haifa-sched.c: make ready_list an auto_vec<rtx_insn *>
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "tm_p.h"
134 #include "insn-config.h"
135 #include "regs.h"
136 #include "ira.h"
137 #include "recog.h"
138 #include "insn-attr.h"
139 #include "cfgrtl.h"
140 #include "cfgbuild.h"
141 #include "sched-int.h"
142 #include "common/common-target.h"
143 #include "params.h"
144 #include "dbgcnt.h"
145 #include "cfgloop.h"
146 #include "dumpfile.h"
147 #include "print-rtl.h"
148
149 #ifdef INSN_SCHEDULING
150
151 /* True if we do register pressure relief through live-range
152 shrinkage. */
153 static bool live_range_shrinkage_p;
154
155 /* Switch on live range shrinkage. */
156 void
157 initialize_live_range_shrinkage (void)
158 {
159 live_range_shrinkage_p = true;
160 }
161
162 /* Switch off live range shrinkage. */
163 void
164 finish_live_range_shrinkage (void)
165 {
166 live_range_shrinkage_p = false;
167 }
168
169 /* issue_rate is the number of insns that can be scheduled in the same
170 machine cycle. It can be defined in the config/mach/mach.h file,
171 otherwise we set it to 1. */
172
173 int issue_rate;
174
175 /* This can be set to true by a backend if the scheduler should not
176 enable a DCE pass. */
177 bool sched_no_dce;
178
179 /* The current initiation interval used when modulo scheduling. */
180 static int modulo_ii;
181
182 /* The maximum number of stages we are prepared to handle. */
183 static int modulo_max_stages;
184
185 /* The number of insns that exist in each iteration of the loop. We use this
186 to detect when we've scheduled all insns from the first iteration. */
187 static int modulo_n_insns;
188
189 /* The current count of insns in the first iteration of the loop that have
190 already been scheduled. */
191 static int modulo_insns_scheduled;
192
193 /* The maximum uid of insns from the first iteration of the loop. */
194 static int modulo_iter0_max_uid;
195
196 /* The number of times we should attempt to backtrack when modulo scheduling.
197 Decreased each time we have to backtrack. */
198 static int modulo_backtracks_left;
199
200 /* The stage in which the last insn from the original loop was
201 scheduled. */
202 static int modulo_last_stage;
203
204 /* sched-verbose controls the amount of debugging output the
205 scheduler prints. It is controlled by -fsched-verbose=N:
206 N=0: no debugging output.
207 N=1: default value.
208 N=2: bb's probabilities, detailed ready list info, unit/insn info.
209 N=3: rtl at abort point, control-flow, regions info.
210 N=5: dependences info. */
211 int sched_verbose = 0;
212
213 /* Debugging file. All printouts are sent to dump. */
214 FILE *sched_dump = 0;
215
216 /* This is a placeholder for the scheduler parameters common
217 to all schedulers. */
218 struct common_sched_info_def *common_sched_info;
219
220 #define INSN_TICK(INSN) (HID (INSN)->tick)
221 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
222 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
223 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
224 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
225 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
226 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
227 /* Cached cost of the instruction. Use insn_cost to get cost of the
228 insn. -1 here means that the field is not initialized. */
229 #define INSN_COST(INSN) (HID (INSN)->cost)
230
231 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
232 then it should be recalculated from scratch. */
233 #define INVALID_TICK (-(max_insn_queue_index + 1))
234 /* The minimal value of the INSN_TICK of an instruction. */
235 #define MIN_TICK (-max_insn_queue_index)
236
237 /* Original order of insns in the ready list.
238 Used to keep order of normal insns while separating DEBUG_INSNs. */
239 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
240
241 /* The deciding reason for INSN's place in the ready list. */
242 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
243
244 /* List of important notes we must keep around. This is a pointer to the
245 last element in the list. */
246 rtx_insn *note_list;
247
248 static struct spec_info_def spec_info_var;
249 /* Description of the speculative part of the scheduling.
250 If NULL - no speculation. */
251 spec_info_t spec_info = NULL;
252
253 /* True, if recovery block was added during scheduling of current block.
254 Used to determine, if we need to fix INSN_TICKs. */
255 static bool haifa_recovery_bb_recently_added_p;
256
257 /* True, if recovery block was added during this scheduling pass.
258 Used to determine if we should have empty memory pools of dependencies
259 after finishing current region. */
260 bool haifa_recovery_bb_ever_added_p;
261
262 /* Counters of different types of speculative instructions. */
263 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
264
265 /* Array used in {unlink, restore}_bb_notes. */
266 static rtx_insn **bb_header = 0;
267
268 /* Basic block after which recovery blocks will be created. */
269 static basic_block before_recovery;
270
271 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
272 created it. */
273 basic_block after_recovery;
274
275 /* FALSE if we add bb to another region, so we don't need to initialize it. */
276 bool adding_bb_to_current_region_p = true;
277
278 /* Queues, etc. */
279
280 /* An instruction is ready to be scheduled when all insns preceding it
281 have already been scheduled. It is important to ensure that all
282 insns which use its result will not be executed until its result
283 has been computed. An insn is maintained in one of four structures:
284
285 (P) the "Pending" set of insns which cannot be scheduled until
286 their dependencies have been satisfied.
287 (Q) the "Queued" set of insns that can be scheduled when sufficient
288 time has passed.
289 (R) the "Ready" list of unscheduled, uncommitted insns.
290 (S) the "Scheduled" list of insns.
291
292 Initially, all insns are either "Pending" or "Ready" depending on
293 whether their dependencies are satisfied.
294
295 Insns move from the "Ready" list to the "Scheduled" list as they
296 are committed to the schedule. As this occurs, the insns in the
297 "Pending" list have their dependencies satisfied and move to either
298 the "Ready" list or the "Queued" set depending on whether
299 sufficient time has passed to make them ready. As time passes,
300 insns move from the "Queued" set to the "Ready" list.
301
302 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
303 unscheduled insns, i.e., those that are ready, queued, and pending.
304 The "Queued" set (Q) is implemented by the variable `insn_queue'.
305 The "Ready" list (R) is implemented by the variables `ready' and
306 `n_ready'.
307 The "Scheduled" list (S) is the new insn chain built by this pass.
308
309 The transition (R->S) is implemented in the scheduling loop in
310 `schedule_block' when the best insn to schedule is chosen.
311 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
312 insns move from the ready list to the scheduled list.
313 The transition (Q->R) is implemented in 'queue_to_insn' as time
314 passes or stalls are introduced. */
315
316 /* Implement a circular buffer to delay instructions until sufficient
317 time has passed. For the new pipeline description interface,
318 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
319 than maximal time of instruction execution computed by genattr.c on
320 the base maximal time of functional unit reservations and getting a
321 result. This is the longest time an insn may be queued. */
322
323 static rtx_insn_list **insn_queue;
324 static int q_ptr = 0;
325 static int q_size = 0;
326 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
327 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
328
329 #define QUEUE_SCHEDULED (-3)
330 #define QUEUE_NOWHERE (-2)
331 #define QUEUE_READY (-1)
332 /* QUEUE_SCHEDULED - INSN is scheduled.
333 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
334 queue or ready list.
335 QUEUE_READY - INSN is in ready list.
336 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
337
338 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
339
340 /* The following variable value refers for all current and future
341 reservations of the processor units. */
342 state_t curr_state;
343
344 /* The following variable value is size of memory representing all
345 current and future reservations of the processor units. */
346 size_t dfa_state_size;
347
348 /* The following array is used to find the best insn from ready when
349 the automaton pipeline interface is used. */
350 signed char *ready_try = NULL;
351
352 /* The ready list. */
353 struct ready_list ready = {NULL, 0, 0, 0, 0};
354
355 /* The pointer to the ready list (to be removed). */
356 static struct ready_list *readyp = &ready;
357
358 /* Scheduling clock. */
359 static int clock_var;
360
361 /* Clock at which the previous instruction was issued. */
362 static int last_clock_var;
363
364 /* Set to true if, when queuing a shadow insn, we discover that it would be
365 scheduled too late. */
366 static bool must_backtrack;
367
368 /* The following variable value is number of essential insns issued on
369 the current cycle. An insn is essential one if it changes the
370 processors state. */
371 int cycle_issued_insns;
372
373 /* This records the actual schedule. It is built up during the main phase
374 of schedule_block, and afterwards used to reorder the insns in the RTL. */
375 static vec<rtx_insn *> scheduled_insns;
376
377 static int may_trap_exp (const_rtx, int);
378
379 /* Nonzero iff the address is comprised from at most 1 register. */
380 #define CONST_BASED_ADDRESS_P(x) \
381 (REG_P (x) \
382 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
383 || (GET_CODE (x) == LO_SUM)) \
384 && (CONSTANT_P (XEXP (x, 0)) \
385 || CONSTANT_P (XEXP (x, 1)))))
386
387 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
388 as found by analyzing insn's expression. */
389
390 \f
391 static int haifa_luid_for_non_insn (rtx x);
392
393 /* Haifa version of sched_info hooks common to all headers. */
394 const struct common_sched_info_def haifa_common_sched_info =
395 {
396 NULL, /* fix_recovery_cfg */
397 NULL, /* add_block */
398 NULL, /* estimate_number_of_insns */
399 haifa_luid_for_non_insn, /* luid_for_non_insn */
400 SCHED_PASS_UNKNOWN /* sched_pass_id */
401 };
402
403 /* Mapping from instruction UID to its Logical UID. */
404 vec<int> sched_luids = vNULL;
405
406 /* Next LUID to assign to an instruction. */
407 int sched_max_luid = 1;
408
409 /* Haifa Instruction Data. */
410 vec<haifa_insn_data_def> h_i_d = vNULL;
411
412 void (* sched_init_only_bb) (basic_block, basic_block);
413
414 /* Split block function. Different schedulers might use different functions
415 to handle their internal data consistent. */
416 basic_block (* sched_split_block) (basic_block, rtx);
417
418 /* Create empty basic block after the specified block. */
419 basic_block (* sched_create_empty_bb) (basic_block);
420
421 /* Return the number of cycles until INSN is expected to be ready.
422 Return zero if it already is. */
423 static int
424 insn_delay (rtx_insn *insn)
425 {
426 return MAX (INSN_TICK (insn) - clock_var, 0);
427 }
428
429 static int
430 may_trap_exp (const_rtx x, int is_store)
431 {
432 enum rtx_code code;
433
434 if (x == 0)
435 return TRAP_FREE;
436 code = GET_CODE (x);
437 if (is_store)
438 {
439 if (code == MEM && may_trap_p (x))
440 return TRAP_RISKY;
441 else
442 return TRAP_FREE;
443 }
444 if (code == MEM)
445 {
446 /* The insn uses memory: a volatile load. */
447 if (MEM_VOLATILE_P (x))
448 return IRISKY;
449 /* An exception-free load. */
450 if (!may_trap_p (x))
451 return IFREE;
452 /* A load with 1 base register, to be further checked. */
453 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
454 return PFREE_CANDIDATE;
455 /* No info on the load, to be further checked. */
456 return PRISKY_CANDIDATE;
457 }
458 else
459 {
460 const char *fmt;
461 int i, insn_class = TRAP_FREE;
462
463 /* Neither store nor load, check if it may cause a trap. */
464 if (may_trap_p (x))
465 return TRAP_RISKY;
466 /* Recursive step: walk the insn... */
467 fmt = GET_RTX_FORMAT (code);
468 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
469 {
470 if (fmt[i] == 'e')
471 {
472 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
473 insn_class = WORST_CLASS (insn_class, tmp_class);
474 }
475 else if (fmt[i] == 'E')
476 {
477 int j;
478 for (j = 0; j < XVECLEN (x, i); j++)
479 {
480 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
481 insn_class = WORST_CLASS (insn_class, tmp_class);
482 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
483 break;
484 }
485 }
486 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
487 break;
488 }
489 return insn_class;
490 }
491 }
492
493 /* Classifies rtx X of an insn for the purpose of verifying that X can be
494 executed speculatively (and consequently the insn can be moved
495 speculatively), by examining X, returning:
496 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
497 TRAP_FREE: non-load insn.
498 IFREE: load from a globally safe location.
499 IRISKY: volatile load.
500 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
501 being either PFREE or PRISKY. */
502
503 static int
504 haifa_classify_rtx (const_rtx x)
505 {
506 int tmp_class = TRAP_FREE;
507 int insn_class = TRAP_FREE;
508 enum rtx_code code;
509
510 if (GET_CODE (x) == PARALLEL)
511 {
512 int i, len = XVECLEN (x, 0);
513
514 for (i = len - 1; i >= 0; i--)
515 {
516 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
517 insn_class = WORST_CLASS (insn_class, tmp_class);
518 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
519 break;
520 }
521 }
522 else
523 {
524 code = GET_CODE (x);
525 switch (code)
526 {
527 case CLOBBER:
528 /* Test if it is a 'store'. */
529 tmp_class = may_trap_exp (XEXP (x, 0), 1);
530 break;
531 case SET:
532 /* Test if it is a store. */
533 tmp_class = may_trap_exp (SET_DEST (x), 1);
534 if (tmp_class == TRAP_RISKY)
535 break;
536 /* Test if it is a load. */
537 tmp_class =
538 WORST_CLASS (tmp_class,
539 may_trap_exp (SET_SRC (x), 0));
540 break;
541 case COND_EXEC:
542 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
543 if (tmp_class == TRAP_RISKY)
544 break;
545 tmp_class = WORST_CLASS (tmp_class,
546 may_trap_exp (COND_EXEC_TEST (x), 0));
547 break;
548 case TRAP_IF:
549 tmp_class = TRAP_RISKY;
550 break;
551 default:;
552 }
553 insn_class = tmp_class;
554 }
555
556 return insn_class;
557 }
558
559 int
560 haifa_classify_insn (const_rtx insn)
561 {
562 return haifa_classify_rtx (PATTERN (insn));
563 }
564 \f
565 /* After the scheduler initialization function has been called, this function
566 can be called to enable modulo scheduling. II is the initiation interval
567 we should use, it affects the delays for delay_pairs that were recorded as
568 separated by a given number of stages.
569
570 MAX_STAGES provides us with a limit
571 after which we give up scheduling; the caller must have unrolled at least
572 as many copies of the loop body and recorded delay_pairs for them.
573
574 INSNS is the number of real (non-debug) insns in one iteration of
575 the loop. MAX_UID can be used to test whether an insn belongs to
576 the first iteration of the loop; all of them have a uid lower than
577 MAX_UID. */
578 void
579 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
580 {
581 modulo_ii = ii;
582 modulo_max_stages = max_stages;
583 modulo_n_insns = insns;
584 modulo_iter0_max_uid = max_uid;
585 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
586 }
587
588 /* A structure to record a pair of insns where the first one is a real
589 insn that has delay slots, and the second is its delayed shadow.
590 I1 is scheduled normally and will emit an assembly instruction,
591 while I2 describes the side effect that takes place at the
592 transition between cycles CYCLES and (CYCLES + 1) after I1. */
593 struct delay_pair
594 {
595 struct delay_pair *next_same_i1;
596 rtx_insn *i1, *i2;
597 int cycles;
598 /* When doing modulo scheduling, we a delay_pair can also be used to
599 show that I1 and I2 are the same insn in a different stage. If that
600 is the case, STAGES will be nonzero. */
601 int stages;
602 };
603
604 /* Helpers for delay hashing. */
605
606 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
607 {
608 typedef void *compare_type;
609 static inline hashval_t hash (const delay_pair *);
610 static inline bool equal (const delay_pair *, const void *);
611 };
612
613 /* Returns a hash value for X, based on hashing just I1. */
614
615 inline hashval_t
616 delay_i1_hasher::hash (const delay_pair *x)
617 {
618 return htab_hash_pointer (x->i1);
619 }
620
621 /* Return true if I1 of pair X is the same as that of pair Y. */
622
623 inline bool
624 delay_i1_hasher::equal (const delay_pair *x, const void *y)
625 {
626 return x->i1 == y;
627 }
628
629 struct delay_i2_hasher : free_ptr_hash <delay_pair>
630 {
631 typedef void *compare_type;
632 static inline hashval_t hash (const delay_pair *);
633 static inline bool equal (const delay_pair *, const void *);
634 };
635
636 /* Returns a hash value for X, based on hashing just I2. */
637
638 inline hashval_t
639 delay_i2_hasher::hash (const delay_pair *x)
640 {
641 return htab_hash_pointer (x->i2);
642 }
643
644 /* Return true if I2 of pair X is the same as that of pair Y. */
645
646 inline bool
647 delay_i2_hasher::equal (const delay_pair *x, const void *y)
648 {
649 return x->i2 == y;
650 }
651
652 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
653 indexed by I2. */
654 static hash_table<delay_i1_hasher> *delay_htab;
655 static hash_table<delay_i2_hasher> *delay_htab_i2;
656
657 /* Called through htab_traverse. Walk the hashtable using I2 as
658 index, and delete all elements involving an UID higher than
659 that pointed to by *DATA. */
660 int
661 haifa_htab_i2_traverse (delay_pair **slot, int *data)
662 {
663 int maxuid = *data;
664 struct delay_pair *p = *slot;
665 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
666 {
667 delay_htab_i2->clear_slot (slot);
668 }
669 return 1;
670 }
671
672 /* Called through htab_traverse. Walk the hashtable using I2 as
673 index, and delete all elements involving an UID higher than
674 that pointed to by *DATA. */
675 int
676 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
677 {
678 int maxuid = *data;
679 struct delay_pair *p, *first, **pprev;
680
681 if (INSN_UID ((*pslot)->i1) >= maxuid)
682 {
683 delay_htab->clear_slot (pslot);
684 return 1;
685 }
686 pprev = &first;
687 for (p = *pslot; p; p = p->next_same_i1)
688 {
689 if (INSN_UID (p->i2) < maxuid)
690 {
691 *pprev = p;
692 pprev = &p->next_same_i1;
693 }
694 }
695 *pprev = NULL;
696 if (first == NULL)
697 delay_htab->clear_slot (pslot);
698 else
699 *pslot = first;
700 return 1;
701 }
702
703 /* Discard all delay pairs which involve an insn with an UID higher
704 than MAX_UID. */
705 void
706 discard_delay_pairs_above (int max_uid)
707 {
708 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
709 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
710 }
711
712 /* This function can be called by a port just before it starts the final
713 scheduling pass. It records the fact that an instruction with delay
714 slots has been split into two insns, I1 and I2. The first one will be
715 scheduled normally and initiates the operation. The second one is a
716 shadow which must follow a specific number of cycles after I1; its only
717 purpose is to show the side effect that occurs at that cycle in the RTL.
718 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
719 while I2 retains the original insn type.
720
721 There are two ways in which the number of cycles can be specified,
722 involving the CYCLES and STAGES arguments to this function. If STAGES
723 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
724 which is multiplied by MODULO_II to give the number of cycles. This is
725 only useful if the caller also calls set_modulo_params to enable modulo
726 scheduling. */
727
728 void
729 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
730 {
731 struct delay_pair *p = XNEW (struct delay_pair);
732 struct delay_pair **slot;
733
734 p->i1 = i1;
735 p->i2 = i2;
736 p->cycles = cycles;
737 p->stages = stages;
738
739 if (!delay_htab)
740 {
741 delay_htab = new hash_table<delay_i1_hasher> (10);
742 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
743 }
744 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
745 p->next_same_i1 = *slot;
746 *slot = p;
747 slot = delay_htab_i2->find_slot (p, INSERT);
748 *slot = p;
749 }
750
751 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
752 and return the other insn if so. Return NULL otherwise. */
753 rtx_insn *
754 real_insn_for_shadow (rtx_insn *insn)
755 {
756 struct delay_pair *pair;
757
758 if (!delay_htab)
759 return NULL;
760
761 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
762 if (!pair || pair->stages > 0)
763 return NULL;
764 return pair->i1;
765 }
766
767 /* For a pair P of insns, return the fixed distance in cycles from the first
768 insn after which the second must be scheduled. */
769 static int
770 pair_delay (struct delay_pair *p)
771 {
772 if (p->stages == 0)
773 return p->cycles;
774 else
775 return p->stages * modulo_ii;
776 }
777
778 /* Given an insn INSN, add a dependence on its delayed shadow if it
779 has one. Also try to find situations where shadows depend on each other
780 and add dependencies to the real insns to limit the amount of backtracking
781 needed. */
782 void
783 add_delay_dependencies (rtx_insn *insn)
784 {
785 struct delay_pair *pair;
786 sd_iterator_def sd_it;
787 dep_t dep;
788
789 if (!delay_htab)
790 return;
791
792 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
793 if (!pair)
794 return;
795 add_dependence (insn, pair->i1, REG_DEP_ANTI);
796 if (pair->stages)
797 return;
798
799 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
800 {
801 rtx_insn *pro = DEP_PRO (dep);
802 struct delay_pair *other_pair
803 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
804 if (!other_pair || other_pair->stages)
805 continue;
806 if (pair_delay (other_pair) >= pair_delay (pair))
807 {
808 if (sched_verbose >= 4)
809 {
810 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
811 INSN_UID (other_pair->i1),
812 INSN_UID (pair->i1));
813 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
814 INSN_UID (pair->i1),
815 INSN_UID (pair->i2),
816 pair_delay (pair));
817 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
818 INSN_UID (other_pair->i1),
819 INSN_UID (other_pair->i2),
820 pair_delay (other_pair));
821 }
822 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
823 }
824 }
825 }
826 \f
827 /* Forward declarations. */
828
829 static int priority (rtx_insn *);
830 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
831 static int rank_for_schedule (const void *, const void *);
832 static void swap_sort (rtx_insn **, int);
833 static void queue_insn (rtx_insn *, int, const char *);
834 static int schedule_insn (rtx_insn *);
835 static void adjust_priority (rtx_insn *);
836 static void advance_one_cycle (void);
837 static void extend_h_i_d (void);
838
839
840 /* Notes handling mechanism:
841 =========================
842 Generally, NOTES are saved before scheduling and restored after scheduling.
843 The scheduler distinguishes between two types of notes:
844
845 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
846 Before scheduling a region, a pointer to the note is added to the insn
847 that follows or precedes it. (This happens as part of the data dependence
848 computation). After scheduling an insn, the pointer contained in it is
849 used for regenerating the corresponding note (in reemit_notes).
