435 }
1436 else
1437 {
1438 cost = insn_default_latency (insn);
1439 if (cost < 0)
1440 cost = 0;
1441
1442 INSN_COST (insn) = cost;
1443 }
1444 }
1445
1446 return cost;
1447 }
1448
1449 /* Compute cost of dependence LINK.
1450 This is the number of cycles between instruction issue and
1451 instruction results.
1452 ??? We also use this function to call recog_memoized on all insns. */
1453 int
1454 dep_cost_1 (dep_t link, dw_t dw)
1455 {
1456 rtx_insn *insn = DEP_PRO (link);
1457 rtx_insn *used = DEP_CON (link);
1458 int cost;
1459
1460 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1461 return DEP_COST (link);
1462
1463 if (delay_htab)
1464 {
1465 struct delay_pair *delay_entry;
1466 delay_entry
1467 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1468 if (delay_entry)
1469 {
1470 if (delay_entry->i1 == insn)
1471 {
1472 DEP_COST (link) = pair_delay (delay_entry);
1473 return DEP_COST (link);
1474 }
1475 }
1476 }
1477
1478 /* A USE insn should never require the value used to be computed.
1479 This allows the computation of a function's result and parameter
1480 values to overlap the return and call. We don't care about the
1481 dependence cost when only decreasing register pressure. */
1482 if (recog_memoized (used) < 0)
1483 {
1484 cost = 0;
1485 recog_memoized (insn);
1486 }
1487 else
1488 {
1489 enum reg_note dep_type = DEP_TYPE (link);
1490
1491 cost = insn_cost (insn);
1492
1493 if (INSN_CODE (insn) >= 0)
1494 {
1495 if (dep_type == REG_DEP_ANTI)
1496 cost = 0;
1497 else if (dep_type == REG_DEP_OUTPUT)
1498 {
1499 cost = (insn_default_latency (insn)
1500 - insn_default_latency (used));
1501 if (cost <= 0)
1502 cost = 1;
1503 }
1504 else if (bypass_p (insn))
1505 cost = insn_latency (insn, used);
1506 }
1507
1508
1509 if (targetm.sched.adjust_cost_2)
1510 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1511 dw);
1512 else if (targetm.sched.adjust_cost != NULL)
1513 {
1514 /* This variable is used for backward compatibility with the
1515 targets. */
1516 rtx_insn_list *dep_cost_rtx_link =
1517 alloc_INSN_LIST (NULL_RTX, NULL);
1518
1519 /* Make it self-cycled, so that if some tries to walk over this
1520 incomplete list he/she will be caught in an endless loop. */
1521 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1522
1523 /* Targets use only REG_NOTE_KIND of the link. */
1524 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1525
1526 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1527 insn, cost);
1528
1529 free_INSN_LIST_node (dep_cost_rtx_link);
1530 }
1531
1532 if (cost < 0)
1533 cost = 0;
1534 }
1535
1536 DEP_COST (link) = cost;
1537 return cost;
1538 }
1539
1540 /* Compute cost of dependence LINK.
1541 This is the number of cycles between instruction issue and
1542 instruction results. */
1543 int
1544 dep_cost (dep_t link)
1545 {
1546 return dep_cost_1 (link, 0);
1547 }
1548
1549 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1550 INSN_PRIORITY explicitly. */
1551 void
1552 increase_insn_priority (rtx_insn *insn, int amount)
1553 {
1554 if (!sel_sched_p ())
1555 {
1556 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1557 if (INSN_PRIORITY_KNOWN (insn))
1558 INSN_PRIORITY (insn) += amount;
1559 }
1560 else
1561 {
1562 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1563 Use EXPR_PRIORITY instead. */
1564 sel_add_to_insn_priority (insn, amount);
1565 }
1566 }
1567
1568 /* Return 'true' if DEP should be included in priority calculations. */
1569 static bool
1570 contributes_to_priority_p (dep_t dep)
1571 {
1572 if (DEBUG_INSN_P (DEP_CON (dep))
1573 || DEBUG_INSN_P (DEP_PRO (dep)))
1574 return false;
1575
1576 /* Critical path is meaningful in block boundaries only. */
1577 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1578 DEP_PRO (dep)))
1579 return false;
1580
1581 if (DEP_REPLACE (dep) != NULL)
1582 return false;
1583
1584 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1585 then speculative instructions will less likely be
1586 scheduled. That is because the priority of
1587 their producers will increase, and, thus, the
1588 producers will more likely be scheduled, thus,
1589 resolving the dependence. */
1590 if (sched_deps_info->generate_spec_deps
1591 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1592 && (DEP_STATUS (dep) & SPECULATIVE))
1593 return false;
1594
1595 return true;
1596 }
1597
1598 /* Compute the number of nondebug deps in list LIST for INSN. */
1599
1600 static int
1601 dep_list_size (rtx insn, sd_list_types_def list)
1602 {
1603 sd_iterator_def sd_it;
1604 dep_t dep;
1605 int dbgcount = 0, nodbgcount = 0;
1606
1607 if (!MAY_HAVE_DEBUG_INSNS)
1608 return sd_lists_size (insn, list);
1609
1610 FOR_EACH_DEP (insn, list, sd_it, dep)
1611 {
1612 if (DEBUG_INSN_P (DEP_CON (dep)))
1613 dbgcount++;
1614 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1615 nodbgcount++;
1616 }
1617
1618 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1619
1620 return nodbgcount;
1621 }
1622
1623 bool sched_fusion;
1624
1625 /* Compute the priority number for INSN. */
1626 static int
1627 priority (rtx_insn *insn)
1628 {
1629 if (! INSN_P (insn))
1630 return 0;
1631
1632 /* We should not be interested in priority of an already scheduled insn. */
1633 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1634
1635 if (!INSN_PRIORITY_KNOWN (insn))
1636 {
1637 int this_priority = -1;
1638
1639 if (sched_fusion)
1640 {
1641 int this_fusion_priority;
1642
1643 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1644 &this_fusion_priority, &this_priority);
1645 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1646 }
1647 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1648 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1649 some forward deps but all of them are ignored by
1650 contributes_to_priority hook. At the moment we set priority of
1651 such insn to 0. */
1652 this_priority = insn_cost (insn);
1653 else
1654 {
1655 rtx_insn *prev_first, *twin;
1656 basic_block rec;
1657
1658 /* For recovery check instructions we calculate priority slightly
1659 different than that of normal instructions. Instead of walking
1660 through INSN_FORW_DEPS (check) list, we walk through
1661 INSN_FORW_DEPS list of each instruction in the corresponding
1662 recovery block. */
1663
1664 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1665 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1666 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1667 {
1668 prev_first = PREV_INSN (insn);
1669 twin = insn;
1670 }
1671 else
1672 {
1673 prev_first = NEXT_INSN (BB_HEAD (rec));
1674 twin = PREV_INSN (BB_END (rec));
1675 }
1676
1677 do
1678 {
1679 sd_iterator_def sd_it;
1680 dep_t dep;
1681
1682 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1683 {
1684 rtx_insn *next;
1685 int next_priority;
1686
1687 next = DEP_CON (dep);
1688
1689 if (BLOCK_FOR_INSN (next) != rec)
1690 {
1691 int cost;
1692
1693 if (!contributes_to_priority_p (dep))
1694 continue;
1695
1696 if (twin == insn)
1697 cost = dep_cost (dep);
1698 else
1699 {
1700 struct _dep _dep1, *dep1 = &_dep1;
1701
1702 init_dep (dep1, insn, next, REG_DEP_ANTI);
1703
1704 cost = dep_cost (dep1);
1705 }
1706
1707 next_priority = cost + priority (next);
1708
1709 if (next_priority > this_priority)
1710 this_priority = next_priority;
1711 }
1712 }
1713
1714 twin = PREV_INSN (twin);
1715 }
1716 while (twin != prev_first);
1717 }
1718
1719 if (this_priority < 0)
1720 {
1721 gcc_assert (this_priority == -1);
1722
1723 this_priority = insn_cost (insn);
1724 }
1725
1726 INSN_PRIORITY (insn) = this_priority;
1727 INSN_PRIORITY_STATUS (insn) = 1;
1728 }
1729
1730 return INSN_PRIORITY (insn);
1731 }
1732 \f
1733 /* Macros and functions for keeping the priority queue sorted, and
1734 dealing with queuing and dequeuing of instructions. */
1735
1736 /* For each pressure class CL, set DEATH[CL] to the number of registers
1737 in that class that die in INSN. */
1738
1739 static void
1740 calculate_reg_deaths (rtx_insn *insn, int *death)
1741 {
1742 int i;
1743 struct reg_use_data *use;
1744
1745 for (i = 0; i < ira_pressure_classes_num; i++)
1746 death[ira_pressure_classes[i]] = 0;
1747 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1748 if (dying_use_p (use))
1749 mark_regno_birth_or_death (0, death, use->regno, true);
1750 }
1751
1752 /* Setup info about the current register pressure impact of scheduling
1753 INSN at the current scheduling point. */
1754 static void
1755 setup_insn_reg_pressure_info (rtx_insn *insn)
1756 {
1757 int i, change, before, after, hard_regno;
1758 int excess_cost_change;
1759 machine_mode mode;
1760 enum reg_class cl;
1761 struct reg_pressure_data *pressure_info;
1762 int *max_reg_pressure;
1763 static int death[N_REG_CLASSES];
1764
1765 gcc_checking_assert (!DEBUG_INSN_P (insn));
1766
1767 excess_cost_change = 0;
1768 calculate_reg_deaths (insn, death);
1769 pressure_info = INSN_REG_PRESSURE (insn);
1770 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1771 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1772 for (i = 0; i < ira_pressure_classes_num; i++)
1773 {
1774 cl = ira_pressure_classes[i];
1775 gcc_assert (curr_reg_pressure[cl] >= 0);
1776 change = (int) pressure_info[i].set_increase - death[cl];
1777 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1778 after = MAX (0, max_reg_pressure[i] + change
1779 - sched_class_regs_num[cl]);
1780 hard_regno = ira_class_hard_regs[cl][0];
1781 gcc_assert (hard_regno >= 0);
1782 mode = reg_raw_mode[hard_regno];
1783 excess_cost_change += ((after - before)
1784 * (ira_memory_move_cost[mode][cl][0]
1785 + ira_memory_move_cost[mode][cl][1]));
1786 }
1787 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1788 }
1789 \f
1790 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1791 It tries to make the scheduler take register pressure into account
1792 without introducing too many unnecessary stalls. It hooks into the
1793 main scheduling algorithm at several points:
1794
1795 - Before scheduling starts, model_start_schedule constructs a
1796 "model schedule" for the current block. This model schedule is
1797 chosen solely to keep register pressure down. It does not take the
1798 target's pipeline or the original instruction order into account,
1799 except as a tie-breaker. It also doesn't work to a particular
1800 pressure limit.
1801
1802 This model schedule gives us an idea of what pressure can be
1803 achieved for the block and gives us an example of a schedule that
1804 keeps to that pressure. It also makes the final schedule less
1805 dependent on the original instruction order. This is important
1806 because the original order can either be "wide" (many values live
1807 at once, such as in user-scheduled code) or "narrow" (few values
1808 live at once, such as after loop unrolling, where several
1809 iterations are executed sequentially).
1810
1811 We do not apply this model schedule to the rtx stream. We simply
1812 record it in model_schedule. We also compute the maximum pressure,
1813 MP, that was seen during this schedule.
1814
1815 - Instructions are added to the ready queue even if they require
1816 a stall. The length of the stall is instead computed as:
1817
1818 MAX (INSN_TICK (INSN) - clock_var, 0)
1819
1820 (= insn_delay). This allows rank_for_schedule to choose between
1821 introducing a deliberate stall or increasing pressure.
1822
1823 - Before sorting the ready queue, model_set_excess_costs assigns
1824 a pressure-based cost to each ready instruction in the queue.
1825 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1826 (ECC for short) and is effectively measured in cycles.
1827
1828 - rank_for_schedule ranks instructions based on:
1829
1830 ECC (insn) + insn_delay (insn)
1831
1832 then as:
1833
1834 insn_delay (insn)
1835
1836 So, for example, an instruction X1 with an ECC of 1 that can issue
1837 now will win over an instruction X0 with an ECC of zero that would
1838 introduce a stall of one cycle. However, an instruction X2 with an
1839 ECC of 2 that can issue now will lose to both X0 and X1.
1840
1841 - When an instruction is scheduled, model_recompute updates the model
1842 schedule with the new pressures (some of which might now exceed the
1843 original maximum pressure MP). model_update_limit_points then searches
1844 for the new point of maximum pressure, if not already known. */
1845
1846 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1847 from surrounding debug information. */
1848 #define MODEL_BAR \
1849 ";;\t\t+------------------------------------------------------\n"
1850
1851 /* Information about the pressure on a particular register class at a
1852 particular point of the model schedule. */
1853 struct model_pressure_data {
1854 /* The pressure at this point of the model schedule, or -1 if the
1855 point is associated with an instruction that has already been
1856 scheduled. */
1857 int ref_pressure;
1858
1859 /* The maximum pressure during or after this point of the model schedule. */
1860 int max_pressure;
1861 };
1862
1863 /* Per-instruction information that is used while building the model
1864 schedule. Here, "schedule" refers to the model schedule rather
1865 than the main schedule. */
1866 struct model_insn_info {
1867 /* The instruction itself. */
1868 rtx_insn *insn;
1869
1870 /* If this instruction is in model_worklist, these fields link to the
1871 previous (higher-priority) and next (lower-priority) instructions
1872 in the list. */
1873 struct model_insn_info *prev;
1874 struct model_insn_info *next;
1875
1876 /* While constructing the schedule, QUEUE_INDEX describes whether an
1877 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1878 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1879 old_queue records the value that QUEUE_INDEX had before scheduling
1880 started, so that we can restore it once the schedule is complete. */
1881 int old_queue;
1882
1883 /* The relative importance of an unscheduled instruction. Higher
1884 values indicate greater importance. */
1885 unsigned int model_priority;
1886
1887 /* The length of the longest path of satisfied true dependencies
1888 that leads to this instruction. */
1889 unsigned int depth;
1890
1891 /* The length of the longest path of dependencies of any kind
1892 that leads from this instruction. */
1893 unsigned int alap;
1894
1895 /* The number of predecessor nodes that must still be scheduled. */
1896 int unscheduled_preds;
1897 };
1898
1899 /* Information about the pressure limit for a particular register class.
1900 This structure is used when applying a model schedule to the main
1901 schedule. */
1902 struct model_pressure_limit {
1903 /* The maximum register pressure seen in the original model schedule. */
1904 int orig_pressure;
1905
1906 /* The maximum register pressure seen in the current model schedule
1907 (which excludes instructions that have already been scheduled). */
1908 int pressure;
1909
1910 /* The point of the current model schedule at which PRESSURE is first
1911 reached. It is set to -1 if the value needs to be recomputed. */
1912 int point;
1913 };
1914
1915 /* Describes a particular way of measuring register pressure. */
1916 struct model_pressure_group {
1917 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1918 struct model_pressure_limit limits[N_REG_CLASSES];
1919
1920 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1921 on register class ira_pressure_classes[PCI] at point POINT of the
1922 current model schedule. A POINT of model_num_insns describes the
1923 pressure at the end of the schedule. */
1924 struct model_pressure_data *model;
1925 };
1926
1927 /* Index POINT gives the instruction at point POINT of the model schedule.
1928 This array doesn't change during main scheduling. */
1929 static vec<rtx_insn *> model_schedule;
1930
1931 /* The list of instructions in the model worklist, sorted in order of
1932 decreasing priority. */
1933 static struct model_insn_info *model_worklist;
1934
1935 /* Index I describes the instruction with INSN_LUID I. */
1936 static struct model_insn_info *model_insns;
1937
1938 /* The number of instructions in the model schedule. */
1939 static int model_num_insns;
1940
1941 /* The index of the first instruction in model_schedule that hasn't yet been
1942 added to the main schedule, or model_num_insns if all of them have. */
1943 static int model_curr_point;
1944
1945 /* Describes the pressure before each instruction in the model schedule. */
1946 static struct model_pressure_group model_before_pressure;
1947
1948 /* The first unused model_priority value (as used in model_insn_info). */
1949 static unsigned int model_next_priority;
1950
1951
1952 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1953 at point POINT of the model schedule. */
1954 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1955 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1956
1957 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1958 after point POINT of the model schedule. */
1959 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1960 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1961
1962 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1963 of the model schedule. */
1964 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1965 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1966
1967 /* Information about INSN that is used when creating the model schedule. */
1968 #define MODEL_INSN_INFO(INSN) \
1969 (&model_insns[INSN_LUID (INSN)])
1970
1971 /* The instruction at point POINT of the model schedule. */
1972 #define MODEL_INSN(POINT) \
1973 (model_schedule[POINT])
1974
1975
1976 /* Return INSN's index in the model schedule, or model_num_insns if it
1977 doesn't belong to that schedule. */
1978
1979 static int
1980 model_index (rtx_insn *insn)
1981 {
1982 if (INSN_MODEL_INDEX (insn) == 0)
1983 return model_num_insns;
1984 return INSN_MODEL_INDEX (insn) - 1;
1985 }
1986
1987 /* Make sure that GROUP->limits is up-to-date for the current point
1988 of the model schedule. */
1989
1990 static void
1991 model_update_limit_points_in_group (struct model_pressure_group *group)
1992 {
1993 int pci, max_pressure, point;
1994
1995 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1996 {
1997 /* We may have passed the final point at which the pressure in
1998 group->limits[pci].pressure was reached. Update the limit if so. */
1999 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
2000 group->limits[pci].pressure = max_pressure;
2001
2002 /* Find the point at which MAX_PRESSURE is first reached. We need
2003 to search in three cases:
2004
2005 - We've already moved past the previous pressure point.
2006 In this case we search forward from model_curr_point.
2007
2008 - We scheduled the previous point of maximum pressure ahead of
2009 its position in the model schedule, but doing so didn't bring
2010 the pressure point earlier. In this case we search forward
2011 from that previous pressure point.
2012
2013 - Scheduling an instruction early caused the maximum pressure
2014 to decrease. In this case we will have set the pressure
2015 point to -1, and we search forward from model_curr_point. */
2016 point = MAX (group->limits[pci].point, model_curr_point);
2017 while (point < model_num_insns
2018 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
2019 point++;
2020 group->limits[pci].point = point;
2021
2022 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
2023 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
2024 }
2025 }
2026
2027 /* Make sure that all register-pressure limits are up-to-date for the
2028 current position in the model schedule. */
2029
2030 static void
2031 model_update_limit_points (void)
2032 {
2033 model_update_limit_points_in_group (&model_before_pressure);
2034 }
2035
2036 /* Return the model_index of the last unscheduled use in chain USE
2037 outside of USE's instruction. Return -1 if there are no other uses,
2038 or model_num_insns if the register is live at the end of the block. */
2039
2040 static int
2041 model_last_use_except (struct reg_use_data *use)
2042 {
2043 struct reg_use_data *next;
2044 int last, index;
2045
2046 last = -1;
2047 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2048 if (NONDEBUG_INSN_P (next->insn)
2049 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2050 {
2051 index = model_index (next->insn);
2052 if (index == model_num_insns)
2053 return model_num_insns;
2054 if (last < index)
2055 last = index;
2056 }
2057 return last;
2058 }
2059
2060 /* An instruction with model_index POINT has just been scheduled, and it
2061 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2062 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2063 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2064
2065 static void
2066 model_start_update_pressure (struct model_pressure_group *group,
2067 int point, int pci, int delta)
2068 {
2069 int next_max_pressure;
2070
2071 if (point == model_num_insns)
2072 {
2073 /* The instruction wasn't part of the model schedule; it was moved
2074 from a different block. Update the pressure for the end of
2075 the model schedule. */
2076 MODEL_REF_PRESSURE (group, point, pci) += delta;
2077 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2078 }
2079 else
2080 {
2081 /* Record that this instruction has been scheduled. Nothing now
2082 changes between POINT and POINT + 1, so get the maximum pressure
2083 from the latter. If the maximum pressure decreases, the new
2084 pressure point may be before POINT. */
2085 MODEL_REF_PRESSURE (group, point, pci) = -1;
2086 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2087 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2088 {
2089 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2090 if (group->limits[pci].point == point)
2091 group->limits[pci].point = -1;
2092 }
2093 }
2094 }
2095
2096 /* Record that scheduling a later instruction has changed the pressure
2097 at point POINT of the model schedule by DELTA (which might be 0).
2098 Update GROUP accordingly. Return nonzero if these changes might
2099 trigger changes to previous points as well. */
2100
2101 static int
2102 model_update_pressure (struct model_pressure_group *group,
2103 int point, int pci, int delta)
2104 {
2105 int ref_pressure, max_pressure, next_max_pressure;
2106
2107 /* If POINT hasn't yet been scheduled, update its pressure. */
2108 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2109 if (ref_pressure >= 0 && delta != 0)
2110 {
2111 ref_pressure += delta;
2112 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2113
2114 /* Check whether the maximum pressure in the overall schedule
2115 has increased. (This means that the MODEL_MAX_PRESSURE of
2116 every point <= POINT will need to increase too; see below.) */
2117 if (group->limits[pci].pressure < ref_pressure)
2118 group->limits[pci].pressure = ref_pressure;
2119
2120 /* If we are at maximum pressure, and the maximum pressure
2121 point was previously unknown or later than POINT,
2122 bring it forward. */
2123 if (group->limits[pci].pressure == ref_pressure
2124 && !IN_RANGE (group->limits[pci].point, 0, point))
2125 group->limits[pci].point = point;
2126
2127 /* If POINT used to be the point of maximum pressure, but isn't
2128 any longer, we need to recalculate it using a forward walk. */
2129 if (group->limits[pci].pressure > ref_pressure
2130 && group->limits[pci].point == point)
2131 group->limits[pci].point = -1;
2132 }
2133
2134 /* Update the maximum pressure at POINT. Changes here might also
2135 affect the maximum pressure at POINT - 1. */
2136 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2137 max_pressure = MAX (ref_pressure, next_max_pressure);
2138 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2139 {
2140 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2141 return 1;
2142 }
2143 return 0;
2144 }
2145
2146 /* INSN has just been scheduled. Update the model schedule accordingly. */
2147
2148 static void
2149 model_recompute (rtx_insn *insn)
2150 {
2151 struct {
2152 int last_use;
2153 int regno;
2154 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2155 struct reg_use_data *use;
2156 struct reg_pressure_data *reg_pressure;
2157 int delta[N_REG_CLASSES];
2158 int pci, point, mix, new_last, cl, ref_pressure, queue;
2159 unsigned int i, num_uses, num_pending_births;
2160 bool print_p;
2161
2162 /* The destinations of INSN were previously live from POINT onwards, but are
2163 now live from model_curr_point onwards. Set up DELTA accordingly. */
2164 point = model_index (insn);
2165 reg_pressure = INSN_REG_PRESSURE (insn);
2166 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2167 {
2168 cl = ira_pressure_classes[pci];
2169 delta[cl] = reg_pressure[pci].set_increase;
2170 }
2171
2172 /* Record which registers previously died at POINT, but which now die
2173 before POINT. Adjust DELTA so that it represents the effect of
2174 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2175 registers that will be born in the range [model_curr_point, POINT). */
2176 num_uses = 0;
2177 num_pending_births = 0;
2178 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2179 {
2180 new_last = model_last_use_except (use);
2181 if (new_last < point)
2182 {
2183 gcc_assert (num_uses < ARRAY_SIZE (uses));
2184 uses[num_uses].last_use = new_last;
2185 uses[num_uses].regno = use->regno;
2186 /* This register is no longer live after POINT - 1. */
2187 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2188 num_uses++;
2189 if (new_last >= 0)
2190 num_pending_births++;
2191 }
2192 }
2193
2194 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2195 Also set each group pressure limit for POINT. */
2196 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2197 {
2198 cl = ira_pressure_classes[pci];
2199 model_start_update_pressure (&model_before_pressure,
2200 point, pci, delta[cl]);
2201 }
2202
2203 /* Walk the model schedule backwards, starting immediately before POINT. */
2204 print_p = false;
2205 if (point != model_curr_point)
2206 do
2207 {
2208 point--;
2209 insn = MODEL_INSN (point);
2210 queue = QUEUE_INDEX (insn);
2211
2212 if (queue != QUEUE_SCHEDULED)
2213 {
2214 /* DELTA describes the effect of the move on the register pressure
2215 after POINT. Make it describe the effect on the pressure
2216 before POINT. */
2217 i = 0;
2218 while (i < num_uses)
2219 {
2220 if (uses[i].last_use == point)
2221 {
2222 /* This register is now live again. */
2223 mark_regno_birth_or_death (NULL, delta,
2224 uses[i].regno, true);
2225
2226 /* Remove this use from the array. */
2227 uses[i] = uses[num_uses - 1];
2228 num_uses--;
2229 num_pending_births--;
2230 }
2231 else
2232 i++;
2233 }
2234
2235 if (sched_verbose >= 5)
2236 {
2237 if (!print_p)
2238 {
2239 fprintf (sched_dump, MODEL_BAR);
2240 fprintf (sched_dump, ";;\t\t| New pressure for model"
2241 " schedule\n");
2242 fprintf (sched_dump, MODEL_BAR);
2243 print_p = true;
2244 }
2245
2246 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2247 point, INSN_UID (insn),
2248 str_pattern_slim (PATTERN (insn)));
2249 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2250 {
2251 cl = ira_pressure_classes[pci];
2252 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2253 point, pci);
2254 fprintf (sched_dump, " %s:[%d->%d]",
2255 reg_class_names[ira_pressure_classes[pci]],
2256 ref_pressure, ref_pressure + delta[cl]);
2257 }
2258 fprintf (sched_dump, "\n");
2259 }
2260 }
2261
2262 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2263 might have changed as well. */
2264 mix = num_pending_births;
2265 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2266 {
2267 cl = ira_pressure_classes[pci];
2268 mix |= delta[cl];
2269 mix |= model_update_pressure (&model_before_pressure,
2270 point, pci, delta[cl]);
2271 }
2272 }
2273 while (mix && point > model_curr_point);
2274
2275 if (print_p)
2276 fprintf (sched_dump, MODEL_BAR);
2277 }
2278
2279 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2280 check whether the insn's pattern needs restoring. */
2281 static bool
2282 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2283 {
2284 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2285 return false;
2286
2287 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2288 {
2289 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2290 gcc_assert (next == DEP_CON (dep));
2291 }
2292 else
2293 {
2294 struct dep_replacement *desc = DEP_REPLACE (dep);
2295 if (desc->insn != next)
2296 {
2297 gcc_assert (*desc->loc == desc->orig);
2298 return false;
2299 }
2300 }
2301 return true;
2302 }
2303 \f
2304 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2305 pressure on CL from P to P'. We use this to calculate a "base ECC",
2306 baseECC (CL, X), for each pressure class CL and each instruction X.
2307 Supposing X changes the pressure on CL from P to P', and that the
2308 maximum pressure on CL in the current model schedule is MP', then:
2309
2310 * if X occurs before or at the next point of maximum pressure in
2311 the model schedule and P' > MP', then:
2312
2313 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2314
2315 The idea is that the pressure after scheduling a fixed set of
2316 instructions -- in this case, the set up to and including the
2317 next maximum pressure point -- is going to be the same regardless
2318 of the order; we simply want to keep the intermediate pressure
2319 under control. Thus X has a cost of zero unless scheduling it
2320 now would exceed MP'.
2321
2322 If all increases in the set are by the same amount, no zero-cost
2323 instruction will ever cause the pressure to exceed MP'. However,
2324 if X is instead moved past an instruction X' with pressure in the
2325 range (MP' - (P' - P), MP'), the pressure at X' will increase
2326 beyond MP'. Since baseECC is very much a heuristic anyway,
2327 it doesn't seem worth the overhead of tracking cases like these.
2328
2329 The cost of exceeding MP' is always based on the original maximum
2330 pressure MP. This is so that going 2 registers over the original
2331 limit has the same cost regardless of whether it comes from two
2332 separate +1 deltas or from a single +2 delta.
2333
2334 * if X occurs after the next point of maximum pressure in the model
2335 schedule and P' > P, then:
2336
2337 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2338
2339 That is, if we move X forward across a point of maximum pressure,
2340 and if X increases the pressure by P' - P, then we conservatively
2341 assume that scheduling X next would increase the maximum pressure
2342 by P' - P. Again, the cost of doing this is based on the original
2343 maximum pressure MP, for the same reason as above.
2344
2345 * if P' < P, P > MP, and X occurs at or after the next point of
2346 maximum pressure, then:
2347
2348 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2349
2350 That is, if we have already exceeded the original maximum pressure MP,
2351 and if X might reduce the maximum pressure again -- or at least push
2352 it further back, and thus allow more scheduling freedom -- it is given
2353 a negative cost to reflect the improvement.
