Model cache auto-prefetcher in scheduler
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "hashtab.h"
135 #include "hash-set.h"
136 #include "vec.h"
137 #include "machmode.h"
138 #include "input.h"
139 #include "function.h"
140 #include "flags.h"
141 #include "insn-config.h"
142 #include "insn-attr.h"
143 #include "except.h"
144 #include "recog.h"
145 #include "dominance.h"
146 #include "cfg.h"
147 #include "cfgrtl.h"
148 #include "cfgbuild.h"
149 #include "predict.h"
150 #include "basic-block.h"
151 #include "sched-int.h"
152 #include "target.h"
153 #include "common/common-target.h"
154 #include "params.h"
155 #include "dbgcnt.h"
156 #include "cfgloop.h"
157 #include "ira.h"
158 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
159 #include "hash-table.h"
160 #include "dumpfile.h"
161
162 #ifdef INSN_SCHEDULING
163
164 /* True if we do register pressure relief through live-range
165 shrinkage. */
166 static bool live_range_shrinkage_p;
167
168 /* Switch on live range shrinkage. */
169 void
170 initialize_live_range_shrinkage (void)
171 {
172 live_range_shrinkage_p = true;
173 }
174
175 /* Switch off live range shrinkage. */
176 void
177 finish_live_range_shrinkage (void)
178 {
179 live_range_shrinkage_p = false;
180 }
181
182 /* issue_rate is the number of insns that can be scheduled in the same
183 machine cycle. It can be defined in the config/mach/mach.h file,
184 otherwise we set it to 1. */
185
186 int issue_rate;
187
188 /* This can be set to true by a backend if the scheduler should not
189 enable a DCE pass. */
190 bool sched_no_dce;
191
192 /* The current initiation interval used when modulo scheduling. */
193 static int modulo_ii;
194
195 /* The maximum number of stages we are prepared to handle. */
196 static int modulo_max_stages;
197
198 /* The number of insns that exist in each iteration of the loop. We use this
199 to detect when we've scheduled all insns from the first iteration. */
200 static int modulo_n_insns;
201
202 /* The current count of insns in the first iteration of the loop that have
203 already been scheduled. */
204 static int modulo_insns_scheduled;
205
206 /* The maximum uid of insns from the first iteration of the loop. */
207 static int modulo_iter0_max_uid;
208
209 /* The number of times we should attempt to backtrack when modulo scheduling.
210 Decreased each time we have to backtrack. */
211 static int modulo_backtracks_left;
212
213 /* The stage in which the last insn from the original loop was
214 scheduled. */
215 static int modulo_last_stage;
216
217 /* sched-verbose controls the amount of debugging output the
218 scheduler prints. It is controlled by -fsched-verbose=N:
219 N>0 and no -DSR : the output is directed to stderr.
220 N>=10 will direct the printouts to stderr (regardless of -dSR).
221 N=1: same as -dSR.
222 N=2: bb's probabilities, detailed ready list info, unit/insn info.
223 N=3: rtl at abort point, control-flow, regions info.
224 N=5: dependences info. */
225
226 int sched_verbose = 0;
227
228 /* Debugging file. All printouts are sent to dump, which is always set,
229 either to stderr, or to the dump listing file (-dRS). */
230 FILE *sched_dump = 0;
231
232 /* This is a placeholder for the scheduler parameters common
233 to all schedulers. */
234 struct common_sched_info_def *common_sched_info;
235
236 #define INSN_TICK(INSN) (HID (INSN)->tick)
237 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
238 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
239 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
240 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
241 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
242 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
243 /* Cached cost of the instruction. Use insn_cost to get cost of the
244 insn. -1 here means that the field is not initialized. */
245 #define INSN_COST(INSN) (HID (INSN)->cost)
246
247 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
248 then it should be recalculated from scratch. */
249 #define INVALID_TICK (-(max_insn_queue_index + 1))
250 /* The minimal value of the INSN_TICK of an instruction. */
251 #define MIN_TICK (-max_insn_queue_index)
252
253 /* The deciding reason for INSN's place in the ready list. */
254 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
255
256 /* List of important notes we must keep around. This is a pointer to the
257 last element in the list. */
258 rtx_insn *note_list;
259
260 static struct spec_info_def spec_info_var;
261 /* Description of the speculative part of the scheduling.
262 If NULL - no speculation. */
263 spec_info_t spec_info = NULL;
264
265 /* True, if recovery block was added during scheduling of current block.
266 Used to determine, if we need to fix INSN_TICKs. */
267 static bool haifa_recovery_bb_recently_added_p;
268
269 /* True, if recovery block was added during this scheduling pass.
270 Used to determine if we should have empty memory pools of dependencies
271 after finishing current region. */
272 bool haifa_recovery_bb_ever_added_p;
273
274 /* Counters of different types of speculative instructions. */
275 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
276
277 /* Array used in {unlink, restore}_bb_notes. */
278 static rtx_insn **bb_header = 0;
279
280 /* Basic block after which recovery blocks will be created. */
281 static basic_block before_recovery;
282
283 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
284 created it. */
285 basic_block after_recovery;
286
287 /* FALSE if we add bb to another region, so we don't need to initialize it. */
288 bool adding_bb_to_current_region_p = true;
289
290 /* Queues, etc. */
291
292 /* An instruction is ready to be scheduled when all insns preceding it
293 have already been scheduled. It is important to ensure that all
294 insns which use its result will not be executed until its result
295 has been computed. An insn is maintained in one of four structures:
296
297 (P) the "Pending" set of insns which cannot be scheduled until
298 their dependencies have been satisfied.
299 (Q) the "Queued" set of insns that can be scheduled when sufficient
300 time has passed.
301 (R) the "Ready" list of unscheduled, uncommitted insns.
302 (S) the "Scheduled" list of insns.
303
304 Initially, all insns are either "Pending" or "Ready" depending on
305 whether their dependencies are satisfied.
306
307 Insns move from the "Ready" list to the "Scheduled" list as they
308 are committed to the schedule. As this occurs, the insns in the
309 "Pending" list have their dependencies satisfied and move to either
310 the "Ready" list or the "Queued" set depending on whether
311 sufficient time has passed to make them ready. As time passes,
312 insns move from the "Queued" set to the "Ready" list.
313
314 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
315 unscheduled insns, i.e., those that are ready, queued, and pending.
316 The "Queued" set (Q) is implemented by the variable `insn_queue'.
317 The "Ready" list (R) is implemented by the variables `ready' and
318 `n_ready'.
319 The "Scheduled" list (S) is the new insn chain built by this pass.
320
321 The transition (R->S) is implemented in the scheduling loop in
322 `schedule_block' when the best insn to schedule is chosen.
323 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
324 insns move from the ready list to the scheduled list.
325 The transition (Q->R) is implemented in 'queue_to_insn' as time
326 passes or stalls are introduced. */
327
328 /* Implement a circular buffer to delay instructions until sufficient
329 time has passed. For the new pipeline description interface,
330 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
331 than maximal time of instruction execution computed by genattr.c on
332 the base maximal time of functional unit reservations and getting a
333 result. This is the longest time an insn may be queued. */
334
335 static rtx_insn_list **insn_queue;
336 static int q_ptr = 0;
337 static int q_size = 0;
338 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
339 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
340
341 #define QUEUE_SCHEDULED (-3)
342 #define QUEUE_NOWHERE (-2)
343 #define QUEUE_READY (-1)
344 /* QUEUE_SCHEDULED - INSN is scheduled.
345 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
346 queue or ready list.
347 QUEUE_READY - INSN is in ready list.
348 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
349
350 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
351
352 /* The following variable value refers for all current and future
353 reservations of the processor units. */
354 state_t curr_state;
355
356 /* The following variable value is size of memory representing all
357 current and future reservations of the processor units. */
358 size_t dfa_state_size;
359
360 /* The following array is used to find the best insn from ready when
361 the automaton pipeline interface is used. */
362 signed char *ready_try = NULL;
363
364 /* The ready list. */
365 struct ready_list ready = {NULL, 0, 0, 0, 0};
366
367 /* The pointer to the ready list (to be removed). */
368 static struct ready_list *readyp = &ready;
369
370 /* Scheduling clock. */
371 static int clock_var;
372
373 /* Clock at which the previous instruction was issued. */
374 static int last_clock_var;
375
376 /* Set to true if, when queuing a shadow insn, we discover that it would be
377 scheduled too late. */
378 static bool must_backtrack;
379
380 /* The following variable value is number of essential insns issued on
381 the current cycle. An insn is essential one if it changes the
382 processors state. */
383 int cycle_issued_insns;
384
385 /* This records the actual schedule. It is built up during the main phase
386 of schedule_block, and afterwards used to reorder the insns in the RTL. */
387 static vec<rtx_insn *> scheduled_insns;
388
389 static int may_trap_exp (const_rtx, int);
390
391 /* Nonzero iff the address is comprised from at most 1 register. */
392 #define CONST_BASED_ADDRESS_P(x) \
393 (REG_P (x) \
394 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
395 || (GET_CODE (x) == LO_SUM)) \
396 && (CONSTANT_P (XEXP (x, 0)) \
397 || CONSTANT_P (XEXP (x, 1)))))
398
399 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
400 as found by analyzing insn's expression. */
401
402 \f
403 static int haifa_luid_for_non_insn (rtx x);
404
405 /* Haifa version of sched_info hooks common to all headers. */
406 const struct common_sched_info_def haifa_common_sched_info =
407 {
408 NULL, /* fix_recovery_cfg */
409 NULL, /* add_block */
410 NULL, /* estimate_number_of_insns */
411 haifa_luid_for_non_insn, /* luid_for_non_insn */
412 SCHED_PASS_UNKNOWN /* sched_pass_id */
413 };
414
415 /* Mapping from instruction UID to its Logical UID. */
416 vec<int> sched_luids = vNULL;
417
418 /* Next LUID to assign to an instruction. */
419 int sched_max_luid = 1;
420
421 /* Haifa Instruction Data. */
422 vec<haifa_insn_data_def> h_i_d = vNULL;
423
424 void (* sched_init_only_bb) (basic_block, basic_block);
425
426 /* Split block function. Different schedulers might use different functions
427 to handle their internal data consistent. */
428 basic_block (* sched_split_block) (basic_block, rtx);
429
430 /* Create empty basic block after the specified block. */
431 basic_block (* sched_create_empty_bb) (basic_block);
432
433 /* Return the number of cycles until INSN is expected to be ready.
434 Return zero if it already is. */
435 static int
436 insn_delay (rtx_insn *insn)
437 {
438 return MAX (INSN_TICK (insn) - clock_var, 0);
439 }
440
441 static int
442 may_trap_exp (const_rtx x, int is_store)
443 {
444 enum rtx_code code;
445
446 if (x == 0)
447 return TRAP_FREE;
448 code = GET_CODE (x);
449 if (is_store)
450 {
451 if (code == MEM && may_trap_p (x))
452 return TRAP_RISKY;
453 else
454 return TRAP_FREE;
455 }
456 if (code == MEM)
457 {
458 /* The insn uses memory: a volatile load. */
459 if (MEM_VOLATILE_P (x))
460 return IRISKY;
461 /* An exception-free load. */
462 if (!may_trap_p (x))
463 return IFREE;
464 /* A load with 1 base register, to be further checked. */
465 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
466 return PFREE_CANDIDATE;
467 /* No info on the load, to be further checked. */
468 return PRISKY_CANDIDATE;
469 }
470 else
471 {
472 const char *fmt;
473 int i, insn_class = TRAP_FREE;
474
475 /* Neither store nor load, check if it may cause a trap. */
476 if (may_trap_p (x))
477 return TRAP_RISKY;
478 /* Recursive step: walk the insn... */
479 fmt = GET_RTX_FORMAT (code);
480 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
481 {
482 if (fmt[i] == 'e')
483 {
484 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
485 insn_class = WORST_CLASS (insn_class, tmp_class);
486 }
487 else if (fmt[i] == 'E')
488 {
489 int j;
490 for (j = 0; j < XVECLEN (x, i); j++)
491 {
492 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
493 insn_class = WORST_CLASS (insn_class, tmp_class);
494 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
495 break;
496 }
497 }
498 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
499 break;
500 }
501 return insn_class;
502 }
503 }
504
505 /* Classifies rtx X of an insn for the purpose of verifying that X can be
506 executed speculatively (and consequently the insn can be moved
507 speculatively), by examining X, returning:
508 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
509 TRAP_FREE: non-load insn.
510 IFREE: load from a globally safe location.
511 IRISKY: volatile load.
512 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
513 being either PFREE or PRISKY. */
514
515 static int
516 haifa_classify_rtx (const_rtx x)
517 {
518 int tmp_class = TRAP_FREE;
519 int insn_class = TRAP_FREE;
520 enum rtx_code code;
521
522 if (GET_CODE (x) == PARALLEL)
523 {
524 int i, len = XVECLEN (x, 0);
525
526 for (i = len - 1; i >= 0; i--)
527 {
528 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
529 insn_class = WORST_CLASS (insn_class, tmp_class);
530 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
531 break;
532 }
533 }
534 else
535 {
536 code = GET_CODE (x);
537 switch (code)
538 {
539 case CLOBBER:
540 /* Test if it is a 'store'. */
541 tmp_class = may_trap_exp (XEXP (x, 0), 1);
542 break;
543 case SET:
544 /* Test if it is a store. */
545 tmp_class = may_trap_exp (SET_DEST (x), 1);
546 if (tmp_class == TRAP_RISKY)
547 break;
548 /* Test if it is a load. */
549 tmp_class =
550 WORST_CLASS (tmp_class,
551 may_trap_exp (SET_SRC (x), 0));
552 break;
553 case COND_EXEC:
554 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
555 if (tmp_class == TRAP_RISKY)
556 break;
557 tmp_class = WORST_CLASS (tmp_class,
558 may_trap_exp (COND_EXEC_TEST (x), 0));
559 break;
560 case TRAP_IF:
561 tmp_class = TRAP_RISKY;
562 break;
563 default:;
564 }
565 insn_class = tmp_class;
566 }
567
568 return insn_class;
569 }
570
571 int
572 haifa_classify_insn (const_rtx insn)
573 {
574 return haifa_classify_rtx (PATTERN (insn));
575 }
576 \f
577 /* After the scheduler initialization function has been called, this function
578 can be called to enable modulo scheduling. II is the initiation interval
579 we should use, it affects the delays for delay_pairs that were recorded as
580 separated by a given number of stages.
581
582 MAX_STAGES provides us with a limit
583 after which we give up scheduling; the caller must have unrolled at least
584 as many copies of the loop body and recorded delay_pairs for them.
585
586 INSNS is the number of real (non-debug) insns in one iteration of
587 the loop. MAX_UID can be used to test whether an insn belongs to
588 the first iteration of the loop; all of them have a uid lower than
589 MAX_UID. */
590 void
591 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
592 {
593 modulo_ii = ii;
594 modulo_max_stages = max_stages;
595 modulo_n_insns = insns;
596 modulo_iter0_max_uid = max_uid;
597 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
598 }
599
600 /* A structure to record a pair of insns where the first one is a real
601 insn that has delay slots, and the second is its delayed shadow.
602 I1 is scheduled normally and will emit an assembly instruction,
603 while I2 describes the side effect that takes place at the
604 transition between cycles CYCLES and (CYCLES + 1) after I1. */
605 struct delay_pair
606 {
607 struct delay_pair *next_same_i1;
608 rtx_insn *i1, *i2;
609 int cycles;
610 /* When doing modulo scheduling, we a delay_pair can also be used to
611 show that I1 and I2 are the same insn in a different stage. If that
612 is the case, STAGES will be nonzero. */
613 int stages;
614 };
615
616 /* Helpers for delay hashing. */
617
618 struct delay_i1_hasher : typed_noop_remove <delay_pair>
619 {
620 typedef delay_pair value_type;
621 typedef void compare_type;
622 static inline hashval_t hash (const value_type *);
623 static inline bool equal (const value_type *, const compare_type *);
624 };
625
626 /* Returns a hash value for X, based on hashing just I1. */
627
628 inline hashval_t
629 delay_i1_hasher::hash (const value_type *x)
630 {
631 return htab_hash_pointer (x->i1);
632 }
633
634 /* Return true if I1 of pair X is the same as that of pair Y. */
635
636 inline bool
637 delay_i1_hasher::equal (const value_type *x, const compare_type *y)
638 {
639 return x->i1 == y;
640 }
641
642 struct delay_i2_hasher : typed_free_remove <delay_pair>
643 {
644 typedef delay_pair value_type;
645 typedef void compare_type;
646 static inline hashval_t hash (const value_type *);
647 static inline bool equal (const value_type *, const compare_type *);
648 };
649
650 /* Returns a hash value for X, based on hashing just I2. */
651
652 inline hashval_t
653 delay_i2_hasher::hash (const value_type *x)
654 {
655 return htab_hash_pointer (x->i2);
656 }
657
658 /* Return true if I2 of pair X is the same as that of pair Y. */
659
660 inline bool
661 delay_i2_hasher::equal (const value_type *x, const compare_type *y)
662 {
663 return x->i2 == y;
664 }
665
666 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
667 indexed by I2. */
668 static hash_table<delay_i1_hasher> *delay_htab;
669 static hash_table<delay_i2_hasher> *delay_htab_i2;
670
671 /* Called through htab_traverse. Walk the hashtable using I2 as
672 index, and delete all elements involving an UID higher than
673 that pointed to by *DATA. */
674 int
675 haifa_htab_i2_traverse (delay_pair **slot, int *data)
676 {
677 int maxuid = *data;
678 struct delay_pair *p = *slot;
679 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
680 {
681 delay_htab_i2->clear_slot (slot);
682 }
683 return 1;
684 }
685
686 /* Called through htab_traverse. Walk the hashtable using I2 as
687 index, and delete all elements involving an UID higher than
688 that pointed to by *DATA. */
689 int
690 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
691 {
692 int maxuid = *data;
693 struct delay_pair *p, *first, **pprev;
694
695 if (INSN_UID ((*pslot)->i1) >= maxuid)
696 {
697 delay_htab->clear_slot (pslot);
698 return 1;
699 }
700 pprev = &first;
701 for (p = *pslot; p; p = p->next_same_i1)
702 {
703 if (INSN_UID (p->i2) < maxuid)
704 {
705 *pprev = p;
706 pprev = &p->next_same_i1;
707 }
708 }
709 *pprev = NULL;
710 if (first == NULL)
711 delay_htab->clear_slot (pslot);
712 else
713 *pslot = first;
714 return 1;
715 }
716
717 /* Discard all delay pairs which involve an insn with an UID higher
718 than MAX_UID. */
719 void
720 discard_delay_pairs_above (int max_uid)
721 {
722 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
723 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
724 }
725
726 /* This function can be called by a port just before it starts the final
727 scheduling pass. It records the fact that an instruction with delay
728 slots has been split into two insns, I1 and I2. The first one will be
729 scheduled normally and initiates the operation. The second one is a
730 shadow which must follow a specific number of cycles after I1; its only
731 purpose is to show the side effect that occurs at that cycle in the RTL.
732 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
733 while I2 retains the original insn type.
734
735 There are two ways in which the number of cycles can be specified,
736 involving the CYCLES and STAGES arguments to this function. If STAGES
737 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
738 which is multiplied by MODULO_II to give the number of cycles. This is
739 only useful if the caller also calls set_modulo_params to enable modulo
740 scheduling. */
741
742 void
743 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
744 {
745 struct delay_pair *p = XNEW (struct delay_pair);
746 struct delay_pair **slot;
747
748 p->i1 = i1;
749 p->i2 = i2;
750 p->cycles = cycles;
751 p->stages = stages;
752
753 if (!delay_htab)
754 {
755 delay_htab = new hash_table<delay_i1_hasher> (10);
756 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
757 }
758 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
759 p->next_same_i1 = *slot;
760 *slot = p;
761 slot = delay_htab_i2->find_slot (p, INSERT);
762 *slot = p;
763 }
764
765 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
766 and return the other insn if so. Return NULL otherwise. */
767 rtx_insn *
768 real_insn_for_shadow (rtx_insn *insn)
769 {
770 struct delay_pair *pair;
771
772 if (!delay_htab)
773 return NULL;
774
775 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
776 if (!pair || pair->stages > 0)
777 return NULL;
778 return pair->i1;
779 }
780
781 /* For a pair P of insns, return the fixed distance in cycles from the first
782 insn after which the second must be scheduled. */
783 static int
784 pair_delay (struct delay_pair *p)
785 {
786 if (p->stages == 0)
787 return p->cycles;
788 else
789 return p->stages * modulo_ii;
790 }
791
792 /* Given an insn INSN, add a dependence on its delayed shadow if it
793 has one. Also try to find situations where shadows depend on each other
794 and add dependencies to the real insns to limit the amount of backtracking
795 needed. */
796 void
797 add_delay_dependencies (rtx_insn *insn)
798 {
799 struct delay_pair *pair;
800 sd_iterator_def sd_it;
801 dep_t dep;
802
803 if (!delay_htab)
804 return;
805
806 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
807 if (!pair)
808 return;
809 add_dependence (insn, pair->i1, REG_DEP_ANTI);
810 if (pair->stages)
811 return;
812
813 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
814 {
815 rtx_insn *pro = DEP_PRO (dep);
816 struct delay_pair *other_pair
817 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
818 if (!other_pair || other_pair->stages)
819 continue;
820 if (pair_delay (other_pair) >= pair_delay (pair))
821 {
822 if (sched_verbose >= 4)
823 {
824 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
825 INSN_UID (other_pair->i1),
826 INSN_UID (pair->i1));
827 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
828 INSN_UID (pair->i1),
829 INSN_UID (pair->i2),
830 pair_delay (pair));
831 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
832 INSN_UID (other_pair->i1),
833 INSN_UID (other_pair->i2),
834 pair_delay (other_pair));
835 }
836 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
837 }
838 }
839 }
840 \f
841 /* Forward declarations. */
842
843 static int priority (rtx_insn *);
844 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
845 static int rank_for_schedule (const void *, const void *);
846 static void swap_sort (rtx_insn **, int);
847 static void queue_insn (rtx_insn *, int, const char *);
848 static int schedule_insn (rtx_insn *);
849 static void adjust_priority (rtx_insn *);
850 static void advance_one_cycle (void);
851 static void extend_h_i_d (void);
852
853
854 /* Notes handling mechanism:
855 =========================
856 Generally, NOTES are saved before scheduling and restored after scheduling.
857 The scheduler distinguishes between two types of notes:
858
859 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
860 Before scheduling a region, a pointer to the note is added to the insn
861 that follows or precedes it. (This happens as part of the data dependence
862 computation). After scheduling an insn, the pointer contained in it is
863 used for regenerating the corresponding note (in reemit_notes).
864
865 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
866 these notes are put in a list (in rm_other_notes() and
867 unlink_other_notes ()). After scheduling the block, these notes are
868 inserted at the beginning of the block (in schedule_block()). */
869
870 static void ready_add (struct ready_list *, rtx_insn *, bool);
871 static rtx_insn *ready_remove_first (struct ready_list *);
872 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
873
874 static void queue_to_ready (struct ready_list *);
875 static int early_queue_to_ready (state_t, struct ready_list *);
876
877 /* The following functions are used to implement multi-pass scheduling
878 on the first cycle. */
879 static rtx_insn *ready_remove (struct ready_list *, int);
880 static void ready_remove_insn (rtx);
881
882 static void fix_inter_tick (rtx_insn *, rtx_insn *);
883 static int fix_tick_ready (rtx_insn *);
884 static void change_queue_index (rtx_insn *, int);
885
886 /* The following functions are used to implement scheduling of data/control
887 speculative instructions. */
888
889 static void extend_h_i_d (void);
890 static void init_h_i_d (rtx_insn *);
891 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
892 static void generate_recovery_code (rtx_insn *);
893 static void process_insn_forw_deps_be_in_spec (rtx, rtx_insn *, ds_t);
894 static void begin_speculative_block (rtx_insn *);
895 static void add_to_speculative_block (rtx_insn *);
896 static void init_before_recovery (basic_block *);
897 static void create_check_block_twin (rtx_insn *, bool);
898 static void fix_recovery_deps (basic_block);
899 static bool haifa_change_pattern (rtx_insn *, rtx);
900 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
901 static void restore_bb_notes (basic_block);
902 static void fix_jump_move (rtx_insn *);
903 static void move_block_after_check (rtx_insn *);
904 static void move_succs (vec<edge, va_gc> **, basic_block);
905 static void sched_remove_insn (rtx_insn *);
906 static void clear_priorities (rtx_insn *, rtx_vec_t *);
907 static void calc_priorities (rtx_vec_t);
908 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
909
910 #endif /* INSN_SCHEDULING */
911 \f
912 /* Point to state used for the current scheduling pass. */
913 struct haifa_sched_info *current_sched_info;
914 \f
915 #ifndef INSN_SCHEDULING
916 void
917 schedule_insns (void)
918 {
919 }
920 #else
921
922 /* Do register pressure sensitive insn scheduling if the flag is set
923 up. */
924 enum sched_pressure_algorithm sched_pressure;
925
926 /* Map regno -> its pressure class. The map defined only when
927 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
928 enum reg_class *sched_regno_pressure_class;
929
930 /* The current register pressure. Only elements corresponding pressure
931 classes are defined. */
932 static int curr_reg_pressure[N_REG_CLASSES];
933
934 /* Saved value of the previous array. */
935 static int saved_reg_pressure[N_REG_CLASSES];
936
937 /* Register living at given scheduling point. */
938 static bitmap curr_reg_live;
939
940 /* Saved value of the previous array. */
941 static bitmap saved_reg_live;
942
943 /* Registers mentioned in the current region. */
944 static bitmap region_ref_regs;
945
946 /* Effective number of available registers of a given class (see comment
947 in sched_pressure_start_bb). */
948 static int sched_class_regs_num[N_REG_CLASSES];
949 /* Number of call_used_regs. This is a helper for calculating of
950 sched_class_regs_num. */
951 static int call_used_regs_num[N_REG_CLASSES];
952
953 /* Initiate register pressure relative info for scheduling the current
954 region. Currently it is only clearing register mentioned in the
955 current region. */
956 void
957 sched_init_region_reg_pressure_info (void)
958 {
959 bitmap_clear (region_ref_regs);
960 }
961
962 /* PRESSURE[CL] describes the pressure on register class CL. Update it
963 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
964 LIVE tracks the set of live registers; if it is null, assume that
965 every birth or death is genuine. */
966 static inline void
967 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
968 {
969 enum reg_class pressure_class;
970
971 pressure_class = sched_regno_pressure_class[regno];
972 if (regno >= FIRST_PSEUDO_REGISTER)
973 {
974 if (pressure_class != NO_REGS)
975 {
976 if (birth_p)
977 {
978 if (!live || bitmap_set_bit (live, regno))
979 pressure[pressure_class]
980 += (ira_reg_class_max_nregs
981 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
982 }
983 else
984 {
985 if (!live || bitmap_clear_bit (live, regno))
986 pressure[pressure_class]
987 -= (ira_reg_class_max_nregs
988 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
989 }
990 }
991 }
992 else if (pressure_class != NO_REGS
993 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
994 {
995 if (birth_p)
996 {
997 if (!live || bitmap_set_bit (live, regno))
998 pressure[pressure_class]++;
999 }
1000 else
1001 {
1002 if (!live || bitmap_clear_bit (live, regno))
1003 pressure[pressure_class]--;
1004 }
1005 }
1006 }
1007
1008 /* Initiate current register pressure related info from living
1009 registers given by LIVE. */
1010 static void
1011 initiate_reg_pressure_info (bitmap live)
1012 {
1013 int i;
1014 unsigned int j;
1015 bitmap_iterator bi;
1016
1017 for (i = 0; i < ira_pressure_classes_num; i++)
1018 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1019 bitmap_clear (curr_reg_live);
1020 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1021 if (sched_pressure == SCHED_PRESSURE_MODEL
1022 || current_nr_blocks == 1
1023 || bitmap_bit_p (region_ref_regs, j))
1024 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1025 }
1026
1027 /* Mark registers in X as mentioned in the current region. */
1028 static void
1029 setup_ref_regs (rtx x)
1030 {
1031 int i, j, regno;
1032 const RTX_CODE code = GET_CODE (x);
1033 const char *fmt;
1034
1035 if (REG_P (x))
1036 {
1037 regno = REGNO (x);
1038 if (HARD_REGISTER_NUM_P (regno))
1039 bitmap_set_range (region_ref_regs, regno,
1040 hard_regno_nregs[regno][GET_MODE (x)]);
1041 else
1042 bitmap_set_bit (region_ref_regs, REGNO (x));
1043 return;
1044 }
1045 fmt = GET_RTX_FORMAT (code);
1046 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1047 if (fmt[i] == 'e')
1048 setup_ref_regs (XEXP (x, i));
1049 else if (fmt[i] == 'E')
1050 {
1051 for (j = 0; j < XVECLEN (x, i); j++)
1052 setup_ref_regs (XVECEXP (x, i, j));
1053 }
1054 }
1055
1056 /* Initiate current register pressure related info at the start of
1057 basic block BB. */
1058 static void
1059 initiate_bb_reg_pressure_info (basic_block bb)
1060 {
1061 unsigned int i ATTRIBUTE_UNUSED;
1062 rtx_insn *insn;
1063
1064 if (current_nr_blocks > 1)
1065 FOR_BB_INSNS (bb, insn)
1066 if (NONDEBUG_INSN_P (insn))
1067 setup_ref_regs (PATTERN (insn));
1068 initiate_reg_pressure_info (df_get_live_in (bb));
1069 #ifdef EH_RETURN_DATA_REGNO
1070 if (bb_has_eh_pred (bb))
1071 for (i = 0; ; ++i)
1072 {
1073 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1074
1075 if (regno == INVALID_REGNUM)
1076 break;
1077 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1078 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1079 regno, true);
1080 }
1081 #endif
1082 }
1083
1084 /* Save current register pressure related info. */
1085 static void
1086 save_reg_pressure (void)
1087 {
1088 int i;
1089
1090 for (i = 0; i < ira_pressure_classes_num; i++)
1091 saved_reg_pressure[ira_pressure_classes[i]]
1092 = curr_reg_pressure[ira_pressure_classes[i]];
1093 bitmap_copy (saved_reg_live, curr_reg_live);
1094 }
1095
1096 /* Restore saved register pressure related info. */
1097 static void
1098 restore_reg_pressure (void)
1099 {
1100 int i;
1101
1102 for (i = 0; i < ira_pressure_classes_num; i++)
1103 curr_reg_pressure[ira_pressure_classes[i]]
1104 = saved_reg_pressure[ira_pressure_classes[i]];
1105 bitmap_copy (curr_reg_live, saved_reg_live);
1106 }
1107
1108 /* Return TRUE if the register is dying after its USE. */
1109 static bool
1110 dying_use_p (struct reg_use_data *use)
1111 {
1112 struct reg_use_data *next;
1113
1114 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1115 if (NONDEBUG_INSN_P (next->insn)
1116 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1117 return false;
1118 return true;
1119 }
1120
1121 /* Print info about the current register pressure and its excess for
1122 each pressure class. */
1123 static void
1124 print_curr_reg_pressure (void)
1125 {
1126 int i;
1127 enum reg_class cl;
1128
1129 fprintf (sched_dump, ";;\t");
1130 for (i = 0; i < ira_pressure_classes_num; i++)
1131 {
1132 cl = ira_pressure_classes[i];
1133 gcc_assert (curr_reg_pressure[cl] >= 0);
1134 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1135 curr_reg_pressure[cl],
1136 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1137 }
1138 fprintf (sched_dump, "\n");
1139 }
1140 \f
1141 /* Determine if INSN has a condition that is clobbered if a register
1142 in SET_REGS is modified. */
1143 static bool
1144 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1145 {
1146 rtx pat = PATTERN (insn);
1147 gcc_assert (GET_CODE (pat) == COND_EXEC);
1148 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1149 {
1150 sd_iterator_def sd_it;
1151 dep_t dep;
1152 haifa_change_pattern (insn, ORIG_PAT (insn));
1153 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1154 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1155 TODO_SPEC (insn) = HARD_DEP;
1156 if (sched_verbose >= 2)
1157 fprintf (sched_dump,
1158 ";;\t\tdequeue insn %s because of clobbered condition\n",
1159 (*current_sched_info->print_insn) (insn, 0));
1160 return true;
1161 }
1162
1163 return false;
1164 }
1165
1166 /* This function should be called after modifying the pattern of INSN,
1167 to update scheduler data structures as needed. */
1168 static void
1169 update_insn_after_change (rtx_insn *insn)
1170 {
1171 sd_iterator_def sd_it;
1172 dep_t dep;
1173
1174 dfa_clear_single_insn_cache (insn);
1175
1176 sd_it = sd_iterator_start (insn,
1177 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1178 while (sd_iterator_cond (&sd_it, &dep))
1179 {
1180 DEP_COST (dep) = UNKNOWN_DEP_COST;
1181 sd_iterator_next (&sd_it);
1182 }
1183
1184 /* Invalidate INSN_COST, so it'll be recalculated. */
1185 INSN_COST (insn) = -1;
1186 /* Invalidate INSN_TICK, so it'll be recalculated. */
1187 INSN_TICK (insn) = INVALID_TICK;
1188
1189 /* Invalidate autoprefetch data entry. */
1190 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1191 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1192 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1193 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1194 }
1195
1196
1197 /* Two VECs, one to hold dependencies for which pattern replacements
1198 need to be applied or restored at the start of the next cycle, and
1199 another to hold an integer that is either one, to apply the
1200 corresponding replacement, or zero to restore it. */
1201 static vec<dep_t> next_cycle_replace_deps;
1202 static vec<int> next_cycle_apply;
1203
1204 static void apply_replacement (dep_t, bool);
1205 static void restore_pattern (dep_t, bool);
1206
1207 /* Look at the remaining dependencies for insn NEXT, and compute and return
1208 the TODO_SPEC value we should use for it. This is called after one of
1209 NEXT's dependencies has been resolved.
1210 We also perform pattern replacements for predication, and for broken
1211 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1212 false. */
1213
1214 static ds_t
1215 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1216 {
1217 ds_t new_ds;
1218 sd_iterator_def sd_it;
1219 dep_t dep, modify_dep = NULL;
1220 int n_spec = 0;
1221 int n_control = 0;
1222 int n_replace = 0;
1223 bool first_p = true;
1224
1225 if (sd_lists_empty_p (next, SD_LIST_BACK))
1226 /* NEXT has all its dependencies resolved. */
1227 return 0;
1228
1229 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1230 return HARD_DEP;
1231
1232 /* Now we've got NEXT with speculative deps only.
