Fix scheduling undeterminism from sorting with DEBUG_INSNs
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "hashtab.h"
135 #include "hash-set.h"
136 #include "vec.h"
137 #include "machmode.h"
138 #include "input.h"
139 #include "function.h"
140 #include "flags.h"
141 #include "insn-config.h"
142 #include "insn-attr.h"
143 #include "except.h"
144 #include "recog.h"
145 #include "dominance.h"
146 #include "cfg.h"
147 #include "cfgrtl.h"
148 #include "cfgbuild.h"
149 #include "predict.h"
150 #include "basic-block.h"
151 #include "sched-int.h"
152 #include "target.h"
153 #include "common/common-target.h"
154 #include "params.h"
155 #include "dbgcnt.h"
156 #include "cfgloop.h"
157 #include "ira.h"
158 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
159 #include "hash-table.h"
160 #include "dumpfile.h"
161
162 #ifdef INSN_SCHEDULING
163
164 /* True if we do register pressure relief through live-range
165 shrinkage. */
166 static bool live_range_shrinkage_p;
167
168 /* Switch on live range shrinkage. */
169 void
170 initialize_live_range_shrinkage (void)
171 {
172 live_range_shrinkage_p = true;
173 }
174
175 /* Switch off live range shrinkage. */
176 void
177 finish_live_range_shrinkage (void)
178 {
179 live_range_shrinkage_p = false;
180 }
181
182 /* issue_rate is the number of insns that can be scheduled in the same
183 machine cycle. It can be defined in the config/mach/mach.h file,
184 otherwise we set it to 1. */
185
186 int issue_rate;
187
188 /* This can be set to true by a backend if the scheduler should not
189 enable a DCE pass. */
190 bool sched_no_dce;
191
192 /* The current initiation interval used when modulo scheduling. */
193 static int modulo_ii;
194
195 /* The maximum number of stages we are prepared to handle. */
196 static int modulo_max_stages;
197
198 /* The number of insns that exist in each iteration of the loop. We use this
199 to detect when we've scheduled all insns from the first iteration. */
200 static int modulo_n_insns;
201
202 /* The current count of insns in the first iteration of the loop that have
203 already been scheduled. */
204 static int modulo_insns_scheduled;
205
206 /* The maximum uid of insns from the first iteration of the loop. */
207 static int modulo_iter0_max_uid;
208
209 /* The number of times we should attempt to backtrack when modulo scheduling.
210 Decreased each time we have to backtrack. */
211 static int modulo_backtracks_left;
212
213 /* The stage in which the last insn from the original loop was
214 scheduled. */
215 static int modulo_last_stage;
216
217 /* sched-verbose controls the amount of debugging output the
218 scheduler prints. It is controlled by -fsched-verbose=N:
219 N>0 and no -DSR : the output is directed to stderr.
220 N>=10 will direct the printouts to stderr (regardless of -dSR).
221 N=1: same as -dSR.
222 N=2: bb's probabilities, detailed ready list info, unit/insn info.
223 N=3: rtl at abort point, control-flow, regions info.
224 N=5: dependences info. */
225
226 int sched_verbose = 0;
227
228 /* Debugging file. All printouts are sent to dump, which is always set,
229 either to stderr, or to the dump listing file (-dRS). */
230 FILE *sched_dump = 0;
231
232 /* This is a placeholder for the scheduler parameters common
233 to all schedulers. */
234 struct common_sched_info_def *common_sched_info;
235
236 #define INSN_TICK(INSN) (HID (INSN)->tick)
237 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
238 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
239 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
240 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
241 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
242 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
243 /* Cached cost of the instruction. Use insn_cost to get cost of the
244 insn. -1 here means that the field is not initialized. */
245 #define INSN_COST(INSN) (HID (INSN)->cost)
246
247 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
248 then it should be recalculated from scratch. */
249 #define INVALID_TICK (-(max_insn_queue_index + 1))
250 /* The minimal value of the INSN_TICK of an instruction. */
251 #define MIN_TICK (-max_insn_queue_index)
252
253 /* Original order of insns in the ready list.
254 Used to keep order of normal insns while separating DEBUG_INSNs. */
255 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
256
257 /* The deciding reason for INSN's place in the ready list. */
258 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
259
260 /* List of important notes we must keep around. This is a pointer to the
261 last element in the list. */
262 rtx_insn *note_list;
263
264 static struct spec_info_def spec_info_var;
265 /* Description of the speculative part of the scheduling.
266 If NULL - no speculation. */
267 spec_info_t spec_info = NULL;
268
269 /* True, if recovery block was added during scheduling of current block.
270 Used to determine, if we need to fix INSN_TICKs. */
271 static bool haifa_recovery_bb_recently_added_p;
272
273 /* True, if recovery block was added during this scheduling pass.
274 Used to determine if we should have empty memory pools of dependencies
275 after finishing current region. */
276 bool haifa_recovery_bb_ever_added_p;
277
278 /* Counters of different types of speculative instructions. */
279 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
280
281 /* Array used in {unlink, restore}_bb_notes. */
282 static rtx_insn **bb_header = 0;
283
284 /* Basic block after which recovery blocks will be created. */
285 static basic_block before_recovery;
286
287 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
288 created it. */
289 basic_block after_recovery;
290
291 /* FALSE if we add bb to another region, so we don't need to initialize it. */
292 bool adding_bb_to_current_region_p = true;
293
294 /* Queues, etc. */
295
296 /* An instruction is ready to be scheduled when all insns preceding it
297 have already been scheduled. It is important to ensure that all
298 insns which use its result will not be executed until its result
299 has been computed. An insn is maintained in one of four structures:
300
301 (P) the "Pending" set of insns which cannot be scheduled until
302 their dependencies have been satisfied.
303 (Q) the "Queued" set of insns that can be scheduled when sufficient
304 time has passed.
305 (R) the "Ready" list of unscheduled, uncommitted insns.
306 (S) the "Scheduled" list of insns.
307
308 Initially, all insns are either "Pending" or "Ready" depending on
309 whether their dependencies are satisfied.
310
311 Insns move from the "Ready" list to the "Scheduled" list as they
312 are committed to the schedule. As this occurs, the insns in the
313 "Pending" list have their dependencies satisfied and move to either
314 the "Ready" list or the "Queued" set depending on whether
315 sufficient time has passed to make them ready. As time passes,
316 insns move from the "Queued" set to the "Ready" list.
317
318 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
319 unscheduled insns, i.e., those that are ready, queued, and pending.
320 The "Queued" set (Q) is implemented by the variable `insn_queue'.
321 The "Ready" list (R) is implemented by the variables `ready' and
322 `n_ready'.
323 The "Scheduled" list (S) is the new insn chain built by this pass.
324
325 The transition (R->S) is implemented in the scheduling loop in
326 `schedule_block' when the best insn to schedule is chosen.
327 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
328 insns move from the ready list to the scheduled list.
329 The transition (Q->R) is implemented in 'queue_to_insn' as time
330 passes or stalls are introduced. */
331
332 /* Implement a circular buffer to delay instructions until sufficient
333 time has passed. For the new pipeline description interface,
334 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
335 than maximal time of instruction execution computed by genattr.c on
336 the base maximal time of functional unit reservations and getting a
337 result. This is the longest time an insn may be queued. */
338
339 static rtx_insn_list **insn_queue;
340 static int q_ptr = 0;
341 static int q_size = 0;
342 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
343 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
344
345 #define QUEUE_SCHEDULED (-3)
346 #define QUEUE_NOWHERE (-2)
347 #define QUEUE_READY (-1)
348 /* QUEUE_SCHEDULED - INSN is scheduled.
349 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
350 queue or ready list.
351 QUEUE_READY - INSN is in ready list.
352 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
353
354 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
355
356 /* The following variable value refers for all current and future
357 reservations of the processor units. */
358 state_t curr_state;
359
360 /* The following variable value is size of memory representing all
361 current and future reservations of the processor units. */
362 size_t dfa_state_size;
363
364 /* The following array is used to find the best insn from ready when
365 the automaton pipeline interface is used. */
366 signed char *ready_try = NULL;
367
368 /* The ready list. */
369 struct ready_list ready = {NULL, 0, 0, 0, 0};
370
371 /* The pointer to the ready list (to be removed). */
372 static struct ready_list *readyp = &ready;
373
374 /* Scheduling clock. */
375 static int clock_var;
376
377 /* Clock at which the previous instruction was issued. */
378 static int last_clock_var;
379
380 /* Set to true if, when queuing a shadow insn, we discover that it would be
381 scheduled too late. */
382 static bool must_backtrack;
383
384 /* The following variable value is number of essential insns issued on
385 the current cycle. An insn is essential one if it changes the
386 processors state. */
387 int cycle_issued_insns;
388
389 /* This records the actual schedule. It is built up during the main phase
390 of schedule_block, and afterwards used to reorder the insns in the RTL. */
391 static vec<rtx_insn *> scheduled_insns;
392
393 static int may_trap_exp (const_rtx, int);
394
395 /* Nonzero iff the address is comprised from at most 1 register. */
396 #define CONST_BASED_ADDRESS_P(x) \
397 (REG_P (x) \
398 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
399 || (GET_CODE (x) == LO_SUM)) \
400 && (CONSTANT_P (XEXP (x, 0)) \
401 || CONSTANT_P (XEXP (x, 1)))))
402
403 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
404 as found by analyzing insn's expression. */
405
406 \f
407 static int haifa_luid_for_non_insn (rtx x);
408
409 /* Haifa version of sched_info hooks common to all headers. */
410 const struct common_sched_info_def haifa_common_sched_info =
411 {
412 NULL, /* fix_recovery_cfg */
413 NULL, /* add_block */
414 NULL, /* estimate_number_of_insns */
415 haifa_luid_for_non_insn, /* luid_for_non_insn */
416 SCHED_PASS_UNKNOWN /* sched_pass_id */
417 };
418
419 /* Mapping from instruction UID to its Logical UID. */
420 vec<int> sched_luids = vNULL;
421
422 /* Next LUID to assign to an instruction. */
423 int sched_max_luid = 1;
424
425 /* Haifa Instruction Data. */
426 vec<haifa_insn_data_def> h_i_d = vNULL;
427
428 void (* sched_init_only_bb) (basic_block, basic_block);
429
430 /* Split block function. Different schedulers might use different functions
431 to handle their internal data consistent. */
432 basic_block (* sched_split_block) (basic_block, rtx);
433
434 /* Create empty basic block after the specified block. */
435 basic_block (* sched_create_empty_bb) (basic_block);
436
437 /* Return the number of cycles until INSN is expected to be ready.
438 Return zero if it already is. */
439 static int
440 insn_delay (rtx_insn *insn)
441 {
442 return MAX (INSN_TICK (insn) - clock_var, 0);
443 }
444
445 static int
446 may_trap_exp (const_rtx x, int is_store)
447 {
448 enum rtx_code code;
449
450 if (x == 0)
451 return TRAP_FREE;
452 code = GET_CODE (x);
453 if (is_store)
454 {
455 if (code == MEM && may_trap_p (x))
456 return TRAP_RISKY;
457 else
458 return TRAP_FREE;
459 }
460 if (code == MEM)
461 {
462 /* The insn uses memory: a volatile load. */
463 if (MEM_VOLATILE_P (x))
464 return IRISKY;
465 /* An exception-free load. */
466 if (!may_trap_p (x))
467 return IFREE;
468 /* A load with 1 base register, to be further checked. */
469 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
470 return PFREE_CANDIDATE;
471 /* No info on the load, to be further checked. */
472 return PRISKY_CANDIDATE;
473 }
474 else
475 {
476 const char *fmt;
477 int i, insn_class = TRAP_FREE;
478
479 /* Neither store nor load, check if it may cause a trap. */
480 if (may_trap_p (x))
481 return TRAP_RISKY;
482 /* Recursive step: walk the insn... */
483 fmt = GET_RTX_FORMAT (code);
484 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
485 {
486 if (fmt[i] == 'e')
487 {
488 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
489 insn_class = WORST_CLASS (insn_class, tmp_class);
490 }
491 else if (fmt[i] == 'E')
492 {
493 int j;
494 for (j = 0; j < XVECLEN (x, i); j++)
495 {
496 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
497 insn_class = WORST_CLASS (insn_class, tmp_class);
498 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
499 break;
500 }
501 }
502 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
503 break;
504 }
505 return insn_class;
506 }
507 }
508
509 /* Classifies rtx X of an insn for the purpose of verifying that X can be
510 executed speculatively (and consequently the insn can be moved
511 speculatively), by examining X, returning:
512 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
513 TRAP_FREE: non-load insn.
514 IFREE: load from a globally safe location.
515 IRISKY: volatile load.
516 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
517 being either PFREE or PRISKY. */
518
519 static int
520 haifa_classify_rtx (const_rtx x)
521 {
522 int tmp_class = TRAP_FREE;
523 int insn_class = TRAP_FREE;
524 enum rtx_code code;
525
526 if (GET_CODE (x) == PARALLEL)
527 {
528 int i, len = XVECLEN (x, 0);
529
530 for (i = len - 1; i >= 0; i--)
531 {
532 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
533 insn_class = WORST_CLASS (insn_class, tmp_class);
534 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
535 break;
536 }
537 }
538 else
539 {
540 code = GET_CODE (x);
541 switch (code)
542 {
543 case CLOBBER:
544 /* Test if it is a 'store'. */
545 tmp_class = may_trap_exp (XEXP (x, 0), 1);
546 break;
547 case SET:
548 /* Test if it is a store. */
549 tmp_class = may_trap_exp (SET_DEST (x), 1);
550 if (tmp_class == TRAP_RISKY)
551 break;
552 /* Test if it is a load. */
553 tmp_class =
554 WORST_CLASS (tmp_class,
555 may_trap_exp (SET_SRC (x), 0));
556 break;
557 case COND_EXEC:
558 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
559 if (tmp_class == TRAP_RISKY)
560 break;
561 tmp_class = WORST_CLASS (tmp_class,
562 may_trap_exp (COND_EXEC_TEST (x), 0));
563 break;
564 case TRAP_IF:
565 tmp_class = TRAP_RISKY;
566 break;
567 default:;
568 }
569 insn_class = tmp_class;
570 }
571
572 return insn_class;
573 }
574
575 int
576 haifa_classify_insn (const_rtx insn)
577 {
578 return haifa_classify_rtx (PATTERN (insn));
579 }
580 \f
581 /* After the scheduler initialization function has been called, this function
582 can be called to enable modulo scheduling. II is the initiation interval
583 we should use, it affects the delays for delay_pairs that were recorded as
584 separated by a given number of stages.
585
586 MAX_STAGES provides us with a limit
587 after which we give up scheduling; the caller must have unrolled at least
588 as many copies of the loop body and recorded delay_pairs for them.
589
590 INSNS is the number of real (non-debug) insns in one iteration of
591 the loop. MAX_UID can be used to test whether an insn belongs to
592 the first iteration of the loop; all of them have a uid lower than
593 MAX_UID. */
594 void
595 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
596 {
597 modulo_ii = ii;
598 modulo_max_stages = max_stages;
599 modulo_n_insns = insns;
600 modulo_iter0_max_uid = max_uid;
601 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
602 }
603
604 /* A structure to record a pair of insns where the first one is a real
605 insn that has delay slots, and the second is its delayed shadow.
606 I1 is scheduled normally and will emit an assembly instruction,
607 while I2 describes the side effect that takes place at the
608 transition between cycles CYCLES and (CYCLES + 1) after I1. */
609 struct delay_pair
610 {
611 struct delay_pair *next_same_i1;
612 rtx_insn *i1, *i2;
613 int cycles;
614 /* When doing modulo scheduling, we a delay_pair can also be used to
615 show that I1 and I2 are the same insn in a different stage. If that
616 is the case, STAGES will be nonzero. */
617 int stages;
618 };
619
620 /* Helpers for delay hashing. */
621
622 struct delay_i1_hasher : typed_noop_remove <delay_pair>
623 {
624 typedef delay_pair value_type;
625 typedef void compare_type;
626 static inline hashval_t hash (const value_type *);
627 static inline bool equal (const value_type *, const compare_type *);
628 };
629
630 /* Returns a hash value for X, based on hashing just I1. */
631
632 inline hashval_t
633 delay_i1_hasher::hash (const value_type *x)
634 {
635 return htab_hash_pointer (x->i1);
636 }
637
638 /* Return true if I1 of pair X is the same as that of pair Y. */
639
640 inline bool
641 delay_i1_hasher::equal (const value_type *x, const compare_type *y)
642 {
643 return x->i1 == y;
644 }
645
646 struct delay_i2_hasher : typed_free_remove <delay_pair>
647 {
648 typedef delay_pair value_type;
649 typedef void compare_type;
650 static inline hashval_t hash (const value_type *);
651 static inline bool equal (const value_type *, const compare_type *);
652 };
653
654 /* Returns a hash value for X, based on hashing just I2. */
655
656 inline hashval_t
657 delay_i2_hasher::hash (const value_type *x)
658 {
659 return htab_hash_pointer (x->i2);
660 }
661
662 /* Return true if I2 of pair X is the same as that of pair Y. */
663
664 inline bool
665 delay_i2_hasher::equal (const value_type *x, const compare_type *y)
666 {
667 return x->i2 == y;
668 }
669
670 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
671 indexed by I2. */
672 static hash_table<delay_i1_hasher> *delay_htab;
673 static hash_table<delay_i2_hasher> *delay_htab_i2;
674
675 /* Called through htab_traverse. Walk the hashtable using I2 as
676 index, and delete all elements involving an UID higher than
677 that pointed to by *DATA. */
678 int
679 haifa_htab_i2_traverse (delay_pair **slot, int *data)
680 {
681 int maxuid = *data;
682 struct delay_pair *p = *slot;
683 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
684 {
685 delay_htab_i2->clear_slot (slot);
686 }
687 return 1;
688 }
689
690 /* Called through htab_traverse. Walk the hashtable using I2 as
691 index, and delete all elements involving an UID higher than
692 that pointed to by *DATA. */
693 int
694 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
695 {
696 int maxuid = *data;
697 struct delay_pair *p, *first, **pprev;
698
699 if (INSN_UID ((*pslot)->i1) >= maxuid)
700 {
701 delay_htab->clear_slot (pslot);
702 return 1;
703 }
704 pprev = &first;
705 for (p = *pslot; p; p = p->next_same_i1)
706 {
707 if (INSN_UID (p->i2) < maxuid)
708 {
709 *pprev = p;
710 pprev = &p->next_same_i1;
711 }
712 }
713 *pprev = NULL;
714 if (first == NULL)
715 delay_htab->clear_slot (pslot);
716 else
717 *pslot = first;
718 return 1;
719 }
720
721 /* Discard all delay pairs which involve an insn with an UID higher
722 than MAX_UID. */
723 void
724 discard_delay_pairs_above (int max_uid)
725 {
726 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
727 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
728 }
729
730 /* This function can be called by a port just before it starts the final
731 scheduling pass. It records the fact that an instruction with delay
732 slots has been split into two insns, I1 and I2. The first one will be
733 scheduled normally and initiates the operation. The second one is a
734 shadow which must follow a specific number of cycles after I1; its only
735 purpose is to show the side effect that occurs at that cycle in the RTL.
736 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
737 while I2 retains the original insn type.
738
739 There are two ways in which the number of cycles can be specified,
740 involving the CYCLES and STAGES arguments to this function. If STAGES
741 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
742 which is multiplied by MODULO_II to give the number of cycles. This is
743 only useful if the caller also calls set_modulo_params to enable modulo
744 scheduling. */
745
746 void
747 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
748 {
749 struct delay_pair *p = XNEW (struct delay_pair);
750 struct delay_pair **slot;
751
752 p->i1 = i1;
753 p->i2 = i2;
754 p->cycles = cycles;
755 p->stages = stages;
756
757 if (!delay_htab)
758 {
759 delay_htab = new hash_table<delay_i1_hasher> (10);
760 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
761 }
762 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
763 p->next_same_i1 = *slot;
764 *slot = p;
765 slot = delay_htab_i2->find_slot (p, INSERT);
766 *slot = p;
767 }
768
769 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
770 and return the other insn if so. Return NULL otherwise. */
771 rtx_insn *
772 real_insn_for_shadow (rtx_insn *insn)
773 {
774 struct delay_pair *pair;
775
776 if (!delay_htab)
777 return NULL;
778
779 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
780 if (!pair || pair->stages > 0)
781 return NULL;
782 return pair->i1;
783 }
784
785 /* For a pair P of insns, return the fixed distance in cycles from the first
786 insn after which the second must be scheduled. */
787 static int
788 pair_delay (struct delay_pair *p)
789 {
790 if (p->stages == 0)
791 return p->cycles;
792 else
793 return p->stages * modulo_ii;
794 }
795
796 /* Given an insn INSN, add a dependence on its delayed shadow if it
797 has one. Also try to find situations where shadows depend on each other
798 and add dependencies to the real insns to limit the amount of backtracking
799 needed. */
800 void
801 add_delay_dependencies (rtx_insn *insn)
802 {
803 struct delay_pair *pair;
804 sd_iterator_def sd_it;
805 dep_t dep;
806
807 if (!delay_htab)
808 return;
809
810 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
811 if (!pair)
812 return;
813 add_dependence (insn, pair->i1, REG_DEP_ANTI);
814 if (pair->stages)
815 return;
816
817 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
818 {
819 rtx_insn *pro = DEP_PRO (dep);
820 struct delay_pair *other_pair
821 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
822 if (!other_pair || other_pair->stages)
823 continue;
824 if (pair_delay (other_pair) >= pair_delay (pair))
825 {
826 if (sched_verbose >= 4)
827 {
828 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
829 INSN_UID (other_pair->i1),
830 INSN_UID (pair->i1));
831 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
832 INSN_UID (pair->i1),
833 INSN_UID (pair->i2),
834 pair_delay (pair));
835 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
836 INSN_UID (other_pair->i1),
837 INSN_UID (other_pair->i2),
838 pair_delay (other_pair));
839 }
840 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
841 }
842 }
843 }
844 \f
845 /* Forward declarations. */
846
847 static int priority (rtx_insn *);
848 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
849 static int rank_for_schedule (const void *, const void *);
850 static void swap_sort (rtx_insn **, int);
851 static void queue_insn (rtx_insn *, int, const char *);
852 static int schedule_insn (rtx_insn *);
853 static void adjust_priority (rtx_insn *);
854 static void advance_one_cycle (void);
855 static void extend_h_i_d (void);
856
857
858 /* Notes handling mechanism:
859 =========================
860 Generally, NOTES are saved before scheduling and restored after scheduling.
861 The scheduler distinguishes between two types of notes:
862
863 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
864 Before scheduling a region, a pointer to the note is added to the insn
865 that follows or precedes it. (This happens as part of the data dependence
866 computation). After scheduling an insn, the pointer contained in it is
867 used for regenerating the corresponding note (in reemit_notes).
868
869 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
870 these notes are put in a list (in rm_other_notes() and
871 unlink_other_notes ()). After scheduling the block, these notes are
872 inserted at the beginning of the block (in schedule_block()). */
873
874 static void ready_add (struct ready_list *, rtx_insn *, bool);
875 static rtx_insn *ready_remove_first (struct ready_list *);
876 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
877
878 static void queue_to_ready (struct ready_list *);
879 static int early_queue_to_ready (state_t, struct ready_list *);
880
881 /* The following functions are used to implement multi-pass scheduling
882 on the first cycle. */
883 static rtx_insn *ready_remove (struct ready_list *, int);
884 static void ready_remove_insn (rtx);
885
886 static void fix_inter_tick (rtx_insn *, rtx_insn *);
887 static int fix_tick_ready (rtx_insn *);
888 static void change_queue_index (rtx_insn *, int);
889
890 /* The following functions are used to implement scheduling of data/control
891 speculative instructions. */
892
893 static void extend_h_i_d (void);
894 static void init_h_i_d (rtx_insn *);
895 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
896 static void generate_recovery_code (rtx_insn *);
897 static void process_insn_forw_deps_be_in_spec (rtx, rtx_insn *, ds_t);
898 static void begin_speculative_block (rtx_insn *);
899 static void add_to_speculative_block (rtx_insn *);
900 static void init_before_recovery (basic_block *);
901 static void create_check_block_twin (rtx_insn *, bool);
902 static void fix_recovery_deps (basic_block);
903 static bool haifa_change_pattern (rtx_insn *, rtx);
904 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
905 static void restore_bb_notes (basic_block);
906 static void fix_jump_move (rtx_insn *);
907 static void move_block_after_check (rtx_insn *);
908 static void move_succs (vec<edge, va_gc> **, basic_block);
909 static void sched_remove_insn (rtx_insn *);
910 static void clear_priorities (rtx_insn *, rtx_vec_t *);
911 static void calc_priorities (rtx_vec_t);
912 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
913
914 #endif /* INSN_SCHEDULING */
915 \f
916 /* Point to state used for the current scheduling pass. */
917 struct haifa_sched_info *current_sched_info;
918 \f
919 #ifndef INSN_SCHEDULING
920 void
921 schedule_insns (void)
922 {
923 }
924 #else
925
926 /* Do register pressure sensitive insn scheduling if the flag is set
927 up. */
928 enum sched_pressure_algorithm sched_pressure;
929
930 /* Map regno -> its pressure class. The map defined only when
931 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
932 enum reg_class *sched_regno_pressure_class;
933
934 /* The current register pressure. Only elements corresponding pressure
935 classes are defined. */
936 static int curr_reg_pressure[N_REG_CLASSES];
937
938 /* Saved value of the previous array. */
939 static int saved_reg_pressure[N_REG_CLASSES];
940
941 /* Register living at given scheduling point. */
942 static bitmap curr_reg_live;
943
944 /* Saved value of the previous array. */
945 static bitmap saved_reg_live;
946
947 /* Registers mentioned in the current region. */
948 static bitmap region_ref_regs;
949
950 /* Effective number of available registers of a given class (see comment
951 in sched_pressure_start_bb). */
952 static int sched_class_regs_num[N_REG_CLASSES];
953 /* Number of call_used_regs. This is a helper for calculating of
954 sched_class_regs_num. */
955 static int call_used_regs_num[N_REG_CLASSES];
956
957 /* Initiate register pressure relative info for scheduling the current
958 region. Currently it is only clearing register mentioned in the
959 current region. */
960 void
961 sched_init_region_reg_pressure_info (void)
962 {
963 bitmap_clear (region_ref_regs);
964 }
965
966 /* PRESSURE[CL] describes the pressure on register class CL. Update it
967 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
968 LIVE tracks the set of live registers; if it is null, assume that
969 every birth or death is genuine. */
970 static inline void
971 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
972 {
973 enum reg_class pressure_class;
974
975 pressure_class = sched_regno_pressure_class[regno];
976 if (regno >= FIRST_PSEUDO_REGISTER)
977 {
978 if (pressure_class != NO_REGS)
979 {
980 if (birth_p)
981 {
982 if (!live || bitmap_set_bit (live, regno))
983 pressure[pressure_class]
984 += (ira_reg_class_max_nregs
985 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
986 }
987 else
988 {
989 if (!live || bitmap_clear_bit (live, regno))
990 pressure[pressure_class]
991 -= (ira_reg_class_max_nregs
992 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
993 }
994 }
995 }
996 else if (pressure_class != NO_REGS
997 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
998 {
999 if (birth_p)
1000 {
1001 if (!live || bitmap_set_bit (live, regno))
1002 pressure[pressure_class]++;
1003 }
1004 else
1005 {
1006 if (!live || bitmap_clear_bit (live, regno))
1007 pressure[pressure_class]--;
1008 }
1009 }
1010 }
1011
1012 /* Initiate current register pressure related info from living
1013 registers given by LIVE. */
1014 static void
1015 initiate_reg_pressure_info (bitmap live)
1016 {
1017 int i;
1018 unsigned int j;
1019 bitmap_iterator bi;
1020
1021 for (i = 0; i < ira_pressure_classes_num; i++)
1022 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1023 bitmap_clear (curr_reg_live);
1024 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1025 if (sched_pressure == SCHED_PRESSURE_MODEL
1026 || current_nr_blocks == 1
1027 || bitmap_bit_p (region_ref_regs, j))
1028 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1029 }
1030
1031 /* Mark registers in X as mentioned in the current region. */
1032 static void
1033 setup_ref_regs (rtx x)
1034 {
1035 int i, j, regno;
1036 const RTX_CODE code = GET_CODE (x);
1037 const char *fmt;
1038
1039 if (REG_P (x))
1040 {
1041 regno = REGNO (x);
1042 if (HARD_REGISTER_NUM_P (regno))
1043 bitmap_set_range (region_ref_regs, regno,
1044 hard_regno_nregs[regno][GET_MODE (x)]);
1045 else
1046 bitmap_set_bit (region_ref_regs, REGNO (x));
1047 return;
1048 }
1049 fmt = GET_RTX_FORMAT (code);
1050 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1051 if (fmt[i] == 'e')
1052 setup_ref_regs (XEXP (x, i));
1053 else if (fmt[i] == 'E')
1054 {
1055 for (j = 0; j < XVECLEN (x, i); j++)
1056 setup_ref_regs (XVECEXP (x, i, j));
1057 }
1058 }
1059
1060 /* Initiate current register pressure related info at the start of
1061 basic block BB. */
1062 static void
1063 initiate_bb_reg_pressure_info (basic_block bb)
1064 {
1065 unsigned int i ATTRIBUTE_UNUSED;
1066 rtx_insn *insn;
1067
1068 if (current_nr_blocks > 1)
1069 FOR_BB_INSNS (bb, insn)
1070 if (NONDEBUG_INSN_P (insn))
1071 setup_ref_regs (PATTERN (insn));
1072 initiate_reg_pressure_info (df_get_live_in (bb));
1073 #ifdef EH_RETURN_DATA_REGNO
1074 if (bb_has_eh_pred (bb))
1075 for (i = 0; ; ++i)
1076 {
1077 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1078
1079 if (regno == INVALID_REGNUM)
1080 break;
1081 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1082 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1083 regno, true);
1084 }
1085 #endif
1086 }
1087
1088 /* Save current register pressure related info. */
1089 static void
1090 save_reg_pressure (void)
1091 {
1092 int i;
1093
1094 for (i = 0; i < ira_pressure_classes_num; i++)
1095 saved_reg_pressure[ira_pressure_classes[i]]
1096 = curr_reg_pressure[ira_pressure_classes[i]];
1097 bitmap_copy (saved_reg_live, curr_reg_live);
1098 }
1099
1100 /* Restore saved register pressure related info. */
1101 static void
1102 restore_reg_pressure (void)
1103 {
1104 int i;
1105
1106 for (i = 0; i < ira_pressure_classes_num; i++)
1107 curr_reg_pressure[ira_pressure_classes[i]]
1108 = saved_reg_pressure[ira_pressure_classes[i]];
1109 bitmap_copy (curr_reg_live, saved_reg_live);
1110 }
1111
1112 /* Return TRUE if the register is dying after its USE. */
1113 static bool
1114 dying_use_p (struct reg_use_data *use)
1115 {
1116 struct reg_use_data *next;
1117
1118 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1119 if (NONDEBUG_INSN_P (next->insn)
1120 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1121 return false;
1122 return true;
1123 }
1124
1125 /* Print info about the current register pressure and its excess for
1126 each pressure class. */
1127 static void
1128 print_curr_reg_pressure (void)
1129 {
1130 int i;
1131 enum reg_class cl;
1132
1133 fprintf (sched_dump, ";;\t");
1134 for (i = 0; i < ira_pressure_classes_num; i++)
1135 {
1136 cl = ira_pressure_classes[i];
1137 gcc_assert (curr_reg_pressure[cl] >= 0);
1138 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1139 curr_reg_pressure[cl],
1140 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1141 }
1142 fprintf (sched_dump, "\n");
1143 }
1144 \f
1145 /* Determine if INSN has a condition that is clobbered if a register
1146 in SET_REGS is modified. */
1147 static bool
1148 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1149 {
1150 rtx pat = PATTERN (insn);
1151 gcc_assert (GET_CODE (pat) == COND_EXEC);
1152 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1153 {
1154 sd_iterator_def sd_it;
1155 dep_t dep;
1156 haifa_change_pattern (insn, ORIG_PAT (insn));
1157 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1158 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1159 TODO_SPEC (insn) = HARD_DEP;
1160 if (sched_verbose >= 2)
1161 fprintf (sched_dump,
1162 ";;\t\tdequeue insn %s because of clobbered condition\n",
1163 (*current_sched_info->print_insn) (insn, 0));
1164 return true;
1165 }
1166
1167 return false;
1168 }
1169
1170 /* This function should be called after modifying the pattern of INSN,
1171 to update scheduler data structures as needed. */
1172 static void
1173 update_insn_after_change (rtx_insn *insn)
1174 {
1175 sd_iterator_def sd_it;
1176 dep_t dep;
1177
1178 dfa_clear_single_insn_cache (insn);
1179
1180 sd_it = sd_iterator_start (insn,
1181 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1182 while (sd_iterator_cond (&sd_it, &dep))
1183 {
1184 DEP_COST (dep) = UNKNOWN_DEP_COST;
1185 sd_iterator_next (&sd_it);
1186 }
1187
1188 /* Invalidate INSN_COST, so it'll be recalculated. */
1189 INSN_COST (insn) = -1;
1190 /* Invalidate INSN_TICK, so it'll be recalculated. */
1191 INSN_TICK (insn) = INVALID_TICK;
1192
1193 /* Invalidate autoprefetch data entry. */
1194 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1195 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1196 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1197 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1198 }
1199
1200
1201 /* Two VECs, one to hold dependencies for which pattern replacements
1202 need to be applied or restored at the start of the next cycle, and
1203 another to hold an integer that is either one, to apply the
1204 corresponding replacement, or zero to restore it. */
1205 static vec<dep_t> next_cycle_replace_deps;
1206 static vec<int> next_cycle_apply;
1207
1208 static void apply_replacement (dep_t, bool);
1209 static void restore_pattern (dep_t, bool);
1210
1211 /* Look at the remaining dependencies for insn NEXT, and compute and return
1212 the TODO_SPEC value we should use for it. This is called after one of
1213 NEXT's dependencies has been resolved.
1214 We also perform pattern replacements for predication, and for broken
1215 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1216 false. */
1217
1218 static ds_t
1219 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1220 {
1221 ds_t new_ds;
1222 sd_iterator_def sd_it;
1223 dep_t dep, modify_dep = NULL;
1224 int n_spec = 0;
1225 int n_control = 0;
1226 int n_replace = 0;
1227 bool first_p = true;
1228
1229 if (sd_lists_empty_p (next, SD_LIST_BACK))
1230 /* NEXT has all its dependencies resolved. */
1231 return 0;
1232
1233 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1234 return HARD_DEP;
1235
1236 /* Now we've got NEXT with speculative deps only.
