Update copyright years.
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "tm_p.h"
134 #include "insn-config.h"
135 #include "regs.h"
136 #include "ira.h"
137 #include "recog.h"
138 #include "insn-attr.h"
139 #include "cfgrtl.h"
140 #include "cfgbuild.h"
141 #include "sched-int.h"
142 #include "common/common-target.h"
143 #include "params.h"
144 #include "dbgcnt.h"
145 #include "cfgloop.h"
146 #include "dumpfile.h"
147 #include "print-rtl.h"
148
149 #ifdef INSN_SCHEDULING
150
151 /* True if we do register pressure relief through live-range
152 shrinkage. */
153 static bool live_range_shrinkage_p;
154
155 /* Switch on live range shrinkage. */
156 void
157 initialize_live_range_shrinkage (void)
158 {
159 live_range_shrinkage_p = true;
160 }
161
162 /* Switch off live range shrinkage. */
163 void
164 finish_live_range_shrinkage (void)
165 {
166 live_range_shrinkage_p = false;
167 }
168
169 /* issue_rate is the number of insns that can be scheduled in the same
170 machine cycle. It can be defined in the config/mach/mach.h file,
171 otherwise we set it to 1. */
172
173 int issue_rate;
174
175 /* This can be set to true by a backend if the scheduler should not
176 enable a DCE pass. */
177 bool sched_no_dce;
178
179 /* The current initiation interval used when modulo scheduling. */
180 static int modulo_ii;
181
182 /* The maximum number of stages we are prepared to handle. */
183 static int modulo_max_stages;
184
185 /* The number of insns that exist in each iteration of the loop. We use this
186 to detect when we've scheduled all insns from the first iteration. */
187 static int modulo_n_insns;
188
189 /* The current count of insns in the first iteration of the loop that have
190 already been scheduled. */
191 static int modulo_insns_scheduled;
192
193 /* The maximum uid of insns from the first iteration of the loop. */
194 static int modulo_iter0_max_uid;
195
196 /* The number of times we should attempt to backtrack when modulo scheduling.
197 Decreased each time we have to backtrack. */
198 static int modulo_backtracks_left;
199
200 /* The stage in which the last insn from the original loop was
201 scheduled. */
202 static int modulo_last_stage;
203
204 /* sched-verbose controls the amount of debugging output the
205 scheduler prints. It is controlled by -fsched-verbose=N:
206 N=0: no debugging output.
207 N=1: default value.
208 N=2: bb's probabilities, detailed ready list info, unit/insn info.
209 N=3: rtl at abort point, control-flow, regions info.
210 N=5: dependences info. */
211 int sched_verbose = 0;
212
213 /* Debugging file. All printouts are sent to dump. */
214 FILE *sched_dump = 0;
215
216 /* This is a placeholder for the scheduler parameters common
217 to all schedulers. */
218 struct common_sched_info_def *common_sched_info;
219
220 #define INSN_TICK(INSN) (HID (INSN)->tick)
221 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
222 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
223 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
224 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
225 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
226 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
227 /* Cached cost of the instruction. Use insn_cost to get cost of the
228 insn. -1 here means that the field is not initialized. */
229 #define INSN_COST(INSN) (HID (INSN)->cost)
230
231 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
232 then it should be recalculated from scratch. */
233 #define INVALID_TICK (-(max_insn_queue_index + 1))
234 /* The minimal value of the INSN_TICK of an instruction. */
235 #define MIN_TICK (-max_insn_queue_index)
236
237 /* Original order of insns in the ready list.
238 Used to keep order of normal insns while separating DEBUG_INSNs. */
239 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
240
241 /* The deciding reason for INSN's place in the ready list. */
242 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
243
244 /* List of important notes we must keep around. This is a pointer to the
245 last element in the list. */
246 rtx_insn *note_list;
247
248 static struct spec_info_def spec_info_var;
249 /* Description of the speculative part of the scheduling.
250 If NULL - no speculation. */
251 spec_info_t spec_info = NULL;
252
253 /* True, if recovery block was added during scheduling of current block.
254 Used to determine, if we need to fix INSN_TICKs. */
255 static bool haifa_recovery_bb_recently_added_p;
256
257 /* True, if recovery block was added during this scheduling pass.
258 Used to determine if we should have empty memory pools of dependencies
259 after finishing current region. */
260 bool haifa_recovery_bb_ever_added_p;
261
262 /* Counters of different types of speculative instructions. */
263 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
264
265 /* Array used in {unlink, restore}_bb_notes. */
266 static rtx_insn **bb_header = 0;
267
268 /* Basic block after which recovery blocks will be created. */
269 static basic_block before_recovery;
270
271 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
272 created it. */
273 basic_block after_recovery;
274
275 /* FALSE if we add bb to another region, so we don't need to initialize it. */
276 bool adding_bb_to_current_region_p = true;
277
278 /* Queues, etc. */
279
280 /* An instruction is ready to be scheduled when all insns preceding it
281 have already been scheduled. It is important to ensure that all
282 insns which use its result will not be executed until its result
283 has been computed. An insn is maintained in one of four structures:
284
285 (P) the "Pending" set of insns which cannot be scheduled until
286 their dependencies have been satisfied.
287 (Q) the "Queued" set of insns that can be scheduled when sufficient
288 time has passed.
289 (R) the "Ready" list of unscheduled, uncommitted insns.
290 (S) the "Scheduled" list of insns.
291
292 Initially, all insns are either "Pending" or "Ready" depending on
293 whether their dependencies are satisfied.
294
295 Insns move from the "Ready" list to the "Scheduled" list as they
296 are committed to the schedule. As this occurs, the insns in the
297 "Pending" list have their dependencies satisfied and move to either
298 the "Ready" list or the "Queued" set depending on whether
299 sufficient time has passed to make them ready. As time passes,
300 insns move from the "Queued" set to the "Ready" list.
301
302 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
303 unscheduled insns, i.e., those that are ready, queued, and pending.
304 The "Queued" set (Q) is implemented by the variable `insn_queue'.
305 The "Ready" list (R) is implemented by the variables `ready' and
306 `n_ready'.
307 The "Scheduled" list (S) is the new insn chain built by this pass.
308
309 The transition (R->S) is implemented in the scheduling loop in
310 `schedule_block' when the best insn to schedule is chosen.
311 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
312 insns move from the ready list to the scheduled list.
313 The transition (Q->R) is implemented in 'queue_to_insn' as time
314 passes or stalls are introduced. */
315
316 /* Implement a circular buffer to delay instructions until sufficient
317 time has passed. For the new pipeline description interface,
318 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
319 than maximal time of instruction execution computed by genattr.c on
320 the base maximal time of functional unit reservations and getting a
321 result. This is the longest time an insn may be queued. */
322
323 static rtx_insn_list **insn_queue;
324 static int q_ptr = 0;
325 static int q_size = 0;
326 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
327 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
328
329 #define QUEUE_SCHEDULED (-3)
330 #define QUEUE_NOWHERE (-2)
331 #define QUEUE_READY (-1)
332 /* QUEUE_SCHEDULED - INSN is scheduled.
333 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
334 queue or ready list.
335 QUEUE_READY - INSN is in ready list.
336 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
337
338 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
339
340 /* The following variable value refers for all current and future
341 reservations of the processor units. */
342 state_t curr_state;
343
344 /* The following variable value is size of memory representing all
345 current and future reservations of the processor units. */
346 size_t dfa_state_size;
347
348 /* The following array is used to find the best insn from ready when
349 the automaton pipeline interface is used. */
350 signed char *ready_try = NULL;
351
352 /* The ready list. */
353 struct ready_list ready = {NULL, 0, 0, 0, 0};
354
355 /* The pointer to the ready list (to be removed). */
356 static struct ready_list *readyp = &ready;
357
358 /* Scheduling clock. */
359 static int clock_var;
360
361 /* Clock at which the previous instruction was issued. */
362 static int last_clock_var;
363
364 /* Set to true if, when queuing a shadow insn, we discover that it would be
365 scheduled too late. */
366 static bool must_backtrack;
367
368 /* The following variable value is number of essential insns issued on
369 the current cycle. An insn is essential one if it changes the
370 processors state. */
371 int cycle_issued_insns;
372
373 /* This records the actual schedule. It is built up during the main phase
374 of schedule_block, and afterwards used to reorder the insns in the RTL. */
375 static vec<rtx_insn *> scheduled_insns;
376
377 static int may_trap_exp (const_rtx, int);
378
379 /* Nonzero iff the address is comprised from at most 1 register. */
380 #define CONST_BASED_ADDRESS_P(x) \
381 (REG_P (x) \
382 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
383 || (GET_CODE (x) == LO_SUM)) \
384 && (CONSTANT_P (XEXP (x, 0)) \
385 || CONSTANT_P (XEXP (x, 1)))))
386
387 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
388 as found by analyzing insn's expression. */
389
390 \f
391 static int haifa_luid_for_non_insn (rtx x);
392
393 /* Haifa version of sched_info hooks common to all headers. */
394 const struct common_sched_info_def haifa_common_sched_info =
395 {
396 NULL, /* fix_recovery_cfg */
397 NULL, /* add_block */
398 NULL, /* estimate_number_of_insns */
399 haifa_luid_for_non_insn, /* luid_for_non_insn */
400 SCHED_PASS_UNKNOWN /* sched_pass_id */
401 };
402
403 /* Mapping from instruction UID to its Logical UID. */
404 vec<int> sched_luids = vNULL;
405
406 /* Next LUID to assign to an instruction. */
407 int sched_max_luid = 1;
408
409 /* Haifa Instruction Data. */
410 vec<haifa_insn_data_def> h_i_d = vNULL;
411
412 void (* sched_init_only_bb) (basic_block, basic_block);
413
414 /* Split block function. Different schedulers might use different functions
415 to handle their internal data consistent. */
416 basic_block (* sched_split_block) (basic_block, rtx);
417
418 /* Create empty basic block after the specified block. */
419 basic_block (* sched_create_empty_bb) (basic_block);
420
421 /* Return the number of cycles until INSN is expected to be ready.
422 Return zero if it already is. */
423 static int
424 insn_delay (rtx_insn *insn)
425 {
426 return MAX (INSN_TICK (insn) - clock_var, 0);
427 }
428
429 static int
430 may_trap_exp (const_rtx x, int is_store)
431 {
432 enum rtx_code code;
433
434 if (x == 0)
435 return TRAP_FREE;
436 code = GET_CODE (x);
437 if (is_store)
438 {
439 if (code == MEM && may_trap_p (x))
440 return TRAP_RISKY;
441 else
442 return TRAP_FREE;
443 }
444 if (code == MEM)
445 {
446 /* The insn uses memory: a volatile load. */
447 if (MEM_VOLATILE_P (x))
448 return IRISKY;
449 /* An exception-free load. */
450 if (!may_trap_p (x))
451 return IFREE;
452 /* A load with 1 base register, to be further checked. */
453 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
454 return PFREE_CANDIDATE;
455 /* No info on the load, to be further checked. */
456 return PRISKY_CANDIDATE;
457 }
458 else
459 {
460 const char *fmt;
461 int i, insn_class = TRAP_FREE;
462
463 /* Neither store nor load, check if it may cause a trap. */
464 if (may_trap_p (x))
465 return TRAP_RISKY;
466 /* Recursive step: walk the insn... */
467 fmt = GET_RTX_FORMAT (code);
468 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
469 {
470 if (fmt[i] == 'e')
471 {
472 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
473 insn_class = WORST_CLASS (insn_class, tmp_class);
474 }
475 else if (fmt[i] == 'E')
476 {
477 int j;
478 for (j = 0; j < XVECLEN (x, i); j++)
479 {
480 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
481 insn_class = WORST_CLASS (insn_class, tmp_class);
482 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
483 break;
484 }
485 }
486 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
487 break;
488 }
489 return insn_class;
490 }
491 }
492
493 /* Classifies rtx X of an insn for the purpose of verifying that X can be
494 executed speculatively (and consequently the insn can be moved
495 speculatively), by examining X, returning:
496 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
497 TRAP_FREE: non-load insn.
498 IFREE: load from a globally safe location.
499 IRISKY: volatile load.
500 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
501 being either PFREE or PRISKY. */
502
503 static int
504 haifa_classify_rtx (const_rtx x)
505 {
506 int tmp_class = TRAP_FREE;
507 int insn_class = TRAP_FREE;
508 enum rtx_code code;
509
510 if (GET_CODE (x) == PARALLEL)
511 {
512 int i, len = XVECLEN (x, 0);
513
514 for (i = len - 1; i >= 0; i--)
515 {
516 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
517 insn_class = WORST_CLASS (insn_class, tmp_class);
518 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
519 break;
520 }
521 }
522 else
523 {
524 code = GET_CODE (x);
525 switch (code)
526 {
527 case CLOBBER:
528 /* Test if it is a 'store'. */
529 tmp_class = may_trap_exp (XEXP (x, 0), 1);
530 break;
531 case SET:
532 /* Test if it is a store. */
533 tmp_class = may_trap_exp (SET_DEST (x), 1);
534 if (tmp_class == TRAP_RISKY)
535 break;
536 /* Test if it is a load. */
537 tmp_class =
538 WORST_CLASS (tmp_class,
539 may_trap_exp (SET_SRC (x), 0));
540 break;
541 case COND_EXEC:
542 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
543 if (tmp_class == TRAP_RISKY)
544 break;
545 tmp_class = WORST_CLASS (tmp_class,
546 may_trap_exp (COND_EXEC_TEST (x), 0));
547 break;
548 case TRAP_IF:
549 tmp_class = TRAP_RISKY;
550 break;
551 default:;
552 }
553 insn_class = tmp_class;
554 }
555
556 return insn_class;
557 }
558
559 int
560 haifa_classify_insn (const_rtx insn)
561 {
562 return haifa_classify_rtx (PATTERN (insn));
563 }
564 \f
565 /* After the scheduler initialization function has been called, this function
566 can be called to enable modulo scheduling. II is the initiation interval
567 we should use, it affects the delays for delay_pairs that were recorded as
568 separated by a given number of stages.
569
570 MAX_STAGES provides us with a limit
571 after which we give up scheduling; the caller must have unrolled at least
572 as many copies of the loop body and recorded delay_pairs for them.
573
574 INSNS is the number of real (non-debug) insns in one iteration of
575 the loop. MAX_UID can be used to test whether an insn belongs to
576 the first iteration of the loop; all of them have a uid lower than
577 MAX_UID. */
578 void
579 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
580 {
581 modulo_ii = ii;
582 modulo_max_stages = max_stages;
583 modulo_n_insns = insns;
584 modulo_iter0_max_uid = max_uid;
585 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
586 }
587
588 /* A structure to record a pair of insns where the first one is a real
589 insn that has delay slots, and the second is its delayed shadow.
590 I1 is scheduled normally and will emit an assembly instruction,
591 while I2 describes the side effect that takes place at the
592 transition between cycles CYCLES and (CYCLES + 1) after I1. */
593 struct delay_pair
594 {
595 struct delay_pair *next_same_i1;
596 rtx_insn *i1, *i2;
597 int cycles;
598 /* When doing modulo scheduling, we a delay_pair can also be used to
599 show that I1 and I2 are the same insn in a different stage. If that
600 is the case, STAGES will be nonzero. */
601 int stages;
602 };
603
604 /* Helpers for delay hashing. */
605
606 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
607 {
608 typedef void *compare_type;
609 static inline hashval_t hash (const delay_pair *);
610 static inline bool equal (const delay_pair *, const void *);
611 };
612
613 /* Returns a hash value for X, based on hashing just I1. */
614
615 inline hashval_t
616 delay_i1_hasher::hash (const delay_pair *x)
617 {
618 return htab_hash_pointer (x->i1);
619 }
620
621 /* Return true if I1 of pair X is the same as that of pair Y. */
622
623 inline bool
624 delay_i1_hasher::equal (const delay_pair *x, const void *y)
625 {
626 return x->i1 == y;
627 }
628
629 struct delay_i2_hasher : free_ptr_hash <delay_pair>
630 {
631 typedef void *compare_type;
632 static inline hashval_t hash (const delay_pair *);
633 static inline bool equal (const delay_pair *, const void *);
634 };
635
636 /* Returns a hash value for X, based on hashing just I2. */
637
638 inline hashval_t
639 delay_i2_hasher::hash (const delay_pair *x)
640 {
641 return htab_hash_pointer (x->i2);
642 }
643
644 /* Return true if I2 of pair X is the same as that of pair Y. */
645
646 inline bool
647 delay_i2_hasher::equal (const delay_pair *x, const void *y)
648 {
649 return x->i2 == y;
650 }
651
652 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
653 indexed by I2. */
654 static hash_table<delay_i1_hasher> *delay_htab;
655 static hash_table<delay_i2_hasher> *delay_htab_i2;
656
657 /* Called through htab_traverse. Walk the hashtable using I2 as
658 index, and delete all elements involving an UID higher than
659 that pointed to by *DATA. */
660 int
661 haifa_htab_i2_traverse (delay_pair **slot, int *data)
662 {
663 int maxuid = *data;
664 struct delay_pair *p = *slot;
665 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
666 {
667 delay_htab_i2->clear_slot (slot);
668 }
669 return 1;
670 }
671
672 /* Called through htab_traverse. Walk the hashtable using I2 as
673 index, and delete all elements involving an UID higher than
674 that pointed to by *DATA. */
675 int
676 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
677 {
678 int maxuid = *data;
679 struct delay_pair *p, *first, **pprev;
680
681 if (INSN_UID ((*pslot)->i1) >= maxuid)
682 {
683 delay_htab->clear_slot (pslot);
684 return 1;
685 }
686 pprev = &first;
687 for (p = *pslot; p; p = p->next_same_i1)
688 {
689 if (INSN_UID (p->i2) < maxuid)
690 {
691 *pprev = p;
692 pprev = &p->next_same_i1;
693 }
694 }
695 *pprev = NULL;
696 if (first == NULL)
697 delay_htab->clear_slot (pslot);
698 else
699 *pslot = first;
700 return 1;
701 }
702
703 /* Discard all delay pairs which involve an insn with an UID higher
704 than MAX_UID. */
705 void
706 discard_delay_pairs_above (int max_uid)
707 {
708 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
709 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
710 }
711
712 /* This function can be called by a port just before it starts the final
713 scheduling pass. It records the fact that an instruction with delay
714 slots has been split into two insns, I1 and I2. The first one will be
715 scheduled normally and initiates the operation. The second one is a
716 shadow which must follow a specific number of cycles after I1; its only
717 purpose is to show the side effect that occurs at that cycle in the RTL.
718 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
719 while I2 retains the original insn type.
720
721 There are two ways in which the number of cycles can be specified,
722 involving the CYCLES and STAGES arguments to this function. If STAGES
723 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
724 which is multiplied by MODULO_II to give the number of cycles. This is
725 only useful if the caller also calls set_modulo_params to enable modulo
726 scheduling. */
727
728 void
729 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
730 {
731 struct delay_pair *p = XNEW (struct delay_pair);
732 struct delay_pair **slot;
733
734 p->i1 = i1;
735 p->i2 = i2;
736 p->cycles = cycles;
737 p->stages = stages;
738
739 if (!delay_htab)
740 {
741 delay_htab = new hash_table<delay_i1_hasher> (10);
742 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
743 }
744 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
745 p->next_same_i1 = *slot;
746 *slot = p;
747 slot = delay_htab_i2->find_slot (p, INSERT);
748 *slot = p;
749 }
750
751 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
752 and return the other insn if so. Return NULL otherwise. */
753 rtx_insn *
754 real_insn_for_shadow (rtx_insn *insn)
755 {
756 struct delay_pair *pair;
757
758 if (!delay_htab)
759 return NULL;
760
761 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
762 if (!pair || pair->stages > 0)
763 return NULL;
764 return pair->i1;
765 }
766
767 /* For a pair P of insns, return the fixed distance in cycles from the first
768 insn after which the second must be scheduled. */
769 static int
770 pair_delay (struct delay_pair *p)
771 {
772 if (p->stages == 0)
773 return p->cycles;
774 else
775 return p->stages * modulo_ii;
776 }
777
778 /* Given an insn INSN, add a dependence on its delayed shadow if it
779 has one. Also try to find situations where shadows depend on each other
780 and add dependencies to the real insns to limit the amount of backtracking
781 needed. */
782 void
783 add_delay_dependencies (rtx_insn *insn)
784 {
785 struct delay_pair *pair;
786 sd_iterator_def sd_it;
787 dep_t dep;
788
789 if (!delay_htab)
790 return;
791
792 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
793 if (!pair)
794 return;
795 add_dependence (insn, pair->i1, REG_DEP_ANTI);
796 if (pair->stages)
797 return;
798
799 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
800 {
801 rtx_insn *pro = DEP_PRO (dep);
802 struct delay_pair *other_pair
803 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
804 if (!other_pair || other_pair->stages)
805 continue;
806 if (pair_delay (other_pair) >= pair_delay (pair))
807 {
808 if (sched_verbose >= 4)
809 {
810 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
811 INSN_UID (other_pair->i1),
812 INSN_UID (pair->i1));
813 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
814 INSN_UID (pair->i1),
815 INSN_UID (pair->i2),
816 pair_delay (pair));
817 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
818 INSN_UID (other_pair->i1),
819 INSN_UID (other_pair->i2),
820 pair_delay (other_pair));
821 }
822 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
823 }
824 }
825 }
826 \f
827 /* Forward declarations. */
828
829 static int priority (rtx_insn *);
830 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
831 static int rank_for_schedule (const void *, const void *);
832 static void swap_sort (rtx_insn **, int);
833 static void queue_insn (rtx_insn *, int, const char *);
834 static int schedule_insn (rtx_insn *);
835 static void adjust_priority (rtx_insn *);
836 static void advance_one_cycle (void);
837 static void extend_h_i_d (void);
838
839
840 /* Notes handling mechanism:
841 =========================
842 Generally, NOTES are saved before scheduling and restored after scheduling.
843 The scheduler distinguishes between two types of notes:
844
845 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
846 Before scheduling a region, a pointer to the note is added to the insn
847 that follows or precedes it. (This happens as part of the data dependence
848 computation). After scheduling an insn, the pointer contained in it is
849 used for regenerating the corresponding note (in reemit_notes).
850
851 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
852 these notes are put in a list (in rm_other_notes() and
853 unlink_other_notes ()). After scheduling the block, these notes are
854 inserted at the beginning of the block (in schedule_block()). */
855
856 static void ready_add (struct ready_list *, rtx_insn *, bool);
857 static rtx_insn *ready_remove_first (struct ready_list *);
858 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
859
860 static void queue_to_ready (struct ready_list *);
861 static int early_queue_to_ready (state_t, struct ready_list *);
862
863 /* The following functions are used to implement multi-pass scheduling
864 on the first cycle. */
865 static rtx_insn *ready_remove (struct ready_list *, int);
866 static void ready_remove_insn (rtx_insn *);
867
868 static void fix_inter_tick (rtx_insn *, rtx_insn *);
869 static int fix_tick_ready (rtx_insn *);
870 static void change_queue_index (rtx_insn *, int);
871
872 /* The following functions are used to implement scheduling of data/control
873 speculative instructions. */
874
875 static void extend_h_i_d (void);
876 static void init_h_i_d (rtx_insn *);
877 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
878 static void generate_recovery_code (rtx_insn *);
879 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
880 static void begin_speculative_block (rtx_insn *);
881 static void add_to_speculative_block (rtx_insn *);
882 static void init_before_recovery (basic_block *);
883 static void create_check_block_twin (rtx_insn *, bool);
884 static void fix_recovery_deps (basic_block);
885 static bool haifa_change_pattern (rtx_insn *, rtx);
886 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
887 static void restore_bb_notes (basic_block);
888 static void fix_jump_move (rtx_insn *);
889 static void move_block_after_check (rtx_insn *);
890 static void move_succs (vec<edge, va_gc> **, basic_block);
891 static void sched_remove_insn (rtx_insn *);
892 static void clear_priorities (rtx_insn *, rtx_vec_t *);
893 static void calc_priorities (rtx_vec_t);
894 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
895
896 #endif /* INSN_SCHEDULING */
897 \f
898 /* Point to state used for the current scheduling pass. */
899 struct haifa_sched_info *current_sched_info;
900 \f
901 #ifndef INSN_SCHEDULING
902 void
903 schedule_insns (void)
904 {
905 }
906 #else
907
908 /* Do register pressure sensitive insn scheduling if the flag is set
909 up. */
910 enum sched_pressure_algorithm sched_pressure;
911
912 /* Map regno -> its pressure class. The map defined only when
913 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
914 enum reg_class *sched_regno_pressure_class;
915
916 /* The current register pressure. Only elements corresponding pressure
917 classes are defined. */
918 static int curr_reg_pressure[N_REG_CLASSES];
919
920 /* Saved value of the previous array. */
921 static int saved_reg_pressure[N_REG_CLASSES];
922
923 /* Register living at given scheduling point. */
924 static bitmap curr_reg_live;
925
926 /* Saved value of the previous array. */
927 static bitmap saved_reg_live;
928
929 /* Registers mentioned in the current region. */
930 static bitmap region_ref_regs;
931
932 /* Effective number of available registers of a given class (see comment
933 in sched_pressure_start_bb). */
934 static int sched_class_regs_num[N_REG_CLASSES];
935 /* Number of call_used_regs. This is a helper for calculating of
936 sched_class_regs_num. */
937 static int call_used_regs_num[N_REG_CLASSES];
938
939 /* Initiate register pressure relative info for scheduling the current
940 region. Currently it is only clearing register mentioned in the
941 current region. */
942 void
943 sched_init_region_reg_pressure_info (void)
944 {
945 bitmap_clear (region_ref_regs);
946 }
947
948 /* PRESSURE[CL] describes the pressure on register class CL. Update it
949 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
950 LIVE tracks the set of live registers; if it is null, assume that
951 every birth or death is genuine. */
952 static inline void
953 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
954 {
955 enum reg_class pressure_class;
956
957 pressure_class = sched_regno_pressure_class[regno];
958 if (regno >= FIRST_PSEUDO_REGISTER)
959 {
960 if (pressure_class != NO_REGS)
961 {
962 if (birth_p)
963 {
964 if (!live || bitmap_set_bit (live, regno))
965 pressure[pressure_class]
966 += (ira_reg_class_max_nregs
967 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
968 }
969 else
970 {
971 if (!live || bitmap_clear_bit (live, regno))
972 pressure[pressure_class]
973 -= (ira_reg_class_max_nregs
974 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
975 }
976 }
977 }
978 else if (pressure_class != NO_REGS
979 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
980 {
981 if (birth_p)
982 {
983 if (!live || bitmap_set_bit (live, regno))
984 pressure[pressure_class]++;
985 }
986 else
987 {
988 if (!live || bitmap_clear_bit (live, regno))
989 pressure[pressure_class]--;
990 }
991 }
992 }
993
994 /* Initiate current register pressure related info from living
995 registers given by LIVE. */
996 static void
997 initiate_reg_pressure_info (bitmap live)
998 {
999 int i;
1000 unsigned int j;
1001 bitmap_iterator bi;
1002
1003 for (i = 0; i < ira_pressure_classes_num; i++)
1004 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1005 bitmap_clear (curr_reg_live);
1006 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1007 if (sched_pressure == SCHED_PRESSURE_MODEL
1008 || current_nr_blocks == 1
1009 || bitmap_bit_p (region_ref_regs, j))
1010 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1011 }
1012
1013 /* Mark registers in X as mentioned in the current region. */
1014 static void
1015 setup_ref_regs (rtx x)
1016 {
1017 int i, j;
1018 const RTX_CODE code = GET_CODE (x);
1019 const char *fmt;
1020
1021 if (REG_P (x))
1022 {
1023 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1024 return;
1025 }
1026 fmt = GET_RTX_FORMAT (code);
1027 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1028 if (fmt[i] == 'e')
1029 setup_ref_regs (XEXP (x, i));
1030 else if (fmt[i] == 'E')
1031 {
1032 for (j = 0; j < XVECLEN (x, i); j++)
1033 setup_ref_regs (XVECEXP (x, i, j));
1034 }
1035 }
1036
1037 /* Initiate current register pressure related info at the start of
1038 basic block BB. */
1039 static void
1040 initiate_bb_reg_pressure_info (basic_block bb)
1041 {
1042 unsigned int i ATTRIBUTE_UNUSED;
1043 rtx_insn *insn;
1044
1045 if (current_nr_blocks > 1)
1046 FOR_BB_INSNS (bb, insn)
1047 if (NONDEBUG_INSN_P (insn))
1048 setup_ref_regs (PATTERN (insn));
1049 initiate_reg_pressure_info (df_get_live_in (bb));
1050 if (bb_has_eh_pred (bb))
1051 for (i = 0; ; ++i)
1052 {
1053 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1054
1055 if (regno == INVALID_REGNUM)
1056 break;
1057 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1058 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1059 regno, true);
1060 }
1061 }
1062
1063 /* Save current register pressure related info. */
1064 static void
1065 save_reg_pressure (void)
1066 {
1067 int i;
1068
1069 for (i = 0; i < ira_pressure_classes_num; i++)
1070 saved_reg_pressure[ira_pressure_classes[i]]
1071 = curr_reg_pressure[ira_pressure_classes[i]];
1072 bitmap_copy (saved_reg_live, curr_reg_live);
1073 }
1074
1075 /* Restore saved register pressure related info. */
1076 static void
1077 restore_reg_pressure (void)
1078 {
1079 int i;
1080
1081 for (i = 0; i < ira_pressure_classes_num; i++)
1082 curr_reg_pressure[ira_pressure_classes[i]]
1083 = saved_reg_pressure[ira_pressure_classes[i]];
1084 bitmap_copy (curr_reg_live, saved_reg_live);
1085 }
1086
1087 /* Return TRUE if the register is dying after its USE. */
1088 static bool
1089 dying_use_p (struct reg_use_data *use)
1090 {
1091 struct reg_use_data *next;
1092
1093 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1094 if (NONDEBUG_INSN_P (next->insn)
1095 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1096 return false;
1097 return true;
1098 }
1099
1100 /* Print info about the current register pressure and its excess for
1101 each pressure class. */
1102 static void
1103 print_curr_reg_pressure (void)
1104 {
1105 int i;
1106 enum reg_class cl;
1107
1108 fprintf (sched_dump, ";;\t");
1109 for (i = 0; i < ira_pressure_classes_num; i++)
1110 {
1111 cl = ira_pressure_classes[i];
1112 gcc_assert (curr_reg_pressure[cl] >= 0);
1113 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1114 curr_reg_pressure[cl],
1115 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1116 }
1117 fprintf (sched_dump, "\n");
1118 }
1119 \f
1120 /* Determine if INSN has a condition that is clobbered if a register
1121 in SET_REGS is modified. */
1122 static bool
1123 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1124 {
1125 rtx pat = PATTERN (insn);
1126 gcc_assert (GET_CODE (pat) == COND_EXEC);
1127 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1128 {
1129 sd_iterator_def sd_it;
1130 dep_t dep;
1131 haifa_change_pattern (insn, ORIG_PAT (insn));
1132 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1133 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1134 TODO_SPEC (insn) = HARD_DEP;
1135 if (sched_verbose >= 2)
1136 fprintf (sched_dump,
1137 ";;\t\tdequeue insn %s because of clobbered condition\n",
1138 (*current_sched_info->print_insn) (insn, 0));
1139 return true;
1140 }
1141
1142 return false;
1143 }
1144
1145 /* This function should be called after modifying the pattern of INSN,
1146 to update scheduler data structures as needed. */
1147 static void
1148 update_insn_after_change (rtx_insn *insn)
1149 {
1150 sd_iterator_def sd_it;
1151 dep_t dep;
1152
1153 dfa_clear_single_insn_cache (insn);
1154
1155 sd_it = sd_iterator_start (insn,
1156 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1157 while (sd_iterator_cond (&sd_it, &dep))
1158 {
1159 DEP_COST (dep) = UNKNOWN_DEP_COST;
1160 sd_iterator_next (&sd_it);
1161 }
1162
1163 /* Invalidate INSN_COST, so it'll be recalculated. */
1164 INSN_COST (insn) = -1;
1165 /* Invalidate INSN_TICK, so it'll be recalculated. */
1166 INSN_TICK (insn) = INVALID_TICK;
1167
1168 /* Invalidate autoprefetch data entry. */
1169 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1170 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1171 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1172 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1173 }
1174
1175
1176 /* Two VECs, one to hold dependencies for which pattern replacements
1177 need to be applied or restored at the start of the next cycle, and
1178 another to hold an integer that is either one, to apply the
1179 corresponding replacement, or zero to restore it. */
1180 static vec<dep_t> next_cycle_replace_deps;
1181 static vec<int> next_cycle_apply;
1182
1183 static void apply_replacement (dep_t, bool);
1184 static void restore_pattern (dep_t, bool);
1185
1186 /* Look at the remaining dependencies for insn NEXT, and compute and return
1187 the TODO_SPEC value we should use for it. This is called after one of
1188 NEXT's dependencies has been resolved.
1189 We also perform pattern replacements for predication, and for broken
1190 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1191 false. */
1192
1193 static ds_t
1194 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1195 {
1196 ds_t new_ds;
1197 sd_iterator_def sd_it;
1198 dep_t dep, modify_dep = NULL;
1199 int n_spec = 0;
1200 int n_control = 0;
1201 int n_replace = 0;
1202 bool first_p = true;
1203
1204 if (sd_lists_empty_p (next, SD_LIST_BACK))
1205 /* NEXT has all its dependencies resolved. */
1206 return 0;
1207
1208 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1209 return HARD_DEP;
1210
1211 /* If NEXT is intended to sit adjacent to this instruction, we don't
1212 want to try to break any dependencies. Treat it as a HARD_DEP. */
1213 if (SCHED_GROUP_P (next))
1214 return HARD_DEP;
1215
1216 /* Now we've got NEXT with speculative deps only.
1217 1. Look at the deps to see what we have to do.