1233 1. Look at the deps to see what we have to do.
1234 2. Check if we can do 'todo'. */
1235 new_ds = 0;
1236
1237 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1238 {
1239 rtx_insn *pro = DEP_PRO (dep);
1240 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1241
1242 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1243 continue;
1244
1245 if (ds)
1246 {
1247 n_spec++;
1248 if (first_p)
1249 {
1250 first_p = false;
1251
1252 new_ds = ds;
1253 }
1254 else
1255 new_ds = ds_merge (new_ds, ds);
1256 }
1257 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1258 {
1259 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1260 {
1261 n_control++;
1262 modify_dep = dep;
1263 }
1264 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1265 }
1266 else if (DEP_REPLACE (dep) != NULL)
1267 {
1268 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1269 {
1270 n_replace++;
1271 modify_dep = dep;
1272 }
1273 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1274 }
1275 }
1276
1277 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1278 {
1279 if (!dbg_cnt (sched_breakdep))
1280 return HARD_DEP;
1281 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1282 {
1283 struct dep_replacement *desc = DEP_REPLACE (dep);
1284 if (desc != NULL)
1285 {
1286 if (desc->insn == next && !for_backtrack)
1287 {
1288 gcc_assert (n_replace == 1);
1289 apply_replacement (dep, true);
1290 }
1291 DEP_STATUS (dep) |= DEP_CANCELLED;
1292 }
1293 }
1294 return 0;
1295 }
1296
1297 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1298 {
1299 rtx_insn *pro, *other;
1300 rtx new_pat;
1301 rtx cond = NULL_RTX;
1302 bool success;
1303 rtx_insn *prev = NULL;
1304 int i;
1305 unsigned regno;
1306
1307 if ((current_sched_info->flags & DO_PREDICATION) == 0
1308 || (ORIG_PAT (next) != NULL_RTX
1309 && PREDICATED_PAT (next) == NULL_RTX))
1310 return HARD_DEP;
1311
1312 pro = DEP_PRO (modify_dep);
1313 other = real_insn_for_shadow (pro);
1314 if (other != NULL_RTX)
1315 pro = other;
1316
1317 cond = sched_get_reverse_condition_uncached (pro);
1318 regno = REGNO (XEXP (cond, 0));
1319
1320 /* Find the last scheduled insn that modifies the condition register.
1321 We can stop looking once we find the insn we depend on through the
1322 REG_DEP_CONTROL; if the condition register isn't modified after it,
1323 we know that it still has the right value. */
1324 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1325 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1326 {
1327 HARD_REG_SET t;
1328
1329 find_all_hard_reg_sets (prev, &t, true);
1330 if (TEST_HARD_REG_BIT (t, regno))
1331 return HARD_DEP;
1332 if (prev == pro)
1333 break;
1334 }
1335 if (ORIG_PAT (next) == NULL_RTX)
1336 {
1337 ORIG_PAT (next) = PATTERN (next);
1338
1339 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1340 success = haifa_change_pattern (next, new_pat);
1341 if (!success)
1342 return HARD_DEP;
1343 PREDICATED_PAT (next) = new_pat;
1344 }
1345 else if (PATTERN (next) != PREDICATED_PAT (next))
1346 {
1347 bool success = haifa_change_pattern (next,
1348 PREDICATED_PAT (next));
1349 gcc_assert (success);
1350 }
1351 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1352 return DEP_CONTROL;
1353 }
1354
1355 if (PREDICATED_PAT (next) != NULL_RTX)
1356 {
1357 int tick = INSN_TICK (next);
1358 bool success = haifa_change_pattern (next,
1359 ORIG_PAT (next));
1360 INSN_TICK (next) = tick;
1361 gcc_assert (success);
1362 }
1363
1364 /* We can't handle the case where there are both speculative and control
1365 dependencies, so we return HARD_DEP in such a case. Also fail if
1366 we have speculative dependencies with not enough points, or more than
1367 one control dependency. */
1368 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1369 || (n_spec > 0
1370 /* Too few points? */
1371 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1372 || n_control > 0
1373 || n_replace > 0)
1374 return HARD_DEP;
1375
1376 return new_ds;
1377 }
1378 \f
1379 /* Pointer to the last instruction scheduled. */
1380 static rtx_insn *last_scheduled_insn;
1381
1382 /* Pointer to the last nondebug instruction scheduled within the
1383 block, or the prev_head of the scheduling block. Used by
1384 rank_for_schedule, so that insns independent of the last scheduled
1385 insn will be preferred over dependent instructions. */
1386 static rtx last_nondebug_scheduled_insn;
1387
1388 /* Pointer that iterates through the list of unscheduled insns if we
1389 have a dbg_cnt enabled. It always points at an insn prior to the
1390 first unscheduled one. */
1391 static rtx_insn *nonscheduled_insns_begin;
1392
1393 /* Compute cost of executing INSN.
1394 This is the number of cycles between instruction issue and
1395 instruction results. */
1396 int
1397 insn_cost (rtx_insn *insn)
1398 {
1399 int cost;
1400
1401 if (sched_fusion)
1402 return 0;
1403
1404 if (sel_sched_p ())
1405 {
1406 if (recog_memoized (insn) < 0)
1407 return 0;
1408
1409 cost = insn_default_latency (insn);
1410 if (cost < 0)
1411 cost = 0;
1412
1413 return cost;
1414 }
1415
1416 cost = INSN_COST (insn);
1417
1418 if (cost < 0)
1419 {
1420 /* A USE insn, or something else we don't need to
1421 understand. We can't pass these directly to
1422 result_ready_cost or insn_default_latency because it will
1423 trigger a fatal error for unrecognizable insns. */
1424 if (recog_memoized (insn) < 0)
1425 {
1426 INSN_COST (insn) = 0;
1427 return 0;
1428 }
1429 else
1430 {
1431 cost = insn_default_latency (insn);
1432 if (cost < 0)
1433 cost = 0;
1434
1435 INSN_COST (insn) = cost;
1436 }
1437 }
1438
1439 return cost;
1440 }
1441
1442 /* Compute cost of dependence LINK.
1443 This is the number of cycles between instruction issue and
1444 instruction results.
1445 ??? We also use this function to call recog_memoized on all insns. */
1446 int
1447 dep_cost_1 (dep_t link, dw_t dw)
1448 {
1449 rtx_insn *insn = DEP_PRO (link);
1450 rtx_insn *used = DEP_CON (link);
1451 int cost;
1452
1453 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1454 return DEP_COST (link);
1455
1456 if (delay_htab)
1457 {
1458 struct delay_pair *delay_entry;
1459 delay_entry
1460 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1461 if (delay_entry)
1462 {
1463 if (delay_entry->i1 == insn)
1464 {
1465 DEP_COST (link) = pair_delay (delay_entry);
1466 return DEP_COST (link);
1467 }
1468 }
1469 }
1470
1471 /* A USE insn should never require the value used to be computed.
1472 This allows the computation of a function's result and parameter
1473 values to overlap the return and call. We don't care about the
1474 dependence cost when only decreasing register pressure. */
1475 if (recog_memoized (used) < 0)
1476 {
1477 cost = 0;
1478 recog_memoized (insn);
1479 }
1480 else
1481 {
1482 enum reg_note dep_type = DEP_TYPE (link);
1483
1484 cost = insn_cost (insn);
1485
1486 if (INSN_CODE (insn) >= 0)
1487 {
1488 if (dep_type == REG_DEP_ANTI)
1489 cost = 0;
1490 else if (dep_type == REG_DEP_OUTPUT)
1491 {
1492 cost = (insn_default_latency (insn)
1493 - insn_default_latency (used));
1494 if (cost <= 0)
1495 cost = 1;
1496 }
1497 else if (bypass_p (insn))
1498 cost = insn_latency (insn, used);
1499 }
1500
1501
1502 if (targetm.sched.adjust_cost_2)
1503 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1504 dw);
1505 else if (targetm.sched.adjust_cost != NULL)
1506 {
1507 /* This variable is used for backward compatibility with the
1508 targets. */
1509 rtx_insn_list *dep_cost_rtx_link =
1510 alloc_INSN_LIST (NULL_RTX, NULL);
1511
1512 /* Make it self-cycled, so that if some tries to walk over this
1513 incomplete list he/she will be caught in an endless loop. */
1514 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1515
1516 /* Targets use only REG_NOTE_KIND of the link. */
1517 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1518
1519 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1520 insn, cost);
1521
1522 free_INSN_LIST_node (dep_cost_rtx_link);
1523 }
1524
1525 if (cost < 0)
1526 cost = 0;
1527 }
1528
1529 DEP_COST (link) = cost;
1530 return cost;
1531 }
1532
1533 /* Compute cost of dependence LINK.
1534 This is the number of cycles between instruction issue and
1535 instruction results. */
1536 int
1537 dep_cost (dep_t link)
1538 {
1539 return dep_cost_1 (link, 0);
1540 }
1541
1542 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1543 INSN_PRIORITY explicitly. */
1544 void
1545 increase_insn_priority (rtx_insn *insn, int amount)
1546 {
1547 if (!sel_sched_p ())
1548 {
1549 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1550 if (INSN_PRIORITY_KNOWN (insn))
1551 INSN_PRIORITY (insn) += amount;
1552 }
1553 else
1554 {
1555 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1556 Use EXPR_PRIORITY instead. */
1557 sel_add_to_insn_priority (insn, amount);
1558 }
1559 }
1560
1561 /* Return 'true' if DEP should be included in priority calculations. */
1562 static bool
1563 contributes_to_priority_p (dep_t dep)
1564 {
1565 if (DEBUG_INSN_P (DEP_CON (dep))
1566 || DEBUG_INSN_P (DEP_PRO (dep)))
1567 return false;
1568
1569 /* Critical path is meaningful in block boundaries only. */
1570 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1571 DEP_PRO (dep)))
1572 return false;
1573
1574 if (DEP_REPLACE (dep) != NULL)
1575 return false;
1576
1577 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1578 then speculative instructions will less likely be
1579 scheduled. That is because the priority of
1580 their producers will increase, and, thus, the
1581 producers will more likely be scheduled, thus,
1582 resolving the dependence. */
1583 if (sched_deps_info->generate_spec_deps
1584 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1585 && (DEP_STATUS (dep) & SPECULATIVE))
1586 return false;
1587
1588 return true;
1589 }
1590
1591 /* Compute the number of nondebug deps in list LIST for INSN. */
1592
1593 static int
1594 dep_list_size (rtx insn, sd_list_types_def list)
1595 {
1596 sd_iterator_def sd_it;
1597 dep_t dep;
1598 int dbgcount = 0, nodbgcount = 0;
1599
1600 if (!MAY_HAVE_DEBUG_INSNS)
1601 return sd_lists_size (insn, list);
1602
1603 FOR_EACH_DEP (insn, list, sd_it, dep)
1604 {
1605 if (DEBUG_INSN_P (DEP_CON (dep)))
1606 dbgcount++;
1607 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1608 nodbgcount++;
1609 }
1610
1611 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1612
1613 return nodbgcount;
1614 }
1615
1616 bool sched_fusion;
1617
1618 /* Compute the priority number for INSN. */
1619 static int
1620 priority (rtx_insn *insn)
1621 {
1622 if (! INSN_P (insn))
1623 return 0;
1624
1625 /* We should not be interested in priority of an already scheduled insn. */
1626 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1627
1628 if (!INSN_PRIORITY_KNOWN (insn))
1629 {
1630 int this_priority = -1;
1631
1632 if (sched_fusion)
1633 {
1634 int this_fusion_priority;
1635
1636 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1637 &this_fusion_priority, &this_priority);
1638 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1639 }
1640 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1641 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1642 some forward deps but all of them are ignored by
1643 contributes_to_priority hook. At the moment we set priority of
1644 such insn to 0. */
1645 this_priority = insn_cost (insn);
1646 else
1647 {
1648 rtx_insn *prev_first, *twin;
1649 basic_block rec;
1650
1651 /* For recovery check instructions we calculate priority slightly
1652 different than that of normal instructions. Instead of walking
1653 through INSN_FORW_DEPS (check) list, we walk through
1654 INSN_FORW_DEPS list of each instruction in the corresponding
1655 recovery block. */
1656
1657 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1658 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1659 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1660 {
1661 prev_first = PREV_INSN (insn);
1662 twin = insn;
1663 }
1664 else
1665 {
1666 prev_first = NEXT_INSN (BB_HEAD (rec));
1667 twin = PREV_INSN (BB_END (rec));
1668 }
1669
1670 do
1671 {
1672 sd_iterator_def sd_it;
1673 dep_t dep;
1674
1675 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1676 {
1677 rtx_insn *next;
1678 int next_priority;
1679
1680 next = DEP_CON (dep);
1681
1682 if (BLOCK_FOR_INSN (next) != rec)
1683 {
1684 int cost;
1685
1686 if (!contributes_to_priority_p (dep))
1687 continue;
1688
1689 if (twin == insn)
1690 cost = dep_cost (dep);
1691 else
1692 {
1693 struct _dep _dep1, *dep1 = &_dep1;
1694
1695 init_dep (dep1, insn, next, REG_DEP_ANTI);
1696
1697 cost = dep_cost (dep1);
1698 }
1699
1700 next_priority = cost + priority (next);
1701
1702 if (next_priority > this_priority)
1703 this_priority = next_priority;
1704 }
1705 }
1706
1707 twin = PREV_INSN (twin);
1708 }
1709 while (twin != prev_first);
1710 }
1711
1712 if (this_priority < 0)
1713 {
1714 gcc_assert (this_priority == -1);
1715
1716 this_priority = insn_cost (insn);
1717 }
1718
1719 INSN_PRIORITY (insn) = this_priority;
1720 INSN_PRIORITY_STATUS (insn) = 1;
1721 }
1722
1723 return INSN_PRIORITY (insn);
1724 }
1725 \f
1726 /* Macros and functions for keeping the priority queue sorted, and
1727 dealing with queuing and dequeuing of instructions. */
1728
1729 /* For each pressure class CL, set DEATH[CL] to the number of registers
1730 in that class that die in INSN. */
1731
1732 static void
1733 calculate_reg_deaths (rtx_insn *insn, int *death)
1734 {
1735 int i;
1736 struct reg_use_data *use;
1737
1738 for (i = 0; i < ira_pressure_classes_num; i++)
1739 death[ira_pressure_classes[i]] = 0;
1740 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1741 if (dying_use_p (use))
1742 mark_regno_birth_or_death (0, death, use->regno, true);
1743 }
1744
1745 /* Setup info about the current register pressure impact of scheduling
1746 INSN at the current scheduling point. */
1747 static void
1748 setup_insn_reg_pressure_info (rtx_insn *insn)
1749 {
1750 int i, change, before, after, hard_regno;
1751 int excess_cost_change;
1752 machine_mode mode;
1753 enum reg_class cl;
1754 struct reg_pressure_data *pressure_info;
1755 int *max_reg_pressure;
1756 static int death[N_REG_CLASSES];
1757
1758 gcc_checking_assert (!DEBUG_INSN_P (insn));
1759
1760 excess_cost_change = 0;
1761 calculate_reg_deaths (insn, death);
1762 pressure_info = INSN_REG_PRESSURE (insn);
1763 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1764 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1765 for (i = 0; i < ira_pressure_classes_num; i++)
1766 {
1767 cl = ira_pressure_classes[i];
1768 gcc_assert (curr_reg_pressure[cl] >= 0);
1769 change = (int) pressure_info[i].set_increase - death[cl];
1770 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1771 after = MAX (0, max_reg_pressure[i] + change
1772 - sched_class_regs_num[cl]);
1773 hard_regno = ira_class_hard_regs[cl][0];
1774 gcc_assert (hard_regno >= 0);
1775 mode = reg_raw_mode[hard_regno];
1776 excess_cost_change += ((after - before)
1777 * (ira_memory_move_cost[mode][cl][0]
1778 + ira_memory_move_cost[mode][cl][1]));
1779 }
1780 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1781 }
1782 \f
1783 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1784 It tries to make the scheduler take register pressure into account
1785 without introducing too many unnecessary stalls. It hooks into the
1786 main scheduling algorithm at several points:
1787
1788 - Before scheduling starts, model_start_schedule constructs a
1789 "model schedule" for the current block. This model schedule is
1790 chosen solely to keep register pressure down. It does not take the
1791 target's pipeline or the original instruction order into account,
1792 except as a tie-breaker. It also doesn't work to a particular
1793 pressure limit.
1794
1795 This model schedule gives us an idea of what pressure can be
1796 achieved for the block and gives us an example of a schedule that
1797 keeps to that pressure. It also makes the final schedule less
1798 dependent on the original instruction order. This is important
1799 because the original order can either be "wide" (many values live
1800 at once, such as in user-scheduled code) or "narrow" (few values
1801 live at once, such as after loop unrolling, where several
1802 iterations are executed sequentially).
1803
1804 We do not apply this model schedule to the rtx stream. We simply
1805 record it in model_schedule. We also compute the maximum pressure,
1806 MP, that was seen during this schedule.
1807
1808 - Instructions are added to the ready queue even if they require
1809 a stall. The length of the stall is instead computed as:
1810
1811 MAX (INSN_TICK (INSN) - clock_var, 0)
1812
1813 (= insn_delay). This allows rank_for_schedule to choose between
1814 introducing a deliberate stall or increasing pressure.
1815
1816 - Before sorting the ready queue, model_set_excess_costs assigns
1817 a pressure-based cost to each ready instruction in the queue.
1818 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1819 (ECC for short) and is effectively measured in cycles.
1820
1821 - rank_for_schedule ranks instructions based on:
1822
1823 ECC (insn) + insn_delay (insn)
1824
1825 then as:
1826
1827 insn_delay (insn)
1828
1829 So, for example, an instruction X1 with an ECC of 1 that can issue
1830 now will win over an instruction X0 with an ECC of zero that would
1831 introduce a stall of one cycle. However, an instruction X2 with an
1832 ECC of 2 that can issue now will lose to both X0 and X1.
1833
1834 - When an instruction is scheduled, model_recompute updates the model
1835 schedule with the new pressures (some of which might now exceed the
1836 original maximum pressure MP). model_update_limit_points then searches
1837 for the new point of maximum pressure, if not already known. */
1838
1839 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1840 from surrounding debug information. */
1841 #define MODEL_BAR \
1842 ";;\t\t+------------------------------------------------------\n"
1843
1844 /* Information about the pressure on a particular register class at a
1845 particular point of the model schedule. */
1846 struct model_pressure_data {
1847 /* The pressure at this point of the model schedule, or -1 if the
1848 point is associated with an instruction that has already been
1849 scheduled. */
1850 int ref_pressure;
1851
1852 /* The maximum pressure during or after this point of the model schedule. */
1853 int max_pressure;
1854 };
1855
1856 /* Per-instruction information that is used while building the model
1857 schedule. Here, "schedule" refers to the model schedule rather
1858 than the main schedule. */
1859 struct model_insn_info {
1860 /* The instruction itself. */
1861 rtx_insn *insn;
1862
1863 /* If this instruction is in model_worklist, these fields link to the
1864 previous (higher-priority) and next (lower-priority) instructions
1865 in the list. */
1866 struct model_insn_info *prev;
1867 struct model_insn_info *next;
1868
1869 /* While constructing the schedule, QUEUE_INDEX describes whether an
1870 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1871 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1872 old_queue records the value that QUEUE_INDEX had before scheduling
1873 started, so that we can restore it once the schedule is complete. */
1874 int old_queue;
1875
1876 /* The relative importance of an unscheduled instruction. Higher
1877 values indicate greater importance. */
1878 unsigned int model_priority;
1879
1880 /* The length of the longest path of satisfied true dependencies
1881 that leads to this instruction. */
1882 unsigned int depth;
1883
1884 /* The length of the longest path of dependencies of any kind
1885 that leads from this instruction. */
1886 unsigned int alap;
1887
1888 /* The number of predecessor nodes that must still be scheduled. */
1889 int unscheduled_preds;
1890 };
1891
1892 /* Information about the pressure limit for a particular register class.
1893 This structure is used when applying a model schedule to the main
1894 schedule. */
1895 struct model_pressure_limit {
1896 /* The maximum register pressure seen in the original model schedule. */
1897 int orig_pressure;
1898
1899 /* The maximum register pressure seen in the current model schedule
1900 (which excludes instructions that have already been scheduled). */
1901 int pressure;
1902
1903 /* The point of the current model schedule at which PRESSURE is first
1904 reached. It is set to -1 if the value needs to be recomputed. */
1905 int point;
1906 };
1907
1908 /* Describes a particular way of measuring register pressure. */
1909 struct model_pressure_group {
1910 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1911 struct model_pressure_limit limits[N_REG_CLASSES];
1912
1913 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1914 on register class ira_pressure_classes[PCI] at point POINT of the
1915 current model schedule. A POINT of model_num_insns describes the
1916 pressure at the end of the schedule. */
1917 struct model_pressure_data *model;
1918 };
1919
1920 /* Index POINT gives the instruction at point POINT of the model schedule.
1921 This array doesn't change during main scheduling. */
1922 static vec<rtx_insn *> model_schedule;
1923
1924 /* The list of instructions in the model worklist, sorted in order of
1925 decreasing priority. */
1926 static struct model_insn_info *model_worklist;
1927
1928 /* Index I describes the instruction with INSN_LUID I. */
1929 static struct model_insn_info *model_insns;
1930
1931 /* The number of instructions in the model schedule. */
1932 static int model_num_insns;
1933
1934 /* The index of the first instruction in model_schedule that hasn't yet been
1935 added to the main schedule, or model_num_insns if all of them have. */
1936 static int model_curr_point;
1937
1938 /* Describes the pressure before each instruction in the model schedule. */
1939 static struct model_pressure_group model_before_pressure;
1940
1941 /* The first unused model_priority value (as used in model_insn_info). */
1942 static unsigned int model_next_priority;
1943
1944
1945 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1946 at point POINT of the model schedule. */
1947 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1948 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1949
1950 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1951 after point POINT of the model schedule. */
1952 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1953 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1954
1955 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1956 of the model schedule. */
1957 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1958 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1959
1960 /* Information about INSN that is used when creating the model schedule. */
1961 #define MODEL_INSN_INFO(INSN) \
1962 (&model_insns[INSN_LUID (INSN)])
1963
1964 /* The instruction at point POINT of the model schedule. */
1965 #define MODEL_INSN(POINT) \
1966 (model_schedule[POINT])
1967
1968
1969 /* Return INSN's index in the model schedule, or model_num_insns if it
1970 doesn't belong to that schedule. */
1971
1972 static int
1973 model_index (rtx_insn *insn)
1974 {
1975 if (INSN_MODEL_INDEX (insn) == 0)
1976 return model_num_insns;
1977 return INSN_MODEL_INDEX (insn) - 1;
1978 }
1979
1980 /* Make sure that GROUP->limits is up-to-date for the current point
1981 of the model schedule. */
1982
1983 static void
1984 model_update_limit_points_in_group (struct model_pressure_group *group)
1985 {
1986 int pci, max_pressure, point;
1987
1988 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1989 {
1990 /* We may have passed the final point at which the pressure in
1991 group->limits[pci].pressure was reached. Update the limit if so. */
1992 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1993 group->limits[pci].pressure = max_pressure;
1994
1995 /* Find the point at which MAX_PRESSURE is first reached. We need
1996 to search in three cases:
1997
1998 - We've already moved past the previous pressure point.
1999 In this case we search forward from model_curr_point.
2000
2001 - We scheduled the previous point of maximum pressure ahead of
2002 its position in the model schedule, but doing so didn't bring
2003 the pressure point earlier. In this case we search forward
2004 from that previous pressure point.
2005
2006 - Scheduling an instruction early caused the maximum pressure
2007 to decrease. In this case we will have set the pressure
2008 point to -1, and we search forward from model_curr_point. */
2009 point = MAX (group->limits[pci].point, model_curr_point);
2010 while (point < model_num_insns
2011 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
2012 point++;
2013 group->limits[pci].point = point;
2014
2015 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
2016 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
2017 }
2018 }
2019
2020 /* Make sure that all register-pressure limits are up-to-date for the
2021 current position in the model schedule. */
2022
2023 static void
2024 model_update_limit_points (void)
2025 {
2026 model_update_limit_points_in_group (&model_before_pressure);
2027 }
2028
2029 /* Return the model_index of the last unscheduled use in chain USE
2030 outside of USE's instruction. Return -1 if there are no other uses,
2031 or model_num_insns if the register is live at the end of the block. */
2032
2033 static int
2034 model_last_use_except (struct reg_use_data *use)
2035 {
2036 struct reg_use_data *next;
2037 int last, index;
2038
2039 last = -1;
2040 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2041 if (NONDEBUG_INSN_P (next->insn)
2042 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2043 {
2044 index = model_index (next->insn);
2045 if (index == model_num_insns)
2046 return model_num_insns;
2047 if (last < index)
2048 last = index;
2049 }
2050 return last;
2051 }
2052
2053 /* An instruction with model_index POINT has just been scheduled, and it
2054 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2055 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2056 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2057
2058 static void
2059 model_start_update_pressure (struct model_pressure_group *group,
2060 int point, int pci, int delta)
2061 {
2062 int next_max_pressure;
2063
2064 if (point == model_num_insns)
2065 {
2066 /* The instruction wasn't part of the model schedule; it was moved
2067 from a different block. Update the pressure for the end of
2068 the model schedule. */
2069 MODEL_REF_PRESSURE (group, point, pci) += delta;
2070 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2071 }
2072 else
2073 {
2074 /* Record that this instruction has been scheduled. Nothing now
2075 changes between POINT and POINT + 1, so get the maximum pressure
2076 from the latter. If the maximum pressure decreases, the new
2077 pressure point may be before POINT. */
2078 MODEL_REF_PRESSURE (group, point, pci) = -1;
2079 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2080 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2081 {
2082 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2083 if (group->limits[pci].point == point)
2084 group->limits[pci].point = -1;
2085 }
2086 }
2087 }
2088
2089 /* Record that scheduling a later instruction has changed the pressure
2090 at point POINT of the model schedule by DELTA (which might be 0).
2091 Update GROUP accordingly. Return nonzero if these changes might
2092 trigger changes to previous points as well. */
2093
2094 static int
2095 model_update_pressure (struct model_pressure_group *group,
2096 int point, int pci, int delta)
2097 {
2098 int ref_pressure, max_pressure, next_max_pressure;
2099
2100 /* If POINT hasn't yet been scheduled, update its pressure. */
2101 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2102 if (ref_pressure >= 0 && delta != 0)
2103 {
2104 ref_pressure += delta;
2105 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2106
2107 /* Check whether the maximum pressure in the overall schedule
2108 has increased. (This means that the MODEL_MAX_PRESSURE of
2109 every point <= POINT will need to increase too; see below.) */
2110 if (group->limits[pci].pressure < ref_pressure)
2111 group->limits[pci].pressure = ref_pressure;
2112
2113 /* If we are at maximum pressure, and the maximum pressure
2114 point was previously unknown or later than POINT,
2115 bring it forward. */
2116 if (group->limits[pci].pressure == ref_pressure
2117 && !IN_RANGE (group->limits[pci].point, 0, point))
2118 group->limits[pci].point = point;
2119
2120 /* If POINT used to be the point of maximum pressure, but isn't
2121 any longer, we need to recalculate it using a forward walk. */
2122 if (group->limits[pci].pressure > ref_pressure
2123 && group->limits[pci].point == point)
2124 group->limits[pci].point = -1;
2125 }
2126
2127 /* Update the maximum pressure at POINT. Changes here might also
2128 affect the maximum pressure at POINT - 1. */
2129 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2130 max_pressure = MAX (ref_pressure, next_max_pressure);
2131 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2132 {
2133 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2134 return 1;
2135 }
2136 return 0;
2137 }
2138
2139 /* INSN has just been scheduled. Update the model schedule accordingly. */
2140
2141 static void
2142 model_recompute (rtx_insn *insn)
2143 {
2144 struct {
2145 int last_use;
2146 int regno;
2147 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2148 struct reg_use_data *use;
2149 struct reg_pressure_data *reg_pressure;
2150 int delta[N_REG_CLASSES];
2151 int pci, point, mix, new_last, cl, ref_pressure, queue;
2152 unsigned int i, num_uses, num_pending_births;
2153 bool print_p;
2154
2155 /* The destinations of INSN were previously live from POINT onwards, but are
2156 now live from model_curr_point onwards. Set up DELTA accordingly. */
2157 point = model_index (insn);
2158 reg_pressure = INSN_REG_PRESSURE (insn);
2159 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2160 {
2161 cl = ira_pressure_classes[pci];
2162 delta[cl] = reg_pressure[pci].set_increase;
2163 }
2164
2165 /* Record which registers previously died at POINT, but which now die
2166 before POINT. Adjust DELTA so that it represents the effect of
2167 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2168 registers that will be born in the range [model_curr_point, POINT). */
2169 num_uses = 0;
2170 num_pending_births = 0;
2171 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2172 {
2173 new_last = model_last_use_except (use);
2174 if (new_last < point)
2175 {
2176 gcc_assert (num_uses < ARRAY_SIZE (uses));
2177 uses[num_uses].last_use = new_last;
2178 uses[num_uses].regno = use->regno;
2179 /* This register is no longer live after POINT - 1. */
2180 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2181 num_uses++;
2182 if (new_last >= 0)
2183 num_pending_births++;
2184 }
2185 }
2186
2187 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2188 Also set each group pressure limit for POINT. */
2189 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2190 {
2191 cl = ira_pressure_classes[pci];
2192 model_start_update_pressure (&model_before_pressure,
2193 point, pci, delta[cl]);
2194 }
2195
2196 /* Walk the model schedule backwards, starting immediately before POINT. */
2197 print_p = false;
2198 if (point != model_curr_point)
2199 do
2200 {
2201 point--;
2202 insn = MODEL_INSN (point);
2203 queue = QUEUE_INDEX (insn);
2204
2205 if (queue != QUEUE_SCHEDULED)
2206 {
2207 /* DELTA describes the effect of the move on the register pressure
2208 after POINT. Make it describe the effect on the pressure
2209 before POINT. */
2210 i = 0;
2211 while (i < num_uses)
2212 {
2213 if (uses[i].last_use == point)
2214 {
2215 /* This register is now live again. */
2216 mark_regno_birth_or_death (NULL, delta,
2217 uses[i].regno, true);
2218
2219 /* Remove this use from the array. */
2220 uses[i] = uses[num_uses - 1];
2221 num_uses--;
2222 num_pending_births--;
2223 }
2224 else
2225 i++;
2226 }
2227
2228 if (sched_verbose >= 5)
2229 {
2230 if (!print_p)
2231 {
2232 fprintf (sched_dump, MODEL_BAR);
2233 fprintf (sched_dump, ";;\t\t| New pressure for model"
2234 " schedule\n");
2235 fprintf (sched_dump, MODEL_BAR);
2236 print_p = true;
2237 }
2238
2239 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2240 point, INSN_UID (insn),
2241 str_pattern_slim (PATTERN (insn)));
2242 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2243 {
2244 cl = ira_pressure_classes[pci];
2245 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2246 point, pci);
2247 fprintf (sched_dump, " %s:[%d->%d]",
2248 reg_class_names[ira_pressure_classes[pci]],
2249 ref_pressure, ref_pressure + delta[cl]);
2250 }
2251 fprintf (sched_dump, "\n");
2252 }
2253 }
2254
2255 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2256 might have changed as well. */
2257 mix = num_pending_births;
2258 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2259 {
2260 cl = ira_pressure_classes[pci];
2261 mix |= delta[cl];
2262 mix |= model_update_pressure (&model_before_pressure,
2263 point, pci, delta[cl]);
2264 }
2265 }
2266 while (mix && point > model_curr_point);
2267
2268 if (print_p)
2269 fprintf (sched_dump, MODEL_BAR);
2270 }
2271
2272 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2273 check whether the insn's pattern needs restoring. */
2274 static bool
2275 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2276 {
2277 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2278 return false;
2279
2280 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2281 {
2282 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2283 gcc_assert (next == DEP_CON (dep));
2284 }
2285 else
2286 {
2287 struct dep_replacement *desc = DEP_REPLACE (dep);
2288 if (desc->insn != next)
2289 {
2290 gcc_assert (*desc->loc == desc->orig);
2291 return false;
2292 }
2293 }
2294 return true;
2295 }
2296 \f
2297 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2298 pressure on CL from P to P'. We use this to calculate a "base ECC",
2299 baseECC (CL, X), for each pressure class CL and each instruction X.
2300 Supposing X changes the pressure on CL from P to P', and that the
2301 maximum pressure on CL in the current model schedule is MP', then:
2302
2303 * if X occurs before or at the next point of maximum pressure in
2304 the model schedule and P' > MP', then:
2305
2306 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2307
2308 The idea is that the pressure after scheduling a fixed set of
2309 instructions -- in this case, the set up to and including the
2310 next maximum pressure point -- is going to be the same regardless
2311 of the order; we simply want to keep the intermediate pressure
2312 under control. Thus X has a cost of zero unless scheduling it
2313 now would exceed MP'.