1237 1. Look at the deps to see what we have to do.
1238 2. Check if we can do 'todo'. */
1239 new_ds = 0;
1240
1241 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1242 {
1243 rtx_insn *pro = DEP_PRO (dep);
1244 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1245
1246 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1247 continue;
1248
1249 if (ds)
1250 {
1251 n_spec++;
1252 if (first_p)
1253 {
1254 first_p = false;
1255
1256 new_ds = ds;
1257 }
1258 else
1259 new_ds = ds_merge (new_ds, ds);
1260 }
1261 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1262 {
1263 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1264 {
1265 n_control++;
1266 modify_dep = dep;
1267 }
1268 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1269 }
1270 else if (DEP_REPLACE (dep) != NULL)
1271 {
1272 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1273 {
1274 n_replace++;
1275 modify_dep = dep;
1276 }
1277 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1278 }
1279 }
1280
1281 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1282 {
1283 if (!dbg_cnt (sched_breakdep))
1284 return HARD_DEP;
1285 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1286 {
1287 struct dep_replacement *desc = DEP_REPLACE (dep);
1288 if (desc != NULL)
1289 {
1290 if (desc->insn == next && !for_backtrack)
1291 {
1292 gcc_assert (n_replace == 1);
1293 apply_replacement (dep, true);
1294 }
1295 DEP_STATUS (dep) |= DEP_CANCELLED;
1296 }
1297 }
1298 return 0;
1299 }
1300
1301 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1302 {
1303 rtx_insn *pro, *other;
1304 rtx new_pat;
1305 rtx cond = NULL_RTX;
1306 bool success;
1307 rtx_insn *prev = NULL;
1308 int i;
1309 unsigned regno;
1310
1311 if ((current_sched_info->flags & DO_PREDICATION) == 0
1312 || (ORIG_PAT (next) != NULL_RTX
1313 && PREDICATED_PAT (next) == NULL_RTX))
1314 return HARD_DEP;
1315
1316 pro = DEP_PRO (modify_dep);
1317 other = real_insn_for_shadow (pro);
1318 if (other != NULL_RTX)
1319 pro = other;
1320
1321 cond = sched_get_reverse_condition_uncached (pro);
1322 regno = REGNO (XEXP (cond, 0));
1323
1324 /* Find the last scheduled insn that modifies the condition register.
1325 We can stop looking once we find the insn we depend on through the
1326 REG_DEP_CONTROL; if the condition register isn't modified after it,
1327 we know that it still has the right value. */
1328 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1329 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1330 {
1331 HARD_REG_SET t;
1332
1333 find_all_hard_reg_sets (prev, &t, true);
1334 if (TEST_HARD_REG_BIT (t, regno))
1335 return HARD_DEP;
1336 if (prev == pro)
1337 break;
1338 }
1339 if (ORIG_PAT (next) == NULL_RTX)
1340 {
1341 ORIG_PAT (next) = PATTERN (next);
1342
1343 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1344 success = haifa_change_pattern (next, new_pat);
1345 if (!success)
1346 return HARD_DEP;
1347 PREDICATED_PAT (next) = new_pat;
1348 }
1349 else if (PATTERN (next) != PREDICATED_PAT (next))
1350 {
1351 bool success = haifa_change_pattern (next,
1352 PREDICATED_PAT (next));
1353 gcc_assert (success);
1354 }
1355 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1356 return DEP_CONTROL;
1357 }
1358
1359 if (PREDICATED_PAT (next) != NULL_RTX)
1360 {
1361 int tick = INSN_TICK (next);
1362 bool success = haifa_change_pattern (next,
1363 ORIG_PAT (next));
1364 INSN_TICK (next) = tick;
1365 gcc_assert (success);
1366 }
1367
1368 /* We can't handle the case where there are both speculative and control
1369 dependencies, so we return HARD_DEP in such a case. Also fail if
1370 we have speculative dependencies with not enough points, or more than
1371 one control dependency. */
1372 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1373 || (n_spec > 0
1374 /* Too few points? */
1375 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1376 || n_control > 0
1377 || n_replace > 0)
1378 return HARD_DEP;
1379
1380 return new_ds;
1381 }
1382 \f
1383 /* Pointer to the last instruction scheduled. */
1384 static rtx_insn *last_scheduled_insn;
1385
1386 /* Pointer to the last nondebug instruction scheduled within the
1387 block, or the prev_head of the scheduling block. Used by
1388 rank_for_schedule, so that insns independent of the last scheduled
1389 insn will be preferred over dependent instructions. */
1390 static rtx last_nondebug_scheduled_insn;
1391
1392 /* Pointer that iterates through the list of unscheduled insns if we
1393 have a dbg_cnt enabled. It always points at an insn prior to the
1394 first unscheduled one. */
1395 static rtx_insn *nonscheduled_insns_begin;
1396
1397 /* Compute cost of executing INSN.
1398 This is the number of cycles between instruction issue and
1399 instruction results. */
1400 int
1401 insn_cost (rtx_insn *insn)
1402 {
1403 int cost;
1404
1405 if (sched_fusion)
1406 return 0;
1407
1408 if (sel_sched_p ())
1409 {
1410 if (recog_memoized (insn) < 0)
1411 return 0;
1412
1413 cost = insn_default_latency (insn);
1414 if (cost < 0)
1415 cost = 0;
1416
1417 return cost;
1418 }
1419
1420 cost = INSN_COST (insn);
1421
1422 if (cost < 0)
1423 {
1424 /* A USE insn, or something else we don't need to
1425 understand. We can't pass these directly to
1426 result_ready_cost or insn_default_latency because it will
1427 trigger a fatal error for unrecognizable insns. */
1428 if (recog_memoized (insn) < 0)
1429 {
1430 INSN_COST (insn) = 0;
1431 return 0;
1432 }
1433 else
1434 {
1435 cost = insn_default_latency (insn);
1436 if (cost < 0)
1437 cost = 0;
1438
1439 INSN_COST (insn) = cost;
1440 }
1441 }
1442
1443 return cost;
1444 }
1445
1446 /* Compute cost of dependence LINK.
1447 This is the number of cycles between instruction issue and
1448 instruction results.
1449 ??? We also use this function to call recog_memoized on all insns. */
1450 int
1451 dep_cost_1 (dep_t link, dw_t dw)
1452 {
1453 rtx_insn *insn = DEP_PRO (link);
1454 rtx_insn *used = DEP_CON (link);
1455 int cost;
1456
1457 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1458 return DEP_COST (link);
1459
1460 if (delay_htab)
1461 {
1462 struct delay_pair *delay_entry;
1463 delay_entry
1464 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1465 if (delay_entry)
1466 {
1467 if (delay_entry->i1 == insn)
1468 {
1469 DEP_COST (link) = pair_delay (delay_entry);
1470 return DEP_COST (link);
1471 }
1472 }
1473 }
1474
1475 /* A USE insn should never require the value used to be computed.
1476 This allows the computation of a function's result and parameter
1477 values to overlap the return and call. We don't care about the
1478 dependence cost when only decreasing register pressure. */
1479 if (recog_memoized (used) < 0)
1480 {
1481 cost = 0;
1482 recog_memoized (insn);
1483 }
1484 else
1485 {
1486 enum reg_note dep_type = DEP_TYPE (link);
1487
1488 cost = insn_cost (insn);
1489
1490 if (INSN_CODE (insn) >= 0)
1491 {
1492 if (dep_type == REG_DEP_ANTI)
1493 cost = 0;
1494 else if (dep_type == REG_DEP_OUTPUT)
1495 {
1496 cost = (insn_default_latency (insn)
1497 - insn_default_latency (used));
1498 if (cost <= 0)
1499 cost = 1;
1500 }
1501 else if (bypass_p (insn))
1502 cost = insn_latency (insn, used);
1503 }
1504
1505
1506 if (targetm.sched.adjust_cost_2)
1507 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1508 dw);
1509 else if (targetm.sched.adjust_cost != NULL)
1510 {
1511 /* This variable is used for backward compatibility with the
1512 targets. */
1513 rtx_insn_list *dep_cost_rtx_link =
1514 alloc_INSN_LIST (NULL_RTX, NULL);
1515
1516 /* Make it self-cycled, so that if some tries to walk over this
1517 incomplete list he/she will be caught in an endless loop. */
1518 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1519
1520 /* Targets use only REG_NOTE_KIND of the link. */
1521 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1522
1523 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1524 insn, cost);
1525
1526 free_INSN_LIST_node (dep_cost_rtx_link);
1527 }
1528
1529 if (cost < 0)
1530 cost = 0;
1531 }
1532
1533 DEP_COST (link) = cost;
1534 return cost;
1535 }
1536
1537 /* Compute cost of dependence LINK.
1538 This is the number of cycles between instruction issue and
1539 instruction results. */
1540 int
1541 dep_cost (dep_t link)
1542 {
1543 return dep_cost_1 (link, 0);
1544 }
1545
1546 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1547 INSN_PRIORITY explicitly. */
1548 void
1549 increase_insn_priority (rtx_insn *insn, int amount)
1550 {
1551 if (!sel_sched_p ())
1552 {
1553 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1554 if (INSN_PRIORITY_KNOWN (insn))
1555 INSN_PRIORITY (insn) += amount;
1556 }
1557 else
1558 {
1559 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1560 Use EXPR_PRIORITY instead. */
1561 sel_add_to_insn_priority (insn, amount);
1562 }
1563 }
1564
1565 /* Return 'true' if DEP should be included in priority calculations. */
1566 static bool
1567 contributes_to_priority_p (dep_t dep)
1568 {
1569 if (DEBUG_INSN_P (DEP_CON (dep))
1570 || DEBUG_INSN_P (DEP_PRO (dep)))
1571 return false;
1572
1573 /* Critical path is meaningful in block boundaries only. */
1574 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1575 DEP_PRO (dep)))
1576 return false;
1577
1578 if (DEP_REPLACE (dep) != NULL)
1579 return false;
1580
1581 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1582 then speculative instructions will less likely be
1583 scheduled. That is because the priority of
1584 their producers will increase, and, thus, the
1585 producers will more likely be scheduled, thus,
1586 resolving the dependence. */
1587 if (sched_deps_info->generate_spec_deps
1588 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1589 && (DEP_STATUS (dep) & SPECULATIVE))
1590 return false;
1591
1592 return true;
1593 }
1594
1595 /* Compute the number of nondebug deps in list LIST for INSN. */
1596
1597 static int
1598 dep_list_size (rtx insn, sd_list_types_def list)
1599 {
1600 sd_iterator_def sd_it;
1601 dep_t dep;
1602 int dbgcount = 0, nodbgcount = 0;
1603
1604 if (!MAY_HAVE_DEBUG_INSNS)
1605 return sd_lists_size (insn, list);
1606
1607 FOR_EACH_DEP (insn, list, sd_it, dep)
1608 {
1609 if (DEBUG_INSN_P (DEP_CON (dep)))
1610 dbgcount++;
1611 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1612 nodbgcount++;
1613 }
1614
1615 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1616
1617 return nodbgcount;
1618 }
1619
1620 bool sched_fusion;
1621
1622 /* Compute the priority number for INSN. */
1623 static int
1624 priority (rtx_insn *insn)
1625 {
1626 if (! INSN_P (insn))
1627 return 0;
1628
1629 /* We should not be interested in priority of an already scheduled insn. */
1630 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1631
1632 if (!INSN_PRIORITY_KNOWN (insn))
1633 {
1634 int this_priority = -1;
1635
1636 if (sched_fusion)
1637 {
1638 int this_fusion_priority;
1639
1640 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1641 &this_fusion_priority, &this_priority);
1642 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1643 }
1644 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1645 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1646 some forward deps but all of them are ignored by
1647 contributes_to_priority hook. At the moment we set priority of
1648 such insn to 0. */
1649 this_priority = insn_cost (insn);
1650 else
1651 {
1652 rtx_insn *prev_first, *twin;
1653 basic_block rec;
1654
1655 /* For recovery check instructions we calculate priority slightly
1656 different than that of normal instructions. Instead of walking
1657 through INSN_FORW_DEPS (check) list, we walk through
1658 INSN_FORW_DEPS list of each instruction in the corresponding
1659 recovery block. */
1660
1661 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1662 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1663 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1664 {
1665 prev_first = PREV_INSN (insn);
1666 twin = insn;
1667 }
1668 else
1669 {
1670 prev_first = NEXT_INSN (BB_HEAD (rec));
1671 twin = PREV_INSN (BB_END (rec));
1672 }
1673
1674 do
1675 {
1676 sd_iterator_def sd_it;
1677 dep_t dep;
1678
1679 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1680 {
1681 rtx_insn *next;
1682 int next_priority;
1683
1684 next = DEP_CON (dep);
1685
1686 if (BLOCK_FOR_INSN (next) != rec)
1687 {
1688 int cost;
1689
1690 if (!contributes_to_priority_p (dep))
1691 continue;
1692
1693 if (twin == insn)
1694 cost = dep_cost (dep);
1695 else
1696 {
1697 struct _dep _dep1, *dep1 = &_dep1;
1698
1699 init_dep (dep1, insn, next, REG_DEP_ANTI);
1700
1701 cost = dep_cost (dep1);
1702 }
1703
1704 next_priority = cost + priority (next);
1705
1706 if (next_priority > this_priority)
1707 this_priority = next_priority;
1708 }
1709 }
1710
1711 twin = PREV_INSN (twin);
1712 }
1713 while (twin != prev_first);
1714 }
1715
1716 if (this_priority < 0)
1717 {
1718 gcc_assert (this_priority == -1);
1719
1720 this_priority = insn_cost (insn);
1721 }
1722
1723 INSN_PRIORITY (insn) = this_priority;
1724 INSN_PRIORITY_STATUS (insn) = 1;
1725 }
1726
1727 return INSN_PRIORITY (insn);
1728 }
1729 \f
1730 /* Macros and functions for keeping the priority queue sorted, and
1731 dealing with queuing and dequeuing of instructions. */
1732
1733 /* For each pressure class CL, set DEATH[CL] to the number of registers
1734 in that class that die in INSN. */
1735
1736 static void
1737 calculate_reg_deaths (rtx_insn *insn, int *death)
1738 {
1739 int i;
1740 struct reg_use_data *use;
1741
1742 for (i = 0; i < ira_pressure_classes_num; i++)
1743 death[ira_pressure_classes[i]] = 0;
1744 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1745 if (dying_use_p (use))
1746 mark_regno_birth_or_death (0, death, use->regno, true);
1747 }
1748
1749 /* Setup info about the current register pressure impact of scheduling
1750 INSN at the current scheduling point. */
1751 static void
1752 setup_insn_reg_pressure_info (rtx_insn *insn)
1753 {
1754 int i, change, before, after, hard_regno;
1755 int excess_cost_change;
1756 machine_mode mode;
1757 enum reg_class cl;
1758 struct reg_pressure_data *pressure_info;
1759 int *max_reg_pressure;
1760 static int death[N_REG_CLASSES];
1761
1762 gcc_checking_assert (!DEBUG_INSN_P (insn));
1763
1764 excess_cost_change = 0;
1765 calculate_reg_deaths (insn, death);
1766 pressure_info = INSN_REG_PRESSURE (insn);
1767 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1768 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1769 for (i = 0; i < ira_pressure_classes_num; i++)
1770 {
1771 cl = ira_pressure_classes[i];
1772 gcc_assert (curr_reg_pressure[cl] >= 0);
1773 change = (int) pressure_info[i].set_increase - death[cl];
1774 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1775 after = MAX (0, max_reg_pressure[i] + change
1776 - sched_class_regs_num[cl]);
1777 hard_regno = ira_class_hard_regs[cl][0];
1778 gcc_assert (hard_regno >= 0);
1779 mode = reg_raw_mode[hard_regno];
1780 excess_cost_change += ((after - before)
1781 * (ira_memory_move_cost[mode][cl][0]
1782 + ira_memory_move_cost[mode][cl][1]));
1783 }
1784 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1785 }
1786 \f
1787 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1788 It tries to make the scheduler take register pressure into account
1789 without introducing too many unnecessary stalls. It hooks into the
1790 main scheduling algorithm at several points:
1791
1792 - Before scheduling starts, model_start_schedule constructs a
1793 "model schedule" for the current block. This model schedule is
1794 chosen solely to keep register pressure down. It does not take the
1795 target's pipeline or the original instruction order into account,
1796 except as a tie-breaker. It also doesn't work to a particular
1797 pressure limit.
1798
1799 This model schedule gives us an idea of what pressure can be
1800 achieved for the block and gives us an example of a schedule that
1801 keeps to that pressure. It also makes the final schedule less
1802 dependent on the original instruction order. This is important
1803 because the original order can either be "wide" (many values live
1804 at once, such as in user-scheduled code) or "narrow" (few values
1805 live at once, such as after loop unrolling, where several
1806 iterations are executed sequentially).
1807
1808 We do not apply this model schedule to the rtx stream. We simply
1809 record it in model_schedule. We also compute the maximum pressure,
1810 MP, that was seen during this schedule.
1811
1812 - Instructions are added to the ready queue even if they require
1813 a stall. The length of the stall is instead computed as:
1814
1815 MAX (INSN_TICK (INSN) - clock_var, 0)
1816
1817 (= insn_delay). This allows rank_for_schedule to choose between
1818 introducing a deliberate stall or increasing pressure.
1819
1820 - Before sorting the ready queue, model_set_excess_costs assigns
1821 a pressure-based cost to each ready instruction in the queue.
1822 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1823 (ECC for short) and is effectively measured in cycles.
1824
1825 - rank_for_schedule ranks instructions based on:
1826
1827 ECC (insn) + insn_delay (insn)
1828
1829 then as:
1830
1831 insn_delay (insn)
1832
1833 So, for example, an instruction X1 with an ECC of 1 that can issue
1834 now will win over an instruction X0 with an ECC of zero that would
1835 introduce a stall of one cycle. However, an instruction X2 with an
1836 ECC of 2 that can issue now will lose to both X0 and X1.
1837
1838 - When an instruction is scheduled, model_recompute updates the model
1839 schedule with the new pressures (some of which might now exceed the
1840 original maximum pressure MP). model_update_limit_points then searches
1841 for the new point of maximum pressure, if not already known. */
1842
1843 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1844 from surrounding debug information. */
1845 #define MODEL_BAR \
1846 ";;\t\t+------------------------------------------------------\n"
1847
1848 /* Information about the pressure on a particular register class at a
1849 particular point of the model schedule. */
1850 struct model_pressure_data {
1851 /* The pressure at this point of the model schedule, or -1 if the
1852 point is associated with an instruction that has already been
1853 scheduled. */
1854 int ref_pressure;
1855
1856 /* The maximum pressure during or after this point of the model schedule. */
1857 int max_pressure;
1858 };
1859
1860 /* Per-instruction information that is used while building the model
1861 schedule. Here, "schedule" refers to the model schedule rather
1862 than the main schedule. */
1863 struct model_insn_info {
1864 /* The instruction itself. */
1865 rtx_insn *insn;
1866
1867 /* If this instruction is in model_worklist, these fields link to the
1868 previous (higher-priority) and next (lower-priority) instructions
1869 in the list. */
1870 struct model_insn_info *prev;
1871 struct model_insn_info *next;
1872
1873 /* While constructing the schedule, QUEUE_INDEX describes whether an
1874 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1875 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1876 old_queue records the value that QUEUE_INDEX had before scheduling
1877 started, so that we can restore it once the schedule is complete. */
1878 int old_queue;
1879
1880 /* The relative importance of an unscheduled instruction. Higher
1881 values indicate greater importance. */
1882 unsigned int model_priority;
1883
1884 /* The length of the longest path of satisfied true dependencies
1885 that leads to this instruction. */
1886 unsigned int depth;
1887
1888 /* The length of the longest path of dependencies of any kind
1889 that leads from this instruction. */
1890 unsigned int alap;
1891
1892 /* The number of predecessor nodes that must still be scheduled. */
1893 int unscheduled_preds;
1894 };
1895
1896 /* Information about the pressure limit for a particular register class.
1897 This structure is used when applying a model schedule to the main
1898 schedule. */
1899 struct model_pressure_limit {
1900 /* The maximum register pressure seen in the original model schedule. */
1901 int orig_pressure;
1902
1903 /* The maximum register pressure seen in the current model schedule
1904 (which excludes instructions that have already been scheduled). */
1905 int pressure;
1906
1907 /* The point of the current model schedule at which PRESSURE is first
1908 reached. It is set to -1 if the value needs to be recomputed. */
1909 int point;
1910 };
1911
1912 /* Describes a particular way of measuring register pressure. */
1913 struct model_pressure_group {
1914 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1915 struct model_pressure_limit limits[N_REG_CLASSES];
1916
1917 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1918 on register class ira_pressure_classes[PCI] at point POINT of the
1919 current model schedule. A POINT of model_num_insns describes the
1920 pressure at the end of the schedule. */
1921 struct model_pressure_data *model;
1922 };
1923
1924 /* Index POINT gives the instruction at point POINT of the model schedule.
1925 This array doesn't change during main scheduling. */
1926 static vec<rtx_insn *> model_schedule;
1927
1928 /* The list of instructions in the model worklist, sorted in order of
1929 decreasing priority. */
1930 static struct model_insn_info *model_worklist;
1931
1932 /* Index I describes the instruction with INSN_LUID I. */
1933 static struct model_insn_info *model_insns;
1934
1935 /* The number of instructions in the model schedule. */
1936 static int model_num_insns;
1937
1938 /* The index of the first instruction in model_schedule that hasn't yet been
1939 added to the main schedule, or model_num_insns if all of them have. */
1940 static int model_curr_point;
1941
1942 /* Describes the pressure before each instruction in the model schedule. */
1943 static struct model_pressure_group model_before_pressure;
1944
1945 /* The first unused model_priority value (as used in model_insn_info). */
1946 static unsigned int model_next_priority;
1947
1948
1949 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1950 at point POINT of the model schedule. */
1951 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1952 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1953
1954 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1955 after point POINT of the model schedule. */
1956 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1957 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1958
1959 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1960 of the model schedule. */
1961 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1962 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1963
1964 /* Information about INSN that is used when creating the model schedule. */
1965 #define MODEL_INSN_INFO(INSN) \
1966 (&model_insns[INSN_LUID (INSN)])
1967
1968 /* The instruction at point POINT of the model schedule. */
1969 #define MODEL_INSN(POINT) \
1970 (model_schedule[POINT])
1971
1972
1973 /* Return INSN's index in the model schedule, or model_num_insns if it
1974 doesn't belong to that schedule. */
1975
1976 static int
1977 model_index (rtx_insn *insn)
1978 {
1979 if (INSN_MODEL_INDEX (insn) == 0)
1980 return model_num_insns;
1981 return INSN_MODEL_INDEX (insn) - 1;
1982 }
1983
1984 /* Make sure that GROUP->limits is up-to-date for the current point
1985 of the model schedule. */
1986
1987 static void
1988 model_update_limit_points_in_group (struct model_pressure_group *group)
1989 {
1990 int pci, max_pressure, point;
1991
1992 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1993 {
1994 /* We may have passed the final point at which the pressure in
1995 group->limits[pci].pressure was reached. Update the limit if so. */
1996 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1997 group->limits[pci].pressure = max_pressure;
1998
1999 /* Find the point at which MAX_PRESSURE is first reached. We need
2000 to search in three cases:
2001
2002 - We've already moved past the previous pressure point.
2003 In this case we search forward from model_curr_point.
2004
2005 - We scheduled the previous point of maximum pressure ahead of
2006 its position in the model schedule, but doing so didn't bring
2007 the pressure point earlier. In this case we search forward
2008 from that previous pressure point.
2009
2010 - Scheduling an instruction early caused the maximum pressure
2011 to decrease. In this case we will have set the pressure
2012 point to -1, and we search forward from model_curr_point. */
2013 point = MAX (group->limits[pci].point, model_curr_point);
2014 while (point < model_num_insns
2015 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
2016 point++;
2017 group->limits[pci].point = point;
2018
2019 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
2020 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
2021 }
2022 }
2023
2024 /* Make sure that all register-pressure limits are up-to-date for the
2025 current position in the model schedule. */
2026
2027 static void
2028 model_update_limit_points (void)
2029 {
2030 model_update_limit_points_in_group (&model_before_pressure);
2031 }
2032
2033 /* Return the model_index of the last unscheduled use in chain USE
2034 outside of USE's instruction. Return -1 if there are no other uses,
2035 or model_num_insns if the register is live at the end of the block. */
2036
2037 static int
2038 model_last_use_except (struct reg_use_data *use)
2039 {
2040 struct reg_use_data *next;
2041 int last, index;
2042
2043 last = -1;
2044 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2045 if (NONDEBUG_INSN_P (next->insn)
2046 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2047 {
2048 index = model_index (next->insn);
2049 if (index == model_num_insns)
2050 return model_num_insns;
2051 if (last < index)
2052 last = index;
2053 }
2054 return last;
2055 }
2056
2057 /* An instruction with model_index POINT has just been scheduled, and it
2058 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2059 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2060 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2061
2062 static void
2063 model_start_update_pressure (struct model_pressure_group *group,
2064 int point, int pci, int delta)
2065 {
2066 int next_max_pressure;
2067
2068 if (point == model_num_insns)
2069 {
2070 /* The instruction wasn't part of the model schedule; it was moved
2071 from a different block. Update the pressure for the end of
2072 the model schedule. */
2073 MODEL_REF_PRESSURE (group, point, pci) += delta;
2074 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2075 }
2076 else
2077 {
2078 /* Record that this instruction has been scheduled. Nothing now
2079 changes between POINT and POINT + 1, so get the maximum pressure
2080 from the latter. If the maximum pressure decreases, the new
2081 pressure point may be before POINT. */
2082 MODEL_REF_PRESSURE (group, point, pci) = -1;
2083 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2084 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2085 {
2086 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2087 if (group->limits[pci].point == point)
2088 group->limits[pci].point = -1;
2089 }
2090 }
2091 }
2092
2093 /* Record that scheduling a later instruction has changed the pressure
2094 at point POINT of the model schedule by DELTA (which might be 0).
2095 Update GROUP accordingly. Return nonzero if these changes might
2096 trigger changes to previous points as well. */
2097
2098 static int
2099 model_update_pressure (struct model_pressure_group *group,
2100 int point, int pci, int delta)
2101 {
2102 int ref_pressure, max_pressure, next_max_pressure;
2103
2104 /* If POINT hasn't yet been scheduled, update its pressure. */
2105 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2106 if (ref_pressure >= 0 && delta != 0)
2107 {
2108 ref_pressure += delta;
2109 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2110
2111 /* Check whether the maximum pressure in the overall schedule
2112 has increased. (This means that the MODEL_MAX_PRESSURE of
2113 every point <= POINT will need to increase too; see below.) */
2114 if (group->limits[pci].pressure < ref_pressure)
2115 group->limits[pci].pressure = ref_pressure;
2116
2117 /* If we are at maximum pressure, and the maximum pressure
2118 point was previously unknown or later than POINT,
2119 bring it forward. */
2120 if (group->limits[pci].pressure == ref_pressure
2121 && !IN_RANGE (group->limits[pci].point, 0, point))
2122 group->limits[pci].point = point;
2123
2124 /* If POINT used to be the point of maximum pressure, but isn't
2125 any longer, we need to recalculate it using a forward walk. */
2126 if (group->limits[pci].pressure > ref_pressure
2127 && group->limits[pci].point == point)
2128 group->limits[pci].point = -1;
2129 }
2130
2131 /* Update the maximum pressure at POINT. Changes here might also
2132 affect the maximum pressure at POINT - 1. */
2133 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2134 max_pressure = MAX (ref_pressure, next_max_pressure);
2135 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2136 {
2137 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2138 return 1;
2139 }
2140 return 0;
2141 }
2142
2143 /* INSN has just been scheduled. Update the model schedule accordingly. */
2144
2145 static void
2146 model_recompute (rtx_insn *insn)
2147 {
2148 struct {
2149 int last_use;
2150 int regno;
2151 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2152 struct reg_use_data *use;
2153 struct reg_pressure_data *reg_pressure;
2154 int delta[N_REG_CLASSES];
2155 int pci, point, mix, new_last, cl, ref_pressure, queue;
2156 unsigned int i, num_uses, num_pending_births;
2157 bool print_p;
2158
2159 /* The destinations of INSN were previously live from POINT onwards, but are
2160 now live from model_curr_point onwards. Set up DELTA accordingly. */
2161 point = model_index (insn);
2162 reg_pressure = INSN_REG_PRESSURE (insn);
2163 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2164 {
2165 cl = ira_pressure_classes[pci];
2166 delta[cl] = reg_pressure[pci].set_increase;
2167 }
2168
2169 /* Record which registers previously died at POINT, but which now die
2170 before POINT. Adjust DELTA so that it represents the effect of
2171 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2172 registers that will be born in the range [model_curr_point, POINT). */
2173 num_uses = 0;
2174 num_pending_births = 0;
2175 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2176 {
2177 new_last = model_last_use_except (use);
2178 if (new_last < point)
2179 {
2180 gcc_assert (num_uses < ARRAY_SIZE (uses));
2181 uses[num_uses].last_use = new_last;
2182 uses[num_uses].regno = use->regno;
2183 /* This register is no longer live after POINT - 1. */
2184 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2185 num_uses++;
2186 if (new_last >= 0)
2187 num_pending_births++;
2188 }
2189 }
2190
2191 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2192 Also set each group pressure limit for POINT. */
2193 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2194 {
2195 cl = ira_pressure_classes[pci];
2196 model_start_update_pressure (&model_before_pressure,
2197 point, pci, delta[cl]);
2198 }
2199
2200 /* Walk the model schedule backwards, starting immediately before POINT. */
2201 print_p = false;
2202 if (point != model_curr_point)
2203 do
2204 {
2205 point--;
2206 insn = MODEL_INSN (point);
2207 queue = QUEUE_INDEX (insn);
2208
2209 if (queue != QUEUE_SCHEDULED)
2210 {
2211 /* DELTA describes the effect of the move on the register pressure
2212 after POINT. Make it describe the effect on the pressure
2213 before POINT. */
2214 i = 0;
2215 while (i < num_uses)
2216 {
2217 if (uses[i].last_use == point)
2218 {
2219 /* This register is now live again. */
2220 mark_regno_birth_or_death (NULL, delta,
2221 uses[i].regno, true);
2222
2223 /* Remove this use from the array. */
2224 uses[i] = uses[num_uses - 1];
2225 num_uses--;
2226 num_pending_births--;
2227 }
2228 else
2229 i++;
2230 }
2231
2232 if (sched_verbose >= 5)
2233 {
2234 if (!print_p)
2235 {
2236 fprintf (sched_dump, MODEL_BAR);
2237 fprintf (sched_dump, ";;\t\t| New pressure for model"
2238 " schedule\n");
2239 fprintf (sched_dump, MODEL_BAR);
2240 print_p = true;
2241 }
2242
2243 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2244 point, INSN_UID (insn),
2245 str_pattern_slim (PATTERN (insn)));
2246 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2247 {
2248 cl = ira_pressure_classes[pci];
2249 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2250 point, pci);
2251 fprintf (sched_dump, " %s:[%d->%d]",
2252 reg_class_names[ira_pressure_classes[pci]],
2253 ref_pressure, ref_pressure + delta[cl]);
2254 }
2255 fprintf (sched_dump, "\n");
2256 }
2257 }
2258
2259 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2260 might have changed as well. */
2261 mix = num_pending_births;
2262 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2263 {
2264 cl = ira_pressure_classes[pci];
2265 mix |= delta[cl];
2266 mix |= model_update_pressure (&model_before_pressure,
2267 point, pci, delta[cl]);
2268 }
2269 }
2270 while (mix && point > model_curr_point);
2271
2272 if (print_p)
2273 fprintf (sched_dump, MODEL_BAR);
2274 }
2275
2276 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2277 check whether the insn's pattern needs restoring. */
2278 static bool
2279 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2280 {
2281 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2282 return false;
2283
2284 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2285 {
2286 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2287 gcc_assert (next == DEP_CON (dep));
2288 }
2289 else
2290 {
2291 struct dep_replacement *desc = DEP_REPLACE (dep);
2292 if (desc->insn != next)
2293 {
2294 gcc_assert (*desc->loc == desc->orig);
2295 return false;
2296 }
2297 }
2298 return true;
2299 }
2300 \f
2301 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2302 pressure on CL from P to P'. We use this to calculate a "base ECC",
2303 baseECC (CL, X), for each pressure class CL and each instruction X.
2304 Supposing X changes the pressure on CL from P to P', and that the
2305 maximum pressure on CL in the current model schedule is MP', then:
2306
2307 * if X occurs before or at the next point of maximum pressure in
2308 the model schedule and P' > MP', then:
2309
2310 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2311
2312 The idea is that the pressure after scheduling a fixed set of
2313 instructions -- in this case, the set up to and including the
2314 next maximum pressure point -- is going to be the same regardless
2315 of the order; we simply want to keep the intermediate pressure
2316 under control. Thus X has a cost of zero unless scheduling it
2317 now would exceed MP'.