1218 2. Check if we can do 'todo'. */
1219 new_ds = 0;
1220
1221 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1222 {
1223 rtx_insn *pro = DEP_PRO (dep);
1224 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1225
1226 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1227 continue;
1228
1229 if (ds)
1230 {
1231 n_spec++;
1232 if (first_p)
1233 {
1234 first_p = false;
1235
1236 new_ds = ds;
1237 }
1238 else
1239 new_ds = ds_merge (new_ds, ds);
1240 }
1241 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1242 {
1243 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1244 {
1245 n_control++;
1246 modify_dep = dep;
1247 }
1248 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1249 }
1250 else if (DEP_REPLACE (dep) != NULL)
1251 {
1252 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1253 {
1254 n_replace++;
1255 modify_dep = dep;
1256 }
1257 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1258 }
1259 }
1260
1261 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1262 {
1263 if (!dbg_cnt (sched_breakdep))
1264 return HARD_DEP;
1265 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1266 {
1267 struct dep_replacement *desc = DEP_REPLACE (dep);
1268 if (desc != NULL)
1269 {
1270 if (desc->insn == next && !for_backtrack)
1271 {
1272 gcc_assert (n_replace == 1);
1273 apply_replacement (dep, true);
1274 }
1275 DEP_STATUS (dep) |= DEP_CANCELLED;
1276 }
1277 }
1278 return 0;
1279 }
1280
1281 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1282 {
1283 rtx_insn *pro, *other;
1284 rtx new_pat;
1285 rtx cond = NULL_RTX;
1286 bool success;
1287 rtx_insn *prev = NULL;
1288 int i;
1289 unsigned regno;
1290
1291 if ((current_sched_info->flags & DO_PREDICATION) == 0
1292 || (ORIG_PAT (next) != NULL_RTX
1293 && PREDICATED_PAT (next) == NULL_RTX))
1294 return HARD_DEP;
1295
1296 pro = DEP_PRO (modify_dep);
1297 other = real_insn_for_shadow (pro);
1298 if (other != NULL_RTX)
1299 pro = other;
1300
1301 cond = sched_get_reverse_condition_uncached (pro);
1302 regno = REGNO (XEXP (cond, 0));
1303
1304 /* Find the last scheduled insn that modifies the condition register.
1305 We can stop looking once we find the insn we depend on through the
1306 REG_DEP_CONTROL; if the condition register isn't modified after it,
1307 we know that it still has the right value. */
1308 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1309 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1310 {
1311 HARD_REG_SET t;
1312
1313 find_all_hard_reg_sets (prev, &t, true);
1314 if (TEST_HARD_REG_BIT (t, regno))
1315 return HARD_DEP;
1316 if (prev == pro)
1317 break;
1318 }
1319 if (ORIG_PAT (next) == NULL_RTX)
1320 {
1321 ORIG_PAT (next) = PATTERN (next);
1322
1323 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1324 success = haifa_change_pattern (next, new_pat);
1325 if (!success)
1326 return HARD_DEP;
1327 PREDICATED_PAT (next) = new_pat;
1328 }
1329 else if (PATTERN (next) != PREDICATED_PAT (next))
1330 {
1331 bool success = haifa_change_pattern (next,
1332 PREDICATED_PAT (next));
1333 gcc_assert (success);
1334 }
1335 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1336 return DEP_CONTROL;
1337 }
1338
1339 if (PREDICATED_PAT (next) != NULL_RTX)
1340 {
1341 int tick = INSN_TICK (next);
1342 bool success = haifa_change_pattern (next,
1343 ORIG_PAT (next));
1344 INSN_TICK (next) = tick;
1345 gcc_assert (success);
1346 }
1347
1348 /* We can't handle the case where there are both speculative and control
1349 dependencies, so we return HARD_DEP in such a case. Also fail if
1350 we have speculative dependencies with not enough points, or more than
1351 one control dependency. */
1352 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1353 || (n_spec > 0
1354 /* Too few points? */
1355 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1356 || n_control > 0
1357 || n_replace > 0)
1358 return HARD_DEP;
1359
1360 return new_ds;
1361 }
1362 \f
1363 /* Pointer to the last instruction scheduled. */
1364 static rtx_insn *last_scheduled_insn;
1365
1366 /* Pointer to the last nondebug instruction scheduled within the
1367 block, or the prev_head of the scheduling block. Used by
1368 rank_for_schedule, so that insns independent of the last scheduled
1369 insn will be preferred over dependent instructions. */
1370 static rtx_insn *last_nondebug_scheduled_insn;
1371
1372 /* Pointer that iterates through the list of unscheduled insns if we
1373 have a dbg_cnt enabled. It always points at an insn prior to the
1374 first unscheduled one. */
1375 static rtx_insn *nonscheduled_insns_begin;
1376
1377 /* Compute cost of executing INSN.
1378 This is the number of cycles between instruction issue and
1379 instruction results. */
1380 int
1381 insn_cost (rtx_insn *insn)
1382 {
1383 int cost;
1384
1385 if (sched_fusion)
1386 return 0;
1387
1388 if (sel_sched_p ())
1389 {
1390 if (recog_memoized (insn) < 0)
1391 return 0;
1392
1393 cost = insn_default_latency (insn);
1394 if (cost < 0)
1395 cost = 0;
1396
1397 return cost;
1398 }
1399
1400 cost = INSN_COST (insn);
1401
1402 if (cost < 0)
1403 {
1404 /* A USE insn, or something else we don't need to
1405 understand. We can't pass these directly to
1406 result_ready_cost or insn_default_latency because it will
1407 trigger a fatal error for unrecognizable insns. */
1408 if (recog_memoized (insn) < 0)
1409 {
1410 INSN_COST (insn) = 0;
1411 return 0;
1412 }
1413 else
1414 {
1415 cost = insn_default_latency (insn);
1416 if (cost < 0)
1417 cost = 0;
1418
1419 INSN_COST (insn) = cost;
1420 }
1421 }
1422
1423 return cost;
1424 }
1425
1426 /* Compute cost of dependence LINK.
1427 This is the number of cycles between instruction issue and
1428 instruction results.
1429 ??? We also use this function to call recog_memoized on all insns. */
1430 int
1431 dep_cost_1 (dep_t link, dw_t dw)
1432 {
1433 rtx_insn *insn = DEP_PRO (link);
1434 rtx_insn *used = DEP_CON (link);
1435 int cost;
1436
1437 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1438 return DEP_COST (link);
1439
1440 if (delay_htab)
1441 {
1442 struct delay_pair *delay_entry;
1443 delay_entry
1444 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1445 if (delay_entry)
1446 {
1447 if (delay_entry->i1 == insn)
1448 {
1449 DEP_COST (link) = pair_delay (delay_entry);
1450 return DEP_COST (link);
1451 }
1452 }
1453 }
1454
1455 /* A USE insn should never require the value used to be computed.
1456 This allows the computation of a function's result and parameter
1457 values to overlap the return and call. We don't care about the
1458 dependence cost when only decreasing register pressure. */
1459 if (recog_memoized (used) < 0)
1460 {
1461 cost = 0;
1462 recog_memoized (insn);
1463 }
1464 else
1465 {
1466 enum reg_note dep_type = DEP_TYPE (link);
1467
1468 cost = insn_cost (insn);
1469
1470 if (INSN_CODE (insn) >= 0)
1471 {
1472 if (dep_type == REG_DEP_ANTI)
1473 cost = 0;
1474 else if (dep_type == REG_DEP_OUTPUT)
1475 {
1476 cost = (insn_default_latency (insn)
1477 - insn_default_latency (used));
1478 if (cost <= 0)
1479 cost = 1;
1480 }
1481 else if (bypass_p (insn))
1482 cost = insn_latency (insn, used);
1483 }
1484
1485
1486 if (targetm.sched.adjust_cost_2)
1487 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1488 dw);
1489 else if (targetm.sched.adjust_cost != NULL)
1490 {
1491 /* This variable is used for backward compatibility with the
1492 targets. */
1493 rtx_insn_list *dep_cost_rtx_link =
1494 alloc_INSN_LIST (NULL_RTX, NULL);
1495
1496 /* Make it self-cycled, so that if some tries to walk over this
1497 incomplete list he/she will be caught in an endless loop. */
1498 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1499
1500 /* Targets use only REG_NOTE_KIND of the link. */
1501 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1502
1503 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1504 insn, cost);
1505
1506 free_INSN_LIST_node (dep_cost_rtx_link);
1507 }
1508
1509 if (cost < 0)
1510 cost = 0;
1511 }
1512
1513 DEP_COST (link) = cost;
1514 return cost;
1515 }
1516
1517 /* Compute cost of dependence LINK.
1518 This is the number of cycles between instruction issue and
1519 instruction results. */
1520 int
1521 dep_cost (dep_t link)
1522 {
1523 return dep_cost_1 (link, 0);
1524 }
1525
1526 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1527 INSN_PRIORITY explicitly. */
1528 void
1529 increase_insn_priority (rtx_insn *insn, int amount)
1530 {
1531 if (!sel_sched_p ())
1532 {
1533 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1534 if (INSN_PRIORITY_KNOWN (insn))
1535 INSN_PRIORITY (insn) += amount;
1536 }
1537 else
1538 {
1539 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1540 Use EXPR_PRIORITY instead. */
1541 sel_add_to_insn_priority (insn, amount);
1542 }
1543 }
1544
1545 /* Return 'true' if DEP should be included in priority calculations. */
1546 static bool
1547 contributes_to_priority_p (dep_t dep)
1548 {
1549 if (DEBUG_INSN_P (DEP_CON (dep))
1550 || DEBUG_INSN_P (DEP_PRO (dep)))
1551 return false;
1552
1553 /* Critical path is meaningful in block boundaries only. */
1554 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1555 DEP_PRO (dep)))
1556 return false;
1557
1558 if (DEP_REPLACE (dep) != NULL)
1559 return false;
1560
1561 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1562 then speculative instructions will less likely be
1563 scheduled. That is because the priority of
1564 their producers will increase, and, thus, the
1565 producers will more likely be scheduled, thus,
1566 resolving the dependence. */
1567 if (sched_deps_info->generate_spec_deps
1568 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1569 && (DEP_STATUS (dep) & SPECULATIVE))
1570 return false;
1571
1572 return true;
1573 }
1574
1575 /* Compute the number of nondebug deps in list LIST for INSN. */
1576
1577 static int
1578 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1579 {
1580 sd_iterator_def sd_it;
1581 dep_t dep;
1582 int dbgcount = 0, nodbgcount = 0;
1583
1584 if (!MAY_HAVE_DEBUG_INSNS)
1585 return sd_lists_size (insn, list);
1586
1587 FOR_EACH_DEP (insn, list, sd_it, dep)
1588 {
1589 if (DEBUG_INSN_P (DEP_CON (dep)))
1590 dbgcount++;
1591 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1592 nodbgcount++;
1593 }
1594
1595 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1596
1597 return nodbgcount;
1598 }
1599
1600 bool sched_fusion;
1601
1602 /* Compute the priority number for INSN. */
1603 static int
1604 priority (rtx_insn *insn)
1605 {
1606 if (! INSN_P (insn))
1607 return 0;
1608
1609 /* We should not be interested in priority of an already scheduled insn. */
1610 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1611
1612 if (!INSN_PRIORITY_KNOWN (insn))
1613 {
1614 int this_priority = -1;
1615
1616 if (sched_fusion)
1617 {
1618 int this_fusion_priority;
1619
1620 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1621 &this_fusion_priority, &this_priority);
1622 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1623 }
1624 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1625 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1626 some forward deps but all of them are ignored by
1627 contributes_to_priority hook. At the moment we set priority of
1628 such insn to 0. */
1629 this_priority = insn_cost (insn);
1630 else
1631 {
1632 rtx_insn *prev_first, *twin;
1633 basic_block rec;
1634
1635 /* For recovery check instructions we calculate priority slightly
1636 different than that of normal instructions. Instead of walking
1637 through INSN_FORW_DEPS (check) list, we walk through
1638 INSN_FORW_DEPS list of each instruction in the corresponding
1639 recovery block. */
1640
1641 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1642 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1643 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1644 {
1645 prev_first = PREV_INSN (insn);
1646 twin = insn;
1647 }
1648 else
1649 {
1650 prev_first = NEXT_INSN (BB_HEAD (rec));
1651 twin = PREV_INSN (BB_END (rec));
1652 }
1653
1654 do
1655 {
1656 sd_iterator_def sd_it;
1657 dep_t dep;
1658
1659 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1660 {
1661 rtx_insn *next;
1662 int next_priority;
1663
1664 next = DEP_CON (dep);
1665
1666 if (BLOCK_FOR_INSN (next) != rec)
1667 {
1668 int cost;
1669
1670 if (!contributes_to_priority_p (dep))
1671 continue;
1672
1673 if (twin == insn)
1674 cost = dep_cost (dep);
1675 else
1676 {
1677 struct _dep _dep1, *dep1 = &_dep1;
1678
1679 init_dep (dep1, insn, next, REG_DEP_ANTI);
1680
1681 cost = dep_cost (dep1);
1682 }
1683
1684 next_priority = cost + priority (next);
1685
1686 if (next_priority > this_priority)
1687 this_priority = next_priority;
1688 }
1689 }
1690
1691 twin = PREV_INSN (twin);
1692 }
1693 while (twin != prev_first);
1694 }
1695
1696 if (this_priority < 0)
1697 {
1698 gcc_assert (this_priority == -1);
1699
1700 this_priority = insn_cost (insn);
1701 }
1702
1703 INSN_PRIORITY (insn) = this_priority;
1704 INSN_PRIORITY_STATUS (insn) = 1;
1705 }
1706
1707 return INSN_PRIORITY (insn);
1708 }
1709 \f
1710 /* Macros and functions for keeping the priority queue sorted, and
1711 dealing with queuing and dequeuing of instructions. */
1712
1713 /* For each pressure class CL, set DEATH[CL] to the number of registers
1714 in that class that die in INSN. */
1715
1716 static void
1717 calculate_reg_deaths (rtx_insn *insn, int *death)
1718 {
1719 int i;
1720 struct reg_use_data *use;
1721
1722 for (i = 0; i < ira_pressure_classes_num; i++)
1723 death[ira_pressure_classes[i]] = 0;
1724 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1725 if (dying_use_p (use))
1726 mark_regno_birth_or_death (0, death, use->regno, true);
1727 }
1728
1729 /* Setup info about the current register pressure impact of scheduling
1730 INSN at the current scheduling point. */
1731 static void
1732 setup_insn_reg_pressure_info (rtx_insn *insn)
1733 {
1734 int i, change, before, after, hard_regno;
1735 int excess_cost_change;
1736 machine_mode mode;
1737 enum reg_class cl;
1738 struct reg_pressure_data *pressure_info;
1739 int *max_reg_pressure;
1740 static int death[N_REG_CLASSES];
1741
1742 gcc_checking_assert (!DEBUG_INSN_P (insn));
1743
1744 excess_cost_change = 0;
1745 calculate_reg_deaths (insn, death);
1746 pressure_info = INSN_REG_PRESSURE (insn);
1747 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1748 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1749 for (i = 0; i < ira_pressure_classes_num; i++)
1750 {
1751 cl = ira_pressure_classes[i];
1752 gcc_assert (curr_reg_pressure[cl] >= 0);
1753 change = (int) pressure_info[i].set_increase - death[cl];
1754 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1755 after = MAX (0, max_reg_pressure[i] + change
1756 - sched_class_regs_num[cl]);
1757 hard_regno = ira_class_hard_regs[cl][0];
1758 gcc_assert (hard_regno >= 0);
1759 mode = reg_raw_mode[hard_regno];
1760 excess_cost_change += ((after - before)
1761 * (ira_memory_move_cost[mode][cl][0]
1762 + ira_memory_move_cost[mode][cl][1]));
1763 }
1764 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1765 }
1766 \f
1767 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1768 It tries to make the scheduler take register pressure into account
1769 without introducing too many unnecessary stalls. It hooks into the
1770 main scheduling algorithm at several points:
1771
1772 - Before scheduling starts, model_start_schedule constructs a
1773 "model schedule" for the current block. This model schedule is
1774 chosen solely to keep register pressure down. It does not take the
1775 target's pipeline or the original instruction order into account,
1776 except as a tie-breaker. It also doesn't work to a particular
1777 pressure limit.
1778
1779 This model schedule gives us an idea of what pressure can be
1780 achieved for the block and gives us an example of a schedule that
1781 keeps to that pressure. It also makes the final schedule less
1782 dependent on the original instruction order. This is important
1783 because the original order can either be "wide" (many values live
1784 at once, such as in user-scheduled code) or "narrow" (few values
1785 live at once, such as after loop unrolling, where several
1786 iterations are executed sequentially).
1787
1788 We do not apply this model schedule to the rtx stream. We simply
1789 record it in model_schedule. We also compute the maximum pressure,
1790 MP, that was seen during this schedule.
1791
1792 - Instructions are added to the ready queue even if they require
1793 a stall. The length of the stall is instead computed as:
1794
1795 MAX (INSN_TICK (INSN) - clock_var, 0)
1796
1797 (= insn_delay). This allows rank_for_schedule to choose between
1798 introducing a deliberate stall or increasing pressure.
1799
1800 - Before sorting the ready queue, model_set_excess_costs assigns
1801 a pressure-based cost to each ready instruction in the queue.
1802 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1803 (ECC for short) and is effectively measured in cycles.
1804
1805 - rank_for_schedule ranks instructions based on:
1806
1807 ECC (insn) + insn_delay (insn)
1808
1809 then as:
1810
1811 insn_delay (insn)
1812
1813 So, for example, an instruction X1 with an ECC of 1 that can issue
1814 now will win over an instruction X0 with an ECC of zero that would
1815 introduce a stall of one cycle. However, an instruction X2 with an
1816 ECC of 2 that can issue now will lose to both X0 and X1.
1817
1818 - When an instruction is scheduled, model_recompute updates the model
1819 schedule with the new pressures (some of which might now exceed the
1820 original maximum pressure MP). model_update_limit_points then searches
1821 for the new point of maximum pressure, if not already known. */
1822
1823 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1824 from surrounding debug information. */
1825 #define MODEL_BAR \
1826 ";;\t\t+------------------------------------------------------\n"
1827
1828 /* Information about the pressure on a particular register class at a
1829 particular point of the model schedule. */
1830 struct model_pressure_data {
1831 /* The pressure at this point of the model schedule, or -1 if the
1832 point is associated with an instruction that has already been
1833 scheduled. */
1834 int ref_pressure;
1835
1836 /* The maximum pressure during or after this point of the model schedule. */
1837 int max_pressure;
1838 };
1839
1840 /* Per-instruction information that is used while building the model
1841 schedule. Here, "schedule" refers to the model schedule rather
1842 than the main schedule. */
1843 struct model_insn_info {
1844 /* The instruction itself. */
1845 rtx_insn *insn;
1846
1847 /* If this instruction is in model_worklist, these fields link to the
1848 previous (higher-priority) and next (lower-priority) instructions
1849 in the list. */
1850 struct model_insn_info *prev;
1851 struct model_insn_info *next;
1852
1853 /* While constructing the schedule, QUEUE_INDEX describes whether an
1854 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1855 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1856 old_queue records the value that QUEUE_INDEX had before scheduling
1857 started, so that we can restore it once the schedule is complete. */
1858 int old_queue;
1859
1860 /* The relative importance of an unscheduled instruction. Higher
1861 values indicate greater importance. */
1862 unsigned int model_priority;
1863
1864 /* The length of the longest path of satisfied true dependencies
1865 that leads to this instruction. */
1866 unsigned int depth;
1867
1868 /* The length of the longest path of dependencies of any kind
1869 that leads from this instruction. */
1870 unsigned int alap;
1871
1872 /* The number of predecessor nodes that must still be scheduled. */
1873 int unscheduled_preds;
1874 };
1875
1876 /* Information about the pressure limit for a particular register class.
1877 This structure is used when applying a model schedule to the main
1878 schedule. */
1879 struct model_pressure_limit {
1880 /* The maximum register pressure seen in the original model schedule. */
1881 int orig_pressure;
1882
1883 /* The maximum register pressure seen in the current model schedule
1884 (which excludes instructions that have already been scheduled). */
1885 int pressure;
1886
1887 /* The point of the current model schedule at which PRESSURE is first
1888 reached. It is set to -1 if the value needs to be recomputed. */
1889 int point;
1890 };
1891
1892 /* Describes a particular way of measuring register pressure. */
1893 struct model_pressure_group {
1894 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1895 struct model_pressure_limit limits[N_REG_CLASSES];
1896
1897 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1898 on register class ira_pressure_classes[PCI] at point POINT of the
1899 current model schedule. A POINT of model_num_insns describes the
1900 pressure at the end of the schedule. */
1901 struct model_pressure_data *model;
1902 };
1903
1904 /* Index POINT gives the instruction at point POINT of the model schedule.
1905 This array doesn't change during main scheduling. */
1906 static vec<rtx_insn *> model_schedule;
1907
1908 /* The list of instructions in the model worklist, sorted in order of
1909 decreasing priority. */
1910 static struct model_insn_info *model_worklist;
1911
1912 /* Index I describes the instruction with INSN_LUID I. */
1913 static struct model_insn_info *model_insns;
1914
1915 /* The number of instructions in the model schedule. */
1916 static int model_num_insns;
1917
1918 /* The index of the first instruction in model_schedule that hasn't yet been
1919 added to the main schedule, or model_num_insns if all of them have. */
1920 static int model_curr_point;
1921
1922 /* Describes the pressure before each instruction in the model schedule. */
1923 static struct model_pressure_group model_before_pressure;
1924
1925 /* The first unused model_priority value (as used in model_insn_info). */
1926 static unsigned int model_next_priority;
1927
1928
1929 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1930 at point POINT of the model schedule. */
1931 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1932 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1933
1934 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1935 after point POINT of the model schedule. */
1936 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1937 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1938
1939 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1940 of the model schedule. */
1941 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1942 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1943
1944 /* Information about INSN that is used when creating the model schedule. */
1945 #define MODEL_INSN_INFO(INSN) \
1946 (&model_insns[INSN_LUID (INSN)])
1947
1948 /* The instruction at point POINT of the model schedule. */
1949 #define MODEL_INSN(POINT) \
1950 (model_schedule[POINT])
1951
1952
1953 /* Return INSN's index in the model schedule, or model_num_insns if it
1954 doesn't belong to that schedule. */
1955
1956 static int
1957 model_index (rtx_insn *insn)
1958 {
1959 if (INSN_MODEL_INDEX (insn) == 0)
1960 return model_num_insns;
1961 return INSN_MODEL_INDEX (insn) - 1;
1962 }
1963
1964 /* Make sure that GROUP->limits is up-to-date for the current point
1965 of the model schedule. */
1966
1967 static void
1968 model_update_limit_points_in_group (struct model_pressure_group *group)
1969 {
1970 int pci, max_pressure, point;
1971
1972 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1973 {
1974 /* We may have passed the final point at which the pressure in
1975 group->limits[pci].pressure was reached. Update the limit if so. */
1976 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1977 group->limits[pci].pressure = max_pressure;
1978
1979 /* Find the point at which MAX_PRESSURE is first reached. We need
1980 to search in three cases:
1981
1982 - We've already moved past the previous pressure point.
1983 In this case we search forward from model_curr_point.
1984
1985 - We scheduled the previous point of maximum pressure ahead of
1986 its position in the model schedule, but doing so didn't bring
1987 the pressure point earlier. In this case we search forward
1988 from that previous pressure point.
1989
1990 - Scheduling an instruction early caused the maximum pressure
1991 to decrease. In this case we will have set the pressure
1992 point to -1, and we search forward from model_curr_point. */
1993 point = MAX (group->limits[pci].point, model_curr_point);
1994 while (point < model_num_insns
1995 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1996 point++;
1997 group->limits[pci].point = point;
1998
1999 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
2000 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
2001 }
2002 }
2003
2004 /* Make sure that all register-pressure limits are up-to-date for the
2005 current position in the model schedule. */
2006
2007 static void
2008 model_update_limit_points (void)
2009 {
2010 model_update_limit_points_in_group (&model_before_pressure);
2011 }
2012
2013 /* Return the model_index of the last unscheduled use in chain USE
2014 outside of USE's instruction. Return -1 if there are no other uses,
2015 or model_num_insns if the register is live at the end of the block. */
2016
2017 static int
2018 model_last_use_except (struct reg_use_data *use)
2019 {
2020 struct reg_use_data *next;
2021 int last, index;
2022
2023 last = -1;
2024 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2025 if (NONDEBUG_INSN_P (next->insn)
2026 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2027 {
2028 index = model_index (next->insn);
2029 if (index == model_num_insns)
2030 return model_num_insns;
2031 if (last < index)
2032 last = index;
2033 }
2034 return last;
2035 }
2036
2037 /* An instruction with model_index POINT has just been scheduled, and it
2038 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2039 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2040 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2041
2042 static void
2043 model_start_update_pressure (struct model_pressure_group *group,
2044 int point, int pci, int delta)
2045 {
2046 int next_max_pressure;
2047
2048 if (point == model_num_insns)
2049 {
2050 /* The instruction wasn't part of the model schedule; it was moved
2051 from a different block. Update the pressure for the end of
2052 the model schedule. */
2053 MODEL_REF_PRESSURE (group, point, pci) += delta;
2054 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2055 }
2056 else
2057 {
2058 /* Record that this instruction has been scheduled. Nothing now
2059 changes between POINT and POINT + 1, so get the maximum pressure
2060 from the latter. If the maximum pressure decreases, the new
2061 pressure point may be before POINT. */
2062 MODEL_REF_PRESSURE (group, point, pci) = -1;
2063 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2064 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2065 {
2066 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2067 if (group->limits[pci].point == point)
2068 group->limits[pci].point = -1;
2069 }
2070 }
2071 }
2072
2073 /* Record that scheduling a later instruction has changed the pressure
2074 at point POINT of the model schedule by DELTA (which might be 0).
2075 Update GROUP accordingly. Return nonzero if these changes might
2076 trigger changes to previous points as well. */
2077
2078 static int
2079 model_update_pressure (struct model_pressure_group *group,
2080 int point, int pci, int delta)
2081 {
2082 int ref_pressure, max_pressure, next_max_pressure;
2083
2084 /* If POINT hasn't yet been scheduled, update its pressure. */
2085 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2086 if (ref_pressure >= 0 && delta != 0)
2087 {
2088 ref_pressure += delta;
2089 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2090
2091 /* Check whether the maximum pressure in the overall schedule
2092 has increased. (This means that the MODEL_MAX_PRESSURE of
2093 every point <= POINT will need to increase too; see below.) */
2094 if (group->limits[pci].pressure < ref_pressure)
2095 group->limits[pci].pressure = ref_pressure;
2096
2097 /* If we are at maximum pressure, and the maximum pressure
2098 point was previously unknown or later than POINT,
2099 bring it forward. */
2100 if (group->limits[pci].pressure == ref_pressure
2101 && !IN_RANGE (group->limits[pci].point, 0, point))
2102 group->limits[pci].point = point;
2103
2104 /* If POINT used to be the point of maximum pressure, but isn't
2105 any longer, we need to recalculate it using a forward walk. */
2106 if (group->limits[pci].pressure > ref_pressure
2107 && group->limits[pci].point == point)
2108 group->limits[pci].point = -1;
2109 }
2110
2111 /* Update the maximum pressure at POINT. Changes here might also
2112 affect the maximum pressure at POINT - 1. */
2113 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2114 max_pressure = MAX (ref_pressure, next_max_pressure);
2115 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2116 {
2117 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2118 return 1;
2119 }
2120 return 0;
2121 }
2122
2123 /* INSN has just been scheduled. Update the model schedule accordingly. */
2124
2125 static void
2126 model_recompute (rtx_insn *insn)
2127 {
2128 struct {
2129 int last_use;
2130 int regno;
2131 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2132 struct reg_use_data *use;
2133 struct reg_pressure_data *reg_pressure;
2134 int delta[N_REG_CLASSES];
2135 int pci, point, mix, new_last, cl, ref_pressure, queue;
2136 unsigned int i, num_uses, num_pending_births;
2137 bool print_p;
2138
2139 /* The destinations of INSN were previously live from POINT onwards, but are
2140 now live from model_curr_point onwards. Set up DELTA accordingly. */
2141 point = model_index (insn);
2142 reg_pressure = INSN_REG_PRESSURE (insn);
2143 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2144 {
2145 cl = ira_pressure_classes[pci];
2146 delta[cl] = reg_pressure[pci].set_increase;
2147 }
2148
2149 /* Record which registers previously died at POINT, but which now die
2150 before POINT. Adjust DELTA so that it represents the effect of
2151 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2152 registers that will be born in the range [model_curr_point, POINT). */
2153 num_uses = 0;
2154 num_pending_births = 0;
2155 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2156 {
2157 new_last = model_last_use_except (use);
2158 if (new_last < point)
2159 {
2160 gcc_assert (num_uses < ARRAY_SIZE (uses));
2161 uses[num_uses].last_use = new_last;
2162 uses[num_uses].regno = use->regno;
2163 /* This register is no longer live after POINT - 1. */
2164 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2165 num_uses++;
2166 if (new_last >= 0)
2167 num_pending_births++;
2168 }
2169 }
2170
2171 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2172 Also set each group pressure limit for POINT. */
2173 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2174 {
2175 cl = ira_pressure_classes[pci];
2176 model_start_update_pressure (&model_before_pressure,
2177 point, pci, delta[cl]);
2178 }
2179
2180 /* Walk the model schedule backwards, starting immediately before POINT. */
2181 print_p = false;
2182 if (point != model_curr_point)
2183 do
2184 {
2185 point--;
2186 insn = MODEL_INSN (point);
2187 queue = QUEUE_INDEX (insn);
2188
2189 if (queue != QUEUE_SCHEDULED)
2190 {
2191 /* DELTA describes the effect of the move on the register pressure
2192 after POINT. Make it describe the effect on the pressure
2193 before POINT. */
2194 i = 0;
2195 while (i < num_uses)
2196 {
2197 if (uses[i].last_use == point)
2198 {
2199 /* This register is now live again. */
2200 mark_regno_birth_or_death (NULL, delta,
2201 uses[i].regno, true);
2202
2203 /* Remove this use from the array. */
2204 uses[i] = uses[num_uses - 1];
2205 num_uses--;
2206 num_pending_births--;
2207 }
2208 else
2209 i++;
2210 }
2211
2212 if (sched_verbose >= 5)
2213 {
2214 if (!print_p)
2215 {
2216 fprintf (sched_dump, MODEL_BAR);
2217 fprintf (sched_dump, ";;\t\t| New pressure for model"
2218 " schedule\n");
2219 fprintf (sched_dump, MODEL_BAR);
2220 print_p = true;
2221 }
2222
2223 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2224 point, INSN_UID (insn),
2225 str_pattern_slim (PATTERN (insn)));
2226 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2227 {
2228 cl = ira_pressure_classes[pci];
2229 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2230 point, pci);
2231 fprintf (sched_dump, " %s:[%d->%d]",
2232 reg_class_names[ira_pressure_classes[pci]],
2233 ref_pressure, ref_pressure + delta[cl]);
2234 }
2235 fprintf (sched_dump, "\n");
2236 }
2237 }
2238
2239 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2240 might have changed as well. */
2241 mix = num_pending_births;
2242 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2243 {
2244 cl = ira_pressure_classes[pci];
2245 mix |= delta[cl];
2246 mix |= model_update_pressure (&model_before_pressure,
2247 point, pci, delta[cl]);
2248 }
2249 }
2250 while (mix && point > model_curr_point);
2251
2252 if (print_p)
2253 fprintf (sched_dump, MODEL_BAR);
2254 }
2255
2256 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2257 check whether the insn's pattern needs restoring. */
2258 static bool
2259 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2260 {
2261 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2262 return false;
2263
2264 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2265 {
2266 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2267 gcc_assert (next == DEP_CON (dep));
2268 }
2269 else
2270 {
2271 struct dep_replacement *desc = DEP_REPLACE (dep);
2272 if (desc->insn != next)
2273 {
2274 gcc_assert (*desc->loc == desc->orig);
2275 return false;
2276 }
2277 }
2278 return true;
2279 }
2280 \f
2281 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2282 pressure on CL from P to P'. We use this to calculate a "base ECC",
2283 baseECC (CL, X), for each pressure class CL and each instruction X.
2284 Supposing X changes the pressure on CL from P to P', and that the
2285 maximum pressure on CL in the current model schedule is MP', then:
2286
2287 * if X occurs before or at the next point of maximum pressure in
2288 the model schedule and P' > MP', then:
2289
2290 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2291
2292 The idea is that the pressure after scheduling a fixed set of
2293 instructions -- in this case, the set up to and including the
2294 next maximum pressure point -- is going to be the same regardless
2295 of the order; we simply want to keep the intermediate pressure
2296 under control. Thus X has a cost of zero unless scheduling it
2297 now would exceed MP'.
2298
2299 If all increases in the set are by the same amount, no zero-cost
2300 instruction will ever cause the pressure to exceed MP'. However,
2301 if X is instead moved past an instruction X' with pressure in the
2302 range (MP' - (P' - P), MP'), the pressure at X' will increase
2303 beyond MP'. Since baseECC is very much a heuristic anyway,
2304 it doesn't seem worth the overhead of tracking cases like these.
2305
2306 The cost of exceeding MP' is always based on the original maximum
2307 pressure MP. This is so that going 2 registers over the original
2308 limit has the same cost regardless of whether it comes from two
2309 separate +1 deltas or from a single +2 delta.
2310
2311 * if X occurs after the next point of maximum pressure in the model
2312 schedule and P' > P, then:
2313
2314 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2315
2316 That is, if we move X forward across a point of maximum pressure,
2317 and if X increases the pressure by P' - P, then we conservatively
2318 assume that scheduling X next would increase the maximum pressure
2319 by P' - P. Again, the cost of doing this is based on the original
2320 maximum pressure MP, for the same reason as above.
2321
2322 * if P' < P, P > MP, and X occurs at or after the next point of
2323 maximum pressure, then:
2324
2325 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2326
2327 That is, if we have already exceeded the original maximum pressure MP,
2328 and if X might reduce the maximum pressure again -- or at least push
2329 it further back, and thus allow more scheduling freedom -- it is given
2330 a negative cost to reflect the improvement.
2331
2332 * otherwise,
2333
2334 baseECC (CL, X) = 0
2335
2336 In this case, X is not expected to affect the maximum pressure MP',
2337 so it has zero cost.
2338
2339 We then create a combined value baseECC (X) that is the sum of
2340 baseECC (CL, X) for each pressure class CL.
2341
2342 baseECC (X) could itself be used as the ECC value described above.