2354
2355 * otherwise,
2356
2357 baseECC (CL, X) = 0
2358
2359 In this case, X is not expected to affect the maximum pressure MP',
2360 so it has zero cost.
2361
2362 We then create a combined value baseECC (X) that is the sum of
2363 baseECC (CL, X) for each pressure class CL.
2364
2365 baseECC (X) could itself be used as the ECC value described above.
2366 However, this is often too conservative, in the sense that it
2367 tends to make high-priority instructions that increase pressure
2368 wait too long in cases where introducing a spill would be better.
2369 For this reason the final ECC is a priority-adjusted form of
2370 baseECC (X). Specifically, we calculate:
2371
2372 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2373 baseP = MAX { P (X) | baseECC (X) <= 0 }
2374
2375 Then:
2376
2377 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2378
2379 Thus an instruction's effect on pressure is ignored if it has a high
2380 enough priority relative to the ones that don't increase pressure.
2381 Negative values of baseECC (X) do not increase the priority of X
2382 itself, but they do make it harder for other instructions to
2383 increase the pressure further.
2384
2385 This pressure cost is deliberately timid. The intention has been
2386 to choose a heuristic that rarely interferes with the normal list
2387 scheduler in cases where that scheduler would produce good code.
2388 We simply want to curb some of its worst excesses. */
2389
2390 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2391
2392 Here we use the very simplistic cost model that every register above
2393 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2394 measures instead, such as one based on MEMORY_MOVE_COST. However:
2395
2396 (1) In order for an instruction to be scheduled, the higher cost
2397 would need to be justified in a single saving of that many stalls.
2398 This is overly pessimistic, because the benefit of spilling is
2399 often to avoid a sequence of several short stalls rather than
2400 a single long one.
2401
2402 (2) The cost is still arbitrary. Because we are not allocating
2403 registers during scheduling, we have no way of knowing for
2404 sure how many memory accesses will be required by each spill,
2405 where the spills will be placed within the block, or even
2406 which block(s) will contain the spills.
2407
2408 So a higher cost than 1 is often too conservative in practice,
2409 forcing blocks to contain unnecessary stalls instead of spill code.
2410 The simple cost below seems to be the best compromise. It reduces
2411 the interference with the normal list scheduler, which helps make
2412 it more suitable for a default-on option. */
2413
2414 static int
2415 model_spill_cost (int cl, int from, int to)
2416 {
2417 from = MAX (from, sched_class_regs_num[cl]);
2418 return MAX (to, from) - from;
2419 }
2420
2421 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2422 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2423 P' = P + DELTA. */
2424
2425 static int
2426 model_excess_group_cost (struct model_pressure_group *group,
2427 int point, int pci, int delta)
2428 {
2429 int pressure, cl;
2430
2431 cl = ira_pressure_classes[pci];
2432 if (delta < 0 && point >= group->limits[pci].point)
2433 {
2434 pressure = MAX (group->limits[pci].orig_pressure,
2435 curr_reg_pressure[cl] + delta);
2436 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2437 }
2438
2439 if (delta > 0)
2440 {
2441 if (point > group->limits[pci].point)
2442 pressure = group->limits[pci].pressure + delta;
2443 else
2444 pressure = curr_reg_pressure[cl] + delta;
2445
2446 if (pressure > group->limits[pci].pressure)
2447 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2448 pressure);
2449 }
2450
2451 return 0;
2452 }
2453
2454 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2455 if PRINT_P. */
2456
2457 static int
2458 model_excess_cost (rtx_insn *insn, bool print_p)
2459 {
2460 int point, pci, cl, cost, this_cost, delta;
2461 struct reg_pressure_data *insn_reg_pressure;
2462 int insn_death[N_REG_CLASSES];
2463
2464 calculate_reg_deaths (insn, insn_death);
2465 point = model_index (insn);
2466 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2467 cost = 0;
2468
2469 if (print_p)
2470 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2471 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2472
2473 /* Sum up the individual costs for each register class. */
2474 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2475 {
2476 cl = ira_pressure_classes[pci];
2477 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2478 this_cost = model_excess_group_cost (&model_before_pressure,
2479 point, pci, delta);
2480 cost += this_cost;
2481 if (print_p)
2482 fprintf (sched_dump, " %s:[%d base cost %d]",
2483 reg_class_names[cl], delta, this_cost);
2484 }
2485
2486 if (print_p)
2487 fprintf (sched_dump, "\n");
2488
2489 return cost;
2490 }
2491
2492 /* Dump the next points of maximum pressure for GROUP. */
2493
2494 static void
2495 model_dump_pressure_points (struct model_pressure_group *group)
2496 {
2497 int pci, cl;
2498
2499 fprintf (sched_dump, ";;\t\t| pressure points");
2500 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2501 {
2502 cl = ira_pressure_classes[pci];
2503 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2504 curr_reg_pressure[cl], group->limits[pci].pressure);
2505 if (group->limits[pci].point < model_num_insns)
2506 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2507 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2508 else
2509 fprintf (sched_dump, "end]");
2510 }
2511 fprintf (sched_dump, "\n");
2512 }
2513
2514 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2515
2516 static void
2517 model_set_excess_costs (rtx_insn **insns, int count)
2518 {
2519 int i, cost, priority_base, priority;
2520 bool print_p;
2521
2522 /* Record the baseECC value for each instruction in the model schedule,
2523 except that negative costs are converted to zero ones now rather than
2524 later. Do not assign a cost to debug instructions, since they must
2525 not change code-generation decisions. Experiments suggest we also
2526 get better results by not assigning a cost to instructions from
2527 a different block.
2528
2529 Set PRIORITY_BASE to baseP in the block comment above. This is the
2530 maximum priority of the "cheap" instructions, which should always
2531 include the next model instruction. */
2532 priority_base = 0;
2533 print_p = false;
2534 for (i = 0; i < count; i++)
2535 if (INSN_MODEL_INDEX (insns[i]))
2536 {
2537 if (sched_verbose >= 6 && !print_p)
2538 {
2539 fprintf (sched_dump, MODEL_BAR);
2540 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2541 model_dump_pressure_points (&model_before_pressure);
2542 fprintf (sched_dump, MODEL_BAR);
2543 print_p = true;
2544 }
2545 cost = model_excess_cost (insns[i], print_p);
2546 if (cost <= 0)
2547 {
2548 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2549 priority_base = MAX (priority_base, priority);
2550 cost = 0;
2551 }
2552 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2553 }
2554 if (print_p)
2555 fprintf (sched_dump, MODEL_BAR);
2556
2557 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2558 instruction. */
2559 for (i = 0; i < count; i++)
2560 {
2561 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2562 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2563 if (cost > 0 && priority > priority_base)
2564 {
2565 cost += priority_base - priority;
2566 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2567 }
2568 }
2569 }
2570 \f
2571
2572 /* Enum of rank_for_schedule heuristic decisions. */
2573 enum rfs_decision {
2574 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2575 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2576 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2577 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2578 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2579
2580 /* Corresponding strings for print outs. */
2581 static const char *rfs_str[RFS_N] = {
2582 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2583 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2584 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2585 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2586 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2587
2588 /* Statistical breakdown of rank_for_schedule decisions. */
2589 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2590 static rank_for_schedule_stats_t rank_for_schedule_stats;
2591
2592 /* Return the result of comparing insns TMP and TMP2 and update
2593 Rank_For_Schedule statistics. */
2594 static int
2595 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2596 {
2597 ++rank_for_schedule_stats.stats[decision];
2598 if (result < 0)
2599 INSN_LAST_RFS_WIN (tmp) = decision;
2600 else if (result > 0)
2601 INSN_LAST_RFS_WIN (tmp2) = decision;
2602 else
2603 gcc_unreachable ();
2604 return result;
2605 }
2606
2607 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2608 keeping normal insns in original order. */
2609
2610 static int
2611 rank_for_schedule_debug (const void *x, const void *y)
2612 {
2613 rtx_insn *tmp = *(rtx_insn * const *) y;
2614 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2615
2616 /* Schedule debug insns as early as possible. */
2617 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2618 return -1;
2619 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2620 return 1;
2621 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2622 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2623 else
2624 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2625 }
2626
2627 /* Returns a positive value if x is preferred; returns a negative value if
2628 y is preferred. Should never return 0, since that will make the sort
2629 unstable. */
2630
2631 static int
2632 rank_for_schedule (const void *x, const void *y)
2633 {
2634 rtx_insn *tmp = *(rtx_insn * const *) y;
2635 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2636 int tmp_class, tmp2_class;
2637 int val, priority_val, info_val, diff;
2638
2639 if (live_range_shrinkage_p)
2640 {
2641 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2642 code. */
2643 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2644 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2645 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2646 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2647 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2648 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2649 /* Sort by INSN_LUID (original insn order), so that we make the
2650 sort stable. This minimizes instruction movement, thus
2651 minimizing sched's effect on debugging and cross-jumping. */
2652 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2653 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2654 }
2655
2656 /* The insn in a schedule group should be issued the first. */
2657 if (flag_sched_group_heuristic &&
2658 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2659 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2660 tmp, tmp2);
2661
2662 /* Make sure that priority of TMP and TMP2 are initialized. */
2663 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2664
2665 if (sched_fusion)
2666 {
2667 /* The instruction that has the same fusion priority as the last
2668 instruction is the instruction we picked next. If that is not
2669 the case, we sort ready list firstly by fusion priority, then
2670 by priority, and at last by INSN_LUID. */
2671 int a = INSN_FUSION_PRIORITY (tmp);
2672 int b = INSN_FUSION_PRIORITY (tmp2);
2673 int last = -1;
2674
2675 if (last_nondebug_scheduled_insn
2676 && !NOTE_P (last_nondebug_scheduled_insn)
2677 && BLOCK_FOR_INSN (tmp)
2678 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2679 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2680
2681 if (a != last && b != last)
2682 {
2683 if (a == b)
2684 {
2685 a = INSN_PRIORITY (tmp);
2686 b = INSN_PRIORITY (tmp2);
2687 }
2688 if (a != b)
2689 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2690 else
2691 return rfs_result (RFS_FUSION,
2692 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2693 }
2694 else if (a == b)
2695 {
2696 gcc_assert (last_nondebug_scheduled_insn
2697 && !NOTE_P (last_nondebug_scheduled_insn));
2698 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2699
2700 a = abs (INSN_PRIORITY (tmp) - last);
2701 b = abs (INSN_PRIORITY (tmp2) - last);
2702 if (a != b)
2703 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2704 else
2705 return rfs_result (RFS_FUSION,
2706 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2707 }
2708 else if (a == last)
2709 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2710 else
2711 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2712 }
2713
2714 if (sched_pressure != SCHED_PRESSURE_NONE)
2715 {
2716 /* Prefer insn whose scheduling results in the smallest register
2717 pressure excess. */
2718 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2719 + insn_delay (tmp)
2720 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2721 - insn_delay (tmp2))))
2722 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2723 }
2724
2725 if (sched_pressure != SCHED_PRESSURE_NONE
2726 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2727 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2728 {
2729 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2730 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2731 }
2732
2733 /* If we are doing backtracking in this schedule, prefer insns that
2734 have forward dependencies with negative cost against an insn that
2735 was already scheduled. */
2736 if (current_sched_info->flags & DO_BACKTRACKING)
2737 {
2738 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2739 if (priority_val)
2740 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2741 }
2742
2743 /* Prefer insn with higher priority. */
2744 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2745
2746 if (flag_sched_critical_path_heuristic && priority_val)
2747 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2748
2749 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2750 {
2751 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2752 if (autopref != 0)
2753 return autopref;
2754 }
2755
2756 /* Prefer speculative insn with greater dependencies weakness. */
2757 if (flag_sched_spec_insn_heuristic && spec_info)
2758 {
2759 ds_t ds1, ds2;
2760 dw_t dw1, dw2;
2761 int dw;
2762
2763 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2764 if (ds1)
2765 dw1 = ds_weak (ds1);
2766 else
2767 dw1 = NO_DEP_WEAK;
2768
2769 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2770 if (ds2)
2771 dw2 = ds_weak (ds2);
2772 else
2773 dw2 = NO_DEP_WEAK;
2774
2775 dw = dw2 - dw1;
2776 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2777 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2778 }
2779
2780 info_val = (*current_sched_info->rank) (tmp, tmp2);
2781 if (flag_sched_rank_heuristic && info_val)
2782 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2783
2784 /* Compare insns based on their relation to the last scheduled
2785 non-debug insn. */
2786 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2787 {
2788 dep_t dep1;
2789 dep_t dep2;
2790 rtx last = last_nondebug_scheduled_insn;
2791
2792 /* Classify the instructions into three classes:
2793 1) Data dependent on last schedule insn.
2794 2) Anti/Output dependent on last scheduled insn.
2795 3) Independent of last scheduled insn, or has latency of one.
2796 Choose the insn from the highest numbered class if different. */
2797 dep1 = sd_find_dep_between (last, tmp, true);
2798
2799 if (dep1 == NULL || dep_cost (dep1) == 1)
2800 tmp_class = 3;
2801 else if (/* Data dependence. */
2802 DEP_TYPE (dep1) == REG_DEP_TRUE)
2803 tmp_class = 1;
2804 else
2805 tmp_class = 2;
2806
2807 dep2 = sd_find_dep_between (last, tmp2, true);
2808
2809 if (dep2 == NULL || dep_cost (dep2) == 1)
2810 tmp2_class = 3;
2811 else if (/* Data dependence. */
2812 DEP_TYPE (dep2) == REG_DEP_TRUE)
2813 tmp2_class = 1;
2814 else
2815 tmp2_class = 2;
2816
2817 if ((val = tmp2_class - tmp_class))
2818 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2819 }
2820
2821 /* Prefer instructions that occur earlier in the model schedule. */
2822 if (sched_pressure == SCHED_PRESSURE_MODEL
2823 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2824 {
2825 diff = model_index (tmp) - model_index (tmp2);
2826 gcc_assert (diff != 0);
2827 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2828 }
2829
2830 /* Prefer the insn which has more later insns that depend on it.
2831 This gives the scheduler more freedom when scheduling later
2832 instructions at the expense of added register pressure. */
2833
2834 val = (dep_list_size (tmp2, SD_LIST_FORW)
2835 - dep_list_size (tmp, SD_LIST_FORW));
2836
2837 if (flag_sched_dep_count_heuristic && val != 0)
2838 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2839
2840 /* If insns are equally good, sort by INSN_LUID (original insn order),
2841 so that we make the sort stable. This minimizes instruction movement,
2842 thus minimizing sched's effect on debugging and cross-jumping. */
2843 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2844 }
2845
2846 /* Resort the array A in which only element at index N may be out of order. */
2847
2848 HAIFA_INLINE static void
2849 swap_sort (rtx_insn **a, int n)
2850 {
2851 rtx_insn *insn = a[n - 1];
2852 int i = n - 2;
2853
2854 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2855 {
2856 a[i + 1] = a[i];
2857 i -= 1;
2858 }
2859 a[i + 1] = insn;
2860 }
2861
2862 /* Add INSN to the insn queue so that it can be executed at least
2863 N_CYCLES after the currently executing insn. Preserve insns
2864 chain for debugging purposes. REASON will be printed in debugging
2865 output. */
2866
2867 HAIFA_INLINE static void
2868 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2869 {
2870 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2871 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2872 int new_tick;
2873
2874 gcc_assert (n_cycles <= max_insn_queue_index);
2875 gcc_assert (!DEBUG_INSN_P (insn));
2876
2877 insn_queue[next_q] = link;
2878 q_size += 1;
2879
2880 if (sched_verbose >= 2)
2881 {
2882 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2883 (*current_sched_info->print_insn) (insn, 0));
2884
2885 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2886 }
2887
2888 QUEUE_INDEX (insn) = next_q;
2889
2890 if (current_sched_info->flags & DO_BACKTRACKING)
2891 {
2892 new_tick = clock_var + n_cycles;
2893 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2894 INSN_TICK (insn) = new_tick;
2895
2896 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2897 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2898 {
2899 must_backtrack = true;
2900 if (sched_verbose >= 2)
2901 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2902 }
2903 }
2904 }
2905
2906 /* Remove INSN from queue. */
2907 static void
2908 queue_remove (rtx_insn *insn)
2909 {
2910 gcc_assert (QUEUE_INDEX (insn) >= 0);
2911 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2912 q_size--;
2913 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2914 }
2915
2916 /* Return a pointer to the bottom of the ready list, i.e. the insn
2917 with the lowest priority. */
2918
2919 rtx_insn **
2920 ready_lastpos (struct ready_list *ready)
2921 {
2922 gcc_assert (ready->n_ready >= 1);
2923 return ready->vec + ready->first - ready->n_ready + 1;
2924 }
2925
2926 /* Add an element INSN to the ready list so that it ends up with the
2927 lowest/highest priority depending on FIRST_P. */
2928
2929 HAIFA_INLINE static void
2930 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2931 {
2932 if (!first_p)
2933 {
2934 if (ready->first == ready->n_ready)
2935 {
2936 memmove (ready->vec + ready->veclen - ready->n_ready,
2937 ready_lastpos (ready),
2938 ready->n_ready * sizeof (rtx));
2939 ready->first = ready->veclen - 1;
2940 }
2941 ready->vec[ready->first - ready->n_ready] = insn;
2942 }
2943 else
2944 {
2945 if (ready->first == ready->veclen - 1)
2946 {
2947 if (ready->n_ready)
2948 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2949 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2950 ready_lastpos (ready),
2951 ready->n_ready * sizeof (rtx));
2952 ready->first = ready->veclen - 2;
2953 }
2954 ready->vec[++(ready->first)] = insn;
2955 }
2956
2957 ready->n_ready++;
2958 if (DEBUG_INSN_P (insn))
2959 ready->n_debug++;
2960
2961 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2962 QUEUE_INDEX (insn) = QUEUE_READY;
2963
2964 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2965 && INSN_EXACT_TICK (insn) < clock_var)
2966 {
2967 must_backtrack = true;
2968 }
2969 }
2970
2971 /* Remove the element with the highest priority from the ready list and
2972 return it. */
2973
2974 HAIFA_INLINE static rtx_insn *
2975 ready_remove_first (struct ready_list *ready)
2976 {
2977 rtx_insn *t;
2978
2979 gcc_assert (ready->n_ready);
2980 t = ready->vec[ready->first--];
2981 ready->n_ready--;
2982 if (DEBUG_INSN_P (t))
2983 ready->n_debug--;
2984 /* If the queue becomes empty, reset it. */
2985 if (ready->n_ready == 0)
2986 ready->first = ready->veclen - 1;
2987
2988 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2989 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2990
2991 return t;
2992 }
2993
2994 /* The following code implements multi-pass scheduling for the first
2995 cycle. In other words, we will try to choose ready insn which
2996 permits to start maximum number of insns on the same cycle. */
2997
2998 /* Return a pointer to the element INDEX from the ready. INDEX for
2999 insn with the highest priority is 0, and the lowest priority has
3000 N_READY - 1. */
3001
3002 rtx_insn *
3003 ready_element (struct ready_list *ready, int index)
3004 {
3005 gcc_assert (ready->n_ready && index < ready->n_ready);
3006
3007 return ready->vec[ready->first - index];
3008 }
3009
3010 /* Remove the element INDEX from the ready list and return it. INDEX
3011 for insn with the highest priority is 0, and the lowest priority
3012 has N_READY - 1. */
3013
3014 HAIFA_INLINE static rtx_insn *
3015 ready_remove (struct ready_list *ready, int index)
3016 {
3017 rtx_insn *t;
3018 int i;
3019
3020 if (index == 0)
3021 return ready_remove_first (ready);
3022 gcc_assert (ready->n_ready && index < ready->n_ready);
3023 t = ready->vec[ready->first - index];
3024 ready->n_ready--;
3025 if (DEBUG_INSN_P (t))
3026 ready->n_debug--;
3027 for (i = index; i < ready->n_ready; i++)
3028 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3029 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3030 return t;
3031 }
3032
3033 /* Remove INSN from the ready list. */
3034 static void
3035 ready_remove_insn (rtx insn)
3036 {
3037 int i;
3038
3039 for (i = 0; i < readyp->n_ready; i++)
3040 if (ready_element (readyp, i) == insn)
3041 {
3042 ready_remove (readyp, i);
3043 return;
3044 }
3045 gcc_unreachable ();
3046 }
3047
3048 /* Calculate difference of two statistics set WAS and NOW.
3049 Result returned in WAS. */
3050 static void
3051 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3052 const rank_for_schedule_stats_t *now)
3053 {
3054 for (int i = 0; i < RFS_N; ++i)
3055 was->stats[i] = now->stats[i] - was->stats[i];
3056 }
3057
3058 /* Print rank_for_schedule statistics. */
3059 static void
3060 print_rank_for_schedule_stats (const char *prefix,
3061 const rank_for_schedule_stats_t *stats,
3062 struct ready_list *ready)
3063 {
3064 for (int i = 0; i < RFS_N; ++i)
3065 if (stats->stats[i])
3066 {
3067 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3068
3069 if (ready != NULL)
3070 /* Print out insns that won due to RFS_<I>. */
3071 {
3072 rtx_insn **p = ready_lastpos (ready);
3073
3074 fprintf (sched_dump, ":");
3075 /* Start with 1 since least-priority insn didn't have any wins. */
3076 for (int j = 1; j < ready->n_ready; ++j)
3077 if (INSN_LAST_RFS_WIN (p[j]) == i)
3078 fprintf (sched_dump, " %s",
3079 (*current_sched_info->print_insn) (p[j], 0));
3080 }
3081 fprintf (sched_dump, "\n");
3082 }
3083 }
3084
3085 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3086 of array. */
3087 static void
3088 ready_sort_debug (struct ready_list *ready)
3089 {
3090 int i;
3091 rtx_insn **first = ready_lastpos (ready);
3092
3093 for (i = 0; i < ready->n_ready; ++i)
3094 if (!DEBUG_INSN_P (first[i]))
3095 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3096
3097 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3098 }
3099
3100 /* Sort non-debug insns in the ready list READY by ascending priority.
3101 Assumes that all debug insns are separated from the real insns. */
3102 static void
3103 ready_sort_real (struct ready_list *ready)
3104 {
3105 int i;
3106 rtx_insn **first = ready_lastpos (ready);
3107 int n_ready_real = ready->n_ready - ready->n_debug;
3108
3109 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3110 for (i = 0; i < n_ready_real; ++i)
3111 setup_insn_reg_pressure_info (first[i]);
3112 else if (sched_pressure == SCHED_PRESSURE_MODEL
3113 && model_curr_point < model_num_insns)
3114 model_set_excess_costs (first, n_ready_real);
3115
3116 rank_for_schedule_stats_t stats1;
3117 if (sched_verbose >= 4)
3118 stats1 = rank_for_schedule_stats;
3119
3120 if (n_ready_real == 2)
3121 swap_sort (first, n_ready_real);
3122 else if (n_ready_real > 2)
3123 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3124
3125 if (sched_verbose >= 4)
3126 {
3127 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3128 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3129 }
3130 }
3131
3132 /* Sort the ready list READY by ascending priority. */
3133 static void
3134 ready_sort (struct ready_list *ready)
3135 {
3136 if (ready->n_debug > 0)
3137 ready_sort_debug (ready);
3138 else
3139 ready_sort_real (ready);
3140 }
3141
3142 /* PREV is an insn that is ready to execute. Adjust its priority if that
3143 will help shorten or lengthen register lifetimes as appropriate. Also
3144 provide a hook for the target to tweak itself. */
3145
3146 HAIFA_INLINE static void
3147 adjust_priority (rtx_insn *prev)
3148 {
3149 /* ??? There used to be code here to try and estimate how an insn
3150 affected register lifetimes, but it did it by looking at REG_DEAD
3151 notes, which we removed in schedule_region. Nor did it try to
3152 take into account register pressure or anything useful like that.
3153
3154 Revisit when we have a machine model to work with and not before. */
3155
3156 if (targetm.sched.adjust_priority)
3157 INSN_PRIORITY (prev) =
3158 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3159 }
3160
3161 /* Advance DFA state STATE on one cycle. */
3162 void
3163 advance_state (state_t state)
3164 {
3165 if (targetm.sched.dfa_pre_advance_cycle)
3166 targetm.sched.dfa_pre_advance_cycle ();
3167
3168 if (targetm.sched.dfa_pre_cycle_insn)
3169 state_transition (state,
3170 targetm.sched.dfa_pre_cycle_insn ());
3171
3172 state_transition (state, NULL);
3173
3174 if (targetm.sched.dfa_post_cycle_insn)
3175 state_transition (state,
3176 targetm.sched.dfa_post_cycle_insn ());
3177
3178 if (targetm.sched.dfa_post_advance_cycle)
3179 targetm.sched.dfa_post_advance_cycle ();
3180 }
3181
3182 /* Advance time on one cycle. */
3183 HAIFA_INLINE static void
3184 advance_one_cycle (void)
3185 {
3186 advance_state (curr_state);
3187 if (sched_verbose >= 4)
3188 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3189 }
3190
3191 /* Update register pressure after scheduling INSN. */
3192 static void
3193 update_register_pressure (rtx_insn *insn)
3194 {
3195 struct reg_use_data *use;
3196 struct reg_set_data *set;
3197
3198 gcc_checking_assert (!DEBUG_INSN_P (insn));
3199
3200 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3201 if (dying_use_p (use))
3202 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3203 use->regno, false);
3204 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3205 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3206 set->regno, true);
3207 }
3208
3209 /* Set up or update (if UPDATE_P) max register pressure (see its
3210 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3211 after insn AFTER. */
3212 static void
3213 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3214 {
3215 int i, p;
3216 bool eq_p;
3217 rtx_insn *insn;
3218 static int max_reg_pressure[N_REG_CLASSES];
3219
3220 save_reg_pressure ();
3221 for (i = 0; i < ira_pressure_classes_num; i++)
3222 max_reg_pressure[ira_pressure_classes[i]]
3223 = curr_reg_pressure[ira_pressure_classes[i]];
3224 for (insn = NEXT_INSN (after);
3225 insn != NULL_RTX && ! BARRIER_P (insn)
3226 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3227 insn = NEXT_INSN (insn))
3228 if (NONDEBUG_INSN_P (insn))
3229 {
3230 eq_p = true;
3231 for (i = 0; i < ira_pressure_classes_num; i++)
3232 {
3233 p = max_reg_pressure[ira_pressure_classes[i]];
3234 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3235 {
3236 eq_p = false;
3237 INSN_MAX_REG_PRESSURE (insn)[i]
3238 = max_reg_pressure[ira_pressure_classes[i]];
3239 }
3240 }
3241 if (update_p && eq_p)
3242 break;
3243 update_register_pressure (insn);
3244 for (i = 0; i < ira_pressure_classes_num; i++)
3245 if (max_reg_pressure[ira_pressure_classes[i]]
3246 < curr_reg_pressure[ira_pressure_classes[i]])
3247 max_reg_pressure[ira_pressure_classes[i]]
3248 = curr_reg_pressure[ira_pressure_classes[i]];
3249 }
3250 restore_reg_pressure ();
3251 }
3252
3253 /* Update the current register pressure after scheduling INSN. Update
3254 also max register pressure for unscheduled insns of the current
3255 BB. */
3256 static void
3257 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3258 {
3259 int i;
3260 int before[N_REG_CLASSES];
3261
3262 for (i = 0; i < ira_pressure_classes_num; i++)
3263 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3264 update_register_pressure (insn);
3265 for (i = 0; i < ira_pressure_classes_num; i++)
3266 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3267 break;
3268 if (i < ira_pressure_classes_num)
3269 setup_insn_max_reg_pressure (insn, true);
3270 }
3271
3272 /* Set up register pressure at the beginning of basic block BB whose
3273 insns starting after insn AFTER. Set up also max register pressure
3274 for all insns of the basic block. */
3275 void
3276 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3277 {
3278 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3279 initiate_bb_reg_pressure_info (bb);
3280 setup_insn_max_reg_pressure (after, false);
3281 }
3282 \f
3283 /* If doing predication while scheduling, verify whether INSN, which
3284 has just been scheduled, clobbers the conditions of any
3285 instructions that must be predicated in order to break their
3286 dependencies. If so, remove them from the queues so that they will
3287 only be scheduled once their control dependency is resolved. */
3288
3289 static void
3290 check_clobbered_conditions (rtx insn)
3291 {
3292 HARD_REG_SET t;
3293 int i;
3294
3295 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3296 return;
3297
3298 find_all_hard_reg_sets (insn, &t, true);
3299
3300 restart:
3301 for (i = 0; i < ready.n_ready; i++)
3302 {
3303 rtx_insn *x = ready_element (&ready, i);
3304 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3305 {
3306 ready_remove_insn (x);
3307 goto restart;
3308 }
3309 }
3310 for (i = 0; i <= max_insn_queue_index; i++)
3311 {
3312 rtx_insn_list *link;
3313 int q = NEXT_Q_AFTER (q_ptr, i);
3314
3315 restart_queue:
3316 for (link = insn_queue[q]; link; link = link->next ())
3317 {
3318 rtx_insn *x = link->insn ();
3319 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3320 {
3321 queue_remove (x);
3322 goto restart_queue;
3323 }
3324 }
3325 }
3326 }
3327 \f
3328 /* Return (in order):
3329
3330 - positive if INSN adversely affects the pressure on one
3331 register class
3332
3333 - negative if INSN reduces the pressure on one register class
3334
3335 - 0 if INSN doesn't affect the pressure on any register class. */
3336
3337 static int
3338 model_classify_pressure (struct model_insn_info *insn)
3339 {
3340 struct reg_pressure_data *reg_pressure;
3341 int death[N_REG_CLASSES];
3342 int pci, cl, sum;
3343
3344 calculate_reg_deaths (insn->insn, death);
3345 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3346 sum = 0;
3347 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3348 {
3349 cl = ira_pressure_classes[pci];
3350 if (death[cl] < reg_pressure[pci].set_increase)
3351 return 1;
3352 sum += reg_pressure[pci].set_increase - death[cl];
3353 }
3354 return sum;
3355 }
3356
3357 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3358
3359 static int
3360 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3361 {
3362 unsigned int height1, height2;
3363 unsigned int priority1, priority2;
3364
3365 /* Prefer instructions with a higher model priority. */
3366 if (insn1->model_priority != insn2->model_priority)
3367 return insn1->model_priority > insn2->model_priority;
3368
3369 /* Combine the length of the longest path of satisfied true dependencies
3370 that leads to each instruction (depth) with the length of the longest
3371 path of any dependencies that leads from the instruction (alap).