2318
2319 If all increases in the set are by the same amount, no zero-cost
2320 instruction will ever cause the pressure to exceed MP'. However,
2321 if X is instead moved past an instruction X' with pressure in the
2322 range (MP' - (P' - P), MP'), the pressure at X' will increase
2323 beyond MP'. Since baseECC is very much a heuristic anyway,
2324 it doesn't seem worth the overhead of tracking cases like these.
2325
2326 The cost of exceeding MP' is always based on the original maximum
2327 pressure MP. This is so that going 2 registers over the original
2328 limit has the same cost regardless of whether it comes from two
2329 separate +1 deltas or from a single +2 delta.
2330
2331 * if X occurs after the next point of maximum pressure in the model
2332 schedule and P' > P, then:
2333
2334 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2335
2336 That is, if we move X forward across a point of maximum pressure,
2337 and if X increases the pressure by P' - P, then we conservatively
2338 assume that scheduling X next would increase the maximum pressure
2339 by P' - P. Again, the cost of doing this is based on the original
2340 maximum pressure MP, for the same reason as above.
2341
2342 * if P' < P, P > MP, and X occurs at or after the next point of
2343 maximum pressure, then:
2344
2345 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2346
2347 That is, if we have already exceeded the original maximum pressure MP,
2348 and if X might reduce the maximum pressure again -- or at least push
2349 it further back, and thus allow more scheduling freedom -- it is given
2350 a negative cost to reflect the improvement.
2351
2352 * otherwise,
2353
2354 baseECC (CL, X) = 0
2355
2356 In this case, X is not expected to affect the maximum pressure MP',
2357 so it has zero cost.
2358
2359 We then create a combined value baseECC (X) that is the sum of
2360 baseECC (CL, X) for each pressure class CL.
2361
2362 baseECC (X) could itself be used as the ECC value described above.
2363 However, this is often too conservative, in the sense that it
2364 tends to make high-priority instructions that increase pressure
2365 wait too long in cases where introducing a spill would be better.
2366 For this reason the final ECC is a priority-adjusted form of
2367 baseECC (X). Specifically, we calculate:
2368
2369 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2370 baseP = MAX { P (X) | baseECC (X) <= 0 }
2371
2372 Then:
2373
2374 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2375
2376 Thus an instruction's effect on pressure is ignored if it has a high
2377 enough priority relative to the ones that don't increase pressure.
2378 Negative values of baseECC (X) do not increase the priority of X
2379 itself, but they do make it harder for other instructions to
2380 increase the pressure further.
2381
2382 This pressure cost is deliberately timid. The intention has been
2383 to choose a heuristic that rarely interferes with the normal list
2384 scheduler in cases where that scheduler would produce good code.
2385 We simply want to curb some of its worst excesses. */
2386
2387 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2388
2389 Here we use the very simplistic cost model that every register above
2390 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2391 measures instead, such as one based on MEMORY_MOVE_COST. However:
2392
2393 (1) In order for an instruction to be scheduled, the higher cost
2394 would need to be justified in a single saving of that many stalls.
2395 This is overly pessimistic, because the benefit of spilling is
2396 often to avoid a sequence of several short stalls rather than
2397 a single long one.
2398
2399 (2) The cost is still arbitrary. Because we are not allocating
2400 registers during scheduling, we have no way of knowing for
2401 sure how many memory accesses will be required by each spill,
2402 where the spills will be placed within the block, or even
2403 which block(s) will contain the spills.
2404
2405 So a higher cost than 1 is often too conservative in practice,
2406 forcing blocks to contain unnecessary stalls instead of spill code.
2407 The simple cost below seems to be the best compromise. It reduces
2408 the interference with the normal list scheduler, which helps make
2409 it more suitable for a default-on option. */
2410
2411 static int
2412 model_spill_cost (int cl, int from, int to)
2413 {
2414 from = MAX (from, sched_class_regs_num[cl]);
2415 return MAX (to, from) - from;
2416 }
2417
2418 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2419 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2420 P' = P + DELTA. */
2421
2422 static int
2423 model_excess_group_cost (struct model_pressure_group *group,
2424 int point, int pci, int delta)
2425 {
2426 int pressure, cl;
2427
2428 cl = ira_pressure_classes[pci];
2429 if (delta < 0 && point >= group->limits[pci].point)
2430 {
2431 pressure = MAX (group->limits[pci].orig_pressure,
2432 curr_reg_pressure[cl] + delta);
2433 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2434 }
2435
2436 if (delta > 0)
2437 {
2438 if (point > group->limits[pci].point)
2439 pressure = group->limits[pci].pressure + delta;
2440 else
2441 pressure = curr_reg_pressure[cl] + delta;
2442
2443 if (pressure > group->limits[pci].pressure)
2444 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2445 pressure);
2446 }
2447
2448 return 0;
2449 }
2450
2451 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2452 if PRINT_P. */
2453
2454 static int
2455 model_excess_cost (rtx_insn *insn, bool print_p)
2456 {
2457 int point, pci, cl, cost, this_cost, delta;
2458 struct reg_pressure_data *insn_reg_pressure;
2459 int insn_death[N_REG_CLASSES];
2460
2461 calculate_reg_deaths (insn, insn_death);
2462 point = model_index (insn);
2463 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2464 cost = 0;
2465
2466 if (print_p)
2467 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2468 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2469
2470 /* Sum up the individual costs for each register class. */
2471 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2472 {
2473 cl = ira_pressure_classes[pci];
2474 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2475 this_cost = model_excess_group_cost (&model_before_pressure,
2476 point, pci, delta);
2477 cost += this_cost;
2478 if (print_p)
2479 fprintf (sched_dump, " %s:[%d base cost %d]",
2480 reg_class_names[cl], delta, this_cost);
2481 }
2482
2483 if (print_p)
2484 fprintf (sched_dump, "\n");
2485
2486 return cost;
2487 }
2488
2489 /* Dump the next points of maximum pressure for GROUP. */
2490
2491 static void
2492 model_dump_pressure_points (struct model_pressure_group *group)
2493 {
2494 int pci, cl;
2495
2496 fprintf (sched_dump, ";;\t\t| pressure points");
2497 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2498 {
2499 cl = ira_pressure_classes[pci];
2500 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2501 curr_reg_pressure[cl], group->limits[pci].pressure);
2502 if (group->limits[pci].point < model_num_insns)
2503 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2504 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2505 else
2506 fprintf (sched_dump, "end]");
2507 }
2508 fprintf (sched_dump, "\n");
2509 }
2510
2511 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2512
2513 static void
2514 model_set_excess_costs (rtx_insn **insns, int count)
2515 {
2516 int i, cost, priority_base, priority;
2517 bool print_p;
2518
2519 /* Record the baseECC value for each instruction in the model schedule,
2520 except that negative costs are converted to zero ones now rather than
2521 later. Do not assign a cost to debug instructions, since they must
2522 not change code-generation decisions. Experiments suggest we also
2523 get better results by not assigning a cost to instructions from
2524 a different block.
2525
2526 Set PRIORITY_BASE to baseP in the block comment above. This is the
2527 maximum priority of the "cheap" instructions, which should always
2528 include the next model instruction. */
2529 priority_base = 0;
2530 print_p = false;
2531 for (i = 0; i < count; i++)
2532 if (INSN_MODEL_INDEX (insns[i]))
2533 {
2534 if (sched_verbose >= 6 && !print_p)
2535 {
2536 fprintf (sched_dump, MODEL_BAR);
2537 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2538 model_dump_pressure_points (&model_before_pressure);
2539 fprintf (sched_dump, MODEL_BAR);
2540 print_p = true;
2541 }
2542 cost = model_excess_cost (insns[i], print_p);
2543 if (cost <= 0)
2544 {
2545 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2546 priority_base = MAX (priority_base, priority);
2547 cost = 0;
2548 }
2549 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2550 }
2551 if (print_p)
2552 fprintf (sched_dump, MODEL_BAR);
2553
2554 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2555 instruction. */
2556 for (i = 0; i < count; i++)
2557 {
2558 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2559 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2560 if (cost > 0 && priority > priority_base)
2561 {
2562 cost += priority_base - priority;
2563 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2564 }
2565 }
2566 }
2567 \f
2568
2569 /* Enum of rank_for_schedule heuristic decisions. */
2570 enum rfs_decision {
2571 RFS_DEBUG, RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2572 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2573 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2574 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2575 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2576
2577 /* Corresponding strings for print outs. */
2578 static const char *rfs_str[RFS_N] = {
2579 "RFS_DEBUG", "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2580 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2581 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2582 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2583 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2584
2585 /* Statistical breakdown of rank_for_schedule decisions. */
2586 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2587 static rank_for_schedule_stats_t rank_for_schedule_stats;
2588
2589 /* Return the result of comparing insns TMP and TMP2 and update
2590 Rank_For_Schedule statistics. */
2591 static int
2592 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2593 {
2594 ++rank_for_schedule_stats.stats[decision];
2595 if (result < 0)
2596 INSN_LAST_RFS_WIN (tmp) = decision;
2597 else if (result > 0)
2598 INSN_LAST_RFS_WIN (tmp2) = decision;
2599 else
2600 gcc_unreachable ();
2601 return result;
2602 }
2603
2604 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2605 keeping normal insns in original order. */
2606
2607 static int
2608 rank_for_schedule_debug (const void *x, const void *y)
2609 {
2610 rtx_insn *tmp = *(rtx_insn * const *) y;
2611 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2612
2613 /* Schedule debug insns as early as possible. */
2614 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2615 return rfs_result (RFS_DEBUG, -1, tmp, tmp2);
2616 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2617 return rfs_result (RFS_DEBUG, 1, tmp, tmp2);
2618 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2619 return rfs_result (RFS_DEBUG, INSN_LUID (tmp) - INSN_LUID (tmp2),
2620 tmp, tmp2);
2621 else
2622 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2623 }
2624
2625 /* Returns a positive value if x is preferred; returns a negative value if
2626 y is preferred. Should never return 0, since that will make the sort
2627 unstable. */
2628
2629 static int
2630 rank_for_schedule (const void *x, const void *y)
2631 {
2632 rtx_insn *tmp = *(rtx_insn * const *) y;
2633 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2634 int tmp_class, tmp2_class;
2635 int val, priority_val, info_val, diff;
2636
2637 if (live_range_shrinkage_p)
2638 {
2639 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2640 code. */
2641 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2642 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2643 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2644 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2645 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2646 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2647 /* Sort by INSN_LUID (original insn order), so that we make the
2648 sort stable. This minimizes instruction movement, thus
2649 minimizing sched's effect on debugging and cross-jumping. */
2650 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2651 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2652 }
2653
2654 /* The insn in a schedule group should be issued the first. */
2655 if (flag_sched_group_heuristic &&
2656 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2657 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2658 tmp, tmp2);
2659
2660 /* Make sure that priority of TMP and TMP2 are initialized. */
2661 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2662
2663 if (sched_fusion)
2664 {
2665 /* The instruction that has the same fusion priority as the last
2666 instruction is the instruction we picked next. If that is not
2667 the case, we sort ready list firstly by fusion priority, then
2668 by priority, and at last by INSN_LUID. */
2669 int a = INSN_FUSION_PRIORITY (tmp);
2670 int b = INSN_FUSION_PRIORITY (tmp2);
2671 int last = -1;
2672
2673 if (last_nondebug_scheduled_insn
2674 && !NOTE_P (last_nondebug_scheduled_insn)
2675 && BLOCK_FOR_INSN (tmp)
2676 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2677 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2678
2679 if (a != last && b != last)
2680 {
2681 if (a == b)
2682 {
2683 a = INSN_PRIORITY (tmp);
2684 b = INSN_PRIORITY (tmp2);
2685 }
2686 if (a != b)
2687 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2688 else
2689 return rfs_result (RFS_FUSION,
2690 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2691 }
2692 else if (a == b)
2693 {
2694 gcc_assert (last_nondebug_scheduled_insn
2695 && !NOTE_P (last_nondebug_scheduled_insn));
2696 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2697
2698 a = abs (INSN_PRIORITY (tmp) - last);
2699 b = abs (INSN_PRIORITY (tmp2) - last);
2700 if (a != b)
2701 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2702 else
2703 return rfs_result (RFS_FUSION,
2704 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2705 }
2706 else if (a == last)
2707 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2708 else
2709 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2710 }
2711
2712 if (sched_pressure != SCHED_PRESSURE_NONE)
2713 {
2714 /* Prefer insn whose scheduling results in the smallest register
2715 pressure excess. */
2716 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2717 + insn_delay (tmp)
2718 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2719 - insn_delay (tmp2))))
2720 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2721 }
2722
2723 if (sched_pressure != SCHED_PRESSURE_NONE
2724 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2725 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2726 {
2727 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2728 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2729 }
2730
2731 /* If we are doing backtracking in this schedule, prefer insns that
2732 have forward dependencies with negative cost against an insn that
2733 was already scheduled. */
2734 if (current_sched_info->flags & DO_BACKTRACKING)
2735 {
2736 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2737 if (priority_val)
2738 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2739 }
2740
2741 /* Prefer insn with higher priority. */
2742 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2743
2744 if (flag_sched_critical_path_heuristic && priority_val)
2745 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2746
2747 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2748 {
2749 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2750 if (autopref != 0)
2751 return autopref;
2752 }
2753
2754 /* Prefer speculative insn with greater dependencies weakness. */
2755 if (flag_sched_spec_insn_heuristic && spec_info)
2756 {
2757 ds_t ds1, ds2;
2758 dw_t dw1, dw2;
2759 int dw;
2760
2761 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2762 if (ds1)
2763 dw1 = ds_weak (ds1);
2764 else
2765 dw1 = NO_DEP_WEAK;
2766
2767 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2768 if (ds2)
2769 dw2 = ds_weak (ds2);
2770 else
2771 dw2 = NO_DEP_WEAK;
2772
2773 dw = dw2 - dw1;
2774 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2775 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2776 }
2777
2778 info_val = (*current_sched_info->rank) (tmp, tmp2);
2779 if (flag_sched_rank_heuristic && info_val)
2780 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2781
2782 /* Compare insns based on their relation to the last scheduled
2783 non-debug insn. */
2784 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2785 {
2786 dep_t dep1;
2787 dep_t dep2;
2788 rtx last = last_nondebug_scheduled_insn;
2789
2790 /* Classify the instructions into three classes:
2791 1) Data dependent on last schedule insn.
2792 2) Anti/Output dependent on last scheduled insn.
2793 3) Independent of last scheduled insn, or has latency of one.
2794 Choose the insn from the highest numbered class if different. */
2795 dep1 = sd_find_dep_between (last, tmp, true);
2796
2797 if (dep1 == NULL || dep_cost (dep1) == 1)
2798 tmp_class = 3;
2799 else if (/* Data dependence. */
2800 DEP_TYPE (dep1) == REG_DEP_TRUE)
2801 tmp_class = 1;
2802 else
2803 tmp_class = 2;
2804
2805 dep2 = sd_find_dep_between (last, tmp2, true);
2806
2807 if (dep2 == NULL || dep_cost (dep2) == 1)
2808 tmp2_class = 3;
2809 else if (/* Data dependence. */
2810 DEP_TYPE (dep2) == REG_DEP_TRUE)
2811 tmp2_class = 1;
2812 else
2813 tmp2_class = 2;
2814
2815 if ((val = tmp2_class - tmp_class))
2816 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2817 }
2818
2819 /* Prefer instructions that occur earlier in the model schedule. */
2820 if (sched_pressure == SCHED_PRESSURE_MODEL
2821 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2822 {
2823 diff = model_index (tmp) - model_index (tmp2);
2824 gcc_assert (diff != 0);
2825 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2826 }
2827
2828 /* Prefer the insn which has more later insns that depend on it.
2829 This gives the scheduler more freedom when scheduling later
2830 instructions at the expense of added register pressure. */
2831
2832 val = (dep_list_size (tmp2, SD_LIST_FORW)
2833 - dep_list_size (tmp, SD_LIST_FORW));
2834
2835 if (flag_sched_dep_count_heuristic && val != 0)
2836 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2837
2838 /* If insns are equally good, sort by INSN_LUID (original insn order),
2839 so that we make the sort stable. This minimizes instruction movement,
2840 thus minimizing sched's effect on debugging and cross-jumping. */
2841 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2842 }
2843
2844 /* Resort the array A in which only element at index N may be out of order. */
2845
2846 HAIFA_INLINE static void
2847 swap_sort (rtx_insn **a, int n)
2848 {
2849 rtx_insn *insn = a[n - 1];
2850 int i = n - 2;
2851
2852 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2853 {
2854 a[i + 1] = a[i];
2855 i -= 1;
2856 }
2857 a[i + 1] = insn;
2858 }
2859
2860 /* Add INSN to the insn queue so that it can be executed at least
2861 N_CYCLES after the currently executing insn. Preserve insns
2862 chain for debugging purposes. REASON will be printed in debugging
2863 output. */
2864
2865 HAIFA_INLINE static void
2866 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2867 {
2868 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2869 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2870 int new_tick;
2871
2872 gcc_assert (n_cycles <= max_insn_queue_index);
2873 gcc_assert (!DEBUG_INSN_P (insn));
2874
2875 insn_queue[next_q] = link;
2876 q_size += 1;
2877
2878 if (sched_verbose >= 2)
2879 {
2880 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2881 (*current_sched_info->print_insn) (insn, 0));
2882
2883 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2884 }
2885
2886 QUEUE_INDEX (insn) = next_q;
2887
2888 if (current_sched_info->flags & DO_BACKTRACKING)
2889 {
2890 new_tick = clock_var + n_cycles;
2891 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2892 INSN_TICK (insn) = new_tick;
2893
2894 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2895 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2896 {
2897 must_backtrack = true;
2898 if (sched_verbose >= 2)
2899 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2900 }
2901 }
2902 }
2903
2904 /* Remove INSN from queue. */
2905 static void
2906 queue_remove (rtx_insn *insn)
2907 {
2908 gcc_assert (QUEUE_INDEX (insn) >= 0);
2909 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2910 q_size--;
2911 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2912 }
2913
2914 /* Return a pointer to the bottom of the ready list, i.e. the insn
2915 with the lowest priority. */
2916
2917 rtx_insn **
2918 ready_lastpos (struct ready_list *ready)
2919 {
2920 gcc_assert (ready->n_ready >= 1);
2921 return ready->vec + ready->first - ready->n_ready + 1;
2922 }
2923
2924 /* Add an element INSN to the ready list so that it ends up with the
2925 lowest/highest priority depending on FIRST_P. */
2926
2927 HAIFA_INLINE static void
2928 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2929 {
2930 if (!first_p)
2931 {
2932 if (ready->first == ready->n_ready)
2933 {
2934 memmove (ready->vec + ready->veclen - ready->n_ready,
2935 ready_lastpos (ready),
2936 ready->n_ready * sizeof (rtx));
2937 ready->first = ready->veclen - 1;
2938 }
2939 ready->vec[ready->first - ready->n_ready] = insn;
2940 }
2941 else
2942 {
2943 if (ready->first == ready->veclen - 1)
2944 {
2945 if (ready->n_ready)
2946 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2947 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2948 ready_lastpos (ready),
2949 ready->n_ready * sizeof (rtx));
2950 ready->first = ready->veclen - 2;
2951 }
2952 ready->vec[++(ready->first)] = insn;
2953 }
2954
2955 ready->n_ready++;
2956 if (DEBUG_INSN_P (insn))
2957 ready->n_debug++;
2958
2959 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2960 QUEUE_INDEX (insn) = QUEUE_READY;
2961
2962 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2963 && INSN_EXACT_TICK (insn) < clock_var)
2964 {
2965 must_backtrack = true;
2966 }
2967 }
2968
2969 /* Remove the element with the highest priority from the ready list and
2970 return it. */
2971
2972 HAIFA_INLINE static rtx_insn *
2973 ready_remove_first (struct ready_list *ready)
2974 {
2975 rtx_insn *t;
2976
2977 gcc_assert (ready->n_ready);
2978 t = ready->vec[ready->first--];
2979 ready->n_ready--;
2980 if (DEBUG_INSN_P (t))
2981 ready->n_debug--;
2982 /* If the queue becomes empty, reset it. */
2983 if (ready->n_ready == 0)
2984 ready->first = ready->veclen - 1;
2985
2986 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2987 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2988
2989 return t;
2990 }
2991
2992 /* The following code implements multi-pass scheduling for the first
2993 cycle. In other words, we will try to choose ready insn which
2994 permits to start maximum number of insns on the same cycle. */
2995
2996 /* Return a pointer to the element INDEX from the ready. INDEX for
2997 insn with the highest priority is 0, and the lowest priority has
2998 N_READY - 1. */
2999
3000 rtx_insn *
3001 ready_element (struct ready_list *ready, int index)
3002 {
3003 gcc_assert (ready->n_ready && index < ready->n_ready);
3004
3005 return ready->vec[ready->first - index];
3006 }
3007
3008 /* Remove the element INDEX from the ready list and return it. INDEX
3009 for insn with the highest priority is 0, and the lowest priority
3010 has N_READY - 1. */
3011
3012 HAIFA_INLINE static rtx_insn *
3013 ready_remove (struct ready_list *ready, int index)
3014 {
3015 rtx_insn *t;
3016 int i;
3017
3018 if (index == 0)
3019 return ready_remove_first (ready);
3020 gcc_assert (ready->n_ready && index < ready->n_ready);
3021 t = ready->vec[ready->first - index];
3022 ready->n_ready--;
3023 if (DEBUG_INSN_P (t))
3024 ready->n_debug--;
3025 for (i = index; i < ready->n_ready; i++)
3026 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3027 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3028 return t;
3029 }
3030
3031 /* Remove INSN from the ready list. */
3032 static void
3033 ready_remove_insn (rtx insn)
3034 {
3035 int i;
3036
3037 for (i = 0; i < readyp->n_ready; i++)
3038 if (ready_element (readyp, i) == insn)
3039 {
3040 ready_remove (readyp, i);
3041 return;
3042 }
3043 gcc_unreachable ();
3044 }
3045
3046 /* Calculate difference of two statistics set WAS and NOW.
3047 Result returned in WAS. */
3048 static void
3049 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3050 const rank_for_schedule_stats_t *now)
3051 {
3052 for (int i = 0; i < RFS_N; ++i)
3053 was->stats[i] = now->stats[i] - was->stats[i];
3054 }
3055
3056 /* Print rank_for_schedule statistics. */
3057 static void
3058 print_rank_for_schedule_stats (const char *prefix,
3059 const rank_for_schedule_stats_t *stats,
3060 struct ready_list *ready)
3061 {
3062 for (int i = 0; i < RFS_N; ++i)
3063 if (stats->stats[i])
3064 {
3065 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3066
3067 if (ready != NULL)
3068 /* Print out insns that won due to RFS_<I>. */
3069 {
3070 rtx_insn **p = ready_lastpos (ready);
3071
3072 fprintf (sched_dump, ":");
3073 /* Start with 1 since least-priority insn didn't have any wins. */
3074 for (int j = 1; j < ready->n_ready; ++j)
3075 if (INSN_LAST_RFS_WIN (p[j]) == i)
3076 fprintf (sched_dump, " %s",
3077 (*current_sched_info->print_insn) (p[j], 0));
3078 }
3079 fprintf (sched_dump, "\n");
3080 }
3081 }
3082
3083 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
3084 macro. */
3085
3086 void
3087 ready_sort (struct ready_list *ready)
3088 {
3089 int i;
3090 rtx_insn **first = ready_lastpos (ready);
3091 int n_ready_non_debug = ready->n_ready;
3092
3093 for (i = 0; i < ready->n_ready; ++i)
3094 {
3095 if (DEBUG_INSN_P (first[i]))
3096 --n_ready_non_debug;
3097 else
3098 {
3099 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3100
3101 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3102 setup_insn_reg_pressure_info (first[i]);
3103 }
3104 }
3105
3106 if (sched_pressure == SCHED_PRESSURE_MODEL
3107 && model_curr_point < model_num_insns)
3108 model_set_excess_costs (first, ready->n_ready);
3109
3110 rank_for_schedule_stats_t stats1;
3111 if (sched_verbose >= 4)
3112 stats1 = rank_for_schedule_stats;
3113
3114 if (n_ready_non_debug < ready->n_ready)
3115 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3116 of array. */
3117 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3118 else
3119 {
3120 if (n_ready_non_debug == 2)
3121 swap_sort (first, n_ready_non_debug);
3122 else if (n_ready_non_debug > 2)
3123 qsort (first, n_ready_non_debug, sizeof (rtx), rank_for_schedule);
3124 }
3125
3126 if (sched_verbose >= 4)
3127 {
3128 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3129 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3130 }
3131 }
3132
3133 /* PREV is an insn that is ready to execute. Adjust its priority if that
3134 will help shorten or lengthen register lifetimes as appropriate. Also
3135 provide a hook for the target to tweak itself. */
3136
3137 HAIFA_INLINE static void
3138 adjust_priority (rtx_insn *prev)
3139 {
3140 /* ??? There used to be code here to try and estimate how an insn
3141 affected register lifetimes, but it did it by looking at REG_DEAD
3142 notes, which we removed in schedule_region. Nor did it try to
3143 take into account register pressure or anything useful like that.
3144
3145 Revisit when we have a machine model to work with and not before. */
3146
3147 if (targetm.sched.adjust_priority)
3148 INSN_PRIORITY (prev) =
3149 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3150 }
3151
3152 /* Advance DFA state STATE on one cycle. */
3153 void
3154 advance_state (state_t state)
3155 {
3156 if (targetm.sched.dfa_pre_advance_cycle)
3157 targetm.sched.dfa_pre_advance_cycle ();
3158
3159 if (targetm.sched.dfa_pre_cycle_insn)
3160 state_transition (state,
3161 targetm.sched.dfa_pre_cycle_insn ());
3162
3163 state_transition (state, NULL);
3164
3165 if (targetm.sched.dfa_post_cycle_insn)
3166 state_transition (state,
3167 targetm.sched.dfa_post_cycle_insn ());
3168
3169 if (targetm.sched.dfa_post_advance_cycle)
3170 targetm.sched.dfa_post_advance_cycle ();
3171 }
3172
3173 /* Advance time on one cycle. */
3174 HAIFA_INLINE static void
3175 advance_one_cycle (void)
3176 {
3177 advance_state (curr_state);
3178 if (sched_verbose >= 4)
3179 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3180 }
3181
3182 /* Update register pressure after scheduling INSN. */
3183 static void
3184 update_register_pressure (rtx_insn *insn)
3185 {
3186 struct reg_use_data *use;
3187 struct reg_set_data *set;
3188
3189 gcc_checking_assert (!DEBUG_INSN_P (insn));
3190
3191 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3192 if (dying_use_p (use))
3193 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3194 use->regno, false);
3195 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3196 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3197 set->regno, true);
3198 }
3199
3200 /* Set up or update (if UPDATE_P) max register pressure (see its
3201 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3202 after insn AFTER. */
3203 static void
3204 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3205 {
3206 int i, p;
3207 bool eq_p;
3208 rtx_insn *insn;
3209 static int max_reg_pressure[N_REG_CLASSES];
3210
3211 save_reg_pressure ();
3212 for (i = 0; i < ira_pressure_classes_num; i++)
3213 max_reg_pressure[ira_pressure_classes[i]]
3214 = curr_reg_pressure[ira_pressure_classes[i]];
3215 for (insn = NEXT_INSN (after);
3216 insn != NULL_RTX && ! BARRIER_P (insn)
3217 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3218 insn = NEXT_INSN (insn))
3219 if (NONDEBUG_INSN_P (insn))
3220 {
3221 eq_p = true;
3222 for (i = 0; i < ira_pressure_classes_num; i++)
3223 {
3224 p = max_reg_pressure[ira_pressure_classes[i]];
3225 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3226 {
3227 eq_p = false;
3228 INSN_MAX_REG_PRESSURE (insn)[i]
3229 = max_reg_pressure[ira_pressure_classes[i]];
3230 }
3231 }
3232 if (update_p && eq_p)
3233 break;
3234 update_register_pressure (insn);
3235 for (i = 0; i < ira_pressure_classes_num; i++)
3236 if (max_reg_pressure[ira_pressure_classes[i]]
3237 < curr_reg_pressure[ira_pressure_classes[i]])
3238 max_reg_pressure[ira_pressure_classes[i]]
3239 = curr_reg_pressure[ira_pressure_classes[i]];
3240 }
3241 restore_reg_pressure ();
3242 }
3243
3244 /* Update the current register pressure after scheduling INSN. Update
3245 also max register pressure for unscheduled insns of the current
3246 BB. */
3247 static void
3248 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3249 {
3250 int i;
3251 int before[N_REG_CLASSES];
3252
3253 for (i = 0; i < ira_pressure_classes_num; i++)
3254 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3255 update_register_pressure (insn);
3256 for (i = 0; i < ira_pressure_classes_num; i++)
3257 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3258 break;
3259 if (i < ira_pressure_classes_num)
3260 setup_insn_max_reg_pressure (insn, true);
3261 }
3262
3263 /* Set up register pressure at the beginning of basic block BB whose
3264 insns starting after insn AFTER. Set up also max register pressure
3265 for all insns of the basic block. */
3266 void
3267 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3268 {
3269 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3270 initiate_bb_reg_pressure_info (bb);
3271 setup_insn_max_reg_pressure (after, false);
3272 }
3273 \f
3274 /* If doing predication while scheduling, verify whether INSN, which
3275 has just been scheduled, clobbers the conditions of any
3276 instructions that must be predicated in order to break their
3277 dependencies. If so, remove them from the queues so that they will
3278 only be scheduled once their control dependency is resolved. */
3279
3280 static void
3281 check_clobbered_conditions (rtx insn)
3282 {
3283 HARD_REG_SET t;
3284 int i;
3285
3286 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3287 return;
3288
3289 find_all_hard_reg_sets (insn, &t, true);
3290
3291 restart:
3292 for (i = 0; i < ready.n_ready; i++)
3293 {
3294 rtx_insn *x = ready_element (&ready, i);
3295 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3296 {
3297 ready_remove_insn (x);
3298 goto restart;
3299 }
3300 }
3301 for (i = 0; i <= max_insn_queue_index; i++)
3302 {
3303 rtx_insn_list *link;
3304 int q = NEXT_Q_AFTER (q_ptr, i);
3305
3306 restart_queue:
3307 for (link = insn_queue[q]; link; link = link->next ())
3308 {
3309 rtx_insn *x = link->insn ();
3310 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3311 {
3312 queue_remove (x);
3313 goto restart_queue;
3314 }
3315 }
3316 }
3317 }
3318 \f
3319 /* Return (in order):
3320
3321 - positive if INSN adversely affects the pressure on one
3322 register class
3323
3324 - negative if INSN reduces the pressure on one register class
3325
3326 - 0 if INSN doesn't affect the pressure on any register class. */
3327
3328 static int
3329 model_classify_pressure (struct model_insn_info *insn)
3330 {
3331 struct reg_pressure_data *reg_pressure;
3332 int death[N_REG_CLASSES];
3333 int pci, cl, sum;
3334
3335 calculate_reg_deaths (insn->insn, death);
3336 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3337 sum = 0;
3338 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3339 {
3340 cl = ira_pressure_classes[pci];
3341 if (death[cl] < reg_pressure[pci].set_increase)
3342 return 1;
3343 sum += reg_pressure[pci].set_increase - death[cl];
3344 }
3345 return sum;
3346 }
3347
3348 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3349
3350 static int
3351 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3352 {
3353 unsigned int height1, height2;
3354 unsigned int priority1, priority2;
3355
3356 /* Prefer instructions with a higher model priority. */
3357 if (insn1->model_priority != insn2->model_priority)
3358 return insn1->model_priority > insn2->model_priority;
3359
3360 /* Combine the length of the longest path of satisfied true dependencies
3361 that leads to each instruction (depth) with the length of the longest
3362 path of any dependencies that leads from the instruction (alap).
3363 Prefer instructions with the greatest combined length. If the combined
3364 lengths are equal, prefer instructions with the greatest depth.
3365
3366 The idea is that, if we have a set S of "equal" instructions that each
3367 have ALAP value X, and we pick one such instruction I, any true-dependent
3368 successors of I that have ALAP value X - 1 should be preferred over S.