850
851 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
852 these notes are put in a list (in rm_other_notes() and
853 unlink_other_notes ()). After scheduling the block, these notes are
854 inserted at the beginning of the block (in schedule_block()). */
855
856 static void ready_add (struct ready_list *, rtx_insn *, bool);
857 static rtx_insn *ready_remove_first (struct ready_list *);
858 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
859
860 static void queue_to_ready (struct ready_list *);
861 static int early_queue_to_ready (state_t, struct ready_list *);
862
863 /* The following functions are used to implement multi-pass scheduling
864 on the first cycle. */
865 static rtx_insn *ready_remove (struct ready_list *, int);
866 static void ready_remove_insn (rtx_insn *);
867
868 static void fix_inter_tick (rtx_insn *, rtx_insn *);
869 static int fix_tick_ready (rtx_insn *);
870 static void change_queue_index (rtx_insn *, int);
871
872 /* The following functions are used to implement scheduling of data/control
873 speculative instructions. */
874
875 static void extend_h_i_d (void);
876 static void init_h_i_d (rtx_insn *);
877 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
878 static void generate_recovery_code (rtx_insn *);
879 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
880 static void begin_speculative_block (rtx_insn *);
881 static void add_to_speculative_block (rtx_insn *);
882 static void init_before_recovery (basic_block *);
883 static void create_check_block_twin (rtx_insn *, bool);
884 static void fix_recovery_deps (basic_block);
885 static bool haifa_change_pattern (rtx_insn *, rtx);
886 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
887 static void restore_bb_notes (basic_block);
888 static void fix_jump_move (rtx_insn *);
889 static void move_block_after_check (rtx_insn *);
890 static void move_succs (vec<edge, va_gc> **, basic_block);
891 static void sched_remove_insn (rtx_insn *);
892 static void clear_priorities (rtx_insn *, rtx_vec_t *);
893 static void calc_priorities (rtx_vec_t);
894 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
895
896 #endif /* INSN_SCHEDULING */
897 \f
898 /* Point to state used for the current scheduling pass. */
899 struct haifa_sched_info *current_sched_info;
900 \f
901 #ifndef INSN_SCHEDULING
902 void
903 schedule_insns (void)
904 {
905 }
906 #else
907
908 /* Do register pressure sensitive insn scheduling if the flag is set
909 up. */
910 enum sched_pressure_algorithm sched_pressure;
911
912 /* Map regno -> its pressure class. The map defined only when
913 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
914 enum reg_class *sched_regno_pressure_class;
915
916 /* The current register pressure. Only elements corresponding pressure
917 classes are defined. */
918 static int curr_reg_pressure[N_REG_CLASSES];
919
920 /* Saved value of the previous array. */
921 static int saved_reg_pressure[N_REG_CLASSES];
922
923 /* Register living at given scheduling point. */
924 static bitmap curr_reg_live;
925
926 /* Saved value of the previous array. */
927 static bitmap saved_reg_live;
928
929 /* Registers mentioned in the current region. */
930 static bitmap region_ref_regs;
931
932 /* Effective number of available registers of a given class (see comment
933 in sched_pressure_start_bb). */
934 static int sched_class_regs_num[N_REG_CLASSES];
935 /* Number of call_used_regs. This is a helper for calculating of
936 sched_class_regs_num. */
937 static int call_used_regs_num[N_REG_CLASSES];
938
939 /* Initiate register pressure relative info for scheduling the current
940 region. Currently it is only clearing register mentioned in the
941 current region. */
942 void
943 sched_init_region_reg_pressure_info (void)
944 {
945 bitmap_clear (region_ref_regs);
946 }
947
948 /* PRESSURE[CL] describes the pressure on register class CL. Update it
949 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
950 LIVE tracks the set of live registers; if it is null, assume that
951 every birth or death is genuine. */
952 static inline void
953 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
954 {
955 enum reg_class pressure_class;
956
957 pressure_class = sched_regno_pressure_class[regno];
958 if (regno >= FIRST_PSEUDO_REGISTER)
959 {
960 if (pressure_class != NO_REGS)
961 {
962 if (birth_p)
963 {
964 if (!live || bitmap_set_bit (live, regno))
965 pressure[pressure_class]
966 += (ira_reg_class_max_nregs
967 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
968 }
969 else
970 {
971 if (!live || bitmap_clear_bit (live, regno))
972 pressure[pressure_class]
973 -= (ira_reg_class_max_nregs
974 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
975 }
976 }
977 }
978 else if (pressure_class != NO_REGS
979 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
980 {
981 if (birth_p)
982 {
983 if (!live || bitmap_set_bit (live, regno))
984 pressure[pressure_class]++;
985 }
986 else
987 {
988 if (!live || bitmap_clear_bit (live, regno))
989 pressure[pressure_class]--;
990 }
991 }
992 }
993
994 /* Initiate current register pressure related info from living
995 registers given by LIVE. */
996 static void
997 initiate_reg_pressure_info (bitmap live)
998 {
999 int i;
1000 unsigned int j;
1001 bitmap_iterator bi;
1002
1003 for (i = 0; i < ira_pressure_classes_num; i++)
1004 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1005 bitmap_clear (curr_reg_live);
1006 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1007 if (sched_pressure == SCHED_PRESSURE_MODEL
1008 || current_nr_blocks == 1
1009 || bitmap_bit_p (region_ref_regs, j))
1010 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1011 }
1012
1013 /* Mark registers in X as mentioned in the current region. */
1014 static void
1015 setup_ref_regs (rtx x)
1016 {
1017 int i, j;
1018 const RTX_CODE code = GET_CODE (x);
1019 const char *fmt;
1020
1021 if (REG_P (x))
1022 {
1023 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1024 return;
1025 }
1026 fmt = GET_RTX_FORMAT (code);
1027 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1028 if (fmt[i] == 'e')
1029 setup_ref_regs (XEXP (x, i));
1030 else if (fmt[i] == 'E')
1031 {
1032 for (j = 0; j < XVECLEN (x, i); j++)
1033 setup_ref_regs (XVECEXP (x, i, j));
1034 }
1035 }
1036
1037 /* Initiate current register pressure related info at the start of
1038 basic block BB. */
1039 static void
1040 initiate_bb_reg_pressure_info (basic_block bb)
1041 {
1042 unsigned int i ATTRIBUTE_UNUSED;
1043 rtx_insn *insn;
1044
1045 if (current_nr_blocks > 1)
1046 FOR_BB_INSNS (bb, insn)
1047 if (NONDEBUG_INSN_P (insn))
1048 setup_ref_regs (PATTERN (insn));
1049 initiate_reg_pressure_info (df_get_live_in (bb));
1050 if (bb_has_eh_pred (bb))
1051 for (i = 0; ; ++i)
1052 {
1053 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1054
1055 if (regno == INVALID_REGNUM)
1056 break;
1057 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1058 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1059 regno, true);
1060 }
1061 }
1062
1063 /* Save current register pressure related info. */
1064 static void
1065 save_reg_pressure (void)
1066 {
1067 int i;
1068
1069 for (i = 0; i < ira_pressure_classes_num; i++)
1070 saved_reg_pressure[ira_pressure_classes[i]]
1071 = curr_reg_pressure[ira_pressure_classes[i]];
1072 bitmap_copy (saved_reg_live, curr_reg_live);
1073 }
1074
1075 /* Restore saved register pressure related info. */
1076 static void
1077 restore_reg_pressure (void)
1078 {
1079 int i;
1080
1081 for (i = 0; i < ira_pressure_classes_num; i++)
1082 curr_reg_pressure[ira_pressure_classes[i]]
1083 = saved_reg_pressure[ira_pressure_classes[i]];
1084 bitmap_copy (curr_reg_live, saved_reg_live);
1085 }
1086
1087 /* Return TRUE if the register is dying after its USE. */
1088 static bool
1089 dying_use_p (struct reg_use_data *use)
1090 {
1091 struct reg_use_data *next;
1092
1093 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1094 if (NONDEBUG_INSN_P (next->insn)
1095 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1096 return false;
1097 return true;
1098 }
1099
1100 /* Print info about the current register pressure and its excess for
1101 each pressure class. */
1102 static void
1103 print_curr_reg_pressure (void)
1104 {
1105 int i;
1106 enum reg_class cl;
1107
1108 fprintf (sched_dump, ";;\t");
1109 for (i = 0; i < ira_pressure_classes_num; i++)
1110 {
1111 cl = ira_pressure_classes[i];
1112 gcc_assert (curr_reg_pressure[cl] >= 0);
1113 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1114 curr_reg_pressure[cl],
1115 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1116 }
1117 fprintf (sched_dump, "\n");
1118 }
1119 \f
1120 /* Determine if INSN has a condition that is clobbered if a register
1121 in SET_REGS is modified. */
1122 static bool
1123 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1124 {
1125 rtx pat = PATTERN (insn);
1126 gcc_assert (GET_CODE (pat) == COND_EXEC);
1127 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1128 {
1129 sd_iterator_def sd_it;
1130 dep_t dep;
1131 haifa_change_pattern (insn, ORIG_PAT (insn));
1132 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1133 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1134 TODO_SPEC (insn) = HARD_DEP;
1135 if (sched_verbose >= 2)
1136 fprintf (sched_dump,
1137 ";;\t\tdequeue insn %s because of clobbered condition\n",
1138 (*current_sched_info->print_insn) (insn, 0));
1139 return true;
1140 }
1141
1142 return false;
1143 }
1144
1145 /* This function should be called after modifying the pattern of INSN,
1146 to update scheduler data structures as needed. */
1147 static void
1148 update_insn_after_change (rtx_insn *insn)
1149 {
1150 sd_iterator_def sd_it;
1151 dep_t dep;
1152
1153 dfa_clear_single_insn_cache (insn);
1154
1155 sd_it = sd_iterator_start (insn,
1156 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1157 while (sd_iterator_cond (&sd_it, &dep))
1158 {
1159 DEP_COST (dep) = UNKNOWN_DEP_COST;
1160 sd_iterator_next (&sd_it);
1161 }
1162
1163 /* Invalidate INSN_COST, so it'll be recalculated. */
1164 INSN_COST (insn) = -1;
1165 /* Invalidate INSN_TICK, so it'll be recalculated. */
1166 INSN_TICK (insn) = INVALID_TICK;
1167
1168 /* Invalidate autoprefetch data entry. */
1169 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1170 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1171 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1172 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1173 }
1174
1175
1176 /* Two VECs, one to hold dependencies for which pattern replacements
1177 need to be applied or restored at the start of the next cycle, and
1178 another to hold an integer that is either one, to apply the
1179 corresponding replacement, or zero to restore it. */
1180 static vec<dep_t> next_cycle_replace_deps;
1181 static vec<int> next_cycle_apply;
1182
1183 static void apply_replacement (dep_t, bool);
1184 static void restore_pattern (dep_t, bool);
1185
1186 /* Look at the remaining dependencies for insn NEXT, and compute and return
1187 the TODO_SPEC value we should use for it. This is called after one of
1188 NEXT's dependencies has been resolved.
1189 We also perform pattern replacements for predication, and for broken
1190 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1191 false. */
1192
1193 static ds_t
1194 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1195 {
1196 ds_t new_ds;
1197 sd_iterator_def sd_it;
1198 dep_t dep, modify_dep = NULL;
1199 int n_spec = 0;
1200 int n_control = 0;
1201 int n_replace = 0;
1202 bool first_p = true;
1203
1204 if (sd_lists_empty_p (next, SD_LIST_BACK))
1205 /* NEXT has all its dependencies resolved. */
1206 return 0;
1207
1208 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1209 return HARD_DEP;
1210
1211 /* If NEXT is intended to sit adjacent to this instruction, we don't
1212 want to try to break any dependencies. Treat it as a HARD_DEP. */
1213 if (SCHED_GROUP_P (next))
1214 return HARD_DEP;
1215
1216 /* Now we've got NEXT with speculative deps only.
1217 1. Look at the deps to see what we have to do.
1218 2. Check if we can do 'todo'. */
1219 new_ds = 0;
1220
1221 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1222 {
1223 rtx_insn *pro = DEP_PRO (dep);
1224 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1225
1226 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1227 continue;
1228
1229 if (ds)
1230 {
1231 n_spec++;
1232 if (first_p)
1233 {
1234 first_p = false;
1235
1236 new_ds = ds;
1237 }
1238 else
1239 new_ds = ds_merge (new_ds, ds);
1240 }
1241 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1242 {
1243 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1244 {
1245 n_control++;
1246 modify_dep = dep;
1247 }
1248 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1249 }
1250 else if (DEP_REPLACE (dep) != NULL)
1251 {
1252 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1253 {
1254 n_replace++;
1255 modify_dep = dep;
1256 }
1257 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1258 }
1259 }
1260
1261 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1262 {
1263 if (!dbg_cnt (sched_breakdep))
1264 return HARD_DEP;
1265 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1266 {
1267 struct dep_replacement *desc = DEP_REPLACE (dep);
1268 if (desc != NULL)
1269 {
1270 if (desc->insn == next && !for_backtrack)
1271 {
1272 gcc_assert (n_replace == 1);
1273 apply_replacement (dep, true);
1274 }
1275 DEP_STATUS (dep) |= DEP_CANCELLED;
1276 }
1277 }
1278 return 0;
1279 }
1280
1281 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1282 {
1283 rtx_insn *pro, *other;
1284 rtx new_pat;
1285 rtx cond = NULL_RTX;
1286 bool success;
1287 rtx_insn *prev = NULL;
1288 int i;
1289 unsigned regno;
1290
1291 if ((current_sched_info->flags & DO_PREDICATION) == 0
1292 || (ORIG_PAT (next) != NULL_RTX
1293 && PREDICATED_PAT (next) == NULL_RTX))
1294 return HARD_DEP;
1295
1296 pro = DEP_PRO (modify_dep);
1297 other = real_insn_for_shadow (pro);
1298 if (other != NULL_RTX)
1299 pro = other;
1300
1301 cond = sched_get_reverse_condition_uncached (pro);
1302 regno = REGNO (XEXP (cond, 0));
1303
1304 /* Find the last scheduled insn that modifies the condition register.
1305 We can stop looking once we find the insn we depend on through the
1306 REG_DEP_CONTROL; if the condition register isn't modified after it,
1307 we know that it still has the right value. */
1308 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1309 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1310 {
1311 HARD_REG_SET t;
1312
1313 find_all_hard_reg_sets (prev, &t, true);
1314 if (TEST_HARD_REG_BIT (t, regno))
1315 return HARD_DEP;
1316 if (prev == pro)
1317 break;
1318 }
1319 if (ORIG_PAT (next) == NULL_RTX)
1320 {
1321 ORIG_PAT (next) = PATTERN (next);
1322
1323 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1324 success = haifa_change_pattern (next, new_pat);
1325 if (!success)
1326 return HARD_DEP;
1327 PREDICATED_PAT (next) = new_pat;
1328 }
1329 else if (PATTERN (next) != PREDICATED_PAT (next))
1330 {
1331 bool success = haifa_change_pattern (next,
1332 PREDICATED_PAT (next));
1333 gcc_assert (success);
1334 }
1335 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1336 return DEP_CONTROL;
1337 }
1338
1339 if (PREDICATED_PAT (next) != NULL_RTX)
1340 {
1341 int tick = INSN_TICK (next);
1342 bool success = haifa_change_pattern (next,
1343 ORIG_PAT (next));
1344 INSN_TICK (next) = tick;
1345 gcc_assert (success);
1346 }
1347
1348 /* We can't handle the case where there are both speculative and control
1349 dependencies, so we return HARD_DEP in such a case. Also fail if
1350 we have speculative dependencies with not enough points, or more than
1351 one control dependency. */
1352 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1353 || (n_spec > 0
1354 /* Too few points? */
1355 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1356 || n_control > 0
1357 || n_replace > 0)
1358 return HARD_DEP;
1359
1360 return new_ds;
1361 }
1362 \f
1363 /* Pointer to the last instruction scheduled. */
1364 static rtx_insn *last_scheduled_insn;
1365
1366 /* Pointer to the last nondebug instruction scheduled within the
1367 block, or the prev_head of the scheduling block. Used by
1368 rank_for_schedule, so that insns independent of the last scheduled
1369 insn will be preferred over dependent instructions. */
1370 static rtx_insn *last_nondebug_scheduled_insn;
1371
1372 /* Pointer that iterates through the list of unscheduled insns if we
1373 have a dbg_cnt enabled. It always points at an insn prior to the
1374 first unscheduled one. */
1375 static rtx_insn *nonscheduled_insns_begin;
1376
1377 /* Compute cost of executing INSN.
1378 This is the number of cycles between instruction issue and
1379 instruction results. */
1380 int
1381 insn_cost (rtx_insn *insn)
1382 {
1383 int cost;
1384
1385 if (sched_fusion)
1386 return 0;
1387
1388 if (sel_sched_p ())
1389 {
1390 if (recog_memoized (insn) < 0)
1391 return 0;
1392
1393 cost = insn_default_latency (insn);
1394 if (cost < 0)
1395 cost = 0;
1396
1397 return cost;
1398 }
1399
1400 cost = INSN_COST (insn);
1401
1402 if (cost < 0)
1403 {
1404 /* A USE insn, or something else we don't need to
1405 understand. We can't pass these directly to
1406 result_ready_cost or insn_default_latency because it will
1407 trigger a fatal error for unrecognizable insns. */
1408 if (recog_memoized (insn) < 0)
1409 {
1410 INSN_COST (insn) = 0;
1411 return 0;
1412 }
1413 else
1414 {
1415 cost = insn_default_latency (insn);
1416 if (cost < 0)
1417 cost = 0;
1418
1419 INSN_COST (insn) = cost;
1420 }
1421 }
1422
1423 return cost;
1424 }
1425
1426 /* Compute cost of dependence LINK.
1427 This is the number of cycles between instruction issue and
1428 instruction results.
1429 ??? We also use this function to call recog_memoized on all insns. */
1430 int
1431 dep_cost_1 (dep_t link, dw_t dw)
1432 {
1433 rtx_insn *insn = DEP_PRO (link);
1434 rtx_insn *used = DEP_CON (link);
1435 int cost;
1436
1437 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1438 return DEP_COST (link);
1439
1440 if (delay_htab)
1441 {
1442 struct delay_pair *delay_entry;
1443 delay_entry
1444 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1445 if (delay_entry)
1446 {
1447 if (delay_entry->i1 == insn)
1448 {
1449 DEP_COST (link) = pair_delay (delay_entry);
1450 return DEP_COST (link);
1451 }
1452 }
1453 }
1454
1455 /* A USE insn should never require the value used to be computed.
1456 This allows the computation of a function's result and parameter
1457 values to overlap the return and call. We don't care about the
1458 dependence cost when only decreasing register pressure. */
1459 if (recog_memoized (used) < 0)
1460 {
1461 cost = 0;
1462 recog_memoized (insn);
1463 }
1464 else
1465 {
1466 enum reg_note dep_type = DEP_TYPE (link);
1467
1468 cost = insn_cost (insn);
1469
1470 if (INSN_CODE (insn) >= 0)
1471 {
1472 if (dep_type == REG_DEP_ANTI)
1473 cost = 0;
1474 else if (dep_type == REG_DEP_OUTPUT)
1475 {
1476 cost = (insn_default_latency (insn)
1477 - insn_default_latency (used));
1478 if (cost <= 0)
1479 cost = 1;
1480 }
1481 else if (bypass_p (insn))
1482 cost = insn_latency (insn, used);
1483 }
1484
1485
1486 if (targetm.sched.adjust_cost)
1487 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1488 dw);
1489
1490 if (cost < 0)
1491 cost = 0;
1492 }
1493
1494 DEP_COST (link) = cost;
1495 return cost;
1496 }
1497
1498 /* Compute cost of dependence LINK.
1499 This is the number of cycles between instruction issue and
1500 instruction results. */
1501 int
1502 dep_cost (dep_t link)
1503 {
1504 return dep_cost_1 (link, 0);
1505 }
1506
1507 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1508 INSN_PRIORITY explicitly. */
1509 void
1510 increase_insn_priority (rtx_insn *insn, int amount)
1511 {
1512 if (!sel_sched_p ())
1513 {
1514 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1515 if (INSN_PRIORITY_KNOWN (insn))
1516 INSN_PRIORITY (insn) += amount;
1517 }
1518 else
1519 {
1520 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1521 Use EXPR_PRIORITY instead. */
1522 sel_add_to_insn_priority (insn, amount);
1523 }
1524 }
1525
1526 /* Return 'true' if DEP should be included in priority calculations. */
1527 static bool
1528 contributes_to_priority_p (dep_t dep)
1529 {
1530 if (DEBUG_INSN_P (DEP_CON (dep))
1531 || DEBUG_INSN_P (DEP_PRO (dep)))
1532 return false;
1533
1534 /* Critical path is meaningful in block boundaries only. */
1535 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1536 DEP_PRO (dep)))
1537 return false;
1538
1539 if (DEP_REPLACE (dep) != NULL)
1540 return false;
1541
1542 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1543 then speculative instructions will less likely be
1544 scheduled. That is because the priority of
1545 their producers will increase, and, thus, the
1546 producers will more likely be scheduled, thus,
1547 resolving the dependence. */
1548 if (sched_deps_info->generate_spec_deps
1549 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1550 && (DEP_STATUS (dep) & SPECULATIVE))
1551 return false;
1552
1553 return true;
1554 }
1555
1556 /* Compute the number of nondebug deps in list LIST for INSN. */
1557
1558 static int
1559 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1560 {
1561 sd_iterator_def sd_it;
1562 dep_t dep;
1563 int dbgcount = 0, nodbgcount = 0;
1564
1565 if (!MAY_HAVE_DEBUG_INSNS)
1566 return sd_lists_size (insn, list);
1567
1568 FOR_EACH_DEP (insn, list, sd_it, dep)
1569 {
1570 if (DEBUG_INSN_P (DEP_CON (dep)))
1571 dbgcount++;
1572 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1573 nodbgcount++;
1574 }
1575
1576 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1577
1578 return nodbgcount;
1579 }
1580
1581 bool sched_fusion;
1582
1583 /* Compute the priority number for INSN. */
1584 static int
1585 priority (rtx_insn *insn)
1586 {
1587 if (! INSN_P (insn))
1588 return 0;
1589
1590 /* We should not be interested in priority of an already scheduled insn. */
1591 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1592
1593 if (!INSN_PRIORITY_KNOWN (insn))
1594 {
1595 int this_priority = -1;
1596
1597 if (sched_fusion)
1598 {
1599 int this_fusion_priority;
1600
1601 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1602 &this_fusion_priority, &this_priority);
1603 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1604 }
1605 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1606 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1607 some forward deps but all of them are ignored by
1608 contributes_to_priority hook. At the moment we set priority of
1609 such insn to 0. */
1610 this_priority = insn_cost (insn);
1611 else
1612 {
1613 rtx_insn *prev_first, *twin;
1614 basic_block rec;
1615
1616 /* For recovery check instructions we calculate priority slightly
1617 different than that of normal instructions. Instead of walking
1618 through INSN_FORW_DEPS (check) list, we walk through
1619 INSN_FORW_DEPS list of each instruction in the corresponding
1620 recovery block. */
1621
1622 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1623 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1624 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1625 {
1626 prev_first = PREV_INSN (insn);
1627 twin = insn;
1628 }
1629 else
1630 {
1631 prev_first = NEXT_INSN (BB_HEAD (rec));
1632 twin = PREV_INSN (BB_END (rec));
1633 }
1634
1635 do
1636 {
1637 sd_iterator_def sd_it;
1638 dep_t dep;
1639
1640 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1641 {
1642 rtx_insn *next;
1643 int next_priority;
1644
1645 next = DEP_CON (dep);
1646
1647 if (BLOCK_FOR_INSN (next) != rec)
1648 {
1649 int cost;
1650
1651 if (!contributes_to_priority_p (dep))
1652 continue;
1653
1654 if (twin == insn)
1655 cost = dep_cost (dep);
1656 else
1657 {
1658 struct _dep _dep1, *dep1 = &_dep1;
1659
1660 init_dep (dep1, insn, next, REG_DEP_ANTI);
1661
1662 cost = dep_cost (dep1);
1663 }
1664
1665 next_priority = cost + priority (next);
1666
1667 if (next_priority > this_priority)
1668 this_priority = next_priority;
1669 }
1670 }
1671
1672 twin = PREV_INSN (twin);
1673 }
1674 while (twin != prev_first);
1675 }
1676
1677 if (this_priority < 0)
1678 {
1679 gcc_assert (this_priority == -1);
1680
1681 this_priority = insn_cost (insn);
1682 }
1683
1684 INSN_PRIORITY (insn) = this_priority;
1685 INSN_PRIORITY_STATUS (insn) = 1;
1686 }
1687
1688 return INSN_PRIORITY (insn);
1689 }
1690 \f
1691 /* Macros and functions for keeping the priority queue sorted, and
1692 dealing with queuing and dequeuing of instructions. */
1693
1694 /* For each pressure class CL, set DEATH[CL] to the number of registers
1695 in that class that die in INSN. */
1696
1697 static void
1698 calculate_reg_deaths (rtx_insn *insn, int *death)
1699 {
1700 int i;
1701 struct reg_use_data *use;
1702
1703 for (i = 0; i < ira_pressure_classes_num; i++)
1704 death[ira_pressure_classes[i]] = 0;
1705 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1706 if (dying_use_p (use))
1707 mark_regno_birth_or_death (0, death, use->regno, true);
1708 }
1709
1710 /* Setup info about the current register pressure impact of scheduling
1711 INSN at the current scheduling point. */
1712 static void
1713 setup_insn_reg_pressure_info (rtx_insn *insn)
1714 {
1715 int i, change, before, after, hard_regno;
1716 int excess_cost_change;
1717 machine_mode mode;
1718 enum reg_class cl;
1719 struct reg_pressure_data *pressure_info;
1720 int *max_reg_pressure;
1721 static int death[N_REG_CLASSES];
1722
1723 gcc_checking_assert (!DEBUG_INSN_P (insn));
1724
1725 excess_cost_change = 0;
1726 calculate_reg_deaths (insn, death);
1727 pressure_info = INSN_REG_PRESSURE (insn);
1728 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1729 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1730 for (i = 0; i < ira_pressure_classes_num; i++)
1731 {
1732 cl = ira_pressure_classes[i];
1733 gcc_assert (curr_reg_pressure[cl] >= 0);
1734 change = (int) pressure_info[i].set_increase - death[cl];
1735 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1736 after = MAX (0, max_reg_pressure[i] + change
1737 - sched_class_regs_num[cl]);
1738 hard_regno = ira_class_hard_regs[cl][0];
1739 gcc_assert (hard_regno >= 0);
1740 mode = reg_raw_mode[hard_regno];
1741 excess_cost_change += ((after - before)
1742 * (ira_memory_move_cost[mode][cl][0]
1743 + ira_memory_move_cost[mode][cl][1]));
1744 }
1745 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1746 }
1747 \f
1748 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1749 It tries to make the scheduler take register pressure into account
1750 without introducing too many unnecessary stalls. It hooks into the
1751 main scheduling algorithm at several points:
1752
1753 - Before scheduling starts, model_start_schedule constructs a
1754 "model schedule" for the current block. This model schedule is
1755 chosen solely to keep register pressure down. It does not take the
1756 target's pipeline or the original instruction order into account,
1757 except as a tie-breaker. It also doesn't work to a particular
1758 pressure limit.