2343 However, this is often too conservative, in the sense that it
2344 tends to make high-priority instructions that increase pressure
2345 wait too long in cases where introducing a spill would be better.
2346 For this reason the final ECC is a priority-adjusted form of
2347 baseECC (X). Specifically, we calculate:
2348
2349 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2350 baseP = MAX { P (X) | baseECC (X) <= 0 }
2351
2352 Then:
2353
2354 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2355
2356 Thus an instruction's effect on pressure is ignored if it has a high
2357 enough priority relative to the ones that don't increase pressure.
2358 Negative values of baseECC (X) do not increase the priority of X
2359 itself, but they do make it harder for other instructions to
2360 increase the pressure further.
2361
2362 This pressure cost is deliberately timid. The intention has been
2363 to choose a heuristic that rarely interferes with the normal list
2364 scheduler in cases where that scheduler would produce good code.
2365 We simply want to curb some of its worst excesses. */
2366
2367 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2368
2369 Here we use the very simplistic cost model that every register above
2370 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2371 measures instead, such as one based on MEMORY_MOVE_COST. However:
2372
2373 (1) In order for an instruction to be scheduled, the higher cost
2374 would need to be justified in a single saving of that many stalls.
2375 This is overly pessimistic, because the benefit of spilling is
2376 often to avoid a sequence of several short stalls rather than
2377 a single long one.
2378
2379 (2) The cost is still arbitrary. Because we are not allocating
2380 registers during scheduling, we have no way of knowing for
2381 sure how many memory accesses will be required by each spill,
2382 where the spills will be placed within the block, or even
2383 which block(s) will contain the spills.
2384
2385 So a higher cost than 1 is often too conservative in practice,
2386 forcing blocks to contain unnecessary stalls instead of spill code.
2387 The simple cost below seems to be the best compromise. It reduces
2388 the interference with the normal list scheduler, which helps make
2389 it more suitable for a default-on option. */
2390
2391 static int
2392 model_spill_cost (int cl, int from, int to)
2393 {
2394 from = MAX (from, sched_class_regs_num[cl]);
2395 return MAX (to, from) - from;
2396 }
2397
2398 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2399 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2400 P' = P + DELTA. */
2401
2402 static int
2403 model_excess_group_cost (struct model_pressure_group *group,
2404 int point, int pci, int delta)
2405 {
2406 int pressure, cl;
2407
2408 cl = ira_pressure_classes[pci];
2409 if (delta < 0 && point >= group->limits[pci].point)
2410 {
2411 pressure = MAX (group->limits[pci].orig_pressure,
2412 curr_reg_pressure[cl] + delta);
2413 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2414 }
2415
2416 if (delta > 0)
2417 {
2418 if (point > group->limits[pci].point)
2419 pressure = group->limits[pci].pressure + delta;
2420 else
2421 pressure = curr_reg_pressure[cl] + delta;
2422
2423 if (pressure > group->limits[pci].pressure)
2424 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2425 pressure);
2426 }
2427
2428 return 0;
2429 }
2430
2431 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2432 if PRINT_P. */
2433
2434 static int
2435 model_excess_cost (rtx_insn *insn, bool print_p)
2436 {
2437 int point, pci, cl, cost, this_cost, delta;
2438 struct reg_pressure_data *insn_reg_pressure;
2439 int insn_death[N_REG_CLASSES];
2440
2441 calculate_reg_deaths (insn, insn_death);
2442 point = model_index (insn);
2443 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2444 cost = 0;
2445
2446 if (print_p)
2447 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2448 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2449
2450 /* Sum up the individual costs for each register class. */
2451 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2452 {
2453 cl = ira_pressure_classes[pci];
2454 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2455 this_cost = model_excess_group_cost (&model_before_pressure,
2456 point, pci, delta);
2457 cost += this_cost;
2458 if (print_p)
2459 fprintf (sched_dump, " %s:[%d base cost %d]",
2460 reg_class_names[cl], delta, this_cost);
2461 }
2462
2463 if (print_p)
2464 fprintf (sched_dump, "\n");
2465
2466 return cost;
2467 }
2468
2469 /* Dump the next points of maximum pressure for GROUP. */
2470
2471 static void
2472 model_dump_pressure_points (struct model_pressure_group *group)
2473 {
2474 int pci, cl;
2475
2476 fprintf (sched_dump, ";;\t\t| pressure points");
2477 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2478 {
2479 cl = ira_pressure_classes[pci];
2480 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2481 curr_reg_pressure[cl], group->limits[pci].pressure);
2482 if (group->limits[pci].point < model_num_insns)
2483 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2484 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2485 else
2486 fprintf (sched_dump, "end]");
2487 }
2488 fprintf (sched_dump, "\n");
2489 }
2490
2491 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2492
2493 static void
2494 model_set_excess_costs (rtx_insn **insns, int count)
2495 {
2496 int i, cost, priority_base, priority;
2497 bool print_p;
2498
2499 /* Record the baseECC value for each instruction in the model schedule,
2500 except that negative costs are converted to zero ones now rather than
2501 later. Do not assign a cost to debug instructions, since they must
2502 not change code-generation decisions. Experiments suggest we also
2503 get better results by not assigning a cost to instructions from
2504 a different block.
2505
2506 Set PRIORITY_BASE to baseP in the block comment above. This is the
2507 maximum priority of the "cheap" instructions, which should always
2508 include the next model instruction. */
2509 priority_base = 0;
2510 print_p = false;
2511 for (i = 0; i < count; i++)
2512 if (INSN_MODEL_INDEX (insns[i]))
2513 {
2514 if (sched_verbose >= 6 && !print_p)
2515 {
2516 fprintf (sched_dump, MODEL_BAR);
2517 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2518 model_dump_pressure_points (&model_before_pressure);
2519 fprintf (sched_dump, MODEL_BAR);
2520 print_p = true;
2521 }
2522 cost = model_excess_cost (insns[i], print_p);
2523 if (cost <= 0)
2524 {
2525 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2526 priority_base = MAX (priority_base, priority);
2527 cost = 0;
2528 }
2529 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2530 }
2531 if (print_p)
2532 fprintf (sched_dump, MODEL_BAR);
2533
2534 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2535 instruction. */
2536 for (i = 0; i < count; i++)
2537 {
2538 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2539 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2540 if (cost > 0 && priority > priority_base)
2541 {
2542 cost += priority_base - priority;
2543 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2544 }
2545 }
2546 }
2547 \f
2548
2549 /* Enum of rank_for_schedule heuristic decisions. */
2550 enum rfs_decision {
2551 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2552 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2553 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2554 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2555 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2556
2557 /* Corresponding strings for print outs. */
2558 static const char *rfs_str[RFS_N] = {
2559 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2560 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2561 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2562 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2563 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2564
2565 /* Statistical breakdown of rank_for_schedule decisions. */
2566 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2567 static rank_for_schedule_stats_t rank_for_schedule_stats;
2568
2569 /* Return the result of comparing insns TMP and TMP2 and update
2570 Rank_For_Schedule statistics. */
2571 static int
2572 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2573 {
2574 ++rank_for_schedule_stats.stats[decision];
2575 if (result < 0)
2576 INSN_LAST_RFS_WIN (tmp) = decision;
2577 else if (result > 0)
2578 INSN_LAST_RFS_WIN (tmp2) = decision;
2579 else
2580 gcc_unreachable ();
2581 return result;
2582 }
2583
2584 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2585 keeping normal insns in original order. */
2586
2587 static int
2588 rank_for_schedule_debug (const void *x, const void *y)
2589 {
2590 rtx_insn *tmp = *(rtx_insn * const *) y;
2591 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2592
2593 /* Schedule debug insns as early as possible. */
2594 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2595 return -1;
2596 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2597 return 1;
2598 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2599 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2600 else
2601 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2602 }
2603
2604 /* Returns a positive value if x is preferred; returns a negative value if
2605 y is preferred. Should never return 0, since that will make the sort
2606 unstable. */
2607
2608 static int
2609 rank_for_schedule (const void *x, const void *y)
2610 {
2611 rtx_insn *tmp = *(rtx_insn * const *) y;
2612 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2613 int tmp_class, tmp2_class;
2614 int val, priority_val, info_val, diff;
2615
2616 if (live_range_shrinkage_p)
2617 {
2618 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2619 code. */
2620 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2621 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2622 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2623 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2624 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2625 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2626 /* Sort by INSN_LUID (original insn order), so that we make the
2627 sort stable. This minimizes instruction movement, thus
2628 minimizing sched's effect on debugging and cross-jumping. */
2629 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2630 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2631 }
2632
2633 /* The insn in a schedule group should be issued the first. */
2634 if (flag_sched_group_heuristic &&
2635 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2636 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2637 tmp, tmp2);
2638
2639 /* Make sure that priority of TMP and TMP2 are initialized. */
2640 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2641
2642 if (sched_fusion)
2643 {
2644 /* The instruction that has the same fusion priority as the last
2645 instruction is the instruction we picked next. If that is not
2646 the case, we sort ready list firstly by fusion priority, then
2647 by priority, and at last by INSN_LUID. */
2648 int a = INSN_FUSION_PRIORITY (tmp);
2649 int b = INSN_FUSION_PRIORITY (tmp2);
2650 int last = -1;
2651
2652 if (last_nondebug_scheduled_insn
2653 && !NOTE_P (last_nondebug_scheduled_insn)
2654 && BLOCK_FOR_INSN (tmp)
2655 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2656 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2657
2658 if (a != last && b != last)
2659 {
2660 if (a == b)
2661 {
2662 a = INSN_PRIORITY (tmp);
2663 b = INSN_PRIORITY (tmp2);
2664 }
2665 if (a != b)
2666 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2667 else
2668 return rfs_result (RFS_FUSION,
2669 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2670 }
2671 else if (a == b)
2672 {
2673 gcc_assert (last_nondebug_scheduled_insn
2674 && !NOTE_P (last_nondebug_scheduled_insn));
2675 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2676
2677 a = abs (INSN_PRIORITY (tmp) - last);
2678 b = abs (INSN_PRIORITY (tmp2) - last);
2679 if (a != b)
2680 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2681 else
2682 return rfs_result (RFS_FUSION,
2683 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2684 }
2685 else if (a == last)
2686 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2687 else
2688 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2689 }
2690
2691 if (sched_pressure != SCHED_PRESSURE_NONE)
2692 {
2693 /* Prefer insn whose scheduling results in the smallest register
2694 pressure excess. */
2695 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2696 + insn_delay (tmp)
2697 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2698 - insn_delay (tmp2))))
2699 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2700 }
2701
2702 if (sched_pressure != SCHED_PRESSURE_NONE
2703 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2704 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2705 {
2706 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2707 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2708 }
2709
2710 /* If we are doing backtracking in this schedule, prefer insns that
2711 have forward dependencies with negative cost against an insn that
2712 was already scheduled. */
2713 if (current_sched_info->flags & DO_BACKTRACKING)
2714 {
2715 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2716 if (priority_val)
2717 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2718 }
2719
2720 /* Prefer insn with higher priority. */
2721 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2722
2723 if (flag_sched_critical_path_heuristic && priority_val)
2724 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2725
2726 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2727 {
2728 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2729 if (autopref != 0)
2730 return autopref;
2731 }
2732
2733 /* Prefer speculative insn with greater dependencies weakness. */
2734 if (flag_sched_spec_insn_heuristic && spec_info)
2735 {
2736 ds_t ds1, ds2;
2737 dw_t dw1, dw2;
2738 int dw;
2739
2740 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2741 if (ds1)
2742 dw1 = ds_weak (ds1);
2743 else
2744 dw1 = NO_DEP_WEAK;
2745
2746 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2747 if (ds2)
2748 dw2 = ds_weak (ds2);
2749 else
2750 dw2 = NO_DEP_WEAK;
2751
2752 dw = dw2 - dw1;
2753 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2754 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2755 }
2756
2757 info_val = (*current_sched_info->rank) (tmp, tmp2);
2758 if (flag_sched_rank_heuristic && info_val)
2759 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2760
2761 /* Compare insns based on their relation to the last scheduled
2762 non-debug insn. */
2763 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2764 {
2765 dep_t dep1;
2766 dep_t dep2;
2767 rtx_insn *last = last_nondebug_scheduled_insn;
2768
2769 /* Classify the instructions into three classes:
2770 1) Data dependent on last schedule insn.
2771 2) Anti/Output dependent on last scheduled insn.
2772 3) Independent of last scheduled insn, or has latency of one.
2773 Choose the insn from the highest numbered class if different. */
2774 dep1 = sd_find_dep_between (last, tmp, true);
2775
2776 if (dep1 == NULL || dep_cost (dep1) == 1)
2777 tmp_class = 3;
2778 else if (/* Data dependence. */
2779 DEP_TYPE (dep1) == REG_DEP_TRUE)
2780 tmp_class = 1;
2781 else
2782 tmp_class = 2;
2783
2784 dep2 = sd_find_dep_between (last, tmp2, true);
2785
2786 if (dep2 == NULL || dep_cost (dep2) == 1)
2787 tmp2_class = 3;
2788 else if (/* Data dependence. */
2789 DEP_TYPE (dep2) == REG_DEP_TRUE)
2790 tmp2_class = 1;
2791 else
2792 tmp2_class = 2;
2793
2794 if ((val = tmp2_class - tmp_class))
2795 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2796 }
2797
2798 /* Prefer instructions that occur earlier in the model schedule. */
2799 if (sched_pressure == SCHED_PRESSURE_MODEL
2800 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2801 {
2802 diff = model_index (tmp) - model_index (tmp2);
2803 gcc_assert (diff != 0);
2804 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2805 }
2806
2807 /* Prefer the insn which has more later insns that depend on it.
2808 This gives the scheduler more freedom when scheduling later
2809 instructions at the expense of added register pressure. */
2810
2811 val = (dep_list_size (tmp2, SD_LIST_FORW)
2812 - dep_list_size (tmp, SD_LIST_FORW));
2813
2814 if (flag_sched_dep_count_heuristic && val != 0)
2815 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2816
2817 /* If insns are equally good, sort by INSN_LUID (original insn order),
2818 so that we make the sort stable. This minimizes instruction movement,
2819 thus minimizing sched's effect on debugging and cross-jumping. */
2820 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2821 }
2822
2823 /* Resort the array A in which only element at index N may be out of order. */
2824
2825 HAIFA_INLINE static void
2826 swap_sort (rtx_insn **a, int n)
2827 {
2828 rtx_insn *insn = a[n - 1];
2829 int i = n - 2;
2830
2831 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2832 {
2833 a[i + 1] = a[i];
2834 i -= 1;
2835 }
2836 a[i + 1] = insn;
2837 }
2838
2839 /* Add INSN to the insn queue so that it can be executed at least
2840 N_CYCLES after the currently executing insn. Preserve insns
2841 chain for debugging purposes. REASON will be printed in debugging
2842 output. */
2843
2844 HAIFA_INLINE static void
2845 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2846 {
2847 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2848 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2849 int new_tick;
2850
2851 gcc_assert (n_cycles <= max_insn_queue_index);
2852 gcc_assert (!DEBUG_INSN_P (insn));
2853
2854 insn_queue[next_q] = link;
2855 q_size += 1;
2856
2857 if (sched_verbose >= 2)
2858 {
2859 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2860 (*current_sched_info->print_insn) (insn, 0));
2861
2862 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2863 }
2864
2865 QUEUE_INDEX (insn) = next_q;
2866
2867 if (current_sched_info->flags & DO_BACKTRACKING)
2868 {
2869 new_tick = clock_var + n_cycles;
2870 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2871 INSN_TICK (insn) = new_tick;
2872
2873 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2874 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2875 {
2876 must_backtrack = true;
2877 if (sched_verbose >= 2)
2878 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2879 }
2880 }
2881 }
2882
2883 /* Remove INSN from queue. */
2884 static void
2885 queue_remove (rtx_insn *insn)
2886 {
2887 gcc_assert (QUEUE_INDEX (insn) >= 0);
2888 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2889 q_size--;
2890 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2891 }
2892
2893 /* Return a pointer to the bottom of the ready list, i.e. the insn
2894 with the lowest priority. */
2895
2896 rtx_insn **
2897 ready_lastpos (struct ready_list *ready)
2898 {
2899 gcc_assert (ready->n_ready >= 1);
2900 return ready->vec + ready->first - ready->n_ready + 1;
2901 }
2902
2903 /* Add an element INSN to the ready list so that it ends up with the
2904 lowest/highest priority depending on FIRST_P. */
2905
2906 HAIFA_INLINE static void
2907 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2908 {
2909 if (!first_p)
2910 {
2911 if (ready->first == ready->n_ready)
2912 {
2913 memmove (ready->vec + ready->veclen - ready->n_ready,
2914 ready_lastpos (ready),
2915 ready->n_ready * sizeof (rtx));
2916 ready->first = ready->veclen - 1;
2917 }
2918 ready->vec[ready->first - ready->n_ready] = insn;
2919 }
2920 else
2921 {
2922 if (ready->first == ready->veclen - 1)
2923 {
2924 if (ready->n_ready)
2925 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2926 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2927 ready_lastpos (ready),
2928 ready->n_ready * sizeof (rtx));
2929 ready->first = ready->veclen - 2;
2930 }
2931 ready->vec[++(ready->first)] = insn;
2932 }
2933
2934 ready->n_ready++;
2935 if (DEBUG_INSN_P (insn))
2936 ready->n_debug++;
2937
2938 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2939 QUEUE_INDEX (insn) = QUEUE_READY;
2940
2941 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2942 && INSN_EXACT_TICK (insn) < clock_var)
2943 {
2944 must_backtrack = true;
2945 }
2946 }
2947
2948 /* Remove the element with the highest priority from the ready list and
2949 return it. */
2950
2951 HAIFA_INLINE static rtx_insn *
2952 ready_remove_first (struct ready_list *ready)
2953 {
2954 rtx_insn *t;
2955
2956 gcc_assert (ready->n_ready);
2957 t = ready->vec[ready->first--];
2958 ready->n_ready--;
2959 if (DEBUG_INSN_P (t))
2960 ready->n_debug--;
2961 /* If the queue becomes empty, reset it. */
2962 if (ready->n_ready == 0)
2963 ready->first = ready->veclen - 1;
2964
2965 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2966 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2967
2968 return t;
2969 }
2970
2971 /* The following code implements multi-pass scheduling for the first
2972 cycle. In other words, we will try to choose ready insn which
2973 permits to start maximum number of insns on the same cycle. */
2974
2975 /* Return a pointer to the element INDEX from the ready. INDEX for
2976 insn with the highest priority is 0, and the lowest priority has
2977 N_READY - 1. */
2978
2979 rtx_insn *
2980 ready_element (struct ready_list *ready, int index)
2981 {
2982 gcc_assert (ready->n_ready && index < ready->n_ready);
2983
2984 return ready->vec[ready->first - index];
2985 }
2986
2987 /* Remove the element INDEX from the ready list and return it. INDEX
2988 for insn with the highest priority is 0, and the lowest priority
2989 has N_READY - 1. */
2990
2991 HAIFA_INLINE static rtx_insn *
2992 ready_remove (struct ready_list *ready, int index)
2993 {
2994 rtx_insn *t;
2995 int i;
2996
2997 if (index == 0)
2998 return ready_remove_first (ready);
2999 gcc_assert (ready->n_ready && index < ready->n_ready);
3000 t = ready->vec[ready->first - index];
3001 ready->n_ready--;
3002 if (DEBUG_INSN_P (t))
3003 ready->n_debug--;
3004 for (i = index; i < ready->n_ready; i++)
3005 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3006 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3007 return t;
3008 }
3009
3010 /* Remove INSN from the ready list. */
3011 static void
3012 ready_remove_insn (rtx_insn *insn)
3013 {
3014 int i;
3015
3016 for (i = 0; i < readyp->n_ready; i++)
3017 if (ready_element (readyp, i) == insn)
3018 {
3019 ready_remove (readyp, i);
3020 return;
3021 }
3022 gcc_unreachable ();
3023 }
3024
3025 /* Calculate difference of two statistics set WAS and NOW.
3026 Result returned in WAS. */
3027 static void
3028 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3029 const rank_for_schedule_stats_t *now)
3030 {
3031 for (int i = 0; i < RFS_N; ++i)
3032 was->stats[i] = now->stats[i] - was->stats[i];
3033 }
3034
3035 /* Print rank_for_schedule statistics. */
3036 static void
3037 print_rank_for_schedule_stats (const char *prefix,
3038 const rank_for_schedule_stats_t *stats,
3039 struct ready_list *ready)
3040 {
3041 for (int i = 0; i < RFS_N; ++i)
3042 if (stats->stats[i])
3043 {
3044 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3045
3046 if (ready != NULL)
3047 /* Print out insns that won due to RFS_<I>. */
3048 {
3049 rtx_insn **p = ready_lastpos (ready);
3050
3051 fprintf (sched_dump, ":");
3052 /* Start with 1 since least-priority insn didn't have any wins. */
3053 for (int j = 1; j < ready->n_ready; ++j)
3054 if (INSN_LAST_RFS_WIN (p[j]) == i)
3055 fprintf (sched_dump, " %s",
3056 (*current_sched_info->print_insn) (p[j], 0));
3057 }
3058 fprintf (sched_dump, "\n");
3059 }
3060 }
3061
3062 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3063 of array. */
3064 static void
3065 ready_sort_debug (struct ready_list *ready)
3066 {
3067 int i;
3068 rtx_insn **first = ready_lastpos (ready);
3069
3070 for (i = 0; i < ready->n_ready; ++i)
3071 if (!DEBUG_INSN_P (first[i]))
3072 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3073
3074 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3075 }
3076
3077 /* Sort non-debug insns in the ready list READY by ascending priority.
3078 Assumes that all debug insns are separated from the real insns. */
3079 static void
3080 ready_sort_real (struct ready_list *ready)
3081 {
3082 int i;
3083 rtx_insn **first = ready_lastpos (ready);
3084 int n_ready_real = ready->n_ready - ready->n_debug;
3085
3086 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3087 for (i = 0; i < n_ready_real; ++i)
3088 setup_insn_reg_pressure_info (first[i]);
3089 else if (sched_pressure == SCHED_PRESSURE_MODEL
3090 && model_curr_point < model_num_insns)
3091 model_set_excess_costs (first, n_ready_real);
3092
3093 rank_for_schedule_stats_t stats1;
3094 if (sched_verbose >= 4)
3095 stats1 = rank_for_schedule_stats;
3096
3097 if (n_ready_real == 2)
3098 swap_sort (first, n_ready_real);
3099 else if (n_ready_real > 2)
3100 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3101
3102 if (sched_verbose >= 4)
3103 {
3104 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3105 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3106 }
3107 }
3108
3109 /* Sort the ready list READY by ascending priority. */
3110 static void
3111 ready_sort (struct ready_list *ready)
3112 {
3113 if (ready->n_debug > 0)
3114 ready_sort_debug (ready);
3115 else
3116 ready_sort_real (ready);
3117 }
3118
3119 /* PREV is an insn that is ready to execute. Adjust its priority if that
3120 will help shorten or lengthen register lifetimes as appropriate. Also
3121 provide a hook for the target to tweak itself. */
3122
3123 HAIFA_INLINE static void
3124 adjust_priority (rtx_insn *prev)
3125 {
3126 /* ??? There used to be code here to try and estimate how an insn
3127 affected register lifetimes, but it did it by looking at REG_DEAD
3128 notes, which we removed in schedule_region. Nor did it try to
3129 take into account register pressure or anything useful like that.
3130
3131 Revisit when we have a machine model to work with and not before. */
3132
3133 if (targetm.sched.adjust_priority)
3134 INSN_PRIORITY (prev) =
3135 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3136 }
3137
3138 /* Advance DFA state STATE on one cycle. */
3139 void
3140 advance_state (state_t state)
3141 {
3142 if (targetm.sched.dfa_pre_advance_cycle)
3143 targetm.sched.dfa_pre_advance_cycle ();
3144
3145 if (targetm.sched.dfa_pre_cycle_insn)
3146 state_transition (state,
3147 targetm.sched.dfa_pre_cycle_insn ());
3148
3149 state_transition (state, NULL);
3150
3151 if (targetm.sched.dfa_post_cycle_insn)
3152 state_transition (state,
3153 targetm.sched.dfa_post_cycle_insn ());
3154
3155 if (targetm.sched.dfa_post_advance_cycle)
3156 targetm.sched.dfa_post_advance_cycle ();
3157 }
3158
3159 /* Advance time on one cycle. */
3160 HAIFA_INLINE static void
3161 advance_one_cycle (void)
3162 {
3163 advance_state (curr_state);
3164 if (sched_verbose >= 4)
3165 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3166 }
3167
3168 /* Update register pressure after scheduling INSN. */
3169 static void
3170 update_register_pressure (rtx_insn *insn)
3171 {
3172 struct reg_use_data *use;
3173 struct reg_set_data *set;
3174
3175 gcc_checking_assert (!DEBUG_INSN_P (insn));
3176
3177 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3178 if (dying_use_p (use))
3179 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3180 use->regno, false);
3181 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3182 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3183 set->regno, true);
3184 }
3185
3186 /* Set up or update (if UPDATE_P) max register pressure (see its
3187 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3188 after insn AFTER. */
3189 static void
3190 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3191 {
3192 int i, p;
3193 bool eq_p;
3194 rtx_insn *insn;
3195 static int max_reg_pressure[N_REG_CLASSES];
3196
3197 save_reg_pressure ();
3198 for (i = 0; i < ira_pressure_classes_num; i++)
3199 max_reg_pressure[ira_pressure_classes[i]]
3200 = curr_reg_pressure[ira_pressure_classes[i]];
3201 for (insn = NEXT_INSN (after);
3202 insn != NULL_RTX && ! BARRIER_P (insn)
3203 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3204 insn = NEXT_INSN (insn))
3205 if (NONDEBUG_INSN_P (insn))
3206 {
3207 eq_p = true;
3208 for (i = 0; i < ira_pressure_classes_num; i++)
3209 {
3210 p = max_reg_pressure[ira_pressure_classes[i]];
3211 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3212 {
3213 eq_p = false;
3214 INSN_MAX_REG_PRESSURE (insn)[i]
3215 = max_reg_pressure[ira_pressure_classes[i]];
3216 }
3217 }
3218 if (update_p && eq_p)
3219 break;
3220 update_register_pressure (insn);
3221 for (i = 0; i < ira_pressure_classes_num; i++)
3222 if (max_reg_pressure[ira_pressure_classes[i]]
3223 < curr_reg_pressure[ira_pressure_classes[i]])
3224 max_reg_pressure[ira_pressure_classes[i]]
3225 = curr_reg_pressure[ira_pressure_classes[i]];
3226 }
3227 restore_reg_pressure ();
3228 }
3229
3230 /* Update the current register pressure after scheduling INSN. Update
3231 also max register pressure for unscheduled insns of the current
3232 BB. */
3233 static void
3234 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3235 {
3236 int i;
3237 int before[N_REG_CLASSES];
3238
3239 for (i = 0; i < ira_pressure_classes_num; i++)
3240 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3241 update_register_pressure (insn);
3242 for (i = 0; i < ira_pressure_classes_num; i++)
3243 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3244 break;
3245 if (i < ira_pressure_classes_num)
3246 setup_insn_max_reg_pressure (insn, true);
3247 }
3248
3249 /* Set up register pressure at the beginning of basic block BB whose
3250 insns starting after insn AFTER. Set up also max register pressure
3251 for all insns of the basic block. */
3252 void
3253 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3254 {
3255 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3256 initiate_bb_reg_pressure_info (bb);
3257 setup_insn_max_reg_pressure (after, false);
3258 }
3259 \f
3260 /* If doing predication while scheduling, verify whether INSN, which
3261 has just been scheduled, clobbers the conditions of any
3262 instructions that must be predicated in order to break their
3263 dependencies. If so, remove them from the queues so that they will
3264 only be scheduled once their control dependency is resolved. */
3265
3266 static void
3267 check_clobbered_conditions (rtx_insn *insn)
3268 {
3269 HARD_REG_SET t;
3270 int i;
3271
3272 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3273 return;
3274
3275 find_all_hard_reg_sets (insn, &t, true);
3276
3277 restart:
3278 for (i = 0; i < ready.n_ready; i++)
3279 {
3280 rtx_insn *x = ready_element (&ready, i);
3281 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3282 {
3283 ready_remove_insn (x);
3284 goto restart;
3285 }
3286 }
3287 for (i = 0; i <= max_insn_queue_index; i++)
3288 {
3289 rtx_insn_list *link;
3290 int q = NEXT_Q_AFTER (q_ptr, i);
3291
3292 restart_queue:
3293 for (link = insn_queue[q]; link; link = link->next ())
3294 {
3295 rtx_insn *x = link->insn ();
3296 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3297 {
3298 queue_remove (x);
3299 goto restart_queue;
3300 }
3301 }
3302 }
3303 }
3304 \f
3305 /* Return (in order):
3306
3307 - positive if INSN adversely affects the pressure on one
3308 register class
3309
3310 - negative if INSN reduces the pressure on one register class
3311
3312 - 0 if INSN doesn't affect the pressure on any register class. */
3313
3314 static int
3315 model_classify_pressure (struct model_insn_info *insn)
3316 {
3317 struct reg_pressure_data *reg_pressure;
3318 int death[N_REG_CLASSES];
3319 int pci, cl, sum;
3320
3321 calculate_reg_deaths (insn->insn, death);
3322 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3323 sum = 0;
3324 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3325 {
3326 cl = ira_pressure_classes[pci];
3327 if (death[cl] < reg_pressure[pci].set_increase)
3328 return 1;
3329 sum += reg_pressure[pci].set_increase - death[cl];
3330 }
3331 return sum;
3332 }
3333
3334 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3335
3336 static int
3337 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3338 {
3339 unsigned int height1, height2;
3340 unsigned int priority1, priority2;
3341
3342 /* Prefer instructions with a higher model priority. */
3343 if (insn1->model_priority != insn2->model_priority)
3344 return insn1->model_priority > insn2->model_priority;
3345
3346 /* Combine the length of the longest path of satisfied true dependencies
3347 that leads to each instruction (depth) with the length of the longest
3348 path of any dependencies that leads from the instruction (alap).
3349 Prefer instructions with the greatest combined length. If the combined
3350 lengths are equal, prefer instructions with the greatest depth.
3351
3352 The idea is that, if we have a set S of "equal" instructions that each
3353 have ALAP value X, and we pick one such instruction I, any true-dependent
3354 successors of I that have ALAP value X - 1 should be preferred over S.