3369 This encourages the schedule to be "narrow" rather than "wide".
3370 However, if I is a low-priority instruction that we decided to
3371 schedule because of its model_classify_pressure, and if there
3372 is a set of higher-priority instructions T, the aforementioned
3373 successors of I should not have the edge over T. */
3374 height1 = insn1->depth + insn1->alap;
3375 height2 = insn2->depth + insn2->alap;
3376 if (height1 != height2)
3377 return height1 > height2;
3378 if (insn1->depth != insn2->depth)
3379 return insn1->depth > insn2->depth;
3380
3381 /* We have no real preference between INSN1 an INSN2 as far as attempts
3382 to reduce pressure go. Prefer instructions with higher priorities. */
3383 priority1 = INSN_PRIORITY (insn1->insn);
3384 priority2 = INSN_PRIORITY (insn2->insn);
3385 if (priority1 != priority2)
3386 return priority1 > priority2;
3387
3388 /* Use the original rtl sequence as a tie-breaker. */
3389 return insn1 < insn2;
3390 }
3391
3392 /* Add INSN to the model worklist immediately after PREV. Add it to the
3393 beginning of the list if PREV is null. */
3394
3395 static void
3396 model_add_to_worklist_at (struct model_insn_info *insn,
3397 struct model_insn_info *prev)
3398 {
3399 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3400 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3401
3402 insn->prev = prev;
3403 if (prev)
3404 {
3405 insn->next = prev->next;
3406 prev->next = insn;
3407 }
3408 else
3409 {
3410 insn->next = model_worklist;
3411 model_worklist = insn;
3412 }
3413 if (insn->next)
3414 insn->next->prev = insn;
3415 }
3416
3417 /* Remove INSN from the model worklist. */
3418
3419 static void
3420 model_remove_from_worklist (struct model_insn_info *insn)
3421 {
3422 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3423 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3424
3425 if (insn->prev)
3426 insn->prev->next = insn->next;
3427 else
3428 model_worklist = insn->next;
3429 if (insn->next)
3430 insn->next->prev = insn->prev;
3431 }
3432
3433 /* Add INSN to the model worklist. Start looking for a suitable position
3434 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3435 insns either side. A null PREV indicates the beginning of the list and
3436 a null NEXT indicates the end. */
3437
3438 static void
3439 model_add_to_worklist (struct model_insn_info *insn,
3440 struct model_insn_info *prev,
3441 struct model_insn_info *next)
3442 {
3443 int count;
3444
3445 count = MAX_SCHED_READY_INSNS;
3446 if (count > 0 && prev && model_order_p (insn, prev))
3447 do
3448 {
3449 count--;
3450 prev = prev->prev;
3451 }
3452 while (count > 0 && prev && model_order_p (insn, prev));
3453 else
3454 while (count > 0 && next && model_order_p (next, insn))
3455 {
3456 count--;
3457 prev = next;
3458 next = next->next;
3459 }
3460 model_add_to_worklist_at (insn, prev);
3461 }
3462
3463 /* INSN may now have a higher priority (in the model_order_p sense)
3464 than before. Move it up the worklist if necessary. */
3465
3466 static void
3467 model_promote_insn (struct model_insn_info *insn)
3468 {
3469 struct model_insn_info *prev;
3470 int count;
3471
3472 prev = insn->prev;
3473 count = MAX_SCHED_READY_INSNS;
3474 while (count > 0 && prev && model_order_p (insn, prev))
3475 {
3476 count--;
3477 prev = prev->prev;
3478 }
3479 if (prev != insn->prev)
3480 {
3481 model_remove_from_worklist (insn);
3482 model_add_to_worklist_at (insn, prev);
3483 }
3484 }
3485
3486 /* Add INSN to the end of the model schedule. */
3487
3488 static void
3489 model_add_to_schedule (rtx_insn *insn)
3490 {
3491 unsigned int point;
3492
3493 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3494 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3495
3496 point = model_schedule.length ();
3497 model_schedule.quick_push (insn);
3498 INSN_MODEL_INDEX (insn) = point + 1;
3499 }
3500
3501 /* Analyze the instructions that are to be scheduled, setting up
3502 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3503 instructions to model_worklist. */
3504
3505 static void
3506 model_analyze_insns (void)
3507 {
3508 rtx_insn *start, *end, *iter;
3509 sd_iterator_def sd_it;
3510 dep_t dep;
3511 struct model_insn_info *insn, *con;
3512
3513 model_num_insns = 0;
3514 start = PREV_INSN (current_sched_info->next_tail);
3515 end = current_sched_info->prev_head;
3516 for (iter = start; iter != end; iter = PREV_INSN (iter))
3517 if (NONDEBUG_INSN_P (iter))
3518 {
3519 insn = MODEL_INSN_INFO (iter);
3520 insn->insn = iter;
3521 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3522 {
3523 con = MODEL_INSN_INFO (DEP_CON (dep));
3524 if (con->insn && insn->alap < con->alap + 1)
3525 insn->alap = con->alap + 1;
3526 }
3527
3528 insn->old_queue = QUEUE_INDEX (iter);
3529 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3530
3531 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3532 if (insn->unscheduled_preds == 0)
3533 model_add_to_worklist (insn, NULL, model_worklist);
3534
3535 model_num_insns++;
3536 }
3537 }
3538
3539 /* The global state describes the register pressure at the start of the
3540 model schedule. Initialize GROUP accordingly. */
3541
3542 static void
3543 model_init_pressure_group (struct model_pressure_group *group)
3544 {
3545 int pci, cl;
3546
3547 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3548 {
3549 cl = ira_pressure_classes[pci];
3550 group->limits[pci].pressure = curr_reg_pressure[cl];
3551 group->limits[pci].point = 0;
3552 }
3553 /* Use index model_num_insns to record the state after the last
3554 instruction in the model schedule. */
3555 group->model = XNEWVEC (struct model_pressure_data,
3556 (model_num_insns + 1) * ira_pressure_classes_num);
3557 }
3558
3559 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3560 Update the maximum pressure for the whole schedule. */
3561
3562 static void
3563 model_record_pressure (struct model_pressure_group *group,
3564 int point, int pci, int pressure)
3565 {
3566 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3567 if (group->limits[pci].pressure < pressure)
3568 {
3569 group->limits[pci].pressure = pressure;
3570 group->limits[pci].point = point;
3571 }
3572 }
3573
3574 /* INSN has just been added to the end of the model schedule. Record its
3575 register-pressure information. */
3576
3577 static void
3578 model_record_pressures (struct model_insn_info *insn)
3579 {
3580 struct reg_pressure_data *reg_pressure;
3581 int point, pci, cl, delta;
3582 int death[N_REG_CLASSES];
3583
3584 point = model_index (insn->insn);
3585 if (sched_verbose >= 2)
3586 {
3587 if (point == 0)
3588 {
3589 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3590 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3591 }
3592 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3593 point, INSN_UID (insn->insn), insn->model_priority,
3594 insn->depth + insn->alap, insn->depth,
3595 INSN_PRIORITY (insn->insn),
3596 str_pattern_slim (PATTERN (insn->insn)));
3597 }
3598 calculate_reg_deaths (insn->insn, death);
3599 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3600 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3601 {
3602 cl = ira_pressure_classes[pci];
3603 delta = reg_pressure[pci].set_increase - death[cl];
3604 if (sched_verbose >= 2)
3605 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3606 curr_reg_pressure[cl], delta);
3607 model_record_pressure (&model_before_pressure, point, pci,
3608 curr_reg_pressure[cl]);
3609 }
3610 if (sched_verbose >= 2)
3611 fprintf (sched_dump, "\n");
3612 }
3613
3614 /* All instructions have been added to the model schedule. Record the
3615 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3616
3617 static void
3618 model_record_final_pressures (struct model_pressure_group *group)
3619 {
3620 int point, pci, max_pressure, ref_pressure, cl;
3621
3622 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3623 {
3624 /* Record the final pressure for this class. */
3625 cl = ira_pressure_classes[pci];
3626 point = model_num_insns;
3627 ref_pressure = curr_reg_pressure[cl];
3628 model_record_pressure (group, point, pci, ref_pressure);
3629
3630 /* Record the original maximum pressure. */
3631 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3632
3633 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3634 max_pressure = ref_pressure;
3635 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3636 while (point > 0)
3637 {
3638 point--;
3639 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3640 max_pressure = MAX (max_pressure, ref_pressure);
3641 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3642 }
3643 }
3644 }
3645
3646 /* Update all successors of INSN, given that INSN has just been scheduled. */
3647
3648 static void
3649 model_add_successors_to_worklist (struct model_insn_info *insn)
3650 {
3651 sd_iterator_def sd_it;
3652 struct model_insn_info *con;
3653 dep_t dep;
3654
3655 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3656 {
3657 con = MODEL_INSN_INFO (DEP_CON (dep));
3658 /* Ignore debug instructions, and instructions from other blocks. */
3659 if (con->insn)
3660 {
3661 con->unscheduled_preds--;
3662
3663 /* Update the depth field of each true-dependent successor.
3664 Increasing the depth gives them a higher priority than
3665 before. */
3666 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3667 {
3668 con->depth = insn->depth + 1;
3669 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3670 model_promote_insn (con);
3671 }
3672
3673 /* If this is a true dependency, or if there are no remaining
3674 dependencies for CON (meaning that CON only had non-true
3675 dependencies), make sure that CON is on the worklist.
3676 We don't bother otherwise because it would tend to fill the
3677 worklist with a lot of low-priority instructions that are not
3678 yet ready to issue. */
3679 if ((con->depth > 0 || con->unscheduled_preds == 0)
3680 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3681 model_add_to_worklist (con, insn, insn->next);
3682 }
3683 }
3684 }
3685
3686 /* Give INSN a higher priority than any current instruction, then give
3687 unscheduled predecessors of INSN a higher priority still. If any of
3688 those predecessors are not on the model worklist, do the same for its
3689 predecessors, and so on. */
3690
3691 static void
3692 model_promote_predecessors (struct model_insn_info *insn)
3693 {
3694 struct model_insn_info *pro, *first;
3695 sd_iterator_def sd_it;
3696 dep_t dep;
3697
3698 if (sched_verbose >= 7)
3699 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3700 INSN_UID (insn->insn), model_next_priority);
3701 insn->model_priority = model_next_priority++;
3702 model_remove_from_worklist (insn);
3703 model_add_to_worklist_at (insn, NULL);
3704
3705 first = NULL;
3706 for (;;)
3707 {
3708 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3709 {
3710 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3711 /* The first test is to ignore debug instructions, and instructions
3712 from other blocks. */
3713 if (pro->insn
3714 && pro->model_priority != model_next_priority
3715 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3716 {
3717 pro->model_priority = model_next_priority;
3718 if (sched_verbose >= 7)
3719 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3720 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3721 {
3722 /* PRO is already in the worklist, but it now has
3723 a higher priority than before. Move it at the
3724 appropriate place. */
3725 model_remove_from_worklist (pro);
3726 model_add_to_worklist (pro, NULL, model_worklist);
3727 }
3728 else
3729 {
3730 /* PRO isn't in the worklist. Recursively process
3731 its predecessors until we find one that is. */
3732 pro->next = first;
3733 first = pro;
3734 }
3735 }
3736 }
3737 if (!first)
3738 break;
3739 insn = first;
3740 first = insn->next;
3741 }
3742 if (sched_verbose >= 7)
3743 fprintf (sched_dump, " = %d\n", model_next_priority);
3744 model_next_priority++;
3745 }
3746
3747 /* Pick one instruction from model_worklist and process it. */
3748
3749 static void
3750 model_choose_insn (void)
3751 {
3752 struct model_insn_info *insn, *fallback;
3753 int count;
3754
3755 if (sched_verbose >= 7)
3756 {
3757 fprintf (sched_dump, ";;\t+--- worklist:\n");
3758 insn = model_worklist;
3759 count = MAX_SCHED_READY_INSNS;
3760 while (count > 0 && insn)
3761 {
3762 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3763 INSN_UID (insn->insn), insn->model_priority,
3764 insn->depth + insn->alap, insn->depth,
3765 INSN_PRIORITY (insn->insn));
3766 count--;
3767 insn = insn->next;
3768 }
3769 }
3770
3771 /* Look for a ready instruction whose model_classify_priority is zero
3772 or negative, picking the highest-priority one. Adding such an
3773 instruction to the schedule now should do no harm, and may actually
3774 do some good.
3775
3776 Failing that, see whether there is an instruction with the highest
3777 extant model_priority that is not yet ready, but which would reduce
3778 pressure if it became ready. This is designed to catch cases like:
3779
3780 (set (mem (reg R1)) (reg R2))
3781
3782 where the instruction is the last remaining use of R1 and where the
3783 value of R2 is not yet available (or vice versa). The death of R1
3784 means that this instruction already reduces pressure. It is of
3785 course possible that the computation of R2 involves other registers
3786 that are hard to kill, but such cases are rare enough for this
3787 heuristic to be a win in general.
3788
3789 Failing that, just pick the highest-priority instruction in the
3790 worklist. */
3791 count = MAX_SCHED_READY_INSNS;
3792 insn = model_worklist;
3793 fallback = 0;
3794 for (;;)
3795 {
3796 if (count == 0 || !insn)
3797 {
3798 insn = fallback ? fallback : model_worklist;
3799 break;
3800 }
3801 if (insn->unscheduled_preds)
3802 {
3803 if (model_worklist->model_priority == insn->model_priority
3804 && !fallback
3805 && model_classify_pressure (insn) < 0)
3806 fallback = insn;
3807 }
3808 else
3809 {
3810 if (model_classify_pressure (insn) <= 0)
3811 break;
3812 }
3813 count--;
3814 insn = insn->next;
3815 }
3816
3817 if (sched_verbose >= 7 && insn != model_worklist)
3818 {
3819 if (insn->unscheduled_preds)
3820 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3821 INSN_UID (insn->insn));
3822 else
3823 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3824 INSN_UID (insn->insn));
3825 }
3826 if (insn->unscheduled_preds)
3827 /* INSN isn't yet ready to issue. Give all its predecessors the
3828 highest priority. */
3829 model_promote_predecessors (insn);
3830 else
3831 {
3832 /* INSN is ready. Add it to the end of model_schedule and
3833 process its successors. */
3834 model_add_successors_to_worklist (insn);
3835 model_remove_from_worklist (insn);
3836 model_add_to_schedule (insn->insn);
3837 model_record_pressures (insn);
3838 update_register_pressure (insn->insn);
3839 }
3840 }
3841
3842 /* Restore all QUEUE_INDEXs to the values that they had before
3843 model_start_schedule was called. */
3844
3845 static void
3846 model_reset_queue_indices (void)
3847 {
3848 unsigned int i;
3849 rtx_insn *insn;
3850
3851 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3852 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3853 }
3854
3855 /* We have calculated the model schedule and spill costs. Print a summary
3856 to sched_dump. */
3857
3858 static void
3859 model_dump_pressure_summary (void)
3860 {
3861 int pci, cl;
3862
3863 fprintf (sched_dump, ";; Pressure summary:");
3864 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3865 {
3866 cl = ira_pressure_classes[pci];
3867 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3868 model_before_pressure.limits[pci].pressure);
3869 }
3870 fprintf (sched_dump, "\n\n");
3871 }
3872
3873 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3874 scheduling region. */
3875
3876 static void
3877 model_start_schedule (basic_block bb)
3878 {
3879 model_next_priority = 1;
3880 model_schedule.create (sched_max_luid);
3881 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3882
3883 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3884 initiate_reg_pressure_info (df_get_live_in (bb));
3885
3886 model_analyze_insns ();
3887 model_init_pressure_group (&model_before_pressure);
3888 while (model_worklist)
3889 model_choose_insn ();
3890 gcc_assert (model_num_insns == (int) model_schedule.length ());
3891 if (sched_verbose >= 2)
3892 fprintf (sched_dump, "\n");
3893
3894 model_record_final_pressures (&model_before_pressure);
3895 model_reset_queue_indices ();
3896
3897 XDELETEVEC (model_insns);
3898
3899 model_curr_point = 0;
3900 initiate_reg_pressure_info (df_get_live_in (bb));
3901 if (sched_verbose >= 1)
3902 model_dump_pressure_summary ();
3903 }
3904
3905 /* Free the information associated with GROUP. */
3906
3907 static void
3908 model_finalize_pressure_group (struct model_pressure_group *group)
3909 {
3910 XDELETEVEC (group->model);
3911 }
3912
3913 /* Free the information created by model_start_schedule. */
3914
3915 static void
3916 model_end_schedule (void)
3917 {
3918 model_finalize_pressure_group (&model_before_pressure);
3919 model_schedule.release ();
3920 }
3921
3922 /* Prepare reg pressure scheduling for basic block BB. */
3923 static void
3924 sched_pressure_start_bb (basic_block bb)
3925 {
3926 /* Set the number of available registers for each class taking into account
3927 relative probability of current basic block versus function prologue and
3928 epilogue.
3929 * If the basic block executes much more often than the prologue/epilogue
3930 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3931 nil, so the effective number of available registers is
3932 (ira_class_hard_regs_num[cl] - 0).
3933 * If the basic block executes as often as the prologue/epilogue,
3934 then spill in the block is as costly as in the prologue, so the effective
3935 number of available registers is
3936 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3937 Note that all-else-equal, we prefer to spill in the prologue, since that
3938 allows "extra" registers for other basic blocks of the function.
3939 * If the basic block is on the cold path of the function and executes
3940 rarely, then we should always prefer to spill in the block, rather than
3941 in the prologue/epilogue. The effective number of available register is
3942 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3943 {
3944 int i;
3945 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3946 int bb_freq = bb->frequency;
3947
3948 if (bb_freq == 0)
3949 {
3950 if (entry_freq == 0)
3951 entry_freq = bb_freq = 1;
3952 }
3953 if (bb_freq < entry_freq)
3954 bb_freq = entry_freq;
3955
3956 for (i = 0; i < ira_pressure_classes_num; ++i)
3957 {
3958 enum reg_class cl = ira_pressure_classes[i];
3959 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3960 sched_class_regs_num[cl]
3961 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3962 }
3963 }
3964
3965 if (sched_pressure == SCHED_PRESSURE_MODEL)
3966 model_start_schedule (bb);
3967 }
3968 \f
3969 /* A structure that holds local state for the loop in schedule_block. */
3970 struct sched_block_state
3971 {
3972 /* True if no real insns have been scheduled in the current cycle. */
3973 bool first_cycle_insn_p;
3974 /* True if a shadow insn has been scheduled in the current cycle, which
3975 means that no more normal insns can be issued. */
3976 bool shadows_only_p;
3977 /* True if we're winding down a modulo schedule, which means that we only
3978 issue insns with INSN_EXACT_TICK set. */
3979 bool modulo_epilogue;
3980 /* Initialized with the machine's issue rate every cycle, and updated
3981 by calls to the variable_issue hook. */
3982 int can_issue_more;
3983 };
3984
3985 /* INSN is the "currently executing insn". Launch each insn which was
3986 waiting on INSN. READY is the ready list which contains the insns
3987 that are ready to fire. CLOCK is the current cycle. The function
3988 returns necessary cycle advance after issuing the insn (it is not
3989 zero for insns in a schedule group). */
3990
3991 static int
3992 schedule_insn (rtx_insn *insn)
3993 {
3994 sd_iterator_def sd_it;
3995 dep_t dep;
3996 int i;
3997 int advance = 0;
3998
3999 if (sched_verbose >= 1)
4000 {
4001 struct reg_pressure_data *pressure_info;
4002 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
4003 clock_var, (*current_sched_info->print_insn) (insn, 1),
4004 str_pattern_slim (PATTERN (insn)));
4005
4006 if (recog_memoized (insn) < 0)
4007 fprintf (sched_dump, "nothing");
4008 else
4009 print_reservation (sched_dump, insn);
4010 pressure_info = INSN_REG_PRESSURE (insn);
4011 if (pressure_info != NULL)
4012 {
4013 fputc (':', sched_dump);
4014 for (i = 0; i < ira_pressure_classes_num; i++)
4015 fprintf (sched_dump, "%s%s%+d(%d)",
4016 scheduled_insns.length () > 1
4017 && INSN_LUID (insn)
4018 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4019 reg_class_names[ira_pressure_classes[i]],
4020 pressure_info[i].set_increase, pressure_info[i].change);
4021 }
4022 if (sched_pressure == SCHED_PRESSURE_MODEL
4023 && model_curr_point < model_num_insns
4024 && model_index (insn) == model_curr_point)
4025 fprintf (sched_dump, ":model %d", model_curr_point);
4026 fputc ('\n', sched_dump);
4027 }
4028
4029 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4030 update_reg_and_insn_max_reg_pressure (insn);
4031
4032 /* Scheduling instruction should have all its dependencies resolved and
4033 should have been removed from the ready list. */
4034 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4035
4036 /* Reset debug insns invalidated by moving this insn. */
4037 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4038 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4039 sd_iterator_cond (&sd_it, &dep);)
4040 {
4041 rtx_insn *dbg = DEP_PRO (dep);
4042 struct reg_use_data *use, *next;
4043
4044 if (DEP_STATUS (dep) & DEP_CANCELLED)
4045 {
4046 sd_iterator_next (&sd_it);
4047 continue;
4048 }
4049
4050 gcc_assert (DEBUG_INSN_P (dbg));
4051
4052 if (sched_verbose >= 6)
4053 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4054 INSN_UID (dbg));
4055
4056 /* ??? Rather than resetting the debug insn, we might be able
4057 to emit a debug temp before the just-scheduled insn, but
4058 this would involve checking that the expression at the
4059 point of the debug insn is equivalent to the expression
4060 before the just-scheduled insn. They might not be: the
4061 expression in the debug insn may depend on other insns not
4062 yet scheduled that set MEMs, REGs or even other debug
4063 insns. It's not clear that attempting to preserve debug
4064 information in these cases is worth the effort, given how
4065 uncommon these resets are and the likelihood that the debug
4066 temps introduced won't survive the schedule change. */
4067 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4068 df_insn_rescan (dbg);
4069
4070 /* Unknown location doesn't use any registers. */
4071 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4072 {
4073 struct reg_use_data *prev = use;
4074
4075 /* Remove use from the cyclic next_regno_use chain first. */
4076 while (prev->next_regno_use != use)
4077 prev = prev->next_regno_use;
4078 prev->next_regno_use = use->next_regno_use;
4079 next = use->next_insn_use;
4080 free (use);
4081 }
4082 INSN_REG_USE_LIST (dbg) = NULL;
4083
4084 /* We delete rather than resolve these deps, otherwise we
4085 crash in sched_free_deps(), because forward deps are
4086 expected to be released before backward deps. */
4087 sd_delete_dep (sd_it);
4088 }
4089
4090 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4091 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4092
4093 if (sched_pressure == SCHED_PRESSURE_MODEL
4094 && model_curr_point < model_num_insns
4095 && NONDEBUG_INSN_P (insn))
4096 {
4097 if (model_index (insn) == model_curr_point)
4098 do
4099 model_curr_point++;
4100 while (model_curr_point < model_num_insns
4101 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4102 == QUEUE_SCHEDULED));
4103 else
4104 model_recompute (insn);
4105 model_update_limit_points ();
4106 update_register_pressure (insn);
4107 if (sched_verbose >= 2)
4108 print_curr_reg_pressure ();
4109 }
4110
4111 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4112 if (INSN_TICK (insn) > clock_var)
4113 /* INSN has been prematurely moved from the queue to the ready list.
4114 This is possible only if following flags are set. */
4115 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4116
4117 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4118 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4119 INSN_TICK (insn) = clock_var;
4120
4121 check_clobbered_conditions (insn);
4122
4123 /* Update dependent instructions. First, see if by scheduling this insn
4124 now we broke a dependence in a way that requires us to change another
4125 insn. */
4126 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4127 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4128 {
4129 struct dep_replacement *desc = DEP_REPLACE (dep);
4130 rtx_insn *pro = DEP_PRO (dep);
4131 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4132 && desc != NULL && desc->insn == pro)
4133 apply_replacement (dep, false);
4134 }
4135
4136 /* Go through and resolve forward dependencies. */
4137 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4138 sd_iterator_cond (&sd_it, &dep);)
4139 {
4140 rtx_insn *next = DEP_CON (dep);
4141 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4142
4143 /* Resolve the dependence between INSN and NEXT.
4144 sd_resolve_dep () moves current dep to another list thus
4145 advancing the iterator. */
4146 sd_resolve_dep (sd_it);
4147
4148 if (cancelled)
4149 {
4150 if (must_restore_pattern_p (next, dep))
4151 restore_pattern (dep, false);
4152 continue;
4153 }
4154
4155 /* Don't bother trying to mark next as ready if insn is a debug
4156 insn. If insn is the last hard dependency, it will have
4157 already been discounted. */
4158 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4159 continue;
4160
4161 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4162 {
4163 int effective_cost;
4164
4165 effective_cost = try_ready (next);
4166
4167 if (effective_cost >= 0
4168 && SCHED_GROUP_P (next)
4169 && advance < effective_cost)
4170 advance = effective_cost;
4171 }
4172 else
4173 /* Check always has only one forward dependence (to the first insn in
4174 the recovery block), therefore, this will be executed only once. */
4175 {
4176 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4177 fix_recovery_deps (RECOVERY_BLOCK (insn));
4178 }
4179 }
4180
4181 /* Annotate the instruction with issue information -- TImode
4182 indicates that the instruction is expected not to be able
4183 to issue on the same cycle as the previous insn. A machine
4184 may use this information to decide how the instruction should
4185 be aligned. */
4186 if (issue_rate > 1
4187 && GET_CODE (PATTERN (insn)) != USE
4188 && GET_CODE (PATTERN (insn)) != CLOBBER
4189 && !DEBUG_INSN_P (insn))
4190 {
4191 if (reload_completed)
4192 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4193 last_clock_var = clock_var;
4194 }
4195
4196 if (nonscheduled_insns_begin != NULL_RTX)
4197 /* Indicate to debug counters that INSN is scheduled. */
4198 nonscheduled_insns_begin = insn;
4199
4200 return advance;
4201 }
4202
4203 /* Functions for handling of notes. */
4204
4205 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4206 void
4207 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4208 {
4209 rtx_insn *from_start;
4210
4211 /* It's easy when have nothing to concat. */
4212 if (from_end == NULL)
4213 return;
4214
4215 /* It's also easy when destination is empty. */
4216 if (*to_endp == NULL)
4217 {
4218 *to_endp = from_end;
4219 return;
4220 }
4221
4222 from_start = from_end;
4223 while (PREV_INSN (from_start) != NULL)
4224 from_start = PREV_INSN (from_start);
4225
4226 SET_PREV_INSN (from_start) = *to_endp;
4227 SET_NEXT_INSN (*to_endp) = from_start;
4228 *to_endp = from_end;
4229 }
4230
4231 /* Delete notes between HEAD and TAIL and put them in the chain
4232 of notes ended by NOTE_LIST. */
4233 void
4234 remove_notes (rtx_insn *head, rtx_insn *tail)
4235 {
4236 rtx_insn *next_tail, *insn, *next;
4237
4238 note_list = 0;
4239 if (head == tail && !INSN_P (head))
4240 return;
4241
4242 next_tail = NEXT_INSN (tail);
4243 for (insn = head; insn != next_tail; insn = next)
4244 {
4245 next = NEXT_INSN (insn);
4246 if (!NOTE_P (insn))
4247 continue;
4248
4249 switch (NOTE_KIND (insn))
4250 {
4251 case NOTE_INSN_BASIC_BLOCK:
4252 continue;
4253
4254 case NOTE_INSN_EPILOGUE_BEG:
4255 if (insn != tail)
4256 {
4257 remove_insn (insn);
4258 add_reg_note (next, REG_SAVE_NOTE,
4259 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4260 break;
4261 }
4262 /* FALLTHRU */
4263
4264 default:
4265 remove_insn (insn);
4266
4267 /* Add the note to list that ends at NOTE_LIST. */
4268 SET_PREV_INSN (insn) = note_list;
4269 SET_NEXT_INSN (insn) = NULL_RTX;
4270 if (note_list)
4271 SET_NEXT_INSN (note_list) = insn;
4272 note_list = insn;
4273 break;
4274 }
4275
4276 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4277 }
4278 }
4279
4280 /* A structure to record enough data to allow us to backtrack the scheduler to
4281 a previous state. */
4282 struct haifa_saved_data
4283 {
4284 /* Next entry on the list. */
4285 struct haifa_saved_data *next;
4286
4287 /* Backtracking is associated with scheduling insns that have delay slots.
4288 DELAY_PAIR points to the structure that contains the insns involved, and
4289 the number of cycles between them. */
4290 struct delay_pair *delay_pair;
4291
4292 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4293 void *fe_saved_data;
4294 /* Data used by the backend. */
4295 void *be_saved_data;
4296
4297 /* Copies of global state. */
4298 int clock_var, last_clock_var;
4299 struct ready_list ready;
4300 state_t curr_state;
4301
4302 rtx_insn *last_scheduled_insn;
4303 rtx last_nondebug_scheduled_insn;
4304 rtx_insn *nonscheduled_insns_begin;
4305 int cycle_issued_insns;
4306
4307 /* Copies of state used in the inner loop of schedule_block. */
4308 struct sched_block_state sched_block;
4309
4310 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4311 to 0 when restoring. */
4312 int q_size;
4313 rtx_insn_list **insn_queue;
4314
4315 /* Describe pattern replacements that occurred since this backtrack point
4316 was queued. */
4317 vec<dep_t> replacement_deps;
4318 vec<int> replace_apply;
4319
4320 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4321 point. */
4322 vec<dep_t> next_cycle_deps;
4323 vec<int> next_cycle_apply;
4324 };
4325
4326 /* A record, in reverse order, of all scheduled insns which have delay slots
4327 and may require backtracking. */
4328 static struct haifa_saved_data *backtrack_queue;
4329
4330 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4331 to SET_P. */
4332 static void
4333 mark_backtrack_feeds (rtx insn, int set_p)
4334 {
4335 sd_iterator_def sd_it;
4336 dep_t dep;
4337 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4338 {
4339 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4340 }
4341 }
4342
4343 /* Save the current scheduler state so that we can backtrack to it
4344 later if necessary. PAIR gives the insns that make it necessary to
4345 save this point. SCHED_BLOCK is the local state of schedule_block
4346 that need to be saved. */
4347 static void
4348 save_backtrack_point (struct delay_pair *pair,
4349 struct sched_block_state sched_block)
4350 {
4351 int i;
4352 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4353
4354 save->curr_state = xmalloc (dfa_state_size);
4355 memcpy (save->curr_state, curr_state, dfa_state_size);
4356
4357 save->ready.first = ready.first;
4358 save->ready.n_ready = ready.n_ready;
4359 save->ready.n_debug = ready.n_debug;
4360 save->ready.veclen = ready.veclen;
4361 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4362 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4363
4364 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4365 save->q_size = q_size;
4366 for (i = 0; i <= max_insn_queue_index; i++)
4367 {
4368 int q = NEXT_Q_AFTER (q_ptr, i);
4369 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4370 }
4371
4372 save->clock_var = clock_var;
4373 save->last_clock_var = last_clock_var;
4374 save->cycle_issued_insns = cycle_issued_insns;
4375 save->last_scheduled_insn = last_scheduled_insn;
4376 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4377 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4378
4379 save->sched_block = sched_block;
4380
4381 save->replacement_deps.create (0);
4382 save->replace_apply.create (0);
4383 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4384 save->next_cycle_apply = next_cycle_apply.copy ();
4385
4386 if (current_sched_info->save_state)
4387 save->fe_saved_data = (*current_sched_info->save_state) ();
4388
4389 if (targetm.sched.alloc_sched_context)
4390 {
4391 save->be_saved_data = targetm.sched.alloc_sched_context ();
4392 targetm.sched.init_sched_context (save->be_saved_data, false);
4393 }
4394 else
4395 save->be_saved_data = NULL;
4396
4397 save->delay_pair = pair;
4398
4399 save->next = backtrack_queue;
4400 backtrack_queue = save;
4401
4402 while (pair)
4403 {
4404 mark_backtrack_feeds (pair->i2, 1);
4405 INSN_TICK (pair->i2) = INVALID_TICK;
4406 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4407 SHADOW_P (pair->i2) = pair->stages == 0;
4408 pair = pair->next_same_i1;
4409 }
4410 }
4411
4412 /* Walk the ready list and all queues. If any insns have unresolved backwards
4413 dependencies, these must be cancelled deps, broken by predication. Set or
4414 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4415
4416 static void
4417 toggle_cancelled_flags (bool set)
4418 {
4419 int i;
4420 sd_iterator_def sd_it;
4421 dep_t dep;
4422
4423 if (ready.n_ready > 0)
4424 {
4425 rtx_insn **first = ready_lastpos (&ready);
4426 for (i = 0; i < ready.n_ready; i++)
4427 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4428 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4429 {
4430 if (set)
4431 DEP_STATUS (dep) |= DEP_CANCELLED;
4432 else
4433 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4434 }
4435 }
4436 for (i = 0; i <= max_insn_queue_index; i++)
4437 {
4438 int q = NEXT_Q_AFTER (q_ptr, i);
4439 rtx_insn_list *link;
4440 for (link = insn_queue[q]; link; link = link->next ())
4441 {
4442 rtx_insn *insn = link->insn ();
4443 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4444 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4445 {
4446 if (set)
4447 DEP_STATUS (dep) |= DEP_CANCELLED;
4448 else
4449 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4450 }
4451 }
4452 }
4453 }
4454
4455 /* Undo the replacements that have occurred after backtrack point SAVE
4456 was placed. */
4457 static void
4458 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4459 {
4460 while (!save->replacement_deps.is_empty ())
4461 {
4462 dep_t dep = save->replacement_deps.pop ();
4463 int apply_p = save->replace_apply.pop ();
4464
4465 if (apply_p)
4466 restore_pattern (dep, true);
4467 else
4468 apply_replacement (dep, true);
4469 }
4470 save->replacement_deps.release ();
4471 save->replace_apply.release ();
4472 }
4473
4474 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4475 Restore their dependencies to an unresolved state, and mark them as
4476 queued nowhere. */
4477
4478 static void
4479 unschedule_insns_until (rtx insn)
4480 {
4481 auto_vec<rtx_insn *> recompute_vec;
4482
4483 /* Make two passes over the insns to be unscheduled. First, we clear out
4484 dependencies and other trivial bookkeeping. */
4485 for (;;)
4486 {
4487 rtx_insn *last;
4488 sd_iterator_def sd_it;
4489 dep_t dep;
4490
4491 last = scheduled_insns.pop ();
4492
4493 /* This will be changed by restore_backtrack_point if the insn is in
4494 any queue. */
4495 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4496 if (last != insn)
4497 INSN_TICK (last) = INVALID_TICK;
4498
4499 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4500 modulo_insns_scheduled--;
4501
4502 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4503 sd_iterator_cond (&sd_it, &dep);)
4504 {
4505 rtx_insn *con = DEP_CON (dep);
4506 sd_unresolve_dep (sd_it);
4507 if (!MUST_RECOMPUTE_SPEC_P (con))
4508 {
4509 MUST_RECOMPUTE_SPEC_P (con) = 1;
4510 recompute_vec.safe_push (con);
4511 }
4512 }
4513
4514 if (last == insn)
4515 break;
4516 }
4517
4518 /* A second pass, to update ready and speculation status for insns
4519 depending on the unscheduled ones. The first pass must have
4520 popped the scheduled_insns vector up to the point where we
4521 restart scheduling, as recompute_todo_spec requires it to be
4522 up-to-date. */
4523 while (!recompute_vec.is_empty ())
4524 {
4525 rtx_insn *con;
4526
4527 con = recompute_vec.pop ();
4528 MUST_RECOMPUTE_SPEC_P (con) = 0;
4529 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4530 {
4531 TODO_SPEC (con) = HARD_DEP;
4532 INSN_TICK (con) = INVALID_TICK;
4533 if (PREDICATED_PAT (con) != NULL_RTX)
4534 haifa_change_pattern (con, ORIG_PAT (con));
4535 }
4536 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4537 TODO_SPEC (con) = recompute_todo_spec (con, true);
4538 }
4539 }
4540
4541 /* Restore scheduler state from the topmost entry on the backtracking queue.