1759
1760 This model schedule gives us an idea of what pressure can be
1761 achieved for the block and gives us an example of a schedule that
1762 keeps to that pressure. It also makes the final schedule less
1763 dependent on the original instruction order. This is important
1764 because the original order can either be "wide" (many values live
1765 at once, such as in user-scheduled code) or "narrow" (few values
1766 live at once, such as after loop unrolling, where several
1767 iterations are executed sequentially).
1768
1769 We do not apply this model schedule to the rtx stream. We simply
1770 record it in model_schedule. We also compute the maximum pressure,
1771 MP, that was seen during this schedule.
1772
1773 - Instructions are added to the ready queue even if they require
1774 a stall. The length of the stall is instead computed as:
1775
1776 MAX (INSN_TICK (INSN) - clock_var, 0)
1777
1778 (= insn_delay). This allows rank_for_schedule to choose between
1779 introducing a deliberate stall or increasing pressure.
1780
1781 - Before sorting the ready queue, model_set_excess_costs assigns
1782 a pressure-based cost to each ready instruction in the queue.
1783 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1784 (ECC for short) and is effectively measured in cycles.
1785
1786 - rank_for_schedule ranks instructions based on:
1787
1788 ECC (insn) + insn_delay (insn)
1789
1790 then as:
1791
1792 insn_delay (insn)
1793
1794 So, for example, an instruction X1 with an ECC of 1 that can issue
1795 now will win over an instruction X0 with an ECC of zero that would
1796 introduce a stall of one cycle. However, an instruction X2 with an
1797 ECC of 2 that can issue now will lose to both X0 and X1.
1798
1799 - When an instruction is scheduled, model_recompute updates the model
1800 schedule with the new pressures (some of which might now exceed the
1801 original maximum pressure MP). model_update_limit_points then searches
1802 for the new point of maximum pressure, if not already known. */
1803
1804 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1805 from surrounding debug information. */
1806 #define MODEL_BAR \
1807 ";;\t\t+------------------------------------------------------\n"
1808
1809 /* Information about the pressure on a particular register class at a
1810 particular point of the model schedule. */
1811 struct model_pressure_data {
1812 /* The pressure at this point of the model schedule, or -1 if the
1813 point is associated with an instruction that has already been
1814 scheduled. */
1815 int ref_pressure;
1816
1817 /* The maximum pressure during or after this point of the model schedule. */
1818 int max_pressure;
1819 };
1820
1821 /* Per-instruction information that is used while building the model
1822 schedule. Here, "schedule" refers to the model schedule rather
1823 than the main schedule. */
1824 struct model_insn_info {
1825 /* The instruction itself. */
1826 rtx_insn *insn;
1827
1828 /* If this instruction is in model_worklist, these fields link to the
1829 previous (higher-priority) and next (lower-priority) instructions
1830 in the list. */
1831 struct model_insn_info *prev;
1832 struct model_insn_info *next;
1833
1834 /* While constructing the schedule, QUEUE_INDEX describes whether an
1835 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1836 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1837 old_queue records the value that QUEUE_INDEX had before scheduling
1838 started, so that we can restore it once the schedule is complete. */
1839 int old_queue;
1840
1841 /* The relative importance of an unscheduled instruction. Higher
1842 values indicate greater importance. */
1843 unsigned int model_priority;
1844
1845 /* The length of the longest path of satisfied true dependencies
1846 that leads to this instruction. */
1847 unsigned int depth;
1848
1849 /* The length of the longest path of dependencies of any kind
1850 that leads from this instruction. */
1851 unsigned int alap;
1852
1853 /* The number of predecessor nodes that must still be scheduled. */
1854 int unscheduled_preds;
1855 };
1856
1857 /* Information about the pressure limit for a particular register class.
1858 This structure is used when applying a model schedule to the main
1859 schedule. */
1860 struct model_pressure_limit {
1861 /* The maximum register pressure seen in the original model schedule. */
1862 int orig_pressure;
1863
1864 /* The maximum register pressure seen in the current model schedule
1865 (which excludes instructions that have already been scheduled). */
1866 int pressure;
1867
1868 /* The point of the current model schedule at which PRESSURE is first
1869 reached. It is set to -1 if the value needs to be recomputed. */
1870 int point;
1871 };
1872
1873 /* Describes a particular way of measuring register pressure. */
1874 struct model_pressure_group {
1875 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1876 struct model_pressure_limit limits[N_REG_CLASSES];
1877
1878 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1879 on register class ira_pressure_classes[PCI] at point POINT of the
1880 current model schedule. A POINT of model_num_insns describes the
1881 pressure at the end of the schedule. */
1882 struct model_pressure_data *model;
1883 };
1884
1885 /* Index POINT gives the instruction at point POINT of the model schedule.
1886 This array doesn't change during main scheduling. */
1887 static vec<rtx_insn *> model_schedule;
1888
1889 /* The list of instructions in the model worklist, sorted in order of
1890 decreasing priority. */
1891 static struct model_insn_info *model_worklist;
1892
1893 /* Index I describes the instruction with INSN_LUID I. */
1894 static struct model_insn_info *model_insns;
1895
1896 /* The number of instructions in the model schedule. */
1897 static int model_num_insns;
1898
1899 /* The index of the first instruction in model_schedule that hasn't yet been
1900 added to the main schedule, or model_num_insns if all of them have. */
1901 static int model_curr_point;
1902
1903 /* Describes the pressure before each instruction in the model schedule. */
1904 static struct model_pressure_group model_before_pressure;
1905
1906 /* The first unused model_priority value (as used in model_insn_info). */
1907 static unsigned int model_next_priority;
1908
1909
1910 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1911 at point POINT of the model schedule. */
1912 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1913 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1914
1915 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1916 after point POINT of the model schedule. */
1917 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1918 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1919
1920 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1921 of the model schedule. */
1922 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1923 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1924
1925 /* Information about INSN that is used when creating the model schedule. */
1926 #define MODEL_INSN_INFO(INSN) \
1927 (&model_insns[INSN_LUID (INSN)])
1928
1929 /* The instruction at point POINT of the model schedule. */
1930 #define MODEL_INSN(POINT) \
1931 (model_schedule[POINT])
1932
1933
1934 /* Return INSN's index in the model schedule, or model_num_insns if it
1935 doesn't belong to that schedule. */
1936
1937 static int
1938 model_index (rtx_insn *insn)
1939 {
1940 if (INSN_MODEL_INDEX (insn) == 0)
1941 return model_num_insns;
1942 return INSN_MODEL_INDEX (insn) - 1;
1943 }
1944
1945 /* Make sure that GROUP->limits is up-to-date for the current point
1946 of the model schedule. */
1947
1948 static void
1949 model_update_limit_points_in_group (struct model_pressure_group *group)
1950 {
1951 int pci, max_pressure, point;
1952
1953 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1954 {
1955 /* We may have passed the final point at which the pressure in
1956 group->limits[pci].pressure was reached. Update the limit if so. */
1957 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1958 group->limits[pci].pressure = max_pressure;
1959
1960 /* Find the point at which MAX_PRESSURE is first reached. We need
1961 to search in three cases:
1962
1963 - We've already moved past the previous pressure point.
1964 In this case we search forward from model_curr_point.
1965
1966 - We scheduled the previous point of maximum pressure ahead of
1967 its position in the model schedule, but doing so didn't bring
1968 the pressure point earlier. In this case we search forward
1969 from that previous pressure point.
1970
1971 - Scheduling an instruction early caused the maximum pressure
1972 to decrease. In this case we will have set the pressure
1973 point to -1, and we search forward from model_curr_point. */
1974 point = MAX (group->limits[pci].point, model_curr_point);
1975 while (point < model_num_insns
1976 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1977 point++;
1978 group->limits[pci].point = point;
1979
1980 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1981 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1982 }
1983 }
1984
1985 /* Make sure that all register-pressure limits are up-to-date for the
1986 current position in the model schedule. */
1987
1988 static void
1989 model_update_limit_points (void)
1990 {
1991 model_update_limit_points_in_group (&model_before_pressure);
1992 }
1993
1994 /* Return the model_index of the last unscheduled use in chain USE
1995 outside of USE's instruction. Return -1 if there are no other uses,
1996 or model_num_insns if the register is live at the end of the block. */
1997
1998 static int
1999 model_last_use_except (struct reg_use_data *use)
2000 {
2001 struct reg_use_data *next;
2002 int last, index;
2003
2004 last = -1;
2005 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2006 if (NONDEBUG_INSN_P (next->insn)
2007 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2008 {
2009 index = model_index (next->insn);
2010 if (index == model_num_insns)
2011 return model_num_insns;
2012 if (last < index)
2013 last = index;
2014 }
2015 return last;
2016 }
2017
2018 /* An instruction with model_index POINT has just been scheduled, and it
2019 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2020 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2021 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2022
2023 static void
2024 model_start_update_pressure (struct model_pressure_group *group,
2025 int point, int pci, int delta)
2026 {
2027 int next_max_pressure;
2028
2029 if (point == model_num_insns)
2030 {
2031 /* The instruction wasn't part of the model schedule; it was moved
2032 from a different block. Update the pressure for the end of
2033 the model schedule. */
2034 MODEL_REF_PRESSURE (group, point, pci) += delta;
2035 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2036 }
2037 else
2038 {
2039 /* Record that this instruction has been scheduled. Nothing now
2040 changes between POINT and POINT + 1, so get the maximum pressure
2041 from the latter. If the maximum pressure decreases, the new
2042 pressure point may be before POINT. */
2043 MODEL_REF_PRESSURE (group, point, pci) = -1;
2044 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2045 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2046 {
2047 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2048 if (group->limits[pci].point == point)
2049 group->limits[pci].point = -1;
2050 }
2051 }
2052 }
2053
2054 /* Record that scheduling a later instruction has changed the pressure
2055 at point POINT of the model schedule by DELTA (which might be 0).
2056 Update GROUP accordingly. Return nonzero if these changes might
2057 trigger changes to previous points as well. */
2058
2059 static int
2060 model_update_pressure (struct model_pressure_group *group,
2061 int point, int pci, int delta)
2062 {
2063 int ref_pressure, max_pressure, next_max_pressure;
2064
2065 /* If POINT hasn't yet been scheduled, update its pressure. */
2066 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2067 if (ref_pressure >= 0 && delta != 0)
2068 {
2069 ref_pressure += delta;
2070 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2071
2072 /* Check whether the maximum pressure in the overall schedule
2073 has increased. (This means that the MODEL_MAX_PRESSURE of
2074 every point <= POINT will need to increase too; see below.) */
2075 if (group->limits[pci].pressure < ref_pressure)
2076 group->limits[pci].pressure = ref_pressure;
2077
2078 /* If we are at maximum pressure, and the maximum pressure
2079 point was previously unknown or later than POINT,
2080 bring it forward. */
2081 if (group->limits[pci].pressure == ref_pressure
2082 && !IN_RANGE (group->limits[pci].point, 0, point))
2083 group->limits[pci].point = point;
2084
2085 /* If POINT used to be the point of maximum pressure, but isn't
2086 any longer, we need to recalculate it using a forward walk. */
2087 if (group->limits[pci].pressure > ref_pressure
2088 && group->limits[pci].point == point)
2089 group->limits[pci].point = -1;
2090 }
2091
2092 /* Update the maximum pressure at POINT. Changes here might also
2093 affect the maximum pressure at POINT - 1. */
2094 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2095 max_pressure = MAX (ref_pressure, next_max_pressure);
2096 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2097 {
2098 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2099 return 1;
2100 }
2101 return 0;
2102 }
2103
2104 /* INSN has just been scheduled. Update the model schedule accordingly. */
2105
2106 static void
2107 model_recompute (rtx_insn *insn)
2108 {
2109 struct {
2110 int last_use;
2111 int regno;
2112 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2113 struct reg_use_data *use;
2114 struct reg_pressure_data *reg_pressure;
2115 int delta[N_REG_CLASSES];
2116 int pci, point, mix, new_last, cl, ref_pressure, queue;
2117 unsigned int i, num_uses, num_pending_births;
2118 bool print_p;
2119
2120 /* The destinations of INSN were previously live from POINT onwards, but are
2121 now live from model_curr_point onwards. Set up DELTA accordingly. */
2122 point = model_index (insn);
2123 reg_pressure = INSN_REG_PRESSURE (insn);
2124 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2125 {
2126 cl = ira_pressure_classes[pci];
2127 delta[cl] = reg_pressure[pci].set_increase;
2128 }
2129
2130 /* Record which registers previously died at POINT, but which now die
2131 before POINT. Adjust DELTA so that it represents the effect of
2132 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2133 registers that will be born in the range [model_curr_point, POINT). */
2134 num_uses = 0;
2135 num_pending_births = 0;
2136 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2137 {
2138 new_last = model_last_use_except (use);
2139 if (new_last < point)
2140 {
2141 gcc_assert (num_uses < ARRAY_SIZE (uses));
2142 uses[num_uses].last_use = new_last;
2143 uses[num_uses].regno = use->regno;
2144 /* This register is no longer live after POINT - 1. */
2145 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2146 num_uses++;
2147 if (new_last >= 0)
2148 num_pending_births++;
2149 }
2150 }
2151
2152 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2153 Also set each group pressure limit for POINT. */
2154 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2155 {
2156 cl = ira_pressure_classes[pci];
2157 model_start_update_pressure (&model_before_pressure,
2158 point, pci, delta[cl]);
2159 }
2160
2161 /* Walk the model schedule backwards, starting immediately before POINT. */
2162 print_p = false;
2163 if (point != model_curr_point)
2164 do
2165 {
2166 point--;
2167 insn = MODEL_INSN (point);
2168 queue = QUEUE_INDEX (insn);
2169
2170 if (queue != QUEUE_SCHEDULED)
2171 {
2172 /* DELTA describes the effect of the move on the register pressure
2173 after POINT. Make it describe the effect on the pressure
2174 before POINT. */
2175 i = 0;
2176 while (i < num_uses)
2177 {
2178 if (uses[i].last_use == point)
2179 {
2180 /* This register is now live again. */
2181 mark_regno_birth_or_death (NULL, delta,
2182 uses[i].regno, true);
2183
2184 /* Remove this use from the array. */
2185 uses[i] = uses[num_uses - 1];
2186 num_uses--;
2187 num_pending_births--;
2188 }
2189 else
2190 i++;
2191 }
2192
2193 if (sched_verbose >= 5)
2194 {
2195 if (!print_p)
2196 {
2197 fprintf (sched_dump, MODEL_BAR);
2198 fprintf (sched_dump, ";;\t\t| New pressure for model"
2199 " schedule\n");
2200 fprintf (sched_dump, MODEL_BAR);
2201 print_p = true;
2202 }
2203
2204 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2205 point, INSN_UID (insn),
2206 str_pattern_slim (PATTERN (insn)));
2207 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2208 {
2209 cl = ira_pressure_classes[pci];
2210 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2211 point, pci);
2212 fprintf (sched_dump, " %s:[%d->%d]",
2213 reg_class_names[ira_pressure_classes[pci]],
2214 ref_pressure, ref_pressure + delta[cl]);
2215 }
2216 fprintf (sched_dump, "\n");
2217 }
2218 }
2219
2220 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2221 might have changed as well. */
2222 mix = num_pending_births;
2223 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2224 {
2225 cl = ira_pressure_classes[pci];
2226 mix |= delta[cl];
2227 mix |= model_update_pressure (&model_before_pressure,
2228 point, pci, delta[cl]);
2229 }
2230 }
2231 while (mix && point > model_curr_point);
2232
2233 if (print_p)
2234 fprintf (sched_dump, MODEL_BAR);
2235 }
2236
2237 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2238 check whether the insn's pattern needs restoring. */
2239 static bool
2240 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2241 {
2242 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2243 return false;
2244
2245 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2246 {
2247 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2248 gcc_assert (next == DEP_CON (dep));
2249 }
2250 else
2251 {
2252 struct dep_replacement *desc = DEP_REPLACE (dep);
2253 if (desc->insn != next)
2254 {
2255 gcc_assert (*desc->loc == desc->orig);
2256 return false;
2257 }
2258 }
2259 return true;
2260 }
2261 \f
2262 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2263 pressure on CL from P to P'. We use this to calculate a "base ECC",
2264 baseECC (CL, X), for each pressure class CL and each instruction X.
2265 Supposing X changes the pressure on CL from P to P', and that the
2266 maximum pressure on CL in the current model schedule is MP', then:
2267
2268 * if X occurs before or at the next point of maximum pressure in
2269 the model schedule and P' > MP', then:
2270
2271 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2272
2273 The idea is that the pressure after scheduling a fixed set of
2274 instructions -- in this case, the set up to and including the
2275 next maximum pressure point -- is going to be the same regardless
2276 of the order; we simply want to keep the intermediate pressure
2277 under control. Thus X has a cost of zero unless scheduling it
2278 now would exceed MP'.
2279
2280 If all increases in the set are by the same amount, no zero-cost
2281 instruction will ever cause the pressure to exceed MP'. However,
2282 if X is instead moved past an instruction X' with pressure in the
2283 range (MP' - (P' - P), MP'), the pressure at X' will increase
2284 beyond MP'. Since baseECC is very much a heuristic anyway,
2285 it doesn't seem worth the overhead of tracking cases like these.
2286
2287 The cost of exceeding MP' is always based on the original maximum
2288 pressure MP. This is so that going 2 registers over the original
2289 limit has the same cost regardless of whether it comes from two
2290 separate +1 deltas or from a single +2 delta.
2291
2292 * if X occurs after the next point of maximum pressure in the model
2293 schedule and P' > P, then:
2294
2295 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2296
2297 That is, if we move X forward across a point of maximum pressure,
2298 and if X increases the pressure by P' - P, then we conservatively
2299 assume that scheduling X next would increase the maximum pressure
2300 by P' - P. Again, the cost of doing this is based on the original
2301 maximum pressure MP, for the same reason as above.
2302
2303 * if P' < P, P > MP, and X occurs at or after the next point of
2304 maximum pressure, then:
2305
2306 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2307
2308 That is, if we have already exceeded the original maximum pressure MP,
2309 and if X might reduce the maximum pressure again -- or at least push
2310 it further back, and thus allow more scheduling freedom -- it is given
2311 a negative cost to reflect the improvement.
2312
2313 * otherwise,
2314
2315 baseECC (CL, X) = 0
2316
2317 In this case, X is not expected to affect the maximum pressure MP',
2318 so it has zero cost.
2319
2320 We then create a combined value baseECC (X) that is the sum of
2321 baseECC (CL, X) for each pressure class CL.
2322
2323 baseECC (X) could itself be used as the ECC value described above.
2324 However, this is often too conservative, in the sense that it
2325 tends to make high-priority instructions that increase pressure
2326 wait too long in cases where introducing a spill would be better.
2327 For this reason the final ECC is a priority-adjusted form of
2328 baseECC (X). Specifically, we calculate:
2329
2330 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2331 baseP = MAX { P (X) | baseECC (X) <= 0 }
2332
2333 Then:
2334
2335 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2336
2337 Thus an instruction's effect on pressure is ignored if it has a high
2338 enough priority relative to the ones that don't increase pressure.
2339 Negative values of baseECC (X) do not increase the priority of X
2340 itself, but they do make it harder for other instructions to
2341 increase the pressure further.
2342
2343 This pressure cost is deliberately timid. The intention has been
2344 to choose a heuristic that rarely interferes with the normal list
2345 scheduler in cases where that scheduler would produce good code.
2346 We simply want to curb some of its worst excesses. */
2347
2348 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2349
2350 Here we use the very simplistic cost model that every register above
2351 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2352 measures instead, such as one based on MEMORY_MOVE_COST. However:
2353
2354 (1) In order for an instruction to be scheduled, the higher cost
2355 would need to be justified in a single saving of that many stalls.
2356 This is overly pessimistic, because the benefit of spilling is
2357 often to avoid a sequence of several short stalls rather than
2358 a single long one.
2359
2360 (2) The cost is still arbitrary. Because we are not allocating
2361 registers during scheduling, we have no way of knowing for
2362 sure how many memory accesses will be required by each spill,
2363 where the spills will be placed within the block, or even
2364 which block(s) will contain the spills.
2365
2366 So a higher cost than 1 is often too conservative in practice,
2367 forcing blocks to contain unnecessary stalls instead of spill code.
2368 The simple cost below seems to be the best compromise. It reduces
2369 the interference with the normal list scheduler, which helps make
2370 it more suitable for a default-on option. */
2371
2372 static int
2373 model_spill_cost (int cl, int from, int to)
2374 {
2375 from = MAX (from, sched_class_regs_num[cl]);
2376 return MAX (to, from) - from;
2377 }
2378
2379 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2380 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2381 P' = P + DELTA. */
2382
2383 static int
2384 model_excess_group_cost (struct model_pressure_group *group,
2385 int point, int pci, int delta)
2386 {
2387 int pressure, cl;
2388
2389 cl = ira_pressure_classes[pci];
2390 if (delta < 0 && point >= group->limits[pci].point)
2391 {
2392 pressure = MAX (group->limits[pci].orig_pressure,
2393 curr_reg_pressure[cl] + delta);
2394 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2395 }
2396
2397 if (delta > 0)
2398 {
2399 if (point > group->limits[pci].point)
2400 pressure = group->limits[pci].pressure + delta;
2401 else
2402 pressure = curr_reg_pressure[cl] + delta;
2403
2404 if (pressure > group->limits[pci].pressure)
2405 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2406 pressure);
2407 }
2408
2409 return 0;
2410 }
2411
2412 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2413 if PRINT_P. */
2414
2415 static int
2416 model_excess_cost (rtx_insn *insn, bool print_p)
2417 {
2418 int point, pci, cl, cost, this_cost, delta;
2419 struct reg_pressure_data *insn_reg_pressure;
2420 int insn_death[N_REG_CLASSES];
2421
2422 calculate_reg_deaths (insn, insn_death);
2423 point = model_index (insn);
2424 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2425 cost = 0;
2426
2427 if (print_p)
2428 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2429 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2430
2431 /* Sum up the individual costs for each register class. */
2432 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2433 {
2434 cl = ira_pressure_classes[pci];
2435 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2436 this_cost = model_excess_group_cost (&model_before_pressure,
2437 point, pci, delta);
2438 cost += this_cost;
2439 if (print_p)
2440 fprintf (sched_dump, " %s:[%d base cost %d]",
2441 reg_class_names[cl], delta, this_cost);
2442 }
2443
2444 if (print_p)
2445 fprintf (sched_dump, "\n");
2446
2447 return cost;
2448 }
2449
2450 /* Dump the next points of maximum pressure for GROUP. */
2451
2452 static void
2453 model_dump_pressure_points (struct model_pressure_group *group)
2454 {
2455 int pci, cl;
2456
2457 fprintf (sched_dump, ";;\t\t| pressure points");
2458 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2459 {
2460 cl = ira_pressure_classes[pci];
2461 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2462 curr_reg_pressure[cl], group->limits[pci].pressure);
2463 if (group->limits[pci].point < model_num_insns)
2464 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2465 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2466 else
2467 fprintf (sched_dump, "end]");
2468 }
2469 fprintf (sched_dump, "\n");
2470 }
2471
2472 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2473
2474 static void
2475 model_set_excess_costs (rtx_insn **insns, int count)
2476 {
2477 int i, cost, priority_base, priority;
2478 bool print_p;
2479
2480 /* Record the baseECC value for each instruction in the model schedule,
2481 except that negative costs are converted to zero ones now rather than
2482 later. Do not assign a cost to debug instructions, since they must
2483 not change code-generation decisions. Experiments suggest we also
2484 get better results by not assigning a cost to instructions from
2485 a different block.