2314
2315 If all increases in the set are by the same amount, no zero-cost
2316 instruction will ever cause the pressure to exceed MP'. However,
2317 if X is instead moved past an instruction X' with pressure in the
2318 range (MP' - (P' - P), MP'), the pressure at X' will increase
2319 beyond MP'. Since baseECC is very much a heuristic anyway,
2320 it doesn't seem worth the overhead of tracking cases like these.
2321
2322 The cost of exceeding MP' is always based on the original maximum
2323 pressure MP. This is so that going 2 registers over the original
2324 limit has the same cost regardless of whether it comes from two
2325 separate +1 deltas or from a single +2 delta.
2326
2327 * if X occurs after the next point of maximum pressure in the model
2328 schedule and P' > P, then:
2329
2330 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2331
2332 That is, if we move X forward across a point of maximum pressure,
2333 and if X increases the pressure by P' - P, then we conservatively
2334 assume that scheduling X next would increase the maximum pressure
2335 by P' - P. Again, the cost of doing this is based on the original
2336 maximum pressure MP, for the same reason as above.
2337
2338 * if P' < P, P > MP, and X occurs at or after the next point of
2339 maximum pressure, then:
2340
2341 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2342
2343 That is, if we have already exceeded the original maximum pressure MP,
2344 and if X might reduce the maximum pressure again -- or at least push
2345 it further back, and thus allow more scheduling freedom -- it is given
2346 a negative cost to reflect the improvement.
2347
2348 * otherwise,
2349
2350 baseECC (CL, X) = 0
2351
2352 In this case, X is not expected to affect the maximum pressure MP',
2353 so it has zero cost.
2354
2355 We then create a combined value baseECC (X) that is the sum of
2356 baseECC (CL, X) for each pressure class CL.
2357
2358 baseECC (X) could itself be used as the ECC value described above.
2359 However, this is often too conservative, in the sense that it
2360 tends to make high-priority instructions that increase pressure
2361 wait too long in cases where introducing a spill would be better.
2362 For this reason the final ECC is a priority-adjusted form of
2363 baseECC (X). Specifically, we calculate:
2364
2365 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2366 baseP = MAX { P (X) | baseECC (X) <= 0 }
2367
2368 Then:
2369
2370 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2371
2372 Thus an instruction's effect on pressure is ignored if it has a high
2373 enough priority relative to the ones that don't increase pressure.
2374 Negative values of baseECC (X) do not increase the priority of X
2375 itself, but they do make it harder for other instructions to
2376 increase the pressure further.
2377
2378 This pressure cost is deliberately timid. The intention has been
2379 to choose a heuristic that rarely interferes with the normal list
2380 scheduler in cases where that scheduler would produce good code.
2381 We simply want to curb some of its worst excesses. */
2382
2383 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2384
2385 Here we use the very simplistic cost model that every register above
2386 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2387 measures instead, such as one based on MEMORY_MOVE_COST. However:
2388
2389 (1) In order for an instruction to be scheduled, the higher cost
2390 would need to be justified in a single saving of that many stalls.
2391 This is overly pessimistic, because the benefit of spilling is
2392 often to avoid a sequence of several short stalls rather than
2393 a single long one.
2394
2395 (2) The cost is still arbitrary. Because we are not allocating
2396 registers during scheduling, we have no way of knowing for
2397 sure how many memory accesses will be required by each spill,
2398 where the spills will be placed within the block, or even
2399 which block(s) will contain the spills.
2400
2401 So a higher cost than 1 is often too conservative in practice,
2402 forcing blocks to contain unnecessary stalls instead of spill code.
2403 The simple cost below seems to be the best compromise. It reduces
2404 the interference with the normal list scheduler, which helps make
2405 it more suitable for a default-on option. */
2406
2407 static int
2408 model_spill_cost (int cl, int from, int to)
2409 {
2410 from = MAX (from, sched_class_regs_num[cl]);
2411 return MAX (to, from) - from;
2412 }
2413
2414 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2415 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2416 P' = P + DELTA. */
2417
2418 static int
2419 model_excess_group_cost (struct model_pressure_group *group,
2420 int point, int pci, int delta)
2421 {
2422 int pressure, cl;
2423
2424 cl = ira_pressure_classes[pci];
2425 if (delta < 0 && point >= group->limits[pci].point)
2426 {
2427 pressure = MAX (group->limits[pci].orig_pressure,
2428 curr_reg_pressure[cl] + delta);
2429 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2430 }
2431
2432 if (delta > 0)
2433 {
2434 if (point > group->limits[pci].point)
2435 pressure = group->limits[pci].pressure + delta;
2436 else
2437 pressure = curr_reg_pressure[cl] + delta;
2438
2439 if (pressure > group->limits[pci].pressure)
2440 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2441 pressure);
2442 }
2443
2444 return 0;
2445 }
2446
2447 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2448 if PRINT_P. */
2449
2450 static int
2451 model_excess_cost (rtx_insn *insn, bool print_p)
2452 {
2453 int point, pci, cl, cost, this_cost, delta;
2454 struct reg_pressure_data *insn_reg_pressure;
2455 int insn_death[N_REG_CLASSES];
2456
2457 calculate_reg_deaths (insn, insn_death);
2458 point = model_index (insn);
2459 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2460 cost = 0;
2461
2462 if (print_p)
2463 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2464 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2465
2466 /* Sum up the individual costs for each register class. */
2467 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2468 {
2469 cl = ira_pressure_classes[pci];
2470 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2471 this_cost = model_excess_group_cost (&model_before_pressure,
2472 point, pci, delta);
2473 cost += this_cost;
2474 if (print_p)
2475 fprintf (sched_dump, " %s:[%d base cost %d]",
2476 reg_class_names[cl], delta, this_cost);
2477 }
2478
2479 if (print_p)
2480 fprintf (sched_dump, "\n");
2481
2482 return cost;
2483 }
2484
2485 /* Dump the next points of maximum pressure for GROUP. */
2486
2487 static void
2488 model_dump_pressure_points (struct model_pressure_group *group)
2489 {
2490 int pci, cl;
2491
2492 fprintf (sched_dump, ";;\t\t| pressure points");
2493 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2494 {
2495 cl = ira_pressure_classes[pci];
2496 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2497 curr_reg_pressure[cl], group->limits[pci].pressure);
2498 if (group->limits[pci].point < model_num_insns)
2499 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2500 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2501 else
2502 fprintf (sched_dump, "end]");
2503 }
2504 fprintf (sched_dump, "\n");
2505 }
2506
2507 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2508
2509 static void
2510 model_set_excess_costs (rtx_insn **insns, int count)
2511 {
2512 int i, cost, priority_base, priority;
2513 bool print_p;
2514
2515 /* Record the baseECC value for each instruction in the model schedule,
2516 except that negative costs are converted to zero ones now rather than
2517 later. Do not assign a cost to debug instructions, since they must
2518 not change code-generation decisions. Experiments suggest we also
2519 get better results by not assigning a cost to instructions from
2520 a different block.
2521
2522 Set PRIORITY_BASE to baseP in the block comment above. This is the
2523 maximum priority of the "cheap" instructions, which should always
2524 include the next model instruction. */
2525 priority_base = 0;
2526 print_p = false;
2527 for (i = 0; i < count; i++)
2528 if (INSN_MODEL_INDEX (insns[i]))
2529 {
2530 if (sched_verbose >= 6 && !print_p)
2531 {
2532 fprintf (sched_dump, MODEL_BAR);
2533 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2534 model_dump_pressure_points (&model_before_pressure);
2535 fprintf (sched_dump, MODEL_BAR);
2536 print_p = true;
2537 }
2538 cost = model_excess_cost (insns[i], print_p);
2539 if (cost <= 0)
2540 {
2541 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2542 priority_base = MAX (priority_base, priority);
2543 cost = 0;
2544 }
2545 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2546 }
2547 if (print_p)
2548 fprintf (sched_dump, MODEL_BAR);
2549
2550 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2551 instruction. */
2552 for (i = 0; i < count; i++)
2553 {
2554 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2555 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2556 if (cost > 0 && priority > priority_base)
2557 {
2558 cost += priority_base - priority;
2559 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2560 }
2561 }
2562 }
2563 \f
2564
2565 /* Enum of rank_for_schedule heuristic decisions. */
2566 enum rfs_decision {
2567 RFS_DEBUG, RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2568 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2569 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2570 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2571 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2572
2573 /* Corresponding strings for print outs. */
2574 static const char *rfs_str[RFS_N] = {
2575 "RFS_DEBUG", "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2576 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2577 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2578 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2579 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2580
2581 /* Statistical breakdown of rank_for_schedule decisions. */
2582 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2583 static rank_for_schedule_stats_t rank_for_schedule_stats;
2584
2585 /* Return the result of comparing insns TMP and TMP2 and update
2586 Rank_For_Schedule statistics. */
2587 static int
2588 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2589 {
2590 ++rank_for_schedule_stats.stats[decision];
2591 if (result < 0)
2592 INSN_LAST_RFS_WIN (tmp) = decision;
2593 else if (result > 0)
2594 INSN_LAST_RFS_WIN (tmp2) = decision;
2595 else
2596 gcc_unreachable ();
2597 return result;
2598 }
2599
2600 /* Returns a positive value if x is preferred; returns a negative value if
2601 y is preferred. Should never return 0, since that will make the sort
2602 unstable. */
2603
2604 static int
2605 rank_for_schedule (const void *x, const void *y)
2606 {
2607 rtx_insn *tmp = *(rtx_insn * const *) y;
2608 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2609 int tmp_class, tmp2_class;
2610 int val, priority_val, info_val, diff;
2611
2612 if (MAY_HAVE_DEBUG_INSNS)
2613 {
2614 /* Schedule debug insns as early as possible. */
2615 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2616 return rfs_result (RFS_DEBUG, -1, tmp, tmp2);
2617 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2618 return rfs_result (RFS_DEBUG, 1, tmp, tmp2);
2619 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2620 return rfs_result (RFS_DEBUG, INSN_LUID (tmp) - INSN_LUID (tmp2),
2621 tmp, tmp2);
2622 }
2623
2624 if (live_range_shrinkage_p)
2625 {
2626 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2627 code. */
2628 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2629 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2630 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2631 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2632 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2633 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2634 /* Sort by INSN_LUID (original insn order), so that we make the
2635 sort stable. This minimizes instruction movement, thus
2636 minimizing sched's effect on debugging and cross-jumping. */
2637 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2638 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2639 }
2640
2641 /* The insn in a schedule group should be issued the first. */
2642 if (flag_sched_group_heuristic &&
2643 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2644 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2645 tmp, tmp2);
2646
2647 /* Make sure that priority of TMP and TMP2 are initialized. */
2648 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2649
2650 if (sched_fusion)
2651 {
2652 /* The instruction that has the same fusion priority as the last
2653 instruction is the instruction we picked next. If that is not
2654 the case, we sort ready list firstly by fusion priority, then
2655 by priority, and at last by INSN_LUID. */
2656 int a = INSN_FUSION_PRIORITY (tmp);
2657 int b = INSN_FUSION_PRIORITY (tmp2);
2658 int last = -1;
2659
2660 if (last_nondebug_scheduled_insn
2661 && !NOTE_P (last_nondebug_scheduled_insn)
2662 && BLOCK_FOR_INSN (tmp)
2663 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2664 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2665
2666 if (a != last && b != last)
2667 {
2668 if (a == b)
2669 {
2670 a = INSN_PRIORITY (tmp);
2671 b = INSN_PRIORITY (tmp2);
2672 }
2673 if (a != b)
2674 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2675 else
2676 return rfs_result (RFS_FUSION,
2677 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2678 }
2679 else if (a == b)
2680 {
2681 gcc_assert (last_nondebug_scheduled_insn
2682 && !NOTE_P (last_nondebug_scheduled_insn));
2683 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2684
2685 a = abs (INSN_PRIORITY (tmp) - last);
2686 b = abs (INSN_PRIORITY (tmp2) - last);
2687 if (a != b)
2688 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2689 else
2690 return rfs_result (RFS_FUSION,
2691 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2692 }
2693 else if (a == last)
2694 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2695 else
2696 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2697 }
2698
2699 if (sched_pressure != SCHED_PRESSURE_NONE)
2700 {
2701 /* Prefer insn whose scheduling results in the smallest register
2702 pressure excess. */
2703 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2704 + insn_delay (tmp)
2705 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2706 - insn_delay (tmp2))))
2707 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2708 }
2709
2710 if (sched_pressure != SCHED_PRESSURE_NONE
2711 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2712 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2713 {
2714 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2715 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2716 }
2717
2718 /* If we are doing backtracking in this schedule, prefer insns that
2719 have forward dependencies with negative cost against an insn that
2720 was already scheduled. */
2721 if (current_sched_info->flags & DO_BACKTRACKING)
2722 {
2723 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2724 if (priority_val)
2725 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2726 }
2727
2728 /* Prefer insn with higher priority. */
2729 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2730
2731 if (flag_sched_critical_path_heuristic && priority_val)
2732 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2733
2734 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2735 {
2736 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2737 if (autopref != 0)
2738 return autopref;
2739 }
2740
2741 /* Prefer speculative insn with greater dependencies weakness. */
2742 if (flag_sched_spec_insn_heuristic && spec_info)
2743 {
2744 ds_t ds1, ds2;
2745 dw_t dw1, dw2;
2746 int dw;
2747
2748 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2749 if (ds1)
2750 dw1 = ds_weak (ds1);
2751 else
2752 dw1 = NO_DEP_WEAK;
2753
2754 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2755 if (ds2)
2756 dw2 = ds_weak (ds2);
2757 else
2758 dw2 = NO_DEP_WEAK;
2759
2760 dw = dw2 - dw1;
2761 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2762 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2763 }
2764
2765 info_val = (*current_sched_info->rank) (tmp, tmp2);
2766 if (flag_sched_rank_heuristic && info_val)
2767 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2768
2769 /* Compare insns based on their relation to the last scheduled
2770 non-debug insn. */
2771 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2772 {
2773 dep_t dep1;
2774 dep_t dep2;
2775 rtx last = last_nondebug_scheduled_insn;
2776
2777 /* Classify the instructions into three classes:
2778 1) Data dependent on last schedule insn.
2779 2) Anti/Output dependent on last scheduled insn.
2780 3) Independent of last scheduled insn, or has latency of one.
2781 Choose the insn from the highest numbered class if different. */
2782 dep1 = sd_find_dep_between (last, tmp, true);
2783
2784 if (dep1 == NULL || dep_cost (dep1) == 1)
2785 tmp_class = 3;
2786 else if (/* Data dependence. */
2787 DEP_TYPE (dep1) == REG_DEP_TRUE)
2788 tmp_class = 1;
2789 else
2790 tmp_class = 2;
2791
2792 dep2 = sd_find_dep_between (last, tmp2, true);
2793
2794 if (dep2 == NULL || dep_cost (dep2) == 1)
2795 tmp2_class = 3;
2796 else if (/* Data dependence. */
2797 DEP_TYPE (dep2) == REG_DEP_TRUE)
2798 tmp2_class = 1;
2799 else
2800 tmp2_class = 2;
2801
2802 if ((val = tmp2_class - tmp_class))
2803 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2804 }
2805
2806 /* Prefer instructions that occur earlier in the model schedule. */
2807 if (sched_pressure == SCHED_PRESSURE_MODEL
2808 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2809 {
2810 diff = model_index (tmp) - model_index (tmp2);
2811 gcc_assert (diff != 0);
2812 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2813 }
2814
2815 /* Prefer the insn which has more later insns that depend on it.
2816 This gives the scheduler more freedom when scheduling later
2817 instructions at the expense of added register pressure. */
2818
2819 val = (dep_list_size (tmp2, SD_LIST_FORW)
2820 - dep_list_size (tmp, SD_LIST_FORW));
2821
2822 if (flag_sched_dep_count_heuristic && val != 0)
2823 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2824
2825 /* If insns are equally good, sort by INSN_LUID (original insn order),
2826 so that we make the sort stable. This minimizes instruction movement,
2827 thus minimizing sched's effect on debugging and cross-jumping. */
2828 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2829 }
2830
2831 /* Resort the array A in which only element at index N may be out of order. */
2832
2833 HAIFA_INLINE static void
2834 swap_sort (rtx_insn **a, int n)
2835 {
2836 rtx_insn *insn = a[n - 1];
2837 int i = n - 2;
2838
2839 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2840 {
2841 a[i + 1] = a[i];
2842 i -= 1;
2843 }
2844 a[i + 1] = insn;
2845 }
2846
2847 /* Add INSN to the insn queue so that it can be executed at least
2848 N_CYCLES after the currently executing insn. Preserve insns
2849 chain for debugging purposes. REASON will be printed in debugging
2850 output. */
2851
2852 HAIFA_INLINE static void
2853 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2854 {
2855 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2856 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2857 int new_tick;
2858
2859 gcc_assert (n_cycles <= max_insn_queue_index);
2860 gcc_assert (!DEBUG_INSN_P (insn));
2861
2862 insn_queue[next_q] = link;
2863 q_size += 1;
2864
2865 if (sched_verbose >= 2)
2866 {
2867 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2868 (*current_sched_info->print_insn) (insn, 0));
2869
2870 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2871 }
2872
2873 QUEUE_INDEX (insn) = next_q;
2874
2875 if (current_sched_info->flags & DO_BACKTRACKING)
2876 {
2877 new_tick = clock_var + n_cycles;
2878 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2879 INSN_TICK (insn) = new_tick;
2880
2881 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2882 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2883 {
2884 must_backtrack = true;
2885 if (sched_verbose >= 2)
2886 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2887 }
2888 }
2889 }
2890
2891 /* Remove INSN from queue. */
2892 static void
2893 queue_remove (rtx_insn *insn)
2894 {
2895 gcc_assert (QUEUE_INDEX (insn) >= 0);
2896 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2897 q_size--;
2898 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2899 }
2900
2901 /* Return a pointer to the bottom of the ready list, i.e. the insn
2902 with the lowest priority. */
2903
2904 rtx_insn **
2905 ready_lastpos (struct ready_list *ready)
2906 {
2907 gcc_assert (ready->n_ready >= 1);
2908 return ready->vec + ready->first - ready->n_ready + 1;
2909 }
2910
2911 /* Add an element INSN to the ready list so that it ends up with the
2912 lowest/highest priority depending on FIRST_P. */
2913
2914 HAIFA_INLINE static void
2915 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2916 {
2917 if (!first_p)
2918 {
2919 if (ready->first == ready->n_ready)
2920 {
2921 memmove (ready->vec + ready->veclen - ready->n_ready,
2922 ready_lastpos (ready),
2923 ready->n_ready * sizeof (rtx));
2924 ready->first = ready->veclen - 1;
2925 }
2926 ready->vec[ready->first - ready->n_ready] = insn;
2927 }
2928 else
2929 {
2930 if (ready->first == ready->veclen - 1)
2931 {
2932 if (ready->n_ready)
2933 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2934 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2935 ready_lastpos (ready),
2936 ready->n_ready * sizeof (rtx));
2937 ready->first = ready->veclen - 2;
2938 }
2939 ready->vec[++(ready->first)] = insn;
2940 }
2941
2942 ready->n_ready++;
2943 if (DEBUG_INSN_P (insn))
2944 ready->n_debug++;
2945
2946 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2947 QUEUE_INDEX (insn) = QUEUE_READY;
2948
2949 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2950 && INSN_EXACT_TICK (insn) < clock_var)
2951 {
2952 must_backtrack = true;
2953 }
2954 }
2955
2956 /* Remove the element with the highest priority from the ready list and
2957 return it. */
2958
2959 HAIFA_INLINE static rtx_insn *
2960 ready_remove_first (struct ready_list *ready)
2961 {
2962 rtx_insn *t;
2963
2964 gcc_assert (ready->n_ready);
2965 t = ready->vec[ready->first--];
2966 ready->n_ready--;
2967 if (DEBUG_INSN_P (t))
2968 ready->n_debug--;
2969 /* If the queue becomes empty, reset it. */
2970 if (ready->n_ready == 0)
2971 ready->first = ready->veclen - 1;
2972
2973 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2974 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2975
2976 return t;
2977 }
2978
2979 /* The following code implements multi-pass scheduling for the first
2980 cycle. In other words, we will try to choose ready insn which
2981 permits to start maximum number of insns on the same cycle. */
2982
2983 /* Return a pointer to the element INDEX from the ready. INDEX for
2984 insn with the highest priority is 0, and the lowest priority has
2985 N_READY - 1. */
2986
2987 rtx_insn *
2988 ready_element (struct ready_list *ready, int index)
2989 {
2990 gcc_assert (ready->n_ready && index < ready->n_ready);
2991
2992 return ready->vec[ready->first - index];
2993 }
2994
2995 /* Remove the element INDEX from the ready list and return it. INDEX
2996 for insn with the highest priority is 0, and the lowest priority
2997 has N_READY - 1. */
2998
2999 HAIFA_INLINE static rtx_insn *
3000 ready_remove (struct ready_list *ready, int index)
3001 {
3002 rtx_insn *t;
3003 int i;
3004
3005 if (index == 0)
3006 return ready_remove_first (ready);
3007 gcc_assert (ready->n_ready && index < ready->n_ready);
3008 t = ready->vec[ready->first - index];
3009 ready->n_ready--;
3010 if (DEBUG_INSN_P (t))
3011 ready->n_debug--;
3012 for (i = index; i < ready->n_ready; i++)
3013 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3014 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3015 return t;
3016 }
3017
3018 /* Remove INSN from the ready list. */
3019 static void
3020 ready_remove_insn (rtx insn)
3021 {
3022 int i;
3023
3024 for (i = 0; i < readyp->n_ready; i++)
3025 if (ready_element (readyp, i) == insn)
3026 {
3027 ready_remove (readyp, i);
3028 return;
3029 }
3030 gcc_unreachable ();
3031 }
3032
3033 /* Calculate difference of two statistics set WAS and NOW.
3034 Result returned in WAS. */
3035 static void
3036 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3037 const rank_for_schedule_stats_t *now)
3038 {
3039 for (int i = 0; i < RFS_N; ++i)
3040 was->stats[i] = now->stats[i] - was->stats[i];
3041 }
3042
3043 /* Print rank_for_schedule statistics. */
3044 static void
3045 print_rank_for_schedule_stats (const char *prefix,
3046 const rank_for_schedule_stats_t *stats,
3047 struct ready_list *ready)
3048 {
3049 for (int i = 0; i < RFS_N; ++i)
3050 if (stats->stats[i])
3051 {
3052 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3053
3054 if (ready != NULL)
3055 /* Print out insns that won due to RFS_<I>. */
3056 {
3057 rtx_insn **p = ready_lastpos (ready);
3058
3059 fprintf (sched_dump, ":");
3060 /* Start with 1 since least-priority insn didn't have any wins. */
3061 for (int j = 1; j < ready->n_ready; ++j)
3062 if (INSN_LAST_RFS_WIN (p[j]) == i)
3063 fprintf (sched_dump, " %s",
3064 (*current_sched_info->print_insn) (p[j], 0));
3065 }
3066 fprintf (sched_dump, "\n");
3067 }
3068 }
3069
3070 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
3071 macro. */
3072
3073 void
3074 ready_sort (struct ready_list *ready)
3075 {
3076 int i;
3077 rtx_insn **first = ready_lastpos (ready);
3078
3079 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3080 {
3081 for (i = 0; i < ready->n_ready; i++)
3082 if (!DEBUG_INSN_P (first[i]))
3083 setup_insn_reg_pressure_info (first[i]);
3084 }
3085 if (sched_pressure == SCHED_PRESSURE_MODEL
3086 && model_curr_point < model_num_insns)
3087 model_set_excess_costs (first, ready->n_ready);
3088
3089 rank_for_schedule_stats_t stats1;
3090 if (sched_verbose >= 4)
3091 stats1 = rank_for_schedule_stats;
3092
3093 if (ready->n_ready == 2)
3094 swap_sort (first, ready->n_ready);
3095 else if (ready->n_ready > 2)
3096 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule);
3097
3098 if (sched_verbose >= 4)
3099 {
3100 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3101 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3102 }
3103 }
3104
3105 /* PREV is an insn that is ready to execute. Adjust its priority if that
3106 will help shorten or lengthen register lifetimes as appropriate. Also
3107 provide a hook for the target to tweak itself. */
3108
3109 HAIFA_INLINE static void
3110 adjust_priority (rtx_insn *prev)
3111 {
3112 /* ??? There used to be code here to try and estimate how an insn
3113 affected register lifetimes, but it did it by looking at REG_DEAD
3114 notes, which we removed in schedule_region. Nor did it try to
3115 take into account register pressure or anything useful like that.
3116
3117 Revisit when we have a machine model to work with and not before. */
3118
3119 if (targetm.sched.adjust_priority)
3120 INSN_PRIORITY (prev) =
3121 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3122 }
3123
3124 /* Advance DFA state STATE on one cycle. */
3125 void
3126 advance_state (state_t state)
3127 {
3128 if (targetm.sched.dfa_pre_advance_cycle)
3129 targetm.sched.dfa_pre_advance_cycle ();
3130
3131 if (targetm.sched.dfa_pre_cycle_insn)
3132 state_transition (state,
3133 targetm.sched.dfa_pre_cycle_insn ());
3134
3135 state_transition (state, NULL);
3136
3137 if (targetm.sched.dfa_post_cycle_insn)
3138 state_transition (state,
3139 targetm.sched.dfa_post_cycle_insn ());
3140
3141 if (targetm.sched.dfa_post_advance_cycle)
3142 targetm.sched.dfa_post_advance_cycle ();
3143 }
3144
3145 /* Advance time on one cycle. */
3146 HAIFA_INLINE static void
3147 advance_one_cycle (void)
3148 {
3149 advance_state (curr_state);
3150 if (sched_verbose >= 4)
3151 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3152 }
3153
3154 /* Update register pressure after scheduling INSN. */
3155 static void
3156 update_register_pressure (rtx_insn *insn)
3157 {
3158 struct reg_use_data *use;
3159 struct reg_set_data *set;
3160
3161 gcc_checking_assert (!DEBUG_INSN_P (insn));
3162
3163 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3164 if (dying_use_p (use))
3165 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3166 use->regno, false);
3167 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3168 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3169 set->regno, true);
3170 }
3171
3172 /* Set up or update (if UPDATE_P) max register pressure (see its
3173 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3174 after insn AFTER. */
3175 static void
3176 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3177 {
3178 int i, p;
3179 bool eq_p;
3180 rtx_insn *insn;
3181 static int max_reg_pressure[N_REG_CLASSES];
3182
3183 save_reg_pressure ();
3184 for (i = 0; i < ira_pressure_classes_num; i++)
3185 max_reg_pressure[ira_pressure_classes[i]]
3186 = curr_reg_pressure[ira_pressure_classes[i]];
3187 for (insn = NEXT_INSN (after);
3188 insn != NULL_RTX && ! BARRIER_P (insn)
3189 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3190 insn = NEXT_INSN (insn))
3191 if (NONDEBUG_INSN_P (insn))
3192 {
3193 eq_p = true;
3194 for (i = 0; i < ira_pressure_classes_num; i++)
3195 {
3196 p = max_reg_pressure[ira_pressure_classes[i]];
3197 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3198 {
3199 eq_p = false;
3200 INSN_MAX_REG_PRESSURE (insn)[i]
3201 = max_reg_pressure[ira_pressure_classes[i]];
3202 }
3203 }
3204 if (update_p && eq_p)
3205 break;
3206 update_register_pressure (insn);
3207 for (i = 0; i < ira_pressure_classes_num; i++)
3208 if (max_reg_pressure[ira_pressure_classes[i]]
3209 < curr_reg_pressure[ira_pressure_classes[i]])
3210 max_reg_pressure[ira_pressure_classes[i]]
3211 = curr_reg_pressure[ira_pressure_classes[i]];
3212 }
3213 restore_reg_pressure ();
3214 }
3215
3216 /* Update the current register pressure after scheduling INSN. Update
3217 also max register pressure for unscheduled insns of the current
3218 BB. */
3219 static void
3220 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3221 {
3222 int i;
3223 int before[N_REG_CLASSES];
3224
3225 for (i = 0; i < ira_pressure_classes_num; i++)
3226 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3227 update_register_pressure (insn);
3228 for (i = 0; i < ira_pressure_classes_num; i++)
3229 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3230 break;
3231 if (i < ira_pressure_classes_num)
3232 setup_insn_max_reg_pressure (insn, true);
3233 }
3234
3235 /* Set up register pressure at the beginning of basic block BB whose
3236 insns starting after insn AFTER. Set up also max register pressure
3237 for all insns of the basic block. */
3238 void
3239 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3240 {
3241 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3242 initiate_bb_reg_pressure_info (bb);
3243 setup_insn_max_reg_pressure (after, false);
3244 }
3245 \f
3246 /* If doing predication while scheduling, verify whether INSN, which
3247 has just been scheduled, clobbers the conditions of any
3248 instructions that must be predicated in order to break their
3249 dependencies. If so, remove them from the queues so that they will
3250 only be scheduled once their control dependency is resolved. */
3251
3252 static void
3253 check_clobbered_conditions (rtx insn)
3254 {
3255 HARD_REG_SET t;
3256 int i;
3257
3258 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3259 return;
3260
3261 find_all_hard_reg_sets (insn, &t, true);
3262
3263 restart:
3264 for (i = 0; i < ready.n_ready; i++)
3265 {
3266 rtx_insn *x = ready_element (&ready, i);
3267 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3268 {
3269 ready_remove_insn (x);
3270 goto restart;
3271 }
3272 }
3273 for (i = 0; i <= max_insn_queue_index; i++)
3274 {
3275 rtx_insn_list *link;
3276 int q = NEXT_Q_AFTER (q_ptr, i);
3277
3278 restart_queue:
3279 for (link = insn_queue[q]; link; link = link->next ())
3280 {
3281 rtx_insn *x = link->insn ();
3282 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3283 {
3284 queue_remove (x);
3285 goto restart_queue;
3286 }
3287 }
3288 }
3289 }
3290 \f
3291 /* Return (in order):
3292
3293 - positive if INSN adversely affects the pressure on one
3294 register class
3295
3296 - negative if INSN reduces the pressure on one register class
3297
3298 - 0 if INSN doesn't affect the pressure on any register class. */
3299
3300 static int
3301 model_classify_pressure (struct model_insn_info *insn)
3302 {
3303 struct reg_pressure_data *reg_pressure;
3304 int death[N_REG_CLASSES];
3305 int pci, cl, sum;
3306
3307 calculate_reg_deaths (insn->insn, death);
3308 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3309 sum = 0;
3310 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3311 {
3312 cl = ira_pressure_classes[pci];
3313 if (death[cl] < reg_pressure[pci].set_increase)
3314 return 1;
3315 sum += reg_pressure[pci].set_increase - death[cl];
3316 }
3317 return sum;
3318 }
3319
3320 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3321
3322 static int
3323 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3324 {
3325 unsigned int height1, height2;
3326 unsigned int priority1, priority2;
3327
3328 /* Prefer instructions with a higher model priority. */
3329 if (insn1->model_priority != insn2->model_priority)
3330 return insn1->model_priority > insn2->model_priority;
3331
3332 /* Combine the length of the longest path of satisfied true dependencies
3333 that leads to each instruction (depth) with the length of the longest
3334 path of any dependencies that leads from the instruction (alap).
3335 Prefer instructions with the greatest combined length. If the combined
3336 lengths are equal, prefer instructions with the greatest depth.
3337
3338 The idea is that, if we have a set S of "equal" instructions that each
3339 have ALAP value X, and we pick one such instruction I, any true-dependent
3340 successors of I that have ALAP value X - 1 should be preferred over S.