4542 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4543 overwrite with the saved data.
4544 The caller must already have called unschedule_insns_until. */
4545
4546 static void
4547 restore_last_backtrack_point (struct sched_block_state *psched_block)
4548 {
4549 int i;
4550 struct haifa_saved_data *save = backtrack_queue;
4551
4552 backtrack_queue = save->next;
4553
4554 if (current_sched_info->restore_state)
4555 (*current_sched_info->restore_state) (save->fe_saved_data);
4556
4557 if (targetm.sched.alloc_sched_context)
4558 {
4559 targetm.sched.set_sched_context (save->be_saved_data);
4560 targetm.sched.free_sched_context (save->be_saved_data);
4561 }
4562
4563 /* Do this first since it clobbers INSN_TICK of the involved
4564 instructions. */
4565 undo_replacements_for_backtrack (save);
4566
4567 /* Clear the QUEUE_INDEX of everything in the ready list or one
4568 of the queues. */
4569 if (ready.n_ready > 0)
4570 {
4571 rtx_insn **first = ready_lastpos (&ready);
4572 for (i = 0; i < ready.n_ready; i++)
4573 {
4574 rtx_insn *insn = first[i];
4575 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4576 INSN_TICK (insn) = INVALID_TICK;
4577 }
4578 }
4579 for (i = 0; i <= max_insn_queue_index; i++)
4580 {
4581 int q = NEXT_Q_AFTER (q_ptr, i);
4582
4583 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4584 {
4585 rtx_insn *x = link->insn ();
4586 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4587 INSN_TICK (x) = INVALID_TICK;
4588 }
4589 free_INSN_LIST_list (&insn_queue[q]);
4590 }
4591
4592 free (ready.vec);
4593 ready = save->ready;
4594
4595 if (ready.n_ready > 0)
4596 {
4597 rtx_insn **first = ready_lastpos (&ready);
4598 for (i = 0; i < ready.n_ready; i++)
4599 {
4600 rtx_insn *insn = first[i];
4601 QUEUE_INDEX (insn) = QUEUE_READY;
4602 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4603 INSN_TICK (insn) = save->clock_var;
4604 }
4605 }
4606
4607 q_ptr = 0;
4608 q_size = save->q_size;
4609 for (i = 0; i <= max_insn_queue_index; i++)
4610 {
4611 int q = NEXT_Q_AFTER (q_ptr, i);
4612
4613 insn_queue[q] = save->insn_queue[q];
4614
4615 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4616 {
4617 rtx_insn *x = link->insn ();
4618 QUEUE_INDEX (x) = i;
4619 TODO_SPEC (x) = recompute_todo_spec (x, true);
4620 INSN_TICK (x) = save->clock_var + i;
4621 }
4622 }
4623 free (save->insn_queue);
4624
4625 toggle_cancelled_flags (true);
4626
4627 clock_var = save->clock_var;
4628 last_clock_var = save->last_clock_var;
4629 cycle_issued_insns = save->cycle_issued_insns;
4630 last_scheduled_insn = save->last_scheduled_insn;
4631 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4632 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4633
4634 *psched_block = save->sched_block;
4635
4636 memcpy (curr_state, save->curr_state, dfa_state_size);
4637 free (save->curr_state);
4638
4639 mark_backtrack_feeds (save->delay_pair->i2, 0);
4640
4641 gcc_assert (next_cycle_replace_deps.is_empty ());
4642 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4643 next_cycle_apply = save->next_cycle_apply.copy ();
4644
4645 free (save);
4646
4647 for (save = backtrack_queue; save; save = save->next)
4648 {
4649 mark_backtrack_feeds (save->delay_pair->i2, 1);
4650 }
4651 }
4652
4653 /* Discard all data associated with the topmost entry in the backtrack
4654 queue. If RESET_TICK is false, we just want to free the data. If true,
4655 we are doing this because we discovered a reason to backtrack. In the
4656 latter case, also reset the INSN_TICK for the shadow insn. */
4657 static void
4658 free_topmost_backtrack_point (bool reset_tick)
4659 {
4660 struct haifa_saved_data *save = backtrack_queue;
4661 int i;
4662
4663 backtrack_queue = save->next;
4664
4665 if (reset_tick)
4666 {
4667 struct delay_pair *pair = save->delay_pair;
4668 while (pair)
4669 {
4670 INSN_TICK (pair->i2) = INVALID_TICK;
4671 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4672 pair = pair->next_same_i1;
4673 }
4674 undo_replacements_for_backtrack (save);
4675 }
4676 else
4677 {
4678 save->replacement_deps.release ();
4679 save->replace_apply.release ();
4680 }
4681
4682 if (targetm.sched.free_sched_context)
4683 targetm.sched.free_sched_context (save->be_saved_data);
4684 if (current_sched_info->restore_state)
4685 free (save->fe_saved_data);
4686 for (i = 0; i <= max_insn_queue_index; i++)
4687 free_INSN_LIST_list (&save->insn_queue[i]);
4688 free (save->insn_queue);
4689 free (save->curr_state);
4690 free (save->ready.vec);
4691 free (save);
4692 }
4693
4694 /* Free the entire backtrack queue. */
4695 static void
4696 free_backtrack_queue (void)
4697 {
4698 while (backtrack_queue)
4699 free_topmost_backtrack_point (false);
4700 }
4701
4702 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4703 may have to postpone the replacement until the start of the next cycle,
4704 at which point we will be called again with IMMEDIATELY true. This is
4705 only done for machines which have instruction packets with explicit
4706 parallelism however. */
4707 static void
4708 apply_replacement (dep_t dep, bool immediately)
4709 {
4710 struct dep_replacement *desc = DEP_REPLACE (dep);
4711 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4712 {
4713 next_cycle_replace_deps.safe_push (dep);
4714 next_cycle_apply.safe_push (1);
4715 }
4716 else
4717 {
4718 bool success;
4719
4720 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4721 return;
4722
4723 if (sched_verbose >= 5)
4724 fprintf (sched_dump, "applying replacement for insn %d\n",
4725 INSN_UID (desc->insn));
4726
4727 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4728 gcc_assert (success);
4729
4730 update_insn_after_change (desc->insn);
4731 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4732 fix_tick_ready (desc->insn);
4733
4734 if (backtrack_queue != NULL)
4735 {
4736 backtrack_queue->replacement_deps.safe_push (dep);
4737 backtrack_queue->replace_apply.safe_push (1);
4738 }
4739 }
4740 }
4741
4742 /* We have determined that a pattern involved in DEP must be restored.
4743 If IMMEDIATELY is false, we may have to postpone the replacement
4744 until the start of the next cycle, at which point we will be called
4745 again with IMMEDIATELY true. */
4746 static void
4747 restore_pattern (dep_t dep, bool immediately)
4748 {
4749 rtx_insn *next = DEP_CON (dep);
4750 int tick = INSN_TICK (next);
4751
4752 /* If we already scheduled the insn, the modified version is
4753 correct. */
4754 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4755 return;
4756
4757 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4758 {
4759 next_cycle_replace_deps.safe_push (dep);
4760 next_cycle_apply.safe_push (0);
4761 return;
4762 }
4763
4764
4765 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4766 {
4767 if (sched_verbose >= 5)
4768 fprintf (sched_dump, "restoring pattern for insn %d\n",
4769 INSN_UID (next));
4770 haifa_change_pattern (next, ORIG_PAT (next));
4771 }
4772 else
4773 {
4774 struct dep_replacement *desc = DEP_REPLACE (dep);
4775 bool success;
4776
4777 if (sched_verbose >= 5)
4778 fprintf (sched_dump, "restoring pattern for insn %d\n",
4779 INSN_UID (desc->insn));
4780 tick = INSN_TICK (desc->insn);
4781
4782 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4783 gcc_assert (success);
4784 update_insn_after_change (desc->insn);
4785 if (backtrack_queue != NULL)
4786 {
4787 backtrack_queue->replacement_deps.safe_push (dep);
4788 backtrack_queue->replace_apply.safe_push (0);
4789 }
4790 }
4791 INSN_TICK (next) = tick;
4792 if (TODO_SPEC (next) == DEP_POSTPONED)
4793 return;
4794
4795 if (sd_lists_empty_p (next, SD_LIST_BACK))
4796 TODO_SPEC (next) = 0;
4797 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4798 TODO_SPEC (next) = HARD_DEP;
4799 }
4800
4801 /* Perform pattern replacements that were queued up until the next
4802 cycle. */
4803 static void
4804 perform_replacements_new_cycle (void)
4805 {
4806 int i;
4807 dep_t dep;
4808 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4809 {
4810 int apply_p = next_cycle_apply[i];
4811 if (apply_p)
4812 apply_replacement (dep, true);
4813 else
4814 restore_pattern (dep, true);
4815 }
4816 next_cycle_replace_deps.truncate (0);
4817 next_cycle_apply.truncate (0);
4818 }
4819
4820 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4821 instructions we've previously encountered, a set bit prevents
4822 recursion. BUDGET is a limit on how far ahead we look, it is
4823 reduced on recursive calls. Return true if we produced a good
4824 estimate, or false if we exceeded the budget. */
4825 static bool
4826 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4827 {
4828 sd_iterator_def sd_it;
4829 dep_t dep;
4830 int earliest = INSN_TICK (insn);
4831
4832 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4833 {
4834 rtx_insn *pro = DEP_PRO (dep);
4835 int t;
4836
4837 if (DEP_STATUS (dep) & DEP_CANCELLED)
4838 continue;
4839
4840 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4841 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4842 else
4843 {
4844 int cost = dep_cost (dep);
4845 if (cost >= budget)
4846 return false;
4847 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4848 {
4849 if (!estimate_insn_tick (processed, pro, budget - cost))
4850 return false;
4851 }
4852 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4853 t = INSN_TICK_ESTIMATE (pro) + cost;
4854 if (earliest == INVALID_TICK || t > earliest)
4855 earliest = t;
4856 }
4857 }
4858 bitmap_set_bit (processed, INSN_LUID (insn));
4859 INSN_TICK_ESTIMATE (insn) = earliest;
4860 return true;
4861 }
4862
4863 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4864 infinite resources) the cycle in which the delayed shadow can be issued.
4865 Return the number of cycles that must pass before the real insn can be
4866 issued in order to meet this constraint. */
4867 static int
4868 estimate_shadow_tick (struct delay_pair *p)
4869 {
4870 bitmap_head processed;
4871 int t;
4872 bool cutoff;
4873 bitmap_initialize (&processed, 0);
4874
4875 cutoff = !estimate_insn_tick (&processed, p->i2,
4876 max_insn_queue_index + pair_delay (p));
4877 bitmap_clear (&processed);
4878 if (cutoff)
4879 return max_insn_queue_index;
4880 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4881 if (t > 0)
4882 return t;
4883 return 0;
4884 }
4885
4886 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4887 recursively resolve all its forward dependencies. */
4888 static void
4889 resolve_dependencies (rtx_insn *insn)
4890 {
4891 sd_iterator_def sd_it;
4892 dep_t dep;
4893
4894 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4895 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4896 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4897 return;
4898
4899 if (sched_verbose >= 4)
4900 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4901
4902 if (QUEUE_INDEX (insn) >= 0)
4903 queue_remove (insn);
4904
4905 scheduled_insns.safe_push (insn);
4906
4907 /* Update dependent instructions. */
4908 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4909 sd_iterator_cond (&sd_it, &dep);)
4910 {
4911 rtx_insn *next = DEP_CON (dep);
4912
4913 if (sched_verbose >= 4)
4914 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4915 INSN_UID (next));
4916
4917 /* Resolve the dependence between INSN and NEXT.
4918 sd_resolve_dep () moves current dep to another list thus
4919 advancing the iterator. */
4920 sd_resolve_dep (sd_it);
4921
4922 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4923 {
4924 resolve_dependencies (next);
4925 }
4926 else
4927 /* Check always has only one forward dependence (to the first insn in
4928 the recovery block), therefore, this will be executed only once. */
4929 {
4930 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4931 }
4932 }
4933 }
4934
4935
4936 /* Return the head and tail pointers of ebb starting at BEG and ending
4937 at END. */
4938 void
4939 get_ebb_head_tail (basic_block beg, basic_block end,
4940 rtx_insn **headp, rtx_insn **tailp)
4941 {
4942 rtx_insn *beg_head = BB_HEAD (beg);
4943 rtx_insn * beg_tail = BB_END (beg);
4944 rtx_insn * end_head = BB_HEAD (end);
4945 rtx_insn * end_tail = BB_END (end);
4946
4947 /* Don't include any notes or labels at the beginning of the BEG
4948 basic block, or notes at the end of the END basic blocks. */
4949
4950 if (LABEL_P (beg_head))
4951 beg_head = NEXT_INSN (beg_head);
4952
4953 while (beg_head != beg_tail)
4954 if (NOTE_P (beg_head))
4955 beg_head = NEXT_INSN (beg_head);
4956 else if (DEBUG_INSN_P (beg_head))
4957 {
4958 rtx_insn * note, *next;
4959
4960 for (note = NEXT_INSN (beg_head);
4961 note != beg_tail;
4962 note = next)
4963 {
4964 next = NEXT_INSN (note);
4965 if (NOTE_P (note))
4966 {
4967 if (sched_verbose >= 9)
4968 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4969
4970 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4971
4972 if (BLOCK_FOR_INSN (note) != beg)
4973 df_insn_change_bb (note, beg);
4974 }
4975 else if (!DEBUG_INSN_P (note))
4976 break;
4977 }
4978
4979 break;
4980 }
4981 else
4982 break;
4983
4984 *headp = beg_head;
4985
4986 if (beg == end)
4987 end_head = beg_head;
4988 else if (LABEL_P (end_head))
4989 end_head = NEXT_INSN (end_head);
4990
4991 while (end_head != end_tail)
4992 if (NOTE_P (end_tail))
4993 end_tail = PREV_INSN (end_tail);
4994 else if (DEBUG_INSN_P (end_tail))
4995 {
4996 rtx_insn * note, *prev;
4997
4998 for (note = PREV_INSN (end_tail);
4999 note != end_head;
5000 note = prev)
5001 {
5002 prev = PREV_INSN (note);
5003 if (NOTE_P (note))
5004 {
5005 if (sched_verbose >= 9)
5006 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5007
5008 reorder_insns_nobb (note, note, end_tail);
5009
5010 if (end_tail == BB_END (end))
5011 BB_END (end) = note;
5012
5013 if (BLOCK_FOR_INSN (note) != end)
5014 df_insn_change_bb (note, end);
5015 }
5016 else if (!DEBUG_INSN_P (note))
5017 break;
5018 }
5019
5020 break;
5021 }
5022 else
5023 break;
5024
5025 *tailp = end_tail;
5026 }
5027
5028 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5029
5030 int
5031 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5032 {
5033 while (head != NEXT_INSN (tail))
5034 {
5035 if (!NOTE_P (head) && !LABEL_P (head))
5036 return 0;
5037 head = NEXT_INSN (head);
5038 }
5039 return 1;
5040 }
5041
5042 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5043 previously found among the insns. Insert them just before HEAD. */
5044 rtx_insn *
5045 restore_other_notes (rtx_insn *head, basic_block head_bb)
5046 {
5047 if (note_list != 0)
5048 {
5049 rtx_insn *note_head = note_list;
5050
5051 if (head)
5052 head_bb = BLOCK_FOR_INSN (head);
5053 else
5054 head = NEXT_INSN (bb_note (head_bb));
5055
5056 while (PREV_INSN (note_head))
5057 {
5058 set_block_for_insn (note_head, head_bb);
5059 note_head = PREV_INSN (note_head);
5060 }
5061 /* In the above cycle we've missed this note. */
5062 set_block_for_insn (note_head, head_bb);
5063
5064 SET_PREV_INSN (note_head) = PREV_INSN (head);
5065 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5066 SET_PREV_INSN (head) = note_list;
5067 SET_NEXT_INSN (note_list) = head;
5068
5069 if (BLOCK_FOR_INSN (head) != head_bb)
5070 BB_END (head_bb) = note_list;
5071
5072 head = note_head;
5073 }
5074
5075 return head;
5076 }
5077
5078 /* When we know we are going to discard the schedule due to a failed attempt
5079 at modulo scheduling, undo all replacements. */
5080 static void
5081 undo_all_replacements (void)
5082 {
5083 rtx_insn *insn;
5084 int i;
5085
5086 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5087 {
5088 sd_iterator_def sd_it;
5089 dep_t dep;
5090
5091 /* See if we must undo a replacement. */
5092 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5093 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5094 {
5095 struct dep_replacement *desc = DEP_REPLACE (dep);
5096 if (desc != NULL)
5097 validate_change (desc->insn, desc->loc, desc->orig, 0);
5098 }
5099 }
5100 }
5101
5102 /* Return first non-scheduled insn in the current scheduling block.
5103 This is mostly used for debug-counter purposes. */
5104 static rtx_insn *
5105 first_nonscheduled_insn (void)
5106 {
5107 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5108 ? nonscheduled_insns_begin
5109 : current_sched_info->prev_head);
5110
5111 do
5112 {
5113 insn = next_nonnote_nondebug_insn (insn);
5114 }
5115 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5116
5117 return insn;
5118 }
5119
5120 /* Move insns that became ready to fire from queue to ready list. */
5121
5122 static void
5123 queue_to_ready (struct ready_list *ready)
5124 {
5125 rtx_insn *insn;
5126 rtx_insn_list *link;
5127 rtx skip_insn;
5128
5129 q_ptr = NEXT_Q (q_ptr);
5130
5131 if (dbg_cnt (sched_insn) == false)
5132 /* If debug counter is activated do not requeue the first
5133 nonscheduled insn. */
5134 skip_insn = first_nonscheduled_insn ();
5135 else
5136 skip_insn = NULL_RTX;
5137
5138 /* Add all pending insns that can be scheduled without stalls to the
5139 ready list. */
5140 for (link = insn_queue[q_ptr]; link; link = link->next ())
5141 {
5142 insn = link->insn ();
5143 q_size -= 1;
5144
5145 if (sched_verbose >= 2)
5146 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5147 (*current_sched_info->print_insn) (insn, 0));
5148
5149 /* If the ready list is full, delay the insn for 1 cycle.
5150 See the comment in schedule_block for the rationale. */
5151 if (!reload_completed
5152 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5153 || (sched_pressure == SCHED_PRESSURE_MODEL
5154 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5155 instructions too. */
5156 && model_index (insn) > (model_curr_point
5157 + MAX_SCHED_READY_INSNS)))
5158 && !(sched_pressure == SCHED_PRESSURE_MODEL
5159 && model_curr_point < model_num_insns
5160 /* Always allow the next model instruction to issue. */
5161 && model_index (insn) == model_curr_point)
5162 && !SCHED_GROUP_P (insn)
5163 && insn != skip_insn)
5164 {
5165 if (sched_verbose >= 2)
5166 fprintf (sched_dump, "keeping in queue, ready full\n");
5167 queue_insn (insn, 1, "ready full");
5168 }
5169 else
5170 {
5171 ready_add (ready, insn, false);
5172 if (sched_verbose >= 2)
5173 fprintf (sched_dump, "moving to ready without stalls\n");
5174 }
5175 }
5176 free_INSN_LIST_list (&insn_queue[q_ptr]);
5177
5178 /* If there are no ready insns, stall until one is ready and add all
5179 of the pending insns at that point to the ready list. */
5180 if (ready->n_ready == 0)
5181 {
5182 int stalls;
5183
5184 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5185 {
5186 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5187 {
5188 for (; link; link = link->next ())
5189 {
5190 insn = link->insn ();
5191 q_size -= 1;
5192
5193 if (sched_verbose >= 2)
5194 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5195 (*current_sched_info->print_insn) (insn, 0));
5196
5197 ready_add (ready, insn, false);
5198 if (sched_verbose >= 2)
5199 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5200 }
5201 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5202
5203 advance_one_cycle ();
5204
5205 break;
5206 }
5207
5208 advance_one_cycle ();
5209 }
5210
5211 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5212 clock_var += stalls;
5213 if (sched_verbose >= 2)
5214 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5215 stalls, clock_var);
5216 }
5217 }
5218
5219 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5220 prematurely move INSN from the queue to the ready list. Currently,
5221 if a target defines the hook 'is_costly_dependence', this function
5222 uses the hook to check whether there exist any dependences which are
5223 considered costly by the target, between INSN and other insns that
5224 have already been scheduled. Dependences are checked up to Y cycles
5225 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5226 controlling this value.
5227 (Other considerations could be taken into account instead (or in
5228 addition) depending on user flags and target hooks. */
5229
5230 static bool
5231 ok_for_early_queue_removal (rtx insn)
5232 {
5233 if (targetm.sched.is_costly_dependence)
5234 {
5235 rtx prev_insn;
5236 int n_cycles;
5237 int i = scheduled_insns.length ();
5238 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5239 {
5240 while (i-- > 0)
5241 {
5242 int cost;
5243
5244 prev_insn = scheduled_insns[i];
5245
5246 if (!NOTE_P (prev_insn))
5247 {
5248 dep_t dep;
5249
5250 dep = sd_find_dep_between (prev_insn, insn, true);
5251
5252 if (dep != NULL)
5253 {
5254 cost = dep_cost (dep);
5255
5256 if (targetm.sched.is_costly_dependence (dep, cost,
5257 flag_sched_stalled_insns_dep - n_cycles))
5258 return false;
5259 }
5260 }
5261
5262 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5263 break;
5264 }
5265
5266 if (i == 0)
5267 break;
5268 }
5269 }
5270
5271 return true;
5272 }
5273
5274
5275 /* Remove insns from the queue, before they become "ready" with respect
5276 to FU latency considerations. */
5277
5278 static int
5279 early_queue_to_ready (state_t state, struct ready_list *ready)
5280 {
5281 rtx_insn *insn;
5282 rtx_insn_list *link;
5283 rtx_insn_list *next_link;
5284 rtx_insn_list *prev_link;
5285 bool move_to_ready;
5286 int cost;
5287 state_t temp_state = alloca (dfa_state_size);
5288 int stalls;
5289 int insns_removed = 0;
5290
5291 /*
5292 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5293 function:
5294
5295 X == 0: There is no limit on how many queued insns can be removed
5296 prematurely. (flag_sched_stalled_insns = -1).
5297
5298 X >= 1: Only X queued insns can be removed prematurely in each
5299 invocation. (flag_sched_stalled_insns = X).
5300
5301 Otherwise: Early queue removal is disabled.
5302 (flag_sched_stalled_insns = 0)
5303 */
5304
5305 if (! flag_sched_stalled_insns)
5306 return 0;
5307
5308 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5309 {
5310 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5311 {
5312 if (sched_verbose > 6)
5313 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5314
5315 prev_link = 0;
5316 while (link)
5317 {
5318 next_link = link->next ();
5319 insn = link->insn ();
5320 if (insn && sched_verbose > 6)
5321 print_rtl_single (sched_dump, insn);
5322
5323 memcpy (temp_state, state, dfa_state_size);
5324 if (recog_memoized (insn) < 0)
5325 /* non-negative to indicate that it's not ready
5326 to avoid infinite Q->R->Q->R... */
5327 cost = 0;
5328 else
5329 cost = state_transition (temp_state, insn);
5330
5331 if (sched_verbose >= 6)
5332 fprintf (sched_dump, "transition cost = %d\n", cost);
5333
5334 move_to_ready = false;
5335 if (cost < 0)
5336 {
5337 move_to_ready = ok_for_early_queue_removal (insn);
5338 if (move_to_ready == true)
5339 {
5340 /* move from Q to R */
5341 q_size -= 1;
5342 ready_add (ready, insn, false);
5343
5344 if (prev_link)
5345 XEXP (prev_link, 1) = next_link;
5346 else
5347 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5348
5349 free_INSN_LIST_node (link);
5350
5351 if (sched_verbose >= 2)
5352 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5353 (*current_sched_info->print_insn) (insn, 0));
5354
5355 insns_removed++;
5356 if (insns_removed == flag_sched_stalled_insns)
5357 /* Remove no more than flag_sched_stalled_insns insns
5358 from Q at a time. */
5359 return insns_removed;
5360 }
5361 }
5362
5363 if (move_to_ready == false)
5364 prev_link = link;
5365
5366 link = next_link;
5367 } /* while link */
5368 } /* if link */
5369
5370 } /* for stalls.. */
5371
5372 return insns_removed;
5373 }
5374
5375
5376 /* Print the ready list for debugging purposes.
5377 If READY_TRY is non-zero then only print insns that max_issue
5378 will consider. */
5379 static void
5380 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5381 {
5382 rtx_insn **p;
5383 int i;
5384
5385 if (ready->n_ready == 0)
5386 {
5387 fprintf (sched_dump, "\n");
5388 return;
5389 }
5390
5391 p = ready_lastpos (ready);
5392 for (i = 0; i < ready->n_ready; i++)
5393 {
5394 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5395 continue;
5396
5397 fprintf (sched_dump, " %s:%d",
5398 (*current_sched_info->print_insn) (p[i], 0),
5399 INSN_LUID (p[i]));
5400 if (sched_pressure != SCHED_PRESSURE_NONE)
5401 fprintf (sched_dump, "(cost=%d",
5402 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5403 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5404 if (INSN_TICK (p[i]) > clock_var)
5405 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5406 if (sched_pressure == SCHED_PRESSURE_MODEL)
5407 fprintf (sched_dump, ":idx=%d",
5408 model_index (p[i]));
5409 if (sched_pressure != SCHED_PRESSURE_NONE)
5410 fprintf (sched_dump, ")");
5411 }
5412 fprintf (sched_dump, "\n");
5413 }
5414
5415 /* Print the ready list. Callable from debugger. */
5416 static void
5417 debug_ready_list (struct ready_list *ready)
5418 {
5419 debug_ready_list_1 (ready, NULL);
5420 }
5421
5422 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5423 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5424 replaces the epilogue note in the correct basic block. */
5425 void
5426 reemit_notes (rtx_insn *insn)
5427 {
5428 rtx note;
5429 rtx_insn *last = insn;
5430
5431 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5432 {
5433 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5434 {
5435 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5436
5437 last = emit_note_before (note_type, last);
5438 remove_note (insn, note);
5439 }
5440 }
5441 }
5442
5443 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5444 static void
5445 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5446 {
5447 if (PREV_INSN (insn) != last)
5448 {
5449 basic_block bb;
5450 rtx_insn *note;
5451 int jump_p = 0;
5452
5453 bb = BLOCK_FOR_INSN (insn);
5454
5455 /* BB_HEAD is either LABEL or NOTE. */
5456 gcc_assert (BB_HEAD (bb) != insn);
5457
5458 if (BB_END (bb) == insn)
5459 /* If this is last instruction in BB, move end marker one
5460 instruction up. */
5461 {
5462 /* Jumps are always placed at the end of basic block. */
5463 jump_p = control_flow_insn_p (insn);
5464
5465 gcc_assert (!jump_p
5466 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5467 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5468 || (common_sched_info->sched_pass_id
5469 == SCHED_EBB_PASS));
5470
5471 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5472
5473 BB_END (bb) = PREV_INSN (insn);
5474 }
5475
5476 gcc_assert (BB_END (bb) != last);
5477
5478 if (jump_p)
5479 /* We move the block note along with jump. */
5480 {
5481 gcc_assert (nt);
5482
5483 note = NEXT_INSN (insn);
5484 while (NOTE_NOT_BB_P (note) && note != nt)
5485 note = NEXT_INSN (note);
5486
5487 if (note != nt
5488 && (LABEL_P (note)
5489 || BARRIER_P (note)))
5490 note = NEXT_INSN (note);
5491
5492 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5493 }
5494 else
5495 note = insn;
5496
5497 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5498 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5499
5500 SET_NEXT_INSN (note) = NEXT_INSN (last);
5501 SET_PREV_INSN (NEXT_INSN (last)) = note;
5502
5503 SET_NEXT_INSN (last) = insn;
5504 SET_PREV_INSN (insn) = last;
5505
5506 bb = BLOCK_FOR_INSN (last);
5507
5508 if (jump_p)
5509 {
5510 fix_jump_move (insn);
5511
5512 if (BLOCK_FOR_INSN (insn) != bb)
5513 move_block_after_check (insn);
5514
5515 gcc_assert (BB_END (bb) == last);
5516 }
5517
5518 df_insn_change_bb (insn, bb);
5519
5520 /* Update BB_END, if needed. */
5521 if (BB_END (bb) == last)
5522 BB_END (bb) = insn;
5523 }
5524
5525 SCHED_GROUP_P (insn) = 0;
5526 }
5527
5528 /* Return true if scheduling INSN will finish current clock cycle. */
5529 static bool
5530 insn_finishes_cycle_p (rtx_insn *insn)
5531 {
5532 if (SCHED_GROUP_P (insn))
5533 /* After issuing INSN, rest of the sched_group will be forced to issue
5534 in order. Don't make any plans for the rest of cycle. */
5535 return true;
5536
5537 /* Finishing the block will, apparently, finish the cycle. */
5538 if (current_sched_info->insn_finishes_block_p
5539 && current_sched_info->insn_finishes_block_p (insn))
5540 return true;
5541
5542 return false;
5543 }
5544
5545 /* Functions to model cache auto-prefetcher.
5546
5547 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5548 memory prefetches if it sees instructions with consequitive memory accesses
5549 in the instruction stream. Details of such hardware units are not published,
5550 so we can only guess what exactly is going on there.
5551 In the scheduler, we model abstract auto-prefetcher. If there are memory
5552 insns in the ready list (or the queue) that have same memory base, but
5553 different offsets, then we delay the insns with larger offsets until insns
5554 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5555 is "1", then we look at the ready list; if it is N>1, then we also look
5556 through N-1 queue entries.
5557 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5558 among its heuristics.
5559 Param value of "-1" disables modelling of the auto-prefetcher. */
5560
5561 /* Initialize autoprefetcher model data for INSN. */
5562 static void
5563 autopref_multipass_init (const rtx_insn *insn, int write)
5564 {
5565 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5566
5567 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5568 data->base = NULL_RTX;
5569 data->offset = 0;
5570 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5571 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5572
5573 rtx set = single_set (insn);
5574 if (set == NULL_RTX)
5575 return;
5576
5577 rtx mem = write ? SET_DEST (set) : SET_SRC (set);
5578 if (!MEM_P (mem))
5579 return;
5580
5581 struct address_info info;
5582 decompose_mem_address (&info, mem);
5583
5584 /* TODO: Currently only (base+const) addressing is supported. */
5585 if (info.base == NULL || !REG_P (*info.base)
5586 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5587 return;
5588
5589 /* This insn is relevant for auto-prefetcher. */
5590 data->base = *info.base;
5591 data->offset = info.disp ? INTVAL (*info.disp) : 0;
5592 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5593 }
5594
5595 /* Helper function for rank_for_schedule sorting. */
5596 static int
5597 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5598 {
5599 for (int write = 0; write < 2; ++write)
5600 {
5601 autopref_multipass_data_t data1
5602 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5603 autopref_multipass_data_t data2
5604 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5605
5606 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5607 autopref_multipass_init (insn1, write);
5608 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5609 continue;
5610
5611 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5612 autopref_multipass_init (insn2, write);
5613 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5614 continue;
5615
5616 if (!rtx_equal_p (data1->base, data2->base))
5617 continue;
5618
5619 return data1->offset - data2->offset;
5620 }
5621
5622 return 0;
5623 }
5624
5625 /* True if header of debug dump was printed. */
5626 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5627
5628 /* Helper for autopref_multipass_dfa_lookahead_guard.
5629 Return "1" if INSN1 should be delayed in favor of INSN2. */
5630 static int
5631 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5632 const rtx_insn *insn2, int write)
5633 {
5634 autopref_multipass_data_t data1
5635 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5636 autopref_multipass_data_t data2
5637 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5638
5639 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5640 autopref_multipass_init (insn2, write);
5641 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5642 return 0;
5643
5644 if (rtx_equal_p (data1->base, data2->base)
5645 && data1->offset > data2->offset)
5646 {
5647 if (sched_verbose >= 2)
5648 {
5649 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5650 {
5651 fprintf (sched_dump,
5652 ";;\t\tnot trying in max_issue due to autoprefetch "
5653 "model: ");
5654 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5655 }
5656
5657 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5658 }
5659
5660 return 1;
5661 }
5662
5663 return 0;
5664 }
5665
5666 /* General note:
5667
5668 We could have also hooked autoprefetcher model into
5669 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5670 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5671 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5672 unblocked). We don't bother about this yet because target of interest
5673 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5674
5675 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5676 Return "1" if INSN1 should not be considered in max_issue due to
5677 auto-prefetcher considerations. */
5678 int
5679 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5680 {
5681 int r = 0;
5682
5683 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5684 return 0;
5685
5686 if (sched_verbose >= 2 && ready_index == 0)
5687 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5688
5689 for (int write = 0; write < 2; ++write)
5690 {
5691 autopref_multipass_data_t data1
5692 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5693
5694 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5695 autopref_multipass_init (insn1, write);
5696 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5697 continue;
5698
5699 if (ready_index == 0
5700 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5701 /* We allow only a single delay on priviledged instructions.