2486
2487 Set PRIORITY_BASE to baseP in the block comment above. This is the
2488 maximum priority of the "cheap" instructions, which should always
2489 include the next model instruction. */
2490 priority_base = 0;
2491 print_p = false;
2492 for (i = 0; i < count; i++)
2493 if (INSN_MODEL_INDEX (insns[i]))
2494 {
2495 if (sched_verbose >= 6 && !print_p)
2496 {
2497 fprintf (sched_dump, MODEL_BAR);
2498 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2499 model_dump_pressure_points (&model_before_pressure);
2500 fprintf (sched_dump, MODEL_BAR);
2501 print_p = true;
2502 }
2503 cost = model_excess_cost (insns[i], print_p);
2504 if (cost <= 0)
2505 {
2506 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2507 priority_base = MAX (priority_base, priority);
2508 cost = 0;
2509 }
2510 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2511 }
2512 if (print_p)
2513 fprintf (sched_dump, MODEL_BAR);
2514
2515 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2516 instruction. */
2517 for (i = 0; i < count; i++)
2518 {
2519 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2520 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2521 if (cost > 0 && priority > priority_base)
2522 {
2523 cost += priority_base - priority;
2524 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2525 }
2526 }
2527 }
2528 \f
2529
2530 /* Enum of rank_for_schedule heuristic decisions. */
2531 enum rfs_decision {
2532 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2533 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2534 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2535 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2536 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2537
2538 /* Corresponding strings for print outs. */
2539 static const char *rfs_str[RFS_N] = {
2540 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2541 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2542 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2543 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2544 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2545
2546 /* Statistical breakdown of rank_for_schedule decisions. */
2547 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2548 static rank_for_schedule_stats_t rank_for_schedule_stats;
2549
2550 /* Return the result of comparing insns TMP and TMP2 and update
2551 Rank_For_Schedule statistics. */
2552 static int
2553 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2554 {
2555 ++rank_for_schedule_stats.stats[decision];
2556 if (result < 0)
2557 INSN_LAST_RFS_WIN (tmp) = decision;
2558 else if (result > 0)
2559 INSN_LAST_RFS_WIN (tmp2) = decision;
2560 else
2561 gcc_unreachable ();
2562 return result;
2563 }
2564
2565 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2566 keeping normal insns in original order. */
2567
2568 static int
2569 rank_for_schedule_debug (const void *x, const void *y)
2570 {
2571 rtx_insn *tmp = *(rtx_insn * const *) y;
2572 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2573
2574 /* Schedule debug insns as early as possible. */
2575 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2576 return -1;
2577 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2578 return 1;
2579 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2580 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2581 else
2582 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2583 }
2584
2585 /* Returns a positive value if x is preferred; returns a negative value if
2586 y is preferred. Should never return 0, since that will make the sort
2587 unstable. */
2588
2589 static int
2590 rank_for_schedule (const void *x, const void *y)
2591 {
2592 rtx_insn *tmp = *(rtx_insn * const *) y;
2593 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2594 int tmp_class, tmp2_class;
2595 int val, priority_val, info_val, diff;
2596
2597 if (live_range_shrinkage_p)
2598 {
2599 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2600 code. */
2601 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2602 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2603 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2604 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2605 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2606 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2607 /* Sort by INSN_LUID (original insn order), so that we make the
2608 sort stable. This minimizes instruction movement, thus
2609 minimizing sched's effect on debugging and cross-jumping. */
2610 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2611 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2612 }
2613
2614 /* The insn in a schedule group should be issued the first. */
2615 if (flag_sched_group_heuristic &&
2616 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2617 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2618 tmp, tmp2);
2619
2620 /* Make sure that priority of TMP and TMP2 are initialized. */
2621 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2622
2623 if (sched_fusion)
2624 {
2625 /* The instruction that has the same fusion priority as the last
2626 instruction is the instruction we picked next. If that is not
2627 the case, we sort ready list firstly by fusion priority, then
2628 by priority, and at last by INSN_LUID. */
2629 int a = INSN_FUSION_PRIORITY (tmp);
2630 int b = INSN_FUSION_PRIORITY (tmp2);
2631 int last = -1;
2632
2633 if (last_nondebug_scheduled_insn
2634 && !NOTE_P (last_nondebug_scheduled_insn)
2635 && BLOCK_FOR_INSN (tmp)
2636 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2637 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2638
2639 if (a != last && b != last)
2640 {
2641 if (a == b)
2642 {
2643 a = INSN_PRIORITY (tmp);
2644 b = INSN_PRIORITY (tmp2);
2645 }
2646 if (a != b)
2647 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2648 else
2649 return rfs_result (RFS_FUSION,
2650 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2651 }
2652 else if (a == b)
2653 {
2654 gcc_assert (last_nondebug_scheduled_insn
2655 && !NOTE_P (last_nondebug_scheduled_insn));
2656 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2657
2658 a = abs (INSN_PRIORITY (tmp) - last);
2659 b = abs (INSN_PRIORITY (tmp2) - last);
2660 if (a != b)
2661 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2662 else
2663 return rfs_result (RFS_FUSION,
2664 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2665 }
2666 else if (a == last)
2667 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2668 else
2669 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2670 }
2671
2672 if (sched_pressure != SCHED_PRESSURE_NONE)
2673 {
2674 /* Prefer insn whose scheduling results in the smallest register
2675 pressure excess. */
2676 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2677 + insn_delay (tmp)
2678 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2679 - insn_delay (tmp2))))
2680 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2681 }
2682
2683 if (sched_pressure != SCHED_PRESSURE_NONE
2684 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2685 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2686 {
2687 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2688 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2689 }
2690
2691 /* If we are doing backtracking in this schedule, prefer insns that
2692 have forward dependencies with negative cost against an insn that
2693 was already scheduled. */
2694 if (current_sched_info->flags & DO_BACKTRACKING)
2695 {
2696 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2697 if (priority_val)
2698 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2699 }
2700
2701 /* Prefer insn with higher priority. */
2702 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2703
2704 if (flag_sched_critical_path_heuristic && priority_val)
2705 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2706
2707 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2708 {
2709 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2710 if (autopref != 0)
2711 return autopref;
2712 }
2713
2714 /* Prefer speculative insn with greater dependencies weakness. */
2715 if (flag_sched_spec_insn_heuristic && spec_info)
2716 {
2717 ds_t ds1, ds2;
2718 dw_t dw1, dw2;
2719 int dw;
2720
2721 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2722 if (ds1)
2723 dw1 = ds_weak (ds1);
2724 else
2725 dw1 = NO_DEP_WEAK;
2726
2727 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2728 if (ds2)
2729 dw2 = ds_weak (ds2);
2730 else
2731 dw2 = NO_DEP_WEAK;
2732
2733 dw = dw2 - dw1;
2734 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2735 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2736 }
2737
2738 info_val = (*current_sched_info->rank) (tmp, tmp2);
2739 if (flag_sched_rank_heuristic && info_val)
2740 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2741
2742 /* Compare insns based on their relation to the last scheduled
2743 non-debug insn. */
2744 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2745 {
2746 dep_t dep1;
2747 dep_t dep2;
2748 rtx_insn *last = last_nondebug_scheduled_insn;
2749
2750 /* Classify the instructions into three classes:
2751 1) Data dependent on last schedule insn.
2752 2) Anti/Output dependent on last scheduled insn.
2753 3) Independent of last scheduled insn, or has latency of one.
2754 Choose the insn from the highest numbered class if different. */
2755 dep1 = sd_find_dep_between (last, tmp, true);
2756
2757 if (dep1 == NULL || dep_cost (dep1) == 1)
2758 tmp_class = 3;
2759 else if (/* Data dependence. */
2760 DEP_TYPE (dep1) == REG_DEP_TRUE)
2761 tmp_class = 1;
2762 else
2763 tmp_class = 2;
2764
2765 dep2 = sd_find_dep_between (last, tmp2, true);
2766
2767 if (dep2 == NULL || dep_cost (dep2) == 1)
2768 tmp2_class = 3;
2769 else if (/* Data dependence. */
2770 DEP_TYPE (dep2) == REG_DEP_TRUE)
2771 tmp2_class = 1;
2772 else
2773 tmp2_class = 2;
2774
2775 if ((val = tmp2_class - tmp_class))
2776 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2777 }
2778
2779 /* Prefer instructions that occur earlier in the model schedule. */
2780 if (sched_pressure == SCHED_PRESSURE_MODEL
2781 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2782 {
2783 diff = model_index (tmp) - model_index (tmp2);
2784 gcc_assert (diff != 0);
2785 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2786 }
2787
2788 /* Prefer the insn which has more later insns that depend on it.
2789 This gives the scheduler more freedom when scheduling later
2790 instructions at the expense of added register pressure. */
2791
2792 val = (dep_list_size (tmp2, SD_LIST_FORW)
2793 - dep_list_size (tmp, SD_LIST_FORW));
2794
2795 if (flag_sched_dep_count_heuristic && val != 0)
2796 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2797
2798 /* If insns are equally good, sort by INSN_LUID (original insn order),
2799 so that we make the sort stable. This minimizes instruction movement,
2800 thus minimizing sched's effect on debugging and cross-jumping. */
2801 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2802 }
2803
2804 /* Resort the array A in which only element at index N may be out of order. */
2805
2806 HAIFA_INLINE static void
2807 swap_sort (rtx_insn **a, int n)
2808 {
2809 rtx_insn *insn = a[n - 1];
2810 int i = n - 2;
2811
2812 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2813 {
2814 a[i + 1] = a[i];
2815 i -= 1;
2816 }
2817 a[i + 1] = insn;
2818 }
2819
2820 /* Add INSN to the insn queue so that it can be executed at least
2821 N_CYCLES after the currently executing insn. Preserve insns
2822 chain for debugging purposes. REASON will be printed in debugging
2823 output. */
2824
2825 HAIFA_INLINE static void
2826 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2827 {
2828 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2829 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2830 int new_tick;
2831
2832 gcc_assert (n_cycles <= max_insn_queue_index);
2833 gcc_assert (!DEBUG_INSN_P (insn));
2834
2835 insn_queue[next_q] = link;
2836 q_size += 1;
2837
2838 if (sched_verbose >= 2)
2839 {
2840 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2841 (*current_sched_info->print_insn) (insn, 0));
2842
2843 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2844 }
2845
2846 QUEUE_INDEX (insn) = next_q;
2847
2848 if (current_sched_info->flags & DO_BACKTRACKING)
2849 {
2850 new_tick = clock_var + n_cycles;
2851 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2852 INSN_TICK (insn) = new_tick;
2853
2854 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2855 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2856 {
2857 must_backtrack = true;
2858 if (sched_verbose >= 2)
2859 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2860 }
2861 }
2862 }
2863
2864 /* Remove INSN from queue. */
2865 static void
2866 queue_remove (rtx_insn *insn)
2867 {
2868 gcc_assert (QUEUE_INDEX (insn) >= 0);
2869 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2870 q_size--;
2871 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2872 }
2873
2874 /* Return a pointer to the bottom of the ready list, i.e. the insn
2875 with the lowest priority. */
2876
2877 rtx_insn **
2878 ready_lastpos (struct ready_list *ready)
2879 {
2880 gcc_assert (ready->n_ready >= 1);
2881 return ready->vec + ready->first - ready->n_ready + 1;
2882 }
2883
2884 /* Add an element INSN to the ready list so that it ends up with the
2885 lowest/highest priority depending on FIRST_P. */
2886
2887 HAIFA_INLINE static void
2888 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2889 {
2890 if (!first_p)
2891 {
2892 if (ready->first == ready->n_ready)
2893 {
2894 memmove (ready->vec + ready->veclen - ready->n_ready,
2895 ready_lastpos (ready),
2896 ready->n_ready * sizeof (rtx));
2897 ready->first = ready->veclen - 1;
2898 }
2899 ready->vec[ready->first - ready->n_ready] = insn;
2900 }
2901 else
2902 {
2903 if (ready->first == ready->veclen - 1)
2904 {
2905 if (ready->n_ready)
2906 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2907 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2908 ready_lastpos (ready),
2909 ready->n_ready * sizeof (rtx));
2910 ready->first = ready->veclen - 2;
2911 }
2912 ready->vec[++(ready->first)] = insn;
2913 }
2914
2915 ready->n_ready++;
2916 if (DEBUG_INSN_P (insn))
2917 ready->n_debug++;
2918
2919 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2920 QUEUE_INDEX (insn) = QUEUE_READY;
2921
2922 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2923 && INSN_EXACT_TICK (insn) < clock_var)
2924 {
2925 must_backtrack = true;
2926 }
2927 }
2928
2929 /* Remove the element with the highest priority from the ready list and
2930 return it. */
2931
2932 HAIFA_INLINE static rtx_insn *
2933 ready_remove_first (struct ready_list *ready)
2934 {
2935 rtx_insn *t;
2936
2937 gcc_assert (ready->n_ready);
2938 t = ready->vec[ready->first--];
2939 ready->n_ready--;
2940 if (DEBUG_INSN_P (t))
2941 ready->n_debug--;
2942 /* If the queue becomes empty, reset it. */
2943 if (ready->n_ready == 0)
2944 ready->first = ready->veclen - 1;
2945
2946 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2947 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2948
2949 return t;
2950 }
2951
2952 /* The following code implements multi-pass scheduling for the first
2953 cycle. In other words, we will try to choose ready insn which
2954 permits to start maximum number of insns on the same cycle. */
2955
2956 /* Return a pointer to the element INDEX from the ready. INDEX for
2957 insn with the highest priority is 0, and the lowest priority has
2958 N_READY - 1. */
2959
2960 rtx_insn *
2961 ready_element (struct ready_list *ready, int index)
2962 {
2963 gcc_assert (ready->n_ready && index < ready->n_ready);
2964
2965 return ready->vec[ready->first - index];
2966 }
2967
2968 /* Remove the element INDEX from the ready list and return it. INDEX
2969 for insn with the highest priority is 0, and the lowest priority
2970 has N_READY - 1. */
2971
2972 HAIFA_INLINE static rtx_insn *
2973 ready_remove (struct ready_list *ready, int index)
2974 {
2975 rtx_insn *t;
2976 int i;
2977
2978 if (index == 0)
2979 return ready_remove_first (ready);
2980 gcc_assert (ready->n_ready && index < ready->n_ready);
2981 t = ready->vec[ready->first - index];
2982 ready->n_ready--;
2983 if (DEBUG_INSN_P (t))
2984 ready->n_debug--;
2985 for (i = index; i < ready->n_ready; i++)
2986 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2987 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2988 return t;
2989 }
2990
2991 /* Remove INSN from the ready list. */
2992 static void
2993 ready_remove_insn (rtx_insn *insn)
2994 {
2995 int i;
2996
2997 for (i = 0; i < readyp->n_ready; i++)
2998 if (ready_element (readyp, i) == insn)
2999 {
3000 ready_remove (readyp, i);
3001 return;
3002 }
3003 gcc_unreachable ();
3004 }
3005
3006 /* Calculate difference of two statistics set WAS and NOW.
3007 Result returned in WAS. */
3008 static void
3009 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3010 const rank_for_schedule_stats_t *now)
3011 {
3012 for (int i = 0; i < RFS_N; ++i)
3013 was->stats[i] = now->stats[i] - was->stats[i];
3014 }
3015
3016 /* Print rank_for_schedule statistics. */
3017 static void
3018 print_rank_for_schedule_stats (const char *prefix,
3019 const rank_for_schedule_stats_t *stats,
3020 struct ready_list *ready)
3021 {
3022 for (int i = 0; i < RFS_N; ++i)
3023 if (stats->stats[i])
3024 {
3025 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3026
3027 if (ready != NULL)
3028 /* Print out insns that won due to RFS_<I>. */
3029 {
3030 rtx_insn **p = ready_lastpos (ready);
3031
3032 fprintf (sched_dump, ":");
3033 /* Start with 1 since least-priority insn didn't have any wins. */
3034 for (int j = 1; j < ready->n_ready; ++j)
3035 if (INSN_LAST_RFS_WIN (p[j]) == i)
3036 fprintf (sched_dump, " %s",
3037 (*current_sched_info->print_insn) (p[j], 0));
3038 }
3039 fprintf (sched_dump, "\n");
3040 }
3041 }
3042
3043 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3044 of array. */
3045 static void
3046 ready_sort_debug (struct ready_list *ready)
3047 {
3048 int i;
3049 rtx_insn **first = ready_lastpos (ready);
3050
3051 for (i = 0; i < ready->n_ready; ++i)
3052 if (!DEBUG_INSN_P (first[i]))
3053 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3054
3055 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3056 }
3057
3058 /* Sort non-debug insns in the ready list READY by ascending priority.
3059 Assumes that all debug insns are separated from the real insns. */
3060 static void
3061 ready_sort_real (struct ready_list *ready)
3062 {
3063 int i;
3064 rtx_insn **first = ready_lastpos (ready);
3065 int n_ready_real = ready->n_ready - ready->n_debug;
3066
3067 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3068 for (i = 0; i < n_ready_real; ++i)
3069 setup_insn_reg_pressure_info (first[i]);
3070 else if (sched_pressure == SCHED_PRESSURE_MODEL
3071 && model_curr_point < model_num_insns)
3072 model_set_excess_costs (first, n_ready_real);
3073
3074 rank_for_schedule_stats_t stats1;
3075 if (sched_verbose >= 4)
3076 stats1 = rank_for_schedule_stats;
3077
3078 if (n_ready_real == 2)
3079 swap_sort (first, n_ready_real);
3080 else if (n_ready_real > 2)
3081 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3082
3083 if (sched_verbose >= 4)
3084 {
3085 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3086 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3087 }
3088 }
3089
3090 /* Sort the ready list READY by ascending priority. */
3091 static void
3092 ready_sort (struct ready_list *ready)
3093 {
3094 if (ready->n_debug > 0)
3095 ready_sort_debug (ready);
3096 else
3097 ready_sort_real (ready);
3098 }
3099
3100 /* PREV is an insn that is ready to execute. Adjust its priority if that
3101 will help shorten or lengthen register lifetimes as appropriate. Also
3102 provide a hook for the target to tweak itself. */
3103
3104 HAIFA_INLINE static void
3105 adjust_priority (rtx_insn *prev)
3106 {
3107 /* ??? There used to be code here to try and estimate how an insn
3108 affected register lifetimes, but it did it by looking at REG_DEAD
3109 notes, which we removed in schedule_region. Nor did it try to
3110 take into account register pressure or anything useful like that.
3111
3112 Revisit when we have a machine model to work with and not before. */
3113
3114 if (targetm.sched.adjust_priority)
3115 INSN_PRIORITY (prev) =
3116 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3117 }
3118
3119 /* Advance DFA state STATE on one cycle. */
3120 void
3121 advance_state (state_t state)
3122 {
3123 if (targetm.sched.dfa_pre_advance_cycle)
3124 targetm.sched.dfa_pre_advance_cycle ();
3125
3126 if (targetm.sched.dfa_pre_cycle_insn)
3127 state_transition (state,
3128 targetm.sched.dfa_pre_cycle_insn ());
3129
3130 state_transition (state, NULL);
3131
3132 if (targetm.sched.dfa_post_cycle_insn)
3133 state_transition (state,
3134 targetm.sched.dfa_post_cycle_insn ());
3135
3136 if (targetm.sched.dfa_post_advance_cycle)
3137 targetm.sched.dfa_post_advance_cycle ();
3138 }
3139
3140 /* Advance time on one cycle. */
3141 HAIFA_INLINE static void
3142 advance_one_cycle (void)
3143 {
3144 advance_state (curr_state);
3145 if (sched_verbose >= 4)
3146 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3147 }
3148
3149 /* Update register pressure after scheduling INSN. */
3150 static void
3151 update_register_pressure (rtx_insn *insn)
3152 {
3153 struct reg_use_data *use;
3154 struct reg_set_data *set;
3155
3156 gcc_checking_assert (!DEBUG_INSN_P (insn));
3157
3158 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3159 if (dying_use_p (use))
3160 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3161 use->regno, false);
3162 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3163 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3164 set->regno, true);
3165 }
3166
3167 /* Set up or update (if UPDATE_P) max register pressure (see its
3168 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3169 after insn AFTER. */
3170 static void
3171 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3172 {
3173 int i, p;
3174 bool eq_p;
3175 rtx_insn *insn;
3176 static int max_reg_pressure[N_REG_CLASSES];
3177
3178 save_reg_pressure ();
3179 for (i = 0; i < ira_pressure_classes_num; i++)
3180 max_reg_pressure[ira_pressure_classes[i]]
3181 = curr_reg_pressure[ira_pressure_classes[i]];
3182 for (insn = NEXT_INSN (after);
3183 insn != NULL_RTX && ! BARRIER_P (insn)
3184 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3185 insn = NEXT_INSN (insn))
3186 if (NONDEBUG_INSN_P (insn))
3187 {
3188 eq_p = true;
3189 for (i = 0; i < ira_pressure_classes_num; i++)
3190 {
3191 p = max_reg_pressure[ira_pressure_classes[i]];
3192 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3193 {
3194 eq_p = false;
3195 INSN_MAX_REG_PRESSURE (insn)[i]
3196 = max_reg_pressure[ira_pressure_classes[i]];
3197 }
3198 }
3199 if (update_p && eq_p)
3200 break;
3201 update_register_pressure (insn);
3202 for (i = 0; i < ira_pressure_classes_num; i++)
3203 if (max_reg_pressure[ira_pressure_classes[i]]
3204 < curr_reg_pressure[ira_pressure_classes[i]])
3205 max_reg_pressure[ira_pressure_classes[i]]
3206 = curr_reg_pressure[ira_pressure_classes[i]];
3207 }
3208 restore_reg_pressure ();
3209 }
3210
3211 /* Update the current register pressure after scheduling INSN. Update
3212 also max register pressure for unscheduled insns of the current
3213 BB. */
3214 static void
3215 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3216 {
3217 int i;
3218 int before[N_REG_CLASSES];
3219
3220 for (i = 0; i < ira_pressure_classes_num; i++)
3221 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3222 update_register_pressure (insn);
3223 for (i = 0; i < ira_pressure_classes_num; i++)
3224 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3225 break;
3226 if (i < ira_pressure_classes_num)
3227 setup_insn_max_reg_pressure (insn, true);
3228 }
3229
3230 /* Set up register pressure at the beginning of basic block BB whose
3231 insns starting after insn AFTER. Set up also max register pressure
3232 for all insns of the basic block. */
3233 void
3234 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3235 {
3236 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3237 initiate_bb_reg_pressure_info (bb);
3238 setup_insn_max_reg_pressure (after, false);
3239 }
3240 \f
3241 /* If doing predication while scheduling, verify whether INSN, which
3242 has just been scheduled, clobbers the conditions of any
3243 instructions that must be predicated in order to break their
3244 dependencies. If so, remove them from the queues so that they will
3245 only be scheduled once their control dependency is resolved. */
3246
3247 static void
3248 check_clobbered_conditions (rtx_insn *insn)
3249 {
3250 HARD_REG_SET t;
3251 int i;
3252
3253 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3254 return;
3255
3256 find_all_hard_reg_sets (insn, &t, true);
3257
3258 restart:
3259 for (i = 0; i < ready.n_ready; i++)
3260 {
3261 rtx_insn *x = ready_element (&ready, i);
3262 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3263 {
3264 ready_remove_insn (x);
3265 goto restart;
3266 }
3267 }
3268 for (i = 0; i <= max_insn_queue_index; i++)
3269 {
3270 rtx_insn_list *link;
3271 int q = NEXT_Q_AFTER (q_ptr, i);
3272
3273 restart_queue:
3274 for (link = insn_queue[q]; link; link = link->next ())
3275 {
3276 rtx_insn *x = link->insn ();
3277 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3278 {
3279 queue_remove (x);
3280 goto restart_queue;
3281 }
3282 }
3283 }
3284 }
3285 \f
3286 /* Return (in order):
3287
3288 - positive if INSN adversely affects the pressure on one
3289 register class
3290
3291 - negative if INSN reduces the pressure on one register class
3292
3293 - 0 if INSN doesn't affect the pressure on any register class. */
3294
3295 static int
3296 model_classify_pressure (struct model_insn_info *insn)
3297 {
3298 struct reg_pressure_data *reg_pressure;
3299 int death[N_REG_CLASSES];
3300 int pci, cl, sum;
3301
3302 calculate_reg_deaths (insn->insn, death);
3303 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3304 sum = 0;
3305 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3306 {
3307 cl = ira_pressure_classes[pci];
3308 if (death[cl] < reg_pressure[pci].set_increase)
3309 return 1;
3310 sum += reg_pressure[pci].set_increase - death[cl];
3311 }
3312 return sum;
3313 }
3314
3315 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3316
3317 static int
3318 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3319 {
3320 unsigned int height1, height2;
3321 unsigned int priority1, priority2;
3322
3323 /* Prefer instructions with a higher model priority. */
3324 if (insn1->model_priority != insn2->model_priority)
3325 return insn1->model_priority > insn2->model_priority;
3326
3327 /* Combine the length of the longest path of satisfied true dependencies
3328 that leads to each instruction (depth) with the length of the longest
3329 path of any dependencies that leads from the instruction (alap).
3330 Prefer instructions with the greatest combined length. If the combined
3331 lengths are equal, prefer instructions with the greatest depth.
3332
3333 The idea is that, if we have a set S of "equal" instructions that each
3334 have ALAP value X, and we pick one such instruction I, any true-dependent
3335 successors of I that have ALAP value X - 1 should be preferred over S.