3372 Prefer instructions with the greatest combined length. If the combined
3373 lengths are equal, prefer instructions with the greatest depth.
3374
3375 The idea is that, if we have a set S of "equal" instructions that each
3376 have ALAP value X, and we pick one such instruction I, any true-dependent
3377 successors of I that have ALAP value X - 1 should be preferred over S.
3378 This encourages the schedule to be "narrow" rather than "wide".
3379 However, if I is a low-priority instruction that we decided to
3380 schedule because of its model_classify_pressure, and if there
3381 is a set of higher-priority instructions T, the aforementioned
3382 successors of I should not have the edge over T. */
3383 height1 = insn1->depth + insn1->alap;
3384 height2 = insn2->depth + insn2->alap;
3385 if (height1 != height2)
3386 return height1 > height2;
3387 if (insn1->depth != insn2->depth)
3388 return insn1->depth > insn2->depth;
3389
3390 /* We have no real preference between INSN1 an INSN2 as far as attempts
3391 to reduce pressure go. Prefer instructions with higher priorities. */
3392 priority1 = INSN_PRIORITY (insn1->insn);
3393 priority2 = INSN_PRIORITY (insn2->insn);
3394 if (priority1 != priority2)
3395 return priority1 > priority2;
3396
3397 /* Use the original rtl sequence as a tie-breaker. */
3398 return insn1 < insn2;
3399 }
3400
3401 /* Add INSN to the model worklist immediately after PREV. Add it to the
3402 beginning of the list if PREV is null. */
3403
3404 static void
3405 model_add_to_worklist_at (struct model_insn_info *insn,
3406 struct model_insn_info *prev)
3407 {
3408 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3409 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3410
3411 insn->prev = prev;
3412 if (prev)
3413 {
3414 insn->next = prev->next;
3415 prev->next = insn;
3416 }
3417 else
3418 {
3419 insn->next = model_worklist;
3420 model_worklist = insn;
3421 }
3422 if (insn->next)
3423 insn->next->prev = insn;
3424 }
3425
3426 /* Remove INSN from the model worklist. */
3427
3428 static void
3429 model_remove_from_worklist (struct model_insn_info *insn)
3430 {
3431 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3432 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3433
3434 if (insn->prev)
3435 insn->prev->next = insn->next;
3436 else
3437 model_worklist = insn->next;
3438 if (insn->next)
3439 insn->next->prev = insn->prev;
3440 }
3441
3442 /* Add INSN to the model worklist. Start looking for a suitable position
3443 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3444 insns either side. A null PREV indicates the beginning of the list and
3445 a null NEXT indicates the end. */
3446
3447 static void
3448 model_add_to_worklist (struct model_insn_info *insn,
3449 struct model_insn_info *prev,
3450 struct model_insn_info *next)
3451 {
3452 int count;
3453
3454 count = MAX_SCHED_READY_INSNS;
3455 if (count > 0 && prev && model_order_p (insn, prev))
3456 do
3457 {
3458 count--;
3459 prev = prev->prev;
3460 }
3461 while (count > 0 && prev && model_order_p (insn, prev));
3462 else
3463 while (count > 0 && next && model_order_p (next, insn))
3464 {
3465 count--;
3466 prev = next;
3467 next = next->next;
3468 }
3469 model_add_to_worklist_at (insn, prev);
3470 }
3471
3472 /* INSN may now have a higher priority (in the model_order_p sense)
3473 than before. Move it up the worklist if necessary. */
3474
3475 static void
3476 model_promote_insn (struct model_insn_info *insn)
3477 {
3478 struct model_insn_info *prev;
3479 int count;
3480
3481 prev = insn->prev;
3482 count = MAX_SCHED_READY_INSNS;
3483 while (count > 0 && prev && model_order_p (insn, prev))
3484 {
3485 count--;
3486 prev = prev->prev;
3487 }
3488 if (prev != insn->prev)
3489 {
3490 model_remove_from_worklist (insn);
3491 model_add_to_worklist_at (insn, prev);
3492 }
3493 }
3494
3495 /* Add INSN to the end of the model schedule. */
3496
3497 static void
3498 model_add_to_schedule (rtx_insn *insn)
3499 {
3500 unsigned int point;
3501
3502 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3503 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3504
3505 point = model_schedule.length ();
3506 model_schedule.quick_push (insn);
3507 INSN_MODEL_INDEX (insn) = point + 1;
3508 }
3509
3510 /* Analyze the instructions that are to be scheduled, setting up
3511 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3512 instructions to model_worklist. */
3513
3514 static void
3515 model_analyze_insns (void)
3516 {
3517 rtx_insn *start, *end, *iter;
3518 sd_iterator_def sd_it;
3519 dep_t dep;
3520 struct model_insn_info *insn, *con;
3521
3522 model_num_insns = 0;
3523 start = PREV_INSN (current_sched_info->next_tail);
3524 end = current_sched_info->prev_head;
3525 for (iter = start; iter != end; iter = PREV_INSN (iter))
3526 if (NONDEBUG_INSN_P (iter))
3527 {
3528 insn = MODEL_INSN_INFO (iter);
3529 insn->insn = iter;
3530 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3531 {
3532 con = MODEL_INSN_INFO (DEP_CON (dep));
3533 if (con->insn && insn->alap < con->alap + 1)
3534 insn->alap = con->alap + 1;
3535 }
3536
3537 insn->old_queue = QUEUE_INDEX (iter);
3538 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3539
3540 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3541 if (insn->unscheduled_preds == 0)
3542 model_add_to_worklist (insn, NULL, model_worklist);
3543
3544 model_num_insns++;
3545 }
3546 }
3547
3548 /* The global state describes the register pressure at the start of the
3549 model schedule. Initialize GROUP accordingly. */
3550
3551 static void
3552 model_init_pressure_group (struct model_pressure_group *group)
3553 {
3554 int pci, cl;
3555
3556 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3557 {
3558 cl = ira_pressure_classes[pci];
3559 group->limits[pci].pressure = curr_reg_pressure[cl];
3560 group->limits[pci].point = 0;
3561 }
3562 /* Use index model_num_insns to record the state after the last
3563 instruction in the model schedule. */
3564 group->model = XNEWVEC (struct model_pressure_data,
3565 (model_num_insns + 1) * ira_pressure_classes_num);
3566 }
3567
3568 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3569 Update the maximum pressure for the whole schedule. */
3570
3571 static void
3572 model_record_pressure (struct model_pressure_group *group,
3573 int point, int pci, int pressure)
3574 {
3575 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3576 if (group->limits[pci].pressure < pressure)
3577 {
3578 group->limits[pci].pressure = pressure;
3579 group->limits[pci].point = point;
3580 }
3581 }
3582
3583 /* INSN has just been added to the end of the model schedule. Record its
3584 register-pressure information. */
3585
3586 static void
3587 model_record_pressures (struct model_insn_info *insn)
3588 {
3589 struct reg_pressure_data *reg_pressure;
3590 int point, pci, cl, delta;
3591 int death[N_REG_CLASSES];
3592
3593 point = model_index (insn->insn);
3594 if (sched_verbose >= 2)
3595 {
3596 if (point == 0)
3597 {
3598 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3599 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3600 }
3601 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3602 point, INSN_UID (insn->insn), insn->model_priority,
3603 insn->depth + insn->alap, insn->depth,
3604 INSN_PRIORITY (insn->insn),
3605 str_pattern_slim (PATTERN (insn->insn)));
3606 }
3607 calculate_reg_deaths (insn->insn, death);
3608 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3609 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3610 {
3611 cl = ira_pressure_classes[pci];
3612 delta = reg_pressure[pci].set_increase - death[cl];
3613 if (sched_verbose >= 2)
3614 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3615 curr_reg_pressure[cl], delta);
3616 model_record_pressure (&model_before_pressure, point, pci,
3617 curr_reg_pressure[cl]);
3618 }
3619 if (sched_verbose >= 2)
3620 fprintf (sched_dump, "\n");
3621 }
3622
3623 /* All instructions have been added to the model schedule. Record the
3624 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3625
3626 static void
3627 model_record_final_pressures (struct model_pressure_group *group)
3628 {
3629 int point, pci, max_pressure, ref_pressure, cl;
3630
3631 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3632 {
3633 /* Record the final pressure for this class. */
3634 cl = ira_pressure_classes[pci];
3635 point = model_num_insns;
3636 ref_pressure = curr_reg_pressure[cl];
3637 model_record_pressure (group, point, pci, ref_pressure);
3638
3639 /* Record the original maximum pressure. */
3640 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3641
3642 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3643 max_pressure = ref_pressure;
3644 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3645 while (point > 0)
3646 {
3647 point--;
3648 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3649 max_pressure = MAX (max_pressure, ref_pressure);
3650 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3651 }
3652 }
3653 }
3654
3655 /* Update all successors of INSN, given that INSN has just been scheduled. */
3656
3657 static void
3658 model_add_successors_to_worklist (struct model_insn_info *insn)
3659 {
3660 sd_iterator_def sd_it;
3661 struct model_insn_info *con;
3662 dep_t dep;
3663
3664 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3665 {
3666 con = MODEL_INSN_INFO (DEP_CON (dep));
3667 /* Ignore debug instructions, and instructions from other blocks. */
3668 if (con->insn)
3669 {
3670 con->unscheduled_preds--;
3671
3672 /* Update the depth field of each true-dependent successor.
3673 Increasing the depth gives them a higher priority than
3674 before. */
3675 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3676 {
3677 con->depth = insn->depth + 1;
3678 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3679 model_promote_insn (con);
3680 }
3681
3682 /* If this is a true dependency, or if there are no remaining
3683 dependencies for CON (meaning that CON only had non-true
3684 dependencies), make sure that CON is on the worklist.
3685 We don't bother otherwise because it would tend to fill the
3686 worklist with a lot of low-priority instructions that are not
3687 yet ready to issue. */
3688 if ((con->depth > 0 || con->unscheduled_preds == 0)
3689 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3690 model_add_to_worklist (con, insn, insn->next);
3691 }
3692 }
3693 }
3694
3695 /* Give INSN a higher priority than any current instruction, then give
3696 unscheduled predecessors of INSN a higher priority still. If any of
3697 those predecessors are not on the model worklist, do the same for its
3698 predecessors, and so on. */
3699
3700 static void
3701 model_promote_predecessors (struct model_insn_info *insn)
3702 {
3703 struct model_insn_info *pro, *first;
3704 sd_iterator_def sd_it;
3705 dep_t dep;
3706
3707 if (sched_verbose >= 7)
3708 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3709 INSN_UID (insn->insn), model_next_priority);
3710 insn->model_priority = model_next_priority++;
3711 model_remove_from_worklist (insn);
3712 model_add_to_worklist_at (insn, NULL);
3713
3714 first = NULL;
3715 for (;;)
3716 {
3717 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3718 {
3719 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3720 /* The first test is to ignore debug instructions, and instructions
3721 from other blocks. */
3722 if (pro->insn
3723 && pro->model_priority != model_next_priority
3724 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3725 {
3726 pro->model_priority = model_next_priority;
3727 if (sched_verbose >= 7)
3728 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3729 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3730 {
3731 /* PRO is already in the worklist, but it now has
3732 a higher priority than before. Move it at the
3733 appropriate place. */
3734 model_remove_from_worklist (pro);
3735 model_add_to_worklist (pro, NULL, model_worklist);
3736 }
3737 else
3738 {
3739 /* PRO isn't in the worklist. Recursively process
3740 its predecessors until we find one that is. */
3741 pro->next = first;
3742 first = pro;
3743 }
3744 }
3745 }
3746 if (!first)
3747 break;
3748 insn = first;
3749 first = insn->next;
3750 }
3751 if (sched_verbose >= 7)
3752 fprintf (sched_dump, " = %d\n", model_next_priority);
3753 model_next_priority++;
3754 }
3755
3756 /* Pick one instruction from model_worklist and process it. */
3757
3758 static void
3759 model_choose_insn (void)
3760 {
3761 struct model_insn_info *insn, *fallback;
3762 int count;
3763
3764 if (sched_verbose >= 7)
3765 {
3766 fprintf (sched_dump, ";;\t+--- worklist:\n");
3767 insn = model_worklist;
3768 count = MAX_SCHED_READY_INSNS;
3769 while (count > 0 && insn)
3770 {
3771 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3772 INSN_UID (insn->insn), insn->model_priority,
3773 insn->depth + insn->alap, insn->depth,
3774 INSN_PRIORITY (insn->insn));
3775 count--;
3776 insn = insn->next;
3777 }
3778 }
3779
3780 /* Look for a ready instruction whose model_classify_priority is zero
3781 or negative, picking the highest-priority one. Adding such an
3782 instruction to the schedule now should do no harm, and may actually
3783 do some good.
3784
3785 Failing that, see whether there is an instruction with the highest
3786 extant model_priority that is not yet ready, but which would reduce
3787 pressure if it became ready. This is designed to catch cases like:
3788
3789 (set (mem (reg R1)) (reg R2))
3790
3791 where the instruction is the last remaining use of R1 and where the
3792 value of R2 is not yet available (or vice versa). The death of R1
3793 means that this instruction already reduces pressure. It is of
3794 course possible that the computation of R2 involves other registers
3795 that are hard to kill, but such cases are rare enough for this
3796 heuristic to be a win in general.
3797
3798 Failing that, just pick the highest-priority instruction in the
3799 worklist. */
3800 count = MAX_SCHED_READY_INSNS;
3801 insn = model_worklist;
3802 fallback = 0;
3803 for (;;)
3804 {
3805 if (count == 0 || !insn)
3806 {
3807 insn = fallback ? fallback : model_worklist;
3808 break;
3809 }
3810 if (insn->unscheduled_preds)
3811 {
3812 if (model_worklist->model_priority == insn->model_priority
3813 && !fallback
3814 && model_classify_pressure (insn) < 0)
3815 fallback = insn;
3816 }
3817 else
3818 {
3819 if (model_classify_pressure (insn) <= 0)
3820 break;
3821 }
3822 count--;
3823 insn = insn->next;
3824 }
3825
3826 if (sched_verbose >= 7 && insn != model_worklist)
3827 {
3828 if (insn->unscheduled_preds)
3829 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3830 INSN_UID (insn->insn));
3831 else
3832 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3833 INSN_UID (insn->insn));
3834 }
3835 if (insn->unscheduled_preds)
3836 /* INSN isn't yet ready to issue. Give all its predecessors the
3837 highest priority. */
3838 model_promote_predecessors (insn);
3839 else
3840 {
3841 /* INSN is ready. Add it to the end of model_schedule and
3842 process its successors. */
3843 model_add_successors_to_worklist (insn);
3844 model_remove_from_worklist (insn);
3845 model_add_to_schedule (insn->insn);
3846 model_record_pressures (insn);
3847 update_register_pressure (insn->insn);
3848 }
3849 }
3850
3851 /* Restore all QUEUE_INDEXs to the values that they had before
3852 model_start_schedule was called. */
3853
3854 static void
3855 model_reset_queue_indices (void)
3856 {
3857 unsigned int i;
3858 rtx_insn *insn;
3859
3860 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3861 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3862 }
3863
3864 /* We have calculated the model schedule and spill costs. Print a summary
3865 to sched_dump. */
3866
3867 static void
3868 model_dump_pressure_summary (void)
3869 {
3870 int pci, cl;
3871
3872 fprintf (sched_dump, ";; Pressure summary:");
3873 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3874 {
3875 cl = ira_pressure_classes[pci];
3876 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3877 model_before_pressure.limits[pci].pressure);
3878 }
3879 fprintf (sched_dump, "\n\n");
3880 }
3881
3882 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3883 scheduling region. */
3884
3885 static void
3886 model_start_schedule (basic_block bb)
3887 {
3888 model_next_priority = 1;
3889 model_schedule.create (sched_max_luid);
3890 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3891
3892 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3893 initiate_reg_pressure_info (df_get_live_in (bb));
3894
3895 model_analyze_insns ();
3896 model_init_pressure_group (&model_before_pressure);
3897 while (model_worklist)
3898 model_choose_insn ();
3899 gcc_assert (model_num_insns == (int) model_schedule.length ());
3900 if (sched_verbose >= 2)
3901 fprintf (sched_dump, "\n");
3902
3903 model_record_final_pressures (&model_before_pressure);
3904 model_reset_queue_indices ();
3905
3906 XDELETEVEC (model_insns);
3907
3908 model_curr_point = 0;
3909 initiate_reg_pressure_info (df_get_live_in (bb));
3910 if (sched_verbose >= 1)
3911 model_dump_pressure_summary ();
3912 }
3913
3914 /* Free the information associated with GROUP. */
3915
3916 static void
3917 model_finalize_pressure_group (struct model_pressure_group *group)
3918 {
3919 XDELETEVEC (group->model);
3920 }
3921
3922 /* Free the information created by model_start_schedule. */
3923
3924 static void
3925 model_end_schedule (void)
3926 {
3927 model_finalize_pressure_group (&model_before_pressure);
3928 model_schedule.release ();
3929 }
3930
3931 /* Prepare reg pressure scheduling for basic block BB. */
3932 static void
3933 sched_pressure_start_bb (basic_block bb)
3934 {
3935 /* Set the number of available registers for each class taking into account
3936 relative probability of current basic block versus function prologue and
3937 epilogue.
3938 * If the basic block executes much more often than the prologue/epilogue
3939 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3940 nil, so the effective number of available registers is
3941 (ira_class_hard_regs_num[cl] - 0).
3942 * If the basic block executes as often as the prologue/epilogue,
3943 then spill in the block is as costly as in the prologue, so the effective
3944 number of available registers is
3945 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3946 Note that all-else-equal, we prefer to spill in the prologue, since that
3947 allows "extra" registers for other basic blocks of the function.
3948 * If the basic block is on the cold path of the function and executes
3949 rarely, then we should always prefer to spill in the block, rather than
3950 in the prologue/epilogue. The effective number of available register is
3951 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3952 {
3953 int i;
3954 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3955 int bb_freq = bb->frequency;
3956
3957 if (bb_freq == 0)
3958 {
3959 if (entry_freq == 0)
3960 entry_freq = bb_freq = 1;
3961 }
3962 if (bb_freq < entry_freq)
3963 bb_freq = entry_freq;
3964
3965 for (i = 0; i < ira_pressure_classes_num; ++i)
3966 {
3967 enum reg_class cl = ira_pressure_classes[i];
3968 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3969 sched_class_regs_num[cl]
3970 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3971 }
3972 }
3973
3974 if (sched_pressure == SCHED_PRESSURE_MODEL)
3975 model_start_schedule (bb);
3976 }
3977 \f
3978 /* A structure that holds local state for the loop in schedule_block. */
3979 struct sched_block_state
3980 {
3981 /* True if no real insns have been scheduled in the current cycle. */
3982 bool first_cycle_insn_p;
3983 /* True if a shadow insn has been scheduled in the current cycle, which
3984 means that no more normal insns can be issued. */
3985 bool shadows_only_p;
3986 /* True if we're winding down a modulo schedule, which means that we only
3987 issue insns with INSN_EXACT_TICK set. */
3988 bool modulo_epilogue;
3989 /* Initialized with the machine's issue rate every cycle, and updated
3990 by calls to the variable_issue hook. */
3991 int can_issue_more;
3992 };
3993
3994 /* INSN is the "currently executing insn". Launch each insn which was
3995 waiting on INSN. READY is the ready list which contains the insns
3996 that are ready to fire. CLOCK is the current cycle. The function
3997 returns necessary cycle advance after issuing the insn (it is not
3998 zero for insns in a schedule group). */
3999
4000 static int
4001 schedule_insn (rtx_insn *insn)
4002 {
4003 sd_iterator_def sd_it;
4004 dep_t dep;
4005 int i;
4006 int advance = 0;
4007
4008 if (sched_verbose >= 1)
4009 {
4010 struct reg_pressure_data *pressure_info;
4011 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
4012 clock_var, (*current_sched_info->print_insn) (insn, 1),
4013 str_pattern_slim (PATTERN (insn)));
4014
4015 if (recog_memoized (insn) < 0)
4016 fprintf (sched_dump, "nothing");
4017 else
4018 print_reservation (sched_dump, insn);
4019 pressure_info = INSN_REG_PRESSURE (insn);
4020 if (pressure_info != NULL)
4021 {
4022 fputc (':', sched_dump);
4023 for (i = 0; i < ira_pressure_classes_num; i++)
4024 fprintf (sched_dump, "%s%s%+d(%d)",
4025 scheduled_insns.length () > 1
4026 && INSN_LUID (insn)
4027 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4028 reg_class_names[ira_pressure_classes[i]],
4029 pressure_info[i].set_increase, pressure_info[i].change);
4030 }
4031 if (sched_pressure == SCHED_PRESSURE_MODEL
4032 && model_curr_point < model_num_insns
4033 && model_index (insn) == model_curr_point)
4034 fprintf (sched_dump, ":model %d", model_curr_point);
4035 fputc ('\n', sched_dump);
4036 }
4037
4038 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4039 update_reg_and_insn_max_reg_pressure (insn);
4040
4041 /* Scheduling instruction should have all its dependencies resolved and
4042 should have been removed from the ready list. */
4043 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4044
4045 /* Reset debug insns invalidated by moving this insn. */
4046 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4047 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4048 sd_iterator_cond (&sd_it, &dep);)
4049 {
4050 rtx_insn *dbg = DEP_PRO (dep);
4051 struct reg_use_data *use, *next;
4052
4053 if (DEP_STATUS (dep) & DEP_CANCELLED)
4054 {
4055 sd_iterator_next (&sd_it);
4056 continue;
4057 }
4058
4059 gcc_assert (DEBUG_INSN_P (dbg));
4060
4061 if (sched_verbose >= 6)
4062 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4063 INSN_UID (dbg));
4064
4065 /* ??? Rather than resetting the debug insn, we might be able
4066 to emit a debug temp before the just-scheduled insn, but
4067 this would involve checking that the expression at the
4068 point of the debug insn is equivalent to the expression
4069 before the just-scheduled insn. They might not be: the
4070 expression in the debug insn may depend on other insns not
4071 yet scheduled that set MEMs, REGs or even other debug
4072 insns. It's not clear that attempting to preserve debug
4073 information in these cases is worth the effort, given how
4074 uncommon these resets are and the likelihood that the debug
4075 temps introduced won't survive the schedule change. */
4076 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4077 df_insn_rescan (dbg);
4078
4079 /* Unknown location doesn't use any registers. */
4080 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4081 {
4082 struct reg_use_data *prev = use;
4083
4084 /* Remove use from the cyclic next_regno_use chain first. */
4085 while (prev->next_regno_use != use)
4086 prev = prev->next_regno_use;
4087 prev->next_regno_use = use->next_regno_use;
4088 next = use->next_insn_use;
4089 free (use);
4090 }
4091 INSN_REG_USE_LIST (dbg) = NULL;
4092
4093 /* We delete rather than resolve these deps, otherwise we
4094 crash in sched_free_deps(), because forward deps are
4095 expected to be released before backward deps. */
4096 sd_delete_dep (sd_it);
4097 }
4098
4099 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4100 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4101
4102 if (sched_pressure == SCHED_PRESSURE_MODEL
4103 && model_curr_point < model_num_insns
4104 && NONDEBUG_INSN_P (insn))
4105 {
4106 if (model_index (insn) == model_curr_point)
4107 do
4108 model_curr_point++;
4109 while (model_curr_point < model_num_insns
4110 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4111 == QUEUE_SCHEDULED));
4112 else
4113 model_recompute (insn);
4114 model_update_limit_points ();
4115 update_register_pressure (insn);
4116 if (sched_verbose >= 2)
4117 print_curr_reg_pressure ();
4118 }
4119
4120 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4121 if (INSN_TICK (insn) > clock_var)
4122 /* INSN has been prematurely moved from the queue to the ready list.
4123 This is possible only if following flags are set. */
4124 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4125
4126 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4127 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4128 INSN_TICK (insn) = clock_var;
4129
4130 check_clobbered_conditions (insn);
4131
4132 /* Update dependent instructions. First, see if by scheduling this insn
4133 now we broke a dependence in a way that requires us to change another
4134 insn. */
4135 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4136 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4137 {
4138 struct dep_replacement *desc = DEP_REPLACE (dep);
4139 rtx_insn *pro = DEP_PRO (dep);
4140 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4141 && desc != NULL && desc->insn == pro)
4142 apply_replacement (dep, false);
4143 }
4144
4145 /* Go through and resolve forward dependencies. */
4146 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4147 sd_iterator_cond (&sd_it, &dep);)
4148 {
4149 rtx_insn *next = DEP_CON (dep);
4150 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4151
4152 /* Resolve the dependence between INSN and NEXT.
4153 sd_resolve_dep () moves current dep to another list thus
4154 advancing the iterator. */
4155 sd_resolve_dep (sd_it);
4156
4157 if (cancelled)
4158 {
4159 if (must_restore_pattern_p (next, dep))
4160 restore_pattern (dep, false);
4161 continue;
4162 }
4163
4164 /* Don't bother trying to mark next as ready if insn is a debug
4165 insn. If insn is the last hard dependency, it will have
4166 already been discounted. */
4167 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4168 continue;
4169
4170 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4171 {
4172 int effective_cost;
4173
4174 effective_cost = try_ready (next);
4175
4176 if (effective_cost >= 0
4177 && SCHED_GROUP_P (next)
4178 && advance < effective_cost)
4179 advance = effective_cost;
4180 }
4181 else
4182 /* Check always has only one forward dependence (to the first insn in
4183 the recovery block), therefore, this will be executed only once. */
4184 {
4185 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4186 fix_recovery_deps (RECOVERY_BLOCK (insn));
4187 }
4188 }
4189
4190 /* Annotate the instruction with issue information -- TImode
4191 indicates that the instruction is expected not to be able
4192 to issue on the same cycle as the previous insn. A machine
4193 may use this information to decide how the instruction should
4194 be aligned. */
4195 if (issue_rate > 1
4196 && GET_CODE (PATTERN (insn)) != USE
4197 && GET_CODE (PATTERN (insn)) != CLOBBER
4198 && !DEBUG_INSN_P (insn))
4199 {
4200 if (reload_completed)
4201 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4202 last_clock_var = clock_var;
4203 }
4204
4205 if (nonscheduled_insns_begin != NULL_RTX)
4206 /* Indicate to debug counters that INSN is scheduled. */
4207 nonscheduled_insns_begin = insn;
4208
4209 return advance;
4210 }
4211
4212 /* Functions for handling of notes. */
4213
4214 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4215 void
4216 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4217 {
4218 rtx_insn *from_start;
4219
4220 /* It's easy when have nothing to concat. */
4221 if (from_end == NULL)
4222 return;
4223
4224 /* It's also easy when destination is empty. */
4225 if (*to_endp == NULL)
4226 {
4227 *to_endp = from_end;
4228 return;
4229 }
4230
4231 from_start = from_end;
4232 while (PREV_INSN (from_start) != NULL)
4233 from_start = PREV_INSN (from_start);
4234
4235 SET_PREV_INSN (from_start) = *to_endp;
4236 SET_NEXT_INSN (*to_endp) = from_start;
4237 *to_endp = from_end;
4238 }
4239
4240 /* Delete notes between HEAD and TAIL and put them in the chain
4241 of notes ended by NOTE_LIST. */
4242 void
4243 remove_notes (rtx_insn *head, rtx_insn *tail)
4244 {
4245 rtx_insn *next_tail, *insn, *next;
4246
4247 note_list = 0;
4248 if (head == tail && !INSN_P (head))
4249 return;
4250
4251 next_tail = NEXT_INSN (tail);
4252 for (insn = head; insn != next_tail; insn = next)
4253 {
4254 next = NEXT_INSN (insn);
4255 if (!NOTE_P (insn))
4256 continue;
4257
4258 switch (NOTE_KIND (insn))
4259 {
4260 case NOTE_INSN_BASIC_BLOCK:
4261 continue;
4262
4263 case NOTE_INSN_EPILOGUE_BEG:
4264 if (insn != tail)
4265 {
4266 remove_insn (insn);
4267 add_reg_note (next, REG_SAVE_NOTE,
4268 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4269 break;
4270 }
4271 /* FALLTHRU */
4272
4273 default:
4274 remove_insn (insn);
4275
4276 /* Add the note to list that ends at NOTE_LIST. */
4277 SET_PREV_INSN (insn) = note_list;
4278 SET_NEXT_INSN (insn) = NULL_RTX;
4279 if (note_list)
4280 SET_NEXT_INSN (note_list) = insn;
4281 note_list = insn;
4282 break;
4283 }
4284
4285 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4286 }
4287 }
4288
4289 /* A structure to record enough data to allow us to backtrack the scheduler to
4290 a previous state. */
4291 struct haifa_saved_data
4292 {
4293 /* Next entry on the list. */
4294 struct haifa_saved_data *next;
4295
4296 /* Backtracking is associated with scheduling insns that have delay slots.