5702 Doing otherwise would cause infinite loop. */
5703 {
5704 if (sched_verbose >= 2)
5705 {
5706 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5707 {
5708 fprintf (sched_dump,
5709 ";;\t\tnot trying in max_issue due to autoprefetch "
5710 "model: ");
5711 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5712 }
5713
5714 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5715 }
5716 continue;
5717 }
5718
5719 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5720 {
5721 rtx_insn *insn2 = get_ready_element (i2);
5722 if (insn1 == insn2)
5723 continue;
5724 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5725 if (r)
5726 {
5727 if (ready_index == 0)
5728 {
5729 r = -1;
5730 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5731 }
5732 goto finish;
5733 }
5734 }
5735
5736 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5737 continue;
5738
5739 /* Everything from the current queue slot should have been moved to
5740 the ready list. */
5741 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5742
5743 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5744 if (n_stalls > max_insn_queue_index)
5745 n_stalls = max_insn_queue_index;
5746
5747 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5748 {
5749 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5750 link != NULL_RTX;
5751 link = link->next ())
5752 {
5753 rtx_insn *insn2 = link->insn ();
5754 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5755 write);
5756 if (r)
5757 {
5758 /* Queue INSN1 until INSN2 can issue. */
5759 r = -stalls;
5760 if (ready_index == 0)
5761 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5762 goto finish;
5763 }
5764 }
5765 }
5766 }
5767
5768 finish:
5769 if (sched_verbose >= 2
5770 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5771 && (ready_index == ready.n_ready - 1 || r < 0))
5772 /* This does not /always/ trigger. We don't output EOL if the last
5773 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5774 called. We can live with this. */
5775 fprintf (sched_dump, "\n");
5776
5777 return r;
5778 }
5779
5780 /* Define type for target data used in multipass scheduling. */
5781 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5782 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5783 #endif
5784 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5785
5786 /* The following structure describe an entry of the stack of choices. */
5787 struct choice_entry
5788 {
5789 /* Ordinal number of the issued insn in the ready queue. */
5790 int index;
5791 /* The number of the rest insns whose issues we should try. */
5792 int rest;
5793 /* The number of issued essential insns. */
5794 int n;
5795 /* State after issuing the insn. */
5796 state_t state;
5797 /* Target-specific data. */
5798 first_cycle_multipass_data_t target_data;
5799 };
5800
5801 /* The following array is used to implement a stack of choices used in
5802 function max_issue. */
5803 static struct choice_entry *choice_stack;
5804
5805 /* This holds the value of the target dfa_lookahead hook. */
5806 int dfa_lookahead;
5807
5808 /* The following variable value is maximal number of tries of issuing
5809 insns for the first cycle multipass insn scheduling. We define
5810 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5811 need this constraint if all real insns (with non-negative codes)
5812 had reservations because in this case the algorithm complexity is
5813 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5814 might be incomplete and such insn might occur. For such
5815 descriptions, the complexity of algorithm (without the constraint)
5816 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5817 static int max_lookahead_tries;
5818
5819 /* The following function returns maximal (or close to maximal) number
5820 of insns which can be issued on the same cycle and one of which
5821 insns is insns with the best rank (the first insn in READY). To
5822 make this function tries different samples of ready insns. READY
5823 is current queue `ready'. Global array READY_TRY reflects what
5824 insns are already issued in this try. The function stops immediately,
5825 if it reached the such a solution, that all instruction can be issued.
5826 INDEX will contain index of the best insn in READY. The following
5827 function is used only for first cycle multipass scheduling.
5828
5829 PRIVILEGED_N >= 0
5830
5831 This function expects recognized insns only. All USEs,
5832 CLOBBERs, etc must be filtered elsewhere. */
5833 int
5834 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5835 bool first_cycle_insn_p, int *index)
5836 {
5837 int n, i, all, n_ready, best, delay, tries_num;
5838 int more_issue;
5839 struct choice_entry *top;
5840 rtx_insn *insn;
5841
5842 if (sched_fusion)
5843 return 0;
5844
5845 n_ready = ready->n_ready;
5846 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5847 && privileged_n <= n_ready);
5848
5849 /* Init MAX_LOOKAHEAD_TRIES. */
5850 if (max_lookahead_tries == 0)
5851 {
5852 max_lookahead_tries = 100;
5853 for (i = 0; i < issue_rate; i++)
5854 max_lookahead_tries *= dfa_lookahead;
5855 }
5856
5857 /* Init max_points. */
5858 more_issue = issue_rate - cycle_issued_insns;
5859 gcc_assert (more_issue >= 0);
5860
5861 /* The number of the issued insns in the best solution. */
5862 best = 0;
5863
5864 top = choice_stack;
5865
5866 /* Set initial state of the search. */
5867 memcpy (top->state, state, dfa_state_size);
5868 top->rest = dfa_lookahead;
5869 top->n = 0;
5870 if (targetm.sched.first_cycle_multipass_begin)
5871 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5872 ready_try, n_ready,
5873 first_cycle_insn_p);
5874
5875 /* Count the number of the insns to search among. */
5876 for (all = i = 0; i < n_ready; i++)
5877 if (!ready_try [i])
5878 all++;
5879
5880 if (sched_verbose >= 2)
5881 {
5882 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5883 debug_ready_list_1 (ready, ready_try);
5884 }
5885
5886 /* I is the index of the insn to try next. */
5887 i = 0;
5888 tries_num = 0;
5889 for (;;)
5890 {
5891 if (/* If we've reached a dead end or searched enough of what we have
5892 been asked... */
5893 top->rest == 0
5894 /* or have nothing else to try... */
5895 || i >= n_ready
5896 /* or should not issue more. */
5897 || top->n >= more_issue)
5898 {
5899 /* ??? (... || i == n_ready). */
5900 gcc_assert (i <= n_ready);
5901
5902 /* We should not issue more than issue_rate instructions. */
5903 gcc_assert (top->n <= more_issue);
5904
5905 if (top == choice_stack)
5906 break;
5907
5908 if (best < top - choice_stack)
5909 {
5910 if (privileged_n)
5911 {
5912 n = privileged_n;
5913 /* Try to find issued privileged insn. */
5914 while (n && !ready_try[--n])
5915 ;
5916 }
5917
5918 if (/* If all insns are equally good... */
5919 privileged_n == 0
5920 /* Or a privileged insn will be issued. */
5921 || ready_try[n])
5922 /* Then we have a solution. */
5923 {
5924 best = top - choice_stack;
5925 /* This is the index of the insn issued first in this
5926 solution. */
5927 *index = choice_stack [1].index;
5928 if (top->n == more_issue || best == all)
5929 break;
5930 }
5931 }
5932
5933 /* Set ready-list index to point to the last insn
5934 ('i++' below will advance it to the next insn). */
5935 i = top->index;
5936
5937 /* Backtrack. */
5938 ready_try [i] = 0;
5939
5940 if (targetm.sched.first_cycle_multipass_backtrack)
5941 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5942 ready_try, n_ready);
5943
5944 top--;
5945 memcpy (state, top->state, dfa_state_size);
5946 }
5947 else if (!ready_try [i])
5948 {
5949 tries_num++;
5950 if (tries_num > max_lookahead_tries)
5951 break;
5952 insn = ready_element (ready, i);
5953 delay = state_transition (state, insn);
5954 if (delay < 0)
5955 {
5956 if (state_dead_lock_p (state)
5957 || insn_finishes_cycle_p (insn))
5958 /* We won't issue any more instructions in the next
5959 choice_state. */
5960 top->rest = 0;
5961 else
5962 top->rest--;
5963
5964 n = top->n;
5965 if (memcmp (top->state, state, dfa_state_size) != 0)
5966 n++;
5967
5968 /* Advance to the next choice_entry. */
5969 top++;
5970 /* Initialize it. */
5971 top->rest = dfa_lookahead;
5972 top->index = i;
5973 top->n = n;
5974 memcpy (top->state, state, dfa_state_size);
5975 ready_try [i] = 1;
5976
5977 if (targetm.sched.first_cycle_multipass_issue)
5978 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5979 ready_try, n_ready,
5980 insn,
5981 &((top - 1)
5982 ->target_data));
5983
5984 i = -1;
5985 }
5986 }
5987
5988 /* Increase ready-list index. */
5989 i++;
5990 }
5991
5992 if (targetm.sched.first_cycle_multipass_end)
5993 targetm.sched.first_cycle_multipass_end (best != 0
5994 ? &choice_stack[1].target_data
5995 : NULL);
5996
5997 /* Restore the original state of the DFA. */
5998 memcpy (state, choice_stack->state, dfa_state_size);
5999
6000 return best;
6001 }
6002
6003 /* The following function chooses insn from READY and modifies
6004 READY. The following function is used only for first
6005 cycle multipass scheduling.
6006 Return:
6007 -1 if cycle should be advanced,
6008 0 if INSN_PTR is set to point to the desirable insn,
6009 1 if choose_ready () should be restarted without advancing the cycle. */
6010 static int
6011 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6012 rtx_insn **insn_ptr)
6013 {
6014 if (dbg_cnt (sched_insn) == false)
6015 {
6016 if (nonscheduled_insns_begin == NULL_RTX)
6017 nonscheduled_insns_begin = current_sched_info->prev_head;
6018
6019 rtx_insn *insn = first_nonscheduled_insn ();
6020
6021 if (QUEUE_INDEX (insn) == QUEUE_READY)
6022 /* INSN is in the ready_list. */
6023 {
6024 ready_remove_insn (insn);
6025 *insn_ptr = insn;
6026 return 0;
6027 }
6028
6029 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6030 gcc_assert (QUEUE_INDEX (insn) >= 0);
6031 return -1;
6032 }
6033
6034 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6035 || DEBUG_INSN_P (ready_element (ready, 0)))
6036 {
6037 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6038 *insn_ptr = ready_remove_first_dispatch (ready);
6039 else
6040 *insn_ptr = ready_remove_first (ready);
6041
6042 return 0;
6043 }
6044 else
6045 {
6046 /* Try to choose the best insn. */
6047 int index = 0, i;
6048 rtx_insn *insn;
6049
6050 insn = ready_element (ready, 0);
6051 if (INSN_CODE (insn) < 0)
6052 {
6053 *insn_ptr = ready_remove_first (ready);
6054 return 0;
6055 }
6056
6057 /* Filter the search space. */
6058 for (i = 0; i < ready->n_ready; i++)
6059 {
6060 ready_try[i] = 0;
6061
6062 insn = ready_element (ready, i);
6063
6064 /* If this insn is recognizable we should have already
6065 recognized it earlier.
6066 ??? Not very clear where this is supposed to be done.
6067 See dep_cost_1. */
6068 gcc_checking_assert (INSN_CODE (insn) >= 0
6069 || recog_memoized (insn) < 0);
6070 if (INSN_CODE (insn) < 0)
6071 {
6072 /* Non-recognized insns at position 0 are handled above. */
6073 gcc_assert (i > 0);
6074 ready_try[i] = 1;
6075 continue;
6076 }
6077
6078 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6079 {
6080 ready_try[i]
6081 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6082 (insn, i));
6083
6084 if (ready_try[i] < 0)
6085 /* Queue instruction for several cycles.
6086 We need to restart choose_ready as we have changed
6087 the ready list. */
6088 {
6089 change_queue_index (insn, -ready_try[i]);
6090 return 1;
6091 }
6092
6093 /* Make sure that we didn't end up with 0'th insn filtered out.
6094 Don't be tempted to make life easier for backends and just
6095 requeue 0'th insn if (ready_try[0] == 0) and restart
6096 choose_ready. Backends should be very considerate about
6097 requeueing instructions -- especially the highest priority
6098 one at position 0. */
6099 gcc_assert (ready_try[i] == 0 || i > 0);
6100 if (ready_try[i])
6101 continue;
6102 }
6103
6104 gcc_assert (ready_try[i] == 0);
6105 /* INSN made it through the scrutiny of filters! */
6106 }
6107
6108 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6109 {
6110 *insn_ptr = ready_remove_first (ready);
6111 if (sched_verbose >= 4)
6112 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6113 (*current_sched_info->print_insn) (*insn_ptr, 0));
6114 return 0;
6115 }
6116 else
6117 {
6118 if (sched_verbose >= 4)
6119 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6120 (*current_sched_info->print_insn)
6121 (ready_element (ready, index), 0));
6122
6123 *insn_ptr = ready_remove (ready, index);
6124 return 0;
6125 }
6126 }
6127 }
6128
6129 /* This function is called when we have successfully scheduled a
6130 block. It uses the schedule stored in the scheduled_insns vector
6131 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6132 append the scheduled insns; TAIL is the insn after the scheduled
6133 block. TARGET_BB is the argument passed to schedule_block. */
6134
6135 static void
6136 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6137 {
6138 unsigned int i;
6139 rtx_insn *insn;
6140
6141 last_scheduled_insn = prev_head;
6142 for (i = 0;
6143 scheduled_insns.iterate (i, &insn);
6144 i++)
6145 {
6146 if (control_flow_insn_p (last_scheduled_insn)
6147 || current_sched_info->advance_target_bb (*target_bb, insn))
6148 {
6149 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6150
6151 if (sched_verbose)
6152 {
6153 rtx_insn *x;
6154
6155 x = next_real_insn (last_scheduled_insn);
6156 gcc_assert (x);
6157 dump_new_block_header (1, *target_bb, x, tail);
6158 }
6159
6160 last_scheduled_insn = bb_note (*target_bb);
6161 }
6162
6163 if (current_sched_info->begin_move_insn)
6164 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6165 move_insn (insn, last_scheduled_insn,
6166 current_sched_info->next_tail);
6167 if (!DEBUG_INSN_P (insn))
6168 reemit_notes (insn);
6169 last_scheduled_insn = insn;
6170 }
6171
6172 scheduled_insns.truncate (0);
6173 }
6174
6175 /* Examine all insns on the ready list and queue those which can't be
6176 issued in this cycle. TEMP_STATE is temporary scheduler state we
6177 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6178 have been issued for the current cycle, which means it is valid to
6179 issue an asm statement.
6180
6181 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6182 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6183 we only leave insns which have an INSN_EXACT_TICK. */
6184
6185 static void
6186 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6187 bool shadows_only_p, bool modulo_epilogue_p)
6188 {
6189 int i, pass;
6190 bool sched_group_found = false;
6191 int min_cost_group = 1;
6192
6193 if (sched_fusion)
6194 return;
6195
6196 for (i = 0; i < ready.n_ready; i++)
6197 {
6198 rtx_insn *insn = ready_element (&ready, i);
6199 if (SCHED_GROUP_P (insn))
6200 {
6201 sched_group_found = true;
6202 break;
6203 }
6204 }
6205
6206 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6207 such an insn first and note its cost, then schedule all other insns
6208 for one cycle later. */
6209 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6210 {
6211 int n = ready.n_ready;
6212 for (i = 0; i < n; i++)
6213 {
6214 rtx_insn *insn = ready_element (&ready, i);
6215 int cost = 0;
6216 const char *reason = "resource conflict";
6217
6218 if (DEBUG_INSN_P (insn))
6219 continue;
6220
6221 if (sched_group_found && !SCHED_GROUP_P (insn))
6222 {
6223 if (pass == 0)
6224 continue;
6225 cost = min_cost_group;
6226 reason = "not in sched group";
6227 }
6228 else if (modulo_epilogue_p
6229 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6230 {
6231 cost = max_insn_queue_index;
6232 reason = "not an epilogue insn";
6233 }
6234 else if (shadows_only_p && !SHADOW_P (insn))
6235 {
6236 cost = 1;
6237 reason = "not a shadow";
6238 }
6239 else if (recog_memoized (insn) < 0)
6240 {
6241 if (!first_cycle_insn_p
6242 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6243 || asm_noperands (PATTERN (insn)) >= 0))
6244 cost = 1;
6245 reason = "asm";
6246 }
6247 else if (sched_pressure != SCHED_PRESSURE_NONE)
6248 {
6249 if (sched_pressure == SCHED_PRESSURE_MODEL
6250 && INSN_TICK (insn) <= clock_var)
6251 {
6252 memcpy (temp_state, curr_state, dfa_state_size);
6253 if (state_transition (temp_state, insn) >= 0)
6254 INSN_TICK (insn) = clock_var + 1;
6255 }
6256 cost = 0;
6257 }
6258 else
6259 {
6260 int delay_cost = 0;
6261
6262 if (delay_htab)
6263 {
6264 struct delay_pair *delay_entry;
6265 delay_entry
6266 = delay_htab->find_with_hash (insn,
6267 htab_hash_pointer (insn));
6268 while (delay_entry && delay_cost == 0)
6269 {
6270 delay_cost = estimate_shadow_tick (delay_entry);
6271 if (delay_cost > max_insn_queue_index)
6272 delay_cost = max_insn_queue_index;
6273 delay_entry = delay_entry->next_same_i1;
6274 }
6275 }
6276
6277 memcpy (temp_state, curr_state, dfa_state_size);
6278 cost = state_transition (temp_state, insn);
6279 if (cost < 0)
6280 cost = 0;
6281 else if (cost == 0)
6282 cost = 1;
6283 if (cost < delay_cost)
6284 {
6285 cost = delay_cost;
6286 reason = "shadow tick";
6287 }
6288 }
6289 if (cost >= 1)
6290 {
6291 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6292 min_cost_group = cost;
6293 ready_remove (&ready, i);
6294 queue_insn (insn, cost, reason);
6295 if (i + 1 < n)
6296 break;
6297 }
6298 }
6299 if (i == n)
6300 pass++;
6301 }
6302 }
6303
6304 /* Called when we detect that the schedule is impossible. We examine the
6305 backtrack queue to find the earliest insn that caused this condition. */
6306
6307 static struct haifa_saved_data *
6308 verify_shadows (void)
6309 {
6310 struct haifa_saved_data *save, *earliest_fail = NULL;
6311 for (save = backtrack_queue; save; save = save->next)
6312 {
6313 int t;
6314 struct delay_pair *pair = save->delay_pair;
6315 rtx_insn *i1 = pair->i1;
6316
6317 for (; pair; pair = pair->next_same_i1)
6318 {
6319 rtx_insn *i2 = pair->i2;
6320
6321 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6322 continue;
6323
6324 t = INSN_TICK (i1) + pair_delay (pair);
6325 if (t < clock_var)
6326 {
6327 if (sched_verbose >= 2)
6328 fprintf (sched_dump,
6329 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6330 ", not ready\n",
6331 INSN_UID (pair->i1), INSN_UID (pair->i2),
6332 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6333 earliest_fail = save;
6334 break;
6335 }
6336 if (QUEUE_INDEX (i2) >= 0)
6337 {
6338 int queued_for = INSN_TICK (i2);
6339
6340 if (t < queued_for)
6341 {
6342 if (sched_verbose >= 2)
6343 fprintf (sched_dump,
6344 ";;\t\tfailed delay requirements for %d/%d"
6345 " (%d->%d), queued too late\n",
6346 INSN_UID (pair->i1), INSN_UID (pair->i2),
6347 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6348 earliest_fail = save;
6349 break;
6350 }
6351 }
6352 }
6353 }
6354
6355 return earliest_fail;
6356 }
6357
6358 /* Print instructions together with useful scheduling information between
6359 HEAD and TAIL (inclusive). */
6360 static void
6361 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6362 {
6363 fprintf (sched_dump, ";;\t| insn | prio |\n");
6364
6365 rtx_insn *next_tail = NEXT_INSN (tail);
6366 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6367 {
6368 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6369 const char *pattern = (NOTE_P (insn)
6370 ? "note"
6371 : str_pattern_slim (PATTERN (insn)));
6372
6373 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6374 INSN_UID (insn), priority, pattern);
6375
6376 if (sched_verbose >= 4)
6377 {
6378 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6379 fprintf (sched_dump, "nothing");
6380 else
6381 print_reservation (sched_dump, insn);
6382 }
6383 fprintf (sched_dump, "\n");
6384 }
6385 }
6386
6387 /* Use forward list scheduling to rearrange insns of block pointed to by
6388 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6389 region. */
6390
6391 bool
6392 schedule_block (basic_block *target_bb, state_t init_state)
6393 {
6394 int i;
6395 bool success = modulo_ii == 0;
6396 struct sched_block_state ls;
6397 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6398 int sort_p, advance, start_clock_var;
6399
6400 /* Head/tail info for this block. */
6401 rtx_insn *prev_head = current_sched_info->prev_head;
6402 rtx_insn *next_tail = current_sched_info->next_tail;
6403 rtx_insn *head = NEXT_INSN (prev_head);
6404 rtx_insn *tail = PREV_INSN (next_tail);
6405
6406 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6407 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6408 find_modifiable_mems (head, tail);
6409
6410 /* We used to have code to avoid getting parameters moved from hard
6411 argument registers into pseudos.
6412
6413 However, it was removed when it proved to be of marginal benefit
6414 and caused problems because schedule_block and compute_forward_dependences
6415 had different notions of what the "head" insn was. */
6416
6417 gcc_assert (head != tail || INSN_P (head));
6418
6419 haifa_recovery_bb_recently_added_p = false;
6420
6421 backtrack_queue = NULL;
6422
6423 /* Debug info. */
6424 if (sched_verbose)
6425 {
6426 dump_new_block_header (0, *target_bb, head, tail);
6427
6428 if (sched_verbose >= 2)
6429 {
6430 dump_insn_stream (head, tail);
6431 memset (&rank_for_schedule_stats, 0,
6432 sizeof (rank_for_schedule_stats));
6433 }
6434 }
6435
6436 if (init_state == NULL)
6437 state_reset (curr_state);
6438 else
6439 memcpy (curr_state, init_state, dfa_state_size);
6440
6441 /* Clear the ready list. */
6442 ready.first = ready.veclen - 1;
6443 ready.n_ready = 0;
6444 ready.n_debug = 0;
6445
6446 /* It is used for first cycle multipass scheduling. */
6447 temp_state = alloca (dfa_state_size);
6448
6449 if (targetm.sched.init)
6450 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6451
6452 /* We start inserting insns after PREV_HEAD. */
6453 last_scheduled_insn = prev_head;
6454 last_nondebug_scheduled_insn = NULL_RTX;
6455 nonscheduled_insns_begin = NULL;
6456
6457 gcc_assert ((NOTE_P (last_scheduled_insn)
6458 || DEBUG_INSN_P (last_scheduled_insn))
6459 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6460
6461 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6462 queue. */
6463 q_ptr = 0;
6464 q_size = 0;
6465
6466 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6467 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6468
6469 /* Start just before the beginning of time. */
6470 clock_var = -1;
6471
6472 /* We need queue and ready lists and clock_var be initialized
6473 in try_ready () (which is called through init_ready_list ()). */
6474 (*current_sched_info->init_ready_list) ();
6475
6476 if (sched_pressure)
6477 sched_pressure_start_bb (*target_bb);
6478
6479 /* The algorithm is O(n^2) in the number of ready insns at any given
6480 time in the worst case. Before reload we are more likely to have
6481 big lists so truncate them to a reasonable size. */
6482 if (!reload_completed
6483 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6484 {
6485 ready_sort (&ready);
6486
6487 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6488 If there are debug insns, we know they're first. */
6489 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6490 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6491 break;
6492
6493 if (sched_verbose >= 2)
6494 {
6495 fprintf (sched_dump,
6496 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
6497 fprintf (sched_dump,
6498 ";;\t\t before reload => truncated to %d insns\n", i);
6499 }
6500
6501 /* Delay all insns past it for 1 cycle. If debug counter is
6502 activated make an exception for the insn right after
6503 nonscheduled_insns_begin. */
6504 {
6505 rtx_insn *skip_insn;
6506
6507 if (dbg_cnt (sched_insn) == false)
6508 skip_insn = first_nonscheduled_insn ();
6509 else
6510 skip_insn = NULL;
6511
6512 while (i < ready.n_ready)
6513 {
6514 rtx_insn *insn;
6515
6516 insn = ready_remove (&ready, i);
6517
6518 if (insn != skip_insn)
6519 queue_insn (insn, 1, "list truncated");
6520 }
6521 if (skip_insn)
6522 ready_add (&ready, skip_insn, true);
6523 }
6524 }
6525
6526 /* Now we can restore basic block notes and maintain precise cfg. */
6527 restore_bb_notes (*target_bb);
6528
6529 last_clock_var = -1;
6530
6531 advance = 0;
6532
6533 gcc_assert (scheduled_insns.length () == 0);
6534 sort_p = TRUE;
6535 must_backtrack = false;
6536 modulo_insns_scheduled = 0;
6537
6538 ls.modulo_epilogue = false;
6539 ls.first_cycle_insn_p = true;
6540
6541 /* Loop until all the insns in BB are scheduled. */
6542 while ((*current_sched_info->schedule_more_p) ())
6543 {
6544 perform_replacements_new_cycle ();
6545 do
6546 {
6547 start_clock_var = clock_var;
6548
6549 clock_var++;
6550
6551 advance_one_cycle ();
6552
6553 /* Add to the ready list all pending insns that can be issued now.
6554 If there are no ready insns, increment clock until one
6555 is ready and add all pending insns at that point to the ready
6556 list. */
6557 queue_to_ready (&ready);
6558
6559 gcc_assert (ready.n_ready);
6560
6561 if (sched_verbose >= 2)
6562 {
6563 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6564 debug_ready_list (&ready);
6565 }
6566 advance -= clock_var - start_clock_var;
6567 }
6568 while (advance > 0);
6569
6570 if (ls.modulo_epilogue)
6571 {
6572 int stage = clock_var / modulo_ii;
6573 if (stage > modulo_last_stage * 2 + 2)
6574 {
6575 if (sched_verbose >= 2)
6576 fprintf (sched_dump,
6577 ";;\t\tmodulo scheduled succeeded at II %d\n",
6578 modulo_ii);
6579 success = true;
6580 goto end_schedule;
6581 }
6582 }
6583 else if (modulo_ii > 0)
6584 {
6585 int stage = clock_var / modulo_ii;
6586 if (stage > modulo_max_stages)
6587 {
6588 if (sched_verbose >= 2)
6589 fprintf (sched_dump,
6590 ";;\t\tfailing schedule due to excessive stages\n");
6591 goto end_schedule;
6592 }
6593 if (modulo_n_insns == modulo_insns_scheduled
6594 && stage > modulo_last_stage)
6595 {
6596 if (sched_verbose >= 2)
6597 fprintf (sched_dump,
6598 ";;\t\tfound kernel after %d stages, II %d\n",
6599 stage, modulo_ii);
6600 ls.modulo_epilogue = true;
6601 }
6602 }
6603
6604 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6605 if (ready.n_ready == 0)
6606 continue;
6607 if (must_backtrack)
6608 goto do_backtrack;
6609
6610 ls.shadows_only_p = false;
6611 cycle_issued_insns = 0;
6612 ls.can_issue_more = issue_rate;
6613 for (;;)
6614 {
6615 rtx_insn *insn;
6616 int cost;
6617 bool asm_p;
6618
6619 if (sort_p && ready.n_ready > 0)
6620 {
6621 /* Sort the ready list based on priority. This must be
6622 done every iteration through the loop, as schedule_insn
6623 may have readied additional insns that will not be
6624 sorted correctly. */
6625 ready_sort (&ready);
6626
6627 if (sched_verbose >= 2)
6628 {
6629 fprintf (sched_dump,
6630 ";;\t\tReady list after ready_sort: ");
6631 debug_ready_list (&ready);
6632 }
6633 }
6634
6635 /* We don't want md sched reorder to even see debug isns, so put
6636 them out right away. */
6637 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6638 && (*current_sched_info->schedule_more_p) ())
6639 {
6640 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6641 {
6642 rtx_insn *insn = ready_remove_first (&ready);
6643 gcc_assert (DEBUG_INSN_P (insn));
6644 (*current_sched_info->begin_schedule_ready) (insn);
6645 scheduled_insns.safe_push (insn);
6646 last_scheduled_insn = insn;
6647 advance = schedule_insn (insn);
6648 gcc_assert (advance == 0);
6649 if (ready.n_ready > 0)
6650 ready_sort (&ready);
6651 }
6652 }
6653
6654 if (ls.first_cycle_insn_p && !ready.n_ready)
6655 break;
6656
6657 resume_after_backtrack:
6658 /* Allow the target to reorder the list, typically for
6659 better instruction bundling. */
6660 if (sort_p
6661 && (ready.n_ready == 0
6662 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6663 {
6664 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6665 ls.can_issue_more
6666 = targetm.sched.reorder (sched_dump, sched_verbose,
6667 ready_lastpos (&ready),
6668 &ready.n_ready, clock_var);
6669 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6670 ls.can_issue_more
6671 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6672 ready.n_ready
6673 ? ready_lastpos (&ready) : NULL,
6674 &ready.n_ready, clock_var);
6675 }
6676
6677 restart_choose_ready:
6678 if (sched_verbose >= 2)
6679 {
6680 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6681 clock_var);
6682 debug_ready_list (&ready);
6683 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6684 print_curr_reg_pressure ();
6685 }
6686
6687 if (ready.n_ready == 0
6688 && ls.can_issue_more
6689 && reload_completed)
6690 {
6691 /* Allow scheduling insns directly from the queue in case
6692 there's nothing better to do (ready list is empty) but
6693 there are still vacant dispatch slots in the current cycle. */
6694 if (sched_verbose >= 6)
6695 fprintf (sched_dump,";;\t\tSecond chance\n");
6696 memcpy (temp_state, curr_state, dfa_state_size);
6697 if (early_queue_to_ready (temp_state, &ready))
6698 ready_sort (&ready);
6699 }
6700
6701 if (ready.n_ready == 0
6702 || !ls.can_issue_more
6703 || state_dead_lock_p (curr_state)
6704 || !(*current_sched_info->schedule_more_p) ())
6705 break;
6706
6707 /* Select and remove the insn from the ready list. */
6708 if (sort_p)
6709 {
6710 int res;
6711
6712 insn = NULL;
6713 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6714
6715 if (res < 0)
6716 /* Finish cycle. */
6717 break;
6718 if (res > 0)
6719 goto restart_choose_ready;
6720
6721 gcc_assert (insn != NULL_RTX);
6722 }
6723 else
6724 insn = ready_remove_first (&ready);
6725
6726 if (sched_pressure != SCHED_PRESSURE_NONE
6727 && INSN_TICK (insn) > clock_var)
6728 {
6729 ready_add (&ready, insn, true);
6730 advance = 1;
6731 break;
6732 }
6733
6734 if (targetm.sched.dfa_new_cycle
6735 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6736 insn, last_clock_var,
6737 clock_var, &sort_p))
6738 /* SORT_P is used by the target to override sorting
6739 of the ready list. This is needed when the target
6740 has modified its internal structures expecting that
6741 the insn will be issued next. As we need the insn
6742 to have the highest priority (so it will be returned by
6743 the ready_remove_first call above), we invoke
6744 ready_add (&ready, insn, true).