3355 This encourages the schedule to be "narrow" rather than "wide".
3356 However, if I is a low-priority instruction that we decided to
3357 schedule because of its model_classify_pressure, and if there
3358 is a set of higher-priority instructions T, the aforementioned
3359 successors of I should not have the edge over T. */
3360 height1 = insn1->depth + insn1->alap;
3361 height2 = insn2->depth + insn2->alap;
3362 if (height1 != height2)
3363 return height1 > height2;
3364 if (insn1->depth != insn2->depth)
3365 return insn1->depth > insn2->depth;
3366
3367 /* We have no real preference between INSN1 an INSN2 as far as attempts
3368 to reduce pressure go. Prefer instructions with higher priorities. */
3369 priority1 = INSN_PRIORITY (insn1->insn);
3370 priority2 = INSN_PRIORITY (insn2->insn);
3371 if (priority1 != priority2)
3372 return priority1 > priority2;
3373
3374 /* Use the original rtl sequence as a tie-breaker. */
3375 return insn1 < insn2;
3376 }
3377
3378 /* Add INSN to the model worklist immediately after PREV. Add it to the
3379 beginning of the list if PREV is null. */
3380
3381 static void
3382 model_add_to_worklist_at (struct model_insn_info *insn,
3383 struct model_insn_info *prev)
3384 {
3385 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3386 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3387
3388 insn->prev = prev;
3389 if (prev)
3390 {
3391 insn->next = prev->next;
3392 prev->next = insn;
3393 }
3394 else
3395 {
3396 insn->next = model_worklist;
3397 model_worklist = insn;
3398 }
3399 if (insn->next)
3400 insn->next->prev = insn;
3401 }
3402
3403 /* Remove INSN from the model worklist. */
3404
3405 static void
3406 model_remove_from_worklist (struct model_insn_info *insn)
3407 {
3408 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3409 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3410
3411 if (insn->prev)
3412 insn->prev->next = insn->next;
3413 else
3414 model_worklist = insn->next;
3415 if (insn->next)
3416 insn->next->prev = insn->prev;
3417 }
3418
3419 /* Add INSN to the model worklist. Start looking for a suitable position
3420 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3421 insns either side. A null PREV indicates the beginning of the list and
3422 a null NEXT indicates the end. */
3423
3424 static void
3425 model_add_to_worklist (struct model_insn_info *insn,
3426 struct model_insn_info *prev,
3427 struct model_insn_info *next)
3428 {
3429 int count;
3430
3431 count = MAX_SCHED_READY_INSNS;
3432 if (count > 0 && prev && model_order_p (insn, prev))
3433 do
3434 {
3435 count--;
3436 prev = prev->prev;
3437 }
3438 while (count > 0 && prev && model_order_p (insn, prev));
3439 else
3440 while (count > 0 && next && model_order_p (next, insn))
3441 {
3442 count--;
3443 prev = next;
3444 next = next->next;
3445 }
3446 model_add_to_worklist_at (insn, prev);
3447 }
3448
3449 /* INSN may now have a higher priority (in the model_order_p sense)
3450 than before. Move it up the worklist if necessary. */
3451
3452 static void
3453 model_promote_insn (struct model_insn_info *insn)
3454 {
3455 struct model_insn_info *prev;
3456 int count;
3457
3458 prev = insn->prev;
3459 count = MAX_SCHED_READY_INSNS;
3460 while (count > 0 && prev && model_order_p (insn, prev))
3461 {
3462 count--;
3463 prev = prev->prev;
3464 }
3465 if (prev != insn->prev)
3466 {
3467 model_remove_from_worklist (insn);
3468 model_add_to_worklist_at (insn, prev);
3469 }
3470 }
3471
3472 /* Add INSN to the end of the model schedule. */
3473
3474 static void
3475 model_add_to_schedule (rtx_insn *insn)
3476 {
3477 unsigned int point;
3478
3479 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3480 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3481
3482 point = model_schedule.length ();
3483 model_schedule.quick_push (insn);
3484 INSN_MODEL_INDEX (insn) = point + 1;
3485 }
3486
3487 /* Analyze the instructions that are to be scheduled, setting up
3488 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3489 instructions to model_worklist. */
3490
3491 static void
3492 model_analyze_insns (void)
3493 {
3494 rtx_insn *start, *end, *iter;
3495 sd_iterator_def sd_it;
3496 dep_t dep;
3497 struct model_insn_info *insn, *con;
3498
3499 model_num_insns = 0;
3500 start = PREV_INSN (current_sched_info->next_tail);
3501 end = current_sched_info->prev_head;
3502 for (iter = start; iter != end; iter = PREV_INSN (iter))
3503 if (NONDEBUG_INSN_P (iter))
3504 {
3505 insn = MODEL_INSN_INFO (iter);
3506 insn->insn = iter;
3507 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3508 {
3509 con = MODEL_INSN_INFO (DEP_CON (dep));
3510 if (con->insn && insn->alap < con->alap + 1)
3511 insn->alap = con->alap + 1;
3512 }
3513
3514 insn->old_queue = QUEUE_INDEX (iter);
3515 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3516
3517 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3518 if (insn->unscheduled_preds == 0)
3519 model_add_to_worklist (insn, NULL, model_worklist);
3520
3521 model_num_insns++;
3522 }
3523 }
3524
3525 /* The global state describes the register pressure at the start of the
3526 model schedule. Initialize GROUP accordingly. */
3527
3528 static void
3529 model_init_pressure_group (struct model_pressure_group *group)
3530 {
3531 int pci, cl;
3532
3533 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3534 {
3535 cl = ira_pressure_classes[pci];
3536 group->limits[pci].pressure = curr_reg_pressure[cl];
3537 group->limits[pci].point = 0;
3538 }
3539 /* Use index model_num_insns to record the state after the last
3540 instruction in the model schedule. */
3541 group->model = XNEWVEC (struct model_pressure_data,
3542 (model_num_insns + 1) * ira_pressure_classes_num);
3543 }
3544
3545 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3546 Update the maximum pressure for the whole schedule. */
3547
3548 static void
3549 model_record_pressure (struct model_pressure_group *group,
3550 int point, int pci, int pressure)
3551 {
3552 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3553 if (group->limits[pci].pressure < pressure)
3554 {
3555 group->limits[pci].pressure = pressure;
3556 group->limits[pci].point = point;
3557 }
3558 }
3559
3560 /* INSN has just been added to the end of the model schedule. Record its
3561 register-pressure information. */
3562
3563 static void
3564 model_record_pressures (struct model_insn_info *insn)
3565 {
3566 struct reg_pressure_data *reg_pressure;
3567 int point, pci, cl, delta;
3568 int death[N_REG_CLASSES];
3569
3570 point = model_index (insn->insn);
3571 if (sched_verbose >= 2)
3572 {
3573 if (point == 0)
3574 {
3575 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3576 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3577 }
3578 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3579 point, INSN_UID (insn->insn), insn->model_priority,
3580 insn->depth + insn->alap, insn->depth,
3581 INSN_PRIORITY (insn->insn),
3582 str_pattern_slim (PATTERN (insn->insn)));
3583 }
3584 calculate_reg_deaths (insn->insn, death);
3585 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3586 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3587 {
3588 cl = ira_pressure_classes[pci];
3589 delta = reg_pressure[pci].set_increase - death[cl];
3590 if (sched_verbose >= 2)
3591 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3592 curr_reg_pressure[cl], delta);
3593 model_record_pressure (&model_before_pressure, point, pci,
3594 curr_reg_pressure[cl]);
3595 }
3596 if (sched_verbose >= 2)
3597 fprintf (sched_dump, "\n");
3598 }
3599
3600 /* All instructions have been added to the model schedule. Record the
3601 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3602
3603 static void
3604 model_record_final_pressures (struct model_pressure_group *group)
3605 {
3606 int point, pci, max_pressure, ref_pressure, cl;
3607
3608 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3609 {
3610 /* Record the final pressure for this class. */
3611 cl = ira_pressure_classes[pci];
3612 point = model_num_insns;
3613 ref_pressure = curr_reg_pressure[cl];
3614 model_record_pressure (group, point, pci, ref_pressure);
3615
3616 /* Record the original maximum pressure. */
3617 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3618
3619 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3620 max_pressure = ref_pressure;
3621 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3622 while (point > 0)
3623 {
3624 point--;
3625 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3626 max_pressure = MAX (max_pressure, ref_pressure);
3627 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3628 }
3629 }
3630 }
3631
3632 /* Update all successors of INSN, given that INSN has just been scheduled. */
3633
3634 static void
3635 model_add_successors_to_worklist (struct model_insn_info *insn)
3636 {
3637 sd_iterator_def sd_it;
3638 struct model_insn_info *con;
3639 dep_t dep;
3640
3641 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3642 {
3643 con = MODEL_INSN_INFO (DEP_CON (dep));
3644 /* Ignore debug instructions, and instructions from other blocks. */
3645 if (con->insn)
3646 {
3647 con->unscheduled_preds--;
3648
3649 /* Update the depth field of each true-dependent successor.
3650 Increasing the depth gives them a higher priority than
3651 before. */
3652 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3653 {
3654 con->depth = insn->depth + 1;
3655 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3656 model_promote_insn (con);
3657 }
3658
3659 /* If this is a true dependency, or if there are no remaining
3660 dependencies for CON (meaning that CON only had non-true
3661 dependencies), make sure that CON is on the worklist.
3662 We don't bother otherwise because it would tend to fill the
3663 worklist with a lot of low-priority instructions that are not
3664 yet ready to issue. */
3665 if ((con->depth > 0 || con->unscheduled_preds == 0)
3666 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3667 model_add_to_worklist (con, insn, insn->next);
3668 }
3669 }
3670 }
3671
3672 /* Give INSN a higher priority than any current instruction, then give
3673 unscheduled predecessors of INSN a higher priority still. If any of
3674 those predecessors are not on the model worklist, do the same for its
3675 predecessors, and so on. */
3676
3677 static void
3678 model_promote_predecessors (struct model_insn_info *insn)
3679 {
3680 struct model_insn_info *pro, *first;
3681 sd_iterator_def sd_it;
3682 dep_t dep;
3683
3684 if (sched_verbose >= 7)
3685 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3686 INSN_UID (insn->insn), model_next_priority);
3687 insn->model_priority = model_next_priority++;
3688 model_remove_from_worklist (insn);
3689 model_add_to_worklist_at (insn, NULL);
3690
3691 first = NULL;
3692 for (;;)
3693 {
3694 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3695 {
3696 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3697 /* The first test is to ignore debug instructions, and instructions
3698 from other blocks. */
3699 if (pro->insn
3700 && pro->model_priority != model_next_priority
3701 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3702 {
3703 pro->model_priority = model_next_priority;
3704 if (sched_verbose >= 7)
3705 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3706 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3707 {
3708 /* PRO is already in the worklist, but it now has
3709 a higher priority than before. Move it at the
3710 appropriate place. */
3711 model_remove_from_worklist (pro);
3712 model_add_to_worklist (pro, NULL, model_worklist);
3713 }
3714 else
3715 {
3716 /* PRO isn't in the worklist. Recursively process
3717 its predecessors until we find one that is. */
3718 pro->next = first;
3719 first = pro;
3720 }
3721 }
3722 }
3723 if (!first)
3724 break;
3725 insn = first;
3726 first = insn->next;
3727 }
3728 if (sched_verbose >= 7)
3729 fprintf (sched_dump, " = %d\n", model_next_priority);
3730 model_next_priority++;
3731 }
3732
3733 /* Pick one instruction from model_worklist and process it. */
3734
3735 static void
3736 model_choose_insn (void)
3737 {
3738 struct model_insn_info *insn, *fallback;
3739 int count;
3740
3741 if (sched_verbose >= 7)
3742 {
3743 fprintf (sched_dump, ";;\t+--- worklist:\n");
3744 insn = model_worklist;
3745 count = MAX_SCHED_READY_INSNS;
3746 while (count > 0 && insn)
3747 {
3748 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3749 INSN_UID (insn->insn), insn->model_priority,
3750 insn->depth + insn->alap, insn->depth,
3751 INSN_PRIORITY (insn->insn));
3752 count--;
3753 insn = insn->next;
3754 }
3755 }
3756
3757 /* Look for a ready instruction whose model_classify_priority is zero
3758 or negative, picking the highest-priority one. Adding such an
3759 instruction to the schedule now should do no harm, and may actually
3760 do some good.
3761
3762 Failing that, see whether there is an instruction with the highest
3763 extant model_priority that is not yet ready, but which would reduce
3764 pressure if it became ready. This is designed to catch cases like:
3765
3766 (set (mem (reg R1)) (reg R2))
3767
3768 where the instruction is the last remaining use of R1 and where the
3769 value of R2 is not yet available (or vice versa). The death of R1
3770 means that this instruction already reduces pressure. It is of
3771 course possible that the computation of R2 involves other registers
3772 that are hard to kill, but such cases are rare enough for this
3773 heuristic to be a win in general.
3774
3775 Failing that, just pick the highest-priority instruction in the
3776 worklist. */
3777 count = MAX_SCHED_READY_INSNS;
3778 insn = model_worklist;
3779 fallback = 0;
3780 for (;;)
3781 {
3782 if (count == 0 || !insn)
3783 {
3784 insn = fallback ? fallback : model_worklist;
3785 break;
3786 }
3787 if (insn->unscheduled_preds)
3788 {
3789 if (model_worklist->model_priority == insn->model_priority
3790 && !fallback
3791 && model_classify_pressure (insn) < 0)
3792 fallback = insn;
3793 }
3794 else
3795 {
3796 if (model_classify_pressure (insn) <= 0)
3797 break;
3798 }
3799 count--;
3800 insn = insn->next;
3801 }
3802
3803 if (sched_verbose >= 7 && insn != model_worklist)
3804 {
3805 if (insn->unscheduled_preds)
3806 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3807 INSN_UID (insn->insn));
3808 else
3809 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3810 INSN_UID (insn->insn));
3811 }
3812 if (insn->unscheduled_preds)
3813 /* INSN isn't yet ready to issue. Give all its predecessors the
3814 highest priority. */
3815 model_promote_predecessors (insn);
3816 else
3817 {
3818 /* INSN is ready. Add it to the end of model_schedule and
3819 process its successors. */
3820 model_add_successors_to_worklist (insn);
3821 model_remove_from_worklist (insn);
3822 model_add_to_schedule (insn->insn);
3823 model_record_pressures (insn);
3824 update_register_pressure (insn->insn);
3825 }
3826 }
3827
3828 /* Restore all QUEUE_INDEXs to the values that they had before
3829 model_start_schedule was called. */
3830
3831 static void
3832 model_reset_queue_indices (void)
3833 {
3834 unsigned int i;
3835 rtx_insn *insn;
3836
3837 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3838 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3839 }
3840
3841 /* We have calculated the model schedule and spill costs. Print a summary
3842 to sched_dump. */
3843
3844 static void
3845 model_dump_pressure_summary (void)
3846 {
3847 int pci, cl;
3848
3849 fprintf (sched_dump, ";; Pressure summary:");
3850 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3851 {
3852 cl = ira_pressure_classes[pci];
3853 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3854 model_before_pressure.limits[pci].pressure);
3855 }
3856 fprintf (sched_dump, "\n\n");
3857 }
3858
3859 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3860 scheduling region. */
3861
3862 static void
3863 model_start_schedule (basic_block bb)
3864 {
3865 model_next_priority = 1;
3866 model_schedule.create (sched_max_luid);
3867 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3868
3869 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3870 initiate_reg_pressure_info (df_get_live_in (bb));
3871
3872 model_analyze_insns ();
3873 model_init_pressure_group (&model_before_pressure);
3874 while (model_worklist)
3875 model_choose_insn ();
3876 gcc_assert (model_num_insns == (int) model_schedule.length ());
3877 if (sched_verbose >= 2)
3878 fprintf (sched_dump, "\n");
3879
3880 model_record_final_pressures (&model_before_pressure);
3881 model_reset_queue_indices ();
3882
3883 XDELETEVEC (model_insns);
3884
3885 model_curr_point = 0;
3886 initiate_reg_pressure_info (df_get_live_in (bb));
3887 if (sched_verbose >= 1)
3888 model_dump_pressure_summary ();
3889 }
3890
3891 /* Free the information associated with GROUP. */
3892
3893 static void
3894 model_finalize_pressure_group (struct model_pressure_group *group)
3895 {
3896 XDELETEVEC (group->model);
3897 }
3898
3899 /* Free the information created by model_start_schedule. */
3900
3901 static void
3902 model_end_schedule (void)
3903 {
3904 model_finalize_pressure_group (&model_before_pressure);
3905 model_schedule.release ();
3906 }
3907
3908 /* Prepare reg pressure scheduling for basic block BB. */
3909 static void
3910 sched_pressure_start_bb (basic_block bb)
3911 {
3912 /* Set the number of available registers for each class taking into account
3913 relative probability of current basic block versus function prologue and
3914 epilogue.
3915 * If the basic block executes much more often than the prologue/epilogue
3916 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3917 nil, so the effective number of available registers is
3918 (ira_class_hard_regs_num[cl] - 0).
3919 * If the basic block executes as often as the prologue/epilogue,
3920 then spill in the block is as costly as in the prologue, so the effective
3921 number of available registers is
3922 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3923 Note that all-else-equal, we prefer to spill in the prologue, since that
3924 allows "extra" registers for other basic blocks of the function.
3925 * If the basic block is on the cold path of the function and executes
3926 rarely, then we should always prefer to spill in the block, rather than
3927 in the prologue/epilogue. The effective number of available register is
3928 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3929 {
3930 int i;
3931 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3932 int bb_freq = bb->frequency;
3933
3934 if (bb_freq == 0)
3935 {
3936 if (entry_freq == 0)
3937 entry_freq = bb_freq = 1;
3938 }
3939 if (bb_freq < entry_freq)
3940 bb_freq = entry_freq;
3941
3942 for (i = 0; i < ira_pressure_classes_num; ++i)
3943 {
3944 enum reg_class cl = ira_pressure_classes[i];
3945 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3946 sched_class_regs_num[cl]
3947 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3948 }
3949 }
3950
3951 if (sched_pressure == SCHED_PRESSURE_MODEL)
3952 model_start_schedule (bb);
3953 }
3954 \f
3955 /* A structure that holds local state for the loop in schedule_block. */
3956 struct sched_block_state
3957 {
3958 /* True if no real insns have been scheduled in the current cycle. */
3959 bool first_cycle_insn_p;
3960 /* True if a shadow insn has been scheduled in the current cycle, which
3961 means that no more normal insns can be issued. */
3962 bool shadows_only_p;
3963 /* True if we're winding down a modulo schedule, which means that we only
3964 issue insns with INSN_EXACT_TICK set. */
3965 bool modulo_epilogue;
3966 /* Initialized with the machine's issue rate every cycle, and updated
3967 by calls to the variable_issue hook. */
3968 int can_issue_more;
3969 };
3970
3971 /* INSN is the "currently executing insn". Launch each insn which was
3972 waiting on INSN. READY is the ready list which contains the insns
3973 that are ready to fire. CLOCK is the current cycle. The function
3974 returns necessary cycle advance after issuing the insn (it is not
3975 zero for insns in a schedule group). */
3976
3977 static int
3978 schedule_insn (rtx_insn *insn)
3979 {
3980 sd_iterator_def sd_it;
3981 dep_t dep;
3982 int i;
3983 int advance = 0;
3984
3985 if (sched_verbose >= 1)
3986 {
3987 struct reg_pressure_data *pressure_info;
3988 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3989 clock_var, (*current_sched_info->print_insn) (insn, 1),
3990 str_pattern_slim (PATTERN (insn)));
3991
3992 if (recog_memoized (insn) < 0)
3993 fprintf (sched_dump, "nothing");
3994 else
3995 print_reservation (sched_dump, insn);
3996 pressure_info = INSN_REG_PRESSURE (insn);
3997 if (pressure_info != NULL)
3998 {
3999 fputc (':', sched_dump);
4000 for (i = 0; i < ira_pressure_classes_num; i++)
4001 fprintf (sched_dump, "%s%s%+d(%d)",
4002 scheduled_insns.length () > 1
4003 && INSN_LUID (insn)
4004 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4005 reg_class_names[ira_pressure_classes[i]],
4006 pressure_info[i].set_increase, pressure_info[i].change);
4007 }
4008 if (sched_pressure == SCHED_PRESSURE_MODEL
4009 && model_curr_point < model_num_insns
4010 && model_index (insn) == model_curr_point)
4011 fprintf (sched_dump, ":model %d", model_curr_point);
4012 fputc ('\n', sched_dump);
4013 }
4014
4015 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4016 update_reg_and_insn_max_reg_pressure (insn);
4017
4018 /* Scheduling instruction should have all its dependencies resolved and
4019 should have been removed from the ready list. */
4020 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4021
4022 /* Reset debug insns invalidated by moving this insn. */
4023 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4024 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4025 sd_iterator_cond (&sd_it, &dep);)
4026 {
4027 rtx_insn *dbg = DEP_PRO (dep);
4028 struct reg_use_data *use, *next;
4029
4030 if (DEP_STATUS (dep) & DEP_CANCELLED)
4031 {
4032 sd_iterator_next (&sd_it);
4033 continue;
4034 }
4035
4036 gcc_assert (DEBUG_INSN_P (dbg));
4037
4038 if (sched_verbose >= 6)
4039 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4040 INSN_UID (dbg));
4041
4042 /* ??? Rather than resetting the debug insn, we might be able
4043 to emit a debug temp before the just-scheduled insn, but
4044 this would involve checking that the expression at the
4045 point of the debug insn is equivalent to the expression
4046 before the just-scheduled insn. They might not be: the
4047 expression in the debug insn may depend on other insns not
4048 yet scheduled that set MEMs, REGs or even other debug
4049 insns. It's not clear that attempting to preserve debug
4050 information in these cases is worth the effort, given how
4051 uncommon these resets are and the likelihood that the debug
4052 temps introduced won't survive the schedule change. */
4053 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4054 df_insn_rescan (dbg);
4055
4056 /* Unknown location doesn't use any registers. */
4057 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4058 {
4059 struct reg_use_data *prev = use;
4060
4061 /* Remove use from the cyclic next_regno_use chain first. */
4062 while (prev->next_regno_use != use)
4063 prev = prev->next_regno_use;
4064 prev->next_regno_use = use->next_regno_use;
4065 next = use->next_insn_use;
4066 free (use);
4067 }
4068 INSN_REG_USE_LIST (dbg) = NULL;
4069
4070 /* We delete rather than resolve these deps, otherwise we
4071 crash in sched_free_deps(), because forward deps are
4072 expected to be released before backward deps. */
4073 sd_delete_dep (sd_it);
4074 }
4075
4076 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4077 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4078
4079 if (sched_pressure == SCHED_PRESSURE_MODEL
4080 && model_curr_point < model_num_insns
4081 && NONDEBUG_INSN_P (insn))
4082 {
4083 if (model_index (insn) == model_curr_point)
4084 do
4085 model_curr_point++;
4086 while (model_curr_point < model_num_insns
4087 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4088 == QUEUE_SCHEDULED));
4089 else
4090 model_recompute (insn);
4091 model_update_limit_points ();
4092 update_register_pressure (insn);
4093 if (sched_verbose >= 2)
4094 print_curr_reg_pressure ();
4095 }
4096
4097 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4098 if (INSN_TICK (insn) > clock_var)
4099 /* INSN has been prematurely moved from the queue to the ready list.
4100 This is possible only if following flags are set. */
4101 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4102
4103 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4104 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4105 INSN_TICK (insn) = clock_var;
4106
4107 check_clobbered_conditions (insn);
4108
4109 /* Update dependent instructions. First, see if by scheduling this insn
4110 now we broke a dependence in a way that requires us to change another
4111 insn. */
4112 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4113 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4114 {
4115 struct dep_replacement *desc = DEP_REPLACE (dep);
4116 rtx_insn *pro = DEP_PRO (dep);
4117 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4118 && desc != NULL && desc->insn == pro)
4119 apply_replacement (dep, false);
4120 }
4121
4122 /* Go through and resolve forward dependencies. */
4123 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4124 sd_iterator_cond (&sd_it, &dep);)
4125 {
4126 rtx_insn *next = DEP_CON (dep);
4127 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4128
4129 /* Resolve the dependence between INSN and NEXT.
4130 sd_resolve_dep () moves current dep to another list thus
4131 advancing the iterator. */
4132 sd_resolve_dep (sd_it);
4133
4134 if (cancelled)
4135 {
4136 if (must_restore_pattern_p (next, dep))
4137 restore_pattern (dep, false);
4138 continue;
4139 }
4140
4141 /* Don't bother trying to mark next as ready if insn is a debug
4142 insn. If insn is the last hard dependency, it will have
4143 already been discounted. */
4144 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4145 continue;
4146
4147 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4148 {
4149 int effective_cost;
4150
4151 effective_cost = try_ready (next);
4152
4153 if (effective_cost >= 0
4154 && SCHED_GROUP_P (next)
4155 && advance < effective_cost)
4156 advance = effective_cost;
4157 }
4158 else
4159 /* Check always has only one forward dependence (to the first insn in
4160 the recovery block), therefore, this will be executed only once. */
4161 {
4162 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4163 fix_recovery_deps (RECOVERY_BLOCK (insn));
4164 }
4165 }
4166
4167 /* Annotate the instruction with issue information -- TImode
4168 indicates that the instruction is expected not to be able
4169 to issue on the same cycle as the previous insn. A machine
4170 may use this information to decide how the instruction should
4171 be aligned. */
4172 if (issue_rate > 1
4173 && GET_CODE (PATTERN (insn)) != USE
4174 && GET_CODE (PATTERN (insn)) != CLOBBER
4175 && !DEBUG_INSN_P (insn))
4176 {
4177 if (reload_completed)
4178 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4179 last_clock_var = clock_var;
4180 }
4181
4182 if (nonscheduled_insns_begin != NULL_RTX)
4183 /* Indicate to debug counters that INSN is scheduled. */
4184 nonscheduled_insns_begin = insn;
4185
4186 return advance;
4187 }
4188
4189 /* Functions for handling of notes. */
4190
4191 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4192 void
4193 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4194 {
4195 rtx_insn *from_start;
4196
4197 /* It's easy when have nothing to concat. */
4198 if (from_end == NULL)
4199 return;
4200
4201 /* It's also easy when destination is empty. */
4202 if (*to_endp == NULL)
4203 {
4204 *to_endp = from_end;
4205 return;
4206 }
4207
4208 from_start = from_end;
4209 while (PREV_INSN (from_start) != NULL)
4210 from_start = PREV_INSN (from_start);
4211
4212 SET_PREV_INSN (from_start) = *to_endp;
4213 SET_NEXT_INSN (*to_endp) = from_start;
4214 *to_endp = from_end;
4215 }
4216
4217 /* Delete notes between HEAD and TAIL and put them in the chain
4218 of notes ended by NOTE_LIST. */
4219 void
4220 remove_notes (rtx_insn *head, rtx_insn *tail)
4221 {
4222 rtx_insn *next_tail, *insn, *next;
4223
4224 note_list = 0;
4225 if (head == tail && !INSN_P (head))
4226 return;
4227
4228 next_tail = NEXT_INSN (tail);
4229 for (insn = head; insn != next_tail; insn = next)
4230 {
4231 next = NEXT_INSN (insn);
4232 if (!NOTE_P (insn))
4233 continue;
4234
4235 switch (NOTE_KIND (insn))
4236 {
4237 case NOTE_INSN_BASIC_BLOCK:
4238 continue;
4239
4240 case NOTE_INSN_EPILOGUE_BEG:
4241 if (insn != tail)
4242 {
4243 remove_insn (insn);
4244 add_reg_note (next, REG_SAVE_NOTE,
4245 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4246 break;
4247 }
4248 /* FALLTHRU */
4249
4250 default:
4251 remove_insn (insn);
4252
4253 /* Add the note to list that ends at NOTE_LIST. */
4254 SET_PREV_INSN (insn) = note_list;
4255 SET_NEXT_INSN (insn) = NULL_RTX;
4256 if (note_list)
4257 SET_NEXT_INSN (note_list) = insn;
4258 note_list = insn;
4259 break;
4260 }
4261
4262 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4263 }
4264 }
4265
4266 /* A structure to record enough data to allow us to backtrack the scheduler to
4267 a previous state. */
4268 struct haifa_saved_data
4269 {
4270 /* Next entry on the list. */
4271 struct haifa_saved_data *next;
4272
4273 /* Backtracking is associated with scheduling insns that have delay slots.
4274 DELAY_PAIR points to the structure that contains the insns involved, and
4275 the number of cycles between them. */
4276 struct delay_pair *delay_pair;
4277
4278 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4279 void *fe_saved_data;
4280 /* Data used by the backend. */
4281 void *be_saved_data;
4282
4283 /* Copies of global state. */
4284 int clock_var, last_clock_var;
4285 struct ready_list ready;
4286 state_t curr_state;
4287
4288 rtx_insn *last_scheduled_insn;
4289 rtx_insn *last_nondebug_scheduled_insn;
4290 rtx_insn *nonscheduled_insns_begin;
4291 int cycle_issued_insns;
4292
4293 /* Copies of state used in the inner loop of schedule_block. */
4294 struct sched_block_state sched_block;
4295
4296 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4297 to 0 when restoring. */
4298 int q_size;
4299 rtx_insn_list **insn_queue;
4300
4301 /* Describe pattern replacements that occurred since this backtrack point
4302 was queued. */
4303 vec<dep_t> replacement_deps;
4304 vec<int> replace_apply;
4305
4306 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4307 point. */
4308 vec<dep_t> next_cycle_deps;
4309 vec<int> next_cycle_apply;
4310 };
4311
4312 /* A record, in reverse order, of all scheduled insns which have delay slots
4313 and may require backtracking. */
4314 static struct haifa_saved_data *backtrack_queue;
4315
4316 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4317 to SET_P. */
4318 static void
4319 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4320 {
4321 sd_iterator_def sd_it;
4322 dep_t dep;
4323 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4324 {
4325 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4326 }
4327 }
4328
4329 /* Save the current scheduler state so that we can backtrack to it
4330 later if necessary. PAIR gives the insns that make it necessary to
4331 save this point. SCHED_BLOCK is the local state of schedule_block
4332 that need to be saved. */
4333 static void
4334 save_backtrack_point (struct delay_pair *pair,
4335 struct sched_block_state sched_block)
4336 {
4337 int i;
4338 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4339
4340 save->curr_state = xmalloc (dfa_state_size);
4341 memcpy (save->curr_state, curr_state, dfa_state_size);
4342
4343 save->ready.first = ready.first;
4344 save->ready.n_ready = ready.n_ready;
4345 save->ready.n_debug = ready.n_debug;
4346 save->ready.veclen = ready.veclen;
4347 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4348 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4349
4350 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4351 save->q_size = q_size;
4352 for (i = 0; i <= max_insn_queue_index; i++)
4353 {
4354 int q = NEXT_Q_AFTER (q_ptr, i);
4355 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4356 }
4357
4358 save->clock_var = clock_var;
4359 save->last_clock_var = last_clock_var;
4360 save->cycle_issued_insns = cycle_issued_insns;
4361 save->last_scheduled_insn = last_scheduled_insn;
4362 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4363 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4364
4365 save->sched_block = sched_block;
4366
4367 save->replacement_deps.create (0);
4368 save->replace_apply.create (0);
4369 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4370 save->next_cycle_apply = next_cycle_apply.copy ();
4371
4372 if (current_sched_info->save_state)
4373 save->fe_saved_data = (*current_sched_info->save_state) ();
4374
4375 if (targetm.sched.alloc_sched_context)
4376 {
4377 save->be_saved_data = targetm.sched.alloc_sched_context ();
4378 targetm.sched.init_sched_context (save->be_saved_data, false);
4379 }
4380 else
4381 save->be_saved_data = NULL;
4382
4383 save->delay_pair = pair;
4384
4385 save->next = backtrack_queue;
4386 backtrack_queue = save;
4387
4388 while (pair)
4389 {
4390 mark_backtrack_feeds (pair->i2, 1);
4391 INSN_TICK (pair->i2) = INVALID_TICK;
4392 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4393 SHADOW_P (pair->i2) = pair->stages == 0;
4394 pair = pair->next_same_i1;
4395 }
4396 }
4397
4398 /* Walk the ready list and all queues. If any insns have unresolved backwards
4399 dependencies, these must be cancelled deps, broken by predication. Set or
4400 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4401
4402 static void
4403 toggle_cancelled_flags (bool set)
4404 {
4405 int i;
4406 sd_iterator_def sd_it;
4407 dep_t dep;
4408
4409 if (ready.n_ready > 0)
4410 {
4411 rtx_insn **first = ready_lastpos (&ready);
4412 for (i = 0; i < ready.n_ready; i++)
4413 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4414 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4415 {
4416 if (set)
4417 DEP_STATUS (dep) |= DEP_CANCELLED;
4418 else
4419 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4420 }
4421 }
4422 for (i = 0; i <= max_insn_queue_index; i++)
4423 {
4424 int q = NEXT_Q_AFTER (q_ptr, i);
4425 rtx_insn_list *link;
4426 for (link = insn_queue[q]; link; link = link->next ())
4427 {
4428 rtx_insn *insn = link->insn ();
4429 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4430 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4431 {
4432 if (set)
4433 DEP_STATUS (dep) |= DEP_CANCELLED;
4434 else
4435 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4436 }
4437 }
4438 }
4439 }
4440
4441 /* Undo the replacements that have occurred after backtrack point SAVE
4442 was placed. */
4443 static void
4444 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4445 {
4446 while (!save->replacement_deps.is_empty ())
4447 {
4448 dep_t dep = save->replacement_deps.pop ();
4449 int apply_p = save->replace_apply.pop ();
4450
4451 if (apply_p)
4452 restore_pattern (dep, true);
4453 else
4454 apply_replacement (dep, true);
4455 }
4456 save->replacement_deps.release ();
4457 save->replace_apply.release ();
4458 }
4459
4460 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4461 Restore their dependencies to an unresolved state, and mark them as
4462 queued nowhere. */
4463
4464 static void
4465 unschedule_insns_until (rtx_insn *insn)
4466 {
4467 auto_vec<rtx_insn *> recompute_vec;
4468
4469 /* Make two passes over the insns to be unscheduled. First, we clear out
4470 dependencies and other trivial bookkeeping. */
4471 for (;;)
4472 {
4473 rtx_insn *last;
4474 sd_iterator_def sd_it;
4475 dep_t dep;
4476
4477 last = scheduled_insns.pop ();
4478
4479 /* This will be changed by restore_backtrack_point if the insn is in
4480 any queue. */
4481 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4482 if (last != insn)
4483 INSN_TICK (last) = INVALID_TICK;
4484
4485 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4486 modulo_insns_scheduled--;
4487
4488 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4489 sd_iterator_cond (&sd_it, &dep);)
4490 {
4491 rtx_insn *con = DEP_CON (dep);
4492 sd_unresolve_dep (sd_it);
4493 if (!MUST_RECOMPUTE_SPEC_P (con))
4494 {
4495 MUST_RECOMPUTE_SPEC_P (con) = 1;
4496 recompute_vec.safe_push (con);
4497 }
4498 }
4499
4500 if (last == insn)
4501 break;
4502 }
4503
4504 /* A second pass, to update ready and speculation status for insns
4505 depending on the unscheduled ones. The first pass must have
4506 popped the scheduled_insns vector up to the point where we
4507 restart scheduling, as recompute_todo_spec requires it to be
4508 up-to-date. */
4509 while (!recompute_vec.is_empty ())
4510 {
4511 rtx_insn *con;
4512
4513 con = recompute_vec.pop ();
4514 MUST_RECOMPUTE_SPEC_P (con) = 0;
4515 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4516 {
4517 TODO_SPEC (con) = HARD_DEP;
4518 INSN_TICK (con) = INVALID_TICK;
4519 if (PREDICATED_PAT (con) != NULL_RTX)
4520 haifa_change_pattern (con, ORIG_PAT (con));
4521 }
4522 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4523 TODO_SPEC (con) = recompute_todo_spec (con, true);
4524 }
4525 }
4526
4527 /* Restore scheduler state from the topmost entry on the backtracking queue.
4528 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4529 overwrite with the saved data.