3336 This encourages the schedule to be "narrow" rather than "wide".
3337 However, if I is a low-priority instruction that we decided to
3338 schedule because of its model_classify_pressure, and if there
3339 is a set of higher-priority instructions T, the aforementioned
3340 successors of I should not have the edge over T. */
3341 height1 = insn1->depth + insn1->alap;
3342 height2 = insn2->depth + insn2->alap;
3343 if (height1 != height2)
3344 return height1 > height2;
3345 if (insn1->depth != insn2->depth)
3346 return insn1->depth > insn2->depth;
3347
3348 /* We have no real preference between INSN1 an INSN2 as far as attempts
3349 to reduce pressure go. Prefer instructions with higher priorities. */
3350 priority1 = INSN_PRIORITY (insn1->insn);
3351 priority2 = INSN_PRIORITY (insn2->insn);
3352 if (priority1 != priority2)
3353 return priority1 > priority2;
3354
3355 /* Use the original rtl sequence as a tie-breaker. */
3356 return insn1 < insn2;
3357 }
3358
3359 /* Add INSN to the model worklist immediately after PREV. Add it to the
3360 beginning of the list if PREV is null. */
3361
3362 static void
3363 model_add_to_worklist_at (struct model_insn_info *insn,
3364 struct model_insn_info *prev)
3365 {
3366 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3367 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3368
3369 insn->prev = prev;
3370 if (prev)
3371 {
3372 insn->next = prev->next;
3373 prev->next = insn;
3374 }
3375 else
3376 {
3377 insn->next = model_worklist;
3378 model_worklist = insn;
3379 }
3380 if (insn->next)
3381 insn->next->prev = insn;
3382 }
3383
3384 /* Remove INSN from the model worklist. */
3385
3386 static void
3387 model_remove_from_worklist (struct model_insn_info *insn)
3388 {
3389 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3390 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3391
3392 if (insn->prev)
3393 insn->prev->next = insn->next;
3394 else
3395 model_worklist = insn->next;
3396 if (insn->next)
3397 insn->next->prev = insn->prev;
3398 }
3399
3400 /* Add INSN to the model worklist. Start looking for a suitable position
3401 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3402 insns either side. A null PREV indicates the beginning of the list and
3403 a null NEXT indicates the end. */
3404
3405 static void
3406 model_add_to_worklist (struct model_insn_info *insn,
3407 struct model_insn_info *prev,
3408 struct model_insn_info *next)
3409 {
3410 int count;
3411
3412 count = MAX_SCHED_READY_INSNS;
3413 if (count > 0 && prev && model_order_p (insn, prev))
3414 do
3415 {
3416 count--;
3417 prev = prev->prev;
3418 }
3419 while (count > 0 && prev && model_order_p (insn, prev));
3420 else
3421 while (count > 0 && next && model_order_p (next, insn))
3422 {
3423 count--;
3424 prev = next;
3425 next = next->next;
3426 }
3427 model_add_to_worklist_at (insn, prev);
3428 }
3429
3430 /* INSN may now have a higher priority (in the model_order_p sense)
3431 than before. Move it up the worklist if necessary. */
3432
3433 static void
3434 model_promote_insn (struct model_insn_info *insn)
3435 {
3436 struct model_insn_info *prev;
3437 int count;
3438
3439 prev = insn->prev;
3440 count = MAX_SCHED_READY_INSNS;
3441 while (count > 0 && prev && model_order_p (insn, prev))
3442 {
3443 count--;
3444 prev = prev->prev;
3445 }
3446 if (prev != insn->prev)
3447 {
3448 model_remove_from_worklist (insn);
3449 model_add_to_worklist_at (insn, prev);
3450 }
3451 }
3452
3453 /* Add INSN to the end of the model schedule. */
3454
3455 static void
3456 model_add_to_schedule (rtx_insn *insn)
3457 {
3458 unsigned int point;
3459
3460 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3461 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3462
3463 point = model_schedule.length ();
3464 model_schedule.quick_push (insn);
3465 INSN_MODEL_INDEX (insn) = point + 1;
3466 }
3467
3468 /* Analyze the instructions that are to be scheduled, setting up
3469 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3470 instructions to model_worklist. */
3471
3472 static void
3473 model_analyze_insns (void)
3474 {
3475 rtx_insn *start, *end, *iter;
3476 sd_iterator_def sd_it;
3477 dep_t dep;
3478 struct model_insn_info *insn, *con;
3479
3480 model_num_insns = 0;
3481 start = PREV_INSN (current_sched_info->next_tail);
3482 end = current_sched_info->prev_head;
3483 for (iter = start; iter != end; iter = PREV_INSN (iter))
3484 if (NONDEBUG_INSN_P (iter))
3485 {
3486 insn = MODEL_INSN_INFO (iter);
3487 insn->insn = iter;
3488 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3489 {
3490 con = MODEL_INSN_INFO (DEP_CON (dep));
3491 if (con->insn && insn->alap < con->alap + 1)
3492 insn->alap = con->alap + 1;
3493 }
3494
3495 insn->old_queue = QUEUE_INDEX (iter);
3496 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3497
3498 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3499 if (insn->unscheduled_preds == 0)
3500 model_add_to_worklist (insn, NULL, model_worklist);
3501
3502 model_num_insns++;
3503 }
3504 }
3505
3506 /* The global state describes the register pressure at the start of the
3507 model schedule. Initialize GROUP accordingly. */
3508
3509 static void
3510 model_init_pressure_group (struct model_pressure_group *group)
3511 {
3512 int pci, cl;
3513
3514 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3515 {
3516 cl = ira_pressure_classes[pci];
3517 group->limits[pci].pressure = curr_reg_pressure[cl];
3518 group->limits[pci].point = 0;
3519 }
3520 /* Use index model_num_insns to record the state after the last
3521 instruction in the model schedule. */
3522 group->model = XNEWVEC (struct model_pressure_data,
3523 (model_num_insns + 1) * ira_pressure_classes_num);
3524 }
3525
3526 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3527 Update the maximum pressure for the whole schedule. */
3528
3529 static void
3530 model_record_pressure (struct model_pressure_group *group,
3531 int point, int pci, int pressure)
3532 {
3533 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3534 if (group->limits[pci].pressure < pressure)
3535 {
3536 group->limits[pci].pressure = pressure;
3537 group->limits[pci].point = point;
3538 }
3539 }
3540
3541 /* INSN has just been added to the end of the model schedule. Record its
3542 register-pressure information. */
3543
3544 static void
3545 model_record_pressures (struct model_insn_info *insn)
3546 {
3547 struct reg_pressure_data *reg_pressure;
3548 int point, pci, cl, delta;
3549 int death[N_REG_CLASSES];
3550
3551 point = model_index (insn->insn);
3552 if (sched_verbose >= 2)
3553 {
3554 if (point == 0)
3555 {
3556 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3557 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3558 }
3559 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3560 point, INSN_UID (insn->insn), insn->model_priority,
3561 insn->depth + insn->alap, insn->depth,
3562 INSN_PRIORITY (insn->insn),
3563 str_pattern_slim (PATTERN (insn->insn)));
3564 }
3565 calculate_reg_deaths (insn->insn, death);
3566 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3567 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3568 {
3569 cl = ira_pressure_classes[pci];
3570 delta = reg_pressure[pci].set_increase - death[cl];
3571 if (sched_verbose >= 2)
3572 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3573 curr_reg_pressure[cl], delta);
3574 model_record_pressure (&model_before_pressure, point, pci,
3575 curr_reg_pressure[cl]);
3576 }
3577 if (sched_verbose >= 2)
3578 fprintf (sched_dump, "\n");
3579 }
3580
3581 /* All instructions have been added to the model schedule. Record the
3582 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3583
3584 static void
3585 model_record_final_pressures (struct model_pressure_group *group)
3586 {
3587 int point, pci, max_pressure, ref_pressure, cl;
3588
3589 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3590 {
3591 /* Record the final pressure for this class. */
3592 cl = ira_pressure_classes[pci];
3593 point = model_num_insns;
3594 ref_pressure = curr_reg_pressure[cl];
3595 model_record_pressure (group, point, pci, ref_pressure);
3596
3597 /* Record the original maximum pressure. */
3598 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3599
3600 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3601 max_pressure = ref_pressure;
3602 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3603 while (point > 0)
3604 {
3605 point--;
3606 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3607 max_pressure = MAX (max_pressure, ref_pressure);
3608 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3609 }
3610 }
3611 }
3612
3613 /* Update all successors of INSN, given that INSN has just been scheduled. */
3614
3615 static void
3616 model_add_successors_to_worklist (struct model_insn_info *insn)
3617 {
3618 sd_iterator_def sd_it;
3619 struct model_insn_info *con;
3620 dep_t dep;
3621
3622 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3623 {
3624 con = MODEL_INSN_INFO (DEP_CON (dep));
3625 /* Ignore debug instructions, and instructions from other blocks. */
3626 if (con->insn)
3627 {
3628 con->unscheduled_preds--;
3629
3630 /* Update the depth field of each true-dependent successor.
3631 Increasing the depth gives them a higher priority than
3632 before. */
3633 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3634 {
3635 con->depth = insn->depth + 1;
3636 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3637 model_promote_insn (con);
3638 }
3639
3640 /* If this is a true dependency, or if there are no remaining
3641 dependencies for CON (meaning that CON only had non-true
3642 dependencies), make sure that CON is on the worklist.
3643 We don't bother otherwise because it would tend to fill the
3644 worklist with a lot of low-priority instructions that are not
3645 yet ready to issue. */
3646 if ((con->depth > 0 || con->unscheduled_preds == 0)
3647 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3648 model_add_to_worklist (con, insn, insn->next);
3649 }
3650 }
3651 }
3652
3653 /* Give INSN a higher priority than any current instruction, then give
3654 unscheduled predecessors of INSN a higher priority still. If any of
3655 those predecessors are not on the model worklist, do the same for its
3656 predecessors, and so on. */
3657
3658 static void
3659 model_promote_predecessors (struct model_insn_info *insn)
3660 {
3661 struct model_insn_info *pro, *first;
3662 sd_iterator_def sd_it;
3663 dep_t dep;
3664
3665 if (sched_verbose >= 7)
3666 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3667 INSN_UID (insn->insn), model_next_priority);
3668 insn->model_priority = model_next_priority++;
3669 model_remove_from_worklist (insn);
3670 model_add_to_worklist_at (insn, NULL);
3671
3672 first = NULL;
3673 for (;;)
3674 {
3675 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3676 {
3677 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3678 /* The first test is to ignore debug instructions, and instructions
3679 from other blocks. */
3680 if (pro->insn
3681 && pro->model_priority != model_next_priority
3682 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3683 {
3684 pro->model_priority = model_next_priority;
3685 if (sched_verbose >= 7)
3686 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3687 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3688 {
3689 /* PRO is already in the worklist, but it now has
3690 a higher priority than before. Move it at the
3691 appropriate place. */
3692 model_remove_from_worklist (pro);
3693 model_add_to_worklist (pro, NULL, model_worklist);
3694 }
3695 else
3696 {
3697 /* PRO isn't in the worklist. Recursively process
3698 its predecessors until we find one that is. */
3699 pro->next = first;
3700 first = pro;
3701 }
3702 }
3703 }
3704 if (!first)
3705 break;
3706 insn = first;
3707 first = insn->next;
3708 }
3709 if (sched_verbose >= 7)
3710 fprintf (sched_dump, " = %d\n", model_next_priority);
3711 model_next_priority++;
3712 }
3713
3714 /* Pick one instruction from model_worklist and process it. */
3715
3716 static void
3717 model_choose_insn (void)
3718 {
3719 struct model_insn_info *insn, *fallback;
3720 int count;
3721
3722 if (sched_verbose >= 7)
3723 {
3724 fprintf (sched_dump, ";;\t+--- worklist:\n");
3725 insn = model_worklist;
3726 count = MAX_SCHED_READY_INSNS;
3727 while (count > 0 && insn)
3728 {
3729 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3730 INSN_UID (insn->insn), insn->model_priority,
3731 insn->depth + insn->alap, insn->depth,
3732 INSN_PRIORITY (insn->insn));
3733 count--;
3734 insn = insn->next;
3735 }
3736 }
3737
3738 /* Look for a ready instruction whose model_classify_priority is zero
3739 or negative, picking the highest-priority one. Adding such an
3740 instruction to the schedule now should do no harm, and may actually
3741 do some good.
3742
3743 Failing that, see whether there is an instruction with the highest
3744 extant model_priority that is not yet ready, but which would reduce
3745 pressure if it became ready. This is designed to catch cases like:
3746
3747 (set (mem (reg R1)) (reg R2))
3748
3749 where the instruction is the last remaining use of R1 and where the
3750 value of R2 is not yet available (or vice versa). The death of R1
3751 means that this instruction already reduces pressure. It is of
3752 course possible that the computation of R2 involves other registers
3753 that are hard to kill, but such cases are rare enough for this
3754 heuristic to be a win in general.
3755
3756 Failing that, just pick the highest-priority instruction in the
3757 worklist. */
3758 count = MAX_SCHED_READY_INSNS;
3759 insn = model_worklist;
3760 fallback = 0;
3761 for (;;)
3762 {
3763 if (count == 0 || !insn)
3764 {
3765 insn = fallback ? fallback : model_worklist;
3766 break;
3767 }
3768 if (insn->unscheduled_preds)
3769 {
3770 if (model_worklist->model_priority == insn->model_priority
3771 && !fallback
3772 && model_classify_pressure (insn) < 0)
3773 fallback = insn;
3774 }
3775 else
3776 {
3777 if (model_classify_pressure (insn) <= 0)
3778 break;
3779 }
3780 count--;
3781 insn = insn->next;
3782 }
3783
3784 if (sched_verbose >= 7 && insn != model_worklist)
3785 {
3786 if (insn->unscheduled_preds)
3787 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3788 INSN_UID (insn->insn));
3789 else
3790 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3791 INSN_UID (insn->insn));
3792 }
3793 if (insn->unscheduled_preds)
3794 /* INSN isn't yet ready to issue. Give all its predecessors the
3795 highest priority. */
3796 model_promote_predecessors (insn);
3797 else
3798 {
3799 /* INSN is ready. Add it to the end of model_schedule and
3800 process its successors. */
3801 model_add_successors_to_worklist (insn);
3802 model_remove_from_worklist (insn);
3803 model_add_to_schedule (insn->insn);
3804 model_record_pressures (insn);
3805 update_register_pressure (insn->insn);
3806 }
3807 }
3808
3809 /* Restore all QUEUE_INDEXs to the values that they had before
3810 model_start_schedule was called. */
3811
3812 static void
3813 model_reset_queue_indices (void)
3814 {
3815 unsigned int i;
3816 rtx_insn *insn;
3817
3818 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3819 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3820 }
3821
3822 /* We have calculated the model schedule and spill costs. Print a summary
3823 to sched_dump. */
3824
3825 static void
3826 model_dump_pressure_summary (void)
3827 {
3828 int pci, cl;
3829
3830 fprintf (sched_dump, ";; Pressure summary:");
3831 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3832 {
3833 cl = ira_pressure_classes[pci];
3834 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3835 model_before_pressure.limits[pci].pressure);
3836 }
3837 fprintf (sched_dump, "\n\n");
3838 }
3839
3840 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3841 scheduling region. */
3842
3843 static void
3844 model_start_schedule (basic_block bb)
3845 {
3846 model_next_priority = 1;
3847 model_schedule.create (sched_max_luid);
3848 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3849
3850 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3851 initiate_reg_pressure_info (df_get_live_in (bb));
3852
3853 model_analyze_insns ();
3854 model_init_pressure_group (&model_before_pressure);
3855 while (model_worklist)
3856 model_choose_insn ();
3857 gcc_assert (model_num_insns == (int) model_schedule.length ());
3858 if (sched_verbose >= 2)
3859 fprintf (sched_dump, "\n");
3860
3861 model_record_final_pressures (&model_before_pressure);
3862 model_reset_queue_indices ();
3863
3864 XDELETEVEC (model_insns);
3865
3866 model_curr_point = 0;
3867 initiate_reg_pressure_info (df_get_live_in (bb));
3868 if (sched_verbose >= 1)
3869 model_dump_pressure_summary ();
3870 }
3871
3872 /* Free the information associated with GROUP. */
3873
3874 static void
3875 model_finalize_pressure_group (struct model_pressure_group *group)
3876 {
3877 XDELETEVEC (group->model);
3878 }
3879
3880 /* Free the information created by model_start_schedule. */
3881
3882 static void
3883 model_end_schedule (void)
3884 {
3885 model_finalize_pressure_group (&model_before_pressure);
3886 model_schedule.release ();
3887 }
3888
3889 /* Prepare reg pressure scheduling for basic block BB. */
3890 static void
3891 sched_pressure_start_bb (basic_block bb)
3892 {
3893 /* Set the number of available registers for each class taking into account
3894 relative probability of current basic block versus function prologue and
3895 epilogue.
3896 * If the basic block executes much more often than the prologue/epilogue
3897 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3898 nil, so the effective number of available registers is
3899 (ira_class_hard_regs_num[cl] - 0).
3900 * If the basic block executes as often as the prologue/epilogue,
3901 then spill in the block is as costly as in the prologue, so the effective
3902 number of available registers is
3903 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3904 Note that all-else-equal, we prefer to spill in the prologue, since that
3905 allows "extra" registers for other basic blocks of the function.
3906 * If the basic block is on the cold path of the function and executes
3907 rarely, then we should always prefer to spill in the block, rather than
3908 in the prologue/epilogue. The effective number of available register is
3909 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3910 {
3911 int i;
3912 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3913 int bb_freq = bb->frequency;
3914
3915 if (bb_freq == 0)
3916 {
3917 if (entry_freq == 0)
3918 entry_freq = bb_freq = 1;
3919 }
3920 if (bb_freq < entry_freq)
3921 bb_freq = entry_freq;
3922
3923 for (i = 0; i < ira_pressure_classes_num; ++i)
3924 {
3925 enum reg_class cl = ira_pressure_classes[i];
3926 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3927 sched_class_regs_num[cl]
3928 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3929 }
3930 }
3931
3932 if (sched_pressure == SCHED_PRESSURE_MODEL)
3933 model_start_schedule (bb);
3934 }
3935 \f
3936 /* A structure that holds local state for the loop in schedule_block. */
3937 struct sched_block_state
3938 {
3939 /* True if no real insns have been scheduled in the current cycle. */
3940 bool first_cycle_insn_p;
3941 /* True if a shadow insn has been scheduled in the current cycle, which
3942 means that no more normal insns can be issued. */
3943 bool shadows_only_p;
3944 /* True if we're winding down a modulo schedule, which means that we only
3945 issue insns with INSN_EXACT_TICK set. */
3946 bool modulo_epilogue;
3947 /* Initialized with the machine's issue rate every cycle, and updated
3948 by calls to the variable_issue hook. */
3949 int can_issue_more;
3950 };
3951
3952 /* INSN is the "currently executing insn". Launch each insn which was
3953 waiting on INSN. READY is the ready list which contains the insns
3954 that are ready to fire. CLOCK is the current cycle. The function
3955 returns necessary cycle advance after issuing the insn (it is not
3956 zero for insns in a schedule group). */
3957
3958 static int
3959 schedule_insn (rtx_insn *insn)
3960 {
3961 sd_iterator_def sd_it;
3962 dep_t dep;
3963 int i;
3964 int advance = 0;
3965
3966 if (sched_verbose >= 1)
3967 {
3968 struct reg_pressure_data *pressure_info;
3969 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3970 clock_var, (*current_sched_info->print_insn) (insn, 1),
3971 str_pattern_slim (PATTERN (insn)));
3972
3973 if (recog_memoized (insn) < 0)
3974 fprintf (sched_dump, "nothing");
3975 else
3976 print_reservation (sched_dump, insn);
3977 pressure_info = INSN_REG_PRESSURE (insn);
3978 if (pressure_info != NULL)
3979 {
3980 fputc (':', sched_dump);
3981 for (i = 0; i < ira_pressure_classes_num; i++)
3982 fprintf (sched_dump, "%s%s%+d(%d)",
3983 scheduled_insns.length () > 1
3984 && INSN_LUID (insn)
3985 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3986 reg_class_names[ira_pressure_classes[i]],
3987 pressure_info[i].set_increase, pressure_info[i].change);
3988 }
3989 if (sched_pressure == SCHED_PRESSURE_MODEL
3990 && model_curr_point < model_num_insns
3991 && model_index (insn) == model_curr_point)
3992 fprintf (sched_dump, ":model %d", model_curr_point);
3993 fputc ('\n', sched_dump);
3994 }
3995
3996 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
3997 update_reg_and_insn_max_reg_pressure (insn);
3998
3999 /* Scheduling instruction should have all its dependencies resolved and
4000 should have been removed from the ready list. */
4001 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4002
4003 /* Reset debug insns invalidated by moving this insn. */
4004 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4005 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4006 sd_iterator_cond (&sd_it, &dep);)
4007 {
4008 rtx_insn *dbg = DEP_PRO (dep);
4009 struct reg_use_data *use, *next;
4010
4011 if (DEP_STATUS (dep) & DEP_CANCELLED)
4012 {
4013 sd_iterator_next (&sd_it);
4014 continue;
4015 }
4016
4017 gcc_assert (DEBUG_INSN_P (dbg));
4018
4019 if (sched_verbose >= 6)
4020 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4021 INSN_UID (dbg));
4022
4023 /* ??? Rather than resetting the debug insn, we might be able
4024 to emit a debug temp before the just-scheduled insn, but
4025 this would involve checking that the expression at the
4026 point of the debug insn is equivalent to the expression
4027 before the just-scheduled insn. They might not be: the
4028 expression in the debug insn may depend on other insns not
4029 yet scheduled that set MEMs, REGs or even other debug
4030 insns. It's not clear that attempting to preserve debug
4031 information in these cases is worth the effort, given how
4032 uncommon these resets are and the likelihood that the debug
4033 temps introduced won't survive the schedule change. */
4034 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4035 df_insn_rescan (dbg);
4036
4037 /* Unknown location doesn't use any registers. */
4038 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4039 {
4040 struct reg_use_data *prev = use;
4041
4042 /* Remove use from the cyclic next_regno_use chain first. */
4043 while (prev->next_regno_use != use)
4044 prev = prev->next_regno_use;
4045 prev->next_regno_use = use->next_regno_use;
4046 next = use->next_insn_use;
4047 free (use);
4048 }
4049 INSN_REG_USE_LIST (dbg) = NULL;
4050
4051 /* We delete rather than resolve these deps, otherwise we
4052 crash in sched_free_deps(), because forward deps are
4053 expected to be released before backward deps. */
4054 sd_delete_dep (sd_it);
4055 }
4056
4057 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4058 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4059
4060 if (sched_pressure == SCHED_PRESSURE_MODEL
4061 && model_curr_point < model_num_insns
4062 && NONDEBUG_INSN_P (insn))
4063 {
4064 if (model_index (insn) == model_curr_point)
4065 do
4066 model_curr_point++;
4067 while (model_curr_point < model_num_insns
4068 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4069 == QUEUE_SCHEDULED));
4070 else
4071 model_recompute (insn);
4072 model_update_limit_points ();
4073 update_register_pressure (insn);
4074 if (sched_verbose >= 2)
4075 print_curr_reg_pressure ();
4076 }
4077
4078 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4079 if (INSN_TICK (insn) > clock_var)
4080 /* INSN has been prematurely moved from the queue to the ready list.
4081 This is possible only if following flags are set. */
4082 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4083
4084 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4085 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4086 INSN_TICK (insn) = clock_var;
4087
4088 check_clobbered_conditions (insn);
4089
4090 /* Update dependent instructions. First, see if by scheduling this insn
4091 now we broke a dependence in a way that requires us to change another
4092 insn. */
4093 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4094 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4095 {
4096 struct dep_replacement *desc = DEP_REPLACE (dep);
4097 rtx_insn *pro = DEP_PRO (dep);
4098 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4099 && desc != NULL && desc->insn == pro)
4100 apply_replacement (dep, false);
4101 }
4102
4103 /* Go through and resolve forward dependencies. */
4104 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4105 sd_iterator_cond (&sd_it, &dep);)
4106 {
4107 rtx_insn *next = DEP_CON (dep);
4108 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4109
4110 /* Resolve the dependence between INSN and NEXT.