4297 DELAY_PAIR points to the structure that contains the insns involved, and
4298 the number of cycles between them. */
4299 struct delay_pair *delay_pair;
4300
4301 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4302 void *fe_saved_data;
4303 /* Data used by the backend. */
4304 void *be_saved_data;
4305
4306 /* Copies of global state. */
4307 int clock_var, last_clock_var;
4308 struct ready_list ready;
4309 state_t curr_state;
4310
4311 rtx_insn *last_scheduled_insn;
4312 rtx last_nondebug_scheduled_insn;
4313 rtx_insn *nonscheduled_insns_begin;
4314 int cycle_issued_insns;
4315
4316 /* Copies of state used in the inner loop of schedule_block. */
4317 struct sched_block_state sched_block;
4318
4319 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4320 to 0 when restoring. */
4321 int q_size;
4322 rtx_insn_list **insn_queue;
4323
4324 /* Describe pattern replacements that occurred since this backtrack point
4325 was queued. */
4326 vec<dep_t> replacement_deps;
4327 vec<int> replace_apply;
4328
4329 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4330 point. */
4331 vec<dep_t> next_cycle_deps;
4332 vec<int> next_cycle_apply;
4333 };
4334
4335 /* A record, in reverse order, of all scheduled insns which have delay slots
4336 and may require backtracking. */
4337 static struct haifa_saved_data *backtrack_queue;
4338
4339 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4340 to SET_P. */
4341 static void
4342 mark_backtrack_feeds (rtx insn, int set_p)
4343 {
4344 sd_iterator_def sd_it;
4345 dep_t dep;
4346 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4347 {
4348 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4349 }
4350 }
4351
4352 /* Save the current scheduler state so that we can backtrack to it
4353 later if necessary. PAIR gives the insns that make it necessary to
4354 save this point. SCHED_BLOCK is the local state of schedule_block
4355 that need to be saved. */
4356 static void
4357 save_backtrack_point (struct delay_pair *pair,
4358 struct sched_block_state sched_block)
4359 {
4360 int i;
4361 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4362
4363 save->curr_state = xmalloc (dfa_state_size);
4364 memcpy (save->curr_state, curr_state, dfa_state_size);
4365
4366 save->ready.first = ready.first;
4367 save->ready.n_ready = ready.n_ready;
4368 save->ready.n_debug = ready.n_debug;
4369 save->ready.veclen = ready.veclen;
4370 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4371 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4372
4373 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4374 save->q_size = q_size;
4375 for (i = 0; i <= max_insn_queue_index; i++)
4376 {
4377 int q = NEXT_Q_AFTER (q_ptr, i);
4378 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4379 }
4380
4381 save->clock_var = clock_var;
4382 save->last_clock_var = last_clock_var;
4383 save->cycle_issued_insns = cycle_issued_insns;
4384 save->last_scheduled_insn = last_scheduled_insn;
4385 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4386 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4387
4388 save->sched_block = sched_block;
4389
4390 save->replacement_deps.create (0);
4391 save->replace_apply.create (0);
4392 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4393 save->next_cycle_apply = next_cycle_apply.copy ();
4394
4395 if (current_sched_info->save_state)
4396 save->fe_saved_data = (*current_sched_info->save_state) ();
4397
4398 if (targetm.sched.alloc_sched_context)
4399 {
4400 save->be_saved_data = targetm.sched.alloc_sched_context ();
4401 targetm.sched.init_sched_context (save->be_saved_data, false);
4402 }
4403 else
4404 save->be_saved_data = NULL;
4405
4406 save->delay_pair = pair;
4407
4408 save->next = backtrack_queue;
4409 backtrack_queue = save;
4410
4411 while (pair)
4412 {
4413 mark_backtrack_feeds (pair->i2, 1);
4414 INSN_TICK (pair->i2) = INVALID_TICK;
4415 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4416 SHADOW_P (pair->i2) = pair->stages == 0;
4417 pair = pair->next_same_i1;
4418 }
4419 }
4420
4421 /* Walk the ready list and all queues. If any insns have unresolved backwards
4422 dependencies, these must be cancelled deps, broken by predication. Set or
4423 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4424
4425 static void
4426 toggle_cancelled_flags (bool set)
4427 {
4428 int i;
4429 sd_iterator_def sd_it;
4430 dep_t dep;
4431
4432 if (ready.n_ready > 0)
4433 {
4434 rtx_insn **first = ready_lastpos (&ready);
4435 for (i = 0; i < ready.n_ready; i++)
4436 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4437 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4438 {
4439 if (set)
4440 DEP_STATUS (dep) |= DEP_CANCELLED;
4441 else
4442 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4443 }
4444 }
4445 for (i = 0; i <= max_insn_queue_index; i++)
4446 {
4447 int q = NEXT_Q_AFTER (q_ptr, i);
4448 rtx_insn_list *link;
4449 for (link = insn_queue[q]; link; link = link->next ())
4450 {
4451 rtx_insn *insn = link->insn ();
4452 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4453 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4454 {
4455 if (set)
4456 DEP_STATUS (dep) |= DEP_CANCELLED;
4457 else
4458 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4459 }
4460 }
4461 }
4462 }
4463
4464 /* Undo the replacements that have occurred after backtrack point SAVE
4465 was placed. */
4466 static void
4467 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4468 {
4469 while (!save->replacement_deps.is_empty ())
4470 {
4471 dep_t dep = save->replacement_deps.pop ();
4472 int apply_p = save->replace_apply.pop ();
4473
4474 if (apply_p)
4475 restore_pattern (dep, true);
4476 else
4477 apply_replacement (dep, true);
4478 }
4479 save->replacement_deps.release ();
4480 save->replace_apply.release ();
4481 }
4482
4483 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4484 Restore their dependencies to an unresolved state, and mark them as
4485 queued nowhere. */
4486
4487 static void
4488 unschedule_insns_until (rtx insn)
4489 {
4490 auto_vec<rtx_insn *> recompute_vec;
4491
4492 /* Make two passes over the insns to be unscheduled. First, we clear out
4493 dependencies and other trivial bookkeeping. */
4494 for (;;)
4495 {
4496 rtx_insn *last;
4497 sd_iterator_def sd_it;
4498 dep_t dep;
4499
4500 last = scheduled_insns.pop ();
4501
4502 /* This will be changed by restore_backtrack_point if the insn is in
4503 any queue. */
4504 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4505 if (last != insn)
4506 INSN_TICK (last) = INVALID_TICK;
4507
4508 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4509 modulo_insns_scheduled--;
4510
4511 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4512 sd_iterator_cond (&sd_it, &dep);)
4513 {
4514 rtx_insn *con = DEP_CON (dep);
4515 sd_unresolve_dep (sd_it);
4516 if (!MUST_RECOMPUTE_SPEC_P (con))
4517 {
4518 MUST_RECOMPUTE_SPEC_P (con) = 1;
4519 recompute_vec.safe_push (con);
4520 }
4521 }
4522
4523 if (last == insn)
4524 break;
4525 }
4526
4527 /* A second pass, to update ready and speculation status for insns
4528 depending on the unscheduled ones. The first pass must have
4529 popped the scheduled_insns vector up to the point where we
4530 restart scheduling, as recompute_todo_spec requires it to be
4531 up-to-date. */
4532 while (!recompute_vec.is_empty ())
4533 {
4534 rtx_insn *con;
4535
4536 con = recompute_vec.pop ();
4537 MUST_RECOMPUTE_SPEC_P (con) = 0;
4538 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4539 {
4540 TODO_SPEC (con) = HARD_DEP;
4541 INSN_TICK (con) = INVALID_TICK;
4542 if (PREDICATED_PAT (con) != NULL_RTX)
4543 haifa_change_pattern (con, ORIG_PAT (con));
4544 }
4545 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4546 TODO_SPEC (con) = recompute_todo_spec (con, true);
4547 }
4548 }
4549
4550 /* Restore scheduler state from the topmost entry on the backtracking queue.
4551 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4552 overwrite with the saved data.
4553 The caller must already have called unschedule_insns_until. */
4554
4555 static void
4556 restore_last_backtrack_point (struct sched_block_state *psched_block)
4557 {
4558 int i;
4559 struct haifa_saved_data *save = backtrack_queue;
4560
4561 backtrack_queue = save->next;
4562
4563 if (current_sched_info->restore_state)
4564 (*current_sched_info->restore_state) (save->fe_saved_data);
4565
4566 if (targetm.sched.alloc_sched_context)
4567 {
4568 targetm.sched.set_sched_context (save->be_saved_data);
4569 targetm.sched.free_sched_context (save->be_saved_data);
4570 }
4571
4572 /* Do this first since it clobbers INSN_TICK of the involved
4573 instructions. */
4574 undo_replacements_for_backtrack (save);
4575
4576 /* Clear the QUEUE_INDEX of everything in the ready list or one
4577 of the queues. */
4578 if (ready.n_ready > 0)
4579 {
4580 rtx_insn **first = ready_lastpos (&ready);
4581 for (i = 0; i < ready.n_ready; i++)
4582 {
4583 rtx_insn *insn = first[i];
4584 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4585 INSN_TICK (insn) = INVALID_TICK;
4586 }
4587 }
4588 for (i = 0; i <= max_insn_queue_index; i++)
4589 {
4590 int q = NEXT_Q_AFTER (q_ptr, i);
4591
4592 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4593 {
4594 rtx_insn *x = link->insn ();
4595 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4596 INSN_TICK (x) = INVALID_TICK;
4597 }
4598 free_INSN_LIST_list (&insn_queue[q]);
4599 }
4600
4601 free (ready.vec);
4602 ready = save->ready;
4603
4604 if (ready.n_ready > 0)
4605 {
4606 rtx_insn **first = ready_lastpos (&ready);
4607 for (i = 0; i < ready.n_ready; i++)
4608 {
4609 rtx_insn *insn = first[i];
4610 QUEUE_INDEX (insn) = QUEUE_READY;
4611 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4612 INSN_TICK (insn) = save->clock_var;
4613 }
4614 }
4615
4616 q_ptr = 0;
4617 q_size = save->q_size;
4618 for (i = 0; i <= max_insn_queue_index; i++)
4619 {
4620 int q = NEXT_Q_AFTER (q_ptr, i);
4621
4622 insn_queue[q] = save->insn_queue[q];
4623
4624 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4625 {
4626 rtx_insn *x = link->insn ();
4627 QUEUE_INDEX (x) = i;
4628 TODO_SPEC (x) = recompute_todo_spec (x, true);
4629 INSN_TICK (x) = save->clock_var + i;
4630 }
4631 }
4632 free (save->insn_queue);
4633
4634 toggle_cancelled_flags (true);
4635
4636 clock_var = save->clock_var;
4637 last_clock_var = save->last_clock_var;
4638 cycle_issued_insns = save->cycle_issued_insns;
4639 last_scheduled_insn = save->last_scheduled_insn;
4640 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4641 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4642
4643 *psched_block = save->sched_block;
4644
4645 memcpy (curr_state, save->curr_state, dfa_state_size);
4646 free (save->curr_state);
4647
4648 mark_backtrack_feeds (save->delay_pair->i2, 0);
4649
4650 gcc_assert (next_cycle_replace_deps.is_empty ());
4651 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4652 next_cycle_apply = save->next_cycle_apply.copy ();
4653
4654 free (save);
4655
4656 for (save = backtrack_queue; save; save = save->next)
4657 {
4658 mark_backtrack_feeds (save->delay_pair->i2, 1);
4659 }
4660 }
4661
4662 /* Discard all data associated with the topmost entry in the backtrack
4663 queue. If RESET_TICK is false, we just want to free the data. If true,
4664 we are doing this because we discovered a reason to backtrack. In the
4665 latter case, also reset the INSN_TICK for the shadow insn. */
4666 static void
4667 free_topmost_backtrack_point (bool reset_tick)
4668 {
4669 struct haifa_saved_data *save = backtrack_queue;
4670 int i;
4671
4672 backtrack_queue = save->next;
4673
4674 if (reset_tick)
4675 {
4676 struct delay_pair *pair = save->delay_pair;
4677 while (pair)
4678 {
4679 INSN_TICK (pair->i2) = INVALID_TICK;
4680 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4681 pair = pair->next_same_i1;
4682 }
4683 undo_replacements_for_backtrack (save);
4684 }
4685 else
4686 {
4687 save->replacement_deps.release ();
4688 save->replace_apply.release ();
4689 }
4690
4691 if (targetm.sched.free_sched_context)
4692 targetm.sched.free_sched_context (save->be_saved_data);
4693 if (current_sched_info->restore_state)
4694 free (save->fe_saved_data);
4695 for (i = 0; i <= max_insn_queue_index; i++)
4696 free_INSN_LIST_list (&save->insn_queue[i]);
4697 free (save->insn_queue);
4698 free (save->curr_state);
4699 free (save->ready.vec);
4700 free (save);
4701 }
4702
4703 /* Free the entire backtrack queue. */
4704 static void
4705 free_backtrack_queue (void)
4706 {
4707 while (backtrack_queue)
4708 free_topmost_backtrack_point (false);
4709 }
4710
4711 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4712 may have to postpone the replacement until the start of the next cycle,
4713 at which point we will be called again with IMMEDIATELY true. This is
4714 only done for machines which have instruction packets with explicit
4715 parallelism however. */
4716 static void
4717 apply_replacement (dep_t dep, bool immediately)
4718 {
4719 struct dep_replacement *desc = DEP_REPLACE (dep);
4720 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4721 {
4722 next_cycle_replace_deps.safe_push (dep);
4723 next_cycle_apply.safe_push (1);
4724 }
4725 else
4726 {
4727 bool success;
4728
4729 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4730 return;
4731
4732 if (sched_verbose >= 5)
4733 fprintf (sched_dump, "applying replacement for insn %d\n",
4734 INSN_UID (desc->insn));
4735
4736 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4737 gcc_assert (success);
4738
4739 update_insn_after_change (desc->insn);
4740 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4741 fix_tick_ready (desc->insn);
4742
4743 if (backtrack_queue != NULL)
4744 {
4745 backtrack_queue->replacement_deps.safe_push (dep);
4746 backtrack_queue->replace_apply.safe_push (1);
4747 }
4748 }
4749 }
4750
4751 /* We have determined that a pattern involved in DEP must be restored.
4752 If IMMEDIATELY is false, we may have to postpone the replacement
4753 until the start of the next cycle, at which point we will be called
4754 again with IMMEDIATELY true. */
4755 static void
4756 restore_pattern (dep_t dep, bool immediately)
4757 {
4758 rtx_insn *next = DEP_CON (dep);
4759 int tick = INSN_TICK (next);
4760
4761 /* If we already scheduled the insn, the modified version is
4762 correct. */
4763 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4764 return;
4765
4766 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4767 {
4768 next_cycle_replace_deps.safe_push (dep);
4769 next_cycle_apply.safe_push (0);
4770 return;
4771 }
4772
4773
4774 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4775 {
4776 if (sched_verbose >= 5)
4777 fprintf (sched_dump, "restoring pattern for insn %d\n",
4778 INSN_UID (next));
4779 haifa_change_pattern (next, ORIG_PAT (next));
4780 }
4781 else
4782 {
4783 struct dep_replacement *desc = DEP_REPLACE (dep);
4784 bool success;
4785
4786 if (sched_verbose >= 5)
4787 fprintf (sched_dump, "restoring pattern for insn %d\n",
4788 INSN_UID (desc->insn));
4789 tick = INSN_TICK (desc->insn);
4790
4791 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4792 gcc_assert (success);
4793 update_insn_after_change (desc->insn);
4794 if (backtrack_queue != NULL)
4795 {
4796 backtrack_queue->replacement_deps.safe_push (dep);
4797 backtrack_queue->replace_apply.safe_push (0);
4798 }
4799 }
4800 INSN_TICK (next) = tick;
4801 if (TODO_SPEC (next) == DEP_POSTPONED)
4802 return;
4803
4804 if (sd_lists_empty_p (next, SD_LIST_BACK))
4805 TODO_SPEC (next) = 0;
4806 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4807 TODO_SPEC (next) = HARD_DEP;
4808 }
4809
4810 /* Perform pattern replacements that were queued up until the next
4811 cycle. */
4812 static void
4813 perform_replacements_new_cycle (void)
4814 {
4815 int i;
4816 dep_t dep;
4817 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4818 {
4819 int apply_p = next_cycle_apply[i];
4820 if (apply_p)
4821 apply_replacement (dep, true);
4822 else
4823 restore_pattern (dep, true);
4824 }
4825 next_cycle_replace_deps.truncate (0);
4826 next_cycle_apply.truncate (0);
4827 }
4828
4829 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4830 instructions we've previously encountered, a set bit prevents
4831 recursion. BUDGET is a limit on how far ahead we look, it is
4832 reduced on recursive calls. Return true if we produced a good
4833 estimate, or false if we exceeded the budget. */
4834 static bool
4835 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4836 {
4837 sd_iterator_def sd_it;
4838 dep_t dep;
4839 int earliest = INSN_TICK (insn);
4840
4841 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4842 {
4843 rtx_insn *pro = DEP_PRO (dep);
4844 int t;
4845
4846 if (DEP_STATUS (dep) & DEP_CANCELLED)
4847 continue;
4848
4849 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4850 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4851 else
4852 {
4853 int cost = dep_cost (dep);
4854 if (cost >= budget)
4855 return false;
4856 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4857 {
4858 if (!estimate_insn_tick (processed, pro, budget - cost))
4859 return false;
4860 }
4861 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4862 t = INSN_TICK_ESTIMATE (pro) + cost;
4863 if (earliest == INVALID_TICK || t > earliest)
4864 earliest = t;
4865 }
4866 }
4867 bitmap_set_bit (processed, INSN_LUID (insn));
4868 INSN_TICK_ESTIMATE (insn) = earliest;
4869 return true;
4870 }
4871
4872 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4873 infinite resources) the cycle in which the delayed shadow can be issued.
4874 Return the number of cycles that must pass before the real insn can be
4875 issued in order to meet this constraint. */
4876 static int
4877 estimate_shadow_tick (struct delay_pair *p)
4878 {
4879 bitmap_head processed;
4880 int t;
4881 bool cutoff;
4882 bitmap_initialize (&processed, 0);
4883
4884 cutoff = !estimate_insn_tick (&processed, p->i2,
4885 max_insn_queue_index + pair_delay (p));
4886 bitmap_clear (&processed);
4887 if (cutoff)
4888 return max_insn_queue_index;
4889 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4890 if (t > 0)
4891 return t;
4892 return 0;
4893 }
4894
4895 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4896 recursively resolve all its forward dependencies. */
4897 static void
4898 resolve_dependencies (rtx_insn *insn)
4899 {
4900 sd_iterator_def sd_it;
4901 dep_t dep;
4902
4903 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4904 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4905 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4906 return;
4907
4908 if (sched_verbose >= 4)
4909 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4910
4911 if (QUEUE_INDEX (insn) >= 0)
4912 queue_remove (insn);
4913
4914 scheduled_insns.safe_push (insn);
4915
4916 /* Update dependent instructions. */
4917 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4918 sd_iterator_cond (&sd_it, &dep);)
4919 {
4920 rtx_insn *next = DEP_CON (dep);
4921
4922 if (sched_verbose >= 4)
4923 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4924 INSN_UID (next));
4925
4926 /* Resolve the dependence between INSN and NEXT.
4927 sd_resolve_dep () moves current dep to another list thus
4928 advancing the iterator. */
4929 sd_resolve_dep (sd_it);
4930
4931 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4932 {
4933 resolve_dependencies (next);
4934 }
4935 else
4936 /* Check always has only one forward dependence (to the first insn in
4937 the recovery block), therefore, this will be executed only once. */
4938 {
4939 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4940 }
4941 }
4942 }
4943
4944
4945 /* Return the head and tail pointers of ebb starting at BEG and ending
4946 at END. */
4947 void
4948 get_ebb_head_tail (basic_block beg, basic_block end,
4949 rtx_insn **headp, rtx_insn **tailp)
4950 {
4951 rtx_insn *beg_head = BB_HEAD (beg);
4952 rtx_insn * beg_tail = BB_END (beg);
4953 rtx_insn * end_head = BB_HEAD (end);
4954 rtx_insn * end_tail = BB_END (end);
4955
4956 /* Don't include any notes or labels at the beginning of the BEG
4957 basic block, or notes at the end of the END basic blocks. */
4958
4959 if (LABEL_P (beg_head))
4960 beg_head = NEXT_INSN (beg_head);
4961
4962 while (beg_head != beg_tail)
4963 if (NOTE_P (beg_head))
4964 beg_head = NEXT_INSN (beg_head);
4965 else if (DEBUG_INSN_P (beg_head))
4966 {
4967 rtx_insn * note, *next;
4968
4969 for (note = NEXT_INSN (beg_head);
4970 note != beg_tail;
4971 note = next)
4972 {
4973 next = NEXT_INSN (note);
4974 if (NOTE_P (note))
4975 {
4976 if (sched_verbose >= 9)
4977 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4978
4979 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4980
4981 if (BLOCK_FOR_INSN (note) != beg)
4982 df_insn_change_bb (note, beg);
4983 }
4984 else if (!DEBUG_INSN_P (note))
4985 break;
4986 }
4987
4988 break;
4989 }
4990 else
4991 break;
4992
4993 *headp = beg_head;
4994
4995 if (beg == end)
4996 end_head = beg_head;
4997 else if (LABEL_P (end_head))
4998 end_head = NEXT_INSN (end_head);
4999
5000 while (end_head != end_tail)
5001 if (NOTE_P (end_tail))
5002 end_tail = PREV_INSN (end_tail);
5003 else if (DEBUG_INSN_P (end_tail))
5004 {
5005 rtx_insn * note, *prev;
5006
5007 for (note = PREV_INSN (end_tail);
5008 note != end_head;
5009 note = prev)
5010 {
5011 prev = PREV_INSN (note);
5012 if (NOTE_P (note))
5013 {
5014 if (sched_verbose >= 9)
5015 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5016
5017 reorder_insns_nobb (note, note, end_tail);
5018
5019 if (end_tail == BB_END (end))
5020 BB_END (end) = note;
5021
5022 if (BLOCK_FOR_INSN (note) != end)
5023 df_insn_change_bb (note, end);
5024 }
5025 else if (!DEBUG_INSN_P (note))
5026 break;
5027 }
5028
5029 break;
5030 }
5031 else
5032 break;
5033
5034 *tailp = end_tail;
5035 }
5036
5037 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5038
5039 int
5040 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5041 {
5042 while (head != NEXT_INSN (tail))
5043 {
5044 if (!NOTE_P (head) && !LABEL_P (head))
5045 return 0;
5046 head = NEXT_INSN (head);
5047 }
5048 return 1;
5049 }
5050
5051 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5052 previously found among the insns. Insert them just before HEAD. */
5053 rtx_insn *
5054 restore_other_notes (rtx_insn *head, basic_block head_bb)
5055 {
5056 if (note_list != 0)
5057 {
5058 rtx_insn *note_head = note_list;
5059
5060 if (head)
5061 head_bb = BLOCK_FOR_INSN (head);
5062 else
5063 head = NEXT_INSN (bb_note (head_bb));
5064
5065 while (PREV_INSN (note_head))
5066 {
5067 set_block_for_insn (note_head, head_bb);
5068 note_head = PREV_INSN (note_head);
5069 }
5070 /* In the above cycle we've missed this note. */
5071 set_block_for_insn (note_head, head_bb);
5072
5073 SET_PREV_INSN (note_head) = PREV_INSN (head);
5074 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5075 SET_PREV_INSN (head) = note_list;
5076 SET_NEXT_INSN (note_list) = head;
5077
5078 if (BLOCK_FOR_INSN (head) != head_bb)
5079 BB_END (head_bb) = note_list;
5080
5081 head = note_head;
5082 }
5083
5084 return head;
5085 }
5086
5087 /* When we know we are going to discard the schedule due to a failed attempt
5088 at modulo scheduling, undo all replacements. */
5089 static void
5090 undo_all_replacements (void)
5091 {
5092 rtx_insn *insn;
5093 int i;
5094
5095 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5096 {
5097 sd_iterator_def sd_it;
5098 dep_t dep;
5099
5100 /* See if we must undo a replacement. */
5101 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5102 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5103 {
5104 struct dep_replacement *desc = DEP_REPLACE (dep);
5105 if (desc != NULL)
5106 validate_change (desc->insn, desc->loc, desc->orig, 0);
5107 }
5108 }
5109 }
5110
5111 /* Return first non-scheduled insn in the current scheduling block.
5112 This is mostly used for debug-counter purposes. */
5113 static rtx_insn *
5114 first_nonscheduled_insn (void)
5115 {
5116 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5117 ? nonscheduled_insns_begin
5118 : current_sched_info->prev_head);
5119
5120 do
5121 {
5122 insn = next_nonnote_nondebug_insn (insn);
5123 }
5124 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5125
5126 return insn;
5127 }
5128
5129 /* Move insns that became ready to fire from queue to ready list. */
5130
5131 static void
5132 queue_to_ready (struct ready_list *ready)
5133 {
5134 rtx_insn *insn;
5135 rtx_insn_list *link;
5136 rtx skip_insn;
5137
5138 q_ptr = NEXT_Q (q_ptr);
5139
5140 if (dbg_cnt (sched_insn) == false)
5141 /* If debug counter is activated do not requeue the first
5142 nonscheduled insn. */
5143 skip_insn = first_nonscheduled_insn ();
5144 else
5145 skip_insn = NULL_RTX;
5146
5147 /* Add all pending insns that can be scheduled without stalls to the
5148 ready list. */
5149 for (link = insn_queue[q_ptr]; link; link = link->next ())
5150 {
5151 insn = link->insn ();
5152 q_size -= 1;
5153
5154 if (sched_verbose >= 2)
5155 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5156 (*current_sched_info->print_insn) (insn, 0));
5157
5158 /* If the ready list is full, delay the insn for 1 cycle.
5159 See the comment in schedule_block for the rationale. */
5160 if (!reload_completed
5161 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5162 || (sched_pressure == SCHED_PRESSURE_MODEL
5163 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5164 instructions too. */
5165 && model_index (insn) > (model_curr_point
5166 + MAX_SCHED_READY_INSNS)))
5167 && !(sched_pressure == SCHED_PRESSURE_MODEL
5168 && model_curr_point < model_num_insns
5169 /* Always allow the next model instruction to issue. */
5170 && model_index (insn) == model_curr_point)
5171 && !SCHED_GROUP_P (insn)
5172 && insn != skip_insn)
5173 {
5174 if (sched_verbose >= 2)
5175 fprintf (sched_dump, "keeping in queue, ready full\n");
5176 queue_insn (insn, 1, "ready full");
5177 }
5178 else
5179 {
5180 ready_add (ready, insn, false);
5181 if (sched_verbose >= 2)
5182 fprintf (sched_dump, "moving to ready without stalls\n");
5183 }
5184 }
5185 free_INSN_LIST_list (&insn_queue[q_ptr]);
5186
5187 /* If there are no ready insns, stall until one is ready and add all
5188 of the pending insns at that point to the ready list. */
5189 if (ready->n_ready == 0)
5190 {
5191 int stalls;
5192
5193 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5194 {
5195 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5196 {
5197 for (; link; link = link->next ())
5198 {
5199 insn = link->insn ();
5200 q_size -= 1;
5201
5202 if (sched_verbose >= 2)
5203 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5204 (*current_sched_info->print_insn) (insn, 0));
5205
5206 ready_add (ready, insn, false);
5207 if (sched_verbose >= 2)
5208 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5209 }
5210 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5211
5212 advance_one_cycle ();
5213
5214 break;
5215 }
5216
5217 advance_one_cycle ();
5218 }
5219
5220 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5221 clock_var += stalls;
5222 if (sched_verbose >= 2)
5223 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5224 stalls, clock_var);
5225 }
5226 }
5227
5228 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5229 prematurely move INSN from the queue to the ready list. Currently,
5230 if a target defines the hook 'is_costly_dependence', this function
5231 uses the hook to check whether there exist any dependences which are
5232 considered costly by the target, between INSN and other insns that
5233 have already been scheduled. Dependences are checked up to Y cycles
5234 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5235 controlling this value.