6745 But, still, there is one issue: INSN can be later
6746 discarded by scheduler's front end through
6747 current_sched_info->can_schedule_ready_p, hence, won't
6748 be issued next. */
6749 {
6750 ready_add (&ready, insn, true);
6751 break;
6752 }
6753
6754 sort_p = TRUE;
6755
6756 if (current_sched_info->can_schedule_ready_p
6757 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6758 /* We normally get here only if we don't want to move
6759 insn from the split block. */
6760 {
6761 TODO_SPEC (insn) = DEP_POSTPONED;
6762 goto restart_choose_ready;
6763 }
6764
6765 if (delay_htab)
6766 {
6767 /* If this insn is the first part of a delay-slot pair, record a
6768 backtrack point. */
6769 struct delay_pair *delay_entry;
6770 delay_entry
6771 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6772 if (delay_entry)
6773 {
6774 save_backtrack_point (delay_entry, ls);
6775 if (sched_verbose >= 2)
6776 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6777 }
6778 }
6779
6780 /* DECISION is made. */
6781
6782 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6783 {
6784 modulo_insns_scheduled++;
6785 modulo_last_stage = clock_var / modulo_ii;
6786 }
6787 if (TODO_SPEC (insn) & SPECULATIVE)
6788 generate_recovery_code (insn);
6789
6790 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6791 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6792
6793 /* Update counters, etc in the scheduler's front end. */
6794 (*current_sched_info->begin_schedule_ready) (insn);
6795 scheduled_insns.safe_push (insn);
6796 gcc_assert (NONDEBUG_INSN_P (insn));
6797 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6798
6799 if (recog_memoized (insn) >= 0)
6800 {
6801 memcpy (temp_state, curr_state, dfa_state_size);
6802 cost = state_transition (curr_state, insn);
6803 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6804 gcc_assert (cost < 0);
6805 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6806 cycle_issued_insns++;
6807 asm_p = false;
6808 }
6809 else
6810 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6811 || asm_noperands (PATTERN (insn)) >= 0);
6812
6813 if (targetm.sched.variable_issue)
6814 ls.can_issue_more =
6815 targetm.sched.variable_issue (sched_dump, sched_verbose,
6816 insn, ls.can_issue_more);
6817 /* A naked CLOBBER or USE generates no instruction, so do
6818 not count them against the issue rate. */
6819 else if (GET_CODE (PATTERN (insn)) != USE
6820 && GET_CODE (PATTERN (insn)) != CLOBBER)
6821 ls.can_issue_more--;
6822 advance = schedule_insn (insn);
6823
6824 if (SHADOW_P (insn))
6825 ls.shadows_only_p = true;
6826
6827 /* After issuing an asm insn we should start a new cycle. */
6828 if (advance == 0 && asm_p)
6829 advance = 1;
6830
6831 if (must_backtrack)
6832 break;
6833
6834 if (advance != 0)
6835 break;
6836
6837 ls.first_cycle_insn_p = false;
6838 if (ready.n_ready > 0)
6839 prune_ready_list (temp_state, false, ls.shadows_only_p,
6840 ls.modulo_epilogue);
6841 }
6842
6843 do_backtrack:
6844 if (!must_backtrack)
6845 for (i = 0; i < ready.n_ready; i++)
6846 {
6847 rtx_insn *insn = ready_element (&ready, i);
6848 if (INSN_EXACT_TICK (insn) == clock_var)
6849 {
6850 must_backtrack = true;
6851 clock_var++;
6852 break;
6853 }
6854 }
6855 if (must_backtrack && modulo_ii > 0)
6856 {
6857 if (modulo_backtracks_left == 0)
6858 goto end_schedule;
6859 modulo_backtracks_left--;
6860 }
6861 while (must_backtrack)
6862 {
6863 struct haifa_saved_data *failed;
6864 rtx_insn *failed_insn;
6865
6866 must_backtrack = false;
6867 failed = verify_shadows ();
6868 gcc_assert (failed);
6869
6870 failed_insn = failed->delay_pair->i1;
6871 /* Clear these queues. */
6872 perform_replacements_new_cycle ();
6873 toggle_cancelled_flags (false);
6874 unschedule_insns_until (failed_insn);
6875 while (failed != backtrack_queue)
6876 free_topmost_backtrack_point (true);
6877 restore_last_backtrack_point (&ls);
6878 if (sched_verbose >= 2)
6879 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6880 /* Delay by at least a cycle. This could cause additional
6881 backtracking. */
6882 queue_insn (failed_insn, 1, "backtracked");
6883 advance = 0;
6884 if (must_backtrack)
6885 continue;
6886 if (ready.n_ready > 0)
6887 goto resume_after_backtrack;
6888 else
6889 {
6890 if (clock_var == 0 && ls.first_cycle_insn_p)
6891 goto end_schedule;
6892 advance = 1;
6893 break;
6894 }
6895 }
6896 ls.first_cycle_insn_p = true;
6897 }
6898 if (ls.modulo_epilogue)
6899 success = true;
6900 end_schedule:
6901 if (!ls.first_cycle_insn_p || advance)
6902 advance_one_cycle ();
6903 perform_replacements_new_cycle ();
6904 if (modulo_ii > 0)
6905 {
6906 /* Once again, debug insn suckiness: they can be on the ready list
6907 even if they have unresolved dependencies. To make our view
6908 of the world consistent, remove such "ready" insns. */
6909 restart_debug_insn_loop:
6910 for (i = ready.n_ready - 1; i >= 0; i--)
6911 {
6912 rtx_insn *x;
6913
6914 x = ready_element (&ready, i);
6915 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6916 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6917 {
6918 ready_remove (&ready, i);
6919 goto restart_debug_insn_loop;
6920 }
6921 }
6922 for (i = ready.n_ready - 1; i >= 0; i--)
6923 {
6924 rtx_insn *x;
6925
6926 x = ready_element (&ready, i);
6927 resolve_dependencies (x);
6928 }
6929 for (i = 0; i <= max_insn_queue_index; i++)
6930 {
6931 rtx_insn_list *link;
6932 while ((link = insn_queue[i]) != NULL)
6933 {
6934 rtx_insn *x = link->insn ();
6935 insn_queue[i] = link->next ();
6936 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6937 free_INSN_LIST_node (link);
6938 resolve_dependencies (x);
6939 }
6940 }
6941 }
6942
6943 if (!success)
6944 undo_all_replacements ();
6945
6946 /* Debug info. */
6947 if (sched_verbose)
6948 {
6949 fprintf (sched_dump, ";;\tReady list (final): ");
6950 debug_ready_list (&ready);
6951 }
6952
6953 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6954 /* Sanity check -- queue must be empty now. Meaningless if region has
6955 multiple bbs. */
6956 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6957 else if (modulo_ii == 0)
6958 {
6959 /* We must maintain QUEUE_INDEX between blocks in region. */
6960 for (i = ready.n_ready - 1; i >= 0; i--)
6961 {
6962 rtx_insn *x;
6963
6964 x = ready_element (&ready, i);
6965 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6966 TODO_SPEC (x) = HARD_DEP;
6967 }
6968
6969 if (q_size)
6970 for (i = 0; i <= max_insn_queue_index; i++)
6971 {
6972 rtx_insn_list *link;
6973 for (link = insn_queue[i]; link; link = link->next ())
6974 {
6975 rtx_insn *x;
6976
6977 x = link->insn ();
6978 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6979 TODO_SPEC (x) = HARD_DEP;
6980 }
6981 free_INSN_LIST_list (&insn_queue[i]);
6982 }
6983 }
6984
6985 if (sched_pressure == SCHED_PRESSURE_MODEL)
6986 model_end_schedule ();
6987
6988 if (success)
6989 {
6990 commit_schedule (prev_head, tail, target_bb);
6991 if (sched_verbose)
6992 fprintf (sched_dump, ";; total time = %d\n", clock_var);
6993 }
6994 else
6995 last_scheduled_insn = tail;
6996
6997 scheduled_insns.truncate (0);
6998
6999 if (!current_sched_info->queue_must_finish_empty
7000 || haifa_recovery_bb_recently_added_p)
7001 {
7002 /* INSN_TICK (minimum clock tick at which the insn becomes
7003 ready) may be not correct for the insn in the subsequent
7004 blocks of the region. We should use a correct value of
7005 `clock_var' or modify INSN_TICK. It is better to keep
7006 clock_var value equal to 0 at the start of a basic block.
7007 Therefore we modify INSN_TICK here. */
7008 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7009 }
7010
7011 if (targetm.sched.finish)
7012 {
7013 targetm.sched.finish (sched_dump, sched_verbose);
7014 /* Target might have added some instructions to the scheduled block
7015 in its md_finish () hook. These new insns don't have any data
7016 initialized and to identify them we extend h_i_d so that they'll
7017 get zero luids. */
7018 sched_extend_luids ();
7019 }
7020
7021 /* Update head/tail boundaries. */
7022 head = NEXT_INSN (prev_head);
7023 tail = last_scheduled_insn;
7024
7025 if (sched_verbose)
7026 {
7027 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7028 INSN_UID (head), INSN_UID (tail));
7029
7030 if (sched_verbose >= 2)
7031 {
7032 dump_insn_stream (head, tail);
7033 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7034 NULL);
7035 }
7036
7037 fprintf (sched_dump, "\n");
7038 }
7039
7040 head = restore_other_notes (head, NULL);
7041
7042 current_sched_info->head = head;
7043 current_sched_info->tail = tail;
7044
7045 free_backtrack_queue ();
7046
7047 return success;
7048 }
7049 \f
7050 /* Set_priorities: compute priority of each insn in the block. */
7051
7052 int
7053 set_priorities (rtx_insn *head, rtx_insn *tail)
7054 {
7055 rtx_insn *insn;
7056 int n_insn;
7057 int sched_max_insns_priority =
7058 current_sched_info->sched_max_insns_priority;
7059 rtx_insn *prev_head;
7060
7061 if (head == tail && ! INSN_P (head))
7062 gcc_unreachable ();
7063
7064 n_insn = 0;
7065
7066 prev_head = PREV_INSN (head);
7067 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7068 {
7069 if (!INSN_P (insn))
7070 continue;
7071
7072 n_insn++;
7073 (void) priority (insn);
7074
7075 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7076
7077 sched_max_insns_priority = MAX (sched_max_insns_priority,
7078 INSN_PRIORITY (insn));
7079 }
7080
7081 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7082
7083 return n_insn;
7084 }
7085
7086 /* Set dump and sched_verbose for the desired debugging output. If no
7087 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
7088 For -fsched-verbose=N, N>=10, print everything to stderr. */
7089 void
7090 setup_sched_dump (void)
7091 {
7092 sched_verbose = sched_verbose_param;
7093 if (sched_verbose_param == 0 && dump_file)
7094 sched_verbose = 1;
7095 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
7096 ? stderr : dump_file);
7097 }
7098
7099 /* Allocate data for register pressure sensitive scheduling. */
7100 static void
7101 alloc_global_sched_pressure_data (void)
7102 {
7103 if (sched_pressure != SCHED_PRESSURE_NONE)
7104 {
7105 int i, max_regno = max_reg_num ();
7106
7107 if (sched_dump != NULL)
7108 /* We need info about pseudos for rtl dumps about pseudo
7109 classes and costs. */
7110 regstat_init_n_sets_and_refs ();
7111 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7112 sched_regno_pressure_class
7113 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7114 for (i = 0; i < max_regno; i++)
7115 sched_regno_pressure_class[i]
7116 = (i < FIRST_PSEUDO_REGISTER
7117 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7118 : ira_pressure_class_translate[reg_allocno_class (i)]);
7119 curr_reg_live = BITMAP_ALLOC (NULL);
7120 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7121 {
7122 saved_reg_live = BITMAP_ALLOC (NULL);
7123 region_ref_regs = BITMAP_ALLOC (NULL);
7124 }
7125
7126 /* Calculate number of CALL_USED_REGS in register classes that
7127 we calculate register pressure for. */
7128 for (int c = 0; c < ira_pressure_classes_num; ++c)
7129 {
7130 enum reg_class cl = ira_pressure_classes[c];
7131
7132 call_used_regs_num[cl] = 0;
7133
7134 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7135 if (call_used_regs[ira_class_hard_regs[cl][i]])
7136 ++call_used_regs_num[cl];
7137 }
7138 }
7139 }
7140
7141 /* Free data for register pressure sensitive scheduling. Also called
7142 from schedule_region when stopping sched-pressure early. */
7143 void
7144 free_global_sched_pressure_data (void)
7145 {
7146 if (sched_pressure != SCHED_PRESSURE_NONE)
7147 {
7148 if (regstat_n_sets_and_refs != NULL)
7149 regstat_free_n_sets_and_refs ();
7150 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7151 {
7152 BITMAP_FREE (region_ref_regs);
7153 BITMAP_FREE (saved_reg_live);
7154 }
7155 BITMAP_FREE (curr_reg_live);
7156 free (sched_regno_pressure_class);
7157 }
7158 }
7159
7160 /* Initialize some global state for the scheduler. This function works
7161 with the common data shared between all the schedulers. It is called
7162 from the scheduler specific initialization routine. */
7163
7164 void
7165 sched_init (void)
7166 {
7167 /* Disable speculative loads in their presence if cc0 defined. */
7168 #ifdef HAVE_cc0
7169 flag_schedule_speculative_load = 0;
7170 #endif
7171
7172 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7173 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7174
7175 if (live_range_shrinkage_p)
7176 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7177 else if (flag_sched_pressure
7178 && !reload_completed
7179 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7180 sched_pressure = ((enum sched_pressure_algorithm)
7181 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7182 else
7183 sched_pressure = SCHED_PRESSURE_NONE;
7184
7185 if (sched_pressure != SCHED_PRESSURE_NONE)
7186 ira_setup_eliminable_regset ();
7187
7188 /* Initialize SPEC_INFO. */
7189 if (targetm.sched.set_sched_flags)
7190 {
7191 spec_info = &spec_info_var;
7192 targetm.sched.set_sched_flags (spec_info);
7193
7194 if (spec_info->mask != 0)
7195 {
7196 spec_info->data_weakness_cutoff =
7197 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7198 spec_info->control_weakness_cutoff =
7199 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7200 * REG_BR_PROB_BASE) / 100;
7201 }
7202 else
7203 /* So we won't read anything accidentally. */
7204 spec_info = NULL;
7205
7206 }
7207 else
7208 /* So we won't read anything accidentally. */
7209 spec_info = 0;
7210
7211 /* Initialize issue_rate. */
7212 if (targetm.sched.issue_rate)
7213 issue_rate = targetm.sched.issue_rate ();
7214 else
7215 issue_rate = 1;
7216
7217 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7218 /* Don't use max_issue with reg_pressure scheduling. Multipass
7219 scheduling and reg_pressure scheduling undo each other's decisions. */
7220 && sched_pressure == SCHED_PRESSURE_NONE)
7221 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7222 else
7223 dfa_lookahead = 0;
7224
7225 /* Set to "0" so that we recalculate. */
7226 max_lookahead_tries = 0;
7227
7228 if (targetm.sched.init_dfa_pre_cycle_insn)
7229 targetm.sched.init_dfa_pre_cycle_insn ();
7230
7231 if (targetm.sched.init_dfa_post_cycle_insn)
7232 targetm.sched.init_dfa_post_cycle_insn ();
7233
7234 dfa_start ();
7235 dfa_state_size = state_size ();
7236
7237 init_alias_analysis ();
7238
7239 if (!sched_no_dce)
7240 df_set_flags (DF_LR_RUN_DCE);
7241 df_note_add_problem ();
7242
7243 /* More problems needed for interloop dep calculation in SMS. */
7244 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7245 {
7246 df_rd_add_problem ();
7247 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7248 }
7249
7250 df_analyze ();
7251
7252 /* Do not run DCE after reload, as this can kill nops inserted
7253 by bundling. */
7254 if (reload_completed)
7255 df_clear_flags (DF_LR_RUN_DCE);
7256
7257 regstat_compute_calls_crossed ();
7258
7259 if (targetm.sched.init_global)
7260 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7261
7262 alloc_global_sched_pressure_data ();
7263
7264 curr_state = xmalloc (dfa_state_size);
7265 }
7266
7267 static void haifa_init_only_bb (basic_block, basic_block);
7268
7269 /* Initialize data structures specific to the Haifa scheduler. */
7270 void
7271 haifa_sched_init (void)
7272 {
7273 setup_sched_dump ();
7274 sched_init ();
7275
7276 scheduled_insns.create (0);
7277
7278 if (spec_info != NULL)
7279 {
7280 sched_deps_info->use_deps_list = 1;
7281 sched_deps_info->generate_spec_deps = 1;
7282 }
7283
7284 /* Initialize luids, dependency caches, target and h_i_d for the
7285 whole function. */
7286 {
7287 bb_vec_t bbs;
7288 bbs.create (n_basic_blocks_for_fn (cfun));
7289 basic_block bb;
7290
7291 sched_init_bbs ();
7292
7293 FOR_EACH_BB_FN (bb, cfun)
7294 bbs.quick_push (bb);
7295 sched_init_luids (bbs);
7296 sched_deps_init (true);
7297 sched_extend_target ();
7298 haifa_init_h_i_d (bbs);
7299
7300 bbs.release ();
7301 }
7302
7303 sched_init_only_bb = haifa_init_only_bb;
7304 sched_split_block = sched_split_block_1;
7305 sched_create_empty_bb = sched_create_empty_bb_1;
7306 haifa_recovery_bb_ever_added_p = false;
7307
7308 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7309 before_recovery = 0;
7310 after_recovery = 0;
7311
7312 modulo_ii = 0;
7313 }
7314
7315 /* Finish work with the data specific to the Haifa scheduler. */
7316 void
7317 haifa_sched_finish (void)
7318 {
7319 sched_create_empty_bb = NULL;
7320 sched_split_block = NULL;
7321 sched_init_only_bb = NULL;
7322
7323 if (spec_info && spec_info->dump)
7324 {
7325 char c = reload_completed ? 'a' : 'b';
7326
7327 fprintf (spec_info->dump,
7328 ";; %s:\n", current_function_name ());
7329
7330 fprintf (spec_info->dump,
7331 ";; Procedure %cr-begin-data-spec motions == %d\n",
7332 c, nr_begin_data);
7333 fprintf (spec_info->dump,
7334 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7335 c, nr_be_in_data);
7336 fprintf (spec_info->dump,
7337 ";; Procedure %cr-begin-control-spec motions == %d\n",
7338 c, nr_begin_control);
7339 fprintf (spec_info->dump,
7340 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7341 c, nr_be_in_control);
7342 }
7343
7344 scheduled_insns.release ();
7345
7346 /* Finalize h_i_d, dependency caches, and luids for the whole
7347 function. Target will be finalized in md_global_finish (). */
7348 sched_deps_finish ();
7349 sched_finish_luids ();
7350 current_sched_info = NULL;
7351 sched_finish ();
7352 }
7353
7354 /* Free global data used during insn scheduling. This function works with
7355 the common data shared between the schedulers. */
7356
7357 void
7358 sched_finish (void)
7359 {
7360 haifa_finish_h_i_d ();
7361 free_global_sched_pressure_data ();
7362 free (curr_state);
7363
7364 if (targetm.sched.finish_global)
7365 targetm.sched.finish_global (sched_dump, sched_verbose);
7366
7367 end_alias_analysis ();
7368
7369 regstat_free_calls_crossed ();
7370
7371 dfa_finish ();
7372 }
7373
7374 /* Free all delay_pair structures that were recorded. */
7375 void
7376 free_delay_pairs (void)
7377 {
7378 if (delay_htab)
7379 {
7380 delay_htab->empty ();
7381 delay_htab_i2->empty ();
7382 }
7383 }
7384
7385 /* Fix INSN_TICKs of the instructions in the current block as well as
7386 INSN_TICKs of their dependents.
7387 HEAD and TAIL are the begin and the end of the current scheduled block. */
7388 static void
7389 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7390 {
7391 /* Set of instructions with corrected INSN_TICK. */
7392 bitmap_head processed;
7393 /* ??? It is doubtful if we should assume that cycle advance happens on
7394 basic block boundaries. Basically insns that are unconditionally ready
7395 on the start of the block are more preferable then those which have
7396 a one cycle dependency over insn from the previous block. */
7397 int next_clock = clock_var + 1;
7398
7399 bitmap_initialize (&processed, 0);
7400
7401 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7402 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7403 across different blocks. */
7404 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7405 {
7406 if (INSN_P (head))
7407 {
7408 int tick;
7409 sd_iterator_def sd_it;
7410 dep_t dep;
7411
7412 tick = INSN_TICK (head);
7413 gcc_assert (tick >= MIN_TICK);
7414
7415 /* Fix INSN_TICK of instruction from just scheduled block. */
7416 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7417 {
7418 tick -= next_clock;
7419
7420 if (tick < MIN_TICK)
7421 tick = MIN_TICK;
7422
7423 INSN_TICK (head) = tick;
7424 }
7425
7426 if (DEBUG_INSN_P (head))
7427 continue;
7428
7429 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7430 {
7431 rtx_insn *next;
7432
7433 next = DEP_CON (dep);
7434 tick = INSN_TICK (next);
7435
7436 if (tick != INVALID_TICK
7437 /* If NEXT has its INSN_TICK calculated, fix it.
7438 If not - it will be properly calculated from
7439 scratch later in fix_tick_ready. */
7440 && bitmap_set_bit (&processed, INSN_LUID (next)))
7441 {
7442 tick -= next_clock;
7443
7444 if (tick < MIN_TICK)
7445 tick = MIN_TICK;
7446
7447 if (tick > INTER_TICK (next))
7448 INTER_TICK (next) = tick;
7449 else
7450 tick = INTER_TICK (next);
7451
7452 INSN_TICK (next) = tick;
7453 }
7454 }
7455 }
7456 }
7457 bitmap_clear (&processed);
7458 }
7459
7460 /* Check if NEXT is ready to be added to the ready or queue list.
7461 If "yes", add it to the proper list.
7462 Returns:
7463 -1 - is not ready yet,
7464 0 - added to the ready list,
7465 0 < N - queued for N cycles. */
7466 int
7467 try_ready (rtx_insn *next)
7468 {
7469 ds_t old_ts, new_ts;
7470
7471 old_ts = TODO_SPEC (next);
7472
7473 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7474 && (old_ts == HARD_DEP
7475 || old_ts == DEP_POSTPONED
7476 || (old_ts & SPECULATIVE)
7477 || old_ts == DEP_CONTROL));
7478
7479 new_ts = recompute_todo_spec (next, false);
7480
7481 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7482 gcc_assert (new_ts == old_ts
7483 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7484 else if (current_sched_info->new_ready)
7485 new_ts = current_sched_info->new_ready (next, new_ts);
7486
7487 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7488 have its original pattern or changed (speculative) one. This is due
7489 to changing ebb in region scheduling.
7490 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7491 has speculative pattern.
7492
7493 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7494 control-speculative NEXT could have been discarded by sched-rgn.c
7495 (the same case as when discarded by can_schedule_ready_p ()). */
7496
7497 if ((new_ts & SPECULATIVE)
7498 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7499 need to change anything. */
7500 && new_ts != old_ts)
7501 {
7502 int res;
7503 rtx new_pat;
7504
7505 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7506
7507 res = haifa_speculate_insn (next, new_ts, &new_pat);
7508
7509 switch (res)
7510 {
7511 case -1:
7512 /* It would be nice to change DEP_STATUS of all dependences,
7513 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7514 so we won't reanalyze anything. */
7515 new_ts = HARD_DEP;
7516 break;
7517
7518 case 0:
7519 /* We follow the rule, that every speculative insn
7520 has non-null ORIG_PAT. */
7521 if (!ORIG_PAT (next))
7522 ORIG_PAT (next) = PATTERN (next);
7523 break;
7524
7525 case 1:
7526 if (!ORIG_PAT (next))
7527 /* If we gonna to overwrite the original pattern of insn,
7528 save it. */
7529 ORIG_PAT (next) = PATTERN (next);
7530
7531 res = haifa_change_pattern (next, new_pat);
7532 gcc_assert (res);
7533 break;
7534
7535 default:
7536 gcc_unreachable ();
7537 }
7538 }
7539
7540 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7541 either correct (new_ts & SPECULATIVE),
7542 or we simply don't care (new_ts & HARD_DEP). */
7543
7544 gcc_assert (!ORIG_PAT (next)
7545 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7546
7547 TODO_SPEC (next) = new_ts;
7548
7549 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7550 {
7551 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7552 control-speculative NEXT could have been discarded by sched-rgn.c
7553 (the same case as when discarded by can_schedule_ready_p ()). */
7554 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7555
7556 change_queue_index (next, QUEUE_NOWHERE);
7557
7558 return -1;
7559 }
7560 else if (!(new_ts & BEGIN_SPEC)
7561 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7562 && !IS_SPECULATION_CHECK_P (next))
7563 /* We should change pattern of every previously speculative
7564 instruction - and we determine if NEXT was speculative by using
7565 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7566 pat too, so skip them. */
7567 {
7568 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7569 gcc_assert (success);
7570 ORIG_PAT (next) = 0;
7571 }
7572
7573 if (sched_verbose >= 2)
7574 {
7575 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7576 (*current_sched_info->print_insn) (next, 0));
7577
7578 if (spec_info && spec_info->dump)
7579 {
7580 if (new_ts & BEGIN_DATA)
7581 fprintf (spec_info->dump, "; data-spec;");
7582 if (new_ts & BEGIN_CONTROL)
7583 fprintf (spec_info->dump, "; control-spec;");
7584 if (new_ts & BE_IN_CONTROL)
7585 fprintf (spec_info->dump, "; in-control-spec;");
7586 }
7587 if (TODO_SPEC (next) & DEP_CONTROL)
7588 fprintf (sched_dump, " predicated");
7589 fprintf (sched_dump, "\n");
7590 }
7591
7592 adjust_priority (next);
7593
7594 return fix_tick_ready (next);
7595 }
7596
7597 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7598 static int
7599 fix_tick_ready (rtx_insn *next)
7600 {
7601 int tick, delay;
7602
7603 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7604 {
7605 int full_p;
7606 sd_iterator_def sd_it;
7607 dep_t dep;
7608
7609 tick = INSN_TICK (next);
7610 /* if tick is not equal to INVALID_TICK, then update
7611 INSN_TICK of NEXT with the most recent resolved dependence
7612 cost. Otherwise, recalculate from scratch. */
7613 full_p = (tick == INVALID_TICK);
7614
7615 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7616 {
7617 rtx_insn *pro = DEP_PRO (dep);
7618 int tick1;
7619
7620 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7621
7622 tick1 = INSN_TICK (pro) + dep_cost (dep);
7623 if (tick1 > tick)
7624 tick = tick1;
7625
7626 if (!full_p)
7627 break;
7628 }
7629 }
7630 else
7631 tick = -1;
7632
7633 INSN_TICK (next) = tick;
7634
7635 delay = tick - clock_var;
7636 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7637 delay = QUEUE_READY;
7638
7639 change_queue_index (next, delay);
7640
7641 return delay;
7642 }
7643
7644 /* Move NEXT to the proper queue list with (DELAY >= 1),
7645 or add it to the ready list (DELAY == QUEUE_READY),
7646 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7647 static void
7648 change_queue_index (rtx_insn *next, int delay)
7649 {
7650 int i = QUEUE_INDEX (next);
7651
7652 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7653 && delay != 0);
7654 gcc_assert (i != QUEUE_SCHEDULED);
7655
7656 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7657 || (delay < 0 && delay == i))
7658 /* We have nothing to do. */
7659 return;
7660
7661 /* Remove NEXT from wherever it is now. */
7662 if (i == QUEUE_READY)
7663 ready_remove_insn (next);
7664 else if (i >= 0)
7665 queue_remove (next);
7666
7667 /* Add it to the proper place. */
7668 if (delay == QUEUE_READY)
7669 ready_add (readyp, next, false);
7670 else if (delay >= 1)
7671 queue_insn (next, delay, "change queue index");
7672
7673 if (sched_verbose >= 2)
7674 {
7675 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7676 (*current_sched_info->print_insn) (next, 0));
7677
7678 if (delay == QUEUE_READY)
7679 fprintf (sched_dump, " into ready\n");
7680 else if (delay >= 1)
7681 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7682 else
7683 fprintf (sched_dump, " removed from ready or queue lists\n");
7684 }
7685 }
7686
7687 static int sched_ready_n_insns = -1;
7688
7689 /* Initialize per region data structures. */
7690 void
7691 sched_extend_ready_list (int new_sched_ready_n_insns)
7692 {
7693 int i;
7694
7695 if (sched_ready_n_insns == -1)
7696 /* At the first call we need to initialize one more choice_stack
7697 entry. */
7698 {
7699 i = 0;
7700 sched_ready_n_insns = 0;
7701 scheduled_insns.reserve (new_sched_ready_n_insns);
7702 }
7703 else
7704 i = sched_ready_n_insns + 1;
7705
7706 ready.veclen = new_sched_ready_n_insns + issue_rate;
7707 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7708
7709 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7710
7711 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7712 sched_ready_n_insns,
7713 sizeof (*ready_try));
7714
7715 /* We allocate +1 element to save initial state in the choice_stack[0]
7716 entry. */
7717 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7718 new_sched_ready_n_insns + 1);
7719
7720 for (; i <= new_sched_ready_n_insns; i++)
7721 {
7722 choice_stack[i].state = xmalloc (dfa_state_size);
7723
7724 if (targetm.sched.first_cycle_multipass_init)
7725 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7726 .target_data));
7727 }
7728
7729 sched_ready_n_insns = new_sched_ready_n_insns;
7730 }
7731
7732 /* Free per region data structures. */
7733 void
7734 sched_finish_ready_list (void)
7735 {
7736 int i;
7737
7738 free (ready.vec);
7739 ready.vec = NULL;
7740 ready.veclen = 0;
7741
7742 free (ready_try);
7743 ready_try = NULL;
7744
7745 for (i = 0; i <= sched_ready_n_insns; i++)
7746 {
7747 if (targetm.sched.first_cycle_multipass_fini)
7748 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7749 .target_data));
7750
7751 free (choice_stack [i].state);
7752 }
7753 free (choice_stack);
7754 choice_stack = NULL;
7755
7756 sched_ready_n_insns = -1;
7757 }
7758
7759 static int
7760 haifa_luid_for_non_insn (rtx x)
7761 {
7762 gcc_assert (NOTE_P (x) || LABEL_P (x));
7763
7764 return 0;
7765 }
7766
7767 /* Generates recovery code for INSN. */
7768 static void
7769 generate_recovery_code (rtx_insn *insn)
7770 {
7771 if (TODO_SPEC (insn) & BEGIN_SPEC)
7772 begin_speculative_block (insn);
7773
7774 /* Here we have insn with no dependencies to
7775 instructions other then CHECK_SPEC ones. */
7776
7777 if (TODO_SPEC (insn) & BE_IN_SPEC)
7778 add_to_speculative_block (insn);
7779 }
7780
7781 /* Helper function.
7782 Tries to add speculative dependencies of type FS between instructions
7783 in deps_list L and TWIN. */
7784 static void
7785 process_insn_forw_deps_be_in_spec (rtx insn, rtx_insn *twin, ds_t fs)
7786 {
7787 sd_iterator_def sd_it;
7788 dep_t dep;
7789
7790 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7791 {
7792 ds_t ds;
7793 rtx_insn *consumer;
7794
7795 consumer = DEP_CON (dep);
7796
7797 ds = DEP_STATUS (dep);
7798
7799 if (/* If we want to create speculative dep. */
7800 fs
7801 /* And we can do that because this is a true dep. */
7802 && (ds & DEP_TYPES) == DEP_TRUE)
7803 {
7804 gcc_assert (!(ds & BE_IN_SPEC));
7805
7806 if (/* If this dep can be overcome with 'begin speculation'. */
7807 ds & BEGIN_SPEC)
7808 /* Then we have a choice: keep the dep 'begin speculative'
7809 or transform it into 'be in speculative'. */
7810 {
7811 if (/* In try_ready we assert that if insn once became ready
7812 it can be removed from the ready (or queue) list only
7813 due to backend decision. Hence we can't let the
7814 probability of the speculative dep to decrease. */
7815 ds_weak (ds) <= ds_weak (fs))
7816 {
7817 ds_t new_ds;
7818
7819 new_ds = (ds & ~BEGIN_SPEC) | fs;
7820
7821 if (/* consumer can 'be in speculative'. */
7822 sched_insn_is_legitimate_for_speculation_p (consumer,
7823 new_ds))
7824 /* Transform it to be in speculative. */
7825 ds = new_ds;
7826 }
7827 }
7828 else
7829 /* Mark the dep as 'be in speculative'. */
7830 ds |= fs;
7831 }
7832
7833 {
7834 dep_def _new_dep, *new_dep = &_new_dep;
7835
7836 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7837 sd_add_dep (new_dep, false);
7838 }
7839 }
7840 }
7841
7842 /* Generates recovery code for BEGIN speculative INSN. */
7843 static void
7844 begin_speculative_block (rtx_insn *insn)
7845 {
7846 if (TODO_SPEC (insn) & BEGIN_DATA)
7847 nr_begin_data++;
7848 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7849 nr_begin_control++;
7850
7851 create_check_block_twin (insn, false);
7852
7853 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7854 }
7855
7856 static void haifa_init_insn (rtx_insn *);
7857
7858 /* Generates recovery code for BE_IN speculative INSN. */
7859 static void
7860 add_to_speculative_block (rtx_insn *insn)
7861 {
7862 ds_t ts;
7863 sd_iterator_def sd_it;
7864 dep_t dep;
7865 rtx_insn_list *twins = NULL;
7866 rtx_vec_t priorities_roots;
7867
7868 ts = TODO_SPEC (insn);
7869 gcc_assert (!(ts & ~BE_IN_SPEC));
7870
7871 if (ts & BE_IN_DATA)
7872 nr_be_in_data++;
7873 if (ts & BE_IN_CONTROL)
7874 nr_be_in_control++;
7875
7876 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7877 gcc_assert (!TODO_SPEC (insn));
7878
7879 DONE_SPEC (insn) |= ts;
7880
7881 /* First we convert all simple checks to branchy. */
7882 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7883 sd_iterator_cond (&sd_it, &dep);)
7884 {
7885 rtx_insn *check = DEP_PRO (dep);
7886
7887 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7888 {
7889 create_check_block_twin (check, true);
7890
7891 /* Restart search. */
7892 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7893 }
7894 else
7895 /* Continue search. */
7896 sd_iterator_next (&sd_it);
7897 }
7898
7899 priorities_roots.create (0);
7900 clear_priorities (insn, &priorities_roots);
7901
7902 while (1)
7903 {
7904 rtx_insn *check, *twin;
7905 basic_block rec;
7906
7907 /* Get the first backward dependency of INSN. */
7908 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7909 if (!sd_iterator_cond (&sd_it, &dep))
7910 /* INSN has no backward dependencies left. */
7911 break;
7912
7913 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7914 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7915 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7916
7917 check = DEP_PRO (dep);
7918
7919 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7920 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7921
7922 rec = BLOCK_FOR_INSN (check);
7923
7924 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7925 haifa_init_insn (twin);
7926
7927 sd_copy_back_deps (twin, insn, true);
7928
7929 if (sched_verbose && spec_info->dump)
7930 /* INSN_BB (insn) isn't determined for twin insns yet.
7931 So we can't use current_sched_info->print_insn. */
7932 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7933 INSN_UID (twin), rec->index);
7934
7935 twins = alloc_INSN_LIST (twin, twins);
7936
7937 /* Add dependences between TWIN and all appropriate
7938 instructions from REC. */
7939 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7940 {
7941 rtx_insn *pro = DEP_PRO (dep);
7942
7943 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7944
7945 /* INSN might have dependencies from the instructions from
7946 several recovery blocks. At this iteration we process those
7947 producers that reside in REC. */
7948 if (BLOCK_FOR_INSN (pro) == rec)
7949 {
7950 dep_def _new_dep, *new_dep = &_new_dep;
7951
7952 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7953 sd_add_dep (new_dep, false);
7954 }
7955 }
7956
7957 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7958
7959 /* Remove all dependencies between INSN and insns in REC. */
7960 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7961 sd_iterator_cond (&sd_it, &dep);)
7962 {
7963 rtx_insn *pro = DEP_PRO (dep);
7964
7965 if (BLOCK_FOR_INSN (pro) == rec)
7966 sd_delete_dep (sd_it);
7967 else
7968 sd_iterator_next (&sd_it);
7969 }
7970 }
7971
7972 /* We couldn't have added the dependencies between INSN and TWINS earlier
7973 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7974 while (twins)
7975 {
7976 rtx_insn *twin;
7977 rtx_insn_list *next_node;
7978
7979 twin = twins->insn ();
7980
7981 {
7982 dep_def _new_dep, *new_dep = &_new_dep;
7983
7984 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7985 sd_add_dep (new_dep, false);
7986 }
7987
7988 next_node = twins->next ();
7989 free_INSN_LIST_node (twins);
7990 twins = next_node;
7991 }
7992
7993 calc_priorities (priorities_roots);
7994 priorities_roots.release ();
7995 }
7996
7997 /* Extends and fills with zeros (only the new part) array pointed to by P. */
7998 void *
7999 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8000 {
8001 gcc_assert (new_nmemb >= old_nmemb);
8002 p = XRESIZEVAR (void, p, new_nmemb * size);
8003 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8004 return p;
8005 }
8006
8007 /* Helper function.