4530 The caller must already have called unschedule_insns_until. */
4531
4532 static void
4533 restore_last_backtrack_point (struct sched_block_state *psched_block)
4534 {
4535 int i;
4536 struct haifa_saved_data *save = backtrack_queue;
4537
4538 backtrack_queue = save->next;
4539
4540 if (current_sched_info->restore_state)
4541 (*current_sched_info->restore_state) (save->fe_saved_data);
4542
4543 if (targetm.sched.alloc_sched_context)
4544 {
4545 targetm.sched.set_sched_context (save->be_saved_data);
4546 targetm.sched.free_sched_context (save->be_saved_data);
4547 }
4548
4549 /* Do this first since it clobbers INSN_TICK of the involved
4550 instructions. */
4551 undo_replacements_for_backtrack (save);
4552
4553 /* Clear the QUEUE_INDEX of everything in the ready list or one
4554 of the queues. */
4555 if (ready.n_ready > 0)
4556 {
4557 rtx_insn **first = ready_lastpos (&ready);
4558 for (i = 0; i < ready.n_ready; i++)
4559 {
4560 rtx_insn *insn = first[i];
4561 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4562 INSN_TICK (insn) = INVALID_TICK;
4563 }
4564 }
4565 for (i = 0; i <= max_insn_queue_index; i++)
4566 {
4567 int q = NEXT_Q_AFTER (q_ptr, i);
4568
4569 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4570 {
4571 rtx_insn *x = link->insn ();
4572 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4573 INSN_TICK (x) = INVALID_TICK;
4574 }
4575 free_INSN_LIST_list (&insn_queue[q]);
4576 }
4577
4578 free (ready.vec);
4579 ready = save->ready;
4580
4581 if (ready.n_ready > 0)
4582 {
4583 rtx_insn **first = ready_lastpos (&ready);
4584 for (i = 0; i < ready.n_ready; i++)
4585 {
4586 rtx_insn *insn = first[i];
4587 QUEUE_INDEX (insn) = QUEUE_READY;
4588 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4589 INSN_TICK (insn) = save->clock_var;
4590 }
4591 }
4592
4593 q_ptr = 0;
4594 q_size = save->q_size;
4595 for (i = 0; i <= max_insn_queue_index; i++)
4596 {
4597 int q = NEXT_Q_AFTER (q_ptr, i);
4598
4599 insn_queue[q] = save->insn_queue[q];
4600
4601 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4602 {
4603 rtx_insn *x = link->insn ();
4604 QUEUE_INDEX (x) = i;
4605 TODO_SPEC (x) = recompute_todo_spec (x, true);
4606 INSN_TICK (x) = save->clock_var + i;
4607 }
4608 }
4609 free (save->insn_queue);
4610
4611 toggle_cancelled_flags (true);
4612
4613 clock_var = save->clock_var;
4614 last_clock_var = save->last_clock_var;
4615 cycle_issued_insns = save->cycle_issued_insns;
4616 last_scheduled_insn = save->last_scheduled_insn;
4617 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4618 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4619
4620 *psched_block = save->sched_block;
4621
4622 memcpy (curr_state, save->curr_state, dfa_state_size);
4623 free (save->curr_state);
4624
4625 mark_backtrack_feeds (save->delay_pair->i2, 0);
4626
4627 gcc_assert (next_cycle_replace_deps.is_empty ());
4628 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4629 next_cycle_apply = save->next_cycle_apply.copy ();
4630
4631 free (save);
4632
4633 for (save = backtrack_queue; save; save = save->next)
4634 {
4635 mark_backtrack_feeds (save->delay_pair->i2, 1);
4636 }
4637 }
4638
4639 /* Discard all data associated with the topmost entry in the backtrack
4640 queue. If RESET_TICK is false, we just want to free the data. If true,
4641 we are doing this because we discovered a reason to backtrack. In the
4642 latter case, also reset the INSN_TICK for the shadow insn. */
4643 static void
4644 free_topmost_backtrack_point (bool reset_tick)
4645 {
4646 struct haifa_saved_data *save = backtrack_queue;
4647 int i;
4648
4649 backtrack_queue = save->next;
4650
4651 if (reset_tick)
4652 {
4653 struct delay_pair *pair = save->delay_pair;
4654 while (pair)
4655 {
4656 INSN_TICK (pair->i2) = INVALID_TICK;
4657 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4658 pair = pair->next_same_i1;
4659 }
4660 undo_replacements_for_backtrack (save);
4661 }
4662 else
4663 {
4664 save->replacement_deps.release ();
4665 save->replace_apply.release ();
4666 }
4667
4668 if (targetm.sched.free_sched_context)
4669 targetm.sched.free_sched_context (save->be_saved_data);
4670 if (current_sched_info->restore_state)
4671 free (save->fe_saved_data);
4672 for (i = 0; i <= max_insn_queue_index; i++)
4673 free_INSN_LIST_list (&save->insn_queue[i]);
4674 free (save->insn_queue);
4675 free (save->curr_state);
4676 free (save->ready.vec);
4677 free (save);
4678 }
4679
4680 /* Free the entire backtrack queue. */
4681 static void
4682 free_backtrack_queue (void)
4683 {
4684 while (backtrack_queue)
4685 free_topmost_backtrack_point (false);
4686 }
4687
4688 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4689 may have to postpone the replacement until the start of the next cycle,
4690 at which point we will be called again with IMMEDIATELY true. This is
4691 only done for machines which have instruction packets with explicit
4692 parallelism however. */
4693 static void
4694 apply_replacement (dep_t dep, bool immediately)
4695 {
4696 struct dep_replacement *desc = DEP_REPLACE (dep);
4697 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4698 {
4699 next_cycle_replace_deps.safe_push (dep);
4700 next_cycle_apply.safe_push (1);
4701 }
4702 else
4703 {
4704 bool success;
4705
4706 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4707 return;
4708
4709 if (sched_verbose >= 5)
4710 fprintf (sched_dump, "applying replacement for insn %d\n",
4711 INSN_UID (desc->insn));
4712
4713 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4714 gcc_assert (success);
4715
4716 update_insn_after_change (desc->insn);
4717 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4718 fix_tick_ready (desc->insn);
4719
4720 if (backtrack_queue != NULL)
4721 {
4722 backtrack_queue->replacement_deps.safe_push (dep);
4723 backtrack_queue->replace_apply.safe_push (1);
4724 }
4725 }
4726 }
4727
4728 /* We have determined that a pattern involved in DEP must be restored.
4729 If IMMEDIATELY is false, we may have to postpone the replacement
4730 until the start of the next cycle, at which point we will be called
4731 again with IMMEDIATELY true. */
4732 static void
4733 restore_pattern (dep_t dep, bool immediately)
4734 {
4735 rtx_insn *next = DEP_CON (dep);
4736 int tick = INSN_TICK (next);
4737
4738 /* If we already scheduled the insn, the modified version is
4739 correct. */
4740 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4741 return;
4742
4743 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4744 {
4745 next_cycle_replace_deps.safe_push (dep);
4746 next_cycle_apply.safe_push (0);
4747 return;
4748 }
4749
4750
4751 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4752 {
4753 if (sched_verbose >= 5)
4754 fprintf (sched_dump, "restoring pattern for insn %d\n",
4755 INSN_UID (next));
4756 haifa_change_pattern (next, ORIG_PAT (next));
4757 }
4758 else
4759 {
4760 struct dep_replacement *desc = DEP_REPLACE (dep);
4761 bool success;
4762
4763 if (sched_verbose >= 5)
4764 fprintf (sched_dump, "restoring pattern for insn %d\n",
4765 INSN_UID (desc->insn));
4766 tick = INSN_TICK (desc->insn);
4767
4768 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4769 gcc_assert (success);
4770 update_insn_after_change (desc->insn);
4771 if (backtrack_queue != NULL)
4772 {
4773 backtrack_queue->replacement_deps.safe_push (dep);
4774 backtrack_queue->replace_apply.safe_push (0);
4775 }
4776 }
4777 INSN_TICK (next) = tick;
4778 if (TODO_SPEC (next) == DEP_POSTPONED)
4779 return;
4780
4781 if (sd_lists_empty_p (next, SD_LIST_BACK))
4782 TODO_SPEC (next) = 0;
4783 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4784 TODO_SPEC (next) = HARD_DEP;
4785 }
4786
4787 /* Perform pattern replacements that were queued up until the next
4788 cycle. */
4789 static void
4790 perform_replacements_new_cycle (void)
4791 {
4792 int i;
4793 dep_t dep;
4794 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4795 {
4796 int apply_p = next_cycle_apply[i];
4797 if (apply_p)
4798 apply_replacement (dep, true);
4799 else
4800 restore_pattern (dep, true);
4801 }
4802 next_cycle_replace_deps.truncate (0);
4803 next_cycle_apply.truncate (0);
4804 }
4805
4806 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4807 instructions we've previously encountered, a set bit prevents
4808 recursion. BUDGET is a limit on how far ahead we look, it is
4809 reduced on recursive calls. Return true if we produced a good
4810 estimate, or false if we exceeded the budget. */
4811 static bool
4812 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4813 {
4814 sd_iterator_def sd_it;
4815 dep_t dep;
4816 int earliest = INSN_TICK (insn);
4817
4818 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4819 {
4820 rtx_insn *pro = DEP_PRO (dep);
4821 int t;
4822
4823 if (DEP_STATUS (dep) & DEP_CANCELLED)
4824 continue;
4825
4826 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4827 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4828 else
4829 {
4830 int cost = dep_cost (dep);
4831 if (cost >= budget)
4832 return false;
4833 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4834 {
4835 if (!estimate_insn_tick (processed, pro, budget - cost))
4836 return false;
4837 }
4838 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4839 t = INSN_TICK_ESTIMATE (pro) + cost;
4840 if (earliest == INVALID_TICK || t > earliest)
4841 earliest = t;
4842 }
4843 }
4844 bitmap_set_bit (processed, INSN_LUID (insn));
4845 INSN_TICK_ESTIMATE (insn) = earliest;
4846 return true;
4847 }
4848
4849 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4850 infinite resources) the cycle in which the delayed shadow can be issued.
4851 Return the number of cycles that must pass before the real insn can be
4852 issued in order to meet this constraint. */
4853 static int
4854 estimate_shadow_tick (struct delay_pair *p)
4855 {
4856 bitmap_head processed;
4857 int t;
4858 bool cutoff;
4859 bitmap_initialize (&processed, 0);
4860
4861 cutoff = !estimate_insn_tick (&processed, p->i2,
4862 max_insn_queue_index + pair_delay (p));
4863 bitmap_clear (&processed);
4864 if (cutoff)
4865 return max_insn_queue_index;
4866 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4867 if (t > 0)
4868 return t;
4869 return 0;
4870 }
4871
4872 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4873 recursively resolve all its forward dependencies. */
4874 static void
4875 resolve_dependencies (rtx_insn *insn)
4876 {
4877 sd_iterator_def sd_it;
4878 dep_t dep;
4879
4880 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4881 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4882 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4883 return;
4884
4885 if (sched_verbose >= 4)
4886 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4887
4888 if (QUEUE_INDEX (insn) >= 0)
4889 queue_remove (insn);
4890
4891 scheduled_insns.safe_push (insn);
4892
4893 /* Update dependent instructions. */
4894 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4895 sd_iterator_cond (&sd_it, &dep);)
4896 {
4897 rtx_insn *next = DEP_CON (dep);
4898
4899 if (sched_verbose >= 4)
4900 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4901 INSN_UID (next));
4902
4903 /* Resolve the dependence between INSN and NEXT.
4904 sd_resolve_dep () moves current dep to another list thus
4905 advancing the iterator. */
4906 sd_resolve_dep (sd_it);
4907
4908 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4909 {
4910 resolve_dependencies (next);
4911 }
4912 else
4913 /* Check always has only one forward dependence (to the first insn in
4914 the recovery block), therefore, this will be executed only once. */
4915 {
4916 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4917 }
4918 }
4919 }
4920
4921
4922 /* Return the head and tail pointers of ebb starting at BEG and ending
4923 at END. */
4924 void
4925 get_ebb_head_tail (basic_block beg, basic_block end,
4926 rtx_insn **headp, rtx_insn **tailp)
4927 {
4928 rtx_insn *beg_head = BB_HEAD (beg);
4929 rtx_insn * beg_tail = BB_END (beg);
4930 rtx_insn * end_head = BB_HEAD (end);
4931 rtx_insn * end_tail = BB_END (end);
4932
4933 /* Don't include any notes or labels at the beginning of the BEG
4934 basic block, or notes at the end of the END basic blocks. */
4935
4936 if (LABEL_P (beg_head))
4937 beg_head = NEXT_INSN (beg_head);
4938
4939 while (beg_head != beg_tail)
4940 if (NOTE_P (beg_head))
4941 beg_head = NEXT_INSN (beg_head);
4942 else if (DEBUG_INSN_P (beg_head))
4943 {
4944 rtx_insn * note, *next;
4945
4946 for (note = NEXT_INSN (beg_head);
4947 note != beg_tail;
4948 note = next)
4949 {
4950 next = NEXT_INSN (note);
4951 if (NOTE_P (note))
4952 {
4953 if (sched_verbose >= 9)
4954 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4955
4956 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4957
4958 if (BLOCK_FOR_INSN (note) != beg)
4959 df_insn_change_bb (note, beg);
4960 }
4961 else if (!DEBUG_INSN_P (note))
4962 break;
4963 }
4964
4965 break;
4966 }
4967 else
4968 break;
4969
4970 *headp = beg_head;
4971
4972 if (beg == end)
4973 end_head = beg_head;
4974 else if (LABEL_P (end_head))
4975 end_head = NEXT_INSN (end_head);
4976
4977 while (end_head != end_tail)
4978 if (NOTE_P (end_tail))
4979 end_tail = PREV_INSN (end_tail);
4980 else if (DEBUG_INSN_P (end_tail))
4981 {
4982 rtx_insn * note, *prev;
4983
4984 for (note = PREV_INSN (end_tail);
4985 note != end_head;
4986 note = prev)
4987 {
4988 prev = PREV_INSN (note);
4989 if (NOTE_P (note))
4990 {
4991 if (sched_verbose >= 9)
4992 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4993
4994 reorder_insns_nobb (note, note, end_tail);
4995
4996 if (end_tail == BB_END (end))
4997 BB_END (end) = note;
4998
4999 if (BLOCK_FOR_INSN (note) != end)
5000 df_insn_change_bb (note, end);
5001 }
5002 else if (!DEBUG_INSN_P (note))
5003 break;
5004 }
5005
5006 break;
5007 }
5008 else
5009 break;
5010
5011 *tailp = end_tail;
5012 }
5013
5014 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5015
5016 int
5017 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5018 {
5019 while (head != NEXT_INSN (tail))
5020 {
5021 if (!NOTE_P (head) && !LABEL_P (head))
5022 return 0;
5023 head = NEXT_INSN (head);
5024 }
5025 return 1;
5026 }
5027
5028 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5029 previously found among the insns. Insert them just before HEAD. */
5030 rtx_insn *
5031 restore_other_notes (rtx_insn *head, basic_block head_bb)
5032 {
5033 if (note_list != 0)
5034 {
5035 rtx_insn *note_head = note_list;
5036
5037 if (head)
5038 head_bb = BLOCK_FOR_INSN (head);
5039 else
5040 head = NEXT_INSN (bb_note (head_bb));
5041
5042 while (PREV_INSN (note_head))
5043 {
5044 set_block_for_insn (note_head, head_bb);
5045 note_head = PREV_INSN (note_head);
5046 }
5047 /* In the above cycle we've missed this note. */
5048 set_block_for_insn (note_head, head_bb);
5049
5050 SET_PREV_INSN (note_head) = PREV_INSN (head);
5051 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5052 SET_PREV_INSN (head) = note_list;
5053 SET_NEXT_INSN (note_list) = head;
5054
5055 if (BLOCK_FOR_INSN (head) != head_bb)
5056 BB_END (head_bb) = note_list;
5057
5058 head = note_head;
5059 }
5060
5061 return head;
5062 }
5063
5064 /* When we know we are going to discard the schedule due to a failed attempt
5065 at modulo scheduling, undo all replacements. */
5066 static void
5067 undo_all_replacements (void)
5068 {
5069 rtx_insn *insn;
5070 int i;
5071
5072 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5073 {
5074 sd_iterator_def sd_it;
5075 dep_t dep;
5076
5077 /* See if we must undo a replacement. */
5078 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5079 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5080 {
5081 struct dep_replacement *desc = DEP_REPLACE (dep);
5082 if (desc != NULL)
5083 validate_change (desc->insn, desc->loc, desc->orig, 0);
5084 }
5085 }
5086 }
5087
5088 /* Return first non-scheduled insn in the current scheduling block.
5089 This is mostly used for debug-counter purposes. */
5090 static rtx_insn *
5091 first_nonscheduled_insn (void)
5092 {
5093 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5094 ? nonscheduled_insns_begin
5095 : current_sched_info->prev_head);
5096
5097 do
5098 {
5099 insn = next_nonnote_nondebug_insn (insn);
5100 }
5101 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5102
5103 return insn;
5104 }
5105
5106 /* Move insns that became ready to fire from queue to ready list. */
5107
5108 static void
5109 queue_to_ready (struct ready_list *ready)
5110 {
5111 rtx_insn *insn;
5112 rtx_insn_list *link;
5113 rtx_insn *skip_insn;
5114
5115 q_ptr = NEXT_Q (q_ptr);
5116
5117 if (dbg_cnt (sched_insn) == false)
5118 /* If debug counter is activated do not requeue the first
5119 nonscheduled insn. */
5120 skip_insn = first_nonscheduled_insn ();
5121 else
5122 skip_insn = NULL;
5123
5124 /* Add all pending insns that can be scheduled without stalls to the
5125 ready list. */
5126 for (link = insn_queue[q_ptr]; link; link = link->next ())
5127 {
5128 insn = link->insn ();
5129 q_size -= 1;
5130
5131 if (sched_verbose >= 2)
5132 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5133 (*current_sched_info->print_insn) (insn, 0));
5134
5135 /* If the ready list is full, delay the insn for 1 cycle.
5136 See the comment in schedule_block for the rationale. */
5137 if (!reload_completed
5138 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5139 || (sched_pressure == SCHED_PRESSURE_MODEL
5140 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5141 instructions too. */
5142 && model_index (insn) > (model_curr_point
5143 + MAX_SCHED_READY_INSNS)))
5144 && !(sched_pressure == SCHED_PRESSURE_MODEL
5145 && model_curr_point < model_num_insns
5146 /* Always allow the next model instruction to issue. */
5147 && model_index (insn) == model_curr_point)
5148 && !SCHED_GROUP_P (insn)
5149 && insn != skip_insn)
5150 {
5151 if (sched_verbose >= 2)
5152 fprintf (sched_dump, "keeping in queue, ready full\n");
5153 queue_insn (insn, 1, "ready full");
5154 }
5155 else
5156 {
5157 ready_add (ready, insn, false);
5158 if (sched_verbose >= 2)
5159 fprintf (sched_dump, "moving to ready without stalls\n");
5160 }
5161 }
5162 free_INSN_LIST_list (&insn_queue[q_ptr]);
5163
5164 /* If there are no ready insns, stall until one is ready and add all
5165 of the pending insns at that point to the ready list. */
5166 if (ready->n_ready == 0)
5167 {
5168 int stalls;
5169
5170 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5171 {
5172 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5173 {
5174 for (; link; link = link->next ())
5175 {
5176 insn = link->insn ();
5177 q_size -= 1;
5178
5179 if (sched_verbose >= 2)
5180 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5181 (*current_sched_info->print_insn) (insn, 0));
5182
5183 ready_add (ready, insn, false);
5184 if (sched_verbose >= 2)
5185 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5186 }
5187 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5188
5189 advance_one_cycle ();
5190
5191 break;
5192 }
5193
5194 advance_one_cycle ();
5195 }
5196
5197 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5198 clock_var += stalls;
5199 if (sched_verbose >= 2)
5200 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5201 stalls, clock_var);
5202 }
5203 }
5204
5205 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5206 prematurely move INSN from the queue to the ready list. Currently,
5207 if a target defines the hook 'is_costly_dependence', this function
5208 uses the hook to check whether there exist any dependences which are
5209 considered costly by the target, between INSN and other insns that
5210 have already been scheduled. Dependences are checked up to Y cycles
5211 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5212 controlling this value.
5213 (Other considerations could be taken into account instead (or in
5214 addition) depending on user flags and target hooks. */
5215
5216 static bool
5217 ok_for_early_queue_removal (rtx_insn *insn)
5218 {
5219 if (targetm.sched.is_costly_dependence)
5220 {
5221 int n_cycles;
5222 int i = scheduled_insns.length ();
5223 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5224 {
5225 while (i-- > 0)
5226 {
5227 int cost;
5228
5229 rtx_insn *prev_insn = scheduled_insns[i];
5230
5231 if (!NOTE_P (prev_insn))
5232 {
5233 dep_t dep;
5234
5235 dep = sd_find_dep_between (prev_insn, insn, true);
5236
5237 if (dep != NULL)
5238 {
5239 cost = dep_cost (dep);
5240
5241 if (targetm.sched.is_costly_dependence (dep, cost,
5242 flag_sched_stalled_insns_dep - n_cycles))
5243 return false;
5244 }
5245 }
5246
5247 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5248 break;
5249 }
5250
5251 if (i == 0)
5252 break;
5253 }
5254 }
5255
5256 return true;
5257 }
5258
5259
5260 /* Remove insns from the queue, before they become "ready" with respect
5261 to FU latency considerations. */
5262
5263 static int
5264 early_queue_to_ready (state_t state, struct ready_list *ready)
5265 {
5266 rtx_insn *insn;
5267 rtx_insn_list *link;
5268 rtx_insn_list *next_link;
5269 rtx_insn_list *prev_link;
5270 bool move_to_ready;
5271 int cost;
5272 state_t temp_state = alloca (dfa_state_size);
5273 int stalls;
5274 int insns_removed = 0;
5275
5276 /*
5277 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5278 function:
5279
5280 X == 0: There is no limit on how many queued insns can be removed
5281 prematurely. (flag_sched_stalled_insns = -1).
5282
5283 X >= 1: Only X queued insns can be removed prematurely in each
5284 invocation. (flag_sched_stalled_insns = X).
5285
5286 Otherwise: Early queue removal is disabled.
5287 (flag_sched_stalled_insns = 0)
5288 */
5289
5290 if (! flag_sched_stalled_insns)
5291 return 0;
5292
5293 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5294 {
5295 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5296 {
5297 if (sched_verbose > 6)
5298 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5299
5300 prev_link = 0;
5301 while (link)
5302 {
5303 next_link = link->next ();
5304 insn = link->insn ();
5305 if (insn && sched_verbose > 6)
5306 print_rtl_single (sched_dump, insn);
5307
5308 memcpy (temp_state, state, dfa_state_size);
5309 if (recog_memoized (insn) < 0)
5310 /* non-negative to indicate that it's not ready
5311 to avoid infinite Q->R->Q->R... */
5312 cost = 0;
5313 else
5314 cost = state_transition (temp_state, insn);
5315
5316 if (sched_verbose >= 6)
5317 fprintf (sched_dump, "transition cost = %d\n", cost);
5318
5319 move_to_ready = false;
5320 if (cost < 0)
5321 {
5322 move_to_ready = ok_for_early_queue_removal (insn);
5323 if (move_to_ready == true)
5324 {
5325 /* move from Q to R */
5326 q_size -= 1;
5327 ready_add (ready, insn, false);
5328
5329 if (prev_link)
5330 XEXP (prev_link, 1) = next_link;
5331 else
5332 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5333
5334 free_INSN_LIST_node (link);
5335
5336 if (sched_verbose >= 2)
5337 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5338 (*current_sched_info->print_insn) (insn, 0));
5339
5340 insns_removed++;
5341 if (insns_removed == flag_sched_stalled_insns)
5342 /* Remove no more than flag_sched_stalled_insns insns
5343 from Q at a time. */
5344 return insns_removed;
5345 }
5346 }
5347
5348 if (move_to_ready == false)
5349 prev_link = link;
5350
5351 link = next_link;
5352 } /* while link */
5353 } /* if link */
5354
5355 } /* for stalls.. */
5356
5357 return insns_removed;
5358 }
5359
5360
5361 /* Print the ready list for debugging purposes.
5362 If READY_TRY is non-zero then only print insns that max_issue
5363 will consider. */
5364 static void
5365 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5366 {
5367 rtx_insn **p;
5368 int i;
5369
5370 if (ready->n_ready == 0)
5371 {
5372 fprintf (sched_dump, "\n");
5373 return;
5374 }
5375
5376 p = ready_lastpos (ready);
5377 for (i = 0; i < ready->n_ready; i++)
5378 {
5379 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5380 continue;
5381
5382 fprintf (sched_dump, " %s:%d",
5383 (*current_sched_info->print_insn) (p[i], 0),
5384 INSN_LUID (p[i]));
5385 if (sched_pressure != SCHED_PRESSURE_NONE)
5386 fprintf (sched_dump, "(cost=%d",
5387 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5388 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5389 if (INSN_TICK (p[i]) > clock_var)
5390 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5391 if (sched_pressure == SCHED_PRESSURE_MODEL)
5392 fprintf (sched_dump, ":idx=%d",
5393 model_index (p[i]));
5394 if (sched_pressure != SCHED_PRESSURE_NONE)
5395 fprintf (sched_dump, ")");
5396 }
5397 fprintf (sched_dump, "\n");
5398 }
5399
5400 /* Print the ready list. Callable from debugger. */
5401 static void
5402 debug_ready_list (struct ready_list *ready)
5403 {
5404 debug_ready_list_1 (ready, NULL);
5405 }
5406
5407 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5408 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5409 replaces the epilogue note in the correct basic block. */
5410 void
5411 reemit_notes (rtx_insn *insn)
5412 {
5413 rtx note;
5414 rtx_insn *last = insn;
5415
5416 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5417 {
5418 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5419 {
5420 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5421
5422 last = emit_note_before (note_type, last);
5423 remove_note (insn, note);
5424 }
5425 }
5426 }
5427
5428 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5429 static void
5430 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5431 {
5432 if (PREV_INSN (insn) != last)
5433 {
5434 basic_block bb;
5435 rtx_insn *note;
5436 int jump_p = 0;
5437
5438 bb = BLOCK_FOR_INSN (insn);
5439
5440 /* BB_HEAD is either LABEL or NOTE. */
5441 gcc_assert (BB_HEAD (bb) != insn);
5442
5443 if (BB_END (bb) == insn)
5444 /* If this is last instruction in BB, move end marker one
5445 instruction up. */
5446 {
5447 /* Jumps are always placed at the end of basic block. */
5448 jump_p = control_flow_insn_p (insn);
5449
5450 gcc_assert (!jump_p
5451 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5452 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5453 || (common_sched_info->sched_pass_id
5454 == SCHED_EBB_PASS));
5455
5456 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5457
5458 BB_END (bb) = PREV_INSN (insn);
5459 }
5460
5461 gcc_assert (BB_END (bb) != last);
5462
5463 if (jump_p)
5464 /* We move the block note along with jump. */
5465 {
5466 gcc_assert (nt);
5467
5468 note = NEXT_INSN (insn);
5469 while (NOTE_NOT_BB_P (note) && note != nt)
5470 note = NEXT_INSN (note);
5471
5472 if (note != nt
5473 && (LABEL_P (note)
5474 || BARRIER_P (note)))
5475 note = NEXT_INSN (note);
5476
5477 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5478 }
5479 else
5480 note = insn;
5481
5482 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5483 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5484
5485 SET_NEXT_INSN (note) = NEXT_INSN (last);
5486 SET_PREV_INSN (NEXT_INSN (last)) = note;
5487
5488 SET_NEXT_INSN (last) = insn;
5489 SET_PREV_INSN (insn) = last;
5490
5491 bb = BLOCK_FOR_INSN (last);
5492
5493 if (jump_p)
5494 {
5495 fix_jump_move (insn);
5496
5497 if (BLOCK_FOR_INSN (insn) != bb)
5498 move_block_after_check (insn);
5499
5500 gcc_assert (BB_END (bb) == last);
5501 }
5502
5503 df_insn_change_bb (insn, bb);
5504
5505 /* Update BB_END, if needed. */
5506 if (BB_END (bb) == last)
5507 BB_END (bb) = insn;
5508 }
5509
5510 SCHED_GROUP_P (insn) = 0;
5511 }
5512
5513 /* Return true if scheduling INSN will finish current clock cycle. */
5514 static bool
5515 insn_finishes_cycle_p (rtx_insn *insn)
5516 {
5517 if (SCHED_GROUP_P (insn))
5518 /* After issuing INSN, rest of the sched_group will be forced to issue
5519 in order. Don't make any plans for the rest of cycle. */
5520 return true;
5521
5522 /* Finishing the block will, apparently, finish the cycle. */
5523 if (current_sched_info->insn_finishes_block_p
5524 && current_sched_info->insn_finishes_block_p (insn))
5525 return true;
5526
5527 return false;
5528 }
5529
5530 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5531 we're expecting a memory WRITE or not, check that the insn is relevant to
5532 the autoprefetcher modelling code. Return true iff that is the case.
5533 If it is relevant, record the base register of the memory op in BASE and
5534 the offset in OFFSET. */
5535
5536 static bool
5537 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5538 {
5539 if (GET_CODE (pat) != SET)
5540 return false;
5541
5542 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5543 if (!MEM_P (mem))
5544 return false;
5545
5546 struct address_info info;
5547 decompose_mem_address (&info, mem);
5548
5549 /* TODO: Currently only (base+const) addressing is supported. */
5550 if (info.base == NULL || !REG_P (*info.base)
5551 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5552 return false;
5553
5554 *base = *info.base;
5555 *offset = info.disp ? INTVAL (*info.disp) : 0;
5556 return true;
5557 }
5558
5559 /* Functions to model cache auto-prefetcher.
5560
5561 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5562 memory prefetches if it sees instructions with consequitive memory accesses
5563 in the instruction stream. Details of such hardware units are not published,
5564 so we can only guess what exactly is going on there.
5565 In the scheduler, we model abstract auto-prefetcher. If there are memory
5566 insns in the ready list (or the queue) that have same memory base, but
5567 different offsets, then we delay the insns with larger offsets until insns
5568 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5569 is "1", then we look at the ready list; if it is N>1, then we also look
5570 through N-1 queue entries.
5571 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5572 among its heuristics.
5573 Param value of "-1" disables modelling of the auto-prefetcher. */
5574
5575 /* Initialize autoprefetcher model data for INSN. */
5576 static void
5577 autopref_multipass_init (const rtx_insn *insn, int write)
5578 {
5579 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5580
5581 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5582 data->base = NULL_RTX;
5583 data->min_offset = 0;
5584 data->max_offset = 0;
5585 data->multi_mem_insn_p = false;
5586 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5587 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5588
5589 rtx pat = PATTERN (insn);
5590
5591 /* We have a multi-set insn like a load-multiple or store-multiple.
5592 We care about these as long as all the memory ops inside the PARALLEL
5593 have the same base register. We care about the minimum and maximum
5594 offsets from that base but don't check for the order of those offsets
5595 within the PARALLEL insn itself. */
5596 if (GET_CODE (pat) == PARALLEL)
5597 {
5598 int n_elems = XVECLEN (pat, 0);
5599
5600 int i = 0;
5601 rtx prev_base = NULL_RTX;
5602 int min_offset;
5603 int max_offset;
5604
5605 for (i = 0; i < n_elems; i++)
5606 {
5607 rtx set = XVECEXP (pat, 0, i);
5608 if (GET_CODE (set) != SET)
5609 return;
5610
5611 rtx base = NULL_RTX;
5612 int offset = 0;
5613 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5614 return;
5615
5616 if (i == 0)
5617 {
5618 prev_base = base;
5619 min_offset = offset;
5620 max_offset = offset;
5621 }
5622 /* Ensure that all memory operations in the PARALLEL use the same
5623 base register. */
5624 else if (REGNO (base) != REGNO (prev_base))
5625 return;
5626 else
5627 {
5628 min_offset = MIN (min_offset, offset);
5629 max_offset = MAX (max_offset, offset);
5630 }
5631 }
5632
5633 /* If we reached here then we have a valid PARALLEL of multiple memory
5634 ops with prev_base as the base and min_offset and max_offset
5635 containing the offsets range. */
5636 gcc_assert (prev_base);
5637 data->base = prev_base;
5638 data->min_offset = min_offset;
5639 data->max_offset = max_offset;
5640 data->multi_mem_insn_p = true;
5641 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5642
5643 return;
5644 }
5645
5646 /* Otherwise this is a single set memory operation. */
5647 rtx set = single_set (insn);
5648 if (set == NULL_RTX)
5649 return;
5650
5651 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5652 &data->min_offset))
5653 return;
5654
5655 /* This insn is relevant for the auto-prefetcher.
5656 The base and offset fields will have been filled in the
5657 analyze_set_insn_for_autopref call above. */
5658 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5659 }
5660
5661
5662 /* Helper for autopref_rank_for_schedule. Given the data of two
5663 insns relevant to the auto-prefetcher modelling code DATA1 and DATA2
5664 return their comparison result. Return 0 if there is no sensible
5665 ranking order for the two insns. */
5666
5667 static int
5668 autopref_rank_data (autopref_multipass_data_t data1,
5669 autopref_multipass_data_t data2)
5670 {
5671 /* Simple case when both insns are simple single memory ops. */
5672 if (!data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5673 return data1->min_offset - data2->min_offset;
5674
5675 /* Two load/store multiple insns. Return 0 if the offset ranges
5676 overlap and the difference between the minimum offsets otherwise. */
5677 else if (data1->multi_mem_insn_p && data2->multi_mem_insn_p)
5678 {
5679 int min1 = data1->min_offset;
5680 int max1 = data1->max_offset;
5681 int min2 = data2->min_offset;
5682 int max2 = data2->max_offset;
5683
5684 if (max1 < min2 || min1 > max2)
5685 return min1 - min2;
5686 else
5687 return 0;
5688 }
5689
5690 /* The other two cases is a pair of a load/store multiple and
5691 a simple memory op. Return 0 if the single op's offset is within the
5692 range of the multi-op insn and the difference between the single offset
5693 and the minimum offset of the multi-set insn otherwise. */
5694 else if (data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5695 {
5696 int max1 = data1->max_offset;
5697 int min1 = data1->min_offset;
5698
5699 if (data2->min_offset >= min1
5700 && data2->min_offset <= max1)
5701 return 0;
5702 else
5703 return min1 - data2->min_offset;
5704 }
5705 else
5706 {
5707 int max2 = data2->max_offset;
5708 int min2 = data2->min_offset;
5709
5710 if (data1->min_offset >= min2
5711 && data1->min_offset <= max2)
5712 return 0;
5713 else
5714 return data1->min_offset - min2;
5715 }
5716 }
5717
5718 /* Helper function for rank_for_schedule sorting. */
5719 static int
5720 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5721 {
5722 for (int write = 0; write < 2; ++write)
5723 {
5724 autopref_multipass_data_t data1
5725 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5726 autopref_multipass_data_t data2
5727 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5728
5729 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5730 autopref_multipass_init (insn1, write);
5731 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5732 continue;
5733
5734 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5735 autopref_multipass_init (insn2, write);
5736 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5737 continue;
5738
5739 if (!rtx_equal_p (data1->base, data2->base))
5740 continue;
5741
5742 return autopref_rank_data (data1, data2);
5743 }
5744
5745 return 0;
5746 }
5747
5748 /* True if header of debug dump was printed. */
5749 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5750
5751 /* Helper for autopref_multipass_dfa_lookahead_guard.