5236 (Other considerations could be taken into account instead (or in
5237 addition) depending on user flags and target hooks. */
5238
5239 static bool
5240 ok_for_early_queue_removal (rtx insn)
5241 {
5242 if (targetm.sched.is_costly_dependence)
5243 {
5244 rtx prev_insn;
5245 int n_cycles;
5246 int i = scheduled_insns.length ();
5247 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5248 {
5249 while (i-- > 0)
5250 {
5251 int cost;
5252
5253 prev_insn = scheduled_insns[i];
5254
5255 if (!NOTE_P (prev_insn))
5256 {
5257 dep_t dep;
5258
5259 dep = sd_find_dep_between (prev_insn, insn, true);
5260
5261 if (dep != NULL)
5262 {
5263 cost = dep_cost (dep);
5264
5265 if (targetm.sched.is_costly_dependence (dep, cost,
5266 flag_sched_stalled_insns_dep - n_cycles))
5267 return false;
5268 }
5269 }
5270
5271 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5272 break;
5273 }
5274
5275 if (i == 0)
5276 break;
5277 }
5278 }
5279
5280 return true;
5281 }
5282
5283
5284 /* Remove insns from the queue, before they become "ready" with respect
5285 to FU latency considerations. */
5286
5287 static int
5288 early_queue_to_ready (state_t state, struct ready_list *ready)
5289 {
5290 rtx_insn *insn;
5291 rtx_insn_list *link;
5292 rtx_insn_list *next_link;
5293 rtx_insn_list *prev_link;
5294 bool move_to_ready;
5295 int cost;
5296 state_t temp_state = alloca (dfa_state_size);
5297 int stalls;
5298 int insns_removed = 0;
5299
5300 /*
5301 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5302 function:
5303
5304 X == 0: There is no limit on how many queued insns can be removed
5305 prematurely. (flag_sched_stalled_insns = -1).
5306
5307 X >= 1: Only X queued insns can be removed prematurely in each
5308 invocation. (flag_sched_stalled_insns = X).
5309
5310 Otherwise: Early queue removal is disabled.
5311 (flag_sched_stalled_insns = 0)
5312 */
5313
5314 if (! flag_sched_stalled_insns)
5315 return 0;
5316
5317 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5318 {
5319 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5320 {
5321 if (sched_verbose > 6)
5322 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5323
5324 prev_link = 0;
5325 while (link)
5326 {
5327 next_link = link->next ();
5328 insn = link->insn ();
5329 if (insn && sched_verbose > 6)
5330 print_rtl_single (sched_dump, insn);
5331
5332 memcpy (temp_state, state, dfa_state_size);
5333 if (recog_memoized (insn) < 0)
5334 /* non-negative to indicate that it's not ready
5335 to avoid infinite Q->R->Q->R... */
5336 cost = 0;
5337 else
5338 cost = state_transition (temp_state, insn);
5339
5340 if (sched_verbose >= 6)
5341 fprintf (sched_dump, "transition cost = %d\n", cost);
5342
5343 move_to_ready = false;
5344 if (cost < 0)
5345 {
5346 move_to_ready = ok_for_early_queue_removal (insn);
5347 if (move_to_ready == true)
5348 {
5349 /* move from Q to R */
5350 q_size -= 1;
5351 ready_add (ready, insn, false);
5352
5353 if (prev_link)
5354 XEXP (prev_link, 1) = next_link;
5355 else
5356 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5357
5358 free_INSN_LIST_node (link);
5359
5360 if (sched_verbose >= 2)
5361 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5362 (*current_sched_info->print_insn) (insn, 0));
5363
5364 insns_removed++;
5365 if (insns_removed == flag_sched_stalled_insns)
5366 /* Remove no more than flag_sched_stalled_insns insns
5367 from Q at a time. */
5368 return insns_removed;
5369 }
5370 }
5371
5372 if (move_to_ready == false)
5373 prev_link = link;
5374
5375 link = next_link;
5376 } /* while link */
5377 } /* if link */
5378
5379 } /* for stalls.. */
5380
5381 return insns_removed;
5382 }
5383
5384
5385 /* Print the ready list for debugging purposes.
5386 If READY_TRY is non-zero then only print insns that max_issue
5387 will consider. */
5388 static void
5389 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5390 {
5391 rtx_insn **p;
5392 int i;
5393
5394 if (ready->n_ready == 0)
5395 {
5396 fprintf (sched_dump, "\n");
5397 return;
5398 }
5399
5400 p = ready_lastpos (ready);
5401 for (i = 0; i < ready->n_ready; i++)
5402 {
5403 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5404 continue;
5405
5406 fprintf (sched_dump, " %s:%d",
5407 (*current_sched_info->print_insn) (p[i], 0),
5408 INSN_LUID (p[i]));
5409 if (sched_pressure != SCHED_PRESSURE_NONE)
5410 fprintf (sched_dump, "(cost=%d",
5411 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5412 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5413 if (INSN_TICK (p[i]) > clock_var)
5414 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5415 if (sched_pressure == SCHED_PRESSURE_MODEL)
5416 fprintf (sched_dump, ":idx=%d",
5417 model_index (p[i]));
5418 if (sched_pressure != SCHED_PRESSURE_NONE)
5419 fprintf (sched_dump, ")");
5420 }
5421 fprintf (sched_dump, "\n");
5422 }
5423
5424 /* Print the ready list. Callable from debugger. */
5425 static void
5426 debug_ready_list (struct ready_list *ready)
5427 {
5428 debug_ready_list_1 (ready, NULL);
5429 }
5430
5431 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5432 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5433 replaces the epilogue note in the correct basic block. */
5434 void
5435 reemit_notes (rtx_insn *insn)
5436 {
5437 rtx note;
5438 rtx_insn *last = insn;
5439
5440 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5441 {
5442 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5443 {
5444 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5445
5446 last = emit_note_before (note_type, last);
5447 remove_note (insn, note);
5448 }
5449 }
5450 }
5451
5452 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5453 static void
5454 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5455 {
5456 if (PREV_INSN (insn) != last)
5457 {
5458 basic_block bb;
5459 rtx_insn *note;
5460 int jump_p = 0;
5461
5462 bb = BLOCK_FOR_INSN (insn);
5463
5464 /* BB_HEAD is either LABEL or NOTE. */
5465 gcc_assert (BB_HEAD (bb) != insn);
5466
5467 if (BB_END (bb) == insn)
5468 /* If this is last instruction in BB, move end marker one
5469 instruction up. */
5470 {
5471 /* Jumps are always placed at the end of basic block. */
5472 jump_p = control_flow_insn_p (insn);
5473
5474 gcc_assert (!jump_p
5475 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5476 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5477 || (common_sched_info->sched_pass_id
5478 == SCHED_EBB_PASS));
5479
5480 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5481
5482 BB_END (bb) = PREV_INSN (insn);
5483 }
5484
5485 gcc_assert (BB_END (bb) != last);
5486
5487 if (jump_p)
5488 /* We move the block note along with jump. */
5489 {
5490 gcc_assert (nt);
5491
5492 note = NEXT_INSN (insn);
5493 while (NOTE_NOT_BB_P (note) && note != nt)
5494 note = NEXT_INSN (note);
5495
5496 if (note != nt
5497 && (LABEL_P (note)
5498 || BARRIER_P (note)))
5499 note = NEXT_INSN (note);
5500
5501 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5502 }
5503 else
5504 note = insn;
5505
5506 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5507 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5508
5509 SET_NEXT_INSN (note) = NEXT_INSN (last);
5510 SET_PREV_INSN (NEXT_INSN (last)) = note;
5511
5512 SET_NEXT_INSN (last) = insn;
5513 SET_PREV_INSN (insn) = last;
5514
5515 bb = BLOCK_FOR_INSN (last);
5516
5517 if (jump_p)
5518 {
5519 fix_jump_move (insn);
5520
5521 if (BLOCK_FOR_INSN (insn) != bb)
5522 move_block_after_check (insn);
5523
5524 gcc_assert (BB_END (bb) == last);
5525 }
5526
5527 df_insn_change_bb (insn, bb);
5528
5529 /* Update BB_END, if needed. */
5530 if (BB_END (bb) == last)
5531 BB_END (bb) = insn;
5532 }
5533
5534 SCHED_GROUP_P (insn) = 0;
5535 }
5536
5537 /* Return true if scheduling INSN will finish current clock cycle. */
5538 static bool
5539 insn_finishes_cycle_p (rtx_insn *insn)
5540 {
5541 if (SCHED_GROUP_P (insn))
5542 /* After issuing INSN, rest of the sched_group will be forced to issue
5543 in order. Don't make any plans for the rest of cycle. */
5544 return true;
5545
5546 /* Finishing the block will, apparently, finish the cycle. */
5547 if (current_sched_info->insn_finishes_block_p
5548 && current_sched_info->insn_finishes_block_p (insn))
5549 return true;
5550
5551 return false;
5552 }
5553
5554 /* Functions to model cache auto-prefetcher.
5555
5556 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5557 memory prefetches if it sees instructions with consequitive memory accesses
5558 in the instruction stream. Details of such hardware units are not published,
5559 so we can only guess what exactly is going on there.
5560 In the scheduler, we model abstract auto-prefetcher. If there are memory
5561 insns in the ready list (or the queue) that have same memory base, but
5562 different offsets, then we delay the insns with larger offsets until insns
5563 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5564 is "1", then we look at the ready list; if it is N>1, then we also look
5565 through N-1 queue entries.
5566 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5567 among its heuristics.
5568 Param value of "-1" disables modelling of the auto-prefetcher. */
5569
5570 /* Initialize autoprefetcher model data for INSN. */
5571 static void
5572 autopref_multipass_init (const rtx_insn *insn, int write)
5573 {
5574 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5575
5576 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5577 data->base = NULL_RTX;
5578 data->offset = 0;
5579 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5580 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5581
5582 rtx set = single_set (insn);
5583 if (set == NULL_RTX)
5584 return;
5585
5586 rtx mem = write ? SET_DEST (set) : SET_SRC (set);
5587 if (!MEM_P (mem))
5588 return;
5589
5590 struct address_info info;
5591 decompose_mem_address (&info, mem);
5592
5593 /* TODO: Currently only (base+const) addressing is supported. */
5594 if (info.base == NULL || !REG_P (*info.base)
5595 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5596 return;
5597
5598 /* This insn is relevant for auto-prefetcher. */
5599 data->base = *info.base;
5600 data->offset = info.disp ? INTVAL (*info.disp) : 0;
5601 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5602 }
5603
5604 /* Helper function for rank_for_schedule sorting. */
5605 static int
5606 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5607 {
5608 for (int write = 0; write < 2; ++write)
5609 {
5610 autopref_multipass_data_t data1
5611 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5612 autopref_multipass_data_t data2
5613 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5614
5615 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5616 autopref_multipass_init (insn1, write);
5617 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5618 continue;
5619
5620 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5621 autopref_multipass_init (insn2, write);
5622 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5623 continue;
5624
5625 if (!rtx_equal_p (data1->base, data2->base))
5626 continue;
5627
5628 return data1->offset - data2->offset;
5629 }
5630
5631 return 0;
5632 }
5633
5634 /* True if header of debug dump was printed. */
5635 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5636
5637 /* Helper for autopref_multipass_dfa_lookahead_guard.
5638 Return "1" if INSN1 should be delayed in favor of INSN2. */
5639 static int
5640 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5641 const rtx_insn *insn2, int write)
5642 {
5643 autopref_multipass_data_t data1
5644 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5645 autopref_multipass_data_t data2
5646 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5647
5648 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5649 autopref_multipass_init (insn2, write);
5650 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5651 return 0;
5652
5653 if (rtx_equal_p (data1->base, data2->base)
5654 && data1->offset > data2->offset)
5655 {
5656 if (sched_verbose >= 2)
5657 {
5658 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5659 {
5660 fprintf (sched_dump,
5661 ";;\t\tnot trying in max_issue due to autoprefetch "
5662 "model: ");
5663 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5664 }
5665
5666 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5667 }
5668
5669 return 1;
5670 }
5671
5672 return 0;
5673 }
5674
5675 /* General note:
5676
5677 We could have also hooked autoprefetcher model into
5678 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5679 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5680 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5681 unblocked). We don't bother about this yet because target of interest
5682 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5683
5684 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5685 Return "1" if INSN1 should not be considered in max_issue due to
5686 auto-prefetcher considerations. */
5687 int
5688 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5689 {
5690 int r = 0;
5691
5692 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5693 return 0;
5694
5695 if (sched_verbose >= 2 && ready_index == 0)
5696 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5697
5698 for (int write = 0; write < 2; ++write)
5699 {
5700 autopref_multipass_data_t data1
5701 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5702
5703 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5704 autopref_multipass_init (insn1, write);
5705 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5706 continue;
5707
5708 if (ready_index == 0
5709 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5710 /* We allow only a single delay on priviledged instructions.
5711 Doing otherwise would cause infinite loop. */
5712 {
5713 if (sched_verbose >= 2)
5714 {
5715 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5716 {
5717 fprintf (sched_dump,
5718 ";;\t\tnot trying in max_issue due to autoprefetch "
5719 "model: ");
5720 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5721 }
5722
5723 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5724 }
5725 continue;
5726 }
5727
5728 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5729 {
5730 rtx_insn *insn2 = get_ready_element (i2);
5731 if (insn1 == insn2)
5732 continue;
5733 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5734 if (r)
5735 {
5736 if (ready_index == 0)
5737 {
5738 r = -1;
5739 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5740 }
5741 goto finish;
5742 }
5743 }
5744
5745 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5746 continue;
5747
5748 /* Everything from the current queue slot should have been moved to
5749 the ready list. */
5750 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5751
5752 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5753 if (n_stalls > max_insn_queue_index)
5754 n_stalls = max_insn_queue_index;
5755
5756 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5757 {
5758 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5759 link != NULL_RTX;
5760 link = link->next ())
5761 {
5762 rtx_insn *insn2 = link->insn ();
5763 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5764 write);
5765 if (r)
5766 {
5767 /* Queue INSN1 until INSN2 can issue. */
5768 r = -stalls;
5769 if (ready_index == 0)
5770 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5771 goto finish;
5772 }
5773 }
5774 }
5775 }
5776
5777 finish:
5778 if (sched_verbose >= 2
5779 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5780 && (ready_index == ready.n_ready - 1 || r < 0))
5781 /* This does not /always/ trigger. We don't output EOL if the last
5782 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5783 called. We can live with this. */
5784 fprintf (sched_dump, "\n");
5785
5786 return r;
5787 }
5788
5789 /* Define type for target data used in multipass scheduling. */
5790 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5791 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5792 #endif
5793 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5794
5795 /* The following structure describe an entry of the stack of choices. */
5796 struct choice_entry
5797 {
5798 /* Ordinal number of the issued insn in the ready queue. */
5799 int index;
5800 /* The number of the rest insns whose issues we should try. */
5801 int rest;
5802 /* The number of issued essential insns. */
5803 int n;
5804 /* State after issuing the insn. */
5805 state_t state;
5806 /* Target-specific data. */
5807 first_cycle_multipass_data_t target_data;
5808 };
5809
5810 /* The following array is used to implement a stack of choices used in
5811 function max_issue. */
5812 static struct choice_entry *choice_stack;
5813
5814 /* This holds the value of the target dfa_lookahead hook. */
5815 int dfa_lookahead;
5816
5817 /* The following variable value is maximal number of tries of issuing
5818 insns for the first cycle multipass insn scheduling. We define
5819 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5820 need this constraint if all real insns (with non-negative codes)
5821 had reservations because in this case the algorithm complexity is
5822 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5823 might be incomplete and such insn might occur. For such
5824 descriptions, the complexity of algorithm (without the constraint)
5825 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5826 static int max_lookahead_tries;
5827
5828 /* The following function returns maximal (or close to maximal) number
5829 of insns which can be issued on the same cycle and one of which
5830 insns is insns with the best rank (the first insn in READY). To
5831 make this function tries different samples of ready insns. READY
5832 is current queue `ready'. Global array READY_TRY reflects what
5833 insns are already issued in this try. The function stops immediately,
5834 if it reached the such a solution, that all instruction can be issued.
5835 INDEX will contain index of the best insn in READY. The following
5836 function is used only for first cycle multipass scheduling.
5837
5838 PRIVILEGED_N >= 0
5839
5840 This function expects recognized insns only. All USEs,
5841 CLOBBERs, etc must be filtered elsewhere. */
5842 int
5843 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5844 bool first_cycle_insn_p, int *index)
5845 {
5846 int n, i, all, n_ready, best, delay, tries_num;
5847 int more_issue;
5848 struct choice_entry *top;
5849 rtx_insn *insn;
5850
5851 if (sched_fusion)
5852 return 0;
5853
5854 n_ready = ready->n_ready;
5855 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5856 && privileged_n <= n_ready);
5857
5858 /* Init MAX_LOOKAHEAD_TRIES. */
5859 if (max_lookahead_tries == 0)
5860 {
5861 max_lookahead_tries = 100;
5862 for (i = 0; i < issue_rate; i++)
5863 max_lookahead_tries *= dfa_lookahead;
5864 }
5865
5866 /* Init max_points. */
5867 more_issue = issue_rate - cycle_issued_insns;
5868 gcc_assert (more_issue >= 0);
5869
5870 /* The number of the issued insns in the best solution. */
5871 best = 0;
5872
5873 top = choice_stack;
5874
5875 /* Set initial state of the search. */
5876 memcpy (top->state, state, dfa_state_size);
5877 top->rest = dfa_lookahead;
5878 top->n = 0;
5879 if (targetm.sched.first_cycle_multipass_begin)
5880 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5881 ready_try, n_ready,
5882 first_cycle_insn_p);
5883
5884 /* Count the number of the insns to search among. */
5885 for (all = i = 0; i < n_ready; i++)
5886 if (!ready_try [i])
5887 all++;
5888
5889 if (sched_verbose >= 2)
5890 {
5891 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5892 debug_ready_list_1 (ready, ready_try);
5893 }
5894
5895 /* I is the index of the insn to try next. */
5896 i = 0;
5897 tries_num = 0;
5898 for (;;)
5899 {
5900 if (/* If we've reached a dead end or searched enough of what we have
5901 been asked... */
5902 top->rest == 0
5903 /* or have nothing else to try... */
5904 || i >= n_ready
5905 /* or should not issue more. */
5906 || top->n >= more_issue)
5907 {
5908 /* ??? (... || i == n_ready). */
5909 gcc_assert (i <= n_ready);
5910
5911 /* We should not issue more than issue_rate instructions. */
5912 gcc_assert (top->n <= more_issue);
5913
5914 if (top == choice_stack)
5915 break;
5916
5917 if (best < top - choice_stack)
5918 {
5919 if (privileged_n)
5920 {
5921 n = privileged_n;
5922 /* Try to find issued privileged insn. */
5923 while (n && !ready_try[--n])
5924 ;
5925 }
5926
5927 if (/* If all insns are equally good... */
5928 privileged_n == 0
5929 /* Or a privileged insn will be issued. */
5930 || ready_try[n])
5931 /* Then we have a solution. */
5932 {
5933 best = top - choice_stack;
5934 /* This is the index of the insn issued first in this
5935 solution. */
5936 *index = choice_stack [1].index;
5937 if (top->n == more_issue || best == all)
5938 break;
5939 }
5940 }
5941
5942 /* Set ready-list index to point to the last insn
5943 ('i++' below will advance it to the next insn). */
5944 i = top->index;
5945
5946 /* Backtrack. */
5947 ready_try [i] = 0;
5948
5949 if (targetm.sched.first_cycle_multipass_backtrack)
5950 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5951 ready_try, n_ready);
5952
5953 top--;
5954 memcpy (state, top->state, dfa_state_size);
5955 }
5956 else if (!ready_try [i])
5957 {
5958 tries_num++;
5959 if (tries_num > max_lookahead_tries)
5960 break;
5961 insn = ready_element (ready, i);
5962 delay = state_transition (state, insn);
5963 if (delay < 0)
5964 {
5965 if (state_dead_lock_p (state)
5966 || insn_finishes_cycle_p (insn))
5967 /* We won't issue any more instructions in the next
5968 choice_state. */
5969 top->rest = 0;
5970 else
5971 top->rest--;
5972
5973 n = top->n;
5974 if (memcmp (top->state, state, dfa_state_size) != 0)
5975 n++;
5976
5977 /* Advance to the next choice_entry. */
5978 top++;
5979 /* Initialize it. */
5980 top->rest = dfa_lookahead;
5981 top->index = i;
5982 top->n = n;
5983 memcpy (top->state, state, dfa_state_size);
5984 ready_try [i] = 1;
5985
5986 if (targetm.sched.first_cycle_multipass_issue)
5987 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5988 ready_try, n_ready,
5989 insn,
5990 &((top - 1)
5991 ->target_data));
5992
5993 i = -1;
5994 }
5995 }
5996
5997 /* Increase ready-list index. */
5998 i++;
5999 }
6000
6001 if (targetm.sched.first_cycle_multipass_end)
6002 targetm.sched.first_cycle_multipass_end (best != 0
6003 ? &choice_stack[1].target_data
6004 : NULL);
6005
6006 /* Restore the original state of the DFA. */
6007 memcpy (state, choice_stack->state, dfa_state_size);
6008
6009 return best;
6010 }
6011
6012 /* The following function chooses insn from READY and modifies
6013 READY. The following function is used only for first
6014 cycle multipass scheduling.
6015 Return:
6016 -1 if cycle should be advanced,
6017 0 if INSN_PTR is set to point to the desirable insn,
6018 1 if choose_ready () should be restarted without advancing the cycle. */
6019 static int
6020 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6021 rtx_insn **insn_ptr)
6022 {
6023 if (dbg_cnt (sched_insn) == false)
6024 {
6025 if (nonscheduled_insns_begin == NULL_RTX)
6026 nonscheduled_insns_begin = current_sched_info->prev_head;
6027
6028 rtx_insn *insn = first_nonscheduled_insn ();
6029
6030 if (QUEUE_INDEX (insn) == QUEUE_READY)
6031 /* INSN is in the ready_list. */
6032 {
6033 ready_remove_insn (insn);
6034 *insn_ptr = insn;
6035 return 0;
6036 }
6037
6038 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6039 gcc_assert (QUEUE_INDEX (insn) >= 0);
6040 return -1;
6041 }
6042
6043 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6044 || DEBUG_INSN_P (ready_element (ready, 0)))
6045 {
6046 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6047 *insn_ptr = ready_remove_first_dispatch (ready);
6048 else
6049 *insn_ptr = ready_remove_first (ready);
6050
6051 return 0;
6052 }
6053 else
6054 {
6055 /* Try to choose the best insn. */
6056 int index = 0, i;
6057 rtx_insn *insn;
6058
6059 insn = ready_element (ready, 0);
6060 if (INSN_CODE (insn) < 0)
6061 {
6062 *insn_ptr = ready_remove_first (ready);
6063 return 0;
6064 }
6065
6066 /* Filter the search space. */
6067 for (i = 0; i < ready->n_ready; i++)
6068 {
6069 ready_try[i] = 0;
6070
6071 insn = ready_element (ready, i);
6072
6073 /* If this insn is recognizable we should have already
6074 recognized it earlier.
6075 ??? Not very clear where this is supposed to be done.
6076 See dep_cost_1. */
6077 gcc_checking_assert (INSN_CODE (insn) >= 0
6078 || recog_memoized (insn) < 0);
6079 if (INSN_CODE (insn) < 0)
6080 {
6081 /* Non-recognized insns at position 0 are handled above. */
6082 gcc_assert (i > 0);
6083 ready_try[i] = 1;
6084 continue;
6085 }
6086
6087 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6088 {
6089 ready_try[i]
6090 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6091 (insn, i));
6092
6093 if (ready_try[i] < 0)
6094 /* Queue instruction for several cycles.
6095 We need to restart choose_ready as we have changed
6096 the ready list. */
6097 {
6098 change_queue_index (insn, -ready_try[i]);
6099 return 1;
6100 }
6101
6102 /* Make sure that we didn't end up with 0'th insn filtered out.
6103 Don't be tempted to make life easier for backends and just
6104 requeue 0'th insn if (ready_try[0] == 0) and restart
6105 choose_ready. Backends should be very considerate about
6106 requeueing instructions -- especially the highest priority
6107 one at position 0. */
6108 gcc_assert (ready_try[i] == 0 || i > 0);
6109 if (ready_try[i])
6110 continue;
6111 }
6112
6113 gcc_assert (ready_try[i] == 0);
6114 /* INSN made it through the scrutiny of filters! */
6115 }
6116
6117 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6118 {
6119 *insn_ptr = ready_remove_first (ready);
6120 if (sched_verbose >= 4)
6121 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6122 (*current_sched_info->print_insn) (*insn_ptr, 0));
6123 return 0;
6124 }
6125 else
6126 {
6127 if (sched_verbose >= 4)
6128 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6129 (*current_sched_info->print_insn)
6130 (ready_element (ready, index), 0));
6131
6132 *insn_ptr = ready_remove (ready, index);
6133 return 0;
6134 }
6135 }
6136 }
6137
6138 /* This function is called when we have successfully scheduled a
6139 block. It uses the schedule stored in the scheduled_insns vector
6140 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6141 append the scheduled insns; TAIL is the insn after the scheduled
6142 block. TARGET_BB is the argument passed to schedule_block. */
6143
6144 static void
6145 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6146 {
6147 unsigned int i;
6148 rtx_insn *insn;
6149
6150 last_scheduled_insn = prev_head;
6151 for (i = 0;
6152 scheduled_insns.iterate (i, &insn);
6153 i++)
6154 {
6155 if (control_flow_insn_p (last_scheduled_insn)
6156 || current_sched_info->advance_target_bb (*target_bb, insn))
6157 {
6158 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6159
6160 if (sched_verbose)
6161 {
6162 rtx_insn *x;
6163
6164 x = next_real_insn (last_scheduled_insn);
6165 gcc_assert (x);
6166 dump_new_block_header (1, *target_bb, x, tail);
6167 }
6168
6169 last_scheduled_insn = bb_note (*target_bb);
6170 }
6171
6172 if (current_sched_info->begin_move_insn)
6173 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6174 move_insn (insn, last_scheduled_insn,
6175 current_sched_info->next_tail);
6176 if (!DEBUG_INSN_P (insn))
6177 reemit_notes (insn);
6178 last_scheduled_insn = insn;
6179 }
6180
6181 scheduled_insns.truncate (0);
6182 }
6183
6184 /* Examine all insns on the ready list and queue those which can't be
6185 issued in this cycle. TEMP_STATE is temporary scheduler state we
6186 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6187 have been issued for the current cycle, which means it is valid to
6188 issue an asm statement.