3341 This encourages the schedule to be "narrow" rather than "wide".
3342 However, if I is a low-priority instruction that we decided to
3343 schedule because of its model_classify_pressure, and if there
3344 is a set of higher-priority instructions T, the aforementioned
3345 successors of I should not have the edge over T. */
3346 height1 = insn1->depth + insn1->alap;
3347 height2 = insn2->depth + insn2->alap;
3348 if (height1 != height2)
3349 return height1 > height2;
3350 if (insn1->depth != insn2->depth)
3351 return insn1->depth > insn2->depth;
3352
3353 /* We have no real preference between INSN1 an INSN2 as far as attempts
3354 to reduce pressure go. Prefer instructions with higher priorities. */
3355 priority1 = INSN_PRIORITY (insn1->insn);
3356 priority2 = INSN_PRIORITY (insn2->insn);
3357 if (priority1 != priority2)
3358 return priority1 > priority2;
3359
3360 /* Use the original rtl sequence as a tie-breaker. */
3361 return insn1 < insn2;
3362 }
3363
3364 /* Add INSN to the model worklist immediately after PREV. Add it to the
3365 beginning of the list if PREV is null. */
3366
3367 static void
3368 model_add_to_worklist_at (struct model_insn_info *insn,
3369 struct model_insn_info *prev)
3370 {
3371 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3372 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3373
3374 insn->prev = prev;
3375 if (prev)
3376 {
3377 insn->next = prev->next;
3378 prev->next = insn;
3379 }
3380 else
3381 {
3382 insn->next = model_worklist;
3383 model_worklist = insn;
3384 }
3385 if (insn->next)
3386 insn->next->prev = insn;
3387 }
3388
3389 /* Remove INSN from the model worklist. */
3390
3391 static void
3392 model_remove_from_worklist (struct model_insn_info *insn)
3393 {
3394 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3395 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3396
3397 if (insn->prev)
3398 insn->prev->next = insn->next;
3399 else
3400 model_worklist = insn->next;
3401 if (insn->next)
3402 insn->next->prev = insn->prev;
3403 }
3404
3405 /* Add INSN to the model worklist. Start looking for a suitable position
3406 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3407 insns either side. A null PREV indicates the beginning of the list and
3408 a null NEXT indicates the end. */
3409
3410 static void
3411 model_add_to_worklist (struct model_insn_info *insn,
3412 struct model_insn_info *prev,
3413 struct model_insn_info *next)
3414 {
3415 int count;
3416
3417 count = MAX_SCHED_READY_INSNS;
3418 if (count > 0 && prev && model_order_p (insn, prev))
3419 do
3420 {
3421 count--;
3422 prev = prev->prev;
3423 }
3424 while (count > 0 && prev && model_order_p (insn, prev));
3425 else
3426 while (count > 0 && next && model_order_p (next, insn))
3427 {
3428 count--;
3429 prev = next;
3430 next = next->next;
3431 }
3432 model_add_to_worklist_at (insn, prev);
3433 }
3434
3435 /* INSN may now have a higher priority (in the model_order_p sense)
3436 than before. Move it up the worklist if necessary. */
3437
3438 static void
3439 model_promote_insn (struct model_insn_info *insn)
3440 {
3441 struct model_insn_info *prev;
3442 int count;
3443
3444 prev = insn->prev;
3445 count = MAX_SCHED_READY_INSNS;
3446 while (count > 0 && prev && model_order_p (insn, prev))
3447 {
3448 count--;
3449 prev = prev->prev;
3450 }
3451 if (prev != insn->prev)
3452 {
3453 model_remove_from_worklist (insn);
3454 model_add_to_worklist_at (insn, prev);
3455 }
3456 }
3457
3458 /* Add INSN to the end of the model schedule. */
3459
3460 static void
3461 model_add_to_schedule (rtx_insn *insn)
3462 {
3463 unsigned int point;
3464
3465 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3466 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3467
3468 point = model_schedule.length ();
3469 model_schedule.quick_push (insn);
3470 INSN_MODEL_INDEX (insn) = point + 1;
3471 }
3472
3473 /* Analyze the instructions that are to be scheduled, setting up
3474 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3475 instructions to model_worklist. */
3476
3477 static void
3478 model_analyze_insns (void)
3479 {
3480 rtx_insn *start, *end, *iter;
3481 sd_iterator_def sd_it;
3482 dep_t dep;
3483 struct model_insn_info *insn, *con;
3484
3485 model_num_insns = 0;
3486 start = PREV_INSN (current_sched_info->next_tail);
3487 end = current_sched_info->prev_head;
3488 for (iter = start; iter != end; iter = PREV_INSN (iter))
3489 if (NONDEBUG_INSN_P (iter))
3490 {
3491 insn = MODEL_INSN_INFO (iter);
3492 insn->insn = iter;
3493 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3494 {
3495 con = MODEL_INSN_INFO (DEP_CON (dep));
3496 if (con->insn && insn->alap < con->alap + 1)
3497 insn->alap = con->alap + 1;
3498 }
3499
3500 insn->old_queue = QUEUE_INDEX (iter);
3501 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3502
3503 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3504 if (insn->unscheduled_preds == 0)
3505 model_add_to_worklist (insn, NULL, model_worklist);
3506
3507 model_num_insns++;
3508 }
3509 }
3510
3511 /* The global state describes the register pressure at the start of the
3512 model schedule. Initialize GROUP accordingly. */
3513
3514 static void
3515 model_init_pressure_group (struct model_pressure_group *group)
3516 {
3517 int pci, cl;
3518
3519 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3520 {
3521 cl = ira_pressure_classes[pci];
3522 group->limits[pci].pressure = curr_reg_pressure[cl];
3523 group->limits[pci].point = 0;
3524 }
3525 /* Use index model_num_insns to record the state after the last
3526 instruction in the model schedule. */
3527 group->model = XNEWVEC (struct model_pressure_data,
3528 (model_num_insns + 1) * ira_pressure_classes_num);
3529 }
3530
3531 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3532 Update the maximum pressure for the whole schedule. */
3533
3534 static void
3535 model_record_pressure (struct model_pressure_group *group,
3536 int point, int pci, int pressure)
3537 {
3538 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3539 if (group->limits[pci].pressure < pressure)
3540 {
3541 group->limits[pci].pressure = pressure;
3542 group->limits[pci].point = point;
3543 }
3544 }
3545
3546 /* INSN has just been added to the end of the model schedule. Record its
3547 register-pressure information. */
3548
3549 static void
3550 model_record_pressures (struct model_insn_info *insn)
3551 {
3552 struct reg_pressure_data *reg_pressure;
3553 int point, pci, cl, delta;
3554 int death[N_REG_CLASSES];
3555
3556 point = model_index (insn->insn);
3557 if (sched_verbose >= 2)
3558 {
3559 if (point == 0)
3560 {
3561 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3562 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3563 }
3564 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3565 point, INSN_UID (insn->insn), insn->model_priority,
3566 insn->depth + insn->alap, insn->depth,
3567 INSN_PRIORITY (insn->insn),
3568 str_pattern_slim (PATTERN (insn->insn)));
3569 }
3570 calculate_reg_deaths (insn->insn, death);
3571 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3572 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3573 {
3574 cl = ira_pressure_classes[pci];
3575 delta = reg_pressure[pci].set_increase - death[cl];
3576 if (sched_verbose >= 2)
3577 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3578 curr_reg_pressure[cl], delta);
3579 model_record_pressure (&model_before_pressure, point, pci,
3580 curr_reg_pressure[cl]);
3581 }
3582 if (sched_verbose >= 2)
3583 fprintf (sched_dump, "\n");
3584 }
3585
3586 /* All instructions have been added to the model schedule. Record the
3587 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3588
3589 static void
3590 model_record_final_pressures (struct model_pressure_group *group)
3591 {
3592 int point, pci, max_pressure, ref_pressure, cl;
3593
3594 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3595 {
3596 /* Record the final pressure for this class. */
3597 cl = ira_pressure_classes[pci];
3598 point = model_num_insns;
3599 ref_pressure = curr_reg_pressure[cl];
3600 model_record_pressure (group, point, pci, ref_pressure);
3601
3602 /* Record the original maximum pressure. */
3603 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3604
3605 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3606 max_pressure = ref_pressure;
3607 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3608 while (point > 0)
3609 {
3610 point--;
3611 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3612 max_pressure = MAX (max_pressure, ref_pressure);
3613 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3614 }
3615 }
3616 }
3617
3618 /* Update all successors of INSN, given that INSN has just been scheduled. */
3619
3620 static void
3621 model_add_successors_to_worklist (struct model_insn_info *insn)
3622 {
3623 sd_iterator_def sd_it;
3624 struct model_insn_info *con;
3625 dep_t dep;
3626
3627 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3628 {
3629 con = MODEL_INSN_INFO (DEP_CON (dep));
3630 /* Ignore debug instructions, and instructions from other blocks. */
3631 if (con->insn)
3632 {
3633 con->unscheduled_preds--;
3634
3635 /* Update the depth field of each true-dependent successor.
3636 Increasing the depth gives them a higher priority than
3637 before. */
3638 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3639 {
3640 con->depth = insn->depth + 1;
3641 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3642 model_promote_insn (con);
3643 }
3644
3645 /* If this is a true dependency, or if there are no remaining
3646 dependencies for CON (meaning that CON only had non-true
3647 dependencies), make sure that CON is on the worklist.
3648 We don't bother otherwise because it would tend to fill the
3649 worklist with a lot of low-priority instructions that are not
3650 yet ready to issue. */
3651 if ((con->depth > 0 || con->unscheduled_preds == 0)
3652 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3653 model_add_to_worklist (con, insn, insn->next);
3654 }
3655 }
3656 }
3657
3658 /* Give INSN a higher priority than any current instruction, then give
3659 unscheduled predecessors of INSN a higher priority still. If any of
3660 those predecessors are not on the model worklist, do the same for its
3661 predecessors, and so on. */
3662
3663 static void
3664 model_promote_predecessors (struct model_insn_info *insn)
3665 {
3666 struct model_insn_info *pro, *first;
3667 sd_iterator_def sd_it;
3668 dep_t dep;
3669
3670 if (sched_verbose >= 7)
3671 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3672 INSN_UID (insn->insn), model_next_priority);
3673 insn->model_priority = model_next_priority++;
3674 model_remove_from_worklist (insn);
3675 model_add_to_worklist_at (insn, NULL);
3676
3677 first = NULL;
3678 for (;;)
3679 {
3680 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3681 {
3682 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3683 /* The first test is to ignore debug instructions, and instructions
3684 from other blocks. */
3685 if (pro->insn
3686 && pro->model_priority != model_next_priority
3687 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3688 {
3689 pro->model_priority = model_next_priority;
3690 if (sched_verbose >= 7)
3691 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3692 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3693 {
3694 /* PRO is already in the worklist, but it now has
3695 a higher priority than before. Move it at the
3696 appropriate place. */
3697 model_remove_from_worklist (pro);
3698 model_add_to_worklist (pro, NULL, model_worklist);
3699 }
3700 else
3701 {
3702 /* PRO isn't in the worklist. Recursively process
3703 its predecessors until we find one that is. */
3704 pro->next = first;
3705 first = pro;
3706 }
3707 }
3708 }
3709 if (!first)
3710 break;
3711 insn = first;
3712 first = insn->next;
3713 }
3714 if (sched_verbose >= 7)
3715 fprintf (sched_dump, " = %d\n", model_next_priority);
3716 model_next_priority++;
3717 }
3718
3719 /* Pick one instruction from model_worklist and process it. */
3720
3721 static void
3722 model_choose_insn (void)
3723 {
3724 struct model_insn_info *insn, *fallback;
3725 int count;
3726
3727 if (sched_verbose >= 7)
3728 {
3729 fprintf (sched_dump, ";;\t+--- worklist:\n");
3730 insn = model_worklist;
3731 count = MAX_SCHED_READY_INSNS;
3732 while (count > 0 && insn)
3733 {
3734 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3735 INSN_UID (insn->insn), insn->model_priority,
3736 insn->depth + insn->alap, insn->depth,
3737 INSN_PRIORITY (insn->insn));
3738 count--;
3739 insn = insn->next;
3740 }
3741 }
3742
3743 /* Look for a ready instruction whose model_classify_priority is zero
3744 or negative, picking the highest-priority one. Adding such an
3745 instruction to the schedule now should do no harm, and may actually
3746 do some good.
3747
3748 Failing that, see whether there is an instruction with the highest
3749 extant model_priority that is not yet ready, but which would reduce
3750 pressure if it became ready. This is designed to catch cases like:
3751
3752 (set (mem (reg R1)) (reg R2))
3753
3754 where the instruction is the last remaining use of R1 and where the
3755 value of R2 is not yet available (or vice versa). The death of R1
3756 means that this instruction already reduces pressure. It is of
3757 course possible that the computation of R2 involves other registers
3758 that are hard to kill, but such cases are rare enough for this
3759 heuristic to be a win in general.
3760
3761 Failing that, just pick the highest-priority instruction in the
3762 worklist. */
3763 count = MAX_SCHED_READY_INSNS;
3764 insn = model_worklist;
3765 fallback = 0;
3766 for (;;)
3767 {
3768 if (count == 0 || !insn)
3769 {
3770 insn = fallback ? fallback : model_worklist;
3771 break;
3772 }
3773 if (insn->unscheduled_preds)
3774 {
3775 if (model_worklist->model_priority == insn->model_priority
3776 && !fallback
3777 && model_classify_pressure (insn) < 0)
3778 fallback = insn;
3779 }
3780 else
3781 {
3782 if (model_classify_pressure (insn) <= 0)
3783 break;
3784 }
3785 count--;
3786 insn = insn->next;
3787 }
3788
3789 if (sched_verbose >= 7 && insn != model_worklist)
3790 {
3791 if (insn->unscheduled_preds)
3792 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3793 INSN_UID (insn->insn));
3794 else
3795 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3796 INSN_UID (insn->insn));
3797 }
3798 if (insn->unscheduled_preds)
3799 /* INSN isn't yet ready to issue. Give all its predecessors the
3800 highest priority. */
3801 model_promote_predecessors (insn);
3802 else
3803 {
3804 /* INSN is ready. Add it to the end of model_schedule and
3805 process its successors. */
3806 model_add_successors_to_worklist (insn);
3807 model_remove_from_worklist (insn);
3808 model_add_to_schedule (insn->insn);
3809 model_record_pressures (insn);
3810 update_register_pressure (insn->insn);
3811 }
3812 }
3813
3814 /* Restore all QUEUE_INDEXs to the values that they had before
3815 model_start_schedule was called. */
3816
3817 static void
3818 model_reset_queue_indices (void)
3819 {
3820 unsigned int i;
3821 rtx_insn *insn;
3822
3823 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3824 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3825 }
3826
3827 /* We have calculated the model schedule and spill costs. Print a summary
3828 to sched_dump. */
3829
3830 static void
3831 model_dump_pressure_summary (void)
3832 {
3833 int pci, cl;
3834
3835 fprintf (sched_dump, ";; Pressure summary:");
3836 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3837 {
3838 cl = ira_pressure_classes[pci];
3839 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3840 model_before_pressure.limits[pci].pressure);
3841 }
3842 fprintf (sched_dump, "\n\n");
3843 }
3844
3845 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3846 scheduling region. */
3847
3848 static void
3849 model_start_schedule (basic_block bb)
3850 {
3851 model_next_priority = 1;
3852 model_schedule.create (sched_max_luid);
3853 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3854
3855 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3856 initiate_reg_pressure_info (df_get_live_in (bb));
3857
3858 model_analyze_insns ();
3859 model_init_pressure_group (&model_before_pressure);
3860 while (model_worklist)
3861 model_choose_insn ();
3862 gcc_assert (model_num_insns == (int) model_schedule.length ());
3863 if (sched_verbose >= 2)
3864 fprintf (sched_dump, "\n");
3865
3866 model_record_final_pressures (&model_before_pressure);
3867 model_reset_queue_indices ();
3868
3869 XDELETEVEC (model_insns);
3870
3871 model_curr_point = 0;
3872 initiate_reg_pressure_info (df_get_live_in (bb));
3873 if (sched_verbose >= 1)
3874 model_dump_pressure_summary ();
3875 }
3876
3877 /* Free the information associated with GROUP. */
3878
3879 static void
3880 model_finalize_pressure_group (struct model_pressure_group *group)
3881 {
3882 XDELETEVEC (group->model);
3883 }
3884
3885 /* Free the information created by model_start_schedule. */
3886
3887 static void
3888 model_end_schedule (void)
3889 {
3890 model_finalize_pressure_group (&model_before_pressure);
3891 model_schedule.release ();
3892 }
3893
3894 /* Prepare reg pressure scheduling for basic block BB. */
3895 static void
3896 sched_pressure_start_bb (basic_block bb)
3897 {
3898 /* Set the number of available registers for each class taking into account
3899 relative probability of current basic block versus function prologue and
3900 epilogue.
3901 * If the basic block executes much more often than the prologue/epilogue
3902 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3903 nil, so the effective number of available registers is
3904 (ira_class_hard_regs_num[cl] - 0).
3905 * If the basic block executes as often as the prologue/epilogue,
3906 then spill in the block is as costly as in the prologue, so the effective
3907 number of available registers is
3908 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3909 Note that all-else-equal, we prefer to spill in the prologue, since that
3910 allows "extra" registers for other basic blocks of the function.
3911 * If the basic block is on the cold path of the function and executes
3912 rarely, then we should always prefer to spill in the block, rather than
3913 in the prologue/epilogue. The effective number of available register is
3914 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3915 {
3916 int i;
3917 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3918 int bb_freq = bb->frequency;
3919
3920 if (bb_freq == 0)
3921 {
3922 if (entry_freq == 0)
3923 entry_freq = bb_freq = 1;
3924 }
3925 if (bb_freq < entry_freq)
3926 bb_freq = entry_freq;
3927
3928 for (i = 0; i < ira_pressure_classes_num; ++i)
3929 {
3930 enum reg_class cl = ira_pressure_classes[i];
3931 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3932 sched_class_regs_num[cl]
3933 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3934 }
3935 }
3936
3937 if (sched_pressure == SCHED_PRESSURE_MODEL)
3938 model_start_schedule (bb);
3939 }
3940 \f
3941 /* A structure that holds local state for the loop in schedule_block. */
3942 struct sched_block_state
3943 {
3944 /* True if no real insns have been scheduled in the current cycle. */
3945 bool first_cycle_insn_p;
3946 /* True if a shadow insn has been scheduled in the current cycle, which
3947 means that no more normal insns can be issued. */
3948 bool shadows_only_p;
3949 /* True if we're winding down a modulo schedule, which means that we only
3950 issue insns with INSN_EXACT_TICK set. */
3951 bool modulo_epilogue;
3952 /* Initialized with the machine's issue rate every cycle, and updated
3953 by calls to the variable_issue hook. */
3954 int can_issue_more;
3955 };
3956
3957 /* INSN is the "currently executing insn". Launch each insn which was
3958 waiting on INSN. READY is the ready list which contains the insns
3959 that are ready to fire. CLOCK is the current cycle. The function
3960 returns necessary cycle advance after issuing the insn (it is not
3961 zero for insns in a schedule group). */
3962
3963 static int
3964 schedule_insn (rtx_insn *insn)
3965 {
3966 sd_iterator_def sd_it;
3967 dep_t dep;
3968 int i;
3969 int advance = 0;
3970
3971 if (sched_verbose >= 1)
3972 {
3973 struct reg_pressure_data *pressure_info;
3974 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3975 clock_var, (*current_sched_info->print_insn) (insn, 1),
3976 str_pattern_slim (PATTERN (insn)));
3977
3978 if (recog_memoized (insn) < 0)
3979 fprintf (sched_dump, "nothing");
3980 else
3981 print_reservation (sched_dump, insn);
3982 pressure_info = INSN_REG_PRESSURE (insn);
3983 if (pressure_info != NULL)
3984 {
3985 fputc (':', sched_dump);
3986 for (i = 0; i < ira_pressure_classes_num; i++)
3987 fprintf (sched_dump, "%s%s%+d(%d)",
3988 scheduled_insns.length () > 1
3989 && INSN_LUID (insn)
3990 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3991 reg_class_names[ira_pressure_classes[i]],
3992 pressure_info[i].set_increase, pressure_info[i].change);
3993 }
3994 if (sched_pressure == SCHED_PRESSURE_MODEL
3995 && model_curr_point < model_num_insns
3996 && model_index (insn) == model_curr_point)
3997 fprintf (sched_dump, ":model %d", model_curr_point);
3998 fputc ('\n', sched_dump);
3999 }
4000
4001 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4002 update_reg_and_insn_max_reg_pressure (insn);
4003
4004 /* Scheduling instruction should have all its dependencies resolved and
4005 should have been removed from the ready list. */
4006 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4007
4008 /* Reset debug insns invalidated by moving this insn. */
4009 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4010 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4011 sd_iterator_cond (&sd_it, &dep);)
4012 {
4013 rtx_insn *dbg = DEP_PRO (dep);
4014 struct reg_use_data *use, *next;
4015
4016 if (DEP_STATUS (dep) & DEP_CANCELLED)
4017 {
4018 sd_iterator_next (&sd_it);
4019 continue;
4020 }
4021
4022 gcc_assert (DEBUG_INSN_P (dbg));
4023
4024 if (sched_verbose >= 6)
4025 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4026 INSN_UID (dbg));
4027
4028 /* ??? Rather than resetting the debug insn, we might be able
4029 to emit a debug temp before the just-scheduled insn, but
4030 this would involve checking that the expression at the
4031 point of the debug insn is equivalent to the expression
4032 before the just-scheduled insn. They might not be: the
4033 expression in the debug insn may depend on other insns not
4034 yet scheduled that set MEMs, REGs or even other debug
4035 insns. It's not clear that attempting to preserve debug
4036 information in these cases is worth the effort, given how
4037 uncommon these resets are and the likelihood that the debug
4038 temps introduced won't survive the schedule change. */
4039 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4040 df_insn_rescan (dbg);
4041
4042 /* Unknown location doesn't use any registers. */
4043 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4044 {
4045 struct reg_use_data *prev = use;
4046
4047 /* Remove use from the cyclic next_regno_use chain first. */
4048 while (prev->next_regno_use != use)
4049 prev = prev->next_regno_use;
4050 prev->next_regno_use = use->next_regno_use;
4051 next = use->next_insn_use;
4052 free (use);
4053 }
4054 INSN_REG_USE_LIST (dbg) = NULL;
4055
4056 /* We delete rather than resolve these deps, otherwise we
4057 crash in sched_free_deps(), because forward deps are
4058 expected to be released before backward deps. */
4059 sd_delete_dep (sd_it);
4060 }
4061
4062 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4063 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4064
4065 if (sched_pressure == SCHED_PRESSURE_MODEL
4066 && model_curr_point < model_num_insns
4067 && NONDEBUG_INSN_P (insn))
4068 {
4069 if (model_index (insn) == model_curr_point)
4070 do
4071 model_curr_point++;
4072 while (model_curr_point < model_num_insns
4073 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4074 == QUEUE_SCHEDULED));
4075 else
4076 model_recompute (insn);
4077 model_update_limit_points ();
4078 update_register_pressure (insn);
4079 if (sched_verbose >= 2)
4080 print_curr_reg_pressure ();
4081 }
4082
4083 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4084 if (INSN_TICK (insn) > clock_var)
4085 /* INSN has been prematurely moved from the queue to the ready list.
4086 This is possible only if following flags are set. */
4087 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4088
4089 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4090 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4091 INSN_TICK (insn) = clock_var;
4092
4093 check_clobbered_conditions (insn);
4094
4095 /* Update dependent instructions. First, see if by scheduling this insn
4096 now we broke a dependence in a way that requires us to change another
4097 insn. */
4098 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4099 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4100 {
4101 struct dep_replacement *desc = DEP_REPLACE (dep);
4102 rtx_insn *pro = DEP_PRO (dep);
4103 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4104 && desc != NULL && desc->insn == pro)
4105 apply_replacement (dep, false);
4106 }
4107
4108 /* Go through and resolve forward dependencies. */
4109 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4110 sd_iterator_cond (&sd_it, &dep);)
4111 {
4112 rtx_insn *next = DEP_CON (dep);
4113 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4114
4115 /* Resolve the dependence between INSN and NEXT.
4116 sd_resolve_dep () moves current dep to another list thus
4117 advancing the iterator. */
4118 sd_resolve_dep (sd_it);
4119
4120 if (cancelled)
4121 {
4122 if (must_restore_pattern_p (next, dep))
4123 restore_pattern (dep, false);
4124 continue;
4125 }
4126
4127 /* Don't bother trying to mark next as ready if insn is a debug
4128 insn. If insn is the last hard dependency, it will have
4129 already been discounted. */
4130 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4131 continue;
4132
4133 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4134 {
4135 int effective_cost;
4136
4137 effective_cost = try_ready (next);
4138
4139 if (effective_cost >= 0
4140 && SCHED_GROUP_P (next)
4141 && advance < effective_cost)
4142 advance = effective_cost;
4143 }
4144 else
4145 /* Check always has only one forward dependence (to the first insn in
4146 the recovery block), therefore, this will be executed only once. */
4147 {
4148 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4149 fix_recovery_deps (RECOVERY_BLOCK (insn));
4150 }
4151 }
4152
4153 /* Annotate the instruction with issue information -- TImode
4154 indicates that the instruction is expected not to be able
4155 to issue on the same cycle as the previous insn. A machine
4156 may use this information to decide how the instruction should
4157 be aligned. */
4158 if (issue_rate > 1
4159 && GET_CODE (PATTERN (insn)) != USE
4160 && GET_CODE (PATTERN (insn)) != CLOBBER
4161 && !DEBUG_INSN_P (insn))
4162 {
4163 if (reload_completed)
4164 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4165 last_clock_var = clock_var;
4166 }
4167
4168 if (nonscheduled_insns_begin != NULL_RTX)
4169 /* Indicate to debug counters that INSN is scheduled. */
4170 nonscheduled_insns_begin = insn;
4171
4172 return advance;
4173 }
4174
4175 /* Functions for handling of notes. */
4176
4177 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4178 void
4179 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4180 {
4181 rtx_insn *from_start;
4182
4183 /* It's easy when have nothing to concat. */
4184 if (from_end == NULL)
4185 return;
4186
4187 /* It's also easy when destination is empty. */
4188 if (*to_endp == NULL)
4189 {
4190 *to_endp = from_end;
4191 return;
4192 }
4193
4194 from_start = from_end;
4195 while (PREV_INSN (from_start) != NULL)
4196 from_start = PREV_INSN (from_start);
4197
4198 SET_PREV_INSN (from_start) = *to_endp;
4199 SET_NEXT_INSN (*to_endp) = from_start;
4200 *to_endp = from_end;
4201 }
4202
4203 /* Delete notes between HEAD and TAIL and put them in the chain
4204 of notes ended by NOTE_LIST. */
4205 void
4206 remove_notes (rtx_insn *head, rtx_insn *tail)
4207 {
4208 rtx_insn *next_tail, *insn, *next;
4209
4210 note_list = 0;
4211 if (head == tail && !INSN_P (head))
4212 return;
4213
4214 next_tail = NEXT_INSN (tail);
4215 for (insn = head; insn != next_tail; insn = next)
4216 {
4217 next = NEXT_INSN (insn);
4218 if (!NOTE_P (insn))
4219 continue;
4220
4221 switch (NOTE_KIND (insn))
4222 {
4223 case NOTE_INSN_BASIC_BLOCK:
4224 continue;
4225
4226 case NOTE_INSN_EPILOGUE_BEG:
4227 if (insn != tail)
4228 {
4229 remove_insn (insn);
4230 add_reg_note (next, REG_SAVE_NOTE,
4231 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4232 break;
4233 }
4234 /* FALLTHRU */
4235
4236 default:
4237 remove_insn (insn);
4238
4239 /* Add the note to list that ends at NOTE_LIST. */
4240 SET_PREV_INSN (insn) = note_list;
4241 SET_NEXT_INSN (insn) = NULL_RTX;
4242 if (note_list)
4243 SET_NEXT_INSN (note_list) = insn;
4244 note_list = insn;
4245 break;
4246 }
4247
4248 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4249 }
4250 }
4251
4252 /* A structure to record enough data to allow us to backtrack the scheduler to
4253 a previous state. */
4254 struct haifa_saved_data
4255 {
4256 /* Next entry on the list. */
4257 struct haifa_saved_data *next;
4258
4259 /* Backtracking is associated with scheduling insns that have delay slots.
4260 DELAY_PAIR points to the structure that contains the insns involved, and
4261 the number of cycles between them. */
4262 struct delay_pair *delay_pair;
4263
4264 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4265 void *fe_saved_data;
4266 /* Data used by the backend. */
4267 void *be_saved_data;
4268
4269 /* Copies of global state. */
4270 int clock_var, last_clock_var;
4271 struct ready_list ready;
4272 state_t curr_state;
4273
4274 rtx_insn *last_scheduled_insn;
4275 rtx last_nondebug_scheduled_insn;
4276 rtx_insn *nonscheduled_insns_begin;
4277 int cycle_issued_insns;
4278
4279 /* Copies of state used in the inner loop of schedule_block. */
4280 struct sched_block_state sched_block;
4281
4282 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4283 to 0 when restoring. */
4284 int q_size;
4285 rtx_insn_list **insn_queue;
4286
4287 /* Describe pattern replacements that occurred since this backtrack point
4288 was queued. */
4289 vec<dep_t> replacement_deps;
4290 vec<int> replace_apply;
4291
4292 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4293 point. */
4294 vec<dep_t> next_cycle_deps;
4295 vec<int> next_cycle_apply;
4296 };
4297
4298 /* A record, in reverse order, of all scheduled insns which have delay slots
4299 and may require backtracking. */
4300 static struct haifa_saved_data *backtrack_queue;
4301
4302 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4303 to SET_P. */
4304 static void
4305 mark_backtrack_feeds (rtx insn, int set_p)
4306 {
4307 sd_iterator_def sd_it;
4308 dep_t dep;
4309 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4310 {
4311 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4312 }
4313 }
4314
4315 /* Save the current scheduler state so that we can backtrack to it
4316 later if necessary. PAIR gives the insns that make it necessary to
4317 save this point. SCHED_BLOCK is the local state of schedule_block
4318 that need to be saved. */
4319 static void
4320 save_backtrack_point (struct delay_pair *pair,
4321 struct sched_block_state sched_block)
4322 {
4323 int i;
4324 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4325
4326 save->curr_state = xmalloc (dfa_state_size);
4327 memcpy (save->curr_state, curr_state, dfa_state_size);
4328
4329 save->ready.first = ready.first;
4330 save->ready.n_ready = ready.n_ready;
4331 save->ready.n_debug = ready.n_debug;
4332 save->ready.veclen = ready.veclen;
4333 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4334 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4335
4336 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4337 save->q_size = q_size;
4338 for (i = 0; i <= max_insn_queue_index; i++)
4339 {
4340 int q = NEXT_Q_AFTER (q_ptr, i);
4341 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4342 }
4343
4344 save->clock_var = clock_var;
4345 save->last_clock_var = last_clock_var;
4346 save->cycle_issued_insns = cycle_issued_insns;
4347 save->last_scheduled_insn = last_scheduled_insn;
4348 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4349 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4350
4351 save->sched_block = sched_block;
4352
4353 save->replacement_deps.create (0);
4354 save->replace_apply.create (0);
4355 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4356 save->next_cycle_apply = next_cycle_apply.copy ();
4357
4358 if (current_sched_info->save_state)
4359 save->fe_saved_data = (*current_sched_info->save_state) ();
4360
4361 if (targetm.sched.alloc_sched_context)
4362 {
4363 save->be_saved_data = targetm.sched.alloc_sched_context ();
4364 targetm.sched.init_sched_context (save->be_saved_data, false);
4365 }
4366 else
4367 save->be_saved_data = NULL;
4368
4369 save->delay_pair = pair;
4370
4371 save->next = backtrack_queue;
4372 backtrack_queue = save;
4373
4374 while (pair)
4375 {
4376 mark_backtrack_feeds (pair->i2, 1);
4377 INSN_TICK (pair->i2) = INVALID_TICK;
4378 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4379 SHADOW_P (pair->i2) = pair->stages == 0;
4380 pair = pair->next_same_i1;
4381 }
4382 }
4383
4384 /* Walk the ready list and all queues. If any insns have unresolved backwards
4385 dependencies, these must be cancelled deps, broken by predication. Set or
4386 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4387
4388 static void
4389 toggle_cancelled_flags (bool set)
4390 {
4391 int i;
4392 sd_iterator_def sd_it;
4393 dep_t dep;
4394
4395 if (ready.n_ready > 0)
4396 {
4397 rtx_insn **first = ready_lastpos (&ready);
4398 for (i = 0; i < ready.n_ready; i++)
4399 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4400 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4401 {
4402 if (set)
4403 DEP_STATUS (dep) |= DEP_CANCELLED;
4404 else
4405 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4406 }
4407 }
4408 for (i = 0; i <= max_insn_queue_index; i++)
4409 {
4410 int q = NEXT_Q_AFTER (q_ptr, i);
4411 rtx_insn_list *link;
4412 for (link = insn_queue[q]; link; link = link->next ())
4413 {
4414 rtx_insn *insn = link->insn ();
4415 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4416 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4417 {
4418 if (set)
4419 DEP_STATUS (dep) |= DEP_CANCELLED;
4420 else
4421 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4422 }
4423 }
4424 }
4425 }
4426
4427 /* Undo the replacements that have occurred after backtrack point SAVE
4428 was placed. */
4429 static void
4430 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4431 {
4432 while (!save->replacement_deps.is_empty ())
4433 {
4434 dep_t dep = save->replacement_deps.pop ();
4435 int apply_p = save->replace_apply.pop ();
4436
4437 if (apply_p)
4438 restore_pattern (dep, true);
4439 else
4440 apply_replacement (dep, true);
4441 }
4442 save->replacement_deps.release ();
4443 save->replace_apply.release ();
4444 }
4445
4446 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4447 Restore their dependencies to an unresolved state, and mark them as
4448 queued nowhere. */
4449
4450 static void
4451 unschedule_insns_until (rtx insn)
4452 {
4453 auto_vec<rtx_insn *> recompute_vec;
4454
4455 /* Make two passes over the insns to be unscheduled. First, we clear out
4456 dependencies and other trivial bookkeeping. */
4457 for (;;)
4458 {
4459 rtx_insn *last;
4460 sd_iterator_def sd_it;
4461 dep_t dep;
4462
4463 last = scheduled_insns.pop ();
4464
4465 /* This will be changed by restore_backtrack_point if the insn is in
4466 any queue. */
4467 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4468 if (last != insn)
4469 INSN_TICK (last) = INVALID_TICK;
4470
4471 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4472 modulo_insns_scheduled--;
4473
4474 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4475 sd_iterator_cond (&sd_it, &dep);)
4476 {
4477 rtx_insn *con = DEP_CON (dep);
4478 sd_unresolve_dep (sd_it);
4479 if (!MUST_RECOMPUTE_SPEC_P (con))
4480 {
4481 MUST_RECOMPUTE_SPEC_P (con) = 1;
4482 recompute_vec.safe_push (con);
4483 }
4484 }
4485
4486 if (last == insn)
4487 break;
4488 }
4489
4490 /* A second pass, to update ready and speculation status for insns
4491 depending on the unscheduled ones. The first pass must have
4492 popped the scheduled_insns vector up to the point where we
4493 restart scheduling, as recompute_todo_spec requires it to be
4494 up-to-date. */
4495 while (!recompute_vec.is_empty ())
4496 {
4497 rtx_insn *con;
4498
4499 con = recompute_vec.pop ();
4500 MUST_RECOMPUTE_SPEC_P (con) = 0;
4501 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4502 {
4503 TODO_SPEC (con) = HARD_DEP;
4504 INSN_TICK (con) = INVALID_TICK;
4505 if (PREDICATED_PAT (con) != NULL_RTX)
4506 haifa_change_pattern (con, ORIG_PAT (con));
4507 }
4508 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4509 TODO_SPEC (con) = recompute_todo_spec (con, true);
4510 }
4511 }
4512
4513 /* Restore scheduler state from the topmost entry on the backtracking queue.