5752 Return "1" if INSN1 should be delayed in favor of INSN2. */
5753 static int
5754 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5755 const rtx_insn *insn2, int write)
5756 {
5757 autopref_multipass_data_t data1
5758 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5759 autopref_multipass_data_t data2
5760 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5761
5762 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5763 autopref_multipass_init (insn2, write);
5764 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5765 return 0;
5766
5767 if (rtx_equal_p (data1->base, data2->base)
5768 && autopref_rank_data (data1, data2) > 0)
5769 {
5770 if (sched_verbose >= 2)
5771 {
5772 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5773 {
5774 fprintf (sched_dump,
5775 ";;\t\tnot trying in max_issue due to autoprefetch "
5776 "model: ");
5777 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5778 }
5779
5780 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5781 }
5782
5783 return 1;
5784 }
5785
5786 return 0;
5787 }
5788
5789 /* General note:
5790
5791 We could have also hooked autoprefetcher model into
5792 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5793 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5794 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5795 unblocked). We don't bother about this yet because target of interest
5796 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5797
5798 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5799 Return "1" if INSN1 should not be considered in max_issue due to
5800 auto-prefetcher considerations. */
5801 int
5802 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5803 {
5804 int r = 0;
5805
5806 /* Exit early if the param forbids this or if we're not entering here through
5807 normal haifa scheduling. This can happen if selective scheduling is
5808 explicitly enabled. */
5809 if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5810 return 0;
5811
5812 if (sched_verbose >= 2 && ready_index == 0)
5813 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5814
5815 for (int write = 0; write < 2; ++write)
5816 {
5817 autopref_multipass_data_t data1
5818 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5819
5820 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5821 autopref_multipass_init (insn1, write);
5822 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5823 continue;
5824
5825 if (ready_index == 0
5826 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5827 /* We allow only a single delay on priviledged instructions.
5828 Doing otherwise would cause infinite loop. */
5829 {
5830 if (sched_verbose >= 2)
5831 {
5832 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5833 {
5834 fprintf (sched_dump,
5835 ";;\t\tnot trying in max_issue due to autoprefetch "
5836 "model: ");
5837 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5838 }
5839
5840 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5841 }
5842 continue;
5843 }
5844
5845 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5846 {
5847 rtx_insn *insn2 = get_ready_element (i2);
5848 if (insn1 == insn2)
5849 continue;
5850 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5851 if (r)
5852 {
5853 if (ready_index == 0)
5854 {
5855 r = -1;
5856 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5857 }
5858 goto finish;
5859 }
5860 }
5861
5862 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5863 continue;
5864
5865 /* Everything from the current queue slot should have been moved to
5866 the ready list. */
5867 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5868
5869 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5870 if (n_stalls > max_insn_queue_index)
5871 n_stalls = max_insn_queue_index;
5872
5873 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5874 {
5875 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5876 link != NULL_RTX;
5877 link = link->next ())
5878 {
5879 rtx_insn *insn2 = link->insn ();
5880 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5881 write);
5882 if (r)
5883 {
5884 /* Queue INSN1 until INSN2 can issue. */
5885 r = -stalls;
5886 if (ready_index == 0)
5887 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5888 goto finish;
5889 }
5890 }
5891 }
5892 }
5893
5894 finish:
5895 if (sched_verbose >= 2
5896 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5897 && (ready_index == ready.n_ready - 1 || r < 0))
5898 /* This does not /always/ trigger. We don't output EOL if the last
5899 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5900 called. We can live with this. */
5901 fprintf (sched_dump, "\n");
5902
5903 return r;
5904 }
5905
5906 /* Define type for target data used in multipass scheduling. */
5907 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5908 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5909 #endif
5910 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5911
5912 /* The following structure describe an entry of the stack of choices. */
5913 struct choice_entry
5914 {
5915 /* Ordinal number of the issued insn in the ready queue. */
5916 int index;
5917 /* The number of the rest insns whose issues we should try. */
5918 int rest;
5919 /* The number of issued essential insns. */
5920 int n;
5921 /* State after issuing the insn. */
5922 state_t state;
5923 /* Target-specific data. */
5924 first_cycle_multipass_data_t target_data;
5925 };
5926
5927 /* The following array is used to implement a stack of choices used in
5928 function max_issue. */
5929 static struct choice_entry *choice_stack;
5930
5931 /* This holds the value of the target dfa_lookahead hook. */
5932 int dfa_lookahead;
5933
5934 /* The following variable value is maximal number of tries of issuing
5935 insns for the first cycle multipass insn scheduling. We define
5936 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5937 need this constraint if all real insns (with non-negative codes)
5938 had reservations because in this case the algorithm complexity is
5939 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5940 might be incomplete and such insn might occur. For such
5941 descriptions, the complexity of algorithm (without the constraint)
5942 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5943 static int max_lookahead_tries;
5944
5945 /* The following function returns maximal (or close to maximal) number
5946 of insns which can be issued on the same cycle and one of which
5947 insns is insns with the best rank (the first insn in READY). To
5948 make this function tries different samples of ready insns. READY
5949 is current queue `ready'. Global array READY_TRY reflects what
5950 insns are already issued in this try. The function stops immediately,
5951 if it reached the such a solution, that all instruction can be issued.
5952 INDEX will contain index of the best insn in READY. The following
5953 function is used only for first cycle multipass scheduling.
5954
5955 PRIVILEGED_N >= 0
5956
5957 This function expects recognized insns only. All USEs,
5958 CLOBBERs, etc must be filtered elsewhere. */
5959 int
5960 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5961 bool first_cycle_insn_p, int *index)
5962 {
5963 int n, i, all, n_ready, best, delay, tries_num;
5964 int more_issue;
5965 struct choice_entry *top;
5966 rtx_insn *insn;
5967
5968 if (sched_fusion)
5969 return 0;
5970
5971 n_ready = ready->n_ready;
5972 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5973 && privileged_n <= n_ready);
5974
5975 /* Init MAX_LOOKAHEAD_TRIES. */
5976 if (max_lookahead_tries == 0)
5977 {
5978 max_lookahead_tries = 100;
5979 for (i = 0; i < issue_rate; i++)
5980 max_lookahead_tries *= dfa_lookahead;
5981 }
5982
5983 /* Init max_points. */
5984 more_issue = issue_rate - cycle_issued_insns;
5985 gcc_assert (more_issue >= 0);
5986
5987 /* The number of the issued insns in the best solution. */
5988 best = 0;
5989
5990 top = choice_stack;
5991
5992 /* Set initial state of the search. */
5993 memcpy (top->state, state, dfa_state_size);
5994 top->rest = dfa_lookahead;
5995 top->n = 0;
5996 if (targetm.sched.first_cycle_multipass_begin)
5997 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5998 ready_try, n_ready,
5999 first_cycle_insn_p);
6000
6001 /* Count the number of the insns to search among. */
6002 for (all = i = 0; i < n_ready; i++)
6003 if (!ready_try [i])
6004 all++;
6005
6006 if (sched_verbose >= 2)
6007 {
6008 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
6009 debug_ready_list_1 (ready, ready_try);
6010 }
6011
6012 /* I is the index of the insn to try next. */
6013 i = 0;
6014 tries_num = 0;
6015 for (;;)
6016 {
6017 if (/* If we've reached a dead end or searched enough of what we have
6018 been asked... */
6019 top->rest == 0
6020 /* or have nothing else to try... */
6021 || i >= n_ready
6022 /* or should not issue more. */
6023 || top->n >= more_issue)
6024 {
6025 /* ??? (... || i == n_ready). */
6026 gcc_assert (i <= n_ready);
6027
6028 /* We should not issue more than issue_rate instructions. */
6029 gcc_assert (top->n <= more_issue);
6030
6031 if (top == choice_stack)
6032 break;
6033
6034 if (best < top - choice_stack)
6035 {
6036 if (privileged_n)
6037 {
6038 n = privileged_n;
6039 /* Try to find issued privileged insn. */
6040 while (n && !ready_try[--n])
6041 ;
6042 }
6043
6044 if (/* If all insns are equally good... */
6045 privileged_n == 0
6046 /* Or a privileged insn will be issued. */
6047 || ready_try[n])
6048 /* Then we have a solution. */
6049 {
6050 best = top - choice_stack;
6051 /* This is the index of the insn issued first in this
6052 solution. */
6053 *index = choice_stack [1].index;
6054 if (top->n == more_issue || best == all)
6055 break;
6056 }
6057 }
6058
6059 /* Set ready-list index to point to the last insn
6060 ('i++' below will advance it to the next insn). */
6061 i = top->index;
6062
6063 /* Backtrack. */
6064 ready_try [i] = 0;
6065
6066 if (targetm.sched.first_cycle_multipass_backtrack)
6067 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
6068 ready_try, n_ready);
6069
6070 top--;
6071 memcpy (state, top->state, dfa_state_size);
6072 }
6073 else if (!ready_try [i])
6074 {
6075 tries_num++;
6076 if (tries_num > max_lookahead_tries)
6077 break;
6078 insn = ready_element (ready, i);
6079 delay = state_transition (state, insn);
6080 if (delay < 0)
6081 {
6082 if (state_dead_lock_p (state)
6083 || insn_finishes_cycle_p (insn))
6084 /* We won't issue any more instructions in the next
6085 choice_state. */
6086 top->rest = 0;
6087 else
6088 top->rest--;
6089
6090 n = top->n;
6091 if (memcmp (top->state, state, dfa_state_size) != 0)
6092 n++;
6093
6094 /* Advance to the next choice_entry. */
6095 top++;
6096 /* Initialize it. */
6097 top->rest = dfa_lookahead;
6098 top->index = i;
6099 top->n = n;
6100 memcpy (top->state, state, dfa_state_size);
6101 ready_try [i] = 1;
6102
6103 if (targetm.sched.first_cycle_multipass_issue)
6104 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6105 ready_try, n_ready,
6106 insn,
6107 &((top - 1)
6108 ->target_data));
6109
6110 i = -1;
6111 }
6112 }
6113
6114 /* Increase ready-list index. */
6115 i++;
6116 }
6117
6118 if (targetm.sched.first_cycle_multipass_end)
6119 targetm.sched.first_cycle_multipass_end (best != 0
6120 ? &choice_stack[1].target_data
6121 : NULL);
6122
6123 /* Restore the original state of the DFA. */
6124 memcpy (state, choice_stack->state, dfa_state_size);
6125
6126 return best;
6127 }
6128
6129 /* The following function chooses insn from READY and modifies
6130 READY. The following function is used only for first
6131 cycle multipass scheduling.
6132 Return:
6133 -1 if cycle should be advanced,
6134 0 if INSN_PTR is set to point to the desirable insn,
6135 1 if choose_ready () should be restarted without advancing the cycle. */
6136 static int
6137 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6138 rtx_insn **insn_ptr)
6139 {
6140 if (dbg_cnt (sched_insn) == false)
6141 {
6142 if (nonscheduled_insns_begin == NULL_RTX)
6143 nonscheduled_insns_begin = current_sched_info->prev_head;
6144
6145 rtx_insn *insn = first_nonscheduled_insn ();
6146
6147 if (QUEUE_INDEX (insn) == QUEUE_READY)
6148 /* INSN is in the ready_list. */
6149 {
6150 ready_remove_insn (insn);
6151 *insn_ptr = insn;
6152 return 0;
6153 }
6154
6155 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6156 gcc_assert (QUEUE_INDEX (insn) >= 0);
6157 return -1;
6158 }
6159
6160 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6161 || DEBUG_INSN_P (ready_element (ready, 0)))
6162 {
6163 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6164 *insn_ptr = ready_remove_first_dispatch (ready);
6165 else
6166 *insn_ptr = ready_remove_first (ready);
6167
6168 return 0;
6169 }
6170 else
6171 {
6172 /* Try to choose the best insn. */
6173 int index = 0, i;
6174 rtx_insn *insn;
6175
6176 insn = ready_element (ready, 0);
6177 if (INSN_CODE (insn) < 0)
6178 {
6179 *insn_ptr = ready_remove_first (ready);
6180 return 0;
6181 }
6182
6183 /* Filter the search space. */
6184 for (i = 0; i < ready->n_ready; i++)
6185 {
6186 ready_try[i] = 0;
6187
6188 insn = ready_element (ready, i);
6189
6190 /* If this insn is recognizable we should have already
6191 recognized it earlier.
6192 ??? Not very clear where this is supposed to be done.
6193 See dep_cost_1. */
6194 gcc_checking_assert (INSN_CODE (insn) >= 0
6195 || recog_memoized (insn) < 0);
6196 if (INSN_CODE (insn) < 0)
6197 {
6198 /* Non-recognized insns at position 0 are handled above. */
6199 gcc_assert (i > 0);
6200 ready_try[i] = 1;
6201 continue;
6202 }
6203
6204 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6205 {
6206 ready_try[i]
6207 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6208 (insn, i));
6209
6210 if (ready_try[i] < 0)
6211 /* Queue instruction for several cycles.
6212 We need to restart choose_ready as we have changed
6213 the ready list. */
6214 {
6215 change_queue_index (insn, -ready_try[i]);
6216 return 1;
6217 }
6218
6219 /* Make sure that we didn't end up with 0'th insn filtered out.
6220 Don't be tempted to make life easier for backends and just
6221 requeue 0'th insn if (ready_try[0] == 0) and restart
6222 choose_ready. Backends should be very considerate about
6223 requeueing instructions -- especially the highest priority
6224 one at position 0. */
6225 gcc_assert (ready_try[i] == 0 || i > 0);
6226 if (ready_try[i])
6227 continue;
6228 }
6229
6230 gcc_assert (ready_try[i] == 0);
6231 /* INSN made it through the scrutiny of filters! */
6232 }
6233
6234 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6235 {
6236 *insn_ptr = ready_remove_first (ready);
6237 if (sched_verbose >= 4)
6238 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6239 (*current_sched_info->print_insn) (*insn_ptr, 0));
6240 return 0;
6241 }
6242 else
6243 {
6244 if (sched_verbose >= 4)
6245 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6246 (*current_sched_info->print_insn)
6247 (ready_element (ready, index), 0));
6248
6249 *insn_ptr = ready_remove (ready, index);
6250 return 0;
6251 }
6252 }
6253 }
6254
6255 /* This function is called when we have successfully scheduled a
6256 block. It uses the schedule stored in the scheduled_insns vector
6257 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6258 append the scheduled insns; TAIL is the insn after the scheduled
6259 block. TARGET_BB is the argument passed to schedule_block. */
6260
6261 static void
6262 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6263 {
6264 unsigned int i;
6265 rtx_insn *insn;
6266
6267 last_scheduled_insn = prev_head;
6268 for (i = 0;
6269 scheduled_insns.iterate (i, &insn);
6270 i++)
6271 {
6272 if (control_flow_insn_p (last_scheduled_insn)
6273 || current_sched_info->advance_target_bb (*target_bb, insn))
6274 {
6275 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6276
6277 if (sched_verbose)
6278 {
6279 rtx_insn *x;
6280
6281 x = next_real_insn (last_scheduled_insn);
6282 gcc_assert (x);
6283 dump_new_block_header (1, *target_bb, x, tail);
6284 }
6285
6286 last_scheduled_insn = bb_note (*target_bb);
6287 }
6288
6289 if (current_sched_info->begin_move_insn)
6290 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6291 move_insn (insn, last_scheduled_insn,
6292 current_sched_info->next_tail);
6293 if (!DEBUG_INSN_P (insn))
6294 reemit_notes (insn);
6295 last_scheduled_insn = insn;
6296 }
6297
6298 scheduled_insns.truncate (0);
6299 }
6300
6301 /* Examine all insns on the ready list and queue those which can't be
6302 issued in this cycle. TEMP_STATE is temporary scheduler state we
6303 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6304 have been issued for the current cycle, which means it is valid to
6305 issue an asm statement.
6306
6307 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6308 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6309 we only leave insns which have an INSN_EXACT_TICK. */
6310
6311 static void
6312 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6313 bool shadows_only_p, bool modulo_epilogue_p)
6314 {
6315 int i, pass;
6316 bool sched_group_found = false;
6317 int min_cost_group = 1;
6318
6319 if (sched_fusion)
6320 return;
6321
6322 for (i = 0; i < ready.n_ready; i++)
6323 {
6324 rtx_insn *insn = ready_element (&ready, i);
6325 if (SCHED_GROUP_P (insn))
6326 {
6327 sched_group_found = true;
6328 break;
6329 }
6330 }
6331
6332 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6333 such an insn first and note its cost, then schedule all other insns
6334 for one cycle later. */
6335 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6336 {
6337 int n = ready.n_ready;
6338 for (i = 0; i < n; i++)
6339 {
6340 rtx_insn *insn = ready_element (&ready, i);
6341 int cost = 0;
6342 const char *reason = "resource conflict";
6343
6344 if (DEBUG_INSN_P (insn))
6345 continue;
6346
6347 if (sched_group_found && !SCHED_GROUP_P (insn))
6348 {
6349 if (pass == 0)
6350 continue;
6351 cost = min_cost_group;
6352 reason = "not in sched group";
6353 }
6354 else if (modulo_epilogue_p
6355 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6356 {
6357 cost = max_insn_queue_index;
6358 reason = "not an epilogue insn";
6359 }
6360 else if (shadows_only_p && !SHADOW_P (insn))
6361 {
6362 cost = 1;
6363 reason = "not a shadow";
6364 }
6365 else if (recog_memoized (insn) < 0)
6366 {
6367 if (!first_cycle_insn_p
6368 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6369 || asm_noperands (PATTERN (insn)) >= 0))
6370 cost = 1;
6371 reason = "asm";
6372 }
6373 else if (sched_pressure != SCHED_PRESSURE_NONE)
6374 {
6375 if (sched_pressure == SCHED_PRESSURE_MODEL
6376 && INSN_TICK (insn) <= clock_var)
6377 {
6378 memcpy (temp_state, curr_state, dfa_state_size);
6379 if (state_transition (temp_state, insn) >= 0)
6380 INSN_TICK (insn) = clock_var + 1;
6381 }
6382 cost = 0;
6383 }
6384 else
6385 {
6386 int delay_cost = 0;
6387
6388 if (delay_htab)
6389 {
6390 struct delay_pair *delay_entry;
6391 delay_entry
6392 = delay_htab->find_with_hash (insn,
6393 htab_hash_pointer (insn));
6394 while (delay_entry && delay_cost == 0)
6395 {
6396 delay_cost = estimate_shadow_tick (delay_entry);
6397 if (delay_cost > max_insn_queue_index)
6398 delay_cost = max_insn_queue_index;
6399 delay_entry = delay_entry->next_same_i1;
6400 }
6401 }
6402
6403 memcpy (temp_state, curr_state, dfa_state_size);
6404 cost = state_transition (temp_state, insn);
6405 if (cost < 0)
6406 cost = 0;
6407 else if (cost == 0)
6408 cost = 1;
6409 if (cost < delay_cost)
6410 {
6411 cost = delay_cost;
6412 reason = "shadow tick";
6413 }
6414 }
6415 if (cost >= 1)
6416 {
6417 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6418 min_cost_group = cost;
6419 ready_remove (&ready, i);
6420 /* Normally we'd want to queue INSN for COST cycles. However,
6421 if SCHED_GROUP_P is set, then we must ensure that nothing
6422 else comes between INSN and its predecessor. If there is
6423 some other insn ready to fire on the next cycle, then that
6424 invariant would be broken.
6425
6426 So when SCHED_GROUP_P is set, just queue this insn for a
6427 single cycle. */
6428 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6429 if (i + 1 < n)
6430 break;
6431 }
6432 }
6433 if (i == n)
6434 pass++;
6435 }
6436 }
6437
6438 /* Called when we detect that the schedule is impossible. We examine the
6439 backtrack queue to find the earliest insn that caused this condition. */
6440
6441 static struct haifa_saved_data *
6442 verify_shadows (void)
6443 {
6444 struct haifa_saved_data *save, *earliest_fail = NULL;
6445 for (save = backtrack_queue; save; save = save->next)
6446 {
6447 int t;
6448 struct delay_pair *pair = save->delay_pair;
6449 rtx_insn *i1 = pair->i1;
6450
6451 for (; pair; pair = pair->next_same_i1)
6452 {
6453 rtx_insn *i2 = pair->i2;
6454
6455 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6456 continue;
6457
6458 t = INSN_TICK (i1) + pair_delay (pair);
6459 if (t < clock_var)
6460 {
6461 if (sched_verbose >= 2)
6462 fprintf (sched_dump,
6463 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6464 ", not ready\n",
6465 INSN_UID (pair->i1), INSN_UID (pair->i2),
6466 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6467 earliest_fail = save;
6468 break;
6469 }
6470 if (QUEUE_INDEX (i2) >= 0)
6471 {
6472 int queued_for = INSN_TICK (i2);
6473
6474 if (t < queued_for)
6475 {
6476 if (sched_verbose >= 2)
6477 fprintf (sched_dump,
6478 ";;\t\tfailed delay requirements for %d/%d"
6479 " (%d->%d), queued too late\n",
6480 INSN_UID (pair->i1), INSN_UID (pair->i2),
6481 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6482 earliest_fail = save;
6483 break;
6484 }
6485 }
6486 }
6487 }
6488
6489 return earliest_fail;
6490 }
6491
6492 /* Print instructions together with useful scheduling information between
6493 HEAD and TAIL (inclusive). */
6494 static void
6495 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6496 {
6497 fprintf (sched_dump, ";;\t| insn | prio |\n");
6498
6499 rtx_insn *next_tail = NEXT_INSN (tail);
6500 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6501 {
6502 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6503 const char *pattern = (NOTE_P (insn)
6504 ? "note"
6505 : str_pattern_slim (PATTERN (insn)));
6506
6507 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6508 INSN_UID (insn), priority, pattern);
6509
6510 if (sched_verbose >= 4)
6511 {
6512 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6513 fprintf (sched_dump, "nothing");
6514 else
6515 print_reservation (sched_dump, insn);
6516 }
6517 fprintf (sched_dump, "\n");
6518 }
6519 }
6520
6521 /* Use forward list scheduling to rearrange insns of block pointed to by
6522 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6523 region. */
6524
6525 bool
6526 schedule_block (basic_block *target_bb, state_t init_state)
6527 {
6528 int i;
6529 bool success = modulo_ii == 0;
6530 struct sched_block_state ls;
6531 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6532 int sort_p, advance, start_clock_var;
6533
6534 /* Head/tail info for this block. */
6535 rtx_insn *prev_head = current_sched_info->prev_head;
6536 rtx_insn *next_tail = current_sched_info->next_tail;
6537 rtx_insn *head = NEXT_INSN (prev_head);
6538 rtx_insn *tail = PREV_INSN (next_tail);
6539
6540 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6541 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6542 find_modifiable_mems (head, tail);
6543
6544 /* We used to have code to avoid getting parameters moved from hard
6545 argument registers into pseudos.
6546
6547 However, it was removed when it proved to be of marginal benefit
6548 and caused problems because schedule_block and compute_forward_dependences
6549 had different notions of what the "head" insn was. */
6550
6551 gcc_assert (head != tail || INSN_P (head));
6552
6553 haifa_recovery_bb_recently_added_p = false;
6554
6555 backtrack_queue = NULL;
6556
6557 /* Debug info. */
6558 if (sched_verbose)
6559 {
6560 dump_new_block_header (0, *target_bb, head, tail);
6561
6562 if (sched_verbose >= 2)
6563 {
6564 dump_insn_stream (head, tail);
6565 memset (&rank_for_schedule_stats, 0,
6566 sizeof (rank_for_schedule_stats));
6567 }
6568 }
6569
6570 if (init_state == NULL)
6571 state_reset (curr_state);
6572 else
6573 memcpy (curr_state, init_state, dfa_state_size);
6574
6575 /* Clear the ready list. */
6576 ready.first = ready.veclen - 1;
6577 ready.n_ready = 0;
6578 ready.n_debug = 0;
6579
6580 /* It is used for first cycle multipass scheduling. */
6581 temp_state = alloca (dfa_state_size);
6582
6583 if (targetm.sched.init)
6584 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6585
6586 /* We start inserting insns after PREV_HEAD. */
6587 last_scheduled_insn = prev_head;
6588 last_nondebug_scheduled_insn = NULL;
6589 nonscheduled_insns_begin = NULL;
6590
6591 gcc_assert ((NOTE_P (last_scheduled_insn)
6592 || DEBUG_INSN_P (last_scheduled_insn))
6593 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6594
6595 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6596 queue. */
6597 q_ptr = 0;
6598 q_size = 0;
6599
6600 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6601 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6602
6603 /* Start just before the beginning of time. */
6604 clock_var = -1;
6605
6606 /* We need queue and ready lists and clock_var be initialized
6607 in try_ready () (which is called through init_ready_list ()). */
6608 (*current_sched_info->init_ready_list) ();
6609
6610 if (sched_pressure)
6611 sched_pressure_start_bb (*target_bb);
6612
6613 /* The algorithm is O(n^2) in the number of ready insns at any given
6614 time in the worst case. Before reload we are more likely to have
6615 big lists so truncate them to a reasonable size. */
6616 if (!reload_completed
6617 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6618 {
6619 ready_sort_debug (&ready);
6620 ready_sort_real (&ready);
6621
6622 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6623 If there are debug insns, we know they're first. */
6624 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6625 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6626 break;
6627
6628 if (sched_verbose >= 2)
6629 {
6630 fprintf (sched_dump,
6631 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6632 debug_ready_list (&ready);
6633 fprintf (sched_dump,
6634 ";;\t\t before reload => truncated to %d insns\n", i);
6635 }
6636
6637 /* Delay all insns past it for 1 cycle. If debug counter is
6638 activated make an exception for the insn right after
6639 nonscheduled_insns_begin. */
6640 {
6641 rtx_insn *skip_insn;
6642
6643 if (dbg_cnt (sched_insn) == false)
6644 skip_insn = first_nonscheduled_insn ();
6645 else
6646 skip_insn = NULL;
6647
6648 while (i < ready.n_ready)
6649 {
6650 rtx_insn *insn;
6651
6652 insn = ready_remove (&ready, i);
6653
6654 if (insn != skip_insn)
6655 queue_insn (insn, 1, "list truncated");
6656 }
6657 if (skip_insn)
6658 ready_add (&ready, skip_insn, true);
6659 }
6660 }
6661
6662 /* Now we can restore basic block notes and maintain precise cfg. */
6663 restore_bb_notes (*target_bb);
6664
6665 last_clock_var = -1;
6666
6667 advance = 0;
6668
6669 gcc_assert (scheduled_insns.length () == 0);
6670 sort_p = TRUE;
6671 must_backtrack = false;
6672 modulo_insns_scheduled = 0;
6673
6674 ls.modulo_epilogue = false;
6675 ls.first_cycle_insn_p = true;
6676
6677 /* Loop until all the insns in BB are scheduled. */
6678 while ((*current_sched_info->schedule_more_p) ())
6679 {
6680 perform_replacements_new_cycle ();
6681 do
6682 {
6683 start_clock_var = clock_var;
6684
6685 clock_var++;
6686
6687 advance_one_cycle ();
6688
6689 /* Add to the ready list all pending insns that can be issued now.
6690 If there are no ready insns, increment clock until one
6691 is ready and add all pending insns at that point to the ready
6692 list. */
6693 queue_to_ready (&ready);
6694
6695 gcc_assert (ready.n_ready);
6696
6697 if (sched_verbose >= 2)
6698 {
6699 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6700 debug_ready_list (&ready);
6701 }
6702 advance -= clock_var - start_clock_var;
6703 }
6704 while (advance > 0);
6705
6706 if (ls.modulo_epilogue)
6707 {
6708 int stage = clock_var / modulo_ii;
6709 if (stage > modulo_last_stage * 2 + 2)
6710 {
6711 if (sched_verbose >= 2)
6712 fprintf (sched_dump,
6713 ";;\t\tmodulo scheduled succeeded at II %d\n",
6714 modulo_ii);
6715 success = true;
6716 goto end_schedule;
6717 }
6718 }
6719 else if (modulo_ii > 0)
6720 {
6721 int stage = clock_var / modulo_ii;
6722 if (stage > modulo_max_stages)
6723 {
6724 if (sched_verbose >= 2)
6725 fprintf (sched_dump,
6726 ";;\t\tfailing schedule due to excessive stages\n");
6727 goto end_schedule;
6728 }
6729 if (modulo_n_insns == modulo_insns_scheduled
6730 && stage > modulo_last_stage)
6731 {
6732 if (sched_verbose >= 2)
6733 fprintf (sched_dump,
6734 ";;\t\tfound kernel after %d stages, II %d\n",
6735 stage, modulo_ii);
6736 ls.modulo_epilogue = true;
6737 }
6738 }
6739
6740 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6741 if (ready.n_ready == 0)
6742 continue;
6743 if (must_backtrack)
6744 goto do_backtrack;
6745
6746 ls.shadows_only_p = false;
6747 cycle_issued_insns = 0;
6748 ls.can_issue_more = issue_rate;
6749 for (;;)
6750 {
6751 rtx_insn *insn;
6752 int cost;
6753 bool asm_p;
6754
6755 if (sort_p && ready.n_ready > 0)
6756 {
6757 /* Sort the ready list based on priority. This must be
6758 done every iteration through the loop, as schedule_insn
6759 may have readied additional insns that will not be
6760 sorted correctly. */
6761 ready_sort (&ready);
6762
6763 if (sched_verbose >= 2)
6764 {
6765 fprintf (sched_dump,
6766 ";;\t\tReady list after ready_sort: ");
6767 debug_ready_list (&ready);
6768 }
6769 }
6770
6771 /* We don't want md sched reorder to even see debug isns, so put
6772 them out right away. */
6773 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6774 && (*current_sched_info->schedule_more_p) ())
6775 {
6776 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6777 {
6778 rtx_insn *insn = ready_remove_first (&ready);
6779 gcc_assert (DEBUG_INSN_P (insn));
6780 (*current_sched_info->begin_schedule_ready) (insn);
6781 scheduled_insns.safe_push (insn);
6782 last_scheduled_insn = insn;
6783 advance = schedule_insn (insn);
6784 gcc_assert (advance == 0);
6785 if (ready.n_ready > 0)
6786 ready_sort (&ready);
6787 }
6788 }
6789
6790 if (ls.first_cycle_insn_p && !ready.n_ready)
6791 break;
6792
6793 resume_after_backtrack:
6794 /* Allow the target to reorder the list, typically for
6795 better instruction bundling. */
6796 if (sort_p
6797 && (ready.n_ready == 0
6798 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6799 {
6800 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6801 ls.can_issue_more
6802 = targetm.sched.reorder (sched_dump, sched_verbose,
6803 ready_lastpos (&ready),
6804 &ready.n_ready, clock_var);
6805 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6806 ls.can_issue_more
6807 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6808 ready.n_ready
6809 ? ready_lastpos (&ready) : NULL,
6810 &ready.n_ready, clock_var);
6811 }
6812
6813 restart_choose_ready:
6814 if (sched_verbose >= 2)
6815 {
6816 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6817 clock_var);
6818 debug_ready_list (&ready);
6819 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6820 print_curr_reg_pressure ();
6821 }
6822
6823 if (ready.n_ready == 0
6824 && ls.can_issue_more
6825 && reload_completed)
6826 {
6827 /* Allow scheduling insns directly from the queue in case
6828 there's nothing better to do (ready list is empty) but
6829 there are still vacant dispatch slots in the current cycle. */
6830 if (sched_verbose >= 6)
6831 fprintf (sched_dump,";;\t\tSecond chance\n");
6832 memcpy (temp_state, curr_state, dfa_state_size);
6833 if (early_queue_to_ready (temp_state, &ready))
6834 ready_sort (&ready);
6835 }
6836
6837 if (ready.n_ready == 0
6838 || !ls.can_issue_more
6839 || state_dead_lock_p (curr_state)
6840 || !(*current_sched_info->schedule_more_p) ())
6841 break;
6842
6843 /* Select and remove the insn from the ready list. */
6844 if (sort_p)
6845 {
6846 int res;
6847
6848 insn = NULL;
6849 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6850
6851 if (res < 0)
6852 /* Finish cycle. */
6853 break;
6854 if (res > 0)
6855 goto restart_choose_ready;
6856
6857 gcc_assert (insn != NULL_RTX);
6858 }
6859 else
6860 insn = ready_remove_first (&ready);
6861
6862 if (sched_pressure != SCHED_PRESSURE_NONE
6863 && INSN_TICK (insn) > clock_var)
6864 {
6865 ready_add (&ready, insn, true);
6866 advance = 1;
6867 break;
6868 }
6869
6870 if (targetm.sched.dfa_new_cycle
6871 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6872 insn, last_clock_var,
6873 clock_var, &sort_p))
6874 /* SORT_P is used by the target to override sorting
6875 of the ready list. This is needed when the target
6876 has modified its internal structures expecting that
6877 the insn will be issued next. As we need the insn
6878 to have the highest priority (so it will be returned by
6879 the ready_remove_first call above), we invoke
6880 ready_add (&ready, insn, true).