4111 sd_resolve_dep () moves current dep to another list thus
4112 advancing the iterator. */
4113 sd_resolve_dep (sd_it);
4114
4115 if (cancelled)
4116 {
4117 if (must_restore_pattern_p (next, dep))
4118 restore_pattern (dep, false);
4119 continue;
4120 }
4121
4122 /* Don't bother trying to mark next as ready if insn is a debug
4123 insn. If insn is the last hard dependency, it will have
4124 already been discounted. */
4125 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4126 continue;
4127
4128 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4129 {
4130 int effective_cost;
4131
4132 effective_cost = try_ready (next);
4133
4134 if (effective_cost >= 0
4135 && SCHED_GROUP_P (next)
4136 && advance < effective_cost)
4137 advance = effective_cost;
4138 }
4139 else
4140 /* Check always has only one forward dependence (to the first insn in
4141 the recovery block), therefore, this will be executed only once. */
4142 {
4143 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4144 fix_recovery_deps (RECOVERY_BLOCK (insn));
4145 }
4146 }
4147
4148 /* Annotate the instruction with issue information -- TImode
4149 indicates that the instruction is expected not to be able
4150 to issue on the same cycle as the previous insn. A machine
4151 may use this information to decide how the instruction should
4152 be aligned. */
4153 if (issue_rate > 1
4154 && GET_CODE (PATTERN (insn)) != USE
4155 && GET_CODE (PATTERN (insn)) != CLOBBER
4156 && !DEBUG_INSN_P (insn))
4157 {
4158 if (reload_completed)
4159 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4160 last_clock_var = clock_var;
4161 }
4162
4163 if (nonscheduled_insns_begin != NULL_RTX)
4164 /* Indicate to debug counters that INSN is scheduled. */
4165 nonscheduled_insns_begin = insn;
4166
4167 return advance;
4168 }
4169
4170 /* Functions for handling of notes. */
4171
4172 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4173 void
4174 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4175 {
4176 rtx_insn *from_start;
4177
4178 /* It's easy when have nothing to concat. */
4179 if (from_end == NULL)
4180 return;
4181
4182 /* It's also easy when destination is empty. */
4183 if (*to_endp == NULL)
4184 {
4185 *to_endp = from_end;
4186 return;
4187 }
4188
4189 from_start = from_end;
4190 while (PREV_INSN (from_start) != NULL)
4191 from_start = PREV_INSN (from_start);
4192
4193 SET_PREV_INSN (from_start) = *to_endp;
4194 SET_NEXT_INSN (*to_endp) = from_start;
4195 *to_endp = from_end;
4196 }
4197
4198 /* Delete notes between HEAD and TAIL and put them in the chain
4199 of notes ended by NOTE_LIST. */
4200 void
4201 remove_notes (rtx_insn *head, rtx_insn *tail)
4202 {
4203 rtx_insn *next_tail, *insn, *next;
4204
4205 note_list = 0;
4206 if (head == tail && !INSN_P (head))
4207 return;
4208
4209 next_tail = NEXT_INSN (tail);
4210 for (insn = head; insn != next_tail; insn = next)
4211 {
4212 next = NEXT_INSN (insn);
4213 if (!NOTE_P (insn))
4214 continue;
4215
4216 switch (NOTE_KIND (insn))
4217 {
4218 case NOTE_INSN_BASIC_BLOCK:
4219 continue;
4220
4221 case NOTE_INSN_EPILOGUE_BEG:
4222 if (insn != tail)
4223 {
4224 remove_insn (insn);
4225 add_reg_note (next, REG_SAVE_NOTE,
4226 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4227 break;
4228 }
4229 /* FALLTHRU */
4230
4231 default:
4232 remove_insn (insn);
4233
4234 /* Add the note to list that ends at NOTE_LIST. */
4235 SET_PREV_INSN (insn) = note_list;
4236 SET_NEXT_INSN (insn) = NULL_RTX;
4237 if (note_list)
4238 SET_NEXT_INSN (note_list) = insn;
4239 note_list = insn;
4240 break;
4241 }
4242
4243 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4244 }
4245 }
4246
4247 /* A structure to record enough data to allow us to backtrack the scheduler to
4248 a previous state. */
4249 struct haifa_saved_data
4250 {
4251 /* Next entry on the list. */
4252 struct haifa_saved_data *next;
4253
4254 /* Backtracking is associated with scheduling insns that have delay slots.
4255 DELAY_PAIR points to the structure that contains the insns involved, and
4256 the number of cycles between them. */
4257 struct delay_pair *delay_pair;
4258
4259 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4260 void *fe_saved_data;
4261 /* Data used by the backend. */
4262 void *be_saved_data;
4263
4264 /* Copies of global state. */
4265 int clock_var, last_clock_var;
4266 struct ready_list ready;
4267 state_t curr_state;
4268
4269 rtx_insn *last_scheduled_insn;
4270 rtx_insn *last_nondebug_scheduled_insn;
4271 rtx_insn *nonscheduled_insns_begin;
4272 int cycle_issued_insns;
4273
4274 /* Copies of state used in the inner loop of schedule_block. */
4275 struct sched_block_state sched_block;
4276
4277 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4278 to 0 when restoring. */
4279 int q_size;
4280 rtx_insn_list **insn_queue;
4281
4282 /* Describe pattern replacements that occurred since this backtrack point
4283 was queued. */
4284 vec<dep_t> replacement_deps;
4285 vec<int> replace_apply;
4286
4287 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4288 point. */
4289 vec<dep_t> next_cycle_deps;
4290 vec<int> next_cycle_apply;
4291 };
4292
4293 /* A record, in reverse order, of all scheduled insns which have delay slots
4294 and may require backtracking. */
4295 static struct haifa_saved_data *backtrack_queue;
4296
4297 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4298 to SET_P. */
4299 static void
4300 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4301 {
4302 sd_iterator_def sd_it;
4303 dep_t dep;
4304 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4305 {
4306 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4307 }
4308 }
4309
4310 /* Save the current scheduler state so that we can backtrack to it
4311 later if necessary. PAIR gives the insns that make it necessary to
4312 save this point. SCHED_BLOCK is the local state of schedule_block
4313 that need to be saved. */
4314 static void
4315 save_backtrack_point (struct delay_pair *pair,
4316 struct sched_block_state sched_block)
4317 {
4318 int i;
4319 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4320
4321 save->curr_state = xmalloc (dfa_state_size);
4322 memcpy (save->curr_state, curr_state, dfa_state_size);
4323
4324 save->ready.first = ready.first;
4325 save->ready.n_ready = ready.n_ready;
4326 save->ready.n_debug = ready.n_debug;
4327 save->ready.veclen = ready.veclen;
4328 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4329 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4330
4331 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4332 save->q_size = q_size;
4333 for (i = 0; i <= max_insn_queue_index; i++)
4334 {
4335 int q = NEXT_Q_AFTER (q_ptr, i);
4336 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4337 }
4338
4339 save->clock_var = clock_var;
4340 save->last_clock_var = last_clock_var;
4341 save->cycle_issued_insns = cycle_issued_insns;
4342 save->last_scheduled_insn = last_scheduled_insn;
4343 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4344 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4345
4346 save->sched_block = sched_block;
4347
4348 save->replacement_deps.create (0);
4349 save->replace_apply.create (0);
4350 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4351 save->next_cycle_apply = next_cycle_apply.copy ();
4352
4353 if (current_sched_info->save_state)
4354 save->fe_saved_data = (*current_sched_info->save_state) ();
4355
4356 if (targetm.sched.alloc_sched_context)
4357 {
4358 save->be_saved_data = targetm.sched.alloc_sched_context ();
4359 targetm.sched.init_sched_context (save->be_saved_data, false);
4360 }
4361 else
4362 save->be_saved_data = NULL;
4363
4364 save->delay_pair = pair;
4365
4366 save->next = backtrack_queue;
4367 backtrack_queue = save;
4368
4369 while (pair)
4370 {
4371 mark_backtrack_feeds (pair->i2, 1);
4372 INSN_TICK (pair->i2) = INVALID_TICK;
4373 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4374 SHADOW_P (pair->i2) = pair->stages == 0;
4375 pair = pair->next_same_i1;
4376 }
4377 }
4378
4379 /* Walk the ready list and all queues. If any insns have unresolved backwards
4380 dependencies, these must be cancelled deps, broken by predication. Set or
4381 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4382
4383 static void
4384 toggle_cancelled_flags (bool set)
4385 {
4386 int i;
4387 sd_iterator_def sd_it;
4388 dep_t dep;
4389
4390 if (ready.n_ready > 0)
4391 {
4392 rtx_insn **first = ready_lastpos (&ready);
4393 for (i = 0; i < ready.n_ready; i++)
4394 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4395 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4396 {
4397 if (set)
4398 DEP_STATUS (dep) |= DEP_CANCELLED;
4399 else
4400 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4401 }
4402 }
4403 for (i = 0; i <= max_insn_queue_index; i++)
4404 {
4405 int q = NEXT_Q_AFTER (q_ptr, i);
4406 rtx_insn_list *link;
4407 for (link = insn_queue[q]; link; link = link->next ())
4408 {
4409 rtx_insn *insn = link->insn ();
4410 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4411 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4412 {
4413 if (set)
4414 DEP_STATUS (dep) |= DEP_CANCELLED;
4415 else
4416 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4417 }
4418 }
4419 }
4420 }
4421
4422 /* Undo the replacements that have occurred after backtrack point SAVE
4423 was placed. */
4424 static void
4425 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4426 {
4427 while (!save->replacement_deps.is_empty ())
4428 {
4429 dep_t dep = save->replacement_deps.pop ();
4430 int apply_p = save->replace_apply.pop ();
4431
4432 if (apply_p)
4433 restore_pattern (dep, true);
4434 else
4435 apply_replacement (dep, true);
4436 }
4437 save->replacement_deps.release ();
4438 save->replace_apply.release ();
4439 }
4440
4441 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4442 Restore their dependencies to an unresolved state, and mark them as
4443 queued nowhere. */
4444
4445 static void
4446 unschedule_insns_until (rtx_insn *insn)
4447 {
4448 auto_vec<rtx_insn *> recompute_vec;
4449
4450 /* Make two passes over the insns to be unscheduled. First, we clear out
4451 dependencies and other trivial bookkeeping. */
4452 for (;;)
4453 {
4454 rtx_insn *last;
4455 sd_iterator_def sd_it;
4456 dep_t dep;
4457
4458 last = scheduled_insns.pop ();
4459
4460 /* This will be changed by restore_backtrack_point if the insn is in
4461 any queue. */
4462 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4463 if (last != insn)
4464 INSN_TICK (last) = INVALID_TICK;
4465
4466 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4467 modulo_insns_scheduled--;
4468
4469 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4470 sd_iterator_cond (&sd_it, &dep);)
4471 {
4472 rtx_insn *con = DEP_CON (dep);
4473 sd_unresolve_dep (sd_it);
4474 if (!MUST_RECOMPUTE_SPEC_P (con))
4475 {
4476 MUST_RECOMPUTE_SPEC_P (con) = 1;
4477 recompute_vec.safe_push (con);
4478 }
4479 }
4480
4481 if (last == insn)
4482 break;
4483 }
4484
4485 /* A second pass, to update ready and speculation status for insns
4486 depending on the unscheduled ones. The first pass must have
4487 popped the scheduled_insns vector up to the point where we
4488 restart scheduling, as recompute_todo_spec requires it to be
4489 up-to-date. */
4490 while (!recompute_vec.is_empty ())
4491 {
4492 rtx_insn *con;
4493
4494 con = recompute_vec.pop ();
4495 MUST_RECOMPUTE_SPEC_P (con) = 0;
4496 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4497 {
4498 TODO_SPEC (con) = HARD_DEP;
4499 INSN_TICK (con) = INVALID_TICK;
4500 if (PREDICATED_PAT (con) != NULL_RTX)
4501 haifa_change_pattern (con, ORIG_PAT (con));
4502 }
4503 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4504 TODO_SPEC (con) = recompute_todo_spec (con, true);
4505 }
4506 }
4507
4508 /* Restore scheduler state from the topmost entry on the backtracking queue.
4509 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4510 overwrite with the saved data.
4511 The caller must already have called unschedule_insns_until. */
4512
4513 static void
4514 restore_last_backtrack_point (struct sched_block_state *psched_block)
4515 {
4516 int i;
4517 struct haifa_saved_data *save = backtrack_queue;
4518
4519 backtrack_queue = save->next;
4520
4521 if (current_sched_info->restore_state)
4522 (*current_sched_info->restore_state) (save->fe_saved_data);
4523
4524 if (targetm.sched.alloc_sched_context)
4525 {
4526 targetm.sched.set_sched_context (save->be_saved_data);
4527 targetm.sched.free_sched_context (save->be_saved_data);
4528 }
4529
4530 /* Do this first since it clobbers INSN_TICK of the involved
4531 instructions. */
4532 undo_replacements_for_backtrack (save);
4533
4534 /* Clear the QUEUE_INDEX of everything in the ready list or one
4535 of the queues. */
4536 if (ready.n_ready > 0)
4537 {
4538 rtx_insn **first = ready_lastpos (&ready);
4539 for (i = 0; i < ready.n_ready; i++)
4540 {
4541 rtx_insn *insn = first[i];
4542 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4543 INSN_TICK (insn) = INVALID_TICK;
4544 }
4545 }
4546 for (i = 0; i <= max_insn_queue_index; i++)
4547 {
4548 int q = NEXT_Q_AFTER (q_ptr, i);
4549
4550 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4551 {
4552 rtx_insn *x = link->insn ();
4553 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4554 INSN_TICK (x) = INVALID_TICK;
4555 }
4556 free_INSN_LIST_list (&insn_queue[q]);
4557 }
4558
4559 free (ready.vec);
4560 ready = save->ready;
4561
4562 if (ready.n_ready > 0)
4563 {
4564 rtx_insn **first = ready_lastpos (&ready);
4565 for (i = 0; i < ready.n_ready; i++)
4566 {
4567 rtx_insn *insn = first[i];
4568 QUEUE_INDEX (insn) = QUEUE_READY;
4569 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4570 INSN_TICK (insn) = save->clock_var;
4571 }
4572 }
4573
4574 q_ptr = 0;
4575 q_size = save->q_size;
4576 for (i = 0; i <= max_insn_queue_index; i++)
4577 {
4578 int q = NEXT_Q_AFTER (q_ptr, i);
4579
4580 insn_queue[q] = save->insn_queue[q];
4581
4582 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4583 {
4584 rtx_insn *x = link->insn ();
4585 QUEUE_INDEX (x) = i;
4586 TODO_SPEC (x) = recompute_todo_spec (x, true);
4587 INSN_TICK (x) = save->clock_var + i;
4588 }
4589 }
4590 free (save->insn_queue);
4591
4592 toggle_cancelled_flags (true);
4593
4594 clock_var = save->clock_var;
4595 last_clock_var = save->last_clock_var;
4596 cycle_issued_insns = save->cycle_issued_insns;
4597 last_scheduled_insn = save->last_scheduled_insn;
4598 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4599 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4600
4601 *psched_block = save->sched_block;
4602
4603 memcpy (curr_state, save->curr_state, dfa_state_size);
4604 free (save->curr_state);
4605
4606 mark_backtrack_feeds (save->delay_pair->i2, 0);
4607
4608 gcc_assert (next_cycle_replace_deps.is_empty ());
4609 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4610 next_cycle_apply = save->next_cycle_apply.copy ();
4611
4612 free (save);
4613
4614 for (save = backtrack_queue; save; save = save->next)
4615 {
4616 mark_backtrack_feeds (save->delay_pair->i2, 1);
4617 }
4618 }
4619
4620 /* Discard all data associated with the topmost entry in the backtrack
4621 queue. If RESET_TICK is false, we just want to free the data. If true,
4622 we are doing this because we discovered a reason to backtrack. In the
4623 latter case, also reset the INSN_TICK for the shadow insn. */
4624 static void
4625 free_topmost_backtrack_point (bool reset_tick)
4626 {
4627 struct haifa_saved_data *save = backtrack_queue;
4628 int i;
4629
4630 backtrack_queue = save->next;
4631
4632 if (reset_tick)
4633 {
4634 struct delay_pair *pair = save->delay_pair;
4635 while (pair)
4636 {
4637 INSN_TICK (pair->i2) = INVALID_TICK;
4638 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4639 pair = pair->next_same_i1;
4640 }
4641 undo_replacements_for_backtrack (save);
4642 }
4643 else
4644 {
4645 save->replacement_deps.release ();
4646 save->replace_apply.release ();
4647 }
4648
4649 if (targetm.sched.free_sched_context)
4650 targetm.sched.free_sched_context (save->be_saved_data);
4651 if (current_sched_info->restore_state)
4652 free (save->fe_saved_data);
4653 for (i = 0; i <= max_insn_queue_index; i++)
4654 free_INSN_LIST_list (&save->insn_queue[i]);
4655 free (save->insn_queue);
4656 free (save->curr_state);
4657 free (save->ready.vec);
4658 free (save);
4659 }
4660
4661 /* Free the entire backtrack queue. */
4662 static void
4663 free_backtrack_queue (void)
4664 {
4665 while (backtrack_queue)
4666 free_topmost_backtrack_point (false);
4667 }
4668
4669 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4670 may have to postpone the replacement until the start of the next cycle,
4671 at which point we will be called again with IMMEDIATELY true. This is
4672 only done for machines which have instruction packets with explicit
4673 parallelism however. */
4674 static void
4675 apply_replacement (dep_t dep, bool immediately)
4676 {
4677 struct dep_replacement *desc = DEP_REPLACE (dep);
4678 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4679 {
4680 next_cycle_replace_deps.safe_push (dep);
4681 next_cycle_apply.safe_push (1);
4682 }
4683 else
4684 {
4685 bool success;
4686
4687 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4688 return;
4689
4690 if (sched_verbose >= 5)
4691 fprintf (sched_dump, "applying replacement for insn %d\n",
4692 INSN_UID (desc->insn));
4693
4694 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4695 gcc_assert (success);
4696
4697 update_insn_after_change (desc->insn);
4698 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4699 fix_tick_ready (desc->insn);
4700
4701 if (backtrack_queue != NULL)
4702 {
4703 backtrack_queue->replacement_deps.safe_push (dep);
4704 backtrack_queue->replace_apply.safe_push (1);
4705 }
4706 }
4707 }
4708
4709 /* We have determined that a pattern involved in DEP must be restored.
4710 If IMMEDIATELY is false, we may have to postpone the replacement
4711 until the start of the next cycle, at which point we will be called
4712 again with IMMEDIATELY true. */
4713 static void
4714 restore_pattern (dep_t dep, bool immediately)
4715 {
4716 rtx_insn *next = DEP_CON (dep);
4717 int tick = INSN_TICK (next);
4718
4719 /* If we already scheduled the insn, the modified version is
4720 correct. */
4721 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4722 return;
4723
4724 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4725 {
4726 next_cycle_replace_deps.safe_push (dep);
4727 next_cycle_apply.safe_push (0);
4728 return;
4729 }
4730
4731
4732 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4733 {
4734 if (sched_verbose >= 5)
4735 fprintf (sched_dump, "restoring pattern for insn %d\n",
4736 INSN_UID (next));
4737 haifa_change_pattern (next, ORIG_PAT (next));
4738 }
4739 else
4740 {
4741 struct dep_replacement *desc = DEP_REPLACE (dep);
4742 bool success;
4743
4744 if (sched_verbose >= 5)
4745 fprintf (sched_dump, "restoring pattern for insn %d\n",
4746 INSN_UID (desc->insn));
4747 tick = INSN_TICK (desc->insn);
4748
4749 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4750 gcc_assert (success);
4751 update_insn_after_change (desc->insn);
4752 if (backtrack_queue != NULL)
4753 {
4754 backtrack_queue->replacement_deps.safe_push (dep);
4755 backtrack_queue->replace_apply.safe_push (0);
4756 }
4757 }
4758 INSN_TICK (next) = tick;
4759 if (TODO_SPEC (next) == DEP_POSTPONED)
4760 return;
4761
4762 if (sd_lists_empty_p (next, SD_LIST_BACK))
4763 TODO_SPEC (next) = 0;
4764 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4765 TODO_SPEC (next) = HARD_DEP;
4766 }
4767
4768 /* Perform pattern replacements that were queued up until the next
4769 cycle. */
4770 static void
4771 perform_replacements_new_cycle (void)
4772 {
4773 int i;
4774 dep_t dep;
4775 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4776 {
4777 int apply_p = next_cycle_apply[i];
4778 if (apply_p)
4779 apply_replacement (dep, true);
4780 else
4781 restore_pattern (dep, true);
4782 }
4783 next_cycle_replace_deps.truncate (0);
4784 next_cycle_apply.truncate (0);
4785 }
4786
4787 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4788 instructions we've previously encountered, a set bit prevents
4789 recursion. BUDGET is a limit on how far ahead we look, it is
4790 reduced on recursive calls. Return true if we produced a good
4791 estimate, or false if we exceeded the budget. */
4792 static bool
4793 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4794 {
4795 sd_iterator_def sd_it;
4796 dep_t dep;
4797 int earliest = INSN_TICK (insn);
4798
4799 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4800 {
4801 rtx_insn *pro = DEP_PRO (dep);
4802 int t;
4803
4804 if (DEP_STATUS (dep) & DEP_CANCELLED)
4805 continue;
4806
4807 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4808 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4809 else
4810 {
4811 int cost = dep_cost (dep);
4812 if (cost >= budget)
4813 return false;
4814 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4815 {
4816 if (!estimate_insn_tick (processed, pro, budget - cost))
4817 return false;
4818 }
4819 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4820 t = INSN_TICK_ESTIMATE (pro) + cost;
4821 if (earliest == INVALID_TICK || t > earliest)
4822 earliest = t;
4823 }
4824 }
4825 bitmap_set_bit (processed, INSN_LUID (insn));
4826 INSN_TICK_ESTIMATE (insn) = earliest;
4827 return true;
4828 }
4829
4830 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4831 infinite resources) the cycle in which the delayed shadow can be issued.
4832 Return the number of cycles that must pass before the real insn can be
4833 issued in order to meet this constraint. */
4834 static int
4835 estimate_shadow_tick (struct delay_pair *p)
4836 {
4837 bitmap_head processed;
4838 int t;
4839 bool cutoff;
4840 bitmap_initialize (&processed, 0);
4841
4842 cutoff = !estimate_insn_tick (&processed, p->i2,
4843 max_insn_queue_index + pair_delay (p));
4844 bitmap_clear (&processed);
4845 if (cutoff)
4846 return max_insn_queue_index;
4847 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4848 if (t > 0)
4849 return t;
4850 return 0;
4851 }
4852
4853 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4854 recursively resolve all its forward dependencies. */
4855 static void
4856 resolve_dependencies (rtx_insn *insn)
4857 {
4858 sd_iterator_def sd_it;
4859 dep_t dep;
4860
4861 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4862 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4863 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4864 return;
4865
4866 if (sched_verbose >= 4)
4867 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4868
4869 if (QUEUE_INDEX (insn) >= 0)
4870 queue_remove (insn);
4871
4872 scheduled_insns.safe_push (insn);
4873
4874 /* Update dependent instructions. */
4875 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4876 sd_iterator_cond (&sd_it, &dep);)
4877 {
4878 rtx_insn *next = DEP_CON (dep);
4879
4880 if (sched_verbose >= 4)
4881 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4882 INSN_UID (next));
4883
4884 /* Resolve the dependence between INSN and NEXT.