4514 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4515 overwrite with the saved data.
4516 The caller must already have called unschedule_insns_until. */
4517
4518 static void
4519 restore_last_backtrack_point (struct sched_block_state *psched_block)
4520 {
4521 int i;
4522 struct haifa_saved_data *save = backtrack_queue;
4523
4524 backtrack_queue = save->next;
4525
4526 if (current_sched_info->restore_state)
4527 (*current_sched_info->restore_state) (save->fe_saved_data);
4528
4529 if (targetm.sched.alloc_sched_context)
4530 {
4531 targetm.sched.set_sched_context (save->be_saved_data);
4532 targetm.sched.free_sched_context (save->be_saved_data);
4533 }
4534
4535 /* Do this first since it clobbers INSN_TICK of the involved
4536 instructions. */
4537 undo_replacements_for_backtrack (save);
4538
4539 /* Clear the QUEUE_INDEX of everything in the ready list or one
4540 of the queues. */
4541 if (ready.n_ready > 0)
4542 {
4543 rtx_insn **first = ready_lastpos (&ready);
4544 for (i = 0; i < ready.n_ready; i++)
4545 {
4546 rtx_insn *insn = first[i];
4547 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4548 INSN_TICK (insn) = INVALID_TICK;
4549 }
4550 }
4551 for (i = 0; i <= max_insn_queue_index; i++)
4552 {
4553 int q = NEXT_Q_AFTER (q_ptr, i);
4554
4555 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4556 {
4557 rtx_insn *x = link->insn ();
4558 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4559 INSN_TICK (x) = INVALID_TICK;
4560 }
4561 free_INSN_LIST_list (&insn_queue[q]);
4562 }
4563
4564 free (ready.vec);
4565 ready = save->ready;
4566
4567 if (ready.n_ready > 0)
4568 {
4569 rtx_insn **first = ready_lastpos (&ready);
4570 for (i = 0; i < ready.n_ready; i++)
4571 {
4572 rtx_insn *insn = first[i];
4573 QUEUE_INDEX (insn) = QUEUE_READY;
4574 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4575 INSN_TICK (insn) = save->clock_var;
4576 }
4577 }
4578
4579 q_ptr = 0;
4580 q_size = save->q_size;
4581 for (i = 0; i <= max_insn_queue_index; i++)
4582 {
4583 int q = NEXT_Q_AFTER (q_ptr, i);
4584
4585 insn_queue[q] = save->insn_queue[q];
4586
4587 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4588 {
4589 rtx_insn *x = link->insn ();
4590 QUEUE_INDEX (x) = i;
4591 TODO_SPEC (x) = recompute_todo_spec (x, true);
4592 INSN_TICK (x) = save->clock_var + i;
4593 }
4594 }
4595 free (save->insn_queue);
4596
4597 toggle_cancelled_flags (true);
4598
4599 clock_var = save->clock_var;
4600 last_clock_var = save->last_clock_var;
4601 cycle_issued_insns = save->cycle_issued_insns;
4602 last_scheduled_insn = save->last_scheduled_insn;
4603 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4604 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4605
4606 *psched_block = save->sched_block;
4607
4608 memcpy (curr_state, save->curr_state, dfa_state_size);
4609 free (save->curr_state);
4610
4611 mark_backtrack_feeds (save->delay_pair->i2, 0);
4612
4613 gcc_assert (next_cycle_replace_deps.is_empty ());
4614 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4615 next_cycle_apply = save->next_cycle_apply.copy ();
4616
4617 free (save);
4618
4619 for (save = backtrack_queue; save; save = save->next)
4620 {
4621 mark_backtrack_feeds (save->delay_pair->i2, 1);
4622 }
4623 }
4624
4625 /* Discard all data associated with the topmost entry in the backtrack
4626 queue. If RESET_TICK is false, we just want to free the data. If true,
4627 we are doing this because we discovered a reason to backtrack. In the
4628 latter case, also reset the INSN_TICK for the shadow insn. */
4629 static void
4630 free_topmost_backtrack_point (bool reset_tick)
4631 {
4632 struct haifa_saved_data *save = backtrack_queue;
4633 int i;
4634
4635 backtrack_queue = save->next;
4636
4637 if (reset_tick)
4638 {
4639 struct delay_pair *pair = save->delay_pair;
4640 while (pair)
4641 {
4642 INSN_TICK (pair->i2) = INVALID_TICK;
4643 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4644 pair = pair->next_same_i1;
4645 }
4646 undo_replacements_for_backtrack (save);
4647 }
4648 else
4649 {
4650 save->replacement_deps.release ();
4651 save->replace_apply.release ();
4652 }
4653
4654 if (targetm.sched.free_sched_context)
4655 targetm.sched.free_sched_context (save->be_saved_data);
4656 if (current_sched_info->restore_state)
4657 free (save->fe_saved_data);
4658 for (i = 0; i <= max_insn_queue_index; i++)
4659 free_INSN_LIST_list (&save->insn_queue[i]);
4660 free (save->insn_queue);
4661 free (save->curr_state);
4662 free (save->ready.vec);
4663 free (save);
4664 }
4665
4666 /* Free the entire backtrack queue. */
4667 static void
4668 free_backtrack_queue (void)
4669 {
4670 while (backtrack_queue)
4671 free_topmost_backtrack_point (false);
4672 }
4673
4674 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4675 may have to postpone the replacement until the start of the next cycle,
4676 at which point we will be called again with IMMEDIATELY true. This is
4677 only done for machines which have instruction packets with explicit
4678 parallelism however. */
4679 static void
4680 apply_replacement (dep_t dep, bool immediately)
4681 {
4682 struct dep_replacement *desc = DEP_REPLACE (dep);
4683 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4684 {
4685 next_cycle_replace_deps.safe_push (dep);
4686 next_cycle_apply.safe_push (1);
4687 }
4688 else
4689 {
4690 bool success;
4691
4692 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4693 return;
4694
4695 if (sched_verbose >= 5)
4696 fprintf (sched_dump, "applying replacement for insn %d\n",
4697 INSN_UID (desc->insn));
4698
4699 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4700 gcc_assert (success);
4701
4702 update_insn_after_change (desc->insn);
4703 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4704 fix_tick_ready (desc->insn);
4705
4706 if (backtrack_queue != NULL)
4707 {
4708 backtrack_queue->replacement_deps.safe_push (dep);
4709 backtrack_queue->replace_apply.safe_push (1);
4710 }
4711 }
4712 }
4713
4714 /* We have determined that a pattern involved in DEP must be restored.
4715 If IMMEDIATELY is false, we may have to postpone the replacement
4716 until the start of the next cycle, at which point we will be called
4717 again with IMMEDIATELY true. */
4718 static void
4719 restore_pattern (dep_t dep, bool immediately)
4720 {
4721 rtx_insn *next = DEP_CON (dep);
4722 int tick = INSN_TICK (next);
4723
4724 /* If we already scheduled the insn, the modified version is
4725 correct. */
4726 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4727 return;
4728
4729 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4730 {
4731 next_cycle_replace_deps.safe_push (dep);
4732 next_cycle_apply.safe_push (0);
4733 return;
4734 }
4735
4736
4737 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4738 {
4739 if (sched_verbose >= 5)
4740 fprintf (sched_dump, "restoring pattern for insn %d\n",
4741 INSN_UID (next));
4742 haifa_change_pattern (next, ORIG_PAT (next));
4743 }
4744 else
4745 {
4746 struct dep_replacement *desc = DEP_REPLACE (dep);
4747 bool success;
4748
4749 if (sched_verbose >= 5)
4750 fprintf (sched_dump, "restoring pattern for insn %d\n",
4751 INSN_UID (desc->insn));
4752 tick = INSN_TICK (desc->insn);
4753
4754 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4755 gcc_assert (success);
4756 update_insn_after_change (desc->insn);
4757 if (backtrack_queue != NULL)
4758 {
4759 backtrack_queue->replacement_deps.safe_push (dep);
4760 backtrack_queue->replace_apply.safe_push (0);
4761 }
4762 }
4763 INSN_TICK (next) = tick;
4764 if (TODO_SPEC (next) == DEP_POSTPONED)
4765 return;
4766
4767 if (sd_lists_empty_p (next, SD_LIST_BACK))
4768 TODO_SPEC (next) = 0;
4769 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4770 TODO_SPEC (next) = HARD_DEP;
4771 }
4772
4773 /* Perform pattern replacements that were queued up until the next
4774 cycle. */
4775 static void
4776 perform_replacements_new_cycle (void)
4777 {
4778 int i;
4779 dep_t dep;
4780 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4781 {
4782 int apply_p = next_cycle_apply[i];
4783 if (apply_p)
4784 apply_replacement (dep, true);
4785 else
4786 restore_pattern (dep, true);
4787 }
4788 next_cycle_replace_deps.truncate (0);
4789 next_cycle_apply.truncate (0);
4790 }
4791
4792 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4793 instructions we've previously encountered, a set bit prevents
4794 recursion. BUDGET is a limit on how far ahead we look, it is
4795 reduced on recursive calls. Return true if we produced a good
4796 estimate, or false if we exceeded the budget. */
4797 static bool
4798 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4799 {
4800 sd_iterator_def sd_it;
4801 dep_t dep;
4802 int earliest = INSN_TICK (insn);
4803
4804 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4805 {
4806 rtx_insn *pro = DEP_PRO (dep);
4807 int t;
4808
4809 if (DEP_STATUS (dep) & DEP_CANCELLED)
4810 continue;
4811
4812 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4813 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4814 else
4815 {
4816 int cost = dep_cost (dep);
4817 if (cost >= budget)
4818 return false;
4819 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4820 {
4821 if (!estimate_insn_tick (processed, pro, budget - cost))
4822 return false;
4823 }
4824 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4825 t = INSN_TICK_ESTIMATE (pro) + cost;
4826 if (earliest == INVALID_TICK || t > earliest)
4827 earliest = t;
4828 }
4829 }
4830 bitmap_set_bit (processed, INSN_LUID (insn));
4831 INSN_TICK_ESTIMATE (insn) = earliest;
4832 return true;
4833 }
4834
4835 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4836 infinite resources) the cycle in which the delayed shadow can be issued.
4837 Return the number of cycles that must pass before the real insn can be
4838 issued in order to meet this constraint. */
4839 static int
4840 estimate_shadow_tick (struct delay_pair *p)
4841 {
4842 bitmap_head processed;
4843 int t;
4844 bool cutoff;
4845 bitmap_initialize (&processed, 0);
4846
4847 cutoff = !estimate_insn_tick (&processed, p->i2,
4848 max_insn_queue_index + pair_delay (p));
4849 bitmap_clear (&processed);
4850 if (cutoff)
4851 return max_insn_queue_index;
4852 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4853 if (t > 0)
4854 return t;
4855 return 0;
4856 }
4857
4858 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4859 recursively resolve all its forward dependencies. */
4860 static void
4861 resolve_dependencies (rtx_insn *insn)
4862 {
4863 sd_iterator_def sd_it;
4864 dep_t dep;
4865
4866 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4867 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4868 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4869 return;
4870
4871 if (sched_verbose >= 4)
4872 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4873
4874 if (QUEUE_INDEX (insn) >= 0)
4875 queue_remove (insn);
4876
4877 scheduled_insns.safe_push (insn);
4878
4879 /* Update dependent instructions. */
4880 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4881 sd_iterator_cond (&sd_it, &dep);)
4882 {
4883 rtx_insn *next = DEP_CON (dep);
4884
4885 if (sched_verbose >= 4)
4886 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4887 INSN_UID (next));
4888
4889 /* Resolve the dependence between INSN and NEXT.
4890 sd_resolve_dep () moves current dep to another list thus
4891 advancing the iterator. */
4892 sd_resolve_dep (sd_it);
4893
4894 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4895 {
4896 resolve_dependencies (next);
4897 }
4898 else
4899 /* Check always has only one forward dependence (to the first insn in
4900 the recovery block), therefore, this will be executed only once. */
4901 {
4902 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4903 }
4904 }
4905 }
4906
4907
4908 /* Return the head and tail pointers of ebb starting at BEG and ending
4909 at END. */
4910 void
4911 get_ebb_head_tail (basic_block beg, basic_block end,
4912 rtx_insn **headp, rtx_insn **tailp)
4913 {
4914 rtx_insn *beg_head = BB_HEAD (beg);
4915 rtx_insn * beg_tail = BB_END (beg);
4916 rtx_insn * end_head = BB_HEAD (end);
4917 rtx_insn * end_tail = BB_END (end);
4918
4919 /* Don't include any notes or labels at the beginning of the BEG
4920 basic block, or notes at the end of the END basic blocks. */
4921
4922 if (LABEL_P (beg_head))
4923 beg_head = NEXT_INSN (beg_head);
4924
4925 while (beg_head != beg_tail)
4926 if (NOTE_P (beg_head))
4927 beg_head = NEXT_INSN (beg_head);
4928 else if (DEBUG_INSN_P (beg_head))
4929 {
4930 rtx_insn * note, *next;
4931
4932 for (note = NEXT_INSN (beg_head);
4933 note != beg_tail;
4934 note = next)
4935 {
4936 next = NEXT_INSN (note);
4937 if (NOTE_P (note))
4938 {
4939 if (sched_verbose >= 9)
4940 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4941
4942 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4943
4944 if (BLOCK_FOR_INSN (note) != beg)
4945 df_insn_change_bb (note, beg);
4946 }
4947 else if (!DEBUG_INSN_P (note))
4948 break;
4949 }
4950
4951 break;
4952 }
4953 else
4954 break;
4955
4956 *headp = beg_head;
4957
4958 if (beg == end)
4959 end_head = beg_head;
4960 else if (LABEL_P (end_head))
4961 end_head = NEXT_INSN (end_head);
4962
4963 while (end_head != end_tail)
4964 if (NOTE_P (end_tail))
4965 end_tail = PREV_INSN (end_tail);
4966 else if (DEBUG_INSN_P (end_tail))
4967 {
4968 rtx_insn * note, *prev;
4969
4970 for (note = PREV_INSN (end_tail);
4971 note != end_head;
4972 note = prev)
4973 {
4974 prev = PREV_INSN (note);
4975 if (NOTE_P (note))
4976 {
4977 if (sched_verbose >= 9)
4978 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4979
4980 reorder_insns_nobb (note, note, end_tail);
4981
4982 if (end_tail == BB_END (end))
4983 BB_END (end) = note;
4984
4985 if (BLOCK_FOR_INSN (note) != end)
4986 df_insn_change_bb (note, end);
4987 }
4988 else if (!DEBUG_INSN_P (note))
4989 break;
4990 }
4991
4992 break;
4993 }
4994 else
4995 break;
4996
4997 *tailp = end_tail;
4998 }
4999
5000 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5001
5002 int
5003 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5004 {
5005 while (head != NEXT_INSN (tail))
5006 {
5007 if (!NOTE_P (head) && !LABEL_P (head))
5008 return 0;
5009 head = NEXT_INSN (head);
5010 }
5011 return 1;
5012 }
5013
5014 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5015 previously found among the insns. Insert them just before HEAD. */
5016 rtx_insn *
5017 restore_other_notes (rtx_insn *head, basic_block head_bb)
5018 {
5019 if (note_list != 0)
5020 {
5021 rtx_insn *note_head = note_list;
5022
5023 if (head)
5024 head_bb = BLOCK_FOR_INSN (head);
5025 else
5026 head = NEXT_INSN (bb_note (head_bb));
5027
5028 while (PREV_INSN (note_head))
5029 {
5030 set_block_for_insn (note_head, head_bb);
5031 note_head = PREV_INSN (note_head);
5032 }
5033 /* In the above cycle we've missed this note. */
5034 set_block_for_insn (note_head, head_bb);
5035
5036 SET_PREV_INSN (note_head) = PREV_INSN (head);
5037 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5038 SET_PREV_INSN (head) = note_list;
5039 SET_NEXT_INSN (note_list) = head;
5040
5041 if (BLOCK_FOR_INSN (head) != head_bb)
5042 BB_END (head_bb) = note_list;
5043
5044 head = note_head;
5045 }
5046
5047 return head;
5048 }
5049
5050 /* When we know we are going to discard the schedule due to a failed attempt
5051 at modulo scheduling, undo all replacements. */
5052 static void
5053 undo_all_replacements (void)
5054 {
5055 rtx_insn *insn;
5056 int i;
5057
5058 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5059 {
5060 sd_iterator_def sd_it;
5061 dep_t dep;
5062
5063 /* See if we must undo a replacement. */
5064 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5065 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5066 {
5067 struct dep_replacement *desc = DEP_REPLACE (dep);
5068 if (desc != NULL)
5069 validate_change (desc->insn, desc->loc, desc->orig, 0);
5070 }
5071 }
5072 }
5073
5074 /* Return first non-scheduled insn in the current scheduling block.
5075 This is mostly used for debug-counter purposes. */
5076 static rtx_insn *
5077 first_nonscheduled_insn (void)
5078 {
5079 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5080 ? nonscheduled_insns_begin
5081 : current_sched_info->prev_head);
5082
5083 do
5084 {
5085 insn = next_nonnote_nondebug_insn (insn);
5086 }
5087 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5088
5089 return insn;
5090 }
5091
5092 /* Move insns that became ready to fire from queue to ready list. */
5093
5094 static void
5095 queue_to_ready (struct ready_list *ready)
5096 {
5097 rtx_insn *insn;
5098 rtx_insn_list *link;
5099 rtx skip_insn;
5100
5101 q_ptr = NEXT_Q (q_ptr);
5102
5103 if (dbg_cnt (sched_insn) == false)
5104 /* If debug counter is activated do not requeue the first
5105 nonscheduled insn. */
5106 skip_insn = first_nonscheduled_insn ();
5107 else
5108 skip_insn = NULL_RTX;
5109
5110 /* Add all pending insns that can be scheduled without stalls to the
5111 ready list. */
5112 for (link = insn_queue[q_ptr]; link; link = link->next ())
5113 {
5114 insn = link->insn ();
5115 q_size -= 1;
5116
5117 if (sched_verbose >= 2)
5118 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5119 (*current_sched_info->print_insn) (insn, 0));
5120
5121 /* If the ready list is full, delay the insn for 1 cycle.
5122 See the comment in schedule_block for the rationale. */
5123 if (!reload_completed
5124 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5125 || (sched_pressure == SCHED_PRESSURE_MODEL
5126 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5127 instructions too. */
5128 && model_index (insn) > (model_curr_point
5129 + MAX_SCHED_READY_INSNS)))
5130 && !(sched_pressure == SCHED_PRESSURE_MODEL
5131 && model_curr_point < model_num_insns
5132 /* Always allow the next model instruction to issue. */
5133 && model_index (insn) == model_curr_point)
5134 && !SCHED_GROUP_P (insn)
5135 && insn != skip_insn)
5136 {
5137 if (sched_verbose >= 2)
5138 fprintf (sched_dump, "keeping in queue, ready full\n");
5139 queue_insn (insn, 1, "ready full");
5140 }
5141 else
5142 {
5143 ready_add (ready, insn, false);
5144 if (sched_verbose >= 2)
5145 fprintf (sched_dump, "moving to ready without stalls\n");
5146 }
5147 }
5148 free_INSN_LIST_list (&insn_queue[q_ptr]);
5149
5150 /* If there are no ready insns, stall until one is ready and add all
5151 of the pending insns at that point to the ready list. */
5152 if (ready->n_ready == 0)
5153 {
5154 int stalls;
5155
5156 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5157 {
5158 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5159 {
5160 for (; link; link = link->next ())
5161 {
5162 insn = link->insn ();
5163 q_size -= 1;
5164
5165 if (sched_verbose >= 2)
5166 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5167 (*current_sched_info->print_insn) (insn, 0));
5168
5169 ready_add (ready, insn, false);
5170 if (sched_verbose >= 2)
5171 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5172 }
5173 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5174
5175 advance_one_cycle ();
5176
5177 break;
5178 }
5179
5180 advance_one_cycle ();
5181 }
5182
5183 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5184 clock_var += stalls;
5185 if (sched_verbose >= 2)
5186 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5187 stalls, clock_var);
5188 }
5189 }
5190
5191 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5192 prematurely move INSN from the queue to the ready list. Currently,
5193 if a target defines the hook 'is_costly_dependence', this function
5194 uses the hook to check whether there exist any dependences which are
5195 considered costly by the target, between INSN and other insns that
5196 have already been scheduled. Dependences are checked up to Y cycles
5197 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5198 controlling this value.
5199 (Other considerations could be taken into account instead (or in
5200 addition) depending on user flags and target hooks. */
5201
5202 static bool
5203 ok_for_early_queue_removal (rtx insn)
5204 {
5205 if (targetm.sched.is_costly_dependence)
5206 {
5207 rtx prev_insn;
5208 int n_cycles;
5209 int i = scheduled_insns.length ();
5210 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5211 {
5212 while (i-- > 0)
5213 {
5214 int cost;
5215
5216 prev_insn = scheduled_insns[i];
5217
5218 if (!NOTE_P (prev_insn))
5219 {
5220 dep_t dep;
5221
5222 dep = sd_find_dep_between (prev_insn, insn, true);
5223
5224 if (dep != NULL)
5225 {
5226 cost = dep_cost (dep);
5227
5228 if (targetm.sched.is_costly_dependence (dep, cost,
5229 flag_sched_stalled_insns_dep - n_cycles))
5230 return false;
5231 }
5232 }
5233
5234 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5235 break;
5236 }
5237
5238 if (i == 0)
5239 break;
5240 }
5241 }
5242
5243 return true;
5244 }
5245
5246
5247 /* Remove insns from the queue, before they become "ready" with respect
5248 to FU latency considerations. */
5249
5250 static int
5251 early_queue_to_ready (state_t state, struct ready_list *ready)
5252 {
5253 rtx_insn *insn;
5254 rtx_insn_list *link;
5255 rtx_insn_list *next_link;
5256 rtx_insn_list *prev_link;
5257 bool move_to_ready;
5258 int cost;
5259 state_t temp_state = alloca (dfa_state_size);
5260 int stalls;
5261 int insns_removed = 0;
5262
5263 /*
5264 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5265 function:
5266
5267 X == 0: There is no limit on how many queued insns can be removed
5268 prematurely. (flag_sched_stalled_insns = -1).
5269
5270 X >= 1: Only X queued insns can be removed prematurely in each
5271 invocation. (flag_sched_stalled_insns = X).
5272
5273 Otherwise: Early queue removal is disabled.
5274 (flag_sched_stalled_insns = 0)
5275 */
5276
5277 if (! flag_sched_stalled_insns)
5278 return 0;
5279
5280 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5281 {
5282 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5283 {
5284 if (sched_verbose > 6)
5285 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5286
5287 prev_link = 0;
5288 while (link)
5289 {
5290 next_link = link->next ();
5291 insn = link->insn ();
5292 if (insn && sched_verbose > 6)
5293 print_rtl_single (sched_dump, insn);
5294
5295 memcpy (temp_state, state, dfa_state_size);
5296 if (recog_memoized (insn) < 0)
5297 /* non-negative to indicate that it's not ready
5298 to avoid infinite Q->R->Q->R... */
5299 cost = 0;
5300 else
5301 cost = state_transition (temp_state, insn);
5302
5303 if (sched_verbose >= 6)
5304 fprintf (sched_dump, "transition cost = %d\n", cost);
5305
5306 move_to_ready = false;
5307 if (cost < 0)
5308 {
5309 move_to_ready = ok_for_early_queue_removal (insn);
5310 if (move_to_ready == true)
5311 {
5312 /* move from Q to R */
5313 q_size -= 1;
5314 ready_add (ready, insn, false);
5315
5316 if (prev_link)
5317 XEXP (prev_link, 1) = next_link;
5318 else
5319 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5320
5321 free_INSN_LIST_node (link);
5322
5323 if (sched_verbose >= 2)
5324 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5325 (*current_sched_info->print_insn) (insn, 0));
5326
5327 insns_removed++;
5328 if (insns_removed == flag_sched_stalled_insns)
5329 /* Remove no more than flag_sched_stalled_insns insns
5330 from Q at a time. */
5331 return insns_removed;
5332 }
5333 }
5334
5335 if (move_to_ready == false)
5336 prev_link = link;
5337
5338 link = next_link;
5339 } /* while link */
5340 } /* if link */
5341
5342 } /* for stalls.. */
5343
5344 return insns_removed;
5345 }
5346
5347
5348 /* Print the ready list for debugging purposes.
5349 If READY_TRY is non-zero then only print insns that max_issue
5350 will consider. */
5351 static void
5352 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5353 {
5354 rtx_insn **p;
5355 int i;
5356
5357 if (ready->n_ready == 0)
5358 {
5359 fprintf (sched_dump, "\n");
5360 return;
5361 }
5362
5363 p = ready_lastpos (ready);
5364 for (i = 0; i < ready->n_ready; i++)
5365 {
5366 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5367 continue;
5368
5369 fprintf (sched_dump, " %s:%d",
5370 (*current_sched_info->print_insn) (p[i], 0),
5371 INSN_LUID (p[i]));
5372 if (sched_pressure != SCHED_PRESSURE_NONE)
5373 fprintf (sched_dump, "(cost=%d",
5374 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5375 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5376 if (INSN_TICK (p[i]) > clock_var)
5377 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5378 if (sched_pressure == SCHED_PRESSURE_MODEL)
5379 fprintf (sched_dump, ":idx=%d",
5380 model_index (p[i]));
5381 if (sched_pressure != SCHED_PRESSURE_NONE)
5382 fprintf (sched_dump, ")");
5383 }
5384 fprintf (sched_dump, "\n");
5385 }
5386
5387 /* Print the ready list. Callable from debugger. */
5388 static void
5389 debug_ready_list (struct ready_list *ready)
5390 {
5391 debug_ready_list_1 (ready, NULL);
5392 }
5393
5394 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5395 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5396 replaces the epilogue note in the correct basic block. */
5397 void
5398 reemit_notes (rtx_insn *insn)
5399 {
5400 rtx note;
5401 rtx_insn *last = insn;
5402
5403 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5404 {
5405 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5406 {
5407 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5408
5409 last = emit_note_before (note_type, last);
5410 remove_note (insn, note);
5411 }
5412 }
5413 }
5414
5415 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5416 static void
5417 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5418 {
5419 if (PREV_INSN (insn) != last)
5420 {
5421 basic_block bb;
5422 rtx_insn *note;
5423 int jump_p = 0;
5424
5425 bb = BLOCK_FOR_INSN (insn);
5426
5427 /* BB_HEAD is either LABEL or NOTE. */
5428 gcc_assert (BB_HEAD (bb) != insn);
5429
5430 if (BB_END (bb) == insn)
5431 /* If this is last instruction in BB, move end marker one
5432 instruction up. */
5433 {
5434 /* Jumps are always placed at the end of basic block. */
5435 jump_p = control_flow_insn_p (insn);
5436
5437 gcc_assert (!jump_p
5438 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5439 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5440 || (common_sched_info->sched_pass_id
5441 == SCHED_EBB_PASS));
5442
5443 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5444
5445 BB_END (bb) = PREV_INSN (insn);
5446 }
5447
5448 gcc_assert (BB_END (bb) != last);
5449
5450 if (jump_p)
5451 /* We move the block note along with jump. */
5452 {
5453 gcc_assert (nt);
5454
5455 note = NEXT_INSN (insn);
5456 while (NOTE_NOT_BB_P (note) && note != nt)
5457 note = NEXT_INSN (note);
5458
5459 if (note != nt
5460 && (LABEL_P (note)
5461 || BARRIER_P (note)))
5462 note = NEXT_INSN (note);
5463
5464 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5465 }
5466 else
5467 note = insn;
5468
5469 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5470 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5471
5472 SET_NEXT_INSN (note) = NEXT_INSN (last);
5473 SET_PREV_INSN (NEXT_INSN (last)) = note;
5474
5475 SET_NEXT_INSN (last) = insn;
5476 SET_PREV_INSN (insn) = last;
5477
5478 bb = BLOCK_FOR_INSN (last);
5479
5480 if (jump_p)
5481 {
5482 fix_jump_move (insn);
5483
5484 if (BLOCK_FOR_INSN (insn) != bb)
5485 move_block_after_check (insn);
5486
5487 gcc_assert (BB_END (bb) == last);
5488 }
5489
5490 df_insn_change_bb (insn, bb);
5491
5492 /* Update BB_END, if needed. */
5493 if (BB_END (bb) == last)
5494 BB_END (bb) = insn;
5495 }
5496
5497 SCHED_GROUP_P (insn) = 0;
5498 }
5499
5500 /* Return true if scheduling INSN will finish current clock cycle. */
5501 static bool
5502 insn_finishes_cycle_p (rtx_insn *insn)
5503 {
5504 if (SCHED_GROUP_P (insn))
5505 /* After issuing INSN, rest of the sched_group will be forced to issue
5506 in order. Don't make any plans for the rest of cycle. */
5507 return true;
5508
5509 /* Finishing the block will, apparently, finish the cycle. */
5510 if (current_sched_info->insn_finishes_block_p
5511 && current_sched_info->insn_finishes_block_p (insn))
5512 return true;
5513
5514 return false;
5515 }
5516
5517 /* Functions to model cache auto-prefetcher.
5518
5519 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5520 memory prefetches if it sees instructions with consequitive memory accesses
5521 in the instruction stream. Details of such hardware units are not published,
5522 so we can only guess what exactly is going on there.
5523 In the scheduler, we model abstract auto-prefetcher. If there are memory
5524 insns in the ready list (or the queue) that have same memory base, but
5525 different offsets, then we delay the insns with larger offsets until insns
5526 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5527 is "1", then we look at the ready list; if it is N>1, then we also look
5528 through N-1 queue entries.
5529 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5530 among its heuristics.
5531 Param value of "-1" disables modelling of the auto-prefetcher. */
5532
5533 /* Initialize autoprefetcher model data for INSN. */
5534 static void
5535 autopref_multipass_init (const rtx_insn *insn, int write)
5536 {
5537 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5538
5539 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5540 data->base = NULL_RTX;
5541 data->offset = 0;
5542 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5543 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5544
5545 rtx set = single_set (insn);
5546 if (set == NULL_RTX)
5547 return;
5548
5549 rtx mem = write ? SET_DEST (set) : SET_SRC (set);
5550 if (!MEM_P (mem))
5551 return;
5552
5553 struct address_info info;
5554 decompose_mem_address (&info, mem);
5555
5556 /* TODO: Currently only (base+const) addressing is supported. */
5557 if (info.base == NULL || !REG_P (*info.base)
5558 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5559 return;
5560
5561 /* This insn is relevant for auto-prefetcher. */
5562 data->base = *info.base;
5563 data->offset = info.disp ? INTVAL (*info.disp) : 0;
5564 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5565 }
5566
5567 /* Helper function for rank_for_schedule sorting. */
5568 static int
5569 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5570 {
5571 for (int write = 0; write < 2; ++write)
5572 {
5573 autopref_multipass_data_t data1
5574 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5575 autopref_multipass_data_t data2
5576 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5577
5578 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5579 autopref_multipass_init (insn1, write);
5580 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5581 continue;
5582
5583 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5584 autopref_multipass_init (insn2, write);
5585 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5586 continue;
5587
5588 if (!rtx_equal_p (data1->base, data2->base))
5589 continue;
5590
5591 return data1->offset - data2->offset;
5592 }
5593
5594 return 0;
5595 }
5596
5597 /* True if header of debug dump was printed. */
5598 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5599
5600 /* Helper for autopref_multipass_dfa_lookahead_guard.
5601 Return "1" if INSN1 should be delayed in favor of INSN2. */
5602 static int
5603 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5604 const rtx_insn *insn2, int write)
5605 {
5606 autopref_multipass_data_t data1
5607 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5608 autopref_multipass_data_t data2
5609 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5610
5611 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5612 autopref_multipass_init (insn2, write);
5613 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5614 return 0;
5615
5616 if (rtx_equal_p (data1->base, data2->base)
5617 && data1->offset > data2->offset)
5618 {
5619 if (sched_verbose >= 2)
5620 {
5621 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5622 {
5623 fprintf (sched_dump,
5624 ";;\t\tnot trying in max_issue due to autoprefetch "
5625 "model: ");
5626 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5627 }
5628
5629 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5630 }
5631
5632 return 1;
5633 }
5634
5635 return 0;
5636 }
5637
5638 /* General note:
5639
5640 We could have also hooked autoprefetcher model into
5641 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5642 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5643 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5644 unblocked). We don't bother about this yet because target of interest
5645 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5646
5647 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5648 Return "1" if INSN1 should not be considered in max_issue due to
5649 auto-prefetcher considerations. */
5650 int
5651 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5652 {
5653 int r = 0;
5654
5655 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5656 return 0;
5657
5658 if (sched_verbose >= 2 && ready_index == 0)
5659 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5660
5661 for (int write = 0; write < 2; ++write)
5662 {
5663 autopref_multipass_data_t data1
5664 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5665
5666 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5667 autopref_multipass_init (insn1, write);
5668 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5669 continue;
5670
5671 if (ready_index == 0
5672 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5673 /* We allow only a single delay on priviledged instructions.