6881 But, still, there is one issue: INSN can be later
6882 discarded by scheduler's front end through
6883 current_sched_info->can_schedule_ready_p, hence, won't
6884 be issued next. */
6885 {
6886 ready_add (&ready, insn, true);
6887 break;
6888 }
6889
6890 sort_p = TRUE;
6891
6892 if (current_sched_info->can_schedule_ready_p
6893 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6894 /* We normally get here only if we don't want to move
6895 insn from the split block. */
6896 {
6897 TODO_SPEC (insn) = DEP_POSTPONED;
6898 goto restart_choose_ready;
6899 }
6900
6901 if (delay_htab)
6902 {
6903 /* If this insn is the first part of a delay-slot pair, record a
6904 backtrack point. */
6905 struct delay_pair *delay_entry;
6906 delay_entry
6907 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6908 if (delay_entry)
6909 {
6910 save_backtrack_point (delay_entry, ls);
6911 if (sched_verbose >= 2)
6912 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6913 }
6914 }
6915
6916 /* DECISION is made. */
6917
6918 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6919 {
6920 modulo_insns_scheduled++;
6921 modulo_last_stage = clock_var / modulo_ii;
6922 }
6923 if (TODO_SPEC (insn) & SPECULATIVE)
6924 generate_recovery_code (insn);
6925
6926 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6927 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6928
6929 /* Update counters, etc in the scheduler's front end. */
6930 (*current_sched_info->begin_schedule_ready) (insn);
6931 scheduled_insns.safe_push (insn);
6932 gcc_assert (NONDEBUG_INSN_P (insn));
6933 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6934
6935 if (recog_memoized (insn) >= 0)
6936 {
6937 memcpy (temp_state, curr_state, dfa_state_size);
6938 cost = state_transition (curr_state, insn);
6939 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6940 gcc_assert (cost < 0);
6941 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6942 cycle_issued_insns++;
6943 asm_p = false;
6944 }
6945 else
6946 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6947 || asm_noperands (PATTERN (insn)) >= 0);
6948
6949 if (targetm.sched.variable_issue)
6950 ls.can_issue_more =
6951 targetm.sched.variable_issue (sched_dump, sched_verbose,
6952 insn, ls.can_issue_more);
6953 /* A naked CLOBBER or USE generates no instruction, so do
6954 not count them against the issue rate. */
6955 else if (GET_CODE (PATTERN (insn)) != USE
6956 && GET_CODE (PATTERN (insn)) != CLOBBER)
6957 ls.can_issue_more--;
6958 advance = schedule_insn (insn);
6959
6960 if (SHADOW_P (insn))
6961 ls.shadows_only_p = true;
6962
6963 /* After issuing an asm insn we should start a new cycle. */
6964 if (advance == 0 && asm_p)
6965 advance = 1;
6966
6967 if (must_backtrack)
6968 break;
6969
6970 if (advance != 0)
6971 break;
6972
6973 ls.first_cycle_insn_p = false;
6974 if (ready.n_ready > 0)
6975 prune_ready_list (temp_state, false, ls.shadows_only_p,
6976 ls.modulo_epilogue);
6977 }
6978
6979 do_backtrack:
6980 if (!must_backtrack)
6981 for (i = 0; i < ready.n_ready; i++)
6982 {
6983 rtx_insn *insn = ready_element (&ready, i);
6984 if (INSN_EXACT_TICK (insn) == clock_var)
6985 {
6986 must_backtrack = true;
6987 clock_var++;
6988 break;
6989 }
6990 }
6991 if (must_backtrack && modulo_ii > 0)
6992 {
6993 if (modulo_backtracks_left == 0)
6994 goto end_schedule;
6995 modulo_backtracks_left--;
6996 }
6997 while (must_backtrack)
6998 {
6999 struct haifa_saved_data *failed;
7000 rtx_insn *failed_insn;
7001
7002 must_backtrack = false;
7003 failed = verify_shadows ();
7004 gcc_assert (failed);
7005
7006 failed_insn = failed->delay_pair->i1;
7007 /* Clear these queues. */
7008 perform_replacements_new_cycle ();
7009 toggle_cancelled_flags (false);
7010 unschedule_insns_until (failed_insn);
7011 while (failed != backtrack_queue)
7012 free_topmost_backtrack_point (true);
7013 restore_last_backtrack_point (&ls);
7014 if (sched_verbose >= 2)
7015 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
7016 /* Delay by at least a cycle. This could cause additional
7017 backtracking. */
7018 queue_insn (failed_insn, 1, "backtracked");
7019 advance = 0;
7020 if (must_backtrack)
7021 continue;
7022 if (ready.n_ready > 0)
7023 goto resume_after_backtrack;
7024 else
7025 {
7026 if (clock_var == 0 && ls.first_cycle_insn_p)
7027 goto end_schedule;
7028 advance = 1;
7029 break;
7030 }
7031 }
7032 ls.first_cycle_insn_p = true;
7033 }
7034 if (ls.modulo_epilogue)
7035 success = true;
7036 end_schedule:
7037 if (!ls.first_cycle_insn_p || advance)
7038 advance_one_cycle ();
7039 perform_replacements_new_cycle ();
7040 if (modulo_ii > 0)
7041 {
7042 /* Once again, debug insn suckiness: they can be on the ready list
7043 even if they have unresolved dependencies. To make our view
7044 of the world consistent, remove such "ready" insns. */
7045 restart_debug_insn_loop:
7046 for (i = ready.n_ready - 1; i >= 0; i--)
7047 {
7048 rtx_insn *x;
7049
7050 x = ready_element (&ready, i);
7051 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
7052 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
7053 {
7054 ready_remove (&ready, i);
7055 goto restart_debug_insn_loop;
7056 }
7057 }
7058 for (i = ready.n_ready - 1; i >= 0; i--)
7059 {
7060 rtx_insn *x;
7061
7062 x = ready_element (&ready, i);
7063 resolve_dependencies (x);
7064 }
7065 for (i = 0; i <= max_insn_queue_index; i++)
7066 {
7067 rtx_insn_list *link;
7068 while ((link = insn_queue[i]) != NULL)
7069 {
7070 rtx_insn *x = link->insn ();
7071 insn_queue[i] = link->next ();
7072 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7073 free_INSN_LIST_node (link);
7074 resolve_dependencies (x);
7075 }
7076 }
7077 }
7078
7079 if (!success)
7080 undo_all_replacements ();
7081
7082 /* Debug info. */
7083 if (sched_verbose)
7084 {
7085 fprintf (sched_dump, ";;\tReady list (final): ");
7086 debug_ready_list (&ready);
7087 }
7088
7089 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7090 /* Sanity check -- queue must be empty now. Meaningless if region has
7091 multiple bbs. */
7092 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7093 else if (modulo_ii == 0)
7094 {
7095 /* We must maintain QUEUE_INDEX between blocks in region. */
7096 for (i = ready.n_ready - 1; i >= 0; i--)
7097 {
7098 rtx_insn *x;
7099
7100 x = ready_element (&ready, i);
7101 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7102 TODO_SPEC (x) = HARD_DEP;
7103 }
7104
7105 if (q_size)
7106 for (i = 0; i <= max_insn_queue_index; i++)
7107 {
7108 rtx_insn_list *link;
7109 for (link = insn_queue[i]; link; link = link->next ())
7110 {
7111 rtx_insn *x;
7112
7113 x = link->insn ();
7114 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7115 TODO_SPEC (x) = HARD_DEP;
7116 }
7117 free_INSN_LIST_list (&insn_queue[i]);
7118 }
7119 }
7120
7121 if (sched_pressure == SCHED_PRESSURE_MODEL)
7122 model_end_schedule ();
7123
7124 if (success)
7125 {
7126 commit_schedule (prev_head, tail, target_bb);
7127 if (sched_verbose)
7128 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7129 }
7130 else
7131 last_scheduled_insn = tail;
7132
7133 scheduled_insns.truncate (0);
7134
7135 if (!current_sched_info->queue_must_finish_empty
7136 || haifa_recovery_bb_recently_added_p)
7137 {
7138 /* INSN_TICK (minimum clock tick at which the insn becomes
7139 ready) may be not correct for the insn in the subsequent
7140 blocks of the region. We should use a correct value of
7141 `clock_var' or modify INSN_TICK. It is better to keep
7142 clock_var value equal to 0 at the start of a basic block.
7143 Therefore we modify INSN_TICK here. */
7144 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7145 }
7146
7147 if (targetm.sched.finish)
7148 {
7149 targetm.sched.finish (sched_dump, sched_verbose);
7150 /* Target might have added some instructions to the scheduled block
7151 in its md_finish () hook. These new insns don't have any data
7152 initialized and to identify them we extend h_i_d so that they'll
7153 get zero luids. */
7154 sched_extend_luids ();
7155 }
7156
7157 /* Update head/tail boundaries. */
7158 head = NEXT_INSN (prev_head);
7159 tail = last_scheduled_insn;
7160
7161 if (sched_verbose)
7162 {
7163 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7164 INSN_UID (head), INSN_UID (tail));
7165
7166 if (sched_verbose >= 2)
7167 {
7168 dump_insn_stream (head, tail);
7169 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7170 NULL);
7171 }
7172
7173 fprintf (sched_dump, "\n");
7174 }
7175
7176 head = restore_other_notes (head, NULL);
7177
7178 current_sched_info->head = head;
7179 current_sched_info->tail = tail;
7180
7181 free_backtrack_queue ();
7182
7183 return success;
7184 }
7185 \f
7186 /* Set_priorities: compute priority of each insn in the block. */
7187
7188 int
7189 set_priorities (rtx_insn *head, rtx_insn *tail)
7190 {
7191 rtx_insn *insn;
7192 int n_insn;
7193 int sched_max_insns_priority =
7194 current_sched_info->sched_max_insns_priority;
7195 rtx_insn *prev_head;
7196
7197 if (head == tail && ! INSN_P (head))
7198 gcc_unreachable ();
7199
7200 n_insn = 0;
7201
7202 prev_head = PREV_INSN (head);
7203 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7204 {
7205 if (!INSN_P (insn))
7206 continue;
7207
7208 n_insn++;
7209 (void) priority (insn);
7210
7211 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7212
7213 sched_max_insns_priority = MAX (sched_max_insns_priority,
7214 INSN_PRIORITY (insn));
7215 }
7216
7217 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7218
7219 return n_insn;
7220 }
7221
7222 /* Set sched_dump and sched_verbose for the desired debugging output. */
7223 void
7224 setup_sched_dump (void)
7225 {
7226 sched_verbose = sched_verbose_param;
7227 sched_dump = dump_file;
7228 if (!dump_file)
7229 sched_verbose = 0;
7230 }
7231
7232 /* Allocate data for register pressure sensitive scheduling. */
7233 static void
7234 alloc_global_sched_pressure_data (void)
7235 {
7236 if (sched_pressure != SCHED_PRESSURE_NONE)
7237 {
7238 int i, max_regno = max_reg_num ();
7239
7240 if (sched_dump != NULL)
7241 /* We need info about pseudos for rtl dumps about pseudo
7242 classes and costs. */
7243 regstat_init_n_sets_and_refs ();
7244 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7245 sched_regno_pressure_class
7246 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7247 for (i = 0; i < max_regno; i++)
7248 sched_regno_pressure_class[i]
7249 = (i < FIRST_PSEUDO_REGISTER
7250 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7251 : ira_pressure_class_translate[reg_allocno_class (i)]);
7252 curr_reg_live = BITMAP_ALLOC (NULL);
7253 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7254 {
7255 saved_reg_live = BITMAP_ALLOC (NULL);
7256 region_ref_regs = BITMAP_ALLOC (NULL);
7257 }
7258
7259 /* Calculate number of CALL_USED_REGS in register classes that
7260 we calculate register pressure for. */
7261 for (int c = 0; c < ira_pressure_classes_num; ++c)
7262 {
7263 enum reg_class cl = ira_pressure_classes[c];
7264
7265 call_used_regs_num[cl] = 0;
7266
7267 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7268 if (call_used_regs[ira_class_hard_regs[cl][i]])
7269 ++call_used_regs_num[cl];
7270 }
7271 }
7272 }
7273
7274 /* Free data for register pressure sensitive scheduling. Also called
7275 from schedule_region when stopping sched-pressure early. */
7276 void
7277 free_global_sched_pressure_data (void)
7278 {
7279 if (sched_pressure != SCHED_PRESSURE_NONE)
7280 {
7281 if (regstat_n_sets_and_refs != NULL)
7282 regstat_free_n_sets_and_refs ();
7283 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7284 {
7285 BITMAP_FREE (region_ref_regs);
7286 BITMAP_FREE (saved_reg_live);
7287 }
7288 BITMAP_FREE (curr_reg_live);
7289 free (sched_regno_pressure_class);
7290 }
7291 }
7292
7293 /* Initialize some global state for the scheduler. This function works
7294 with the common data shared between all the schedulers. It is called
7295 from the scheduler specific initialization routine. */
7296
7297 void
7298 sched_init (void)
7299 {
7300 /* Disable speculative loads in their presence if cc0 defined. */
7301 if (HAVE_cc0)
7302 flag_schedule_speculative_load = 0;
7303
7304 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7305 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7306
7307 if (live_range_shrinkage_p)
7308 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7309 else if (flag_sched_pressure
7310 && !reload_completed
7311 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7312 sched_pressure = ((enum sched_pressure_algorithm)
7313 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7314 else
7315 sched_pressure = SCHED_PRESSURE_NONE;
7316
7317 if (sched_pressure != SCHED_PRESSURE_NONE)
7318 ira_setup_eliminable_regset ();
7319
7320 /* Initialize SPEC_INFO. */
7321 if (targetm.sched.set_sched_flags)
7322 {
7323 spec_info = &spec_info_var;
7324 targetm.sched.set_sched_flags (spec_info);
7325
7326 if (spec_info->mask != 0)
7327 {
7328 spec_info->data_weakness_cutoff =
7329 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7330 spec_info->control_weakness_cutoff =
7331 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7332 * REG_BR_PROB_BASE) / 100;
7333 }
7334 else
7335 /* So we won't read anything accidentally. */
7336 spec_info = NULL;
7337
7338 }
7339 else
7340 /* So we won't read anything accidentally. */
7341 spec_info = 0;
7342
7343 /* Initialize issue_rate. */
7344 if (targetm.sched.issue_rate)
7345 issue_rate = targetm.sched.issue_rate ();
7346 else
7347 issue_rate = 1;
7348
7349 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7350 /* Don't use max_issue with reg_pressure scheduling. Multipass
7351 scheduling and reg_pressure scheduling undo each other's decisions. */
7352 && sched_pressure == SCHED_PRESSURE_NONE)
7353 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7354 else
7355 dfa_lookahead = 0;
7356
7357 /* Set to "0" so that we recalculate. */
7358 max_lookahead_tries = 0;
7359
7360 if (targetm.sched.init_dfa_pre_cycle_insn)
7361 targetm.sched.init_dfa_pre_cycle_insn ();
7362
7363 if (targetm.sched.init_dfa_post_cycle_insn)
7364 targetm.sched.init_dfa_post_cycle_insn ();
7365
7366 dfa_start ();
7367 dfa_state_size = state_size ();
7368
7369 init_alias_analysis ();
7370
7371 if (!sched_no_dce)
7372 df_set_flags (DF_LR_RUN_DCE);
7373 df_note_add_problem ();
7374
7375 /* More problems needed for interloop dep calculation in SMS. */
7376 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7377 {
7378 df_rd_add_problem ();
7379 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7380 }
7381
7382 df_analyze ();
7383
7384 /* Do not run DCE after reload, as this can kill nops inserted
7385 by bundling. */
7386 if (reload_completed)
7387 df_clear_flags (DF_LR_RUN_DCE);
7388
7389 regstat_compute_calls_crossed ();
7390
7391 if (targetm.sched.init_global)
7392 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7393
7394 alloc_global_sched_pressure_data ();
7395
7396 curr_state = xmalloc (dfa_state_size);
7397 }
7398
7399 static void haifa_init_only_bb (basic_block, basic_block);
7400
7401 /* Initialize data structures specific to the Haifa scheduler. */
7402 void
7403 haifa_sched_init (void)
7404 {
7405 setup_sched_dump ();
7406 sched_init ();
7407
7408 scheduled_insns.create (0);
7409
7410 if (spec_info != NULL)
7411 {
7412 sched_deps_info->use_deps_list = 1;
7413 sched_deps_info->generate_spec_deps = 1;
7414 }
7415
7416 /* Initialize luids, dependency caches, target and h_i_d for the
7417 whole function. */
7418 {
7419 bb_vec_t bbs;
7420 bbs.create (n_basic_blocks_for_fn (cfun));
7421 basic_block bb;
7422
7423 sched_init_bbs ();
7424
7425 FOR_EACH_BB_FN (bb, cfun)
7426 bbs.quick_push (bb);
7427 sched_init_luids (bbs);
7428 sched_deps_init (true);
7429 sched_extend_target ();
7430 haifa_init_h_i_d (bbs);
7431
7432 bbs.release ();
7433 }
7434
7435 sched_init_only_bb = haifa_init_only_bb;
7436 sched_split_block = sched_split_block_1;
7437 sched_create_empty_bb = sched_create_empty_bb_1;
7438 haifa_recovery_bb_ever_added_p = false;
7439
7440 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7441 before_recovery = 0;
7442 after_recovery = 0;
7443
7444 modulo_ii = 0;
7445 }
7446
7447 /* Finish work with the data specific to the Haifa scheduler. */
7448 void
7449 haifa_sched_finish (void)
7450 {
7451 sched_create_empty_bb = NULL;
7452 sched_split_block = NULL;
7453 sched_init_only_bb = NULL;
7454
7455 if (spec_info && spec_info->dump)
7456 {
7457 char c = reload_completed ? 'a' : 'b';
7458
7459 fprintf (spec_info->dump,
7460 ";; %s:\n", current_function_name ());
7461
7462 fprintf (spec_info->dump,
7463 ";; Procedure %cr-begin-data-spec motions == %d\n",
7464 c, nr_begin_data);
7465 fprintf (spec_info->dump,
7466 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7467 c, nr_be_in_data);
7468 fprintf (spec_info->dump,
7469 ";; Procedure %cr-begin-control-spec motions == %d\n",
7470 c, nr_begin_control);
7471 fprintf (spec_info->dump,
7472 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7473 c, nr_be_in_control);
7474 }
7475
7476 scheduled_insns.release ();
7477
7478 /* Finalize h_i_d, dependency caches, and luids for the whole
7479 function. Target will be finalized in md_global_finish (). */
7480 sched_deps_finish ();
7481 sched_finish_luids ();
7482 current_sched_info = NULL;
7483 insn_queue = NULL;
7484 sched_finish ();
7485 }
7486
7487 /* Free global data used during insn scheduling. This function works with
7488 the common data shared between the schedulers. */
7489
7490 void
7491 sched_finish (void)
7492 {
7493 haifa_finish_h_i_d ();
7494 free_global_sched_pressure_data ();
7495 free (curr_state);
7496
7497 if (targetm.sched.finish_global)
7498 targetm.sched.finish_global (sched_dump, sched_verbose);
7499
7500 end_alias_analysis ();
7501
7502 regstat_free_calls_crossed ();
7503
7504 dfa_finish ();
7505 }
7506
7507 /* Free all delay_pair structures that were recorded. */
7508 void
7509 free_delay_pairs (void)
7510 {
7511 if (delay_htab)
7512 {
7513 delay_htab->empty ();
7514 delay_htab_i2->empty ();
7515 }
7516 }
7517
7518 /* Fix INSN_TICKs of the instructions in the current block as well as
7519 INSN_TICKs of their dependents.
7520 HEAD and TAIL are the begin and the end of the current scheduled block. */
7521 static void
7522 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7523 {
7524 /* Set of instructions with corrected INSN_TICK. */
7525 bitmap_head processed;
7526 /* ??? It is doubtful if we should assume that cycle advance happens on
7527 basic block boundaries. Basically insns that are unconditionally ready
7528 on the start of the block are more preferable then those which have
7529 a one cycle dependency over insn from the previous block. */
7530 int next_clock = clock_var + 1;
7531
7532 bitmap_initialize (&processed, 0);
7533
7534 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7535 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7536 across different blocks. */
7537 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7538 {
7539 if (INSN_P (head))
7540 {
7541 int tick;
7542 sd_iterator_def sd_it;
7543 dep_t dep;
7544
7545 tick = INSN_TICK (head);
7546 gcc_assert (tick >= MIN_TICK);
7547
7548 /* Fix INSN_TICK of instruction from just scheduled block. */
7549 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7550 {
7551 tick -= next_clock;
7552
7553 if (tick < MIN_TICK)
7554 tick = MIN_TICK;
7555
7556 INSN_TICK (head) = tick;
7557 }
7558
7559 if (DEBUG_INSN_P (head))
7560 continue;
7561
7562 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7563 {
7564 rtx_insn *next;
7565
7566 next = DEP_CON (dep);
7567 tick = INSN_TICK (next);
7568
7569 if (tick != INVALID_TICK
7570 /* If NEXT has its INSN_TICK calculated, fix it.
7571 If not - it will be properly calculated from
7572 scratch later in fix_tick_ready. */
7573 && bitmap_set_bit (&processed, INSN_LUID (next)))
7574 {
7575 tick -= next_clock;
7576
7577 if (tick < MIN_TICK)
7578 tick = MIN_TICK;
7579
7580 if (tick > INTER_TICK (next))
7581 INTER_TICK (next) = tick;
7582 else
7583 tick = INTER_TICK (next);
7584
7585 INSN_TICK (next) = tick;
7586 }
7587 }
7588 }
7589 }
7590 bitmap_clear (&processed);
7591 }
7592
7593 /* Check if NEXT is ready to be added to the ready or queue list.
7594 If "yes", add it to the proper list.
7595 Returns:
7596 -1 - is not ready yet,
7597 0 - added to the ready list,
7598 0 < N - queued for N cycles. */
7599 int
7600 try_ready (rtx_insn *next)
7601 {
7602 ds_t old_ts, new_ts;
7603
7604 old_ts = TODO_SPEC (next);
7605
7606 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7607 && (old_ts == HARD_DEP
7608 || old_ts == DEP_POSTPONED
7609 || (old_ts & SPECULATIVE)
7610 || old_ts == DEP_CONTROL));
7611
7612 new_ts = recompute_todo_spec (next, false);
7613
7614 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7615 gcc_assert (new_ts == old_ts
7616 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7617 else if (current_sched_info->new_ready)
7618 new_ts = current_sched_info->new_ready (next, new_ts);
7619
7620 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7621 have its original pattern or changed (speculative) one. This is due
7622 to changing ebb in region scheduling.
7623 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7624 has speculative pattern.
7625
7626 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7627 control-speculative NEXT could have been discarded by sched-rgn.c
7628 (the same case as when discarded by can_schedule_ready_p ()). */
7629
7630 if ((new_ts & SPECULATIVE)
7631 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7632 need to change anything. */
7633 && new_ts != old_ts)
7634 {
7635 int res;
7636 rtx new_pat;
7637
7638 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7639
7640 res = haifa_speculate_insn (next, new_ts, &new_pat);
7641
7642 switch (res)
7643 {
7644 case -1:
7645 /* It would be nice to change DEP_STATUS of all dependences,
7646 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7647 so we won't reanalyze anything. */
7648 new_ts = HARD_DEP;
7649 break;
7650
7651 case 0:
7652 /* We follow the rule, that every speculative insn
7653 has non-null ORIG_PAT. */
7654 if (!ORIG_PAT (next))
7655 ORIG_PAT (next) = PATTERN (next);
7656 break;
7657
7658 case 1:
7659 if (!ORIG_PAT (next))
7660 /* If we gonna to overwrite the original pattern of insn,
7661 save it. */
7662 ORIG_PAT (next) = PATTERN (next);
7663
7664 res = haifa_change_pattern (next, new_pat);
7665 gcc_assert (res);
7666 break;
7667
7668 default:
7669 gcc_unreachable ();
7670 }
7671 }
7672
7673 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7674 either correct (new_ts & SPECULATIVE),
7675 or we simply don't care (new_ts & HARD_DEP). */
7676
7677 gcc_assert (!ORIG_PAT (next)
7678 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7679
7680 TODO_SPEC (next) = new_ts;
7681
7682 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7683 {
7684 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7685 control-speculative NEXT could have been discarded by sched-rgn.c
7686 (the same case as when discarded by can_schedule_ready_p ()). */
7687 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7688
7689 change_queue_index (next, QUEUE_NOWHERE);
7690
7691 return -1;
7692 }
7693 else if (!(new_ts & BEGIN_SPEC)
7694 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7695 && !IS_SPECULATION_CHECK_P (next))
7696 /* We should change pattern of every previously speculative
7697 instruction - and we determine if NEXT was speculative by using
7698 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7699 pat too, so skip them. */
7700 {
7701 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7702 gcc_assert (success);
7703 ORIG_PAT (next) = 0;
7704 }
7705
7706 if (sched_verbose >= 2)
7707 {
7708 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7709 (*current_sched_info->print_insn) (next, 0));
7710
7711 if (spec_info && spec_info->dump)
7712 {
7713 if (new_ts & BEGIN_DATA)
7714 fprintf (spec_info->dump, "; data-spec;");
7715 if (new_ts & BEGIN_CONTROL)
7716 fprintf (spec_info->dump, "; control-spec;");
7717 if (new_ts & BE_IN_CONTROL)
7718 fprintf (spec_info->dump, "; in-control-spec;");
7719 }
7720 if (TODO_SPEC (next) & DEP_CONTROL)
7721 fprintf (sched_dump, " predicated");
7722 fprintf (sched_dump, "\n");
7723 }
7724
7725 adjust_priority (next);
7726
7727 return fix_tick_ready (next);
7728 }
7729
7730 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7731 static int
7732 fix_tick_ready (rtx_insn *next)
7733 {
7734 int tick, delay;
7735
7736 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7737 {
7738 int full_p;
7739 sd_iterator_def sd_it;
7740 dep_t dep;
7741
7742 tick = INSN_TICK (next);
7743 /* if tick is not equal to INVALID_TICK, then update
7744 INSN_TICK of NEXT with the most recent resolved dependence
7745 cost. Otherwise, recalculate from scratch. */
7746 full_p = (tick == INVALID_TICK);
7747
7748 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7749 {
7750 rtx_insn *pro = DEP_PRO (dep);
7751 int tick1;
7752
7753 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7754
7755 tick1 = INSN_TICK (pro) + dep_cost (dep);
7756 if (tick1 > tick)
7757 tick = tick1;
7758
7759 if (!full_p)
7760 break;
7761 }
7762 }
7763 else
7764 tick = -1;
7765
7766 INSN_TICK (next) = tick;
7767
7768 delay = tick - clock_var;
7769 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7770 delay = QUEUE_READY;
7771
7772 change_queue_index (next, delay);
7773
7774 return delay;
7775 }
7776
7777 /* Move NEXT to the proper queue list with (DELAY >= 1),
7778 or add it to the ready list (DELAY == QUEUE_READY),
7779 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7780 static void
7781 change_queue_index (rtx_insn *next, int delay)
7782 {
7783 int i = QUEUE_INDEX (next);
7784
7785 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7786 && delay != 0);
7787 gcc_assert (i != QUEUE_SCHEDULED);
7788
7789 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7790 || (delay < 0 && delay == i))
7791 /* We have nothing to do. */
7792 return;
7793
7794 /* Remove NEXT from wherever it is now. */
7795 if (i == QUEUE_READY)
7796 ready_remove_insn (next);
7797 else if (i >= 0)
7798 queue_remove (next);
7799
7800 /* Add it to the proper place. */
7801 if (delay == QUEUE_READY)
7802 ready_add (readyp, next, false);
7803 else if (delay >= 1)
7804 queue_insn (next, delay, "change queue index");
7805
7806 if (sched_verbose >= 2)
7807 {
7808 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7809 (*current_sched_info->print_insn) (next, 0));
7810
7811 if (delay == QUEUE_READY)
7812 fprintf (sched_dump, " into ready\n");
7813 else if (delay >= 1)
7814 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7815 else
7816 fprintf (sched_dump, " removed from ready or queue lists\n");
7817 }
7818 }
7819
7820 static int sched_ready_n_insns = -1;
7821
7822 /* Initialize per region data structures. */
7823 void
7824 sched_extend_ready_list (int new_sched_ready_n_insns)
7825 {
7826 int i;
7827
7828 if (sched_ready_n_insns == -1)
7829 /* At the first call we need to initialize one more choice_stack
7830 entry. */
7831 {
7832 i = 0;
7833 sched_ready_n_insns = 0;
7834 scheduled_insns.reserve (new_sched_ready_n_insns);
7835 }
7836 else
7837 i = sched_ready_n_insns + 1;
7838
7839 ready.veclen = new_sched_ready_n_insns + issue_rate;
7840 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7841
7842 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7843
7844 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7845 sched_ready_n_insns,
7846 sizeof (*ready_try));
7847
7848 /* We allocate +1 element to save initial state in the choice_stack[0]
7849 entry. */
7850 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7851 new_sched_ready_n_insns + 1);
7852
7853 for (; i <= new_sched_ready_n_insns; i++)
7854 {
7855 choice_stack[i].state = xmalloc (dfa_state_size);
7856
7857 if (targetm.sched.first_cycle_multipass_init)
7858 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7859 .target_data));
7860 }
7861
7862 sched_ready_n_insns = new_sched_ready_n_insns;
7863 }
7864
7865 /* Free per region data structures. */
7866 void
7867 sched_finish_ready_list (void)
7868 {
7869 int i;
7870
7871 free (ready.vec);
7872 ready.vec = NULL;
7873 ready.veclen = 0;
7874
7875 free (ready_try);
7876 ready_try = NULL;
7877
7878 for (i = 0; i <= sched_ready_n_insns; i++)
7879 {
7880 if (targetm.sched.first_cycle_multipass_fini)
7881 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7882 .target_data));
7883
7884 free (choice_stack [i].state);
7885 }
7886 free (choice_stack);
7887 choice_stack = NULL;
7888
7889 sched_ready_n_insns = -1;
7890 }
7891
7892 static int
7893 haifa_luid_for_non_insn (rtx x)
7894 {
7895 gcc_assert (NOTE_P (x) || LABEL_P (x));
7896
7897 return 0;
7898 }
7899
7900 /* Generates recovery code for INSN. */
7901 static void
7902 generate_recovery_code (rtx_insn *insn)
7903 {
7904 if (TODO_SPEC (insn) & BEGIN_SPEC)
7905 begin_speculative_block (insn);
7906
7907 /* Here we have insn with no dependencies to
7908 instructions other then CHECK_SPEC ones. */
7909
7910 if (TODO_SPEC (insn) & BE_IN_SPEC)
7911 add_to_speculative_block (insn);
7912 }
7913
7914 /* Helper function.
7915 Tries to add speculative dependencies of type FS between instructions
7916 in deps_list L and TWIN. */
7917 static void
7918 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7919 {
7920 sd_iterator_def sd_it;
7921 dep_t dep;
7922
7923 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7924 {
7925 ds_t ds;
7926 rtx_insn *consumer;
7927
7928 consumer = DEP_CON (dep);
7929
7930 ds = DEP_STATUS (dep);
7931
7932 if (/* If we want to create speculative dep. */
7933 fs
7934 /* And we can do that because this is a true dep. */
7935 && (ds & DEP_TYPES) == DEP_TRUE)
7936 {
7937 gcc_assert (!(ds & BE_IN_SPEC));
7938
7939 if (/* If this dep can be overcome with 'begin speculation'. */
7940 ds & BEGIN_SPEC)
7941 /* Then we have a choice: keep the dep 'begin speculative'
7942 or transform it into 'be in speculative'. */
7943 {
7944 if (/* In try_ready we assert that if insn once became ready
7945 it can be removed from the ready (or queue) list only
7946 due to backend decision. Hence we can't let the
7947 probability of the speculative dep to decrease. */
7948 ds_weak (ds) <= ds_weak (fs))
7949 {
7950 ds_t new_ds;
7951
7952 new_ds = (ds & ~BEGIN_SPEC) | fs;
7953
7954 if (/* consumer can 'be in speculative'. */
7955 sched_insn_is_legitimate_for_speculation_p (consumer,
7956 new_ds))
7957 /* Transform it to be in speculative. */
7958 ds = new_ds;
7959 }
7960 }
7961 else
7962 /* Mark the dep as 'be in speculative'. */
7963 ds |= fs;
7964 }
7965
7966 {
7967 dep_def _new_dep, *new_dep = &_new_dep;
7968
7969 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7970 sd_add_dep (new_dep, false);
7971 }
7972 }
7973 }
7974
7975 /* Generates recovery code for BEGIN speculative INSN. */
7976 static void
7977 begin_speculative_block (rtx_insn *insn)
7978 {
7979 if (TODO_SPEC (insn) & BEGIN_DATA)
7980 nr_begin_data++;
7981 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7982 nr_begin_control++;
7983
7984 create_check_block_twin (insn, false);
7985
7986 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7987 }
7988
7989 static void haifa_init_insn (rtx_insn *);
7990
7991 /* Generates recovery code for BE_IN speculative INSN. */
7992 static void
7993 add_to_speculative_block (rtx_insn *insn)
7994 {
7995 ds_t ts;
7996 sd_iterator_def sd_it;
7997 dep_t dep;
7998 rtx_insn_list *twins = NULL;
7999 rtx_vec_t priorities_roots;
8000
8001 ts = TODO_SPEC (insn);
8002 gcc_assert (!(ts & ~BE_IN_SPEC));
8003
8004 if (ts & BE_IN_DATA)
8005 nr_be_in_data++;
8006 if (ts & BE_IN_CONTROL)
8007 nr_be_in_control++;
8008
8009 TODO_SPEC (insn) &= ~BE_IN_SPEC;
8010 gcc_assert (!TODO_SPEC (insn));
8011
8012 DONE_SPEC (insn) |= ts;
8013
8014 /* First we convert all simple checks to branchy. */
8015 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8016 sd_iterator_cond (&sd_it, &dep);)
8017 {
8018 rtx_insn *check = DEP_PRO (dep);
8019
8020 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
8021 {
8022 create_check_block_twin (check, true);
8023
8024 /* Restart search. */
8025 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8026 }
8027 else
8028 /* Continue search. */
8029 sd_iterator_next (&sd_it);
8030 }
8031
8032 priorities_roots.create (0);
8033 clear_priorities (insn, &priorities_roots);
8034
8035 while (1)
8036 {
8037 rtx_insn *check, *twin;
8038 basic_block rec;
8039
8040 /* Get the first backward dependency of INSN. */
8041 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8042 if (!sd_iterator_cond (&sd_it, &dep))
8043 /* INSN has no backward dependencies left. */
8044 break;
8045
8046 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
8047 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
8048 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8049
8050 check = DEP_PRO (dep);
8051
8052 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
8053 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
8054
8055 rec = BLOCK_FOR_INSN (check);
8056
8057 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
8058 haifa_init_insn (twin);
8059
8060 sd_copy_back_deps (twin, insn, true);
8061
8062 if (sched_verbose && spec_info->dump)
8063 /* INSN_BB (insn) isn't determined for twin insns yet.
8064 So we can't use current_sched_info->print_insn. */
8065 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8066 INSN_UID (twin), rec->index);
8067
8068 twins = alloc_INSN_LIST (twin, twins);
8069
8070 /* Add dependences between TWIN and all appropriate
8071 instructions from REC. */
8072 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
8073 {
8074 rtx_insn *pro = DEP_PRO (dep);
8075
8076 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8077
8078 /* INSN might have dependencies from the instructions from
8079 several recovery blocks. At this iteration we process those
8080 producers that reside in REC. */
8081 if (BLOCK_FOR_INSN (pro) == rec)
8082 {
8083 dep_def _new_dep, *new_dep = &_new_dep;
8084
8085 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8086 sd_add_dep (new_dep, false);
8087 }
8088 }
8089
8090 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8091
8092 /* Remove all dependencies between INSN and insns in REC. */
8093 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8094 sd_iterator_cond (&sd_it, &dep);)
8095 {
8096 rtx_insn *pro = DEP_PRO (dep);
8097
8098 if (BLOCK_FOR_INSN (pro) == rec)
8099 sd_delete_dep (sd_it);
8100 else
8101 sd_iterator_next (&sd_it);
8102 }
8103 }
8104
8105 /* We couldn't have added the dependencies between INSN and TWINS earlier
8106 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8107 while (twins)
8108 {
8109 rtx_insn *twin;
8110 rtx_insn_list *next_node;
8111
8112 twin = twins->insn ();
8113
8114 {
8115 dep_def _new_dep, *new_dep = &_new_dep;
8116
8117 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8118 sd_add_dep (new_dep, false);
8119 }
8120
8121 next_node = twins->next ();
8122 free_INSN_LIST_node (twins);
8123 twins = next_node;
8124 }
8125
8126 calc_priorities (priorities_roots);
8127 priorities_roots.release ();
8128 }
8129
8130 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8131 void *
8132 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8133 {
8134 gcc_assert (new_nmemb >= old_nmemb);
8135 p = XRESIZEVAR (void, p, new_nmemb * size);
8136 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8137 return p;
8138 }
8139
8140 /* Helper function.