6189
6190 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6191 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6192 we only leave insns which have an INSN_EXACT_TICK. */
6193
6194 static void
6195 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6196 bool shadows_only_p, bool modulo_epilogue_p)
6197 {
6198 int i, pass;
6199 bool sched_group_found = false;
6200 int min_cost_group = 1;
6201
6202 if (sched_fusion)
6203 return;
6204
6205 for (i = 0; i < ready.n_ready; i++)
6206 {
6207 rtx_insn *insn = ready_element (&ready, i);
6208 if (SCHED_GROUP_P (insn))
6209 {
6210 sched_group_found = true;
6211 break;
6212 }
6213 }
6214
6215 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6216 such an insn first and note its cost, then schedule all other insns
6217 for one cycle later. */
6218 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6219 {
6220 int n = ready.n_ready;
6221 for (i = 0; i < n; i++)
6222 {
6223 rtx_insn *insn = ready_element (&ready, i);
6224 int cost = 0;
6225 const char *reason = "resource conflict";
6226
6227 if (DEBUG_INSN_P (insn))
6228 continue;
6229
6230 if (sched_group_found && !SCHED_GROUP_P (insn))
6231 {
6232 if (pass == 0)
6233 continue;
6234 cost = min_cost_group;
6235 reason = "not in sched group";
6236 }
6237 else if (modulo_epilogue_p
6238 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6239 {
6240 cost = max_insn_queue_index;
6241 reason = "not an epilogue insn";
6242 }
6243 else if (shadows_only_p && !SHADOW_P (insn))
6244 {
6245 cost = 1;
6246 reason = "not a shadow";
6247 }
6248 else if (recog_memoized (insn) < 0)
6249 {
6250 if (!first_cycle_insn_p
6251 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6252 || asm_noperands (PATTERN (insn)) >= 0))
6253 cost = 1;
6254 reason = "asm";
6255 }
6256 else if (sched_pressure != SCHED_PRESSURE_NONE)
6257 {
6258 if (sched_pressure == SCHED_PRESSURE_MODEL
6259 && INSN_TICK (insn) <= clock_var)
6260 {
6261 memcpy (temp_state, curr_state, dfa_state_size);
6262 if (state_transition (temp_state, insn) >= 0)
6263 INSN_TICK (insn) = clock_var + 1;
6264 }
6265 cost = 0;
6266 }
6267 else
6268 {
6269 int delay_cost = 0;
6270
6271 if (delay_htab)
6272 {
6273 struct delay_pair *delay_entry;
6274 delay_entry
6275 = delay_htab->find_with_hash (insn,
6276 htab_hash_pointer (insn));
6277 while (delay_entry && delay_cost == 0)
6278 {
6279 delay_cost = estimate_shadow_tick (delay_entry);
6280 if (delay_cost > max_insn_queue_index)
6281 delay_cost = max_insn_queue_index;
6282 delay_entry = delay_entry->next_same_i1;
6283 }
6284 }
6285
6286 memcpy (temp_state, curr_state, dfa_state_size);
6287 cost = state_transition (temp_state, insn);
6288 if (cost < 0)
6289 cost = 0;
6290 else if (cost == 0)
6291 cost = 1;
6292 if (cost < delay_cost)
6293 {
6294 cost = delay_cost;
6295 reason = "shadow tick";
6296 }
6297 }
6298 if (cost >= 1)
6299 {
6300 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6301 min_cost_group = cost;
6302 ready_remove (&ready, i);
6303 /* Normally we'd want to queue INSN for COST cycles. However,
6304 if SCHED_GROUP_P is set, then we must ensure that nothing
6305 else comes between INSN and its predecessor. If there is
6306 some other insn ready to fire on the next cycle, then that
6307 invariant would be broken.
6308
6309 So when SCHED_GROUP_P is set, just queue this insn for a
6310 single cycle. */
6311 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6312 if (i + 1 < n)
6313 break;
6314 }
6315 }
6316 if (i == n)
6317 pass++;
6318 }
6319 }
6320
6321 /* Called when we detect that the schedule is impossible. We examine the
6322 backtrack queue to find the earliest insn that caused this condition. */
6323
6324 static struct haifa_saved_data *
6325 verify_shadows (void)
6326 {
6327 struct haifa_saved_data *save, *earliest_fail = NULL;
6328 for (save = backtrack_queue; save; save = save->next)
6329 {
6330 int t;
6331 struct delay_pair *pair = save->delay_pair;
6332 rtx_insn *i1 = pair->i1;
6333
6334 for (; pair; pair = pair->next_same_i1)
6335 {
6336 rtx_insn *i2 = pair->i2;
6337
6338 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6339 continue;
6340
6341 t = INSN_TICK (i1) + pair_delay (pair);
6342 if (t < clock_var)
6343 {
6344 if (sched_verbose >= 2)
6345 fprintf (sched_dump,
6346 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6347 ", not ready\n",
6348 INSN_UID (pair->i1), INSN_UID (pair->i2),
6349 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6350 earliest_fail = save;
6351 break;
6352 }
6353 if (QUEUE_INDEX (i2) >= 0)
6354 {
6355 int queued_for = INSN_TICK (i2);
6356
6357 if (t < queued_for)
6358 {
6359 if (sched_verbose >= 2)
6360 fprintf (sched_dump,
6361 ";;\t\tfailed delay requirements for %d/%d"
6362 " (%d->%d), queued too late\n",
6363 INSN_UID (pair->i1), INSN_UID (pair->i2),
6364 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6365 earliest_fail = save;
6366 break;
6367 }
6368 }
6369 }
6370 }
6371
6372 return earliest_fail;
6373 }
6374
6375 /* Print instructions together with useful scheduling information between
6376 HEAD and TAIL (inclusive). */
6377 static void
6378 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6379 {
6380 fprintf (sched_dump, ";;\t| insn | prio |\n");
6381
6382 rtx_insn *next_tail = NEXT_INSN (tail);
6383 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6384 {
6385 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6386 const char *pattern = (NOTE_P (insn)
6387 ? "note"
6388 : str_pattern_slim (PATTERN (insn)));
6389
6390 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6391 INSN_UID (insn), priority, pattern);
6392
6393 if (sched_verbose >= 4)
6394 {
6395 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6396 fprintf (sched_dump, "nothing");
6397 else
6398 print_reservation (sched_dump, insn);
6399 }
6400 fprintf (sched_dump, "\n");
6401 }
6402 }
6403
6404 /* Use forward list scheduling to rearrange insns of block pointed to by
6405 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6406 region. */
6407
6408 bool
6409 schedule_block (basic_block *target_bb, state_t init_state)
6410 {
6411 int i;
6412 bool success = modulo_ii == 0;
6413 struct sched_block_state ls;
6414 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6415 int sort_p, advance, start_clock_var;
6416
6417 /* Head/tail info for this block. */
6418 rtx_insn *prev_head = current_sched_info->prev_head;
6419 rtx_insn *next_tail = current_sched_info->next_tail;
6420 rtx_insn *head = NEXT_INSN (prev_head);
6421 rtx_insn *tail = PREV_INSN (next_tail);
6422
6423 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6424 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6425 find_modifiable_mems (head, tail);
6426
6427 /* We used to have code to avoid getting parameters moved from hard
6428 argument registers into pseudos.
6429
6430 However, it was removed when it proved to be of marginal benefit
6431 and caused problems because schedule_block and compute_forward_dependences
6432 had different notions of what the "head" insn was. */
6433
6434 gcc_assert (head != tail || INSN_P (head));
6435
6436 haifa_recovery_bb_recently_added_p = false;
6437
6438 backtrack_queue = NULL;
6439
6440 /* Debug info. */
6441 if (sched_verbose)
6442 {
6443 dump_new_block_header (0, *target_bb, head, tail);
6444
6445 if (sched_verbose >= 2)
6446 {
6447 dump_insn_stream (head, tail);
6448 memset (&rank_for_schedule_stats, 0,
6449 sizeof (rank_for_schedule_stats));
6450 }
6451 }
6452
6453 if (init_state == NULL)
6454 state_reset (curr_state);
6455 else
6456 memcpy (curr_state, init_state, dfa_state_size);
6457
6458 /* Clear the ready list. */
6459 ready.first = ready.veclen - 1;
6460 ready.n_ready = 0;
6461 ready.n_debug = 0;
6462
6463 /* It is used for first cycle multipass scheduling. */
6464 temp_state = alloca (dfa_state_size);
6465
6466 if (targetm.sched.init)
6467 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6468
6469 /* We start inserting insns after PREV_HEAD. */
6470 last_scheduled_insn = prev_head;
6471 last_nondebug_scheduled_insn = NULL_RTX;
6472 nonscheduled_insns_begin = NULL;
6473
6474 gcc_assert ((NOTE_P (last_scheduled_insn)
6475 || DEBUG_INSN_P (last_scheduled_insn))
6476 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6477
6478 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6479 queue. */
6480 q_ptr = 0;
6481 q_size = 0;
6482
6483 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6484 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6485
6486 /* Start just before the beginning of time. */
6487 clock_var = -1;
6488
6489 /* We need queue and ready lists and clock_var be initialized
6490 in try_ready () (which is called through init_ready_list ()). */
6491 (*current_sched_info->init_ready_list) ();
6492
6493 if (sched_pressure)
6494 sched_pressure_start_bb (*target_bb);
6495
6496 /* The algorithm is O(n^2) in the number of ready insns at any given
6497 time in the worst case. Before reload we are more likely to have
6498 big lists so truncate them to a reasonable size. */
6499 if (!reload_completed
6500 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6501 {
6502 ready_sort_debug (&ready);
6503 ready_sort_real (&ready);
6504
6505 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6506 If there are debug insns, we know they're first. */
6507 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6508 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6509 break;
6510
6511 if (sched_verbose >= 2)
6512 {
6513 fprintf (sched_dump,
6514 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6515 debug_ready_list (&ready);
6516 fprintf (sched_dump,
6517 ";;\t\t before reload => truncated to %d insns\n", i);
6518 }
6519
6520 /* Delay all insns past it for 1 cycle. If debug counter is
6521 activated make an exception for the insn right after
6522 nonscheduled_insns_begin. */
6523 {
6524 rtx_insn *skip_insn;
6525
6526 if (dbg_cnt (sched_insn) == false)
6527 skip_insn = first_nonscheduled_insn ();
6528 else
6529 skip_insn = NULL;
6530
6531 while (i < ready.n_ready)
6532 {
6533 rtx_insn *insn;
6534
6535 insn = ready_remove (&ready, i);
6536
6537 if (insn != skip_insn)
6538 queue_insn (insn, 1, "list truncated");
6539 }
6540 if (skip_insn)
6541 ready_add (&ready, skip_insn, true);
6542 }
6543 }
6544
6545 /* Now we can restore basic block notes and maintain precise cfg. */
6546 restore_bb_notes (*target_bb);
6547
6548 last_clock_var = -1;
6549
6550 advance = 0;
6551
6552 gcc_assert (scheduled_insns.length () == 0);
6553 sort_p = TRUE;
6554 must_backtrack = false;
6555 modulo_insns_scheduled = 0;
6556
6557 ls.modulo_epilogue = false;
6558 ls.first_cycle_insn_p = true;
6559
6560 /* Loop until all the insns in BB are scheduled. */
6561 while ((*current_sched_info->schedule_more_p) ())
6562 {
6563 perform_replacements_new_cycle ();
6564 do
6565 {
6566 start_clock_var = clock_var;
6567
6568 clock_var++;
6569
6570 advance_one_cycle ();
6571
6572 /* Add to the ready list all pending insns that can be issued now.
6573 If there are no ready insns, increment clock until one
6574 is ready and add all pending insns at that point to the ready
6575 list. */
6576 queue_to_ready (&ready);
6577
6578 gcc_assert (ready.n_ready);
6579
6580 if (sched_verbose >= 2)
6581 {
6582 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6583 debug_ready_list (&ready);
6584 }
6585 advance -= clock_var - start_clock_var;
6586 }
6587 while (advance > 0);
6588
6589 if (ls.modulo_epilogue)
6590 {
6591 int stage = clock_var / modulo_ii;
6592 if (stage > modulo_last_stage * 2 + 2)
6593 {
6594 if (sched_verbose >= 2)
6595 fprintf (sched_dump,
6596 ";;\t\tmodulo scheduled succeeded at II %d\n",
6597 modulo_ii);
6598 success = true;
6599 goto end_schedule;
6600 }
6601 }
6602 else if (modulo_ii > 0)
6603 {
6604 int stage = clock_var / modulo_ii;
6605 if (stage > modulo_max_stages)
6606 {
6607 if (sched_verbose >= 2)
6608 fprintf (sched_dump,
6609 ";;\t\tfailing schedule due to excessive stages\n");
6610 goto end_schedule;
6611 }
6612 if (modulo_n_insns == modulo_insns_scheduled
6613 && stage > modulo_last_stage)
6614 {
6615 if (sched_verbose >= 2)
6616 fprintf (sched_dump,
6617 ";;\t\tfound kernel after %d stages, II %d\n",
6618 stage, modulo_ii);
6619 ls.modulo_epilogue = true;
6620 }
6621 }
6622
6623 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6624 if (ready.n_ready == 0)
6625 continue;
6626 if (must_backtrack)
6627 goto do_backtrack;
6628
6629 ls.shadows_only_p = false;
6630 cycle_issued_insns = 0;
6631 ls.can_issue_more = issue_rate;
6632 for (;;)
6633 {
6634 rtx_insn *insn;
6635 int cost;
6636 bool asm_p;
6637
6638 if (sort_p && ready.n_ready > 0)
6639 {
6640 /* Sort the ready list based on priority. This must be
6641 done every iteration through the loop, as schedule_insn
6642 may have readied additional insns that will not be
6643 sorted correctly. */
6644 ready_sort (&ready);
6645
6646 if (sched_verbose >= 2)
6647 {
6648 fprintf (sched_dump,
6649 ";;\t\tReady list after ready_sort: ");
6650 debug_ready_list (&ready);
6651 }
6652 }
6653
6654 /* We don't want md sched reorder to even see debug isns, so put
6655 them out right away. */
6656 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6657 && (*current_sched_info->schedule_more_p) ())
6658 {
6659 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6660 {
6661 rtx_insn *insn = ready_remove_first (&ready);
6662 gcc_assert (DEBUG_INSN_P (insn));
6663 (*current_sched_info->begin_schedule_ready) (insn);
6664 scheduled_insns.safe_push (insn);
6665 last_scheduled_insn = insn;
6666 advance = schedule_insn (insn);
6667 gcc_assert (advance == 0);
6668 if (ready.n_ready > 0)
6669 ready_sort (&ready);
6670 }
6671 }
6672
6673 if (ls.first_cycle_insn_p && !ready.n_ready)
6674 break;
6675
6676 resume_after_backtrack:
6677 /* Allow the target to reorder the list, typically for
6678 better instruction bundling. */
6679 if (sort_p
6680 && (ready.n_ready == 0
6681 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6682 {
6683 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6684 ls.can_issue_more
6685 = targetm.sched.reorder (sched_dump, sched_verbose,
6686 ready_lastpos (&ready),
6687 &ready.n_ready, clock_var);
6688 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6689 ls.can_issue_more
6690 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6691 ready.n_ready
6692 ? ready_lastpos (&ready) : NULL,
6693 &ready.n_ready, clock_var);
6694 }
6695
6696 restart_choose_ready:
6697 if (sched_verbose >= 2)
6698 {
6699 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6700 clock_var);
6701 debug_ready_list (&ready);
6702 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6703 print_curr_reg_pressure ();
6704 }
6705
6706 if (ready.n_ready == 0
6707 && ls.can_issue_more
6708 && reload_completed)
6709 {
6710 /* Allow scheduling insns directly from the queue in case
6711 there's nothing better to do (ready list is empty) but
6712 there are still vacant dispatch slots in the current cycle. */
6713 if (sched_verbose >= 6)
6714 fprintf (sched_dump,";;\t\tSecond chance\n");
6715 memcpy (temp_state, curr_state, dfa_state_size);
6716 if (early_queue_to_ready (temp_state, &ready))
6717 ready_sort (&ready);
6718 }
6719
6720 if (ready.n_ready == 0
6721 || !ls.can_issue_more
6722 || state_dead_lock_p (curr_state)
6723 || !(*current_sched_info->schedule_more_p) ())
6724 break;
6725
6726 /* Select and remove the insn from the ready list. */
6727 if (sort_p)
6728 {
6729 int res;
6730
6731 insn = NULL;
6732 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6733
6734 if (res < 0)
6735 /* Finish cycle. */
6736 break;
6737 if (res > 0)
6738 goto restart_choose_ready;
6739
6740 gcc_assert (insn != NULL_RTX);
6741 }
6742 else
6743 insn = ready_remove_first (&ready);
6744
6745 if (sched_pressure != SCHED_PRESSURE_NONE
6746 && INSN_TICK (insn) > clock_var)
6747 {
6748 ready_add (&ready, insn, true);
6749 advance = 1;
6750 break;
6751 }
6752
6753 if (targetm.sched.dfa_new_cycle
6754 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6755 insn, last_clock_var,
6756 clock_var, &sort_p))
6757 /* SORT_P is used by the target to override sorting
6758 of the ready list. This is needed when the target
6759 has modified its internal structures expecting that
6760 the insn will be issued next. As we need the insn
6761 to have the highest priority (so it will be returned by
6762 the ready_remove_first call above), we invoke
6763 ready_add (&ready, insn, true).
6764 But, still, there is one issue: INSN can be later
6765 discarded by scheduler's front end through
6766 current_sched_info->can_schedule_ready_p, hence, won't
6767 be issued next. */
6768 {
6769 ready_add (&ready, insn, true);
6770 break;
6771 }
6772
6773 sort_p = TRUE;
6774
6775 if (current_sched_info->can_schedule_ready_p
6776 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6777 /* We normally get here only if we don't want to move
6778 insn from the split block. */
6779 {
6780 TODO_SPEC (insn) = DEP_POSTPONED;
6781 goto restart_choose_ready;
6782 }
6783
6784 if (delay_htab)
6785 {
6786 /* If this insn is the first part of a delay-slot pair, record a
6787 backtrack point. */
6788 struct delay_pair *delay_entry;
6789 delay_entry
6790 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6791 if (delay_entry)
6792 {
6793 save_backtrack_point (delay_entry, ls);
6794 if (sched_verbose >= 2)
6795 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6796 }
6797 }
6798
6799 /* DECISION is made. */
6800
6801 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6802 {
6803 modulo_insns_scheduled++;
6804 modulo_last_stage = clock_var / modulo_ii;
6805 }
6806 if (TODO_SPEC (insn) & SPECULATIVE)
6807 generate_recovery_code (insn);
6808
6809 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6810 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6811
6812 /* Update counters, etc in the scheduler's front end. */
6813 (*current_sched_info->begin_schedule_ready) (insn);
6814 scheduled_insns.safe_push (insn);
6815 gcc_assert (NONDEBUG_INSN_P (insn));
6816 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6817
6818 if (recog_memoized (insn) >= 0)
6819 {
6820 memcpy (temp_state, curr_state, dfa_state_size);
6821 cost = state_transition (curr_state, insn);
6822 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6823 gcc_assert (cost < 0);
6824 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6825 cycle_issued_insns++;
6826 asm_p = false;
6827 }
6828 else
6829 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6830 || asm_noperands (PATTERN (insn)) >= 0);
6831
6832 if (targetm.sched.variable_issue)
6833 ls.can_issue_more =
6834 targetm.sched.variable_issue (sched_dump, sched_verbose,
6835 insn, ls.can_issue_more);
6836 /* A naked CLOBBER or USE generates no instruction, so do
6837 not count them against the issue rate. */
6838 else if (GET_CODE (PATTERN (insn)) != USE
6839 && GET_CODE (PATTERN (insn)) != CLOBBER)
6840 ls.can_issue_more--;
6841 advance = schedule_insn (insn);
6842
6843 if (SHADOW_P (insn))
6844 ls.shadows_only_p = true;
6845
6846 /* After issuing an asm insn we should start a new cycle. */
6847 if (advance == 0 && asm_p)
6848 advance = 1;
6849
6850 if (must_backtrack)
6851 break;
6852
6853 if (advance != 0)
6854 break;
6855
6856 ls.first_cycle_insn_p = false;
6857 if (ready.n_ready > 0)
6858 prune_ready_list (temp_state, false, ls.shadows_only_p,
6859 ls.modulo_epilogue);
6860 }
6861
6862 do_backtrack:
6863 if (!must_backtrack)
6864 for (i = 0; i < ready.n_ready; i++)
6865 {
6866 rtx_insn *insn = ready_element (&ready, i);
6867 if (INSN_EXACT_TICK (insn) == clock_var)
6868 {
6869 must_backtrack = true;
6870 clock_var++;
6871 break;
6872 }
6873 }
6874 if (must_backtrack && modulo_ii > 0)
6875 {
6876 if (modulo_backtracks_left == 0)
6877 goto end_schedule;
6878 modulo_backtracks_left--;
6879 }
6880 while (must_backtrack)
6881 {
6882 struct haifa_saved_data *failed;
6883 rtx_insn *failed_insn;
6884
6885 must_backtrack = false;
6886 failed = verify_shadows ();
6887 gcc_assert (failed);
6888
6889 failed_insn = failed->delay_pair->i1;
6890 /* Clear these queues. */
6891 perform_replacements_new_cycle ();
6892 toggle_cancelled_flags (false);
6893 unschedule_insns_until (failed_insn);
6894 while (failed != backtrack_queue)
6895 free_topmost_backtrack_point (true);
6896 restore_last_backtrack_point (&ls);
6897 if (sched_verbose >= 2)
6898 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6899 /* Delay by at least a cycle. This could cause additional
6900 backtracking. */
6901 queue_insn (failed_insn, 1, "backtracked");
6902 advance = 0;
6903 if (must_backtrack)
6904 continue;
6905 if (ready.n_ready > 0)
6906 goto resume_after_backtrack;
6907 else
6908 {
6909 if (clock_var == 0 && ls.first_cycle_insn_p)
6910 goto end_schedule;
6911 advance = 1;
6912 break;
6913 }
6914 }
6915 ls.first_cycle_insn_p = true;
6916 }
6917 if (ls.modulo_epilogue)
6918 success = true;
6919 end_schedule:
6920 if (!ls.first_cycle_insn_p || advance)
6921 advance_one_cycle ();
6922 perform_replacements_new_cycle ();
6923 if (modulo_ii > 0)
6924 {
6925 /* Once again, debug insn suckiness: they can be on the ready list
6926 even if they have unresolved dependencies. To make our view
6927 of the world consistent, remove such "ready" insns. */
6928 restart_debug_insn_loop:
6929 for (i = ready.n_ready - 1; i >= 0; i--)
6930 {
6931 rtx_insn *x;
6932
6933 x = ready_element (&ready, i);
6934 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6935 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6936 {
6937 ready_remove (&ready, i);
6938 goto restart_debug_insn_loop;
6939 }
6940 }
6941 for (i = ready.n_ready - 1; i >= 0; i--)
6942 {
6943 rtx_insn *x;
6944
6945 x = ready_element (&ready, i);
6946 resolve_dependencies (x);
6947 }
6948 for (i = 0; i <= max_insn_queue_index; i++)
6949 {
6950 rtx_insn_list *link;
6951 while ((link = insn_queue[i]) != NULL)
6952 {
6953 rtx_insn *x = link->insn ();
6954 insn_queue[i] = link->next ();
6955 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6956 free_INSN_LIST_node (link);
6957 resolve_dependencies (x);
6958 }
6959 }
6960 }
6961
6962 if (!success)
6963 undo_all_replacements ();
6964
6965 /* Debug info. */
6966 if (sched_verbose)
6967 {
6968 fprintf (sched_dump, ";;\tReady list (final): ");
6969 debug_ready_list (&ready);
6970 }
6971
6972 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6973 /* Sanity check -- queue must be empty now. Meaningless if region has
6974 multiple bbs. */
6975 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6976 else if (modulo_ii == 0)
6977 {
6978 /* We must maintain QUEUE_INDEX between blocks in region. */
6979 for (i = ready.n_ready - 1; i >= 0; i--)
6980 {
6981 rtx_insn *x;
6982
6983 x = ready_element (&ready, i);
6984 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6985 TODO_SPEC (x) = HARD_DEP;
6986 }
6987
6988 if (q_size)
6989 for (i = 0; i <= max_insn_queue_index; i++)
6990 {
6991 rtx_insn_list *link;
6992 for (link = insn_queue[i]; link; link = link->next ())
6993 {
6994 rtx_insn *x;
6995
6996 x = link->insn ();
6997 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6998 TODO_SPEC (x) = HARD_DEP;
6999 }
7000 free_INSN_LIST_list (&insn_queue[i]);
7001 }
7002 }
7003
7004 if (sched_pressure == SCHED_PRESSURE_MODEL)
7005 model_end_schedule ();
7006
7007 if (success)
7008 {
7009 commit_schedule (prev_head, tail, target_bb);
7010 if (sched_verbose)
7011 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7012 }
7013 else
7014 last_scheduled_insn = tail;
7015
7016 scheduled_insns.truncate (0);
7017
7018 if (!current_sched_info->queue_must_finish_empty
7019 || haifa_recovery_bb_recently_added_p)
7020 {
7021 /* INSN_TICK (minimum clock tick at which the insn becomes
7022 ready) may be not correct for the insn in the subsequent
7023 blocks of the region. We should use a correct value of
7024 `clock_var' or modify INSN_TICK. It is better to keep
7025 clock_var value equal to 0 at the start of a basic block.