5674 Doing otherwise would cause infinite loop. */
5675 {
5676 if (sched_verbose >= 2)
5677 {
5678 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5679 {
5680 fprintf (sched_dump,
5681 ";;\t\tnot trying in max_issue due to autoprefetch "
5682 "model: ");
5683 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5684 }
5685
5686 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5687 }
5688 continue;
5689 }
5690
5691 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5692 {
5693 rtx_insn *insn2 = get_ready_element (i2);
5694 if (insn1 == insn2)
5695 continue;
5696 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5697 if (r)
5698 {
5699 if (ready_index == 0)
5700 {
5701 r = -1;
5702 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5703 }
5704 goto finish;
5705 }
5706 }
5707
5708 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5709 continue;
5710
5711 /* Everything from the current queue slot should have been moved to
5712 the ready list. */
5713 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5714
5715 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5716 if (n_stalls > max_insn_queue_index)
5717 n_stalls = max_insn_queue_index;
5718
5719 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5720 {
5721 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5722 link != NULL_RTX;
5723 link = link->next ())
5724 {
5725 rtx_insn *insn2 = link->insn ();
5726 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5727 write);
5728 if (r)
5729 {
5730 /* Queue INSN1 until INSN2 can issue. */
5731 r = -stalls;
5732 if (ready_index == 0)
5733 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5734 goto finish;
5735 }
5736 }
5737 }
5738 }
5739
5740 finish:
5741 if (sched_verbose >= 2
5742 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5743 && (ready_index == ready.n_ready - 1 || r < 0))
5744 /* This does not /always/ trigger. We don't output EOL if the last
5745 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5746 called. We can live with this. */
5747 fprintf (sched_dump, "\n");
5748
5749 return r;
5750 }
5751
5752 /* Define type for target data used in multipass scheduling. */
5753 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5754 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5755 #endif
5756 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5757
5758 /* The following structure describe an entry of the stack of choices. */
5759 struct choice_entry
5760 {
5761 /* Ordinal number of the issued insn in the ready queue. */
5762 int index;
5763 /* The number of the rest insns whose issues we should try. */
5764 int rest;
5765 /* The number of issued essential insns. */
5766 int n;
5767 /* State after issuing the insn. */
5768 state_t state;
5769 /* Target-specific data. */
5770 first_cycle_multipass_data_t target_data;
5771 };
5772
5773 /* The following array is used to implement a stack of choices used in
5774 function max_issue. */
5775 static struct choice_entry *choice_stack;
5776
5777 /* This holds the value of the target dfa_lookahead hook. */
5778 int dfa_lookahead;
5779
5780 /* The following variable value is maximal number of tries of issuing
5781 insns for the first cycle multipass insn scheduling. We define
5782 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5783 need this constraint if all real insns (with non-negative codes)
5784 had reservations because in this case the algorithm complexity is
5785 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5786 might be incomplete and such insn might occur. For such
5787 descriptions, the complexity of algorithm (without the constraint)
5788 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5789 static int max_lookahead_tries;
5790
5791 /* The following function returns maximal (or close to maximal) number
5792 of insns which can be issued on the same cycle and one of which
5793 insns is insns with the best rank (the first insn in READY). To
5794 make this function tries different samples of ready insns. READY
5795 is current queue `ready'. Global array READY_TRY reflects what
5796 insns are already issued in this try. The function stops immediately,
5797 if it reached the such a solution, that all instruction can be issued.
5798 INDEX will contain index of the best insn in READY. The following
5799 function is used only for first cycle multipass scheduling.
5800
5801 PRIVILEGED_N >= 0
5802
5803 This function expects recognized insns only. All USEs,
5804 CLOBBERs, etc must be filtered elsewhere. */
5805 int
5806 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5807 bool first_cycle_insn_p, int *index)
5808 {
5809 int n, i, all, n_ready, best, delay, tries_num;
5810 int more_issue;
5811 struct choice_entry *top;
5812 rtx_insn *insn;
5813
5814 if (sched_fusion)
5815 return 0;
5816
5817 n_ready = ready->n_ready;
5818 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5819 && privileged_n <= n_ready);
5820
5821 /* Init MAX_LOOKAHEAD_TRIES. */
5822 if (max_lookahead_tries == 0)
5823 {
5824 max_lookahead_tries = 100;
5825 for (i = 0; i < issue_rate; i++)
5826 max_lookahead_tries *= dfa_lookahead;
5827 }
5828
5829 /* Init max_points. */
5830 more_issue = issue_rate - cycle_issued_insns;
5831 gcc_assert (more_issue >= 0);
5832
5833 /* The number of the issued insns in the best solution. */
5834 best = 0;
5835
5836 top = choice_stack;
5837
5838 /* Set initial state of the search. */
5839 memcpy (top->state, state, dfa_state_size);
5840 top->rest = dfa_lookahead;
5841 top->n = 0;
5842 if (targetm.sched.first_cycle_multipass_begin)
5843 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5844 ready_try, n_ready,
5845 first_cycle_insn_p);
5846
5847 /* Count the number of the insns to search among. */
5848 for (all = i = 0; i < n_ready; i++)
5849 if (!ready_try [i])
5850 all++;
5851
5852 if (sched_verbose >= 2)
5853 {
5854 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5855 debug_ready_list_1 (ready, ready_try);
5856 }
5857
5858 /* I is the index of the insn to try next. */
5859 i = 0;
5860 tries_num = 0;
5861 for (;;)
5862 {
5863 if (/* If we've reached a dead end or searched enough of what we have
5864 been asked... */
5865 top->rest == 0
5866 /* or have nothing else to try... */
5867 || i >= n_ready
5868 /* or should not issue more. */
5869 || top->n >= more_issue)
5870 {
5871 /* ??? (... || i == n_ready). */
5872 gcc_assert (i <= n_ready);
5873
5874 /* We should not issue more than issue_rate instructions. */
5875 gcc_assert (top->n <= more_issue);
5876
5877 if (top == choice_stack)
5878 break;
5879
5880 if (best < top - choice_stack)
5881 {
5882 if (privileged_n)
5883 {
5884 n = privileged_n;
5885 /* Try to find issued privileged insn. */
5886 while (n && !ready_try[--n])
5887 ;
5888 }
5889
5890 if (/* If all insns are equally good... */
5891 privileged_n == 0
5892 /* Or a privileged insn will be issued. */
5893 || ready_try[n])
5894 /* Then we have a solution. */
5895 {
5896 best = top - choice_stack;
5897 /* This is the index of the insn issued first in this
5898 solution. */
5899 *index = choice_stack [1].index;
5900 if (top->n == more_issue || best == all)
5901 break;
5902 }
5903 }
5904
5905 /* Set ready-list index to point to the last insn
5906 ('i++' below will advance it to the next insn). */
5907 i = top->index;
5908
5909 /* Backtrack. */
5910 ready_try [i] = 0;
5911
5912 if (targetm.sched.first_cycle_multipass_backtrack)
5913 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5914 ready_try, n_ready);
5915
5916 top--;
5917 memcpy (state, top->state, dfa_state_size);
5918 }
5919 else if (!ready_try [i])
5920 {
5921 tries_num++;
5922 if (tries_num > max_lookahead_tries)
5923 break;
5924 insn = ready_element (ready, i);
5925 delay = state_transition (state, insn);
5926 if (delay < 0)
5927 {
5928 if (state_dead_lock_p (state)
5929 || insn_finishes_cycle_p (insn))
5930 /* We won't issue any more instructions in the next
5931 choice_state. */
5932 top->rest = 0;
5933 else
5934 top->rest--;
5935
5936 n = top->n;
5937 if (memcmp (top->state, state, dfa_state_size) != 0)
5938 n++;
5939
5940 /* Advance to the next choice_entry. */
5941 top++;
5942 /* Initialize it. */
5943 top->rest = dfa_lookahead;
5944 top->index = i;
5945 top->n = n;
5946 memcpy (top->state, state, dfa_state_size);
5947 ready_try [i] = 1;
5948
5949 if (targetm.sched.first_cycle_multipass_issue)
5950 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5951 ready_try, n_ready,
5952 insn,
5953 &((top - 1)
5954 ->target_data));
5955
5956 i = -1;
5957 }
5958 }
5959
5960 /* Increase ready-list index. */
5961 i++;
5962 }
5963
5964 if (targetm.sched.first_cycle_multipass_end)
5965 targetm.sched.first_cycle_multipass_end (best != 0
5966 ? &choice_stack[1].target_data
5967 : NULL);
5968
5969 /* Restore the original state of the DFA. */
5970 memcpy (state, choice_stack->state, dfa_state_size);
5971
5972 return best;
5973 }
5974
5975 /* The following function chooses insn from READY and modifies
5976 READY. The following function is used only for first
5977 cycle multipass scheduling.
5978 Return:
5979 -1 if cycle should be advanced,
5980 0 if INSN_PTR is set to point to the desirable insn,
5981 1 if choose_ready () should be restarted without advancing the cycle. */
5982 static int
5983 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
5984 rtx_insn **insn_ptr)
5985 {
5986 if (dbg_cnt (sched_insn) == false)
5987 {
5988 if (nonscheduled_insns_begin == NULL_RTX)
5989 nonscheduled_insns_begin = current_sched_info->prev_head;
5990
5991 rtx_insn *insn = first_nonscheduled_insn ();
5992
5993 if (QUEUE_INDEX (insn) == QUEUE_READY)
5994 /* INSN is in the ready_list. */
5995 {
5996 ready_remove_insn (insn);
5997 *insn_ptr = insn;
5998 return 0;
5999 }
6000
6001 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6002 gcc_assert (QUEUE_INDEX (insn) >= 0);
6003 return -1;
6004 }
6005
6006 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6007 || DEBUG_INSN_P (ready_element (ready, 0)))
6008 {
6009 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6010 *insn_ptr = ready_remove_first_dispatch (ready);
6011 else
6012 *insn_ptr = ready_remove_first (ready);
6013
6014 return 0;
6015 }
6016 else
6017 {
6018 /* Try to choose the best insn. */
6019 int index = 0, i;
6020 rtx_insn *insn;
6021
6022 insn = ready_element (ready, 0);
6023 if (INSN_CODE (insn) < 0)
6024 {
6025 *insn_ptr = ready_remove_first (ready);
6026 return 0;
6027 }
6028
6029 /* Filter the search space. */
6030 for (i = 0; i < ready->n_ready; i++)
6031 {
6032 ready_try[i] = 0;
6033
6034 insn = ready_element (ready, i);
6035
6036 /* If this insn is recognizable we should have already
6037 recognized it earlier.
6038 ??? Not very clear where this is supposed to be done.
6039 See dep_cost_1. */
6040 gcc_checking_assert (INSN_CODE (insn) >= 0
6041 || recog_memoized (insn) < 0);
6042 if (INSN_CODE (insn) < 0)
6043 {
6044 /* Non-recognized insns at position 0 are handled above. */
6045 gcc_assert (i > 0);
6046 ready_try[i] = 1;
6047 continue;
6048 }
6049
6050 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6051 {
6052 ready_try[i]
6053 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6054 (insn, i));
6055
6056 if (ready_try[i] < 0)
6057 /* Queue instruction for several cycles.
6058 We need to restart choose_ready as we have changed
6059 the ready list. */
6060 {
6061 change_queue_index (insn, -ready_try[i]);
6062 return 1;
6063 }
6064
6065 /* Make sure that we didn't end up with 0'th insn filtered out.
6066 Don't be tempted to make life easier for backends and just
6067 requeue 0'th insn if (ready_try[0] == 0) and restart
6068 choose_ready. Backends should be very considerate about
6069 requeueing instructions -- especially the highest priority
6070 one at position 0. */
6071 gcc_assert (ready_try[i] == 0 || i > 0);
6072 if (ready_try[i])
6073 continue;
6074 }
6075
6076 gcc_assert (ready_try[i] == 0);
6077 /* INSN made it through the scrutiny of filters! */
6078 }
6079
6080 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6081 {
6082 *insn_ptr = ready_remove_first (ready);
6083 if (sched_verbose >= 4)
6084 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6085 (*current_sched_info->print_insn) (*insn_ptr, 0));
6086 return 0;
6087 }
6088 else
6089 {
6090 if (sched_verbose >= 4)
6091 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6092 (*current_sched_info->print_insn)
6093 (ready_element (ready, index), 0));
6094
6095 *insn_ptr = ready_remove (ready, index);
6096 return 0;
6097 }
6098 }
6099 }
6100
6101 /* This function is called when we have successfully scheduled a
6102 block. It uses the schedule stored in the scheduled_insns vector
6103 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6104 append the scheduled insns; TAIL is the insn after the scheduled
6105 block. TARGET_BB is the argument passed to schedule_block. */
6106
6107 static void
6108 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6109 {
6110 unsigned int i;
6111 rtx_insn *insn;
6112
6113 last_scheduled_insn = prev_head;
6114 for (i = 0;
6115 scheduled_insns.iterate (i, &insn);
6116 i++)
6117 {
6118 if (control_flow_insn_p (last_scheduled_insn)
6119 || current_sched_info->advance_target_bb (*target_bb, insn))
6120 {
6121 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6122
6123 if (sched_verbose)
6124 {
6125 rtx_insn *x;
6126
6127 x = next_real_insn (last_scheduled_insn);
6128 gcc_assert (x);
6129 dump_new_block_header (1, *target_bb, x, tail);
6130 }
6131
6132 last_scheduled_insn = bb_note (*target_bb);
6133 }
6134
6135 if (current_sched_info->begin_move_insn)
6136 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6137 move_insn (insn, last_scheduled_insn,
6138 current_sched_info->next_tail);
6139 if (!DEBUG_INSN_P (insn))
6140 reemit_notes (insn);
6141 last_scheduled_insn = insn;
6142 }
6143
6144 scheduled_insns.truncate (0);
6145 }
6146
6147 /* Examine all insns on the ready list and queue those which can't be
6148 issued in this cycle. TEMP_STATE is temporary scheduler state we
6149 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6150 have been issued for the current cycle, which means it is valid to
6151 issue an asm statement.
6152
6153 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6154 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6155 we only leave insns which have an INSN_EXACT_TICK. */
6156
6157 static void
6158 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6159 bool shadows_only_p, bool modulo_epilogue_p)
6160 {
6161 int i, pass;
6162 bool sched_group_found = false;
6163 int min_cost_group = 1;
6164
6165 if (sched_fusion)
6166 return;
6167
6168 for (i = 0; i < ready.n_ready; i++)
6169 {
6170 rtx_insn *insn = ready_element (&ready, i);
6171 if (SCHED_GROUP_P (insn))
6172 {
6173 sched_group_found = true;
6174 break;
6175 }
6176 }
6177
6178 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6179 such an insn first and note its cost, then schedule all other insns
6180 for one cycle later. */
6181 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6182 {
6183 int n = ready.n_ready;
6184 for (i = 0; i < n; i++)
6185 {
6186 rtx_insn *insn = ready_element (&ready, i);
6187 int cost = 0;
6188 const char *reason = "resource conflict";
6189
6190 if (DEBUG_INSN_P (insn))
6191 continue;
6192
6193 if (sched_group_found && !SCHED_GROUP_P (insn))
6194 {
6195 if (pass == 0)
6196 continue;
6197 cost = min_cost_group;
6198 reason = "not in sched group";
6199 }
6200 else if (modulo_epilogue_p
6201 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6202 {
6203 cost = max_insn_queue_index;
6204 reason = "not an epilogue insn";
6205 }
6206 else if (shadows_only_p && !SHADOW_P (insn))
6207 {
6208 cost = 1;
6209 reason = "not a shadow";
6210 }
6211 else if (recog_memoized (insn) < 0)
6212 {
6213 if (!first_cycle_insn_p
6214 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6215 || asm_noperands (PATTERN (insn)) >= 0))
6216 cost = 1;
6217 reason = "asm";
6218 }
6219 else if (sched_pressure != SCHED_PRESSURE_NONE)
6220 {
6221 if (sched_pressure == SCHED_PRESSURE_MODEL
6222 && INSN_TICK (insn) <= clock_var)
6223 {
6224 memcpy (temp_state, curr_state, dfa_state_size);
6225 if (state_transition (temp_state, insn) >= 0)
6226 INSN_TICK (insn) = clock_var + 1;
6227 }
6228 cost = 0;
6229 }
6230 else
6231 {
6232 int delay_cost = 0;
6233
6234 if (delay_htab)
6235 {
6236 struct delay_pair *delay_entry;
6237 delay_entry
6238 = delay_htab->find_with_hash (insn,
6239 htab_hash_pointer (insn));
6240 while (delay_entry && delay_cost == 0)
6241 {
6242 delay_cost = estimate_shadow_tick (delay_entry);
6243 if (delay_cost > max_insn_queue_index)
6244 delay_cost = max_insn_queue_index;
6245 delay_entry = delay_entry->next_same_i1;
6246 }
6247 }
6248
6249 memcpy (temp_state, curr_state, dfa_state_size);
6250 cost = state_transition (temp_state, insn);
6251 if (cost < 0)
6252 cost = 0;
6253 else if (cost == 0)
6254 cost = 1;
6255 if (cost < delay_cost)
6256 {
6257 cost = delay_cost;
6258 reason = "shadow tick";
6259 }
6260 }
6261 if (cost >= 1)
6262 {
6263 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6264 min_cost_group = cost;
6265 ready_remove (&ready, i);
6266 queue_insn (insn, cost, reason);
6267 if (i + 1 < n)
6268 break;
6269 }
6270 }
6271 if (i == n)
6272 pass++;
6273 }
6274 }
6275
6276 /* Called when we detect that the schedule is impossible. We examine the
6277 backtrack queue to find the earliest insn that caused this condition. */
6278
6279 static struct haifa_saved_data *
6280 verify_shadows (void)
6281 {
6282 struct haifa_saved_data *save, *earliest_fail = NULL;
6283 for (save = backtrack_queue; save; save = save->next)
6284 {
6285 int t;
6286 struct delay_pair *pair = save->delay_pair;
6287 rtx_insn *i1 = pair->i1;
6288
6289 for (; pair; pair = pair->next_same_i1)
6290 {
6291 rtx_insn *i2 = pair->i2;
6292
6293 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6294 continue;
6295
6296 t = INSN_TICK (i1) + pair_delay (pair);
6297 if (t < clock_var)
6298 {
6299 if (sched_verbose >= 2)
6300 fprintf (sched_dump,
6301 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6302 ", not ready\n",
6303 INSN_UID (pair->i1), INSN_UID (pair->i2),
6304 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6305 earliest_fail = save;
6306 break;
6307 }
6308 if (QUEUE_INDEX (i2) >= 0)
6309 {
6310 int queued_for = INSN_TICK (i2);
6311
6312 if (t < queued_for)
6313 {
6314 if (sched_verbose >= 2)
6315 fprintf (sched_dump,
6316 ";;\t\tfailed delay requirements for %d/%d"
6317 " (%d->%d), queued too late\n",
6318 INSN_UID (pair->i1), INSN_UID (pair->i2),
6319 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6320 earliest_fail = save;
6321 break;
6322 }
6323 }
6324 }
6325 }
6326
6327 return earliest_fail;
6328 }
6329
6330 /* Print instructions together with useful scheduling information between
6331 HEAD and TAIL (inclusive). */
6332 static void
6333 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6334 {
6335 fprintf (sched_dump, ";;\t| insn | prio |\n");
6336
6337 rtx_insn *next_tail = NEXT_INSN (tail);
6338 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6339 {
6340 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6341 const char *pattern = (NOTE_P (insn)
6342 ? "note"
6343 : str_pattern_slim (PATTERN (insn)));
6344
6345 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6346 INSN_UID (insn), priority, pattern);
6347
6348 if (sched_verbose >= 4)
6349 {
6350 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6351 fprintf (sched_dump, "nothing");
6352 else
6353 print_reservation (sched_dump, insn);
6354 }
6355 fprintf (sched_dump, "\n");
6356 }
6357 }
6358
6359 /* Use forward list scheduling to rearrange insns of block pointed to by
6360 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6361 region. */
6362
6363 bool
6364 schedule_block (basic_block *target_bb, state_t init_state)
6365 {
6366 int i;
6367 bool success = modulo_ii == 0;
6368 struct sched_block_state ls;
6369 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6370 int sort_p, advance, start_clock_var;
6371
6372 /* Head/tail info for this block. */
6373 rtx_insn *prev_head = current_sched_info->prev_head;
6374 rtx_insn *next_tail = current_sched_info->next_tail;
6375 rtx_insn *head = NEXT_INSN (prev_head);
6376 rtx_insn *tail = PREV_INSN (next_tail);
6377
6378 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6379 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6380 find_modifiable_mems (head, tail);
6381
6382 /* We used to have code to avoid getting parameters moved from hard
6383 argument registers into pseudos.
6384
6385 However, it was removed when it proved to be of marginal benefit
6386 and caused problems because schedule_block and compute_forward_dependences
6387 had different notions of what the "head" insn was. */
6388
6389 gcc_assert (head != tail || INSN_P (head));
6390
6391 haifa_recovery_bb_recently_added_p = false;
6392
6393 backtrack_queue = NULL;
6394
6395 /* Debug info. */
6396 if (sched_verbose)
6397 {
6398 dump_new_block_header (0, *target_bb, head, tail);
6399
6400 if (sched_verbose >= 2)
6401 {
6402 dump_insn_stream (head, tail);
6403 memset (&rank_for_schedule_stats, 0,
6404 sizeof (rank_for_schedule_stats));
6405 }
6406 }
6407
6408 if (init_state == NULL)
6409 state_reset (curr_state);
6410 else
6411 memcpy (curr_state, init_state, dfa_state_size);
6412
6413 /* Clear the ready list. */
6414 ready.first = ready.veclen - 1;
6415 ready.n_ready = 0;
6416 ready.n_debug = 0;
6417
6418 /* It is used for first cycle multipass scheduling. */
6419 temp_state = alloca (dfa_state_size);
6420
6421 if (targetm.sched.init)
6422 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6423
6424 /* We start inserting insns after PREV_HEAD. */
6425 last_scheduled_insn = prev_head;
6426 last_nondebug_scheduled_insn = NULL_RTX;
6427 nonscheduled_insns_begin = NULL;
6428
6429 gcc_assert ((NOTE_P (last_scheduled_insn)
6430 || DEBUG_INSN_P (last_scheduled_insn))
6431 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6432
6433 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6434 queue. */
6435 q_ptr = 0;
6436 q_size = 0;
6437
6438 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6439 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6440
6441 /* Start just before the beginning of time. */
6442 clock_var = -1;
6443
6444 /* We need queue and ready lists and clock_var be initialized
6445 in try_ready () (which is called through init_ready_list ()). */
6446 (*current_sched_info->init_ready_list) ();
6447
6448 if (sched_pressure)
6449 sched_pressure_start_bb (*target_bb);
6450
6451 /* The algorithm is O(n^2) in the number of ready insns at any given
6452 time in the worst case. Before reload we are more likely to have
6453 big lists so truncate them to a reasonable size. */
6454 if (!reload_completed
6455 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6456 {
6457 ready_sort (&ready);
6458
6459 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6460 If there are debug insns, we know they're first. */
6461 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6462 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6463 break;
6464
6465 if (sched_verbose >= 2)
6466 {
6467 fprintf (sched_dump,
6468 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
6469 fprintf (sched_dump,
6470 ";;\t\t before reload => truncated to %d insns\n", i);
6471 }
6472
6473 /* Delay all insns past it for 1 cycle. If debug counter is
6474 activated make an exception for the insn right after
6475 nonscheduled_insns_begin. */
6476 {
6477 rtx_insn *skip_insn;
6478
6479 if (dbg_cnt (sched_insn) == false)
6480 skip_insn = first_nonscheduled_insn ();
6481 else
6482 skip_insn = NULL;
6483
6484 while (i < ready.n_ready)
6485 {
6486 rtx_insn *insn;
6487
6488 insn = ready_remove (&ready, i);
6489
6490 if (insn != skip_insn)
6491 queue_insn (insn, 1, "list truncated");
6492 }
6493 if (skip_insn)
6494 ready_add (&ready, skip_insn, true);
6495 }
6496 }
6497
6498 /* Now we can restore basic block notes and maintain precise cfg. */
6499 restore_bb_notes (*target_bb);
6500
6501 last_clock_var = -1;
6502
6503 advance = 0;
6504
6505 gcc_assert (scheduled_insns.length () == 0);
6506 sort_p = TRUE;
6507 must_backtrack = false;
6508 modulo_insns_scheduled = 0;
6509
6510 ls.modulo_epilogue = false;
6511 ls.first_cycle_insn_p = true;
6512
6513 /* Loop until all the insns in BB are scheduled. */
6514 while ((*current_sched_info->schedule_more_p) ())
6515 {
6516 perform_replacements_new_cycle ();
6517 do
6518 {
6519 start_clock_var = clock_var;
6520
6521 clock_var++;
6522
6523 advance_one_cycle ();
6524
6525 /* Add to the ready list all pending insns that can be issued now.
6526 If there are no ready insns, increment clock until one
6527 is ready and add all pending insns at that point to the ready
6528 list. */
6529 queue_to_ready (&ready);
6530
6531 gcc_assert (ready.n_ready);
6532
6533 if (sched_verbose >= 2)
6534 {
6535 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6536 debug_ready_list (&ready);
6537 }
6538 advance -= clock_var - start_clock_var;
6539 }
6540 while (advance > 0);
6541
6542 if (ls.modulo_epilogue)
6543 {
6544 int stage = clock_var / modulo_ii;
6545 if (stage > modulo_last_stage * 2 + 2)
6546 {
6547 if (sched_verbose >= 2)
6548 fprintf (sched_dump,
6549 ";;\t\tmodulo scheduled succeeded at II %d\n",
6550 modulo_ii);
6551 success = true;
6552 goto end_schedule;
6553 }
6554 }
6555 else if (modulo_ii > 0)
6556 {
6557 int stage = clock_var / modulo_ii;
6558 if (stage > modulo_max_stages)
6559 {
6560 if (sched_verbose >= 2)
6561 fprintf (sched_dump,
6562 ";;\t\tfailing schedule due to excessive stages\n");
6563 goto end_schedule;
6564 }
6565 if (modulo_n_insns == modulo_insns_scheduled
6566 && stage > modulo_last_stage)
6567 {
6568 if (sched_verbose >= 2)
6569 fprintf (sched_dump,
6570 ";;\t\tfound kernel after %d stages, II %d\n",
6571 stage, modulo_ii);
6572 ls.modulo_epilogue = true;
6573 }
6574 }
6575
6576 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6577 if (ready.n_ready == 0)
6578 continue;
6579 if (must_backtrack)
6580 goto do_backtrack;
6581
6582 ls.shadows_only_p = false;
6583 cycle_issued_insns = 0;
6584 ls.can_issue_more = issue_rate;
6585 for (;;)
6586 {
6587 rtx_insn *insn;
6588 int cost;
6589 bool asm_p;
6590
6591 if (sort_p && ready.n_ready > 0)
6592 {
6593 /* Sort the ready list based on priority. This must be
6594 done every iteration through the loop, as schedule_insn
6595 may have readied additional insns that will not be
6596 sorted correctly. */
6597 ready_sort (&ready);
6598
6599 if (sched_verbose >= 2)
6600 {
6601 fprintf (sched_dump,
6602 ";;\t\tReady list after ready_sort: ");
6603 debug_ready_list (&ready);
6604 }
6605 }
6606
6607 /* We don't want md sched reorder to even see debug isns, so put
6608 them out right away. */
6609 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6610 && (*current_sched_info->schedule_more_p) ())
6611 {
6612 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6613 {
6614 rtx_insn *insn = ready_remove_first (&ready);
6615 gcc_assert (DEBUG_INSN_P (insn));
6616 (*current_sched_info->begin_schedule_ready) (insn);
6617 scheduled_insns.safe_push (insn);
6618 last_scheduled_insn = insn;
6619 advance = schedule_insn (insn);
6620 gcc_assert (advance == 0);
6621 if (ready.n_ready > 0)
6622 ready_sort (&ready);
6623 }
6624 }
6625
6626 if (ls.first_cycle_insn_p && !ready.n_ready)
6627 break;
6628
6629 resume_after_backtrack:
6630 /* Allow the target to reorder the list, typically for
6631 better instruction bundling. */
6632 if (sort_p
6633 && (ready.n_ready == 0
6634 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6635 {
6636 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6637 ls.can_issue_more
6638 = targetm.sched.reorder (sched_dump, sched_verbose,
6639 ready_lastpos (&ready),
6640 &ready.n_ready, clock_var);
6641 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6642 ls.can_issue_more
6643 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6644 ready.n_ready
6645 ? ready_lastpos (&ready) : NULL,
6646 &ready.n_ready, clock_var);
6647 }
6648
6649 restart_choose_ready:
6650 if (sched_verbose >= 2)
6651 {
6652 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6653 clock_var);
6654 debug_ready_list (&ready);
6655 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6656 print_curr_reg_pressure ();
6657 }
6658
6659 if (ready.n_ready == 0
6660 && ls.can_issue_more
6661 && reload_completed)
6662 {
6663 /* Allow scheduling insns directly from the queue in case
6664 there's nothing better to do (ready list is empty) but
6665 there are still vacant dispatch slots in the current cycle. */
6666 if (sched_verbose >= 6)
6667 fprintf (sched_dump,";;\t\tSecond chance\n");
6668 memcpy (temp_state, curr_state, dfa_state_size);
6669 if (early_queue_to_ready (temp_state, &ready))
6670 ready_sort (&ready);
6671 }
6672
6673 if (ready.n_ready == 0
6674 || !ls.can_issue_more
6675 || state_dead_lock_p (curr_state)
6676 || !(*current_sched_info->schedule_more_p) ())
6677 break;
6678
6679 /* Select and remove the insn from the ready list. */
6680 if (sort_p)
6681 {
6682 int res;
6683
6684 insn = NULL;
6685 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6686
6687 if (res < 0)
6688 /* Finish cycle. */
6689 break;
6690 if (res > 0)
6691 goto restart_choose_ready;
6692
6693 gcc_assert (insn != NULL_RTX);
6694 }
6695 else
6696 insn = ready_remove_first (&ready);
6697
6698 if (sched_pressure != SCHED_PRESSURE_NONE
6699 && INSN_TICK (insn) > clock_var)
6700 {
6701 ready_add (&ready, insn, true);
6702 advance = 1;
6703 break;
6704 }
6705
6706 if (targetm.sched.dfa_new_cycle
6707 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6708 insn, last_clock_var,
6709 clock_var, &sort_p))
6710 /* SORT_P is used by the target to override sorting
6711 of the ready list. This is needed when the target
6712 has modified its internal structures expecting that
6713 the insn will be issued next. As we need the insn
6714 to have the highest priority (so it will be returned by
6715 the ready_remove_first call above), we invoke
6716 ready_add (&ready, insn, true).