8141 Find fallthru edge from PRED. */
8142 edge
8143 find_fallthru_edge_from (basic_block pred)
8144 {
8145 edge e;
8146 basic_block succ;
8147
8148 succ = pred->next_bb;
8149 gcc_assert (succ->prev_bb == pred);
8150
8151 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8152 {
8153 e = find_fallthru_edge (pred->succs);
8154
8155 if (e)
8156 {
8157 gcc_assert (e->dest == succ);
8158 return e;
8159 }
8160 }
8161 else
8162 {
8163 e = find_fallthru_edge (succ->preds);
8164
8165 if (e)
8166 {
8167 gcc_assert (e->src == pred);
8168 return e;
8169 }
8170 }
8171
8172 return NULL;
8173 }
8174
8175 /* Extend per basic block data structures. */
8176 static void
8177 sched_extend_bb (void)
8178 {
8179 /* The following is done to keep current_sched_info->next_tail non null. */
8180 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8181 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8182 if (NEXT_INSN (end) == 0
8183 || (!NOTE_P (insn)
8184 && !LABEL_P (insn)
8185 /* Don't emit a NOTE if it would end up before a BARRIER. */
8186 && !BARRIER_P (NEXT_INSN (end))))
8187 {
8188 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8189 /* Make note appear outside BB. */
8190 set_block_for_insn (note, NULL);
8191 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8192 }
8193 }
8194
8195 /* Init per basic block data structures. */
8196 void
8197 sched_init_bbs (void)
8198 {
8199 sched_extend_bb ();
8200 }
8201
8202 /* Initialize BEFORE_RECOVERY variable. */
8203 static void
8204 init_before_recovery (basic_block *before_recovery_ptr)
8205 {
8206 basic_block last;
8207 edge e;
8208
8209 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8210 e = find_fallthru_edge_from (last);
8211
8212 if (e)
8213 {
8214 /* We create two basic blocks:
8215 1. Single instruction block is inserted right after E->SRC
8216 and has jump to
8217 2. Empty block right before EXIT_BLOCK.
8218 Between these two blocks recovery blocks will be emitted. */
8219
8220 basic_block single, empty;
8221
8222 /* If the fallthrough edge to exit we've found is from the block we've
8223 created before, don't do anything more. */
8224 if (last == after_recovery)
8225 return;
8226
8227 adding_bb_to_current_region_p = false;
8228
8229 single = sched_create_empty_bb (last);
8230 empty = sched_create_empty_bb (single);
8231
8232 /* Add new blocks to the root loop. */
8233 if (current_loops != NULL)
8234 {
8235 add_bb_to_loop (single, (*current_loops->larray)[0]);
8236 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8237 }
8238
8239 single->count = last->count;
8240 empty->count = last->count;
8241 single->frequency = last->frequency;
8242 empty->frequency = last->frequency;
8243 BB_COPY_PARTITION (single, last);
8244 BB_COPY_PARTITION (empty, last);
8245
8246 redirect_edge_succ (e, single);
8247 make_single_succ_edge (single, empty, 0);
8248 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8249 EDGE_FALLTHRU);
8250
8251 rtx_code_label *label = block_label (empty);
8252 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8253 BB_END (single));
8254 JUMP_LABEL (x) = label;
8255 LABEL_NUSES (label)++;
8256 haifa_init_insn (x);
8257
8258 emit_barrier_after (x);
8259
8260 sched_init_only_bb (empty, NULL);
8261 sched_init_only_bb (single, NULL);
8262 sched_extend_bb ();
8263
8264 adding_bb_to_current_region_p = true;
8265 before_recovery = single;
8266 after_recovery = empty;
8267
8268 if (before_recovery_ptr)
8269 *before_recovery_ptr = before_recovery;
8270
8271 if (sched_verbose >= 2 && spec_info->dump)
8272 fprintf (spec_info->dump,
8273 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8274 last->index, single->index, empty->index);
8275 }
8276 else
8277 before_recovery = last;
8278 }
8279
8280 /* Returns new recovery block. */
8281 basic_block
8282 sched_create_recovery_block (basic_block *before_recovery_ptr)
8283 {
8284 rtx_insn *barrier;
8285 basic_block rec;
8286
8287 haifa_recovery_bb_recently_added_p = true;
8288 haifa_recovery_bb_ever_added_p = true;
8289
8290 init_before_recovery (before_recovery_ptr);
8291
8292 barrier = get_last_bb_insn (before_recovery);
8293 gcc_assert (BARRIER_P (barrier));
8294
8295 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8296
8297 rec = create_basic_block (label, label, before_recovery);
8298
8299 /* A recovery block always ends with an unconditional jump. */
8300 emit_barrier_after (BB_END (rec));
8301
8302 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8303 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8304
8305 if (sched_verbose && spec_info->dump)
8306 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8307 rec->index);
8308
8309 return rec;
8310 }
8311
8312 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8313 and emit necessary jumps. */
8314 void
8315 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8316 basic_block second_bb)
8317 {
8318 int edge_flags;
8319
8320 /* This is fixing of incoming edge. */
8321 /* ??? Which other flags should be specified? */
8322 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8323 /* Partition type is the same, if it is "unpartitioned". */
8324 edge_flags = EDGE_CROSSING;
8325 else
8326 edge_flags = 0;
8327
8328 make_edge (first_bb, rec, edge_flags);
8329 rtx_code_label *label = block_label (second_bb);
8330 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8331 BB_END (rec));
8332 JUMP_LABEL (jump) = label;
8333 LABEL_NUSES (label)++;
8334
8335 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8336 /* Partition type is the same, if it is "unpartitioned". */
8337 {
8338 /* Rewritten from cfgrtl.c. */
8339 if (flag_reorder_blocks_and_partition
8340 && targetm_common.have_named_sections)
8341 {
8342 /* We don't need the same note for the check because
8343 any_condjump_p (check) == true. */
8344 CROSSING_JUMP_P (jump) = 1;
8345 }
8346 edge_flags = EDGE_CROSSING;
8347 }
8348 else
8349 edge_flags = 0;
8350
8351 make_single_succ_edge (rec, second_bb, edge_flags);
8352 if (dom_info_available_p (CDI_DOMINATORS))
8353 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8354 }
8355
8356 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8357 INSN is a simple check, that should be converted to branchy one. */
8358 static void
8359 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8360 {
8361 basic_block rec;
8362 rtx_insn *label, *check, *twin;
8363 rtx check_pat;
8364 ds_t fs;
8365 sd_iterator_def sd_it;
8366 dep_t dep;
8367 dep_def _new_dep, *new_dep = &_new_dep;
8368 ds_t todo_spec;
8369
8370 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8371
8372 if (!mutate_p)
8373 todo_spec = TODO_SPEC (insn);
8374 else
8375 {
8376 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8377 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8378
8379 todo_spec = CHECK_SPEC (insn);
8380 }
8381
8382 todo_spec &= SPECULATIVE;
8383
8384 /* Create recovery block. */
8385 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8386 {
8387 rec = sched_create_recovery_block (NULL);
8388 label = BB_HEAD (rec);
8389 }
8390 else
8391 {
8392 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8393 label = NULL;
8394 }
8395
8396 /* Emit CHECK. */
8397 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8398
8399 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8400 {
8401 /* To have mem_reg alive at the beginning of second_bb,
8402 we emit check BEFORE insn, so insn after splitting
8403 insn will be at the beginning of second_bb, which will
8404 provide us with the correct life information. */
8405 check = emit_jump_insn_before (check_pat, insn);
8406 JUMP_LABEL (check) = label;
8407 LABEL_NUSES (label)++;
8408 }
8409 else
8410 check = emit_insn_before (check_pat, insn);
8411
8412 /* Extend data structures. */
8413 haifa_init_insn (check);
8414
8415 /* CHECK is being added to current region. Extend ready list. */
8416 gcc_assert (sched_ready_n_insns != -1);
8417 sched_extend_ready_list (sched_ready_n_insns + 1);
8418
8419 if (current_sched_info->add_remove_insn)
8420 current_sched_info->add_remove_insn (insn, 0);
8421
8422 RECOVERY_BLOCK (check) = rec;
8423
8424 if (sched_verbose && spec_info->dump)
8425 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8426 (*current_sched_info->print_insn) (check, 0));
8427
8428 gcc_assert (ORIG_PAT (insn));
8429
8430 /* Initialize TWIN (twin is a duplicate of original instruction
8431 in the recovery block). */
8432 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8433 {
8434 sd_iterator_def sd_it;
8435 dep_t dep;
8436
8437 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8438 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8439 {
8440 struct _dep _dep2, *dep2 = &_dep2;
8441
8442 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8443
8444 sd_add_dep (dep2, true);
8445 }
8446
8447 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8448 haifa_init_insn (twin);
8449
8450 if (sched_verbose && spec_info->dump)
8451 /* INSN_BB (insn) isn't determined for twin insns yet.
8452 So we can't use current_sched_info->print_insn. */
8453 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8454 INSN_UID (twin), rec->index);
8455 }
8456 else
8457 {
8458 ORIG_PAT (check) = ORIG_PAT (insn);
8459 HAS_INTERNAL_DEP (check) = 1;
8460 twin = check;
8461 /* ??? We probably should change all OUTPUT dependencies to
8462 (TRUE | OUTPUT). */
8463 }
8464
8465 /* Copy all resolved back dependencies of INSN to TWIN. This will
8466 provide correct value for INSN_TICK (TWIN). */
8467 sd_copy_back_deps (twin, insn, true);
8468
8469 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8470 /* In case of branchy check, fix CFG. */
8471 {
8472 basic_block first_bb, second_bb;
8473 rtx_insn *jump;
8474
8475 first_bb = BLOCK_FOR_INSN (check);
8476 second_bb = sched_split_block (first_bb, check);
8477
8478 sched_create_recovery_edges (first_bb, rec, second_bb);
8479
8480 sched_init_only_bb (second_bb, first_bb);
8481 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8482
8483 jump = BB_END (rec);
8484 haifa_init_insn (jump);
8485 }
8486
8487 /* Move backward dependences from INSN to CHECK and
8488 move forward dependences from INSN to TWIN. */
8489
8490 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8491 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8492 {
8493 rtx_insn *pro = DEP_PRO (dep);
8494 ds_t ds;
8495
8496 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8497 check --TRUE--> producer ??? or ANTI ???
8498 twin --TRUE--> producer
8499 twin --ANTI--> check
8500
8501 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8502 check --ANTI--> producer
8503 twin --ANTI--> producer
8504 twin --ANTI--> check
8505
8506 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8507 check ~~TRUE~~> producer
8508 twin ~~TRUE~~> producer
8509 twin --ANTI--> check */
8510
8511 ds = DEP_STATUS (dep);
8512
8513 if (ds & BEGIN_SPEC)
8514 {
8515 gcc_assert (!mutate_p);
8516 ds &= ~BEGIN_SPEC;
8517 }
8518
8519 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8520 sd_add_dep (new_dep, false);
8521
8522 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8523 {
8524 DEP_CON (new_dep) = twin;
8525 sd_add_dep (new_dep, false);
8526 }
8527 }
8528
8529 /* Second, remove backward dependencies of INSN. */
8530 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8531 sd_iterator_cond (&sd_it, &dep);)
8532 {
8533 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8534 || mutate_p)
8535 /* We can delete this dep because we overcome it with
8536 BEGIN_SPECULATION. */
8537 sd_delete_dep (sd_it);
8538 else
8539 sd_iterator_next (&sd_it);
8540 }
8541
8542 /* Future Speculations. Determine what BE_IN speculations will be like. */
8543 fs = 0;
8544
8545 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8546 here. */
8547
8548 gcc_assert (!DONE_SPEC (insn));
8549
8550 if (!mutate_p)
8551 {
8552 ds_t ts = TODO_SPEC (insn);
8553
8554 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8555 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8556
8557 /* Luckiness of future speculations solely depends upon initial
8558 BEGIN speculation. */
8559 if (ts & BEGIN_DATA)
8560 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8561 if (ts & BEGIN_CONTROL)
8562 fs = set_dep_weak (fs, BE_IN_CONTROL,
8563 get_dep_weak (ts, BEGIN_CONTROL));
8564 }
8565 else
8566 CHECK_SPEC (check) = CHECK_SPEC (insn);
8567
8568 /* Future speculations: call the helper. */
8569 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8570
8571 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8572 {
8573 /* Which types of dependencies should we use here is,
8574 generally, machine-dependent question... But, for now,
8575 it is not. */
8576
8577 if (!mutate_p)
8578 {
8579 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8580 sd_add_dep (new_dep, false);
8581
8582 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8583 sd_add_dep (new_dep, false);
8584 }
8585 else
8586 {
8587 if (spec_info->dump)
8588 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8589 (*current_sched_info->print_insn) (insn, 0));
8590
8591 /* Remove all dependencies of the INSN. */
8592 {
8593 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8594 | SD_LIST_BACK
8595 | SD_LIST_RES_BACK));
8596 while (sd_iterator_cond (&sd_it, &dep))
8597 sd_delete_dep (sd_it);
8598 }
8599
8600 /* If former check (INSN) already was moved to the ready (or queue)
8601 list, add new check (CHECK) there too. */
8602 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8603 try_ready (check);
8604
8605 /* Remove old check from instruction stream and free its
8606 data. */
8607 sched_remove_insn (insn);
8608 }
8609
8610 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8611 sd_add_dep (new_dep, false);
8612 }
8613 else
8614 {
8615 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8616 sd_add_dep (new_dep, false);
8617 }
8618
8619 if (!mutate_p)
8620 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8621 because it'll be done later in add_to_speculative_block. */
8622 {
8623 rtx_vec_t priorities_roots = rtx_vec_t ();
8624
8625 clear_priorities (twin, &priorities_roots);
8626 calc_priorities (priorities_roots);
8627 priorities_roots.release ();
8628 }
8629 }
8630
8631 /* Removes dependency between instructions in the recovery block REC
8632 and usual region instructions. It keeps inner dependences so it
8633 won't be necessary to recompute them. */
8634 static void
8635 fix_recovery_deps (basic_block rec)
8636 {
8637 rtx_insn *note, *insn, *jump;
8638 rtx_insn_list *ready_list = 0;
8639 bitmap_head in_ready;
8640 rtx_insn_list *link;
8641
8642 bitmap_initialize (&in_ready, 0);
8643
8644 /* NOTE - a basic block note. */
8645 note = NEXT_INSN (BB_HEAD (rec));
8646 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8647 insn = BB_END (rec);
8648 gcc_assert (JUMP_P (insn));
8649 insn = PREV_INSN (insn);
8650
8651 do
8652 {
8653 sd_iterator_def sd_it;
8654 dep_t dep;
8655
8656 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8657 sd_iterator_cond (&sd_it, &dep);)
8658 {
8659 rtx_insn *consumer = DEP_CON (dep);
8660
8661 if (BLOCK_FOR_INSN (consumer) != rec)
8662 {
8663 sd_delete_dep (sd_it);
8664
8665 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8666 ready_list = alloc_INSN_LIST (consumer, ready_list);
8667 }
8668 else
8669 {
8670 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8671
8672 sd_iterator_next (&sd_it);
8673 }
8674 }
8675
8676 insn = PREV_INSN (insn);
8677 }
8678 while (insn != note);
8679
8680 bitmap_clear (&in_ready);
8681
8682 /* Try to add instructions to the ready or queue list. */
8683 for (link = ready_list; link; link = link->next ())
8684 try_ready (link->insn ());
8685 free_INSN_LIST_list (&ready_list);
8686
8687 /* Fixing jump's dependences. */
8688 insn = BB_HEAD (rec);
8689 jump = BB_END (rec);
8690
8691 gcc_assert (LABEL_P (insn));
8692 insn = NEXT_INSN (insn);
8693
8694 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8695 add_jump_dependencies (insn, jump);
8696 }
8697
8698 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8699 instruction data. */
8700 static bool
8701 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8702 {
8703 int t;
8704
8705 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8706 if (!t)
8707 return false;
8708
8709 update_insn_after_change (insn);
8710 return true;
8711 }
8712
8713 /* -1 - can't speculate,
8714 0 - for speculation with REQUEST mode it is OK to use
8715 current instruction pattern,
8716 1 - need to change pattern for *NEW_PAT to be speculative. */
8717 int
8718 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8719 {
8720 gcc_assert (current_sched_info->flags & DO_SPECULATION
8721 && (request & SPECULATIVE)
8722 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8723
8724 if ((request & spec_info->mask) != request)
8725 return -1;
8726
8727 if (request & BE_IN_SPEC
8728 && !(request & BEGIN_SPEC))
8729 return 0;
8730
8731 return targetm.sched.speculate_insn (insn, request, new_pat);
8732 }
8733
8734 static int
8735 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8736 {
8737 gcc_assert (sched_deps_info->generate_spec_deps
8738 && !IS_SPECULATION_CHECK_P (insn));
8739
8740 if (HAS_INTERNAL_DEP (insn)
8741 || SCHED_GROUP_P (insn))
8742 return -1;
8743
8744 return sched_speculate_insn (insn, request, new_pat);
8745 }
8746
8747 /* Print some information about block BB, which starts with HEAD and
8748 ends with TAIL, before scheduling it.
8749 I is zero, if scheduler is about to start with the fresh ebb. */
8750 static void
8751 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8752 {
8753 if (!i)
8754 fprintf (sched_dump,
8755 ";; ======================================================\n");
8756 else
8757 fprintf (sched_dump,
8758 ";; =====================ADVANCING TO=====================\n");
8759 fprintf (sched_dump,
8760 ";; -- basic block %d from %d to %d -- %s reload\n",
8761 bb->index, INSN_UID (head), INSN_UID (tail),
8762 (reload_completed ? "after" : "before"));
8763 fprintf (sched_dump,
8764 ";; ======================================================\n");
8765 fprintf (sched_dump, "\n");
8766 }
8767
8768 /* Unlink basic block notes and labels and saves them, so they
8769 can be easily restored. We unlink basic block notes in EBB to
8770 provide back-compatibility with the previous code, as target backends
8771 assume, that there'll be only instructions between
8772 current_sched_info->{head and tail}. We restore these notes as soon
8773 as we can.
8774 FIRST (LAST) is the first (last) basic block in the ebb.
8775 NB: In usual case (FIRST == LAST) nothing is really done. */
8776 void
8777 unlink_bb_notes (basic_block first, basic_block last)
8778 {
8779 /* We DON'T unlink basic block notes of the first block in the ebb. */
8780 if (first == last)
8781 return;
8782
8783 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8784
8785 /* Make a sentinel. */
8786 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8787 bb_header[last->next_bb->index] = 0;
8788
8789 first = first->next_bb;
8790 do
8791 {
8792 rtx_insn *prev, *label, *note, *next;
8793
8794 label = BB_HEAD (last);
8795 if (LABEL_P (label))
8796 note = NEXT_INSN (label);
8797 else
8798 note = label;
8799 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8800
8801 prev = PREV_INSN (label);
8802 next = NEXT_INSN (note);
8803 gcc_assert (prev && next);
8804
8805 SET_NEXT_INSN (prev) = next;
8806 SET_PREV_INSN (next) = prev;
8807
8808 bb_header[last->index] = label;
8809
8810 if (last == first)
8811 break;
8812
8813 last = last->prev_bb;
8814 }
8815 while (1);
8816 }
8817
8818 /* Restore basic block notes.
8819 FIRST is the first basic block in the ebb. */
8820 static void
8821 restore_bb_notes (basic_block first)
8822 {
8823 if (!bb_header)
8824 return;
8825
8826 /* We DON'T unlink basic block notes of the first block in the ebb. */
8827 first = first->next_bb;
8828 /* Remember: FIRST is actually a second basic block in the ebb. */
8829
8830 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8831 && bb_header[first->index])
8832 {
8833 rtx_insn *prev, *label, *note, *next;
8834
8835 label = bb_header[first->index];
8836 prev = PREV_INSN (label);
8837 next = NEXT_INSN (prev);
8838
8839 if (LABEL_P (label))
8840 note = NEXT_INSN (label);
8841 else
8842 note = label;
8843 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8844
8845 bb_header[first->index] = 0;
8846
8847 SET_NEXT_INSN (prev) = label;
8848 SET_NEXT_INSN (note) = next;
8849 SET_PREV_INSN (next) = note;
8850
8851 first = first->next_bb;
8852 }
8853
8854 free (bb_header);
8855 bb_header = 0;
8856 }
8857
8858 /* Helper function.
8859 Fix CFG after both in- and inter-block movement of
8860 control_flow_insn_p JUMP. */
8861 static void
8862 fix_jump_move (rtx_insn *jump)
8863 {
8864 basic_block bb, jump_bb, jump_bb_next;
8865
8866 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8867 jump_bb = BLOCK_FOR_INSN (jump);
8868 jump_bb_next = jump_bb->next_bb;
8869
8870 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8871 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8872
8873 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8874 /* if jump_bb_next is not empty. */
8875 BB_END (jump_bb) = BB_END (jump_bb_next);
8876
8877 if (BB_END (bb) != PREV_INSN (jump))
8878 /* Then there are instruction after jump that should be placed
8879 to jump_bb_next. */
8880 BB_END (jump_bb_next) = BB_END (bb);
8881 else
8882 /* Otherwise jump_bb_next is empty. */
8883 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8884
8885 /* To make assertion in move_insn happy. */
8886 BB_END (bb) = PREV_INSN (jump);
8887
8888 update_bb_for_insn (jump_bb_next);
8889 }
8890
8891 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8892 static void
8893 move_block_after_check (rtx_insn *jump)
8894 {
8895 basic_block bb, jump_bb, jump_bb_next;
8896 vec<edge, va_gc> *t;
8897
8898 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8899 jump_bb = BLOCK_FOR_INSN (jump);
8900 jump_bb_next = jump_bb->next_bb;
8901
8902 update_bb_for_insn (jump_bb);
8903
8904 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8905 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8906
8907 unlink_block (jump_bb_next);
8908 link_block (jump_bb_next, bb);
8909
8910 t = bb->succs;
8911 bb->succs = 0;
8912 move_succs (&(jump_bb->succs), bb);
8913 move_succs (&(jump_bb_next->succs), jump_bb);
8914 move_succs (&t, jump_bb_next);
8915
8916 df_mark_solutions_dirty ();
8917
8918 common_sched_info->fix_recovery_cfg
8919 (bb->index, jump_bb->index, jump_bb_next->index);
8920 }
8921
8922 /* Helper function for move_block_after_check.
8923 This functions attaches edge vector pointed to by SUCCSP to
8924 block TO. */
8925 static void
8926 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8927 {
8928 edge e;
8929 edge_iterator ei;
8930
8931 gcc_assert (to->succs == 0);
8932
8933 to->succs = *succsp;
8934
8935 FOR_EACH_EDGE (e, ei, to->succs)
8936 e->src = to;
8937
8938 *succsp = 0;
8939 }
8940
8941 /* Remove INSN from the instruction stream.
8942 INSN should have any dependencies. */
8943 static void
8944 sched_remove_insn (rtx_insn *insn)
8945 {
8946 sd_finish_insn (insn);
8947
8948 change_queue_index (insn, QUEUE_NOWHERE);
8949 current_sched_info->add_remove_insn (insn, 1);
8950 delete_insn (insn);
8951 }
8952
8953 /* Clear priorities of all instructions, that are forward dependent on INSN.
8954 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8955 be invoked to initialize all cleared priorities. */
8956 static void
8957 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8958 {
8959 sd_iterator_def sd_it;
8960 dep_t dep;
8961 bool insn_is_root_p = true;
8962
8963 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8964
8965 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8966 {
8967 rtx_insn *pro = DEP_PRO (dep);
8968
8969 if (INSN_PRIORITY_STATUS (pro) >= 0
8970 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8971 {
8972 /* If DEP doesn't contribute to priority then INSN itself should
8973 be added to priority roots. */
8974 if (contributes_to_priority_p (dep))
8975 insn_is_root_p = false;
8976
8977 INSN_PRIORITY_STATUS (pro) = -1;
8978 clear_priorities (pro, roots_ptr);
8979 }
8980 }
8981
8982 if (insn_is_root_p)
8983 roots_ptr->safe_push (insn);
8984 }
8985
8986 /* Recompute priorities of instructions, whose priorities might have been
8987 changed. ROOTS is a vector of instructions whose priority computation will
8988 trigger initialization of all cleared priorities. */
8989 static void
8990 calc_priorities (rtx_vec_t roots)
8991 {
8992 int i;
8993 rtx_insn *insn;
8994
8995 FOR_EACH_VEC_ELT (roots, i, insn)
8996 priority (insn);
8997 }
8998
8999
9000 /* Add dependences between JUMP and other instructions in the recovery
9001 block. INSN is the first insn the recovery block. */
9002 static void
9003 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
9004 {
9005 do
9006 {
9007 insn = NEXT_INSN (insn);
9008 if (insn == jump)
9009 break;
9010
9011 if (dep_list_size (insn, SD_LIST_FORW) == 0)
9012 {
9013 dep_def _new_dep, *new_dep = &_new_dep;
9014
9015 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
9016 sd_add_dep (new_dep, false);
9017 }
9018 }
9019 while (1);
9020
9021 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
9022 }
9023
9024 /* Extend data structures for logical insn UID. */
9025 void
9026 sched_extend_luids (void)
9027 {
9028 int new_luids_max_uid = get_max_uid () + 1;
9029
9030 sched_luids.safe_grow_cleared (new_luids_max_uid);
9031 }
9032
9033 /* Initialize LUID for INSN. */
9034 void
9035 sched_init_insn_luid (rtx_insn *insn)
9036 {
9037 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
9038 int luid;
9039
9040 if (i >= 0)
9041 {
9042 luid = sched_max_luid;
9043 sched_max_luid += i;
9044 }
9045 else
9046 luid = -1;
9047
9048 SET_INSN_LUID (insn, luid);
9049 }
9050
9051 /* Initialize luids for BBS.
9052 The hook common_sched_info->luid_for_non_insn () is used to determine
9053 if notes, labels, etc. need luids. */
9054 void
9055 sched_init_luids (bb_vec_t bbs)
9056 {
9057 int i;
9058 basic_block bb;
9059
9060 sched_extend_luids ();
9061 FOR_EACH_VEC_ELT (bbs, i, bb)
9062 {
9063 rtx_insn *insn;
9064
9065 FOR_BB_INSNS (bb, insn)
9066 sched_init_insn_luid (insn);
9067 }
9068 }
9069
9070 /* Free LUIDs. */
9071 void
9072 sched_finish_luids (void)
9073 {
9074 sched_luids.release ();
9075 sched_max_luid = 1;
9076 }
9077
9078 /* Return logical uid of INSN. Helpful while debugging. */
9079 int
9080 insn_luid (rtx_insn *insn)
9081 {
9082 return INSN_LUID (insn);
9083 }
9084
9085 /* Extend per insn data in the target. */
9086 void
9087 sched_extend_target (void)
9088 {
9089 if (targetm.sched.h_i_d_extended)
9090 targetm.sched.h_i_d_extended ();
9091 }
9092
9093 /* Extend global scheduler structures (those, that live across calls to
9094 schedule_block) to include information about just emitted INSN. */
9095 static void
9096 extend_h_i_d (void)
9097 {
9098 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9099 if (reserve > 0
9100 && ! h_i_d.space (reserve))
9101 {
9102 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9103 sched_extend_target ();
9104 }
9105 }
9106
9107 /* Initialize h_i_d entry of the INSN with default values.
9108 Values, that are not explicitly initialized here, hold zero. */
9109 static void
9110 init_h_i_d (rtx_insn *insn)
9111 {
9112 if (INSN_LUID (insn) > 0)
9113 {
9114 INSN_COST (insn) = -1;
9115 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9116 INSN_TICK (insn) = INVALID_TICK;
9117 INSN_EXACT_TICK (insn) = INVALID_TICK;
9118 INTER_TICK (insn) = INVALID_TICK;
9119 TODO_SPEC (insn) = HARD_DEP;
9120 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9121 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9122 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9123 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9124 }
9125 }
9126
9127 /* Initialize haifa_insn_data for BBS. */
9128 void
9129 haifa_init_h_i_d (bb_vec_t bbs)
9130 {
9131 int i;
9132 basic_block bb;
9133
9134 extend_h_i_d ();
9135 FOR_EACH_VEC_ELT (bbs, i, bb)
9136 {
9137 rtx_insn *insn;
9138
9139 FOR_BB_INSNS (bb, insn)
9140 init_h_i_d (insn);
9141 }
9142 }
9143
9144 /* Finalize haifa_insn_data. */
9145 void
9146 haifa_finish_h_i_d (void)
9147 {
9148 int i;
9149 haifa_insn_data_t data;
9150 reg_use_data *use, *next_use;
9151 reg_set_data *set, *next_set;
9152
9153 FOR_EACH_VEC_ELT (h_i_d, i, data)
9154 {
9155 free (data->max_reg_pressure);
9156 free (data->reg_pressure);
9157 for (use = data->reg_use_list; use != NULL; use = next_use)
9158 {
9159 next_use = use->next_insn_use;
9160 free (use);
9161 }
9162 for (set = data->reg_set_list; set != NULL; set = next_set)
9163 {
9164 next_set = set->next_insn_set;
9165 free (set);
9166 }
9167
9168 }
9169 h_i_d.release ();
9170 }
9171
9172 /* Init data for the new insn INSN. */
9173 static void
9174 haifa_init_insn (rtx_insn *insn)
9175 {
9176 gcc_assert (insn != NULL);
9177
9178 sched_extend_luids ();
9179 sched_init_insn_luid (insn);
9180 sched_extend_target ();
9181 sched_deps_init (false);
9182 extend_h_i_d ();
9183 init_h_i_d (insn);
9184
9185 if (adding_bb_to_current_region_p)
9186 {
9187 sd_init_insn (insn);
9188
9189 /* Extend dependency caches by one element. */
9190 extend_dependency_caches (1, false);
9191 }
9192 if (sched_pressure != SCHED_PRESSURE_NONE)
9193 init_insn_reg_pressure_info (insn);
9194 }
9195
9196 /* Init data for the new basic block BB which comes after AFTER. */
9197 static void
9198 haifa_init_only_bb (basic_block bb, basic_block after)
9199 {
9200 gcc_assert (bb != NULL);
9201
9202 sched_init_bbs ();
9203
9204 if (common_sched_info->add_block)
9205 /* This changes only data structures of the front-end. */
9206 common_sched_info->add_block (bb, after);
9207 }
9208
9209 /* A generic version of sched_split_block (). */
9210 basic_block
9211 sched_split_block_1 (basic_block first_bb, rtx after)
9212 {
9213 edge e;
9214
9215 e = split_block (first_bb, after);
9216 gcc_assert (e->src == first_bb);
9217
9218 /* sched_split_block emits note if *check == BB_END. Probably it
9219 is better to rip that note off. */
9220
9221 return e->dest;
9222 }
9223
9224 /* A generic version of sched_create_empty_bb (). */
9225 basic_block
9226 sched_create_empty_bb_1 (basic_block after)
9227 {
9228 return create_empty_bb (after);
9229 }
9230
9231 /* Insert PAT as an INSN into the schedule and update the necessary data
9232 structures to account for it. */
9233 rtx_insn *
9234 sched_emit_insn (rtx pat)
9235 {
9236 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9237 haifa_init_insn (insn);
9238
9239 if (current_sched_info->add_remove_insn)
9240 current_sched_info->add_remove_insn (insn, 0);
9241
9242 (*current_sched_info->begin_schedule_ready) (insn);
9243 scheduled_insns.safe_push (insn);
9244
9245 last_scheduled_insn = insn;
9246 return insn;
9247 }
9248
9249 /* This function returns a candidate satisfying dispatch constraints from
9250 the ready list. */
9251
9252 static rtx_insn *
9253 ready_remove_first_dispatch (struct ready_list *ready)
9254 {
9255 int i;
9256 rtx_insn *insn = ready_element (ready, 0);
9257
9258 if (ready->n_ready == 1
9259 || !INSN_P (insn)
9260 || INSN_CODE (insn) < 0
9261 || !active_insn_p (insn)
9262 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9263 return ready_remove_first (ready);
9264
9265 for (i = 1; i < ready->n_ready; i++)
9266 {
9267 insn = ready_element (ready, i);
9268
9269 if (!INSN_P (insn)
9270 || INSN_CODE (insn) < 0
9271 || !active_insn_p (insn))
9272 continue;
9273
9274 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9275 {
9276 /* Return ith element of ready. */
9277 insn = ready_remove (ready, i);
9278 return insn;
9279 }
9280 }
9281
9282 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9283 return ready_remove_first (ready);
9284
9285 for (i = 1; i < ready->n_ready; i++)
9286 {
9287 insn = ready_element (ready, i);
9288
9289 if (!INSN_P (insn)
9290 || INSN_CODE (insn) < 0
9291 || !active_insn_p (insn))
9292 continue;
9293
9294 /* Return i-th element of ready. */
9295 if (targetm.sched.dispatch (insn, IS_CMP))
9296 return ready_remove (ready, i);
9297 }
9298
9299 return ready_remove_first (ready);
9300 }
9301
9302 /* Get number of ready insn in the ready list. */
9303
9304 int
9305 number_in_ready (void)
9306 {
9307 return ready.n_ready;
9308 }
9309
9310 /* Get number of ready's in the ready list. */
9311
9312 rtx_insn *
9313 get_ready_element (int i)
9314 {
9315 return ready_element (&ready, i);
9316 }
9317
9318 #endif /* INSN_SCHEDULING */