7026 Therefore we modify INSN_TICK here. */
7027 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7028 }
7029
7030 if (targetm.sched.finish)
7031 {
7032 targetm.sched.finish (sched_dump, sched_verbose);
7033 /* Target might have added some instructions to the scheduled block
7034 in its md_finish () hook. These new insns don't have any data
7035 initialized and to identify them we extend h_i_d so that they'll
7036 get zero luids. */
7037 sched_extend_luids ();
7038 }
7039
7040 /* Update head/tail boundaries. */
7041 head = NEXT_INSN (prev_head);
7042 tail = last_scheduled_insn;
7043
7044 if (sched_verbose)
7045 {
7046 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7047 INSN_UID (head), INSN_UID (tail));
7048
7049 if (sched_verbose >= 2)
7050 {
7051 dump_insn_stream (head, tail);
7052 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7053 NULL);
7054 }
7055
7056 fprintf (sched_dump, "\n");
7057 }
7058
7059 head = restore_other_notes (head, NULL);
7060
7061 current_sched_info->head = head;
7062 current_sched_info->tail = tail;
7063
7064 free_backtrack_queue ();
7065
7066 return success;
7067 }
7068 \f
7069 /* Set_priorities: compute priority of each insn in the block. */
7070
7071 int
7072 set_priorities (rtx_insn *head, rtx_insn *tail)
7073 {
7074 rtx_insn *insn;
7075 int n_insn;
7076 int sched_max_insns_priority =
7077 current_sched_info->sched_max_insns_priority;
7078 rtx_insn *prev_head;
7079
7080 if (head == tail && ! INSN_P (head))
7081 gcc_unreachable ();
7082
7083 n_insn = 0;
7084
7085 prev_head = PREV_INSN (head);
7086 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7087 {
7088 if (!INSN_P (insn))
7089 continue;
7090
7091 n_insn++;
7092 (void) priority (insn);
7093
7094 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7095
7096 sched_max_insns_priority = MAX (sched_max_insns_priority,
7097 INSN_PRIORITY (insn));
7098 }
7099
7100 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7101
7102 return n_insn;
7103 }
7104
7105 /* Set dump and sched_verbose for the desired debugging output. If no
7106 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
7107 For -fsched-verbose=N, N>=10, print everything to stderr. */
7108 void
7109 setup_sched_dump (void)
7110 {
7111 sched_verbose = sched_verbose_param;
7112 if (sched_verbose_param == 0 && dump_file)
7113 sched_verbose = 1;
7114 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
7115 ? stderr : dump_file);
7116 }
7117
7118 /* Allocate data for register pressure sensitive scheduling. */
7119 static void
7120 alloc_global_sched_pressure_data (void)
7121 {
7122 if (sched_pressure != SCHED_PRESSURE_NONE)
7123 {
7124 int i, max_regno = max_reg_num ();
7125
7126 if (sched_dump != NULL)
7127 /* We need info about pseudos for rtl dumps about pseudo
7128 classes and costs. */
7129 regstat_init_n_sets_and_refs ();
7130 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7131 sched_regno_pressure_class
7132 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7133 for (i = 0; i < max_regno; i++)
7134 sched_regno_pressure_class[i]
7135 = (i < FIRST_PSEUDO_REGISTER
7136 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7137 : ira_pressure_class_translate[reg_allocno_class (i)]);
7138 curr_reg_live = BITMAP_ALLOC (NULL);
7139 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7140 {
7141 saved_reg_live = BITMAP_ALLOC (NULL);
7142 region_ref_regs = BITMAP_ALLOC (NULL);
7143 }
7144
7145 /* Calculate number of CALL_USED_REGS in register classes that
7146 we calculate register pressure for. */
7147 for (int c = 0; c < ira_pressure_classes_num; ++c)
7148 {
7149 enum reg_class cl = ira_pressure_classes[c];
7150
7151 call_used_regs_num[cl] = 0;
7152
7153 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7154 if (call_used_regs[ira_class_hard_regs[cl][i]])
7155 ++call_used_regs_num[cl];
7156 }
7157 }
7158 }
7159
7160 /* Free data for register pressure sensitive scheduling. Also called
7161 from schedule_region when stopping sched-pressure early. */
7162 void
7163 free_global_sched_pressure_data (void)
7164 {
7165 if (sched_pressure != SCHED_PRESSURE_NONE)
7166 {
7167 if (regstat_n_sets_and_refs != NULL)
7168 regstat_free_n_sets_and_refs ();
7169 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7170 {
7171 BITMAP_FREE (region_ref_regs);
7172 BITMAP_FREE (saved_reg_live);
7173 }
7174 BITMAP_FREE (curr_reg_live);
7175 free (sched_regno_pressure_class);
7176 }
7177 }
7178
7179 /* Initialize some global state for the scheduler. This function works
7180 with the common data shared between all the schedulers. It is called
7181 from the scheduler specific initialization routine. */
7182
7183 void
7184 sched_init (void)
7185 {
7186 /* Disable speculative loads in their presence if cc0 defined. */
7187 if (HAVE_cc0)
7188 flag_schedule_speculative_load = 0;
7189
7190 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7191 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7192
7193 if (live_range_shrinkage_p)
7194 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7195 else if (flag_sched_pressure
7196 && !reload_completed
7197 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7198 sched_pressure = ((enum sched_pressure_algorithm)
7199 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7200 else
7201 sched_pressure = SCHED_PRESSURE_NONE;
7202
7203 if (sched_pressure != SCHED_PRESSURE_NONE)
7204 ira_setup_eliminable_regset ();
7205
7206 /* Initialize SPEC_INFO. */
7207 if (targetm.sched.set_sched_flags)
7208 {
7209 spec_info = &spec_info_var;
7210 targetm.sched.set_sched_flags (spec_info);
7211
7212 if (spec_info->mask != 0)
7213 {
7214 spec_info->data_weakness_cutoff =
7215 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7216 spec_info->control_weakness_cutoff =
7217 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7218 * REG_BR_PROB_BASE) / 100;
7219 }
7220 else
7221 /* So we won't read anything accidentally. */
7222 spec_info = NULL;
7223
7224 }
7225 else
7226 /* So we won't read anything accidentally. */
7227 spec_info = 0;
7228
7229 /* Initialize issue_rate. */
7230 if (targetm.sched.issue_rate)
7231 issue_rate = targetm.sched.issue_rate ();
7232 else
7233 issue_rate = 1;
7234
7235 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7236 /* Don't use max_issue with reg_pressure scheduling. Multipass
7237 scheduling and reg_pressure scheduling undo each other's decisions. */
7238 && sched_pressure == SCHED_PRESSURE_NONE)
7239 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7240 else
7241 dfa_lookahead = 0;
7242
7243 /* Set to "0" so that we recalculate. */
7244 max_lookahead_tries = 0;
7245
7246 if (targetm.sched.init_dfa_pre_cycle_insn)
7247 targetm.sched.init_dfa_pre_cycle_insn ();
7248
7249 if (targetm.sched.init_dfa_post_cycle_insn)
7250 targetm.sched.init_dfa_post_cycle_insn ();
7251
7252 dfa_start ();
7253 dfa_state_size = state_size ();
7254
7255 init_alias_analysis ();
7256
7257 if (!sched_no_dce)
7258 df_set_flags (DF_LR_RUN_DCE);
7259 df_note_add_problem ();
7260
7261 /* More problems needed for interloop dep calculation in SMS. */
7262 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7263 {
7264 df_rd_add_problem ();
7265 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7266 }
7267
7268 df_analyze ();
7269
7270 /* Do not run DCE after reload, as this can kill nops inserted
7271 by bundling. */
7272 if (reload_completed)
7273 df_clear_flags (DF_LR_RUN_DCE);
7274
7275 regstat_compute_calls_crossed ();
7276
7277 if (targetm.sched.init_global)
7278 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7279
7280 alloc_global_sched_pressure_data ();
7281
7282 curr_state = xmalloc (dfa_state_size);
7283 }
7284
7285 static void haifa_init_only_bb (basic_block, basic_block);
7286
7287 /* Initialize data structures specific to the Haifa scheduler. */
7288 void
7289 haifa_sched_init (void)
7290 {
7291 setup_sched_dump ();
7292 sched_init ();
7293
7294 scheduled_insns.create (0);
7295
7296 if (spec_info != NULL)
7297 {
7298 sched_deps_info->use_deps_list = 1;
7299 sched_deps_info->generate_spec_deps = 1;
7300 }
7301
7302 /* Initialize luids, dependency caches, target and h_i_d for the
7303 whole function. */
7304 {
7305 bb_vec_t bbs;
7306 bbs.create (n_basic_blocks_for_fn (cfun));
7307 basic_block bb;
7308
7309 sched_init_bbs ();
7310
7311 FOR_EACH_BB_FN (bb, cfun)
7312 bbs.quick_push (bb);
7313 sched_init_luids (bbs);
7314 sched_deps_init (true);
7315 sched_extend_target ();
7316 haifa_init_h_i_d (bbs);
7317
7318 bbs.release ();
7319 }
7320
7321 sched_init_only_bb = haifa_init_only_bb;
7322 sched_split_block = sched_split_block_1;
7323 sched_create_empty_bb = sched_create_empty_bb_1;
7324 haifa_recovery_bb_ever_added_p = false;
7325
7326 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7327 before_recovery = 0;
7328 after_recovery = 0;
7329
7330 modulo_ii = 0;
7331 }
7332
7333 /* Finish work with the data specific to the Haifa scheduler. */
7334 void
7335 haifa_sched_finish (void)
7336 {
7337 sched_create_empty_bb = NULL;
7338 sched_split_block = NULL;
7339 sched_init_only_bb = NULL;
7340
7341 if (spec_info && spec_info->dump)
7342 {
7343 char c = reload_completed ? 'a' : 'b';
7344
7345 fprintf (spec_info->dump,
7346 ";; %s:\n", current_function_name ());
7347
7348 fprintf (spec_info->dump,
7349 ";; Procedure %cr-begin-data-spec motions == %d\n",
7350 c, nr_begin_data);
7351 fprintf (spec_info->dump,
7352 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7353 c, nr_be_in_data);
7354 fprintf (spec_info->dump,
7355 ";; Procedure %cr-begin-control-spec motions == %d\n",
7356 c, nr_begin_control);
7357 fprintf (spec_info->dump,
7358 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7359 c, nr_be_in_control);
7360 }
7361
7362 scheduled_insns.release ();
7363
7364 /* Finalize h_i_d, dependency caches, and luids for the whole
7365 function. Target will be finalized in md_global_finish (). */
7366 sched_deps_finish ();
7367 sched_finish_luids ();
7368 current_sched_info = NULL;
7369 sched_finish ();
7370 }
7371
7372 /* Free global data used during insn scheduling. This function works with
7373 the common data shared between the schedulers. */
7374
7375 void
7376 sched_finish (void)
7377 {
7378 haifa_finish_h_i_d ();
7379 free_global_sched_pressure_data ();
7380 free (curr_state);
7381
7382 if (targetm.sched.finish_global)
7383 targetm.sched.finish_global (sched_dump, sched_verbose);
7384
7385 end_alias_analysis ();
7386
7387 regstat_free_calls_crossed ();
7388
7389 dfa_finish ();
7390 }
7391
7392 /* Free all delay_pair structures that were recorded. */
7393 void
7394 free_delay_pairs (void)
7395 {
7396 if (delay_htab)
7397 {
7398 delay_htab->empty ();
7399 delay_htab_i2->empty ();
7400 }
7401 }
7402
7403 /* Fix INSN_TICKs of the instructions in the current block as well as
7404 INSN_TICKs of their dependents.
7405 HEAD and TAIL are the begin and the end of the current scheduled block. */
7406 static void
7407 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7408 {
7409 /* Set of instructions with corrected INSN_TICK. */
7410 bitmap_head processed;
7411 /* ??? It is doubtful if we should assume that cycle advance happens on
7412 basic block boundaries. Basically insns that are unconditionally ready
7413 on the start of the block are more preferable then those which have
7414 a one cycle dependency over insn from the previous block. */
7415 int next_clock = clock_var + 1;
7416
7417 bitmap_initialize (&processed, 0);
7418
7419 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7420 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7421 across different blocks. */
7422 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7423 {
7424 if (INSN_P (head))
7425 {
7426 int tick;
7427 sd_iterator_def sd_it;
7428 dep_t dep;
7429
7430 tick = INSN_TICK (head);
7431 gcc_assert (tick >= MIN_TICK);
7432
7433 /* Fix INSN_TICK of instruction from just scheduled block. */
7434 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7435 {
7436 tick -= next_clock;
7437
7438 if (tick < MIN_TICK)
7439 tick = MIN_TICK;
7440
7441 INSN_TICK (head) = tick;
7442 }
7443
7444 if (DEBUG_INSN_P (head))
7445 continue;
7446
7447 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7448 {
7449 rtx_insn *next;
7450
7451 next = DEP_CON (dep);
7452 tick = INSN_TICK (next);
7453
7454 if (tick != INVALID_TICK
7455 /* If NEXT has its INSN_TICK calculated, fix it.
7456 If not - it will be properly calculated from
7457 scratch later in fix_tick_ready. */
7458 && bitmap_set_bit (&processed, INSN_LUID (next)))
7459 {
7460 tick -= next_clock;
7461
7462 if (tick < MIN_TICK)
7463 tick = MIN_TICK;
7464
7465 if (tick > INTER_TICK (next))
7466 INTER_TICK (next) = tick;
7467 else
7468 tick = INTER_TICK (next);
7469
7470 INSN_TICK (next) = tick;
7471 }
7472 }
7473 }
7474 }
7475 bitmap_clear (&processed);
7476 }
7477
7478 /* Check if NEXT is ready to be added to the ready or queue list.
7479 If "yes", add it to the proper list.
7480 Returns:
7481 -1 - is not ready yet,
7482 0 - added to the ready list,
7483 0 < N - queued for N cycles. */
7484 int
7485 try_ready (rtx_insn *next)
7486 {
7487 ds_t old_ts, new_ts;
7488
7489 old_ts = TODO_SPEC (next);
7490
7491 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7492 && (old_ts == HARD_DEP
7493 || old_ts == DEP_POSTPONED
7494 || (old_ts & SPECULATIVE)
7495 || old_ts == DEP_CONTROL));
7496
7497 new_ts = recompute_todo_spec (next, false);
7498
7499 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7500 gcc_assert (new_ts == old_ts
7501 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7502 else if (current_sched_info->new_ready)
7503 new_ts = current_sched_info->new_ready (next, new_ts);
7504
7505 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7506 have its original pattern or changed (speculative) one. This is due
7507 to changing ebb in region scheduling.
7508 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7509 has speculative pattern.
7510
7511 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7512 control-speculative NEXT could have been discarded by sched-rgn.c
7513 (the same case as when discarded by can_schedule_ready_p ()). */
7514
7515 if ((new_ts & SPECULATIVE)
7516 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7517 need to change anything. */
7518 && new_ts != old_ts)
7519 {
7520 int res;
7521 rtx new_pat;
7522
7523 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7524
7525 res = haifa_speculate_insn (next, new_ts, &new_pat);
7526
7527 switch (res)
7528 {
7529 case -1:
7530 /* It would be nice to change DEP_STATUS of all dependences,
7531 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7532 so we won't reanalyze anything. */
7533 new_ts = HARD_DEP;
7534 break;
7535
7536 case 0:
7537 /* We follow the rule, that every speculative insn
7538 has non-null ORIG_PAT. */
7539 if (!ORIG_PAT (next))
7540 ORIG_PAT (next) = PATTERN (next);
7541 break;
7542
7543 case 1:
7544 if (!ORIG_PAT (next))
7545 /* If we gonna to overwrite the original pattern of insn,
7546 save it. */
7547 ORIG_PAT (next) = PATTERN (next);
7548
7549 res = haifa_change_pattern (next, new_pat);
7550 gcc_assert (res);
7551 break;
7552
7553 default:
7554 gcc_unreachable ();
7555 }
7556 }
7557
7558 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7559 either correct (new_ts & SPECULATIVE),
7560 or we simply don't care (new_ts & HARD_DEP). */
7561
7562 gcc_assert (!ORIG_PAT (next)
7563 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7564
7565 TODO_SPEC (next) = new_ts;
7566
7567 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7568 {
7569 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7570 control-speculative NEXT could have been discarded by sched-rgn.c
7571 (the same case as when discarded by can_schedule_ready_p ()). */
7572 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7573
7574 change_queue_index (next, QUEUE_NOWHERE);
7575
7576 return -1;
7577 }
7578 else if (!(new_ts & BEGIN_SPEC)
7579 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7580 && !IS_SPECULATION_CHECK_P (next))
7581 /* We should change pattern of every previously speculative
7582 instruction - and we determine if NEXT was speculative by using
7583 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7584 pat too, so skip them. */
7585 {
7586 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7587 gcc_assert (success);
7588 ORIG_PAT (next) = 0;
7589 }
7590
7591 if (sched_verbose >= 2)
7592 {
7593 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7594 (*current_sched_info->print_insn) (next, 0));
7595
7596 if (spec_info && spec_info->dump)
7597 {
7598 if (new_ts & BEGIN_DATA)
7599 fprintf (spec_info->dump, "; data-spec;");
7600 if (new_ts & BEGIN_CONTROL)
7601 fprintf (spec_info->dump, "; control-spec;");
7602 if (new_ts & BE_IN_CONTROL)
7603 fprintf (spec_info->dump, "; in-control-spec;");
7604 }
7605 if (TODO_SPEC (next) & DEP_CONTROL)
7606 fprintf (sched_dump, " predicated");
7607 fprintf (sched_dump, "\n");
7608 }
7609
7610 adjust_priority (next);
7611
7612 return fix_tick_ready (next);
7613 }
7614
7615 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7616 static int
7617 fix_tick_ready (rtx_insn *next)
7618 {
7619 int tick, delay;
7620
7621 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7622 {
7623 int full_p;
7624 sd_iterator_def sd_it;
7625 dep_t dep;
7626
7627 tick = INSN_TICK (next);
7628 /* if tick is not equal to INVALID_TICK, then update
7629 INSN_TICK of NEXT with the most recent resolved dependence
7630 cost. Otherwise, recalculate from scratch. */
7631 full_p = (tick == INVALID_TICK);
7632
7633 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7634 {
7635 rtx_insn *pro = DEP_PRO (dep);
7636 int tick1;
7637
7638 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7639
7640 tick1 = INSN_TICK (pro) + dep_cost (dep);
7641 if (tick1 > tick)
7642 tick = tick1;
7643
7644 if (!full_p)
7645 break;
7646 }
7647 }
7648 else
7649 tick = -1;
7650
7651 INSN_TICK (next) = tick;
7652
7653 delay = tick - clock_var;
7654 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7655 delay = QUEUE_READY;
7656
7657 change_queue_index (next, delay);
7658
7659 return delay;
7660 }
7661
7662 /* Move NEXT to the proper queue list with (DELAY >= 1),
7663 or add it to the ready list (DELAY == QUEUE_READY),
7664 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7665 static void
7666 change_queue_index (rtx_insn *next, int delay)
7667 {
7668 int i = QUEUE_INDEX (next);
7669
7670 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7671 && delay != 0);
7672 gcc_assert (i != QUEUE_SCHEDULED);
7673
7674 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7675 || (delay < 0 && delay == i))
7676 /* We have nothing to do. */
7677 return;
7678
7679 /* Remove NEXT from wherever it is now. */
7680 if (i == QUEUE_READY)
7681 ready_remove_insn (next);
7682 else if (i >= 0)
7683 queue_remove (next);
7684
7685 /* Add it to the proper place. */
7686 if (delay == QUEUE_READY)
7687 ready_add (readyp, next, false);
7688 else if (delay >= 1)
7689 queue_insn (next, delay, "change queue index");
7690
7691 if (sched_verbose >= 2)
7692 {
7693 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7694 (*current_sched_info->print_insn) (next, 0));
7695
7696 if (delay == QUEUE_READY)
7697 fprintf (sched_dump, " into ready\n");
7698 else if (delay >= 1)
7699 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7700 else
7701 fprintf (sched_dump, " removed from ready or queue lists\n");
7702 }
7703 }
7704
7705 static int sched_ready_n_insns = -1;
7706
7707 /* Initialize per region data structures. */
7708 void
7709 sched_extend_ready_list (int new_sched_ready_n_insns)
7710 {
7711 int i;
7712
7713 if (sched_ready_n_insns == -1)
7714 /* At the first call we need to initialize one more choice_stack
7715 entry. */
7716 {
7717 i = 0;
7718 sched_ready_n_insns = 0;
7719 scheduled_insns.reserve (new_sched_ready_n_insns);
7720 }
7721 else
7722 i = sched_ready_n_insns + 1;
7723
7724 ready.veclen = new_sched_ready_n_insns + issue_rate;
7725 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7726
7727 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7728
7729 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7730 sched_ready_n_insns,
7731 sizeof (*ready_try));
7732
7733 /* We allocate +1 element to save initial state in the choice_stack[0]
7734 entry. */
7735 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7736 new_sched_ready_n_insns + 1);
7737
7738 for (; i <= new_sched_ready_n_insns; i++)
7739 {
7740 choice_stack[i].state = xmalloc (dfa_state_size);
7741
7742 if (targetm.sched.first_cycle_multipass_init)
7743 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7744 .target_data));
7745 }
7746
7747 sched_ready_n_insns = new_sched_ready_n_insns;
7748 }
7749
7750 /* Free per region data structures. */
7751 void
7752 sched_finish_ready_list (void)
7753 {
7754 int i;
7755
7756 free (ready.vec);
7757 ready.vec = NULL;
7758 ready.veclen = 0;
7759
7760 free (ready_try);
7761 ready_try = NULL;
7762
7763 for (i = 0; i <= sched_ready_n_insns; i++)
7764 {
7765 if (targetm.sched.first_cycle_multipass_fini)
7766 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7767 .target_data));
7768
7769 free (choice_stack [i].state);
7770 }
7771 free (choice_stack);
7772 choice_stack = NULL;
7773
7774 sched_ready_n_insns = -1;
7775 }
7776
7777 static int
7778 haifa_luid_for_non_insn (rtx x)
7779 {
7780 gcc_assert (NOTE_P (x) || LABEL_P (x));
7781
7782 return 0;
7783 }
7784
7785 /* Generates recovery code for INSN. */
7786 static void
7787 generate_recovery_code (rtx_insn *insn)
7788 {
7789 if (TODO_SPEC (insn) & BEGIN_SPEC)
7790 begin_speculative_block (insn);
7791
7792 /* Here we have insn with no dependencies to
7793 instructions other then CHECK_SPEC ones. */
7794
7795 if (TODO_SPEC (insn) & BE_IN_SPEC)
7796 add_to_speculative_block (insn);
7797 }
7798
7799 /* Helper function.
7800 Tries to add speculative dependencies of type FS between instructions
7801 in deps_list L and TWIN. */
7802 static void
7803 process_insn_forw_deps_be_in_spec (rtx insn, rtx_insn *twin, ds_t fs)
7804 {
7805 sd_iterator_def sd_it;
7806 dep_t dep;
7807
7808 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7809 {
7810 ds_t ds;
7811 rtx_insn *consumer;
7812
7813 consumer = DEP_CON (dep);
7814
7815 ds = DEP_STATUS (dep);
7816
7817 if (/* If we want to create speculative dep. */
7818 fs
7819 /* And we can do that because this is a true dep. */
7820 && (ds & DEP_TYPES) == DEP_TRUE)
7821 {
7822 gcc_assert (!(ds & BE_IN_SPEC));
7823
7824 if (/* If this dep can be overcome with 'begin speculation'. */
7825 ds & BEGIN_SPEC)
7826 /* Then we have a choice: keep the dep 'begin speculative'
7827 or transform it into 'be in speculative'. */
7828 {
7829 if (/* In try_ready we assert that if insn once became ready
7830 it can be removed from the ready (or queue) list only
7831 due to backend decision. Hence we can't let the
7832 probability of the speculative dep to decrease. */
7833 ds_weak (ds) <= ds_weak (fs))
7834 {
7835 ds_t new_ds;
7836
7837 new_ds = (ds & ~BEGIN_SPEC) | fs;
7838
7839 if (/* consumer can 'be in speculative'. */
7840 sched_insn_is_legitimate_for_speculation_p (consumer,
7841 new_ds))
7842 /* Transform it to be in speculative. */
7843 ds = new_ds;
7844 }
7845 }
7846 else
7847 /* Mark the dep as 'be in speculative'. */
7848 ds |= fs;
7849 }
7850
7851 {
7852 dep_def _new_dep, *new_dep = &_new_dep;
7853
7854 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7855 sd_add_dep (new_dep, false);
7856 }
7857 }
7858 }
7859
7860 /* Generates recovery code for BEGIN speculative INSN. */
7861 static void
7862 begin_speculative_block (rtx_insn *insn)
7863 {
7864 if (TODO_SPEC (insn) & BEGIN_DATA)
7865 nr_begin_data++;
7866 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7867 nr_begin_control++;
7868
7869 create_check_block_twin (insn, false);
7870
7871 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7872 }
7873
7874 static void haifa_init_insn (rtx_insn *);
7875
7876 /* Generates recovery code for BE_IN speculative INSN. */
7877 static void
7878 add_to_speculative_block (rtx_insn *insn)
7879 {
7880 ds_t ts;
7881 sd_iterator_def sd_it;
7882 dep_t dep;
7883 rtx_insn_list *twins = NULL;
7884 rtx_vec_t priorities_roots;
7885
7886 ts = TODO_SPEC (insn);
7887 gcc_assert (!(ts & ~BE_IN_SPEC));
7888
7889 if (ts & BE_IN_DATA)
7890 nr_be_in_data++;
7891 if (ts & BE_IN_CONTROL)
7892 nr_be_in_control++;
7893
7894 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7895 gcc_assert (!TODO_SPEC (insn));
7896
7897 DONE_SPEC (insn) |= ts;
7898
7899 /* First we convert all simple checks to branchy. */
7900 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7901 sd_iterator_cond (&sd_it, &dep);)
7902 {
7903 rtx_insn *check = DEP_PRO (dep);
7904
7905 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7906 {
7907 create_check_block_twin (check, true);
7908
7909 /* Restart search. */
7910 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7911 }
7912 else
7913 /* Continue search. */
7914 sd_iterator_next (&sd_it);
7915 }
7916
7917 priorities_roots.create (0);
7918 clear_priorities (insn, &priorities_roots);
7919
7920 while (1)
7921 {
7922 rtx_insn *check, *twin;
7923 basic_block rec;
7924
7925 /* Get the first backward dependency of INSN. */
7926 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7927 if (!sd_iterator_cond (&sd_it, &dep))
7928 /* INSN has no backward dependencies left. */
7929 break;
7930
7931 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7932 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7933 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7934
7935 check = DEP_PRO (dep);
7936
7937 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7938 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7939
7940 rec = BLOCK_FOR_INSN (check);
7941
7942 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7943 haifa_init_insn (twin);
7944
7945 sd_copy_back_deps (twin, insn, true);
7946
7947 if (sched_verbose && spec_info->dump)
7948 /* INSN_BB (insn) isn't determined for twin insns yet.
7949 So we can't use current_sched_info->print_insn. */
7950 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7951 INSN_UID (twin), rec->index);
7952
7953 twins = alloc_INSN_LIST (twin, twins);
7954
7955 /* Add dependences between TWIN and all appropriate
7956 instructions from REC. */
7957 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7958 {
7959 rtx_insn *pro = DEP_PRO (dep);
7960
7961 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7962
7963 /* INSN might have dependencies from the instructions from
7964 several recovery blocks. At this iteration we process those
7965 producers that reside in REC. */
7966 if (BLOCK_FOR_INSN (pro) == rec)
7967 {
7968 dep_def _new_dep, *new_dep = &_new_dep;
7969
7970 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7971 sd_add_dep (new_dep, false);
7972 }
7973 }
7974
7975 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7976
7977 /* Remove all dependencies between INSN and insns in REC. */
7978 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7979 sd_iterator_cond (&sd_it, &dep);)
7980 {
7981 rtx_insn *pro = DEP_PRO (dep);
7982
7983 if (BLOCK_FOR_INSN (pro) == rec)
7984 sd_delete_dep (sd_it);
7985 else
7986 sd_iterator_next (&sd_it);
7987 }
7988 }
7989
7990 /* We couldn't have added the dependencies between INSN and TWINS earlier
7991 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7992 while (twins)
7993 {
7994 rtx_insn *twin;
7995 rtx_insn_list *next_node;
7996
7997 twin = twins->insn ();
7998
7999 {
8000 dep_def _new_dep, *new_dep = &_new_dep;
8001
8002 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8003 sd_add_dep (new_dep, false);
8004 }
8005
8006 next_node = twins->next ();
8007 free_INSN_LIST_node (twins);
8008 twins = next_node;
8009 }
8010
8011 calc_priorities (priorities_roots);
8012 priorities_roots.release ();
8013 }
8014
8015 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8016 void *
8017 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8018 {
8019 gcc_assert (new_nmemb >= old_nmemb);
8020 p = XRESIZEVAR (void, p, new_nmemb * size);
8021 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8022 return p;
8023 }
8024
8025 /* Helper function.
8026 Find fallthru edge from PRED. */
8027 edge
8028 find_fallthru_edge_from (basic_block pred)
8029 {
8030 edge e;
8031 basic_block succ;
8032
8033 succ = pred->next_bb;
8034 gcc_assert (succ->prev_bb == pred);
8035
8036 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8037 {
8038 e = find_fallthru_edge (pred->succs);
8039
8040 if (e)
8041 {
8042 gcc_assert (e->dest == succ);
8043 return e;
8044 }
8045 }
8046 else
8047 {
8048 e = find_fallthru_edge (succ->preds);
8049
8050 if (e)
8051 {
8052 gcc_assert (e->src == pred);
8053 return e;
8054 }
8055 }
8056
8057 return NULL;
8058 }
8059
8060 /* Extend per basic block data structures. */
8061 static void
8062 sched_extend_bb (void)
8063 {
8064 /* The following is done to keep current_sched_info->next_tail non null. */
8065 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8066 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8067 if (NEXT_INSN (end) == 0
8068 || (!NOTE_P (insn)
8069 && !LABEL_P (insn)
8070 /* Don't emit a NOTE if it would end up before a BARRIER. */
8071 && !BARRIER_P (NEXT_INSN (end))))
8072 {
8073 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8074 /* Make note appear outside BB. */
8075 set_block_for_insn (note, NULL);
8076 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8077 }
8078 }
8079
8080 /* Init per basic block data structures. */
8081 void
8082 sched_init_bbs (void)
8083 {
8084 sched_extend_bb ();
8085 }
8086
8087 /* Initialize BEFORE_RECOVERY variable. */
8088 static void
8089 init_before_recovery (basic_block *before_recovery_ptr)
8090 {
8091 basic_block last;
8092 edge e;
8093
8094 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8095 e = find_fallthru_edge_from (last);
8096
8097 if (e)
8098 {
8099 /* We create two basic blocks:
8100 1. Single instruction block is inserted right after E->SRC
8101 and has jump to
8102 2. Empty block right before EXIT_BLOCK.