8008 Find fallthru edge from PRED. */
8009 edge
8010 find_fallthru_edge_from (basic_block pred)
8011 {
8012 edge e;
8013 basic_block succ;
8014
8015 succ = pred->next_bb;
8016 gcc_assert (succ->prev_bb == pred);
8017
8018 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8019 {
8020 e = find_fallthru_edge (pred->succs);
8021
8022 if (e)
8023 {
8024 gcc_assert (e->dest == succ);
8025 return e;
8026 }
8027 }
8028 else
8029 {
8030 e = find_fallthru_edge (succ->preds);
8031
8032 if (e)
8033 {
8034 gcc_assert (e->src == pred);
8035 return e;
8036 }
8037 }
8038
8039 return NULL;
8040 }
8041
8042 /* Extend per basic block data structures. */
8043 static void
8044 sched_extend_bb (void)
8045 {
8046 /* The following is done to keep current_sched_info->next_tail non null. */
8047 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8048 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8049 if (NEXT_INSN (end) == 0
8050 || (!NOTE_P (insn)
8051 && !LABEL_P (insn)
8052 /* Don't emit a NOTE if it would end up before a BARRIER. */
8053 && !BARRIER_P (NEXT_INSN (end))))
8054 {
8055 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8056 /* Make note appear outside BB. */
8057 set_block_for_insn (note, NULL);
8058 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8059 }
8060 }
8061
8062 /* Init per basic block data structures. */
8063 void
8064 sched_init_bbs (void)
8065 {
8066 sched_extend_bb ();
8067 }
8068
8069 /* Initialize BEFORE_RECOVERY variable. */
8070 static void
8071 init_before_recovery (basic_block *before_recovery_ptr)
8072 {
8073 basic_block last;
8074 edge e;
8075
8076 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8077 e = find_fallthru_edge_from (last);
8078
8079 if (e)
8080 {
8081 /* We create two basic blocks:
8082 1. Single instruction block is inserted right after E->SRC
8083 and has jump to
8084 2. Empty block right before EXIT_BLOCK.
8085 Between these two blocks recovery blocks will be emitted. */
8086
8087 basic_block single, empty;
8088 rtx_insn *x;
8089 rtx label;
8090
8091 /* If the fallthrough edge to exit we've found is from the block we've
8092 created before, don't do anything more. */
8093 if (last == after_recovery)
8094 return;
8095
8096 adding_bb_to_current_region_p = false;
8097
8098 single = sched_create_empty_bb (last);
8099 empty = sched_create_empty_bb (single);
8100
8101 /* Add new blocks to the root loop. */
8102 if (current_loops != NULL)
8103 {
8104 add_bb_to_loop (single, (*current_loops->larray)[0]);
8105 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8106 }
8107
8108 single->count = last->count;
8109 empty->count = last->count;
8110 single->frequency = last->frequency;
8111 empty->frequency = last->frequency;
8112 BB_COPY_PARTITION (single, last);
8113 BB_COPY_PARTITION (empty, last);
8114
8115 redirect_edge_succ (e, single);
8116 make_single_succ_edge (single, empty, 0);
8117 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8118 EDGE_FALLTHRU);
8119
8120 label = block_label (empty);
8121 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
8122 JUMP_LABEL (x) = label;
8123 LABEL_NUSES (label)++;
8124 haifa_init_insn (x);
8125
8126 emit_barrier_after (x);
8127
8128 sched_init_only_bb (empty, NULL);
8129 sched_init_only_bb (single, NULL);
8130 sched_extend_bb ();
8131
8132 adding_bb_to_current_region_p = true;
8133 before_recovery = single;
8134 after_recovery = empty;
8135
8136 if (before_recovery_ptr)
8137 *before_recovery_ptr = before_recovery;
8138
8139 if (sched_verbose >= 2 && spec_info->dump)
8140 fprintf (spec_info->dump,
8141 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8142 last->index, single->index, empty->index);
8143 }
8144 else
8145 before_recovery = last;
8146 }
8147
8148 /* Returns new recovery block. */
8149 basic_block
8150 sched_create_recovery_block (basic_block *before_recovery_ptr)
8151 {
8152 rtx label;
8153 rtx_insn *barrier;
8154 basic_block rec;
8155
8156 haifa_recovery_bb_recently_added_p = true;
8157 haifa_recovery_bb_ever_added_p = true;
8158
8159 init_before_recovery (before_recovery_ptr);
8160
8161 barrier = get_last_bb_insn (before_recovery);
8162 gcc_assert (BARRIER_P (barrier));
8163
8164 label = emit_label_after (gen_label_rtx (), barrier);
8165
8166 rec = create_basic_block (label, label, before_recovery);
8167
8168 /* A recovery block always ends with an unconditional jump. */
8169 emit_barrier_after (BB_END (rec));
8170
8171 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8172 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8173
8174 if (sched_verbose && spec_info->dump)
8175 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8176 rec->index);
8177
8178 return rec;
8179 }
8180
8181 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8182 and emit necessary jumps. */
8183 void
8184 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8185 basic_block second_bb)
8186 {
8187 rtx label;
8188 rtx jump;
8189 int edge_flags;
8190
8191 /* This is fixing of incoming edge. */
8192 /* ??? Which other flags should be specified? */
8193 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8194 /* Partition type is the same, if it is "unpartitioned". */
8195 edge_flags = EDGE_CROSSING;
8196 else
8197 edge_flags = 0;
8198
8199 make_edge (first_bb, rec, edge_flags);
8200 label = block_label (second_bb);
8201 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
8202 JUMP_LABEL (jump) = label;
8203 LABEL_NUSES (label)++;
8204
8205 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8206 /* Partition type is the same, if it is "unpartitioned". */
8207 {
8208 /* Rewritten from cfgrtl.c. */
8209 if (flag_reorder_blocks_and_partition
8210 && targetm_common.have_named_sections)
8211 {
8212 /* We don't need the same note for the check because
8213 any_condjump_p (check) == true. */
8214 CROSSING_JUMP_P (jump) = 1;
8215 }
8216 edge_flags = EDGE_CROSSING;
8217 }
8218 else
8219 edge_flags = 0;
8220
8221 make_single_succ_edge (rec, second_bb, edge_flags);
8222 if (dom_info_available_p (CDI_DOMINATORS))
8223 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8224 }
8225
8226 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8227 INSN is a simple check, that should be converted to branchy one. */
8228 static void
8229 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8230 {
8231 basic_block rec;
8232 rtx_insn *label, *check, *twin;
8233 rtx check_pat;
8234 ds_t fs;
8235 sd_iterator_def sd_it;
8236 dep_t dep;
8237 dep_def _new_dep, *new_dep = &_new_dep;
8238 ds_t todo_spec;
8239
8240 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8241
8242 if (!mutate_p)
8243 todo_spec = TODO_SPEC (insn);
8244 else
8245 {
8246 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8247 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8248
8249 todo_spec = CHECK_SPEC (insn);
8250 }
8251
8252 todo_spec &= SPECULATIVE;
8253
8254 /* Create recovery block. */
8255 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8256 {
8257 rec = sched_create_recovery_block (NULL);
8258 label = BB_HEAD (rec);
8259 }
8260 else
8261 {
8262 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8263 label = NULL;
8264 }
8265
8266 /* Emit CHECK. */
8267 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8268
8269 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8270 {
8271 /* To have mem_reg alive at the beginning of second_bb,
8272 we emit check BEFORE insn, so insn after splitting
8273 insn will be at the beginning of second_bb, which will
8274 provide us with the correct life information. */
8275 check = emit_jump_insn_before (check_pat, insn);
8276 JUMP_LABEL (check) = label;
8277 LABEL_NUSES (label)++;
8278 }
8279 else
8280 check = emit_insn_before (check_pat, insn);
8281
8282 /* Extend data structures. */
8283 haifa_init_insn (check);
8284
8285 /* CHECK is being added to current region. Extend ready list. */
8286 gcc_assert (sched_ready_n_insns != -1);
8287 sched_extend_ready_list (sched_ready_n_insns + 1);
8288
8289 if (current_sched_info->add_remove_insn)
8290 current_sched_info->add_remove_insn (insn, 0);
8291
8292 RECOVERY_BLOCK (check) = rec;
8293
8294 if (sched_verbose && spec_info->dump)
8295 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8296 (*current_sched_info->print_insn) (check, 0));
8297
8298 gcc_assert (ORIG_PAT (insn));
8299
8300 /* Initialize TWIN (twin is a duplicate of original instruction
8301 in the recovery block). */
8302 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8303 {
8304 sd_iterator_def sd_it;
8305 dep_t dep;
8306
8307 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8308 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8309 {
8310 struct _dep _dep2, *dep2 = &_dep2;
8311
8312 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8313
8314 sd_add_dep (dep2, true);
8315 }
8316
8317 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8318 haifa_init_insn (twin);
8319
8320 if (sched_verbose && spec_info->dump)
8321 /* INSN_BB (insn) isn't determined for twin insns yet.
8322 So we can't use current_sched_info->print_insn. */
8323 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8324 INSN_UID (twin), rec->index);
8325 }
8326 else
8327 {
8328 ORIG_PAT (check) = ORIG_PAT (insn);
8329 HAS_INTERNAL_DEP (check) = 1;
8330 twin = check;
8331 /* ??? We probably should change all OUTPUT dependencies to
8332 (TRUE | OUTPUT). */
8333 }
8334
8335 /* Copy all resolved back dependencies of INSN to TWIN. This will
8336 provide correct value for INSN_TICK (TWIN). */
8337 sd_copy_back_deps (twin, insn, true);
8338
8339 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8340 /* In case of branchy check, fix CFG. */
8341 {
8342 basic_block first_bb, second_bb;
8343 rtx_insn *jump;
8344
8345 first_bb = BLOCK_FOR_INSN (check);
8346 second_bb = sched_split_block (first_bb, check);
8347
8348 sched_create_recovery_edges (first_bb, rec, second_bb);
8349
8350 sched_init_only_bb (second_bb, first_bb);
8351 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8352
8353 jump = BB_END (rec);
8354 haifa_init_insn (jump);
8355 }
8356
8357 /* Move backward dependences from INSN to CHECK and
8358 move forward dependences from INSN to TWIN. */
8359
8360 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8361 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8362 {
8363 rtx_insn *pro = DEP_PRO (dep);
8364 ds_t ds;
8365
8366 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8367 check --TRUE--> producer ??? or ANTI ???
8368 twin --TRUE--> producer
8369 twin --ANTI--> check
8370
8371 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8372 check --ANTI--> producer
8373 twin --ANTI--> producer
8374 twin --ANTI--> check
8375
8376 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8377 check ~~TRUE~~> producer
8378 twin ~~TRUE~~> producer
8379 twin --ANTI--> check */
8380
8381 ds = DEP_STATUS (dep);
8382
8383 if (ds & BEGIN_SPEC)
8384 {
8385 gcc_assert (!mutate_p);
8386 ds &= ~BEGIN_SPEC;
8387 }
8388
8389 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8390 sd_add_dep (new_dep, false);
8391
8392 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8393 {
8394 DEP_CON (new_dep) = twin;
8395 sd_add_dep (new_dep, false);
8396 }
8397 }
8398
8399 /* Second, remove backward dependencies of INSN. */
8400 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8401 sd_iterator_cond (&sd_it, &dep);)
8402 {
8403 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8404 || mutate_p)
8405 /* We can delete this dep because we overcome it with
8406 BEGIN_SPECULATION. */
8407 sd_delete_dep (sd_it);
8408 else
8409 sd_iterator_next (&sd_it);
8410 }
8411
8412 /* Future Speculations. Determine what BE_IN speculations will be like. */
8413 fs = 0;
8414
8415 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8416 here. */
8417
8418 gcc_assert (!DONE_SPEC (insn));
8419
8420 if (!mutate_p)
8421 {
8422 ds_t ts = TODO_SPEC (insn);
8423
8424 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8425 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8426
8427 /* Luckiness of future speculations solely depends upon initial
8428 BEGIN speculation. */
8429 if (ts & BEGIN_DATA)
8430 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8431 if (ts & BEGIN_CONTROL)
8432 fs = set_dep_weak (fs, BE_IN_CONTROL,
8433 get_dep_weak (ts, BEGIN_CONTROL));
8434 }
8435 else
8436 CHECK_SPEC (check) = CHECK_SPEC (insn);
8437
8438 /* Future speculations: call the helper. */
8439 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8440
8441 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8442 {
8443 /* Which types of dependencies should we use here is,
8444 generally, machine-dependent question... But, for now,
8445 it is not. */
8446
8447 if (!mutate_p)
8448 {
8449 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8450 sd_add_dep (new_dep, false);
8451
8452 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8453 sd_add_dep (new_dep, false);
8454 }
8455 else
8456 {
8457 if (spec_info->dump)
8458 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8459 (*current_sched_info->print_insn) (insn, 0));
8460
8461 /* Remove all dependencies of the INSN. */
8462 {
8463 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8464 | SD_LIST_BACK
8465 | SD_LIST_RES_BACK));
8466 while (sd_iterator_cond (&sd_it, &dep))
8467 sd_delete_dep (sd_it);
8468 }
8469
8470 /* If former check (INSN) already was moved to the ready (or queue)
8471 list, add new check (CHECK) there too. */
8472 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8473 try_ready (check);
8474
8475 /* Remove old check from instruction stream and free its
8476 data. */
8477 sched_remove_insn (insn);
8478 }
8479
8480 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8481 sd_add_dep (new_dep, false);
8482 }
8483 else
8484 {
8485 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8486 sd_add_dep (new_dep, false);
8487 }
8488
8489 if (!mutate_p)
8490 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8491 because it'll be done later in add_to_speculative_block. */
8492 {
8493 rtx_vec_t priorities_roots = rtx_vec_t ();
8494
8495 clear_priorities (twin, &priorities_roots);
8496 calc_priorities (priorities_roots);
8497 priorities_roots.release ();
8498 }
8499 }
8500
8501 /* Removes dependency between instructions in the recovery block REC
8502 and usual region instructions. It keeps inner dependences so it
8503 won't be necessary to recompute them. */
8504 static void
8505 fix_recovery_deps (basic_block rec)
8506 {
8507 rtx_insn *note, *insn, *jump;
8508 rtx_insn_list *ready_list = 0;
8509 bitmap_head in_ready;
8510 rtx_insn_list *link;
8511
8512 bitmap_initialize (&in_ready, 0);
8513
8514 /* NOTE - a basic block note. */
8515 note = NEXT_INSN (BB_HEAD (rec));
8516 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8517 insn = BB_END (rec);
8518 gcc_assert (JUMP_P (insn));
8519 insn = PREV_INSN (insn);
8520
8521 do
8522 {
8523 sd_iterator_def sd_it;
8524 dep_t dep;
8525
8526 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8527 sd_iterator_cond (&sd_it, &dep);)
8528 {
8529 rtx_insn *consumer = DEP_CON (dep);
8530
8531 if (BLOCK_FOR_INSN (consumer) != rec)
8532 {
8533 sd_delete_dep (sd_it);
8534
8535 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8536 ready_list = alloc_INSN_LIST (consumer, ready_list);
8537 }
8538 else
8539 {
8540 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8541
8542 sd_iterator_next (&sd_it);
8543 }
8544 }
8545
8546 insn = PREV_INSN (insn);
8547 }
8548 while (insn != note);
8549
8550 bitmap_clear (&in_ready);
8551
8552 /* Try to add instructions to the ready or queue list. */
8553 for (link = ready_list; link; link = link->next ())
8554 try_ready (link->insn ());
8555 free_INSN_LIST_list (&ready_list);
8556
8557 /* Fixing jump's dependences. */
8558 insn = BB_HEAD (rec);
8559 jump = BB_END (rec);
8560
8561 gcc_assert (LABEL_P (insn));
8562 insn = NEXT_INSN (insn);
8563
8564 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8565 add_jump_dependencies (insn, jump);
8566 }
8567
8568 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8569 instruction data. */
8570 static bool
8571 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8572 {
8573 int t;
8574
8575 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8576 if (!t)
8577 return false;
8578
8579 update_insn_after_change (insn);
8580 return true;
8581 }
8582
8583 /* -1 - can't speculate,
8584 0 - for speculation with REQUEST mode it is OK to use
8585 current instruction pattern,
8586 1 - need to change pattern for *NEW_PAT to be speculative. */
8587 int
8588 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8589 {
8590 gcc_assert (current_sched_info->flags & DO_SPECULATION
8591 && (request & SPECULATIVE)
8592 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8593
8594 if ((request & spec_info->mask) != request)
8595 return -1;
8596
8597 if (request & BE_IN_SPEC
8598 && !(request & BEGIN_SPEC))
8599 return 0;
8600
8601 return targetm.sched.speculate_insn (insn, request, new_pat);
8602 }
8603
8604 static int
8605 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8606 {
8607 gcc_assert (sched_deps_info->generate_spec_deps
8608 && !IS_SPECULATION_CHECK_P (insn));
8609
8610 if (HAS_INTERNAL_DEP (insn)
8611 || SCHED_GROUP_P (insn))
8612 return -1;
8613
8614 return sched_speculate_insn (insn, request, new_pat);
8615 }
8616
8617 /* Print some information about block BB, which starts with HEAD and
8618 ends with TAIL, before scheduling it.
8619 I is zero, if scheduler is about to start with the fresh ebb. */
8620 static void
8621 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8622 {
8623 if (!i)
8624 fprintf (sched_dump,
8625 ";; ======================================================\n");
8626 else
8627 fprintf (sched_dump,
8628 ";; =====================ADVANCING TO=====================\n");
8629 fprintf (sched_dump,
8630 ";; -- basic block %d from %d to %d -- %s reload\n",
8631 bb->index, INSN_UID (head), INSN_UID (tail),
8632 (reload_completed ? "after" : "before"));
8633 fprintf (sched_dump,
8634 ";; ======================================================\n");
8635 fprintf (sched_dump, "\n");
8636 }
8637
8638 /* Unlink basic block notes and labels and saves them, so they
8639 can be easily restored. We unlink basic block notes in EBB to
8640 provide back-compatibility with the previous code, as target backends
8641 assume, that there'll be only instructions between
8642 current_sched_info->{head and tail}. We restore these notes as soon
8643 as we can.
8644 FIRST (LAST) is the first (last) basic block in the ebb.
8645 NB: In usual case (FIRST == LAST) nothing is really done. */
8646 void
8647 unlink_bb_notes (basic_block first, basic_block last)
8648 {
8649 /* We DON'T unlink basic block notes of the first block in the ebb. */
8650 if (first == last)
8651 return;
8652
8653 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8654
8655 /* Make a sentinel. */
8656 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8657 bb_header[last->next_bb->index] = 0;
8658
8659 first = first->next_bb;
8660 do
8661 {
8662 rtx_insn *prev, *label, *note, *next;
8663
8664 label = BB_HEAD (last);
8665 if (LABEL_P (label))
8666 note = NEXT_INSN (label);
8667 else
8668 note = label;
8669 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8670
8671 prev = PREV_INSN (label);
8672 next = NEXT_INSN (note);
8673 gcc_assert (prev && next);
8674
8675 SET_NEXT_INSN (prev) = next;
8676 SET_PREV_INSN (next) = prev;
8677
8678 bb_header[last->index] = label;
8679
8680 if (last == first)
8681 break;
8682
8683 last = last->prev_bb;
8684 }
8685 while (1);
8686 }
8687
8688 /* Restore basic block notes.
8689 FIRST is the first basic block in the ebb. */
8690 static void
8691 restore_bb_notes (basic_block first)
8692 {
8693 if (!bb_header)
8694 return;
8695
8696 /* We DON'T unlink basic block notes of the first block in the ebb. */
8697 first = first->next_bb;
8698 /* Remember: FIRST is actually a second basic block in the ebb. */
8699
8700 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8701 && bb_header[first->index])
8702 {
8703 rtx_insn *prev, *label, *note, *next;
8704
8705 label = bb_header[first->index];
8706 prev = PREV_INSN (label);
8707 next = NEXT_INSN (prev);
8708
8709 if (LABEL_P (label))
8710 note = NEXT_INSN (label);
8711 else
8712 note = label;
8713 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8714
8715 bb_header[first->index] = 0;
8716
8717 SET_NEXT_INSN (prev) = label;
8718 SET_NEXT_INSN (note) = next;
8719 SET_PREV_INSN (next) = note;
8720
8721 first = first->next_bb;
8722 }
8723
8724 free (bb_header);
8725 bb_header = 0;
8726 }
8727
8728 /* Helper function.
8729 Fix CFG after both in- and inter-block movement of
8730 control_flow_insn_p JUMP. */
8731 static void
8732 fix_jump_move (rtx_insn *jump)
8733 {
8734 basic_block bb, jump_bb, jump_bb_next;
8735
8736 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8737 jump_bb = BLOCK_FOR_INSN (jump);
8738 jump_bb_next = jump_bb->next_bb;
8739
8740 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8741 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8742
8743 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8744 /* if jump_bb_next is not empty. */
8745 BB_END (jump_bb) = BB_END (jump_bb_next);
8746
8747 if (BB_END (bb) != PREV_INSN (jump))
8748 /* Then there are instruction after jump that should be placed
8749 to jump_bb_next. */
8750 BB_END (jump_bb_next) = BB_END (bb);
8751 else
8752 /* Otherwise jump_bb_next is empty. */
8753 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8754
8755 /* To make assertion in move_insn happy. */
8756 BB_END (bb) = PREV_INSN (jump);
8757
8758 update_bb_for_insn (jump_bb_next);
8759 }
8760
8761 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8762 static void
8763 move_block_after_check (rtx_insn *jump)
8764 {
8765 basic_block bb, jump_bb, jump_bb_next;
8766 vec<edge, va_gc> *t;
8767
8768 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8769 jump_bb = BLOCK_FOR_INSN (jump);
8770 jump_bb_next = jump_bb->next_bb;
8771
8772 update_bb_for_insn (jump_bb);
8773
8774 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8775 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8776
8777 unlink_block (jump_bb_next);
8778 link_block (jump_bb_next, bb);
8779
8780 t = bb->succs;
8781 bb->succs = 0;
8782 move_succs (&(jump_bb->succs), bb);
8783 move_succs (&(jump_bb_next->succs), jump_bb);
8784 move_succs (&t, jump_bb_next);
8785
8786 df_mark_solutions_dirty ();
8787
8788 common_sched_info->fix_recovery_cfg
8789 (bb->index, jump_bb->index, jump_bb_next->index);
8790 }
8791
8792 /* Helper function for move_block_after_check.
8793 This functions attaches edge vector pointed to by SUCCSP to
8794 block TO. */
8795 static void
8796 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8797 {
8798 edge e;
8799 edge_iterator ei;
8800
8801 gcc_assert (to->succs == 0);
8802
8803 to->succs = *succsp;
8804
8805 FOR_EACH_EDGE (e, ei, to->succs)
8806 e->src = to;
8807
8808 *succsp = 0;
8809 }
8810
8811 /* Remove INSN from the instruction stream.
8812 INSN should have any dependencies. */
8813 static void
8814 sched_remove_insn (rtx_insn *insn)
8815 {
8816 sd_finish_insn (insn);
8817
8818 change_queue_index (insn, QUEUE_NOWHERE);
8819 current_sched_info->add_remove_insn (insn, 1);
8820 delete_insn (insn);
8821 }
8822
8823 /* Clear priorities of all instructions, that are forward dependent on INSN.
8824 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8825 be invoked to initialize all cleared priorities. */
8826 static void
8827 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8828 {
8829 sd_iterator_def sd_it;
8830 dep_t dep;
8831 bool insn_is_root_p = true;
8832
8833 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8834
8835 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8836 {
8837 rtx_insn *pro = DEP_PRO (dep);
8838
8839 if (INSN_PRIORITY_STATUS (pro) >= 0
8840 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8841 {
8842 /* If DEP doesn't contribute to priority then INSN itself should
8843 be added to priority roots. */
8844 if (contributes_to_priority_p (dep))
8845 insn_is_root_p = false;
8846
8847 INSN_PRIORITY_STATUS (pro) = -1;
8848 clear_priorities (pro, roots_ptr);
8849 }
8850 }
8851
8852 if (insn_is_root_p)
8853 roots_ptr->safe_push (insn);
8854 }
8855
8856 /* Recompute priorities of instructions, whose priorities might have been
8857 changed. ROOTS is a vector of instructions whose priority computation will
8858 trigger initialization of all cleared priorities. */
8859 static void
8860 calc_priorities (rtx_vec_t roots)
8861 {
8862 int i;
8863 rtx_insn *insn;
8864
8865 FOR_EACH_VEC_ELT (roots, i, insn)
8866 priority (insn);
8867 }
8868
8869
8870 /* Add dependences between JUMP and other instructions in the recovery
8871 block. INSN is the first insn the recovery block. */
8872 static void
8873 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8874 {
8875 do
8876 {
8877 insn = NEXT_INSN (insn);
8878 if (insn == jump)
8879 break;
8880
8881 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8882 {
8883 dep_def _new_dep, *new_dep = &_new_dep;
8884
8885 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8886 sd_add_dep (new_dep, false);
8887 }
8888 }
8889 while (1);
8890
8891 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8892 }
8893
8894 /* Extend data structures for logical insn UID. */
8895 void
8896 sched_extend_luids (void)
8897 {
8898 int new_luids_max_uid = get_max_uid () + 1;
8899
8900 sched_luids.safe_grow_cleared (new_luids_max_uid);
8901 }
8902
8903 /* Initialize LUID for INSN. */
8904 void
8905 sched_init_insn_luid (rtx_insn *insn)
8906 {
8907 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8908 int luid;
8909
8910 if (i >= 0)
8911 {
8912 luid = sched_max_luid;
8913 sched_max_luid += i;
8914 }
8915 else
8916 luid = -1;
8917
8918 SET_INSN_LUID (insn, luid);
8919 }
8920
8921 /* Initialize luids for BBS.
8922 The hook common_sched_info->luid_for_non_insn () is used to determine
8923 if notes, labels, etc. need luids. */
8924 void
8925 sched_init_luids (bb_vec_t bbs)
8926 {
8927 int i;
8928 basic_block bb;
8929
8930 sched_extend_luids ();
8931 FOR_EACH_VEC_ELT (bbs, i, bb)
8932 {
8933 rtx_insn *insn;
8934
8935 FOR_BB_INSNS (bb, insn)
8936 sched_init_insn_luid (insn);
8937 }
8938 }
8939
8940 /* Free LUIDs. */
8941 void
8942 sched_finish_luids (void)
8943 {
8944 sched_luids.release ();
8945 sched_max_luid = 1;
8946 }
8947
8948 /* Return logical uid of INSN. Helpful while debugging. */
8949 int
8950 insn_luid (rtx_insn *insn)
8951 {
8952 return INSN_LUID (insn);
8953 }
8954
8955 /* Extend per insn data in the target. */
8956 void
8957 sched_extend_target (void)
8958 {
8959 if (targetm.sched.h_i_d_extended)
8960 targetm.sched.h_i_d_extended ();
8961 }
8962
8963 /* Extend global scheduler structures (those, that live across calls to
8964 schedule_block) to include information about just emitted INSN. */
8965 static void
8966 extend_h_i_d (void)
8967 {
8968 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8969 if (reserve > 0
8970 && ! h_i_d.space (reserve))
8971 {
8972 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8973 sched_extend_target ();
8974 }
8975 }
8976
8977 /* Initialize h_i_d entry of the INSN with default values.
8978 Values, that are not explicitly initialized here, hold zero. */
8979 static void
8980 init_h_i_d (rtx_insn *insn)
8981 {
8982 if (INSN_LUID (insn) > 0)
8983 {
8984 INSN_COST (insn) = -1;
8985 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8986 INSN_TICK (insn) = INVALID_TICK;
8987 INSN_EXACT_TICK (insn) = INVALID_TICK;
8988 INTER_TICK (insn) = INVALID_TICK;
8989 TODO_SPEC (insn) = HARD_DEP;
8990 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
8991 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
8992 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
8993 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
8994 }
8995 }
8996
8997 /* Initialize haifa_insn_data for BBS. */
8998 void
8999 haifa_init_h_i_d (bb_vec_t bbs)
9000 {
9001 int i;
9002 basic_block bb;
9003
9004 extend_h_i_d ();
9005 FOR_EACH_VEC_ELT (bbs, i, bb)
9006 {
9007 rtx_insn *insn;
9008
9009 FOR_BB_INSNS (bb, insn)
9010 init_h_i_d (insn);
9011 }
9012 }
9013
9014 /* Finalize haifa_insn_data. */
9015 void
9016 haifa_finish_h_i_d (void)
9017 {
9018 int i;
9019 haifa_insn_data_t data;
9020 struct reg_use_data *use, *next;
9021
9022 FOR_EACH_VEC_ELT (h_i_d, i, data)
9023 {
9024 free (data->max_reg_pressure);
9025 free (data->reg_pressure);
9026 for (use = data->reg_use_list; use != NULL; use = next)
9027 {
9028 next = use->next_insn_use;
9029 free (use);
9030 }
9031 }
9032 h_i_d.release ();
9033 }
9034
9035 /* Init data for the new insn INSN. */
9036 static void
9037 haifa_init_insn (rtx_insn *insn)
9038 {
9039 gcc_assert (insn != NULL);
9040
9041 sched_extend_luids ();
9042 sched_init_insn_luid (insn);
9043 sched_extend_target ();
9044 sched_deps_init (false);
9045 extend_h_i_d ();
9046 init_h_i_d (insn);
9047
9048 if (adding_bb_to_current_region_p)
9049 {
9050 sd_init_insn (insn);
9051
9052 /* Extend dependency caches by one element. */
9053 extend_dependency_caches (1, false);
9054 }
9055 if (sched_pressure != SCHED_PRESSURE_NONE)
9056 init_insn_reg_pressure_info (insn);
9057 }
9058
9059 /* Init data for the new basic block BB which comes after AFTER. */
9060 static void
9061 haifa_init_only_bb (basic_block bb, basic_block after)
9062 {
9063 gcc_assert (bb != NULL);
9064
9065 sched_init_bbs ();
9066
9067 if (common_sched_info->add_block)
9068 /* This changes only data structures of the front-end. */
9069 common_sched_info->add_block (bb, after);
9070 }
9071
9072 /* A generic version of sched_split_block (). */
9073 basic_block
9074 sched_split_block_1 (basic_block first_bb, rtx after)
9075 {
9076 edge e;
9077
9078 e = split_block (first_bb, after);
9079 gcc_assert (e->src == first_bb);
9080
9081 /* sched_split_block emits note if *check == BB_END. Probably it
9082 is better to rip that note off. */
9083
9084 return e->dest;
9085 }
9086
9087 /* A generic version of sched_create_empty_bb (). */
9088 basic_block
9089 sched_create_empty_bb_1 (basic_block after)
9090 {
9091 return create_empty_bb (after);
9092 }
9093
9094 /* Insert PAT as an INSN into the schedule and update the necessary data
9095 structures to account for it. */
9096 rtx_insn *
9097 sched_emit_insn (rtx pat)
9098 {
9099 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9100 haifa_init_insn (insn);
9101
9102 if (current_sched_info->add_remove_insn)
9103 current_sched_info->add_remove_insn (insn, 0);
9104
9105 (*current_sched_info->begin_schedule_ready) (insn);
9106 scheduled_insns.safe_push (insn);
9107
9108 last_scheduled_insn = insn;
9109 return insn;
9110 }
9111
9112 /* This function returns a candidate satisfying dispatch constraints from
9113 the ready list. */
9114
9115 static rtx_insn *
9116 ready_remove_first_dispatch (struct ready_list *ready)
9117 {
9118 int i;
9119 rtx_insn *insn = ready_element (ready, 0);
9120
9121 if (ready->n_ready == 1
9122 || !INSN_P (insn)
9123 || INSN_CODE (insn) < 0
9124 || !active_insn_p (insn)
9125 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9126 return ready_remove_first (ready);
9127
9128 for (i = 1; i < ready->n_ready; i++)
9129 {
9130 insn = ready_element (ready, i);
9131
9132 if (!INSN_P (insn)
9133 || INSN_CODE (insn) < 0
9134 || !active_insn_p (insn))
9135 continue;
9136
9137 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9138 {
9139 /* Return ith element of ready. */
9140 insn = ready_remove (ready, i);
9141 return insn;
9142 }
9143 }
9144
9145 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9146 return ready_remove_first (ready);
9147
9148 for (i = 1; i < ready->n_ready; i++)
9149 {
9150 insn = ready_element (ready, i);
9151
9152 if (!INSN_P (insn)
9153 || INSN_CODE (insn) < 0
9154 || !active_insn_p (insn))
9155 continue;
9156
9157 /* Return i-th element of ready. */
9158 if (targetm.sched.dispatch (insn, IS_CMP))
9159 return ready_remove (ready, i);
9160 }
9161
9162 return ready_remove_first (ready);
9163 }
9164
9165 /* Get number of ready insn in the ready list. */
9166
9167 int
9168 number_in_ready (void)
9169 {
9170 return ready.n_ready;
9171 }
9172
9173 /* Get number of ready's in the ready list. */
9174
9175 rtx_insn *
9176 get_ready_element (int i)
9177 {
9178 return ready_element (&ready, i);
9179 }
9180
9181 #endif /* INSN_SCHEDULING */