6717 But, still, there is one issue: INSN can be later
6718 discarded by scheduler's front end through
6719 current_sched_info->can_schedule_ready_p, hence, won't
6720 be issued next. */
6721 {
6722 ready_add (&ready, insn, true);
6723 break;
6724 }
6725
6726 sort_p = TRUE;
6727
6728 if (current_sched_info->can_schedule_ready_p
6729 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6730 /* We normally get here only if we don't want to move
6731 insn from the split block. */
6732 {
6733 TODO_SPEC (insn) = DEP_POSTPONED;
6734 goto restart_choose_ready;
6735 }
6736
6737 if (delay_htab)
6738 {
6739 /* If this insn is the first part of a delay-slot pair, record a
6740 backtrack point. */
6741 struct delay_pair *delay_entry;
6742 delay_entry
6743 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6744 if (delay_entry)
6745 {
6746 save_backtrack_point (delay_entry, ls);
6747 if (sched_verbose >= 2)
6748 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6749 }
6750 }
6751
6752 /* DECISION is made. */
6753
6754 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6755 {
6756 modulo_insns_scheduled++;
6757 modulo_last_stage = clock_var / modulo_ii;
6758 }
6759 if (TODO_SPEC (insn) & SPECULATIVE)
6760 generate_recovery_code (insn);
6761
6762 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6763 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6764
6765 /* Update counters, etc in the scheduler's front end. */
6766 (*current_sched_info->begin_schedule_ready) (insn);
6767 scheduled_insns.safe_push (insn);
6768 gcc_assert (NONDEBUG_INSN_P (insn));
6769 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6770
6771 if (recog_memoized (insn) >= 0)
6772 {
6773 memcpy (temp_state, curr_state, dfa_state_size);
6774 cost = state_transition (curr_state, insn);
6775 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6776 gcc_assert (cost < 0);
6777 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6778 cycle_issued_insns++;
6779 asm_p = false;
6780 }
6781 else
6782 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6783 || asm_noperands (PATTERN (insn)) >= 0);
6784
6785 if (targetm.sched.variable_issue)
6786 ls.can_issue_more =
6787 targetm.sched.variable_issue (sched_dump, sched_verbose,
6788 insn, ls.can_issue_more);
6789 /* A naked CLOBBER or USE generates no instruction, so do
6790 not count them against the issue rate. */
6791 else if (GET_CODE (PATTERN (insn)) != USE
6792 && GET_CODE (PATTERN (insn)) != CLOBBER)
6793 ls.can_issue_more--;
6794 advance = schedule_insn (insn);
6795
6796 if (SHADOW_P (insn))
6797 ls.shadows_only_p = true;
6798
6799 /* After issuing an asm insn we should start a new cycle. */
6800 if (advance == 0 && asm_p)
6801 advance = 1;
6802
6803 if (must_backtrack)
6804 break;
6805
6806 if (advance != 0)
6807 break;
6808
6809 ls.first_cycle_insn_p = false;
6810 if (ready.n_ready > 0)
6811 prune_ready_list (temp_state, false, ls.shadows_only_p,
6812 ls.modulo_epilogue);
6813 }
6814
6815 do_backtrack:
6816 if (!must_backtrack)
6817 for (i = 0; i < ready.n_ready; i++)
6818 {
6819 rtx_insn *insn = ready_element (&ready, i);
6820 if (INSN_EXACT_TICK (insn) == clock_var)
6821 {
6822 must_backtrack = true;
6823 clock_var++;
6824 break;
6825 }
6826 }
6827 if (must_backtrack && modulo_ii > 0)
6828 {
6829 if (modulo_backtracks_left == 0)
6830 goto end_schedule;
6831 modulo_backtracks_left--;
6832 }
6833 while (must_backtrack)
6834 {
6835 struct haifa_saved_data *failed;
6836 rtx_insn *failed_insn;
6837
6838 must_backtrack = false;
6839 failed = verify_shadows ();
6840 gcc_assert (failed);
6841
6842 failed_insn = failed->delay_pair->i1;
6843 /* Clear these queues. */
6844 perform_replacements_new_cycle ();
6845 toggle_cancelled_flags (false);
6846 unschedule_insns_until (failed_insn);
6847 while (failed != backtrack_queue)
6848 free_topmost_backtrack_point (true);
6849 restore_last_backtrack_point (&ls);
6850 if (sched_verbose >= 2)
6851 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6852 /* Delay by at least a cycle. This could cause additional
6853 backtracking. */
6854 queue_insn (failed_insn, 1, "backtracked");
6855 advance = 0;
6856 if (must_backtrack)
6857 continue;
6858 if (ready.n_ready > 0)
6859 goto resume_after_backtrack;
6860 else
6861 {
6862 if (clock_var == 0 && ls.first_cycle_insn_p)
6863 goto end_schedule;
6864 advance = 1;
6865 break;
6866 }
6867 }
6868 ls.first_cycle_insn_p = true;
6869 }
6870 if (ls.modulo_epilogue)
6871 success = true;
6872 end_schedule:
6873 if (!ls.first_cycle_insn_p || advance)
6874 advance_one_cycle ();
6875 perform_replacements_new_cycle ();
6876 if (modulo_ii > 0)
6877 {
6878 /* Once again, debug insn suckiness: they can be on the ready list
6879 even if they have unresolved dependencies. To make our view
6880 of the world consistent, remove such "ready" insns. */
6881 restart_debug_insn_loop:
6882 for (i = ready.n_ready - 1; i >= 0; i--)
6883 {
6884 rtx_insn *x;
6885
6886 x = ready_element (&ready, i);
6887 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6888 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6889 {
6890 ready_remove (&ready, i);
6891 goto restart_debug_insn_loop;
6892 }
6893 }
6894 for (i = ready.n_ready - 1; i >= 0; i--)
6895 {
6896 rtx_insn *x;
6897
6898 x = ready_element (&ready, i);
6899 resolve_dependencies (x);
6900 }
6901 for (i = 0; i <= max_insn_queue_index; i++)
6902 {
6903 rtx_insn_list *link;
6904 while ((link = insn_queue[i]) != NULL)
6905 {
6906 rtx_insn *x = link->insn ();
6907 insn_queue[i] = link->next ();
6908 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6909 free_INSN_LIST_node (link);
6910 resolve_dependencies (x);
6911 }
6912 }
6913 }
6914
6915 if (!success)
6916 undo_all_replacements ();
6917
6918 /* Debug info. */
6919 if (sched_verbose)
6920 {
6921 fprintf (sched_dump, ";;\tReady list (final): ");
6922 debug_ready_list (&ready);
6923 }
6924
6925 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6926 /* Sanity check -- queue must be empty now. Meaningless if region has
6927 multiple bbs. */
6928 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6929 else if (modulo_ii == 0)
6930 {
6931 /* We must maintain QUEUE_INDEX between blocks in region. */
6932 for (i = ready.n_ready - 1; i >= 0; i--)
6933 {
6934 rtx_insn *x;
6935
6936 x = ready_element (&ready, i);
6937 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6938 TODO_SPEC (x) = HARD_DEP;
6939 }
6940
6941 if (q_size)
6942 for (i = 0; i <= max_insn_queue_index; i++)
6943 {
6944 rtx_insn_list *link;
6945 for (link = insn_queue[i]; link; link = link->next ())
6946 {
6947 rtx_insn *x;
6948
6949 x = link->insn ();
6950 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6951 TODO_SPEC (x) = HARD_DEP;
6952 }
6953 free_INSN_LIST_list (&insn_queue[i]);
6954 }
6955 }
6956
6957 if (sched_pressure == SCHED_PRESSURE_MODEL)
6958 model_end_schedule ();
6959
6960 if (success)
6961 {
6962 commit_schedule (prev_head, tail, target_bb);
6963 if (sched_verbose)
6964 fprintf (sched_dump, ";; total time = %d\n", clock_var);
6965 }
6966 else
6967 last_scheduled_insn = tail;
6968
6969 scheduled_insns.truncate (0);
6970
6971 if (!current_sched_info->queue_must_finish_empty
6972 || haifa_recovery_bb_recently_added_p)
6973 {
6974 /* INSN_TICK (minimum clock tick at which the insn becomes
6975 ready) may be not correct for the insn in the subsequent
6976 blocks of the region. We should use a correct value of
6977 `clock_var' or modify INSN_TICK. It is better to keep
6978 clock_var value equal to 0 at the start of a basic block.
6979 Therefore we modify INSN_TICK here. */
6980 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
6981 }
6982
6983 if (targetm.sched.finish)
6984 {
6985 targetm.sched.finish (sched_dump, sched_verbose);
6986 /* Target might have added some instructions to the scheduled block
6987 in its md_finish () hook. These new insns don't have any data
6988 initialized and to identify them we extend h_i_d so that they'll
6989 get zero luids. */
6990 sched_extend_luids ();
6991 }
6992
6993 /* Update head/tail boundaries. */
6994 head = NEXT_INSN (prev_head);
6995 tail = last_scheduled_insn;
6996
6997 if (sched_verbose)
6998 {
6999 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7000 INSN_UID (head), INSN_UID (tail));
7001
7002 if (sched_verbose >= 2)
7003 {
7004 dump_insn_stream (head, tail);
7005 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7006 NULL);
7007 }
7008
7009 fprintf (sched_dump, "\n");
7010 }
7011
7012 head = restore_other_notes (head, NULL);
7013
7014 current_sched_info->head = head;
7015 current_sched_info->tail = tail;
7016
7017 free_backtrack_queue ();
7018
7019 return success;
7020 }
7021 \f
7022 /* Set_priorities: compute priority of each insn in the block. */
7023
7024 int
7025 set_priorities (rtx_insn *head, rtx_insn *tail)
7026 {
7027 rtx_insn *insn;
7028 int n_insn;
7029 int sched_max_insns_priority =
7030 current_sched_info->sched_max_insns_priority;
7031 rtx_insn *prev_head;
7032
7033 if (head == tail && ! INSN_P (head))
7034 gcc_unreachable ();
7035
7036 n_insn = 0;
7037
7038 prev_head = PREV_INSN (head);
7039 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7040 {
7041 if (!INSN_P (insn))
7042 continue;
7043
7044 n_insn++;
7045 (void) priority (insn);
7046
7047 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7048
7049 sched_max_insns_priority = MAX (sched_max_insns_priority,
7050 INSN_PRIORITY (insn));
7051 }
7052
7053 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7054
7055 return n_insn;
7056 }
7057
7058 /* Set dump and sched_verbose for the desired debugging output. If no
7059 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
7060 For -fsched-verbose=N, N>=10, print everything to stderr. */
7061 void
7062 setup_sched_dump (void)
7063 {
7064 sched_verbose = sched_verbose_param;
7065 if (sched_verbose_param == 0 && dump_file)
7066 sched_verbose = 1;
7067 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
7068 ? stderr : dump_file);
7069 }
7070
7071 /* Allocate data for register pressure sensitive scheduling. */
7072 static void
7073 alloc_global_sched_pressure_data (void)
7074 {
7075 if (sched_pressure != SCHED_PRESSURE_NONE)
7076 {
7077 int i, max_regno = max_reg_num ();
7078
7079 if (sched_dump != NULL)
7080 /* We need info about pseudos for rtl dumps about pseudo
7081 classes and costs. */
7082 regstat_init_n_sets_and_refs ();
7083 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7084 sched_regno_pressure_class
7085 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7086 for (i = 0; i < max_regno; i++)
7087 sched_regno_pressure_class[i]
7088 = (i < FIRST_PSEUDO_REGISTER
7089 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7090 : ira_pressure_class_translate[reg_allocno_class (i)]);
7091 curr_reg_live = BITMAP_ALLOC (NULL);
7092 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7093 {
7094 saved_reg_live = BITMAP_ALLOC (NULL);
7095 region_ref_regs = BITMAP_ALLOC (NULL);
7096 }
7097
7098 /* Calculate number of CALL_USED_REGS in register classes that
7099 we calculate register pressure for. */
7100 for (int c = 0; c < ira_pressure_classes_num; ++c)
7101 {
7102 enum reg_class cl = ira_pressure_classes[c];
7103
7104 call_used_regs_num[cl] = 0;
7105
7106 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7107 if (call_used_regs[ira_class_hard_regs[cl][i]])
7108 ++call_used_regs_num[cl];
7109 }
7110 }
7111 }
7112
7113 /* Free data for register pressure sensitive scheduling. Also called
7114 from schedule_region when stopping sched-pressure early. */
7115 void
7116 free_global_sched_pressure_data (void)
7117 {
7118 if (sched_pressure != SCHED_PRESSURE_NONE)
7119 {
7120 if (regstat_n_sets_and_refs != NULL)
7121 regstat_free_n_sets_and_refs ();
7122 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7123 {
7124 BITMAP_FREE (region_ref_regs);
7125 BITMAP_FREE (saved_reg_live);
7126 }
7127 BITMAP_FREE (curr_reg_live);
7128 free (sched_regno_pressure_class);
7129 }
7130 }
7131
7132 /* Initialize some global state for the scheduler. This function works
7133 with the common data shared between all the schedulers. It is called
7134 from the scheduler specific initialization routine. */
7135
7136 void
7137 sched_init (void)
7138 {
7139 /* Disable speculative loads in their presence if cc0 defined. */
7140 #ifdef HAVE_cc0
7141 flag_schedule_speculative_load = 0;
7142 #endif
7143
7144 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7145 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7146
7147 if (live_range_shrinkage_p)
7148 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7149 else if (flag_sched_pressure
7150 && !reload_completed
7151 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7152 sched_pressure = ((enum sched_pressure_algorithm)
7153 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7154 else
7155 sched_pressure = SCHED_PRESSURE_NONE;
7156
7157 if (sched_pressure != SCHED_PRESSURE_NONE)
7158 ira_setup_eliminable_regset ();
7159
7160 /* Initialize SPEC_INFO. */
7161 if (targetm.sched.set_sched_flags)
7162 {
7163 spec_info = &spec_info_var;
7164 targetm.sched.set_sched_flags (spec_info);
7165
7166 if (spec_info->mask != 0)
7167 {
7168 spec_info->data_weakness_cutoff =
7169 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7170 spec_info->control_weakness_cutoff =
7171 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7172 * REG_BR_PROB_BASE) / 100;
7173 }
7174 else
7175 /* So we won't read anything accidentally. */
7176 spec_info = NULL;
7177
7178 }
7179 else
7180 /* So we won't read anything accidentally. */
7181 spec_info = 0;
7182
7183 /* Initialize issue_rate. */
7184 if (targetm.sched.issue_rate)
7185 issue_rate = targetm.sched.issue_rate ();
7186 else
7187 issue_rate = 1;
7188
7189 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7190 /* Don't use max_issue with reg_pressure scheduling. Multipass
7191 scheduling and reg_pressure scheduling undo each other's decisions. */
7192 && sched_pressure == SCHED_PRESSURE_NONE)
7193 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7194 else
7195 dfa_lookahead = 0;
7196
7197 /* Set to "0" so that we recalculate. */
7198 max_lookahead_tries = 0;
7199
7200 if (targetm.sched.init_dfa_pre_cycle_insn)
7201 targetm.sched.init_dfa_pre_cycle_insn ();
7202
7203 if (targetm.sched.init_dfa_post_cycle_insn)
7204 targetm.sched.init_dfa_post_cycle_insn ();
7205
7206 dfa_start ();
7207 dfa_state_size = state_size ();
7208
7209 init_alias_analysis ();
7210
7211 if (!sched_no_dce)
7212 df_set_flags (DF_LR_RUN_DCE);
7213 df_note_add_problem ();
7214
7215 /* More problems needed for interloop dep calculation in SMS. */
7216 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7217 {
7218 df_rd_add_problem ();
7219 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7220 }
7221
7222 df_analyze ();
7223
7224 /* Do not run DCE after reload, as this can kill nops inserted
7225 by bundling. */
7226 if (reload_completed)
7227 df_clear_flags (DF_LR_RUN_DCE);
7228
7229 regstat_compute_calls_crossed ();
7230
7231 if (targetm.sched.init_global)
7232 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7233
7234 alloc_global_sched_pressure_data ();
7235
7236 curr_state = xmalloc (dfa_state_size);
7237 }
7238
7239 static void haifa_init_only_bb (basic_block, basic_block);
7240
7241 /* Initialize data structures specific to the Haifa scheduler. */
7242 void
7243 haifa_sched_init (void)
7244 {
7245 setup_sched_dump ();
7246 sched_init ();
7247
7248 scheduled_insns.create (0);
7249
7250 if (spec_info != NULL)
7251 {
7252 sched_deps_info->use_deps_list = 1;
7253 sched_deps_info->generate_spec_deps = 1;
7254 }
7255
7256 /* Initialize luids, dependency caches, target and h_i_d for the
7257 whole function. */
7258 {
7259 bb_vec_t bbs;
7260 bbs.create (n_basic_blocks_for_fn (cfun));
7261 basic_block bb;
7262
7263 sched_init_bbs ();
7264
7265 FOR_EACH_BB_FN (bb, cfun)
7266 bbs.quick_push (bb);
7267 sched_init_luids (bbs);
7268 sched_deps_init (true);
7269 sched_extend_target ();
7270 haifa_init_h_i_d (bbs);
7271
7272 bbs.release ();
7273 }
7274
7275 sched_init_only_bb = haifa_init_only_bb;
7276 sched_split_block = sched_split_block_1;
7277 sched_create_empty_bb = sched_create_empty_bb_1;
7278 haifa_recovery_bb_ever_added_p = false;
7279
7280 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7281 before_recovery = 0;
7282 after_recovery = 0;
7283
7284 modulo_ii = 0;
7285 }
7286
7287 /* Finish work with the data specific to the Haifa scheduler. */
7288 void
7289 haifa_sched_finish (void)
7290 {
7291 sched_create_empty_bb = NULL;
7292 sched_split_block = NULL;
7293 sched_init_only_bb = NULL;
7294
7295 if (spec_info && spec_info->dump)
7296 {
7297 char c = reload_completed ? 'a' : 'b';
7298
7299 fprintf (spec_info->dump,
7300 ";; %s:\n", current_function_name ());
7301
7302 fprintf (spec_info->dump,
7303 ";; Procedure %cr-begin-data-spec motions == %d\n",
7304 c, nr_begin_data);
7305 fprintf (spec_info->dump,
7306 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7307 c, nr_be_in_data);
7308 fprintf (spec_info->dump,
7309 ";; Procedure %cr-begin-control-spec motions == %d\n",
7310 c, nr_begin_control);
7311 fprintf (spec_info->dump,
7312 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7313 c, nr_be_in_control);
7314 }
7315
7316 scheduled_insns.release ();
7317
7318 /* Finalize h_i_d, dependency caches, and luids for the whole
7319 function. Target will be finalized in md_global_finish (). */
7320 sched_deps_finish ();
7321 sched_finish_luids ();
7322 current_sched_info = NULL;
7323 sched_finish ();
7324 }
7325
7326 /* Free global data used during insn scheduling. This function works with
7327 the common data shared between the schedulers. */
7328
7329 void
7330 sched_finish (void)
7331 {
7332 haifa_finish_h_i_d ();
7333 free_global_sched_pressure_data ();
7334 free (curr_state);
7335
7336 if (targetm.sched.finish_global)
7337 targetm.sched.finish_global (sched_dump, sched_verbose);
7338
7339 end_alias_analysis ();
7340
7341 regstat_free_calls_crossed ();
7342
7343 dfa_finish ();
7344 }
7345
7346 /* Free all delay_pair structures that were recorded. */
7347 void
7348 free_delay_pairs (void)
7349 {
7350 if (delay_htab)
7351 {
7352 delay_htab->empty ();
7353 delay_htab_i2->empty ();
7354 }
7355 }
7356
7357 /* Fix INSN_TICKs of the instructions in the current block as well as
7358 INSN_TICKs of their dependents.
7359 HEAD and TAIL are the begin and the end of the current scheduled block. */
7360 static void
7361 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7362 {
7363 /* Set of instructions with corrected INSN_TICK. */
7364 bitmap_head processed;
7365 /* ??? It is doubtful if we should assume that cycle advance happens on
7366 basic block boundaries. Basically insns that are unconditionally ready
7367 on the start of the block are more preferable then those which have
7368 a one cycle dependency over insn from the previous block. */
7369 int next_clock = clock_var + 1;
7370
7371 bitmap_initialize (&processed, 0);
7372
7373 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7374 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7375 across different blocks. */
7376 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7377 {
7378 if (INSN_P (head))
7379 {
7380 int tick;
7381 sd_iterator_def sd_it;
7382 dep_t dep;
7383
7384 tick = INSN_TICK (head);
7385 gcc_assert (tick >= MIN_TICK);
7386
7387 /* Fix INSN_TICK of instruction from just scheduled block. */
7388 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7389 {
7390 tick -= next_clock;
7391
7392 if (tick < MIN_TICK)
7393 tick = MIN_TICK;
7394
7395 INSN_TICK (head) = tick;
7396 }
7397
7398 if (DEBUG_INSN_P (head))
7399 continue;
7400
7401 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7402 {
7403 rtx_insn *next;
7404
7405 next = DEP_CON (dep);
7406 tick = INSN_TICK (next);
7407
7408 if (tick != INVALID_TICK
7409 /* If NEXT has its INSN_TICK calculated, fix it.
7410 If not - it will be properly calculated from
7411 scratch later in fix_tick_ready. */
7412 && bitmap_set_bit (&processed, INSN_LUID (next)))
7413 {
7414 tick -= next_clock;
7415
7416 if (tick < MIN_TICK)
7417 tick = MIN_TICK;
7418
7419 if (tick > INTER_TICK (next))
7420 INTER_TICK (next) = tick;
7421 else
7422 tick = INTER_TICK (next);
7423
7424 INSN_TICK (next) = tick;
7425 }
7426 }
7427 }
7428 }
7429 bitmap_clear (&processed);
7430 }
7431
7432 /* Check if NEXT is ready to be added to the ready or queue list.
7433 If "yes", add it to the proper list.
7434 Returns:
7435 -1 - is not ready yet,
7436 0 - added to the ready list,
7437 0 < N - queued for N cycles. */
7438 int
7439 try_ready (rtx_insn *next)
7440 {
7441 ds_t old_ts, new_ts;
7442
7443 old_ts = TODO_SPEC (next);
7444
7445 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7446 && (old_ts == HARD_DEP
7447 || old_ts == DEP_POSTPONED
7448 || (old_ts & SPECULATIVE)
7449 || old_ts == DEP_CONTROL));
7450
7451 new_ts = recompute_todo_spec (next, false);
7452
7453 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7454 gcc_assert (new_ts == old_ts
7455 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7456 else if (current_sched_info->new_ready)
7457 new_ts = current_sched_info->new_ready (next, new_ts);
7458
7459 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7460 have its original pattern or changed (speculative) one. This is due
7461 to changing ebb in region scheduling.
7462 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7463 has speculative pattern.
7464
7465 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7466 control-speculative NEXT could have been discarded by sched-rgn.c
7467 (the same case as when discarded by can_schedule_ready_p ()). */
7468
7469 if ((new_ts & SPECULATIVE)
7470 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7471 need to change anything. */
7472 && new_ts != old_ts)
7473 {
7474 int res;
7475 rtx new_pat;
7476
7477 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7478
7479 res = haifa_speculate_insn (next, new_ts, &new_pat);
7480
7481 switch (res)
7482 {
7483 case -1:
7484 /* It would be nice to change DEP_STATUS of all dependences,
7485 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7486 so we won't reanalyze anything. */
7487 new_ts = HARD_DEP;
7488 break;
7489
7490 case 0:
7491 /* We follow the rule, that every speculative insn
7492 has non-null ORIG_PAT. */
7493 if (!ORIG_PAT (next))
7494 ORIG_PAT (next) = PATTERN (next);
7495 break;
7496
7497 case 1:
7498 if (!ORIG_PAT (next))
7499 /* If we gonna to overwrite the original pattern of insn,
7500 save it. */
7501 ORIG_PAT (next) = PATTERN (next);
7502
7503 res = haifa_change_pattern (next, new_pat);
7504 gcc_assert (res);
7505 break;
7506
7507 default:
7508 gcc_unreachable ();
7509 }
7510 }
7511
7512 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7513 either correct (new_ts & SPECULATIVE),
7514 or we simply don't care (new_ts & HARD_DEP). */
7515
7516 gcc_assert (!ORIG_PAT (next)
7517 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7518
7519 TODO_SPEC (next) = new_ts;
7520
7521 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7522 {
7523 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7524 control-speculative NEXT could have been discarded by sched-rgn.c
7525 (the same case as when discarded by can_schedule_ready_p ()). */
7526 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7527
7528 change_queue_index (next, QUEUE_NOWHERE);
7529
7530 return -1;
7531 }
7532 else if (!(new_ts & BEGIN_SPEC)
7533 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7534 && !IS_SPECULATION_CHECK_P (next))
7535 /* We should change pattern of every previously speculative
7536 instruction - and we determine if NEXT was speculative by using
7537 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7538 pat too, so skip them. */
7539 {
7540 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7541 gcc_assert (success);
7542 ORIG_PAT (next) = 0;
7543 }
7544
7545 if (sched_verbose >= 2)
7546 {
7547 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7548 (*current_sched_info->print_insn) (next, 0));
7549
7550 if (spec_info && spec_info->dump)
7551 {
7552 if (new_ts & BEGIN_DATA)
7553 fprintf (spec_info->dump, "; data-spec;");
7554 if (new_ts & BEGIN_CONTROL)
7555 fprintf (spec_info->dump, "; control-spec;");
7556 if (new_ts & BE_IN_CONTROL)
7557 fprintf (spec_info->dump, "; in-control-spec;");
7558 }
7559 if (TODO_SPEC (next) & DEP_CONTROL)
7560 fprintf (sched_dump, " predicated");
7561 fprintf (sched_dump, "\n");
7562 }
7563
7564 adjust_priority (next);
7565
7566 return fix_tick_ready (next);
7567 }
7568
7569 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7570 static int
7571 fix_tick_ready (rtx_insn *next)
7572 {
7573 int tick, delay;
7574
7575 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7576 {
7577 int full_p;
7578 sd_iterator_def sd_it;
7579 dep_t dep;
7580
7581 tick = INSN_TICK (next);
7582 /* if tick is not equal to INVALID_TICK, then update
7583 INSN_TICK of NEXT with the most recent resolved dependence
7584 cost. Otherwise, recalculate from scratch. */
7585 full_p = (tick == INVALID_TICK);
7586
7587 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7588 {
7589 rtx_insn *pro = DEP_PRO (dep);
7590 int tick1;
7591
7592 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7593
7594 tick1 = INSN_TICK (pro) + dep_cost (dep);
7595 if (tick1 > tick)
7596 tick = tick1;
7597
7598 if (!full_p)
7599 break;
7600 }
7601 }
7602 else
7603 tick = -1;
7604
7605 INSN_TICK (next) = tick;
7606
7607 delay = tick - clock_var;
7608 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7609 delay = QUEUE_READY;
7610
7611 change_queue_index (next, delay);
7612
7613 return delay;
7614 }
7615
7616 /* Move NEXT to the proper queue list with (DELAY >= 1),
7617 or add it to the ready list (DELAY == QUEUE_READY),
7618 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7619 static void
7620 change_queue_index (rtx_insn *next, int delay)
7621 {
7622 int i = QUEUE_INDEX (next);
7623
7624 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7625 && delay != 0);
7626 gcc_assert (i != QUEUE_SCHEDULED);
7627
7628 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7629 || (delay < 0 && delay == i))
7630 /* We have nothing to do. */
7631 return;
7632
7633 /* Remove NEXT from wherever it is now. */
7634 if (i == QUEUE_READY)
7635 ready_remove_insn (next);
7636 else if (i >= 0)
7637 queue_remove (next);
7638
7639 /* Add it to the proper place. */
7640 if (delay == QUEUE_READY)
7641 ready_add (readyp, next, false);
7642 else if (delay >= 1)
7643 queue_insn (next, delay, "change queue index");
7644
7645 if (sched_verbose >= 2)
7646 {
7647 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7648 (*current_sched_info->print_insn) (next, 0));
7649
7650 if (delay == QUEUE_READY)
7651 fprintf (sched_dump, " into ready\n");
7652 else if (delay >= 1)
7653 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7654 else
7655 fprintf (sched_dump, " removed from ready or queue lists\n");
7656 }
7657 }
7658
7659 static int sched_ready_n_insns = -1;
7660
7661 /* Initialize per region data structures. */
7662 void
7663 sched_extend_ready_list (int new_sched_ready_n_insns)
7664 {
7665 int i;
7666
7667 if (sched_ready_n_insns == -1)
7668 /* At the first call we need to initialize one more choice_stack
7669 entry. */
7670 {
7671 i = 0;
7672 sched_ready_n_insns = 0;
7673 scheduled_insns.reserve (new_sched_ready_n_insns);
7674 }
7675 else
7676 i = sched_ready_n_insns + 1;
7677
7678 ready.veclen = new_sched_ready_n_insns + issue_rate;
7679 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7680
7681 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7682
7683 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7684 sched_ready_n_insns,
7685 sizeof (*ready_try));
7686
7687 /* We allocate +1 element to save initial state in the choice_stack[0]
7688 entry. */
7689 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7690 new_sched_ready_n_insns + 1);
7691
7692 for (; i <= new_sched_ready_n_insns; i++)
7693 {
7694 choice_stack[i].state = xmalloc (dfa_state_size);
7695
7696 if (targetm.sched.first_cycle_multipass_init)
7697 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7698 .target_data));
7699 }
7700
7701 sched_ready_n_insns = new_sched_ready_n_insns;
7702 }
7703
7704 /* Free per region data structures. */
7705 void
7706 sched_finish_ready_list (void)
7707 {
7708 int i;
7709
7710 free (ready.vec);
7711 ready.vec = NULL;
7712 ready.veclen = 0;
7713
7714 free (ready_try);
7715 ready_try = NULL;
7716
7717 for (i = 0; i <= sched_ready_n_insns; i++)
7718 {
7719 if (targetm.sched.first_cycle_multipass_fini)
7720 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7721 .target_data));
7722
7723 free (choice_stack [i].state);
7724 }
7725 free (choice_stack);
7726 choice_stack = NULL;
7727
7728 sched_ready_n_insns = -1;
7729 }
7730
7731 static int
7732 haifa_luid_for_non_insn (rtx x)
7733 {
7734 gcc_assert (NOTE_P (x) || LABEL_P (x));
7735
7736 return 0;
7737 }
7738
7739 /* Generates recovery code for INSN. */
7740 static void
7741 generate_recovery_code (rtx_insn *insn)
7742 {
7743 if (TODO_SPEC (insn) & BEGIN_SPEC)
7744 begin_speculative_block (insn);
7745
7746 /* Here we have insn with no dependencies to
7747 instructions other then CHECK_SPEC ones. */
7748
7749 if (TODO_SPEC (insn) & BE_IN_SPEC)
7750 add_to_speculative_block (insn);
7751 }
7752
7753 /* Helper function.
7754 Tries to add speculative dependencies of type FS between instructions
7755 in deps_list L and TWIN. */
7756 static void
7757 process_insn_forw_deps_be_in_spec (rtx insn, rtx_insn *twin, ds_t fs)
7758 {
7759 sd_iterator_def sd_it;
7760 dep_t dep;
7761
7762 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7763 {
7764 ds_t ds;
7765 rtx_insn *consumer;
7766
7767 consumer = DEP_CON (dep);
7768
7769 ds = DEP_STATUS (dep);
7770
7771 if (/* If we want to create speculative dep. */
7772 fs
7773 /* And we can do that because this is a true dep. */
7774 && (ds & DEP_TYPES) == DEP_TRUE)
7775 {
7776 gcc_assert (!(ds & BE_IN_SPEC));
7777
7778 if (/* If this dep can be overcome with 'begin speculation'. */
7779 ds & BEGIN_SPEC)
7780 /* Then we have a choice: keep the dep 'begin speculative'
7781 or transform it into 'be in speculative'. */
7782 {
7783 if (/* In try_ready we assert that if insn once became ready
7784 it can be removed from the ready (or queue) list only
7785 due to backend decision. Hence we can't let the
7786 probability of the speculative dep to decrease. */
7787 ds_weak (ds) <= ds_weak (fs))
7788 {
7789 ds_t new_ds;
7790
7791 new_ds = (ds & ~BEGIN_SPEC) | fs;
7792
7793 if (/* consumer can 'be in speculative'. */
7794 sched_insn_is_legitimate_for_speculation_p (consumer,
7795 new_ds))
7796 /* Transform it to be in speculative. */
7797 ds = new_ds;
7798 }
7799 }
7800 else
7801 /* Mark the dep as 'be in speculative'. */
7802 ds |= fs;
7803 }
7804
7805 {
7806 dep_def _new_dep, *new_dep = &_new_dep;
7807
7808 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7809 sd_add_dep (new_dep, false);
7810 }
7811 }
7812 }
7813
7814 /* Generates recovery code for BEGIN speculative INSN. */
7815 static void
7816 begin_speculative_block (rtx_insn *insn)
7817 {
7818 if (TODO_SPEC (insn) & BEGIN_DATA)
7819 nr_begin_data++;
7820 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7821 nr_begin_control++;
7822
7823 create_check_block_twin (insn, false);
7824
7825 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7826 }
7827
7828 static void haifa_init_insn (rtx_insn *);
7829
7830 /* Generates recovery code for BE_IN speculative INSN. */
7831 static void
7832 add_to_speculative_block (rtx_insn *insn)
7833 {
7834 ds_t ts;
7835 sd_iterator_def sd_it;
7836 dep_t dep;
7837 rtx_insn_list *twins = NULL;
7838 rtx_vec_t priorities_roots;
7839
7840 ts = TODO_SPEC (insn);
7841 gcc_assert (!(ts & ~BE_IN_SPEC));
7842
7843 if (ts & BE_IN_DATA)
7844 nr_be_in_data++;
7845 if (ts & BE_IN_CONTROL)
7846 nr_be_in_control++;
7847
7848 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7849 gcc_assert (!TODO_SPEC (insn));
7850
7851 DONE_SPEC (insn) |= ts;
7852
7853 /* First we convert all simple checks to branchy. */
7854 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7855 sd_iterator_cond (&sd_it, &dep);)
7856 {
7857 rtx_insn *check = DEP_PRO (dep);
7858
7859 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7860 {
7861 create_check_block_twin (check, true);
7862
7863 /* Restart search. */
7864 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7865 }
7866 else
7867 /* Continue search. */
7868 sd_iterator_next (&sd_it);
7869 }
7870
7871 priorities_roots.create (0);
7872 clear_priorities (insn, &priorities_roots);
7873
7874 while (1)
7875 {
7876 rtx_insn *check, *twin;
7877 basic_block rec;
7878
7879 /* Get the first backward dependency of INSN. */
7880 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7881 if (!sd_iterator_cond (&sd_it, &dep))
7882 /* INSN has no backward dependencies left. */
7883 break;
7884
7885 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7886 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7887 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7888
7889 check = DEP_PRO (dep);
7890
7891 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7892 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7893
7894 rec = BLOCK_FOR_INSN (check);
7895
7896 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7897 haifa_init_insn (twin);
7898
7899 sd_copy_back_deps (twin, insn, true);
7900
7901 if (sched_verbose && spec_info->dump)
7902 /* INSN_BB (insn) isn't determined for twin insns yet.
7903 So we can't use current_sched_info->print_insn. */
7904 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7905 INSN_UID (twin), rec->index);
7906
7907 twins = alloc_INSN_LIST (twin, twins);
7908
7909 /* Add dependences between TWIN and all appropriate
7910 instructions from REC. */
7911 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7912 {
7913 rtx_insn *pro = DEP_PRO (dep);
7914
7915 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7916
7917 /* INSN might have dependencies from the instructions from
7918 several recovery blocks. At this iteration we process those
7919 producers that reside in REC. */
7920 if (BLOCK_FOR_INSN (pro) == rec)
7921 {
7922 dep_def _new_dep, *new_dep = &_new_dep;
7923
7924 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7925 sd_add_dep (new_dep, false);
7926 }
7927 }
7928
7929 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7930
7931 /* Remove all dependencies between INSN and insns in REC. */
7932 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7933 sd_iterator_cond (&sd_it, &dep);)
7934 {
7935 rtx_insn *pro = DEP_PRO (dep);
7936
7937 if (BLOCK_FOR_INSN (pro) == rec)
7938 sd_delete_dep (sd_it);
7939 else
7940 sd_iterator_next (&sd_it);
7941 }
7942 }
7943
7944 /* We couldn't have added the dependencies between INSN and TWINS earlier
7945 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7946 while (twins)
7947 {
7948 rtx_insn *twin;
7949 rtx_insn_list *next_node;
7950
7951 twin = twins->insn ();
7952
7953 {
7954 dep_def _new_dep, *new_dep = &_new_dep;
7955
7956 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7957 sd_add_dep (new_dep, false);
7958 }
7959
7960 next_node = twins->next ();
7961 free_INSN_LIST_node (twins);
7962 twins = next_node;
7963 }
7964
7965 calc_priorities (priorities_roots);
7966 priorities_roots.release ();
7967 }
7968
7969 /* Extends and fills with zeros (only the new part) array pointed to by P. */
7970 void *
7971 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
7972 {
7973 gcc_assert (new_nmemb >= old_nmemb);
7974 p = XRESIZEVAR (void, p, new_nmemb * size);
7975 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
7976 return p;
7977 }
7978
7979 /* Helper function.