8103 Between these two blocks recovery blocks will be emitted. */
8104
8105 basic_block single, empty;
8106 rtx_insn *x;
8107 rtx label;
8108
8109 /* If the fallthrough edge to exit we've found is from the block we've
8110 created before, don't do anything more. */
8111 if (last == after_recovery)
8112 return;
8113
8114 adding_bb_to_current_region_p = false;
8115
8116 single = sched_create_empty_bb (last);
8117 empty = sched_create_empty_bb (single);
8118
8119 /* Add new blocks to the root loop. */
8120 if (current_loops != NULL)
8121 {
8122 add_bb_to_loop (single, (*current_loops->larray)[0]);
8123 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8124 }
8125
8126 single->count = last->count;
8127 empty->count = last->count;
8128 single->frequency = last->frequency;
8129 empty->frequency = last->frequency;
8130 BB_COPY_PARTITION (single, last);
8131 BB_COPY_PARTITION (empty, last);
8132
8133 redirect_edge_succ (e, single);
8134 make_single_succ_edge (single, empty, 0);
8135 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8136 EDGE_FALLTHRU);
8137
8138 label = block_label (empty);
8139 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
8140 JUMP_LABEL (x) = label;
8141 LABEL_NUSES (label)++;
8142 haifa_init_insn (x);
8143
8144 emit_barrier_after (x);
8145
8146 sched_init_only_bb (empty, NULL);
8147 sched_init_only_bb (single, NULL);
8148 sched_extend_bb ();
8149
8150 adding_bb_to_current_region_p = true;
8151 before_recovery = single;
8152 after_recovery = empty;
8153
8154 if (before_recovery_ptr)
8155 *before_recovery_ptr = before_recovery;
8156
8157 if (sched_verbose >= 2 && spec_info->dump)
8158 fprintf (spec_info->dump,
8159 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8160 last->index, single->index, empty->index);
8161 }
8162 else
8163 before_recovery = last;
8164 }
8165
8166 /* Returns new recovery block. */
8167 basic_block
8168 sched_create_recovery_block (basic_block *before_recovery_ptr)
8169 {
8170 rtx label;
8171 rtx_insn *barrier;
8172 basic_block rec;
8173
8174 haifa_recovery_bb_recently_added_p = true;
8175 haifa_recovery_bb_ever_added_p = true;
8176
8177 init_before_recovery (before_recovery_ptr);
8178
8179 barrier = get_last_bb_insn (before_recovery);
8180 gcc_assert (BARRIER_P (barrier));
8181
8182 label = emit_label_after (gen_label_rtx (), barrier);
8183
8184 rec = create_basic_block (label, label, before_recovery);
8185
8186 /* A recovery block always ends with an unconditional jump. */
8187 emit_barrier_after (BB_END (rec));
8188
8189 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8190 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8191
8192 if (sched_verbose && spec_info->dump)
8193 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8194 rec->index);
8195
8196 return rec;
8197 }
8198
8199 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8200 and emit necessary jumps. */
8201 void
8202 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8203 basic_block second_bb)
8204 {
8205 rtx label;
8206 rtx jump;
8207 int edge_flags;
8208
8209 /* This is fixing of incoming edge. */
8210 /* ??? Which other flags should be specified? */
8211 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8212 /* Partition type is the same, if it is "unpartitioned". */
8213 edge_flags = EDGE_CROSSING;
8214 else
8215 edge_flags = 0;
8216
8217 make_edge (first_bb, rec, edge_flags);
8218 label = block_label (second_bb);
8219 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
8220 JUMP_LABEL (jump) = label;
8221 LABEL_NUSES (label)++;
8222
8223 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8224 /* Partition type is the same, if it is "unpartitioned". */
8225 {
8226 /* Rewritten from cfgrtl.c. */
8227 if (flag_reorder_blocks_and_partition
8228 && targetm_common.have_named_sections)
8229 {
8230 /* We don't need the same note for the check because
8231 any_condjump_p (check) == true. */
8232 CROSSING_JUMP_P (jump) = 1;
8233 }
8234 edge_flags = EDGE_CROSSING;
8235 }
8236 else
8237 edge_flags = 0;
8238
8239 make_single_succ_edge (rec, second_bb, edge_flags);
8240 if (dom_info_available_p (CDI_DOMINATORS))
8241 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8242 }
8243
8244 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8245 INSN is a simple check, that should be converted to branchy one. */
8246 static void
8247 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8248 {
8249 basic_block rec;
8250 rtx_insn *label, *check, *twin;
8251 rtx check_pat;
8252 ds_t fs;
8253 sd_iterator_def sd_it;
8254 dep_t dep;
8255 dep_def _new_dep, *new_dep = &_new_dep;
8256 ds_t todo_spec;
8257
8258 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8259
8260 if (!mutate_p)
8261 todo_spec = TODO_SPEC (insn);
8262 else
8263 {
8264 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8265 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8266
8267 todo_spec = CHECK_SPEC (insn);
8268 }
8269
8270 todo_spec &= SPECULATIVE;
8271
8272 /* Create recovery block. */
8273 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8274 {
8275 rec = sched_create_recovery_block (NULL);
8276 label = BB_HEAD (rec);
8277 }
8278 else
8279 {
8280 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8281 label = NULL;
8282 }
8283
8284 /* Emit CHECK. */
8285 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8286
8287 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8288 {
8289 /* To have mem_reg alive at the beginning of second_bb,
8290 we emit check BEFORE insn, so insn after splitting
8291 insn will be at the beginning of second_bb, which will
8292 provide us with the correct life information. */
8293 check = emit_jump_insn_before (check_pat, insn);
8294 JUMP_LABEL (check) = label;
8295 LABEL_NUSES (label)++;
8296 }
8297 else
8298 check = emit_insn_before (check_pat, insn);
8299
8300 /* Extend data structures. */
8301 haifa_init_insn (check);
8302
8303 /* CHECK is being added to current region. Extend ready list. */
8304 gcc_assert (sched_ready_n_insns != -1);
8305 sched_extend_ready_list (sched_ready_n_insns + 1);
8306
8307 if (current_sched_info->add_remove_insn)
8308 current_sched_info->add_remove_insn (insn, 0);
8309
8310 RECOVERY_BLOCK (check) = rec;
8311
8312 if (sched_verbose && spec_info->dump)
8313 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8314 (*current_sched_info->print_insn) (check, 0));
8315
8316 gcc_assert (ORIG_PAT (insn));
8317
8318 /* Initialize TWIN (twin is a duplicate of original instruction
8319 in the recovery block). */
8320 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8321 {
8322 sd_iterator_def sd_it;
8323 dep_t dep;
8324
8325 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8326 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8327 {
8328 struct _dep _dep2, *dep2 = &_dep2;
8329
8330 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8331
8332 sd_add_dep (dep2, true);
8333 }
8334
8335 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8336 haifa_init_insn (twin);
8337
8338 if (sched_verbose && spec_info->dump)
8339 /* INSN_BB (insn) isn't determined for twin insns yet.
8340 So we can't use current_sched_info->print_insn. */
8341 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8342 INSN_UID (twin), rec->index);
8343 }
8344 else
8345 {
8346 ORIG_PAT (check) = ORIG_PAT (insn);
8347 HAS_INTERNAL_DEP (check) = 1;
8348 twin = check;
8349 /* ??? We probably should change all OUTPUT dependencies to
8350 (TRUE | OUTPUT). */
8351 }
8352
8353 /* Copy all resolved back dependencies of INSN to TWIN. This will
8354 provide correct value for INSN_TICK (TWIN). */
8355 sd_copy_back_deps (twin, insn, true);
8356
8357 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8358 /* In case of branchy check, fix CFG. */
8359 {
8360 basic_block first_bb, second_bb;
8361 rtx_insn *jump;
8362
8363 first_bb = BLOCK_FOR_INSN (check);
8364 second_bb = sched_split_block (first_bb, check);
8365
8366 sched_create_recovery_edges (first_bb, rec, second_bb);
8367
8368 sched_init_only_bb (second_bb, first_bb);
8369 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8370
8371 jump = BB_END (rec);
8372 haifa_init_insn (jump);
8373 }
8374
8375 /* Move backward dependences from INSN to CHECK and
8376 move forward dependences from INSN to TWIN. */
8377
8378 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8379 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8380 {
8381 rtx_insn *pro = DEP_PRO (dep);
8382 ds_t ds;
8383
8384 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8385 check --TRUE--> producer ??? or ANTI ???
8386 twin --TRUE--> producer
8387 twin --ANTI--> check
8388
8389 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8390 check --ANTI--> producer
8391 twin --ANTI--> producer
8392 twin --ANTI--> check
8393
8394 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8395 check ~~TRUE~~> producer
8396 twin ~~TRUE~~> producer
8397 twin --ANTI--> check */
8398
8399 ds = DEP_STATUS (dep);
8400
8401 if (ds & BEGIN_SPEC)
8402 {
8403 gcc_assert (!mutate_p);
8404 ds &= ~BEGIN_SPEC;
8405 }
8406
8407 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8408 sd_add_dep (new_dep, false);
8409
8410 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8411 {
8412 DEP_CON (new_dep) = twin;
8413 sd_add_dep (new_dep, false);
8414 }
8415 }
8416
8417 /* Second, remove backward dependencies of INSN. */
8418 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8419 sd_iterator_cond (&sd_it, &dep);)
8420 {
8421 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8422 || mutate_p)
8423 /* We can delete this dep because we overcome it with
8424 BEGIN_SPECULATION. */
8425 sd_delete_dep (sd_it);
8426 else
8427 sd_iterator_next (&sd_it);
8428 }
8429
8430 /* Future Speculations. Determine what BE_IN speculations will be like. */
8431 fs = 0;
8432
8433 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8434 here. */
8435
8436 gcc_assert (!DONE_SPEC (insn));
8437
8438 if (!mutate_p)
8439 {
8440 ds_t ts = TODO_SPEC (insn);
8441
8442 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8443 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8444
8445 /* Luckiness of future speculations solely depends upon initial
8446 BEGIN speculation. */
8447 if (ts & BEGIN_DATA)
8448 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8449 if (ts & BEGIN_CONTROL)
8450 fs = set_dep_weak (fs, BE_IN_CONTROL,
8451 get_dep_weak (ts, BEGIN_CONTROL));
8452 }
8453 else
8454 CHECK_SPEC (check) = CHECK_SPEC (insn);
8455
8456 /* Future speculations: call the helper. */
8457 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8458
8459 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8460 {
8461 /* Which types of dependencies should we use here is,
8462 generally, machine-dependent question... But, for now,
8463 it is not. */
8464
8465 if (!mutate_p)
8466 {
8467 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8468 sd_add_dep (new_dep, false);
8469
8470 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8471 sd_add_dep (new_dep, false);
8472 }
8473 else
8474 {
8475 if (spec_info->dump)
8476 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8477 (*current_sched_info->print_insn) (insn, 0));
8478
8479 /* Remove all dependencies of the INSN. */
8480 {
8481 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8482 | SD_LIST_BACK
8483 | SD_LIST_RES_BACK));
8484 while (sd_iterator_cond (&sd_it, &dep))
8485 sd_delete_dep (sd_it);
8486 }
8487
8488 /* If former check (INSN) already was moved to the ready (or queue)
8489 list, add new check (CHECK) there too. */
8490 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8491 try_ready (check);
8492
8493 /* Remove old check from instruction stream and free its
8494 data. */
8495 sched_remove_insn (insn);
8496 }
8497
8498 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8499 sd_add_dep (new_dep, false);
8500 }
8501 else
8502 {
8503 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8504 sd_add_dep (new_dep, false);
8505 }
8506
8507 if (!mutate_p)
8508 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8509 because it'll be done later in add_to_speculative_block. */
8510 {
8511 rtx_vec_t priorities_roots = rtx_vec_t ();
8512
8513 clear_priorities (twin, &priorities_roots);
8514 calc_priorities (priorities_roots);
8515 priorities_roots.release ();
8516 }
8517 }
8518
8519 /* Removes dependency between instructions in the recovery block REC
8520 and usual region instructions. It keeps inner dependences so it
8521 won't be necessary to recompute them. */
8522 static void
8523 fix_recovery_deps (basic_block rec)
8524 {
8525 rtx_insn *note, *insn, *jump;
8526 rtx_insn_list *ready_list = 0;
8527 bitmap_head in_ready;
8528 rtx_insn_list *link;
8529
8530 bitmap_initialize (&in_ready, 0);
8531
8532 /* NOTE - a basic block note. */
8533 note = NEXT_INSN (BB_HEAD (rec));
8534 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8535 insn = BB_END (rec);
8536 gcc_assert (JUMP_P (insn));
8537 insn = PREV_INSN (insn);
8538
8539 do
8540 {
8541 sd_iterator_def sd_it;
8542 dep_t dep;
8543
8544 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8545 sd_iterator_cond (&sd_it, &dep);)
8546 {
8547 rtx_insn *consumer = DEP_CON (dep);
8548
8549 if (BLOCK_FOR_INSN (consumer) != rec)
8550 {
8551 sd_delete_dep (sd_it);
8552
8553 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8554 ready_list = alloc_INSN_LIST (consumer, ready_list);
8555 }
8556 else
8557 {
8558 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8559
8560 sd_iterator_next (&sd_it);
8561 }
8562 }
8563
8564 insn = PREV_INSN (insn);
8565 }
8566 while (insn != note);
8567
8568 bitmap_clear (&in_ready);
8569
8570 /* Try to add instructions to the ready or queue list. */
8571 for (link = ready_list; link; link = link->next ())
8572 try_ready (link->insn ());
8573 free_INSN_LIST_list (&ready_list);
8574
8575 /* Fixing jump's dependences. */
8576 insn = BB_HEAD (rec);
8577 jump = BB_END (rec);
8578
8579 gcc_assert (LABEL_P (insn));
8580 insn = NEXT_INSN (insn);
8581
8582 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8583 add_jump_dependencies (insn, jump);
8584 }
8585
8586 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8587 instruction data. */
8588 static bool
8589 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8590 {
8591 int t;
8592
8593 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8594 if (!t)
8595 return false;
8596
8597 update_insn_after_change (insn);
8598 return true;
8599 }
8600
8601 /* -1 - can't speculate,
8602 0 - for speculation with REQUEST mode it is OK to use
8603 current instruction pattern,
8604 1 - need to change pattern for *NEW_PAT to be speculative. */
8605 int
8606 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8607 {
8608 gcc_assert (current_sched_info->flags & DO_SPECULATION
8609 && (request & SPECULATIVE)
8610 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8611
8612 if ((request & spec_info->mask) != request)
8613 return -1;
8614
8615 if (request & BE_IN_SPEC
8616 && !(request & BEGIN_SPEC))
8617 return 0;
8618
8619 return targetm.sched.speculate_insn (insn, request, new_pat);
8620 }
8621
8622 static int
8623 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8624 {
8625 gcc_assert (sched_deps_info->generate_spec_deps
8626 && !IS_SPECULATION_CHECK_P (insn));
8627
8628 if (HAS_INTERNAL_DEP (insn)
8629 || SCHED_GROUP_P (insn))
8630 return -1;
8631
8632 return sched_speculate_insn (insn, request, new_pat);
8633 }
8634
8635 /* Print some information about block BB, which starts with HEAD and
8636 ends with TAIL, before scheduling it.
8637 I is zero, if scheduler is about to start with the fresh ebb. */
8638 static void
8639 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8640 {
8641 if (!i)
8642 fprintf (sched_dump,
8643 ";; ======================================================\n");
8644 else
8645 fprintf (sched_dump,
8646 ";; =====================ADVANCING TO=====================\n");
8647 fprintf (sched_dump,
8648 ";; -- basic block %d from %d to %d -- %s reload\n",
8649 bb->index, INSN_UID (head), INSN_UID (tail),
8650 (reload_completed ? "after" : "before"));
8651 fprintf (sched_dump,
8652 ";; ======================================================\n");
8653 fprintf (sched_dump, "\n");
8654 }
8655
8656 /* Unlink basic block notes and labels and saves them, so they
8657 can be easily restored. We unlink basic block notes in EBB to
8658 provide back-compatibility with the previous code, as target backends
8659 assume, that there'll be only instructions between
8660 current_sched_info->{head and tail}. We restore these notes as soon
8661 as we can.
8662 FIRST (LAST) is the first (last) basic block in the ebb.
8663 NB: In usual case (FIRST == LAST) nothing is really done. */
8664 void
8665 unlink_bb_notes (basic_block first, basic_block last)
8666 {
8667 /* We DON'T unlink basic block notes of the first block in the ebb. */
8668 if (first == last)
8669 return;
8670
8671 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8672
8673 /* Make a sentinel. */
8674 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8675 bb_header[last->next_bb->index] = 0;
8676
8677 first = first->next_bb;
8678 do
8679 {
8680 rtx_insn *prev, *label, *note, *next;
8681
8682 label = BB_HEAD (last);
8683 if (LABEL_P (label))
8684 note = NEXT_INSN (label);
8685 else
8686 note = label;
8687 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8688
8689 prev = PREV_INSN (label);
8690 next = NEXT_INSN (note);
8691 gcc_assert (prev && next);
8692
8693 SET_NEXT_INSN (prev) = next;
8694 SET_PREV_INSN (next) = prev;
8695
8696 bb_header[last->index] = label;
8697
8698 if (last == first)
8699 break;
8700
8701 last = last->prev_bb;
8702 }
8703 while (1);
8704 }
8705
8706 /* Restore basic block notes.
8707 FIRST is the first basic block in the ebb. */
8708 static void
8709 restore_bb_notes (basic_block first)
8710 {
8711 if (!bb_header)
8712 return;
8713
8714 /* We DON'T unlink basic block notes of the first block in the ebb. */
8715 first = first->next_bb;
8716 /* Remember: FIRST is actually a second basic block in the ebb. */
8717
8718 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8719 && bb_header[first->index])
8720 {
8721 rtx_insn *prev, *label, *note, *next;
8722
8723 label = bb_header[first->index];
8724 prev = PREV_INSN (label);
8725 next = NEXT_INSN (prev);
8726
8727 if (LABEL_P (label))
8728 note = NEXT_INSN (label);
8729 else
8730 note = label;
8731 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8732
8733 bb_header[first->index] = 0;
8734
8735 SET_NEXT_INSN (prev) = label;
8736 SET_NEXT_INSN (note) = next;
8737 SET_PREV_INSN (next) = note;
8738
8739 first = first->next_bb;
8740 }
8741
8742 free (bb_header);
8743 bb_header = 0;
8744 }
8745
8746 /* Helper function.
8747 Fix CFG after both in- and inter-block movement of
8748 control_flow_insn_p JUMP. */
8749 static void
8750 fix_jump_move (rtx_insn *jump)
8751 {
8752 basic_block bb, jump_bb, jump_bb_next;
8753
8754 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8755 jump_bb = BLOCK_FOR_INSN (jump);
8756 jump_bb_next = jump_bb->next_bb;
8757
8758 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8759 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8760
8761 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8762 /* if jump_bb_next is not empty. */
8763 BB_END (jump_bb) = BB_END (jump_bb_next);
8764
8765 if (BB_END (bb) != PREV_INSN (jump))
8766 /* Then there are instruction after jump that should be placed
8767 to jump_bb_next. */
8768 BB_END (jump_bb_next) = BB_END (bb);
8769 else
8770 /* Otherwise jump_bb_next is empty. */
8771 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8772
8773 /* To make assertion in move_insn happy. */
8774 BB_END (bb) = PREV_INSN (jump);
8775
8776 update_bb_for_insn (jump_bb_next);
8777 }
8778
8779 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8780 static void
8781 move_block_after_check (rtx_insn *jump)
8782 {
8783 basic_block bb, jump_bb, jump_bb_next;
8784 vec<edge, va_gc> *t;
8785
8786 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8787 jump_bb = BLOCK_FOR_INSN (jump);
8788 jump_bb_next = jump_bb->next_bb;
8789
8790 update_bb_for_insn (jump_bb);
8791
8792 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8793 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8794
8795 unlink_block (jump_bb_next);
8796 link_block (jump_bb_next, bb);
8797
8798 t = bb->succs;
8799 bb->succs = 0;
8800 move_succs (&(jump_bb->succs), bb);
8801 move_succs (&(jump_bb_next->succs), jump_bb);
8802 move_succs (&t, jump_bb_next);
8803
8804 df_mark_solutions_dirty ();
8805
8806 common_sched_info->fix_recovery_cfg
8807 (bb->index, jump_bb->index, jump_bb_next->index);
8808 }
8809
8810 /* Helper function for move_block_after_check.
8811 This functions attaches edge vector pointed to by SUCCSP to
8812 block TO. */
8813 static void
8814 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8815 {
8816 edge e;
8817 edge_iterator ei;
8818
8819 gcc_assert (to->succs == 0);
8820
8821 to->succs = *succsp;
8822
8823 FOR_EACH_EDGE (e, ei, to->succs)
8824 e->src = to;
8825
8826 *succsp = 0;
8827 }
8828
8829 /* Remove INSN from the instruction stream.
8830 INSN should have any dependencies. */
8831 static void
8832 sched_remove_insn (rtx_insn *insn)
8833 {
8834 sd_finish_insn (insn);
8835
8836 change_queue_index (insn, QUEUE_NOWHERE);
8837 current_sched_info->add_remove_insn (insn, 1);
8838 delete_insn (insn);
8839 }
8840
8841 /* Clear priorities of all instructions, that are forward dependent on INSN.
8842 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8843 be invoked to initialize all cleared priorities. */
8844 static void
8845 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8846 {
8847 sd_iterator_def sd_it;
8848 dep_t dep;
8849 bool insn_is_root_p = true;
8850
8851 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8852
8853 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8854 {
8855 rtx_insn *pro = DEP_PRO (dep);
8856
8857 if (INSN_PRIORITY_STATUS (pro) >= 0
8858 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8859 {
8860 /* If DEP doesn't contribute to priority then INSN itself should
8861 be added to priority roots. */
8862 if (contributes_to_priority_p (dep))
8863 insn_is_root_p = false;
8864
8865 INSN_PRIORITY_STATUS (pro) = -1;
8866 clear_priorities (pro, roots_ptr);
8867 }
8868 }
8869
8870 if (insn_is_root_p)
8871 roots_ptr->safe_push (insn);
8872 }
8873
8874 /* Recompute priorities of instructions, whose priorities might have been
8875 changed. ROOTS is a vector of instructions whose priority computation will
8876 trigger initialization of all cleared priorities. */
8877 static void
8878 calc_priorities (rtx_vec_t roots)
8879 {
8880 int i;
8881 rtx_insn *insn;
8882
8883 FOR_EACH_VEC_ELT (roots, i, insn)
8884 priority (insn);
8885 }
8886
8887
8888 /* Add dependences between JUMP and other instructions in the recovery
8889 block. INSN is the first insn the recovery block. */
8890 static void
8891 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8892 {
8893 do
8894 {
8895 insn = NEXT_INSN (insn);
8896 if (insn == jump)
8897 break;
8898
8899 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8900 {
8901 dep_def _new_dep, *new_dep = &_new_dep;
8902
8903 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8904 sd_add_dep (new_dep, false);
8905 }
8906 }
8907 while (1);
8908
8909 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8910 }
8911
8912 /* Extend data structures for logical insn UID. */
8913 void
8914 sched_extend_luids (void)
8915 {
8916 int new_luids_max_uid = get_max_uid () + 1;
8917
8918 sched_luids.safe_grow_cleared (new_luids_max_uid);
8919 }
8920
8921 /* Initialize LUID for INSN. */
8922 void
8923 sched_init_insn_luid (rtx_insn *insn)
8924 {
8925 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8926 int luid;
8927
8928 if (i >= 0)
8929 {
8930 luid = sched_max_luid;
8931 sched_max_luid += i;
8932 }
8933 else
8934 luid = -1;
8935
8936 SET_INSN_LUID (insn, luid);
8937 }
8938
8939 /* Initialize luids for BBS.
8940 The hook common_sched_info->luid_for_non_insn () is used to determine
8941 if notes, labels, etc. need luids. */
8942 void
8943 sched_init_luids (bb_vec_t bbs)
8944 {
8945 int i;
8946 basic_block bb;
8947
8948 sched_extend_luids ();
8949 FOR_EACH_VEC_ELT (bbs, i, bb)
8950 {
8951 rtx_insn *insn;
8952
8953 FOR_BB_INSNS (bb, insn)
8954 sched_init_insn_luid (insn);
8955 }
8956 }
8957
8958 /* Free LUIDs. */
8959 void
8960 sched_finish_luids (void)
8961 {
8962 sched_luids.release ();
8963 sched_max_luid = 1;
8964 }
8965
8966 /* Return logical uid of INSN. Helpful while debugging. */
8967 int
8968 insn_luid (rtx_insn *insn)
8969 {
8970 return INSN_LUID (insn);
8971 }
8972
8973 /* Extend per insn data in the target. */
8974 void
8975 sched_extend_target (void)
8976 {
8977 if (targetm.sched.h_i_d_extended)
8978 targetm.sched.h_i_d_extended ();
8979 }
8980
8981 /* Extend global scheduler structures (those, that live across calls to
8982 schedule_block) to include information about just emitted INSN. */
8983 static void
8984 extend_h_i_d (void)
8985 {
8986 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8987 if (reserve > 0
8988 && ! h_i_d.space (reserve))
8989 {
8990 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8991 sched_extend_target ();
8992 }
8993 }
8994
8995 /* Initialize h_i_d entry of the INSN with default values.
8996 Values, that are not explicitly initialized here, hold zero. */
8997 static void
8998 init_h_i_d (rtx_insn *insn)
8999 {
9000 if (INSN_LUID (insn) > 0)
9001 {
9002 INSN_COST (insn) = -1;
9003 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9004 INSN_TICK (insn) = INVALID_TICK;
9005 INSN_EXACT_TICK (insn) = INVALID_TICK;
9006 INTER_TICK (insn) = INVALID_TICK;
9007 TODO_SPEC (insn) = HARD_DEP;
9008 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9009 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9010 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9011 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9012 }
9013 }
9014
9015 /* Initialize haifa_insn_data for BBS. */
9016 void
9017 haifa_init_h_i_d (bb_vec_t bbs)
9018 {
9019 int i;
9020 basic_block bb;
9021
9022 extend_h_i_d ();
9023 FOR_EACH_VEC_ELT (bbs, i, bb)
9024 {
9025 rtx_insn *insn;
9026
9027 FOR_BB_INSNS (bb, insn)
9028 init_h_i_d (insn);
9029 }
9030 }
9031
9032 /* Finalize haifa_insn_data. */
9033 void
9034 haifa_finish_h_i_d (void)
9035 {
9036 int i;
9037 haifa_insn_data_t data;
9038 struct reg_use_data *use, *next;
9039
9040 FOR_EACH_VEC_ELT (h_i_d, i, data)
9041 {
9042 free (data->max_reg_pressure);
9043 free (data->reg_pressure);
9044 for (use = data->reg_use_list; use != NULL; use = next)
9045 {
9046 next = use->next_insn_use;
9047 free (use);
9048 }
9049 }
9050 h_i_d.release ();
9051 }
9052
9053 /* Init data for the new insn INSN. */
9054 static void
9055 haifa_init_insn (rtx_insn *insn)
9056 {
9057 gcc_assert (insn != NULL);
9058
9059 sched_extend_luids ();
9060 sched_init_insn_luid (insn);
9061 sched_extend_target ();
9062 sched_deps_init (false);
9063 extend_h_i_d ();
9064 init_h_i_d (insn);
9065
9066 if (adding_bb_to_current_region_p)
9067 {
9068 sd_init_insn (insn);
9069
9070 /* Extend dependency caches by one element. */
9071 extend_dependency_caches (1, false);
9072 }
9073 if (sched_pressure != SCHED_PRESSURE_NONE)
9074 init_insn_reg_pressure_info (insn);
9075 }
9076
9077 /* Init data for the new basic block BB which comes after AFTER. */
9078 static void
9079 haifa_init_only_bb (basic_block bb, basic_block after)
9080 {
9081 gcc_assert (bb != NULL);
9082
9083 sched_init_bbs ();
9084
9085 if (common_sched_info->add_block)
9086 /* This changes only data structures of the front-end. */
9087 common_sched_info->add_block (bb, after);
9088 }
9089
9090 /* A generic version of sched_split_block (). */
9091 basic_block
9092 sched_split_block_1 (basic_block first_bb, rtx after)
9093 {
9094 edge e;
9095
9096 e = split_block (first_bb, after);
9097 gcc_assert (e->src == first_bb);
9098
9099 /* sched_split_block emits note if *check == BB_END. Probably it
9100 is better to rip that note off. */
9101
9102 return e->dest;
9103 }
9104
9105 /* A generic version of sched_create_empty_bb (). */
9106 basic_block
9107 sched_create_empty_bb_1 (basic_block after)
9108 {
9109 return create_empty_bb (after);
9110 }
9111
9112 /* Insert PAT as an INSN into the schedule and update the necessary data
9113 structures to account for it. */
9114 rtx_insn *
9115 sched_emit_insn (rtx pat)
9116 {
9117 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9118 haifa_init_insn (insn);
9119
9120 if (current_sched_info->add_remove_insn)
9121 current_sched_info->add_remove_insn (insn, 0);
9122
9123 (*current_sched_info->begin_schedule_ready) (insn);
9124 scheduled_insns.safe_push (insn);
9125
9126 last_scheduled_insn = insn;
9127 return insn;
9128 }
9129
9130 /* This function returns a candidate satisfying dispatch constraints from
9131 the ready list. */
9132
9133 static rtx_insn *
9134 ready_remove_first_dispatch (struct ready_list *ready)
9135 {
9136 int i;
9137 rtx_insn *insn = ready_element (ready, 0);
9138
9139 if (ready->n_ready == 1
9140 || !INSN_P (insn)
9141 || INSN_CODE (insn) < 0
9142 || !active_insn_p (insn)
9143 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9144 return ready_remove_first (ready);
9145
9146 for (i = 1; i < ready->n_ready; i++)
9147 {
9148 insn = ready_element (ready, i);
9149
9150 if (!INSN_P (insn)
9151 || INSN_CODE (insn) < 0
9152 || !active_insn_p (insn))
9153 continue;
9154
9155 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9156 {
9157 /* Return ith element of ready. */
9158 insn = ready_remove (ready, i);
9159 return insn;
9160 }
9161 }
9162
9163 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9164 return ready_remove_first (ready);
9165
9166 for (i = 1; i < ready->n_ready; i++)
9167 {
9168 insn = ready_element (ready, i);
9169
9170 if (!INSN_P (insn)
9171 || INSN_CODE (insn) < 0
9172 || !active_insn_p (insn))
9173 continue;
9174
9175 /* Return i-th element of ready. */
9176 if (targetm.sched.dispatch (insn, IS_CMP))
9177 return ready_remove (ready, i);
9178 }
9179
9180 return ready_remove_first (ready);
9181 }
9182
9183 /* Get number of ready insn in the ready list. */
9184
9185 int
9186 number_in_ready (void)
9187 {
9188 return ready.n_ready;
9189 }
9190
9191 /* Get number of ready's in the ready list. */
9192
9193 rtx_insn *
9194 get_ready_element (int i)
9195 {
9196 return ready_element (&ready, i);
9197 }
9198
9199 #endif /* INSN_SCHEDULING */