4885 sd_resolve_dep () moves current dep to another list thus
4886 advancing the iterator. */
4887 sd_resolve_dep (sd_it);
4888
4889 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4890 {
4891 resolve_dependencies (next);
4892 }
4893 else
4894 /* Check always has only one forward dependence (to the first insn in
4895 the recovery block), therefore, this will be executed only once. */
4896 {
4897 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4898 }
4899 }
4900 }
4901
4902
4903 /* Return the head and tail pointers of ebb starting at BEG and ending
4904 at END. */
4905 void
4906 get_ebb_head_tail (basic_block beg, basic_block end,
4907 rtx_insn **headp, rtx_insn **tailp)
4908 {
4909 rtx_insn *beg_head = BB_HEAD (beg);
4910 rtx_insn * beg_tail = BB_END (beg);
4911 rtx_insn * end_head = BB_HEAD (end);
4912 rtx_insn * end_tail = BB_END (end);
4913
4914 /* Don't include any notes or labels at the beginning of the BEG
4915 basic block, or notes at the end of the END basic blocks. */
4916
4917 if (LABEL_P (beg_head))
4918 beg_head = NEXT_INSN (beg_head);
4919
4920 while (beg_head != beg_tail)
4921 if (NOTE_P (beg_head))
4922 beg_head = NEXT_INSN (beg_head);
4923 else if (DEBUG_INSN_P (beg_head))
4924 {
4925 rtx_insn * note, *next;
4926
4927 for (note = NEXT_INSN (beg_head);
4928 note != beg_tail;
4929 note = next)
4930 {
4931 next = NEXT_INSN (note);
4932 if (NOTE_P (note))
4933 {
4934 if (sched_verbose >= 9)
4935 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4936
4937 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4938
4939 if (BLOCK_FOR_INSN (note) != beg)
4940 df_insn_change_bb (note, beg);
4941 }
4942 else if (!DEBUG_INSN_P (note))
4943 break;
4944 }
4945
4946 break;
4947 }
4948 else
4949 break;
4950
4951 *headp = beg_head;
4952
4953 if (beg == end)
4954 end_head = beg_head;
4955 else if (LABEL_P (end_head))
4956 end_head = NEXT_INSN (end_head);
4957
4958 while (end_head != end_tail)
4959 if (NOTE_P (end_tail))
4960 end_tail = PREV_INSN (end_tail);
4961 else if (DEBUG_INSN_P (end_tail))
4962 {
4963 rtx_insn * note, *prev;
4964
4965 for (note = PREV_INSN (end_tail);
4966 note != end_head;
4967 note = prev)
4968 {
4969 prev = PREV_INSN (note);
4970 if (NOTE_P (note))
4971 {
4972 if (sched_verbose >= 9)
4973 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4974
4975 reorder_insns_nobb (note, note, end_tail);
4976
4977 if (end_tail == BB_END (end))
4978 BB_END (end) = note;
4979
4980 if (BLOCK_FOR_INSN (note) != end)
4981 df_insn_change_bb (note, end);
4982 }
4983 else if (!DEBUG_INSN_P (note))
4984 break;
4985 }
4986
4987 break;
4988 }
4989 else
4990 break;
4991
4992 *tailp = end_tail;
4993 }
4994
4995 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
4996
4997 int
4998 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
4999 {
5000 while (head != NEXT_INSN (tail))
5001 {
5002 if (!NOTE_P (head) && !LABEL_P (head))
5003 return 0;
5004 head = NEXT_INSN (head);
5005 }
5006 return 1;
5007 }
5008
5009 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5010 previously found among the insns. Insert them just before HEAD. */
5011 rtx_insn *
5012 restore_other_notes (rtx_insn *head, basic_block head_bb)
5013 {
5014 if (note_list != 0)
5015 {
5016 rtx_insn *note_head = note_list;
5017
5018 if (head)
5019 head_bb = BLOCK_FOR_INSN (head);
5020 else
5021 head = NEXT_INSN (bb_note (head_bb));
5022
5023 while (PREV_INSN (note_head))
5024 {
5025 set_block_for_insn (note_head, head_bb);
5026 note_head = PREV_INSN (note_head);
5027 }
5028 /* In the above cycle we've missed this note. */
5029 set_block_for_insn (note_head, head_bb);
5030
5031 SET_PREV_INSN (note_head) = PREV_INSN (head);
5032 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5033 SET_PREV_INSN (head) = note_list;
5034 SET_NEXT_INSN (note_list) = head;
5035
5036 if (BLOCK_FOR_INSN (head) != head_bb)
5037 BB_END (head_bb) = note_list;
5038
5039 head = note_head;
5040 }
5041
5042 return head;
5043 }
5044
5045 /* When we know we are going to discard the schedule due to a failed attempt
5046 at modulo scheduling, undo all replacements. */
5047 static void
5048 undo_all_replacements (void)
5049 {
5050 rtx_insn *insn;
5051 int i;
5052
5053 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5054 {
5055 sd_iterator_def sd_it;
5056 dep_t dep;
5057
5058 /* See if we must undo a replacement. */
5059 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5060 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5061 {
5062 struct dep_replacement *desc = DEP_REPLACE (dep);
5063 if (desc != NULL)
5064 validate_change (desc->insn, desc->loc, desc->orig, 0);
5065 }
5066 }
5067 }
5068
5069 /* Return first non-scheduled insn in the current scheduling block.
5070 This is mostly used for debug-counter purposes. */
5071 static rtx_insn *
5072 first_nonscheduled_insn (void)
5073 {
5074 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5075 ? nonscheduled_insns_begin
5076 : current_sched_info->prev_head);
5077
5078 do
5079 {
5080 insn = next_nonnote_nondebug_insn (insn);
5081 }
5082 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5083
5084 return insn;
5085 }
5086
5087 /* Move insns that became ready to fire from queue to ready list. */
5088
5089 static void
5090 queue_to_ready (struct ready_list *ready)
5091 {
5092 rtx_insn *insn;
5093 rtx_insn_list *link;
5094 rtx_insn *skip_insn;
5095
5096 q_ptr = NEXT_Q (q_ptr);
5097
5098 if (dbg_cnt (sched_insn) == false)
5099 /* If debug counter is activated do not requeue the first
5100 nonscheduled insn. */
5101 skip_insn = first_nonscheduled_insn ();
5102 else
5103 skip_insn = NULL;
5104
5105 /* Add all pending insns that can be scheduled without stalls to the
5106 ready list. */
5107 for (link = insn_queue[q_ptr]; link; link = link->next ())
5108 {
5109 insn = link->insn ();
5110 q_size -= 1;
5111
5112 if (sched_verbose >= 2)
5113 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5114 (*current_sched_info->print_insn) (insn, 0));
5115
5116 /* If the ready list is full, delay the insn for 1 cycle.
5117 See the comment in schedule_block for the rationale. */
5118 if (!reload_completed
5119 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5120 || (sched_pressure == SCHED_PRESSURE_MODEL
5121 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5122 instructions too. */
5123 && model_index (insn) > (model_curr_point
5124 + MAX_SCHED_READY_INSNS)))
5125 && !(sched_pressure == SCHED_PRESSURE_MODEL
5126 && model_curr_point < model_num_insns
5127 /* Always allow the next model instruction to issue. */
5128 && model_index (insn) == model_curr_point)
5129 && !SCHED_GROUP_P (insn)
5130 && insn != skip_insn)
5131 {
5132 if (sched_verbose >= 2)
5133 fprintf (sched_dump, "keeping in queue, ready full\n");
5134 queue_insn (insn, 1, "ready full");
5135 }
5136 else
5137 {
5138 ready_add (ready, insn, false);
5139 if (sched_verbose >= 2)
5140 fprintf (sched_dump, "moving to ready without stalls\n");
5141 }
5142 }
5143 free_INSN_LIST_list (&insn_queue[q_ptr]);
5144
5145 /* If there are no ready insns, stall until one is ready and add all
5146 of the pending insns at that point to the ready list. */
5147 if (ready->n_ready == 0)
5148 {
5149 int stalls;
5150
5151 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5152 {
5153 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5154 {
5155 for (; link; link = link->next ())
5156 {
5157 insn = link->insn ();
5158 q_size -= 1;
5159
5160 if (sched_verbose >= 2)
5161 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5162 (*current_sched_info->print_insn) (insn, 0));
5163
5164 ready_add (ready, insn, false);
5165 if (sched_verbose >= 2)
5166 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5167 }
5168 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5169
5170 advance_one_cycle ();
5171
5172 break;
5173 }
5174
5175 advance_one_cycle ();
5176 }
5177
5178 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5179 clock_var += stalls;
5180 if (sched_verbose >= 2)
5181 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5182 stalls, clock_var);
5183 }
5184 }
5185
5186 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5187 prematurely move INSN from the queue to the ready list. Currently,
5188 if a target defines the hook 'is_costly_dependence', this function
5189 uses the hook to check whether there exist any dependences which are
5190 considered costly by the target, between INSN and other insns that
5191 have already been scheduled. Dependences are checked up to Y cycles
5192 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5193 controlling this value.
5194 (Other considerations could be taken into account instead (or in
5195 addition) depending on user flags and target hooks. */
5196
5197 static bool
5198 ok_for_early_queue_removal (rtx_insn *insn)
5199 {
5200 if (targetm.sched.is_costly_dependence)
5201 {
5202 int n_cycles;
5203 int i = scheduled_insns.length ();
5204 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5205 {
5206 while (i-- > 0)
5207 {
5208 int cost;
5209
5210 rtx_insn *prev_insn = scheduled_insns[i];
5211
5212 if (!NOTE_P (prev_insn))
5213 {
5214 dep_t dep;
5215
5216 dep = sd_find_dep_between (prev_insn, insn, true);
5217
5218 if (dep != NULL)
5219 {
5220 cost = dep_cost (dep);
5221
5222 if (targetm.sched.is_costly_dependence (dep, cost,
5223 flag_sched_stalled_insns_dep - n_cycles))
5224 return false;
5225 }
5226 }
5227
5228 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5229 break;
5230 }
5231
5232 if (i == 0)
5233 break;
5234 }
5235 }
5236
5237 return true;
5238 }
5239
5240
5241 /* Remove insns from the queue, before they become "ready" with respect
5242 to FU latency considerations. */
5243
5244 static int
5245 early_queue_to_ready (state_t state, struct ready_list *ready)
5246 {
5247 rtx_insn *insn;
5248 rtx_insn_list *link;
5249 rtx_insn_list *next_link;
5250 rtx_insn_list *prev_link;
5251 bool move_to_ready;
5252 int cost;
5253 state_t temp_state = alloca (dfa_state_size);
5254 int stalls;
5255 int insns_removed = 0;
5256
5257 /*
5258 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5259 function:
5260
5261 X == 0: There is no limit on how many queued insns can be removed
5262 prematurely. (flag_sched_stalled_insns = -1).
5263
5264 X >= 1: Only X queued insns can be removed prematurely in each
5265 invocation. (flag_sched_stalled_insns = X).
5266
5267 Otherwise: Early queue removal is disabled.
5268 (flag_sched_stalled_insns = 0)
5269 */
5270
5271 if (! flag_sched_stalled_insns)
5272 return 0;
5273
5274 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5275 {
5276 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5277 {
5278 if (sched_verbose > 6)
5279 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5280
5281 prev_link = 0;
5282 while (link)
5283 {
5284 next_link = link->next ();
5285 insn = link->insn ();
5286 if (insn && sched_verbose > 6)
5287 print_rtl_single (sched_dump, insn);
5288
5289 memcpy (temp_state, state, dfa_state_size);
5290 if (recog_memoized (insn) < 0)
5291 /* non-negative to indicate that it's not ready
5292 to avoid infinite Q->R->Q->R... */
5293 cost = 0;
5294 else
5295 cost = state_transition (temp_state, insn);
5296
5297 if (sched_verbose >= 6)
5298 fprintf (sched_dump, "transition cost = %d\n", cost);
5299
5300 move_to_ready = false;
5301 if (cost < 0)
5302 {
5303 move_to_ready = ok_for_early_queue_removal (insn);
5304 if (move_to_ready == true)
5305 {
5306 /* move from Q to R */
5307 q_size -= 1;
5308 ready_add (ready, insn, false);
5309
5310 if (prev_link)
5311 XEXP (prev_link, 1) = next_link;
5312 else
5313 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5314
5315 free_INSN_LIST_node (link);
5316
5317 if (sched_verbose >= 2)
5318 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5319 (*current_sched_info->print_insn) (insn, 0));
5320
5321 insns_removed++;
5322 if (insns_removed == flag_sched_stalled_insns)
5323 /* Remove no more than flag_sched_stalled_insns insns
5324 from Q at a time. */
5325 return insns_removed;
5326 }
5327 }
5328
5329 if (move_to_ready == false)
5330 prev_link = link;
5331
5332 link = next_link;
5333 } /* while link */
5334 } /* if link */
5335
5336 } /* for stalls.. */
5337
5338 return insns_removed;
5339 }
5340
5341
5342 /* Print the ready list for debugging purposes.
5343 If READY_TRY is non-zero then only print insns that max_issue
5344 will consider. */
5345 static void
5346 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5347 {
5348 rtx_insn **p;
5349 int i;
5350
5351 if (ready->n_ready == 0)
5352 {
5353 fprintf (sched_dump, "\n");
5354 return;
5355 }
5356
5357 p = ready_lastpos (ready);
5358 for (i = 0; i < ready->n_ready; i++)
5359 {
5360 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5361 continue;
5362
5363 fprintf (sched_dump, " %s:%d",
5364 (*current_sched_info->print_insn) (p[i], 0),
5365 INSN_LUID (p[i]));
5366 if (sched_pressure != SCHED_PRESSURE_NONE)
5367 fprintf (sched_dump, "(cost=%d",
5368 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5369 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5370 if (INSN_TICK (p[i]) > clock_var)
5371 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5372 if (sched_pressure == SCHED_PRESSURE_MODEL)
5373 fprintf (sched_dump, ":idx=%d",
5374 model_index (p[i]));
5375 if (sched_pressure != SCHED_PRESSURE_NONE)
5376 fprintf (sched_dump, ")");
5377 }
5378 fprintf (sched_dump, "\n");
5379 }
5380
5381 /* Print the ready list. Callable from debugger. */
5382 static void
5383 debug_ready_list (struct ready_list *ready)
5384 {
5385 debug_ready_list_1 (ready, NULL);
5386 }
5387
5388 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5389 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5390 replaces the epilogue note in the correct basic block. */
5391 void
5392 reemit_notes (rtx_insn *insn)
5393 {
5394 rtx note;
5395 rtx_insn *last = insn;
5396
5397 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5398 {
5399 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5400 {
5401 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5402
5403 last = emit_note_before (note_type, last);
5404 remove_note (insn, note);
5405 }
5406 }
5407 }
5408
5409 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5410 static void
5411 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5412 {
5413 if (PREV_INSN (insn) != last)
5414 {
5415 basic_block bb;
5416 rtx_insn *note;
5417 int jump_p = 0;
5418
5419 bb = BLOCK_FOR_INSN (insn);
5420
5421 /* BB_HEAD is either LABEL or NOTE. */
5422 gcc_assert (BB_HEAD (bb) != insn);
5423
5424 if (BB_END (bb) == insn)
5425 /* If this is last instruction in BB, move end marker one
5426 instruction up. */
5427 {
5428 /* Jumps are always placed at the end of basic block. */
5429 jump_p = control_flow_insn_p (insn);
5430
5431 gcc_assert (!jump_p
5432 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5433 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5434 || (common_sched_info->sched_pass_id
5435 == SCHED_EBB_PASS));
5436
5437 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5438
5439 BB_END (bb) = PREV_INSN (insn);
5440 }
5441
5442 gcc_assert (BB_END (bb) != last);
5443
5444 if (jump_p)
5445 /* We move the block note along with jump. */
5446 {
5447 gcc_assert (nt);
5448
5449 note = NEXT_INSN (insn);
5450 while (NOTE_NOT_BB_P (note) && note != nt)
5451 note = NEXT_INSN (note);
5452
5453 if (note != nt
5454 && (LABEL_P (note)
5455 || BARRIER_P (note)))
5456 note = NEXT_INSN (note);
5457
5458 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5459 }
5460 else
5461 note = insn;
5462
5463 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5464 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5465
5466 SET_NEXT_INSN (note) = NEXT_INSN (last);
5467 SET_PREV_INSN (NEXT_INSN (last)) = note;
5468
5469 SET_NEXT_INSN (last) = insn;
5470 SET_PREV_INSN (insn) = last;
5471
5472 bb = BLOCK_FOR_INSN (last);
5473
5474 if (jump_p)
5475 {
5476 fix_jump_move (insn);
5477
5478 if (BLOCK_FOR_INSN (insn) != bb)
5479 move_block_after_check (insn);
5480
5481 gcc_assert (BB_END (bb) == last);
5482 }
5483
5484 df_insn_change_bb (insn, bb);
5485
5486 /* Update BB_END, if needed. */
5487 if (BB_END (bb) == last)
5488 BB_END (bb) = insn;
5489 }
5490
5491 SCHED_GROUP_P (insn) = 0;
5492 }
5493
5494 /* Return true if scheduling INSN will finish current clock cycle. */
5495 static bool
5496 insn_finishes_cycle_p (rtx_insn *insn)
5497 {
5498 if (SCHED_GROUP_P (insn))
5499 /* After issuing INSN, rest of the sched_group will be forced to issue
5500 in order. Don't make any plans for the rest of cycle. */
5501 return true;
5502
5503 /* Finishing the block will, apparently, finish the cycle. */
5504 if (current_sched_info->insn_finishes_block_p
5505 && current_sched_info->insn_finishes_block_p (insn))
5506 return true;
5507
5508 return false;
5509 }
5510
5511 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5512 we're expecting a memory WRITE or not, check that the insn is relevant to
5513 the autoprefetcher modelling code. Return true iff that is the case.
5514 If it is relevant, record the base register of the memory op in BASE and
5515 the offset in OFFSET. */
5516
5517 static bool
5518 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5519 {
5520 if (GET_CODE (pat) != SET)
5521 return false;
5522
5523 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5524 if (!MEM_P (mem))
5525 return false;
5526
5527 struct address_info info;
5528 decompose_mem_address (&info, mem);
5529
5530 /* TODO: Currently only (base+const) addressing is supported. */
5531 if (info.base == NULL || !REG_P (*info.base)
5532 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5533 return false;
5534
5535 *base = *info.base;
5536 *offset = info.disp ? INTVAL (*info.disp) : 0;
5537 return true;
5538 }
5539
5540 /* Functions to model cache auto-prefetcher.
5541
5542 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5543 memory prefetches if it sees instructions with consequitive memory accesses
5544 in the instruction stream. Details of such hardware units are not published,
5545 so we can only guess what exactly is going on there.
5546 In the scheduler, we model abstract auto-prefetcher. If there are memory
5547 insns in the ready list (or the queue) that have same memory base, but
5548 different offsets, then we delay the insns with larger offsets until insns
5549 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5550 is "1", then we look at the ready list; if it is N>1, then we also look
5551 through N-1 queue entries.
5552 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5553 among its heuristics.
5554 Param value of "-1" disables modelling of the auto-prefetcher. */
5555
5556 /* Initialize autoprefetcher model data for INSN. */
5557 static void
5558 autopref_multipass_init (const rtx_insn *insn, int write)
5559 {
5560 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5561
5562 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5563 data->base = NULL_RTX;
5564 data->min_offset = 0;
5565 data->max_offset = 0;
5566 data->multi_mem_insn_p = false;
5567 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5568 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5569
5570 rtx pat = PATTERN (insn);
5571
5572 /* We have a multi-set insn like a load-multiple or store-multiple.
5573 We care about these as long as all the memory ops inside the PARALLEL
5574 have the same base register. We care about the minimum and maximum
5575 offsets from that base but don't check for the order of those offsets
5576 within the PARALLEL insn itself. */
5577 if (GET_CODE (pat) == PARALLEL)
5578 {
5579 int n_elems = XVECLEN (pat, 0);
5580
5581 int i = 0;
5582 rtx prev_base = NULL_RTX;
5583 int min_offset = 0;
5584 int max_offset = 0;
5585
5586 for (i = 0; i < n_elems; i++)
5587 {
5588 rtx set = XVECEXP (pat, 0, i);
5589 if (GET_CODE (set) != SET)
5590 return;
5591
5592 rtx base = NULL_RTX;
5593 int offset = 0;
5594 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5595 return;
5596
5597 if (i == 0)
5598 {
5599 prev_base = base;
5600 min_offset = offset;
5601 max_offset = offset;
5602 }
5603 /* Ensure that all memory operations in the PARALLEL use the same
5604 base register. */
5605 else if (REGNO (base) != REGNO (prev_base))
5606 return;
5607 else
5608 {
5609 min_offset = MIN (min_offset, offset);
5610 max_offset = MAX (max_offset, offset);
5611 }
5612 }
5613
5614 /* If we reached here then we have a valid PARALLEL of multiple memory
5615 ops with prev_base as the base and min_offset and max_offset
5616 containing the offsets range. */
5617 gcc_assert (prev_base);
5618 data->base = prev_base;
5619 data->min_offset = min_offset;
5620 data->max_offset = max_offset;
5621 data->multi_mem_insn_p = true;
5622 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5623
5624 return;
5625 }
5626
5627 /* Otherwise this is a single set memory operation. */
5628 rtx set = single_set (insn);
5629 if (set == NULL_RTX)
5630 return;
5631
5632 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5633 &data->min_offset))
5634 return;
5635
5636 /* This insn is relevant for the auto-prefetcher.
5637 The base and offset fields will have been filled in the
5638 analyze_set_insn_for_autopref call above. */
5639 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5640 }
5641
5642
5643 /* Helper for autopref_rank_for_schedule. Given the data of two
5644 insns relevant to the auto-prefetcher modelling code DATA1 and DATA2
5645 return their comparison result. Return 0 if there is no sensible
5646 ranking order for the two insns. */
5647
5648 static int
5649 autopref_rank_data (autopref_multipass_data_t data1,
5650 autopref_multipass_data_t data2)
5651 {
5652 /* Simple case when both insns are simple single memory ops. */
5653 if (!data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5654 return data1->min_offset - data2->min_offset;
5655
5656 /* Two load/store multiple insns. Return 0 if the offset ranges
5657 overlap and the difference between the minimum offsets otherwise. */
5658 else if (data1->multi_mem_insn_p && data2->multi_mem_insn_p)
5659 {
5660 int min1 = data1->min_offset;
5661 int max1 = data1->max_offset;
5662 int min2 = data2->min_offset;
5663 int max2 = data2->max_offset;
5664
5665 if (max1 < min2 || min1 > max2)
5666 return min1 - min2;
5667 else
5668 return 0;
5669 }
5670
5671 /* The other two cases is a pair of a load/store multiple and
5672 a simple memory op. Return 0 if the single op's offset is within the
5673 range of the multi-op insn and the difference between the single offset
5674 and the minimum offset of the multi-set insn otherwise. */
5675 else if (data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5676 {
5677 int max1 = data1->max_offset;
5678 int min1 = data1->min_offset;
5679
5680 if (data2->min_offset >= min1
5681 && data2->min_offset <= max1)
5682 return 0;
5683 else
5684 return min1 - data2->min_offset;
5685 }
5686 else
5687 {
5688 int max2 = data2->max_offset;
5689 int min2 = data2->min_offset;
5690
5691 if (data1->min_offset >= min2
5692 && data1->min_offset <= max2)
5693 return 0;
5694 else
5695 return data1->min_offset - min2;
5696 }
5697 }
5698
5699 /* Helper function for rank_for_schedule sorting. */
5700 static int
5701 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5702 {
5703 for (int write = 0; write < 2; ++write)
5704 {
5705 autopref_multipass_data_t data1
5706 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5707 autopref_multipass_data_t data2
5708 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5709
5710 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5711 autopref_multipass_init (insn1, write);
5712 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5713 continue;
5714
5715 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5716 autopref_multipass_init (insn2, write);
5717 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5718 continue;
5719
5720 if (!rtx_equal_p (data1->base, data2->base))
5721 continue;
5722
5723 return autopref_rank_data (data1, data2);
5724 }
5725
5726 return 0;
5727 }
5728
5729 /* True if header of debug dump was printed. */
5730 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5731
5732 /* Helper for autopref_multipass_dfa_lookahead_guard.
5733 Return "1" if INSN1 should be delayed in favor of INSN2. */
5734 static int
5735 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5736 const rtx_insn *insn2, int write)
5737 {
5738 autopref_multipass_data_t data1
5739 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5740 autopref_multipass_data_t data2
5741 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5742
5743 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5744 autopref_multipass_init (insn2, write);
5745 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5746 return 0;
5747
5748 if (rtx_equal_p (data1->base, data2->base)
5749 && autopref_rank_data (data1, data2) > 0)
5750 {
5751 if (sched_verbose >= 2)
5752 {
5753 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5754 {
5755 fprintf (sched_dump,
5756 ";;\t\tnot trying in max_issue due to autoprefetch "
5757 "model: ");
5758 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5759 }
5760
5761 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5762 }
5763
5764 return 1;
5765 }
5766
5767 return 0;
5768 }
5769
5770 /* General note:
5771
5772 We could have also hooked autoprefetcher model into
5773 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5774 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5775 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5776 unblocked). We don't bother about this yet because target of interest
5777 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5778
5779 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5780 Return "1" if INSN1 should not be considered in max_issue due to
5781 auto-prefetcher considerations. */
5782 int
5783 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5784 {
5785 int r = 0;
5786
5787 /* Exit early if the param forbids this or if we're not entering here through
5788 normal haifa scheduling. This can happen if selective scheduling is
5789 explicitly enabled. */
5790 if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5791 return 0;
5792
5793 if (sched_verbose >= 2 && ready_index == 0)
5794 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5795
5796 for (int write = 0; write < 2; ++write)
5797 {
5798 autopref_multipass_data_t data1
5799 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5800
5801 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5802 autopref_multipass_init (insn1, write);
5803 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5804 continue;
5805
5806 if (ready_index == 0
5807 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5808 /* We allow only a single delay on priviledged instructions.