7980 Find fallthru edge from PRED. */
7981 edge
7982 find_fallthru_edge_from (basic_block pred)
7983 {
7984 edge e;
7985 basic_block succ;
7986
7987 succ = pred->next_bb;
7988 gcc_assert (succ->prev_bb == pred);
7989
7990 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
7991 {
7992 e = find_fallthru_edge (pred->succs);
7993
7994 if (e)
7995 {
7996 gcc_assert (e->dest == succ);
7997 return e;
7998 }
7999 }
8000 else
8001 {
8002 e = find_fallthru_edge (succ->preds);
8003
8004 if (e)
8005 {
8006 gcc_assert (e->src == pred);
8007 return e;
8008 }
8009 }
8010
8011 return NULL;
8012 }
8013
8014 /* Extend per basic block data structures. */
8015 static void
8016 sched_extend_bb (void)
8017 {
8018 /* The following is done to keep current_sched_info->next_tail non null. */
8019 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8020 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8021 if (NEXT_INSN (end) == 0
8022 || (!NOTE_P (insn)
8023 && !LABEL_P (insn)
8024 /* Don't emit a NOTE if it would end up before a BARRIER. */
8025 && !BARRIER_P (NEXT_INSN (end))))
8026 {
8027 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8028 /* Make note appear outside BB. */
8029 set_block_for_insn (note, NULL);
8030 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8031 }
8032 }
8033
8034 /* Init per basic block data structures. */
8035 void
8036 sched_init_bbs (void)
8037 {
8038 sched_extend_bb ();
8039 }
8040
8041 /* Initialize BEFORE_RECOVERY variable. */
8042 static void
8043 init_before_recovery (basic_block *before_recovery_ptr)
8044 {
8045 basic_block last;
8046 edge e;
8047
8048 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8049 e = find_fallthru_edge_from (last);
8050
8051 if (e)
8052 {
8053 /* We create two basic blocks:
8054 1. Single instruction block is inserted right after E->SRC
8055 and has jump to
8056 2. Empty block right before EXIT_BLOCK.
8057 Between these two blocks recovery blocks will be emitted. */
8058
8059 basic_block single, empty;
8060 rtx_insn *x;
8061 rtx label;
8062
8063 /* If the fallthrough edge to exit we've found is from the block we've
8064 created before, don't do anything more. */
8065 if (last == after_recovery)
8066 return;
8067
8068 adding_bb_to_current_region_p = false;
8069
8070 single = sched_create_empty_bb (last);
8071 empty = sched_create_empty_bb (single);
8072
8073 /* Add new blocks to the root loop. */
8074 if (current_loops != NULL)
8075 {
8076 add_bb_to_loop (single, (*current_loops->larray)[0]);
8077 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8078 }
8079
8080 single->count = last->count;
8081 empty->count = last->count;
8082 single->frequency = last->frequency;
8083 empty->frequency = last->frequency;
8084 BB_COPY_PARTITION (single, last);
8085 BB_COPY_PARTITION (empty, last);
8086
8087 redirect_edge_succ (e, single);
8088 make_single_succ_edge (single, empty, 0);
8089 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8090 EDGE_FALLTHRU);
8091
8092 label = block_label (empty);
8093 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
8094 JUMP_LABEL (x) = label;
8095 LABEL_NUSES (label)++;
8096 haifa_init_insn (x);
8097
8098 emit_barrier_after (x);
8099
8100 sched_init_only_bb (empty, NULL);
8101 sched_init_only_bb (single, NULL);
8102 sched_extend_bb ();
8103
8104 adding_bb_to_current_region_p = true;
8105 before_recovery = single;
8106 after_recovery = empty;
8107
8108 if (before_recovery_ptr)
8109 *before_recovery_ptr = before_recovery;
8110
8111 if (sched_verbose >= 2 && spec_info->dump)
8112 fprintf (spec_info->dump,
8113 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8114 last->index, single->index, empty->index);
8115 }
8116 else
8117 before_recovery = last;
8118 }
8119
8120 /* Returns new recovery block. */
8121 basic_block
8122 sched_create_recovery_block (basic_block *before_recovery_ptr)
8123 {
8124 rtx label;
8125 rtx_insn *barrier;
8126 basic_block rec;
8127
8128 haifa_recovery_bb_recently_added_p = true;
8129 haifa_recovery_bb_ever_added_p = true;
8130
8131 init_before_recovery (before_recovery_ptr);
8132
8133 barrier = get_last_bb_insn (before_recovery);
8134 gcc_assert (BARRIER_P (barrier));
8135
8136 label = emit_label_after (gen_label_rtx (), barrier);
8137
8138 rec = create_basic_block (label, label, before_recovery);
8139
8140 /* A recovery block always ends with an unconditional jump. */
8141 emit_barrier_after (BB_END (rec));
8142
8143 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8144 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8145
8146 if (sched_verbose && spec_info->dump)
8147 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8148 rec->index);
8149
8150 return rec;
8151 }
8152
8153 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8154 and emit necessary jumps. */
8155 void
8156 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8157 basic_block second_bb)
8158 {
8159 rtx label;
8160 rtx jump;
8161 int edge_flags;
8162
8163 /* This is fixing of incoming edge. */
8164 /* ??? Which other flags should be specified? */
8165 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8166 /* Partition type is the same, if it is "unpartitioned". */
8167 edge_flags = EDGE_CROSSING;
8168 else
8169 edge_flags = 0;
8170
8171 make_edge (first_bb, rec, edge_flags);
8172 label = block_label (second_bb);
8173 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
8174 JUMP_LABEL (jump) = label;
8175 LABEL_NUSES (label)++;
8176
8177 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8178 /* Partition type is the same, if it is "unpartitioned". */
8179 {
8180 /* Rewritten from cfgrtl.c. */
8181 if (flag_reorder_blocks_and_partition
8182 && targetm_common.have_named_sections)
8183 {
8184 /* We don't need the same note for the check because
8185 any_condjump_p (check) == true. */
8186 CROSSING_JUMP_P (jump) = 1;
8187 }
8188 edge_flags = EDGE_CROSSING;
8189 }
8190 else
8191 edge_flags = 0;
8192
8193 make_single_succ_edge (rec, second_bb, edge_flags);
8194 if (dom_info_available_p (CDI_DOMINATORS))
8195 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8196 }
8197
8198 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8199 INSN is a simple check, that should be converted to branchy one. */
8200 static void
8201 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8202 {
8203 basic_block rec;
8204 rtx_insn *label, *check, *twin;
8205 rtx check_pat;
8206 ds_t fs;
8207 sd_iterator_def sd_it;
8208 dep_t dep;
8209 dep_def _new_dep, *new_dep = &_new_dep;
8210 ds_t todo_spec;
8211
8212 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8213
8214 if (!mutate_p)
8215 todo_spec = TODO_SPEC (insn);
8216 else
8217 {
8218 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8219 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8220
8221 todo_spec = CHECK_SPEC (insn);
8222 }
8223
8224 todo_spec &= SPECULATIVE;
8225
8226 /* Create recovery block. */
8227 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8228 {
8229 rec = sched_create_recovery_block (NULL);
8230 label = BB_HEAD (rec);
8231 }
8232 else
8233 {
8234 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8235 label = NULL;
8236 }
8237
8238 /* Emit CHECK. */
8239 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8240
8241 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8242 {
8243 /* To have mem_reg alive at the beginning of second_bb,
8244 we emit check BEFORE insn, so insn after splitting
8245 insn will be at the beginning of second_bb, which will
8246 provide us with the correct life information. */
8247 check = emit_jump_insn_before (check_pat, insn);
8248 JUMP_LABEL (check) = label;
8249 LABEL_NUSES (label)++;
8250 }
8251 else
8252 check = emit_insn_before (check_pat, insn);
8253
8254 /* Extend data structures. */
8255 haifa_init_insn (check);
8256
8257 /* CHECK is being added to current region. Extend ready list. */
8258 gcc_assert (sched_ready_n_insns != -1);
8259 sched_extend_ready_list (sched_ready_n_insns + 1);
8260
8261 if (current_sched_info->add_remove_insn)
8262 current_sched_info->add_remove_insn (insn, 0);
8263
8264 RECOVERY_BLOCK (check) = rec;
8265
8266 if (sched_verbose && spec_info->dump)
8267 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8268 (*current_sched_info->print_insn) (check, 0));
8269
8270 gcc_assert (ORIG_PAT (insn));
8271
8272 /* Initialize TWIN (twin is a duplicate of original instruction
8273 in the recovery block). */
8274 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8275 {
8276 sd_iterator_def sd_it;
8277 dep_t dep;
8278
8279 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8280 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8281 {
8282 struct _dep _dep2, *dep2 = &_dep2;
8283
8284 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8285
8286 sd_add_dep (dep2, true);
8287 }
8288
8289 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8290 haifa_init_insn (twin);
8291
8292 if (sched_verbose && spec_info->dump)
8293 /* INSN_BB (insn) isn't determined for twin insns yet.
8294 So we can't use current_sched_info->print_insn. */
8295 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8296 INSN_UID (twin), rec->index);
8297 }
8298 else
8299 {
8300 ORIG_PAT (check) = ORIG_PAT (insn);
8301 HAS_INTERNAL_DEP (check) = 1;
8302 twin = check;
8303 /* ??? We probably should change all OUTPUT dependencies to
8304 (TRUE | OUTPUT). */
8305 }
8306
8307 /* Copy all resolved back dependencies of INSN to TWIN. This will
8308 provide correct value for INSN_TICK (TWIN). */
8309 sd_copy_back_deps (twin, insn, true);
8310
8311 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8312 /* In case of branchy check, fix CFG. */
8313 {
8314 basic_block first_bb, second_bb;
8315 rtx_insn *jump;
8316
8317 first_bb = BLOCK_FOR_INSN (check);
8318 second_bb = sched_split_block (first_bb, check);
8319
8320 sched_create_recovery_edges (first_bb, rec, second_bb);
8321
8322 sched_init_only_bb (second_bb, first_bb);
8323 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8324
8325 jump = BB_END (rec);
8326 haifa_init_insn (jump);
8327 }
8328
8329 /* Move backward dependences from INSN to CHECK and
8330 move forward dependences from INSN to TWIN. */
8331
8332 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8333 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8334 {
8335 rtx_insn *pro = DEP_PRO (dep);
8336 ds_t ds;
8337
8338 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8339 check --TRUE--> producer ??? or ANTI ???
8340 twin --TRUE--> producer
8341 twin --ANTI--> check
8342
8343 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8344 check --ANTI--> producer
8345 twin --ANTI--> producer
8346 twin --ANTI--> check
8347
8348 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8349 check ~~TRUE~~> producer
8350 twin ~~TRUE~~> producer
8351 twin --ANTI--> check */
8352
8353 ds = DEP_STATUS (dep);
8354
8355 if (ds & BEGIN_SPEC)
8356 {
8357 gcc_assert (!mutate_p);
8358 ds &= ~BEGIN_SPEC;
8359 }
8360
8361 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8362 sd_add_dep (new_dep, false);
8363
8364 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8365 {
8366 DEP_CON (new_dep) = twin;
8367 sd_add_dep (new_dep, false);
8368 }
8369 }
8370
8371 /* Second, remove backward dependencies of INSN. */
8372 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8373 sd_iterator_cond (&sd_it, &dep);)
8374 {
8375 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8376 || mutate_p)
8377 /* We can delete this dep because we overcome it with
8378 BEGIN_SPECULATION. */
8379 sd_delete_dep (sd_it);
8380 else
8381 sd_iterator_next (&sd_it);
8382 }
8383
8384 /* Future Speculations. Determine what BE_IN speculations will be like. */
8385 fs = 0;
8386
8387 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8388 here. */
8389
8390 gcc_assert (!DONE_SPEC (insn));
8391
8392 if (!mutate_p)
8393 {
8394 ds_t ts = TODO_SPEC (insn);
8395
8396 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8397 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8398
8399 /* Luckiness of future speculations solely depends upon initial
8400 BEGIN speculation. */
8401 if (ts & BEGIN_DATA)
8402 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8403 if (ts & BEGIN_CONTROL)
8404 fs = set_dep_weak (fs, BE_IN_CONTROL,
8405 get_dep_weak (ts, BEGIN_CONTROL));
8406 }
8407 else
8408 CHECK_SPEC (check) = CHECK_SPEC (insn);
8409
8410 /* Future speculations: call the helper. */
8411 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8412
8413 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8414 {
8415 /* Which types of dependencies should we use here is,
8416 generally, machine-dependent question... But, for now,
8417 it is not. */
8418
8419 if (!mutate_p)
8420 {
8421 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8422 sd_add_dep (new_dep, false);
8423
8424 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8425 sd_add_dep (new_dep, false);
8426 }
8427 else
8428 {
8429 if (spec_info->dump)
8430 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8431 (*current_sched_info->print_insn) (insn, 0));
8432
8433 /* Remove all dependencies of the INSN. */
8434 {
8435 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8436 | SD_LIST_BACK
8437 | SD_LIST_RES_BACK));
8438 while (sd_iterator_cond (&sd_it, &dep))
8439 sd_delete_dep (sd_it);
8440 }
8441
8442 /* If former check (INSN) already was moved to the ready (or queue)
8443 list, add new check (CHECK) there too. */
8444 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8445 try_ready (check);
8446
8447 /* Remove old check from instruction stream and free its
8448 data. */
8449 sched_remove_insn (insn);
8450 }
8451
8452 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8453 sd_add_dep (new_dep, false);
8454 }
8455 else
8456 {
8457 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8458 sd_add_dep (new_dep, false);
8459 }
8460
8461 if (!mutate_p)
8462 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8463 because it'll be done later in add_to_speculative_block. */
8464 {
8465 rtx_vec_t priorities_roots = rtx_vec_t ();
8466
8467 clear_priorities (twin, &priorities_roots);
8468 calc_priorities (priorities_roots);
8469 priorities_roots.release ();
8470 }
8471 }
8472
8473 /* Removes dependency between instructions in the recovery block REC
8474 and usual region instructions. It keeps inner dependences so it
8475 won't be necessary to recompute them. */
8476 static void
8477 fix_recovery_deps (basic_block rec)
8478 {
8479 rtx_insn *note, *insn, *jump;
8480 rtx_insn_list *ready_list = 0;
8481 bitmap_head in_ready;
8482 rtx_insn_list *link;
8483
8484 bitmap_initialize (&in_ready, 0);
8485
8486 /* NOTE - a basic block note. */
8487 note = NEXT_INSN (BB_HEAD (rec));
8488 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8489 insn = BB_END (rec);
8490 gcc_assert (JUMP_P (insn));
8491 insn = PREV_INSN (insn);
8492
8493 do
8494 {
8495 sd_iterator_def sd_it;
8496 dep_t dep;
8497
8498 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8499 sd_iterator_cond (&sd_it, &dep);)
8500 {
8501 rtx_insn *consumer = DEP_CON (dep);
8502
8503 if (BLOCK_FOR_INSN (consumer) != rec)
8504 {
8505 sd_delete_dep (sd_it);
8506
8507 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8508 ready_list = alloc_INSN_LIST (consumer, ready_list);
8509 }
8510 else
8511 {
8512 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8513
8514 sd_iterator_next (&sd_it);
8515 }
8516 }
8517
8518 insn = PREV_INSN (insn);
8519 }
8520 while (insn != note);
8521
8522 bitmap_clear (&in_ready);
8523
8524 /* Try to add instructions to the ready or queue list. */
8525 for (link = ready_list; link; link = link->next ())
8526 try_ready (link->insn ());
8527 free_INSN_LIST_list (&ready_list);
8528
8529 /* Fixing jump's dependences. */
8530 insn = BB_HEAD (rec);
8531 jump = BB_END (rec);
8532
8533 gcc_assert (LABEL_P (insn));
8534 insn = NEXT_INSN (insn);
8535
8536 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8537 add_jump_dependencies (insn, jump);
8538 }
8539
8540 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8541 instruction data. */
8542 static bool
8543 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8544 {
8545 int t;
8546
8547 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8548 if (!t)
8549 return false;
8550
8551 update_insn_after_change (insn);
8552 return true;
8553 }
8554
8555 /* -1 - can't speculate,
8556 0 - for speculation with REQUEST mode it is OK to use
8557 current instruction pattern,
8558 1 - need to change pattern for *NEW_PAT to be speculative. */
8559 int
8560 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8561 {
8562 gcc_assert (current_sched_info->flags & DO_SPECULATION
8563 && (request & SPECULATIVE)
8564 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8565
8566 if ((request & spec_info->mask) != request)
8567 return -1;
8568
8569 if (request & BE_IN_SPEC
8570 && !(request & BEGIN_SPEC))
8571 return 0;
8572
8573 return targetm.sched.speculate_insn (insn, request, new_pat);
8574 }
8575
8576 static int
8577 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8578 {
8579 gcc_assert (sched_deps_info->generate_spec_deps
8580 && !IS_SPECULATION_CHECK_P (insn));
8581
8582 if (HAS_INTERNAL_DEP (insn)
8583 || SCHED_GROUP_P (insn))
8584 return -1;
8585
8586 return sched_speculate_insn (insn, request, new_pat);
8587 }
8588
8589 /* Print some information about block BB, which starts with HEAD and
8590 ends with TAIL, before scheduling it.
8591 I is zero, if scheduler is about to start with the fresh ebb. */
8592 static void
8593 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8594 {
8595 if (!i)
8596 fprintf (sched_dump,
8597 ";; ======================================================\n");
8598 else
8599 fprintf (sched_dump,
8600 ";; =====================ADVANCING TO=====================\n");
8601 fprintf (sched_dump,
8602 ";; -- basic block %d from %d to %d -- %s reload\n",
8603 bb->index, INSN_UID (head), INSN_UID (tail),
8604 (reload_completed ? "after" : "before"));
8605 fprintf (sched_dump,
8606 ";; ======================================================\n");
8607 fprintf (sched_dump, "\n");
8608 }
8609
8610 /* Unlink basic block notes and labels and saves them, so they
8611 can be easily restored. We unlink basic block notes in EBB to
8612 provide back-compatibility with the previous code, as target backends
8613 assume, that there'll be only instructions between
8614 current_sched_info->{head and tail}. We restore these notes as soon
8615 as we can.
8616 FIRST (LAST) is the first (last) basic block in the ebb.
8617 NB: In usual case (FIRST == LAST) nothing is really done. */
8618 void
8619 unlink_bb_notes (basic_block first, basic_block last)
8620 {
8621 /* We DON'T unlink basic block notes of the first block in the ebb. */
8622 if (first == last)
8623 return;
8624
8625 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8626
8627 /* Make a sentinel. */
8628 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8629 bb_header[last->next_bb->index] = 0;
8630
8631 first = first->next_bb;
8632 do
8633 {
8634 rtx_insn *prev, *label, *note, *next;
8635
8636 label = BB_HEAD (last);
8637 if (LABEL_P (label))
8638 note = NEXT_INSN (label);
8639 else
8640 note = label;
8641 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8642
8643 prev = PREV_INSN (label);
8644 next = NEXT_INSN (note);
8645 gcc_assert (prev && next);
8646
8647 SET_NEXT_INSN (prev) = next;
8648 SET_PREV_INSN (next) = prev;
8649
8650 bb_header[last->index] = label;
8651
8652 if (last == first)
8653 break;
8654
8655 last = last->prev_bb;
8656 }
8657 while (1);
8658 }
8659
8660 /* Restore basic block notes.
8661 FIRST is the first basic block in the ebb. */
8662 static void
8663 restore_bb_notes (basic_block first)
8664 {
8665 if (!bb_header)
8666 return;
8667
8668 /* We DON'T unlink basic block notes of the first block in the ebb. */
8669 first = first->next_bb;
8670 /* Remember: FIRST is actually a second basic block in the ebb. */
8671
8672 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8673 && bb_header[first->index])
8674 {
8675 rtx_insn *prev, *label, *note, *next;
8676
8677 label = bb_header[first->index];
8678 prev = PREV_INSN (label);
8679 next = NEXT_INSN (prev);
8680
8681 if (LABEL_P (label))
8682 note = NEXT_INSN (label);
8683 else
8684 note = label;
8685 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8686
8687 bb_header[first->index] = 0;
8688
8689 SET_NEXT_INSN (prev) = label;
8690 SET_NEXT_INSN (note) = next;
8691 SET_PREV_INSN (next) = note;
8692
8693 first = first->next_bb;
8694 }
8695
8696 free (bb_header);
8697 bb_header = 0;
8698 }
8699
8700 /* Helper function.
8701 Fix CFG after both in- and inter-block movement of
8702 control_flow_insn_p JUMP. */
8703 static void
8704 fix_jump_move (rtx_insn *jump)
8705 {
8706 basic_block bb, jump_bb, jump_bb_next;
8707
8708 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8709 jump_bb = BLOCK_FOR_INSN (jump);
8710 jump_bb_next = jump_bb->next_bb;
8711
8712 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8713 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8714
8715 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8716 /* if jump_bb_next is not empty. */
8717 BB_END (jump_bb) = BB_END (jump_bb_next);
8718
8719 if (BB_END (bb) != PREV_INSN (jump))
8720 /* Then there are instruction after jump that should be placed
8721 to jump_bb_next. */
8722 BB_END (jump_bb_next) = BB_END (bb);
8723 else
8724 /* Otherwise jump_bb_next is empty. */
8725 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8726
8727 /* To make assertion in move_insn happy. */
8728 BB_END (bb) = PREV_INSN (jump);
8729
8730 update_bb_for_insn (jump_bb_next);
8731 }
8732
8733 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8734 static void
8735 move_block_after_check (rtx_insn *jump)
8736 {
8737 basic_block bb, jump_bb, jump_bb_next;
8738 vec<edge, va_gc> *t;
8739
8740 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8741 jump_bb = BLOCK_FOR_INSN (jump);
8742 jump_bb_next = jump_bb->next_bb;
8743
8744 update_bb_for_insn (jump_bb);
8745
8746 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8747 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8748
8749 unlink_block (jump_bb_next);
8750 link_block (jump_bb_next, bb);
8751
8752 t = bb->succs;
8753 bb->succs = 0;
8754 move_succs (&(jump_bb->succs), bb);
8755 move_succs (&(jump_bb_next->succs), jump_bb);
8756 move_succs (&t, jump_bb_next);
8757
8758 df_mark_solutions_dirty ();
8759
8760 common_sched_info->fix_recovery_cfg
8761 (bb->index, jump_bb->index, jump_bb_next->index);
8762 }
8763
8764 /* Helper function for move_block_after_check.
8765 This functions attaches edge vector pointed to by SUCCSP to
8766 block TO. */
8767 static void
8768 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8769 {
8770 edge e;
8771 edge_iterator ei;
8772
8773 gcc_assert (to->succs == 0);
8774
8775 to->succs = *succsp;
8776
8777 FOR_EACH_EDGE (e, ei, to->succs)
8778 e->src = to;
8779
8780 *succsp = 0;
8781 }
8782
8783 /* Remove INSN from the instruction stream.
8784 INSN should have any dependencies. */
8785 static void
8786 sched_remove_insn (rtx_insn *insn)
8787 {
8788 sd_finish_insn (insn);
8789
8790 change_queue_index (insn, QUEUE_NOWHERE);
8791 current_sched_info->add_remove_insn (insn, 1);
8792 delete_insn (insn);
8793 }
8794
8795 /* Clear priorities of all instructions, that are forward dependent on INSN.
8796 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8797 be invoked to initialize all cleared priorities. */
8798 static void
8799 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8800 {
8801 sd_iterator_def sd_it;
8802 dep_t dep;
8803 bool insn_is_root_p = true;
8804
8805 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8806
8807 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8808 {
8809 rtx_insn *pro = DEP_PRO (dep);
8810
8811 if (INSN_PRIORITY_STATUS (pro) >= 0
8812 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8813 {
8814 /* If DEP doesn't contribute to priority then INSN itself should
8815 be added to priority roots. */
8816 if (contributes_to_priority_p (dep))
8817 insn_is_root_p = false;
8818
8819 INSN_PRIORITY_STATUS (pro) = -1;
8820 clear_priorities (pro, roots_ptr);
8821 }
8822 }
8823
8824 if (insn_is_root_p)
8825 roots_ptr->safe_push (insn);
8826 }
8827
8828 /* Recompute priorities of instructions, whose priorities might have been
8829 changed. ROOTS is a vector of instructions whose priority computation will
8830 trigger initialization of all cleared priorities. */
8831 static void
8832 calc_priorities (rtx_vec_t roots)
8833 {
8834 int i;
8835 rtx_insn *insn;
8836
8837 FOR_EACH_VEC_ELT (roots, i, insn)
8838 priority (insn);
8839 }
8840
8841
8842 /* Add dependences between JUMP and other instructions in the recovery
8843 block. INSN is the first insn the recovery block. */
8844 static void
8845 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8846 {
8847 do
8848 {
8849 insn = NEXT_INSN (insn);
8850 if (insn == jump)
8851 break;
8852
8853 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8854 {
8855 dep_def _new_dep, *new_dep = &_new_dep;
8856
8857 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8858 sd_add_dep (new_dep, false);
8859 }
8860 }
8861 while (1);
8862
8863 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8864 }
8865
8866 /* Extend data structures for logical insn UID. */
8867 void
8868 sched_extend_luids (void)
8869 {
8870 int new_luids_max_uid = get_max_uid () + 1;
8871
8872 sched_luids.safe_grow_cleared (new_luids_max_uid);
8873 }
8874
8875 /* Initialize LUID for INSN. */
8876 void
8877 sched_init_insn_luid (rtx_insn *insn)
8878 {
8879 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8880 int luid;
8881
8882 if (i >= 0)
8883 {
8884 luid = sched_max_luid;
8885 sched_max_luid += i;
8886 }
8887 else
8888 luid = -1;
8889
8890 SET_INSN_LUID (insn, luid);
8891 }
8892
8893 /* Initialize luids for BBS.
8894 The hook common_sched_info->luid_for_non_insn () is used to determine
8895 if notes, labels, etc. need luids. */
8896 void
8897 sched_init_luids (bb_vec_t bbs)
8898 {
8899 int i;
8900 basic_block bb;
8901
8902 sched_extend_luids ();
8903 FOR_EACH_VEC_ELT (bbs, i, bb)
8904 {
8905 rtx_insn *insn;
8906
8907 FOR_BB_INSNS (bb, insn)
8908 sched_init_insn_luid (insn);
8909 }
8910 }
8911
8912 /* Free LUIDs. */
8913 void
8914 sched_finish_luids (void)
8915 {
8916 sched_luids.release ();
8917 sched_max_luid = 1;
8918 }
8919
8920 /* Return logical uid of INSN. Helpful while debugging. */
8921 int
8922 insn_luid (rtx_insn *insn)
8923 {
8924 return INSN_LUID (insn);
8925 }
8926
8927 /* Extend per insn data in the target. */
8928 void
8929 sched_extend_target (void)
8930 {
8931 if (targetm.sched.h_i_d_extended)
8932 targetm.sched.h_i_d_extended ();
8933 }
8934
8935 /* Extend global scheduler structures (those, that live across calls to
8936 schedule_block) to include information about just emitted INSN. */
8937 static void
8938 extend_h_i_d (void)
8939 {
8940 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8941 if (reserve > 0
8942 && ! h_i_d.space (reserve))
8943 {
8944 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8945 sched_extend_target ();
8946 }
8947 }
8948
8949 /* Initialize h_i_d entry of the INSN with default values.
8950 Values, that are not explicitly initialized here, hold zero. */
8951 static void
8952 init_h_i_d (rtx_insn *insn)
8953 {
8954 if (INSN_LUID (insn) > 0)
8955 {
8956 INSN_COST (insn) = -1;
8957 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8958 INSN_TICK (insn) = INVALID_TICK;
8959 INSN_EXACT_TICK (insn) = INVALID_TICK;
8960 INTER_TICK (insn) = INVALID_TICK;
8961 TODO_SPEC (insn) = HARD_DEP;
8962 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
8963 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
8964 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
8965 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
8966 }
8967 }
8968
8969 /* Initialize haifa_insn_data for BBS. */
8970 void
8971 haifa_init_h_i_d (bb_vec_t bbs)
8972 {
8973 int i;
8974 basic_block bb;
8975
8976 extend_h_i_d ();
8977 FOR_EACH_VEC_ELT (bbs, i, bb)
8978 {
8979 rtx_insn *insn;
8980
8981 FOR_BB_INSNS (bb, insn)
8982 init_h_i_d (insn);
8983 }
8984 }
8985
8986 /* Finalize haifa_insn_data. */
8987 void
8988 haifa_finish_h_i_d (void)
8989 {
8990 int i;
8991 haifa_insn_data_t data;
8992 struct reg_use_data *use, *next;
8993
8994 FOR_EACH_VEC_ELT (h_i_d, i, data)
8995 {
8996 free (data->max_reg_pressure);
8997 free (data->reg_pressure);
8998 for (use = data->reg_use_list; use != NULL; use = next)
8999 {
9000 next = use->next_insn_use;
9001 free (use);
9002 }
9003 }
9004 h_i_d.release ();
9005 }
9006
9007 /* Init data for the new insn INSN. */
9008 static void
9009 haifa_init_insn (rtx_insn *insn)
9010 {
9011 gcc_assert (insn != NULL);
9012
9013 sched_extend_luids ();
9014 sched_init_insn_luid (insn);
9015 sched_extend_target ();
9016 sched_deps_init (false);
9017 extend_h_i_d ();
9018 init_h_i_d (insn);
9019
9020 if (adding_bb_to_current_region_p)
9021 {
9022 sd_init_insn (insn);
9023
9024 /* Extend dependency caches by one element. */
9025 extend_dependency_caches (1, false);
9026 }
9027 if (sched_pressure != SCHED_PRESSURE_NONE)
9028 init_insn_reg_pressure_info (insn);
9029 }
9030
9031 /* Init data for the new basic block BB which comes after AFTER. */
9032 static void
9033 haifa_init_only_bb (basic_block bb, basic_block after)
9034 {
9035 gcc_assert (bb != NULL);
9036
9037 sched_init_bbs ();
9038
9039 if (common_sched_info->add_block)
9040 /* This changes only data structures of the front-end. */
9041 common_sched_info->add_block (bb, after);
9042 }
9043
9044 /* A generic version of sched_split_block (). */
9045 basic_block
9046 sched_split_block_1 (basic_block first_bb, rtx after)
9047 {
9048 edge e;
9049
9050 e = split_block (first_bb, after);
9051 gcc_assert (e->src == first_bb);
9052
9053 /* sched_split_block emits note if *check == BB_END. Probably it
9054 is better to rip that note off. */
9055
9056 return e->dest;
9057 }
9058
9059 /* A generic version of sched_create_empty_bb (). */
9060 basic_block
9061 sched_create_empty_bb_1 (basic_block after)
9062 {
9063 return create_empty_bb (after);
9064 }
9065
9066 /* Insert PAT as an INSN into the schedule and update the necessary data
9067 structures to account for it. */
9068 rtx_insn *
9069 sched_emit_insn (rtx pat)
9070 {
9071 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9072 haifa_init_insn (insn);
9073
9074 if (current_sched_info->add_remove_insn)
9075 current_sched_info->add_remove_insn (insn, 0);
9076
9077 (*current_sched_info->begin_schedule_ready) (insn);
9078 scheduled_insns.safe_push (insn);
9079
9080 last_scheduled_insn = insn;
9081 return insn;
9082 }
9083
9084 /* This function returns a candidate satisfying dispatch constraints from
9085 the ready list. */
9086
9087 static rtx_insn *
9088 ready_remove_first_dispatch (struct ready_list *ready)
9089 {
9090 int i;
9091 rtx_insn *insn = ready_element (ready, 0);
9092
9093 if (ready->n_ready == 1
9094 || !INSN_P (insn)
9095 || INSN_CODE (insn) < 0
9096 || !active_insn_p (insn)
9097 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9098 return ready_remove_first (ready);
9099
9100 for (i = 1; i < ready->n_ready; i++)
9101 {
9102 insn = ready_element (ready, i);
9103
9104 if (!INSN_P (insn)
9105 || INSN_CODE (insn) < 0
9106 || !active_insn_p (insn))
9107 continue;
9108
9109 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9110 {
9111 /* Return ith element of ready. */
9112 insn = ready_remove (ready, i);
9113 return insn;
9114 }
9115 }
9116
9117 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9118 return ready_remove_first (ready);
9119
9120 for (i = 1; i < ready->n_ready; i++)
9121 {
9122 insn = ready_element (ready, i);
9123
9124 if (!INSN_P (insn)
9125 || INSN_CODE (insn) < 0
9126 || !active_insn_p (insn))
9127 continue;
9128
9129 /* Return i-th element of ready. */
9130 if (targetm.sched.dispatch (insn, IS_CMP))
9131 return ready_remove (ready, i);
9132 }
9133
9134 return ready_remove_first (ready);
9135 }
9136
9137 /* Get number of ready insn in the ready list. */
9138
9139 int
9140 number_in_ready (void)
9141 {
9142 return ready.n_ready;
9143 }
9144
9145 /* Get number of ready's in the ready list. */
9146
9147 rtx_insn *
9148 get_ready_element (int i)
9149 {
9150 return ready_element (&ready, i);
9151 }
9152
9153 #endif /* INSN_SCHEDULING */