5809 Doing otherwise would cause infinite loop. */
5810 {
5811 if (sched_verbose >= 2)
5812 {
5813 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5814 {
5815 fprintf (sched_dump,
5816 ";;\t\tnot trying in max_issue due to autoprefetch "
5817 "model: ");
5818 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5819 }
5820
5821 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5822 }
5823 continue;
5824 }
5825
5826 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5827 {
5828 rtx_insn *insn2 = get_ready_element (i2);
5829 if (insn1 == insn2)
5830 continue;
5831 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5832 if (r)
5833 {
5834 if (ready_index == 0)
5835 {
5836 r = -1;
5837 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5838 }
5839 goto finish;
5840 }
5841 }
5842
5843 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5844 continue;
5845
5846 /* Everything from the current queue slot should have been moved to
5847 the ready list. */
5848 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5849
5850 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5851 if (n_stalls > max_insn_queue_index)
5852 n_stalls = max_insn_queue_index;
5853
5854 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5855 {
5856 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5857 link != NULL_RTX;
5858 link = link->next ())
5859 {
5860 rtx_insn *insn2 = link->insn ();
5861 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5862 write);
5863 if (r)
5864 {
5865 /* Queue INSN1 until INSN2 can issue. */
5866 r = -stalls;
5867 if (ready_index == 0)
5868 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5869 goto finish;
5870 }
5871 }
5872 }
5873 }
5874
5875 finish:
5876 if (sched_verbose >= 2
5877 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5878 && (ready_index == ready.n_ready - 1 || r < 0))
5879 /* This does not /always/ trigger. We don't output EOL if the last
5880 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5881 called. We can live with this. */
5882 fprintf (sched_dump, "\n");
5883
5884 return r;
5885 }
5886
5887 /* Define type for target data used in multipass scheduling. */
5888 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5889 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5890 #endif
5891 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5892
5893 /* The following structure describe an entry of the stack of choices. */
5894 struct choice_entry
5895 {
5896 /* Ordinal number of the issued insn in the ready queue. */
5897 int index;
5898 /* The number of the rest insns whose issues we should try. */
5899 int rest;
5900 /* The number of issued essential insns. */
5901 int n;
5902 /* State after issuing the insn. */
5903 state_t state;
5904 /* Target-specific data. */
5905 first_cycle_multipass_data_t target_data;
5906 };
5907
5908 /* The following array is used to implement a stack of choices used in
5909 function max_issue. */
5910 static struct choice_entry *choice_stack;
5911
5912 /* This holds the value of the target dfa_lookahead hook. */
5913 int dfa_lookahead;
5914
5915 /* The following variable value is maximal number of tries of issuing
5916 insns for the first cycle multipass insn scheduling. We define
5917 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5918 need this constraint if all real insns (with non-negative codes)
5919 had reservations because in this case the algorithm complexity is
5920 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5921 might be incomplete and such insn might occur. For such
5922 descriptions, the complexity of algorithm (without the constraint)
5923 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5924 static int max_lookahead_tries;
5925
5926 /* The following function returns maximal (or close to maximal) number
5927 of insns which can be issued on the same cycle and one of which
5928 insns is insns with the best rank (the first insn in READY). To
5929 make this function tries different samples of ready insns. READY
5930 is current queue `ready'. Global array READY_TRY reflects what
5931 insns are already issued in this try. The function stops immediately,
5932 if it reached the such a solution, that all instruction can be issued.
5933 INDEX will contain index of the best insn in READY. The following
5934 function is used only for first cycle multipass scheduling.
5935
5936 PRIVILEGED_N >= 0
5937
5938 This function expects recognized insns only. All USEs,
5939 CLOBBERs, etc must be filtered elsewhere. */
5940 int
5941 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5942 bool first_cycle_insn_p, int *index)
5943 {
5944 int n, i, all, n_ready, best, delay, tries_num;
5945 int more_issue;
5946 struct choice_entry *top;
5947 rtx_insn *insn;
5948
5949 if (sched_fusion)
5950 return 0;
5951
5952 n_ready = ready->n_ready;
5953 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5954 && privileged_n <= n_ready);
5955
5956 /* Init MAX_LOOKAHEAD_TRIES. */
5957 if (max_lookahead_tries == 0)
5958 {
5959 max_lookahead_tries = 100;
5960 for (i = 0; i < issue_rate; i++)
5961 max_lookahead_tries *= dfa_lookahead;
5962 }
5963
5964 /* Init max_points. */
5965 more_issue = issue_rate - cycle_issued_insns;
5966 gcc_assert (more_issue >= 0);
5967
5968 /* The number of the issued insns in the best solution. */
5969 best = 0;
5970
5971 top = choice_stack;
5972
5973 /* Set initial state of the search. */
5974 memcpy (top->state, state, dfa_state_size);
5975 top->rest = dfa_lookahead;
5976 top->n = 0;
5977 if (targetm.sched.first_cycle_multipass_begin)
5978 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5979 ready_try, n_ready,
5980 first_cycle_insn_p);
5981
5982 /* Count the number of the insns to search among. */
5983 for (all = i = 0; i < n_ready; i++)
5984 if (!ready_try [i])
5985 all++;
5986
5987 if (sched_verbose >= 2)
5988 {
5989 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5990 debug_ready_list_1 (ready, ready_try);
5991 }
5992
5993 /* I is the index of the insn to try next. */
5994 i = 0;
5995 tries_num = 0;
5996 for (;;)
5997 {
5998 if (/* If we've reached a dead end or searched enough of what we have
5999 been asked... */
6000 top->rest == 0
6001 /* or have nothing else to try... */
6002 || i >= n_ready
6003 /* or should not issue more. */
6004 || top->n >= more_issue)
6005 {
6006 /* ??? (... || i == n_ready). */
6007 gcc_assert (i <= n_ready);
6008
6009 /* We should not issue more than issue_rate instructions. */
6010 gcc_assert (top->n <= more_issue);
6011
6012 if (top == choice_stack)
6013 break;
6014
6015 if (best < top - choice_stack)
6016 {
6017 if (privileged_n)
6018 {
6019 n = privileged_n;
6020 /* Try to find issued privileged insn. */
6021 while (n && !ready_try[--n])
6022 ;
6023 }
6024
6025 if (/* If all insns are equally good... */
6026 privileged_n == 0
6027 /* Or a privileged insn will be issued. */
6028 || ready_try[n])
6029 /* Then we have a solution. */
6030 {
6031 best = top - choice_stack;
6032 /* This is the index of the insn issued first in this
6033 solution. */
6034 *index = choice_stack [1].index;
6035 if (top->n == more_issue || best == all)
6036 break;
6037 }
6038 }
6039
6040 /* Set ready-list index to point to the last insn
6041 ('i++' below will advance it to the next insn). */
6042 i = top->index;
6043
6044 /* Backtrack. */
6045 ready_try [i] = 0;
6046
6047 if (targetm.sched.first_cycle_multipass_backtrack)
6048 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
6049 ready_try, n_ready);
6050
6051 top--;
6052 memcpy (state, top->state, dfa_state_size);
6053 }
6054 else if (!ready_try [i])
6055 {
6056 tries_num++;
6057 if (tries_num > max_lookahead_tries)
6058 break;
6059 insn = ready_element (ready, i);
6060 delay = state_transition (state, insn);
6061 if (delay < 0)
6062 {
6063 if (state_dead_lock_p (state)
6064 || insn_finishes_cycle_p (insn))
6065 /* We won't issue any more instructions in the next
6066 choice_state. */
6067 top->rest = 0;
6068 else
6069 top->rest--;
6070
6071 n = top->n;
6072 if (memcmp (top->state, state, dfa_state_size) != 0)
6073 n++;
6074
6075 /* Advance to the next choice_entry. */
6076 top++;
6077 /* Initialize it. */
6078 top->rest = dfa_lookahead;
6079 top->index = i;
6080 top->n = n;
6081 memcpy (top->state, state, dfa_state_size);
6082 ready_try [i] = 1;
6083
6084 if (targetm.sched.first_cycle_multipass_issue)
6085 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6086 ready_try, n_ready,
6087 insn,
6088 &((top - 1)
6089 ->target_data));
6090
6091 i = -1;
6092 }
6093 }
6094
6095 /* Increase ready-list index. */
6096 i++;
6097 }
6098
6099 if (targetm.sched.first_cycle_multipass_end)
6100 targetm.sched.first_cycle_multipass_end (best != 0
6101 ? &choice_stack[1].target_data
6102 : NULL);
6103
6104 /* Restore the original state of the DFA. */
6105 memcpy (state, choice_stack->state, dfa_state_size);
6106
6107 return best;
6108 }
6109
6110 /* The following function chooses insn from READY and modifies
6111 READY. The following function is used only for first
6112 cycle multipass scheduling.
6113 Return:
6114 -1 if cycle should be advanced,
6115 0 if INSN_PTR is set to point to the desirable insn,
6116 1 if choose_ready () should be restarted without advancing the cycle. */
6117 static int
6118 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6119 rtx_insn **insn_ptr)
6120 {
6121 if (dbg_cnt (sched_insn) == false)
6122 {
6123 if (nonscheduled_insns_begin == NULL_RTX)
6124 nonscheduled_insns_begin = current_sched_info->prev_head;
6125
6126 rtx_insn *insn = first_nonscheduled_insn ();
6127
6128 if (QUEUE_INDEX (insn) == QUEUE_READY)
6129 /* INSN is in the ready_list. */
6130 {
6131 ready_remove_insn (insn);
6132 *insn_ptr = insn;
6133 return 0;
6134 }
6135
6136 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6137 gcc_assert (QUEUE_INDEX (insn) >= 0);
6138 return -1;
6139 }
6140
6141 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6142 || DEBUG_INSN_P (ready_element (ready, 0)))
6143 {
6144 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6145 *insn_ptr = ready_remove_first_dispatch (ready);
6146 else
6147 *insn_ptr = ready_remove_first (ready);
6148
6149 return 0;
6150 }
6151 else
6152 {
6153 /* Try to choose the best insn. */
6154 int index = 0, i;
6155 rtx_insn *insn;
6156
6157 insn = ready_element (ready, 0);
6158 if (INSN_CODE (insn) < 0)
6159 {
6160 *insn_ptr = ready_remove_first (ready);
6161 return 0;
6162 }
6163
6164 /* Filter the search space. */
6165 for (i = 0; i < ready->n_ready; i++)
6166 {
6167 ready_try[i] = 0;
6168
6169 insn = ready_element (ready, i);
6170
6171 /* If this insn is recognizable we should have already
6172 recognized it earlier.
6173 ??? Not very clear where this is supposed to be done.
6174 See dep_cost_1. */
6175 gcc_checking_assert (INSN_CODE (insn) >= 0
6176 || recog_memoized (insn) < 0);
6177 if (INSN_CODE (insn) < 0)
6178 {
6179 /* Non-recognized insns at position 0 are handled above. */
6180 gcc_assert (i > 0);
6181 ready_try[i] = 1;
6182 continue;
6183 }
6184
6185 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6186 {
6187 ready_try[i]
6188 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6189 (insn, i));
6190
6191 if (ready_try[i] < 0)
6192 /* Queue instruction for several cycles.
6193 We need to restart choose_ready as we have changed
6194 the ready list. */
6195 {
6196 change_queue_index (insn, -ready_try[i]);
6197 return 1;
6198 }
6199
6200 /* Make sure that we didn't end up with 0'th insn filtered out.
6201 Don't be tempted to make life easier for backends and just
6202 requeue 0'th insn if (ready_try[0] == 0) and restart
6203 choose_ready. Backends should be very considerate about
6204 requeueing instructions -- especially the highest priority
6205 one at position 0. */
6206 gcc_assert (ready_try[i] == 0 || i > 0);
6207 if (ready_try[i])
6208 continue;
6209 }
6210
6211 gcc_assert (ready_try[i] == 0);
6212 /* INSN made it through the scrutiny of filters! */
6213 }
6214
6215 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6216 {
6217 *insn_ptr = ready_remove_first (ready);
6218 if (sched_verbose >= 4)
6219 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6220 (*current_sched_info->print_insn) (*insn_ptr, 0));
6221 return 0;
6222 }
6223 else
6224 {
6225 if (sched_verbose >= 4)
6226 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6227 (*current_sched_info->print_insn)
6228 (ready_element (ready, index), 0));
6229
6230 *insn_ptr = ready_remove (ready, index);
6231 return 0;
6232 }
6233 }
6234 }
6235
6236 /* This function is called when we have successfully scheduled a
6237 block. It uses the schedule stored in the scheduled_insns vector
6238 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6239 append the scheduled insns; TAIL is the insn after the scheduled
6240 block. TARGET_BB is the argument passed to schedule_block. */
6241
6242 static void
6243 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6244 {
6245 unsigned int i;
6246 rtx_insn *insn;
6247
6248 last_scheduled_insn = prev_head;
6249 for (i = 0;
6250 scheduled_insns.iterate (i, &insn);
6251 i++)
6252 {
6253 if (control_flow_insn_p (last_scheduled_insn)
6254 || current_sched_info->advance_target_bb (*target_bb, insn))
6255 {
6256 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6257
6258 if (sched_verbose)
6259 {
6260 rtx_insn *x;
6261
6262 x = next_real_insn (last_scheduled_insn);
6263 gcc_assert (x);
6264 dump_new_block_header (1, *target_bb, x, tail);
6265 }
6266
6267 last_scheduled_insn = bb_note (*target_bb);
6268 }
6269
6270 if (current_sched_info->begin_move_insn)
6271 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6272 move_insn (insn, last_scheduled_insn,
6273 current_sched_info->next_tail);
6274 if (!DEBUG_INSN_P (insn))
6275 reemit_notes (insn);
6276 last_scheduled_insn = insn;
6277 }
6278
6279 scheduled_insns.truncate (0);
6280 }
6281
6282 /* Examine all insns on the ready list and queue those which can't be
6283 issued in this cycle. TEMP_STATE is temporary scheduler state we
6284 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6285 have been issued for the current cycle, which means it is valid to
6286 issue an asm statement.
6287
6288 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6289 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6290 we only leave insns which have an INSN_EXACT_TICK. */
6291
6292 static void
6293 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6294 bool shadows_only_p, bool modulo_epilogue_p)
6295 {
6296 int i, pass;
6297 bool sched_group_found = false;
6298 int min_cost_group = 1;
6299
6300 if (sched_fusion)
6301 return;
6302
6303 for (i = 0; i < ready.n_ready; i++)
6304 {
6305 rtx_insn *insn = ready_element (&ready, i);
6306 if (SCHED_GROUP_P (insn))
6307 {
6308 sched_group_found = true;
6309 break;
6310 }
6311 }
6312
6313 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6314 such an insn first and note its cost, then schedule all other insns
6315 for one cycle later. */
6316 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6317 {
6318 int n = ready.n_ready;
6319 for (i = 0; i < n; i++)
6320 {
6321 rtx_insn *insn = ready_element (&ready, i);
6322 int cost = 0;
6323 const char *reason = "resource conflict";
6324
6325 if (DEBUG_INSN_P (insn))
6326 continue;
6327
6328 if (sched_group_found && !SCHED_GROUP_P (insn))
6329 {
6330 if (pass == 0)
6331 continue;
6332 cost = min_cost_group;
6333 reason = "not in sched group";
6334 }
6335 else if (modulo_epilogue_p
6336 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6337 {
6338 cost = max_insn_queue_index;
6339 reason = "not an epilogue insn";
6340 }
6341 else if (shadows_only_p && !SHADOW_P (insn))
6342 {
6343 cost = 1;
6344 reason = "not a shadow";
6345 }
6346 else if (recog_memoized (insn) < 0)
6347 {
6348 if (!first_cycle_insn_p
6349 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6350 || asm_noperands (PATTERN (insn)) >= 0))
6351 cost = 1;
6352 reason = "asm";
6353 }
6354 else if (sched_pressure != SCHED_PRESSURE_NONE)
6355 {
6356 if (sched_pressure == SCHED_PRESSURE_MODEL
6357 && INSN_TICK (insn) <= clock_var)
6358 {
6359 memcpy (temp_state, curr_state, dfa_state_size);
6360 if (state_transition (temp_state, insn) >= 0)
6361 INSN_TICK (insn) = clock_var + 1;
6362 }
6363 cost = 0;
6364 }
6365 else
6366 {
6367 int delay_cost = 0;
6368
6369 if (delay_htab)
6370 {
6371 struct delay_pair *delay_entry;
6372 delay_entry
6373 = delay_htab->find_with_hash (insn,
6374 htab_hash_pointer (insn));
6375 while (delay_entry && delay_cost == 0)
6376 {
6377 delay_cost = estimate_shadow_tick (delay_entry);
6378 if (delay_cost > max_insn_queue_index)
6379 delay_cost = max_insn_queue_index;
6380 delay_entry = delay_entry->next_same_i1;
6381 }
6382 }
6383
6384 memcpy (temp_state, curr_state, dfa_state_size);
6385 cost = state_transition (temp_state, insn);
6386 if (cost < 0)
6387 cost = 0;
6388 else if (cost == 0)
6389 cost = 1;
6390 if (cost < delay_cost)
6391 {
6392 cost = delay_cost;
6393 reason = "shadow tick";
6394 }
6395 }
6396 if (cost >= 1)
6397 {
6398 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6399 min_cost_group = cost;
6400 ready_remove (&ready, i);
6401 /* Normally we'd want to queue INSN for COST cycles. However,
6402 if SCHED_GROUP_P is set, then we must ensure that nothing
6403 else comes between INSN and its predecessor. If there is
6404 some other insn ready to fire on the next cycle, then that
6405 invariant would be broken.
6406
6407 So when SCHED_GROUP_P is set, just queue this insn for a
6408 single cycle. */
6409 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6410 if (i + 1 < n)
6411 break;
6412 }
6413 }
6414 if (i == n)
6415 pass++;
6416 }
6417 }
6418
6419 /* Called when we detect that the schedule is impossible. We examine the
6420 backtrack queue to find the earliest insn that caused this condition. */
6421
6422 static struct haifa_saved_data *
6423 verify_shadows (void)
6424 {
6425 struct haifa_saved_data *save, *earliest_fail = NULL;
6426 for (save = backtrack_queue; save; save = save->next)
6427 {
6428 int t;
6429 struct delay_pair *pair = save->delay_pair;
6430 rtx_insn *i1 = pair->i1;
6431
6432 for (; pair; pair = pair->next_same_i1)
6433 {
6434 rtx_insn *i2 = pair->i2;
6435
6436 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6437 continue;
6438
6439 t = INSN_TICK (i1) + pair_delay (pair);
6440 if (t < clock_var)
6441 {
6442 if (sched_verbose >= 2)
6443 fprintf (sched_dump,
6444 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6445 ", not ready\n",
6446 INSN_UID (pair->i1), INSN_UID (pair->i2),
6447 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6448 earliest_fail = save;
6449 break;
6450 }
6451 if (QUEUE_INDEX (i2) >= 0)
6452 {
6453 int queued_for = INSN_TICK (i2);
6454
6455 if (t < queued_for)
6456 {
6457 if (sched_verbose >= 2)
6458 fprintf (sched_dump,
6459 ";;\t\tfailed delay requirements for %d/%d"
6460 " (%d->%d), queued too late\n",
6461 INSN_UID (pair->i1), INSN_UID (pair->i2),
6462 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6463 earliest_fail = save;
6464 break;
6465 }
6466 }
6467 }
6468 }
6469
6470 return earliest_fail;
6471 }
6472
6473 /* Print instructions together with useful scheduling information between
6474 HEAD and TAIL (inclusive). */
6475 static void
6476 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6477 {
6478 fprintf (sched_dump, ";;\t| insn | prio |\n");
6479
6480 rtx_insn *next_tail = NEXT_INSN (tail);
6481 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6482 {
6483 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6484 const char *pattern = (NOTE_P (insn)
6485 ? "note"
6486 : str_pattern_slim (PATTERN (insn)));
6487
6488 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6489 INSN_UID (insn), priority, pattern);
6490
6491 if (sched_verbose >= 4)
6492 {
6493 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6494 fprintf (sched_dump, "nothing");
6495 else
6496 print_reservation (sched_dump, insn);
6497 }
6498 fprintf (sched_dump, "\n");
6499 }
6500 }
6501
6502 /* Use forward list scheduling to rearrange insns of block pointed to by
6503 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6504 region. */
6505
6506 bool
6507 schedule_block (basic_block *target_bb, state_t init_state)
6508 {
6509 int i;
6510 bool success = modulo_ii == 0;
6511 struct sched_block_state ls;
6512 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6513 int sort_p, advance, start_clock_var;
6514
6515 /* Head/tail info for this block. */
6516 rtx_insn *prev_head = current_sched_info->prev_head;
6517 rtx_insn *next_tail = current_sched_info->next_tail;
6518 rtx_insn *head = NEXT_INSN (prev_head);
6519 rtx_insn *tail = PREV_INSN (next_tail);
6520
6521 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6522 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6523 find_modifiable_mems (head, tail);
6524
6525 /* We used to have code to avoid getting parameters moved from hard
6526 argument registers into pseudos.
6527
6528 However, it was removed when it proved to be of marginal benefit
6529 and caused problems because schedule_block and compute_forward_dependences
6530 had different notions of what the "head" insn was. */
6531
6532 gcc_assert (head != tail || INSN_P (head));
6533
6534 haifa_recovery_bb_recently_added_p = false;
6535
6536 backtrack_queue = NULL;
6537
6538 /* Debug info. */
6539 if (sched_verbose)
6540 {
6541 dump_new_block_header (0, *target_bb, head, tail);
6542
6543 if (sched_verbose >= 2)
6544 {
6545 dump_insn_stream (head, tail);
6546 memset (&rank_for_schedule_stats, 0,
6547 sizeof (rank_for_schedule_stats));
6548 }
6549 }
6550
6551 if (init_state == NULL)
6552 state_reset (curr_state);
6553 else
6554 memcpy (curr_state, init_state, dfa_state_size);
6555
6556 /* Clear the ready list. */
6557 ready.first = ready.veclen - 1;
6558 ready.n_ready = 0;
6559 ready.n_debug = 0;
6560
6561 /* It is used for first cycle multipass scheduling. */
6562 temp_state = alloca (dfa_state_size);
6563
6564 if (targetm.sched.init)
6565 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6566
6567 /* We start inserting insns after PREV_HEAD. */
6568 last_scheduled_insn = prev_head;
6569 last_nondebug_scheduled_insn = NULL;
6570 nonscheduled_insns_begin = NULL;
6571
6572 gcc_assert ((NOTE_P (last_scheduled_insn)
6573 || DEBUG_INSN_P (last_scheduled_insn))
6574 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6575
6576 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6577 queue. */
6578 q_ptr = 0;
6579 q_size = 0;
6580
6581 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6582 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6583
6584 /* Start just before the beginning of time. */
6585 clock_var = -1;
6586
6587 /* We need queue and ready lists and clock_var be initialized
6588 in try_ready () (which is called through init_ready_list ()). */
6589 (*current_sched_info->init_ready_list) ();
6590
6591 if (sched_pressure)
6592 sched_pressure_start_bb (*target_bb);
6593
6594 /* The algorithm is O(n^2) in the number of ready insns at any given
6595 time in the worst case. Before reload we are more likely to have
6596 big lists so truncate them to a reasonable size. */
6597 if (!reload_completed
6598 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6599 {
6600 ready_sort_debug (&ready);
6601 ready_sort_real (&ready);
6602
6603 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6604 If there are debug insns, we know they're first. */
6605 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6606 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6607 break;
6608
6609 if (sched_verbose >= 2)
6610 {
6611 fprintf (sched_dump,
6612 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6613 debug_ready_list (&ready);
6614 fprintf (sched_dump,
6615 ";;\t\t before reload => truncated to %d insns\n", i);
6616 }
6617
6618 /* Delay all insns past it for 1 cycle. If debug counter is
6619 activated make an exception for the insn right after
6620 nonscheduled_insns_begin. */
6621 {
6622 rtx_insn *skip_insn;
6623
6624 if (dbg_cnt (sched_insn) == false)
6625 skip_insn = first_nonscheduled_insn ();
6626 else
6627 skip_insn = NULL;
6628
6629 while (i < ready.n_ready)
6630 {
6631 rtx_insn *insn;
6632
6633 insn = ready_remove (&ready, i);
6634
6635 if (insn != skip_insn)
6636 queue_insn (insn, 1, "list truncated");
6637 }
6638 if (skip_insn)
6639 ready_add (&ready, skip_insn, true);
6640 }
6641 }
6642
6643 /* Now we can restore basic block notes and maintain precise cfg. */
6644 restore_bb_notes (*target_bb);
6645
6646 last_clock_var = -1;
6647
6648 advance = 0;
6649
6650 gcc_assert (scheduled_insns.length () == 0);
6651 sort_p = TRUE;
6652 must_backtrack = false;
6653 modulo_insns_scheduled = 0;
6654
6655 ls.modulo_epilogue = false;
6656 ls.first_cycle_insn_p = true;
6657
6658 /* Loop until all the insns in BB are scheduled. */
6659 while ((*current_sched_info->schedule_more_p) ())
6660 {
6661 perform_replacements_new_cycle ();
6662 do
6663 {
6664 start_clock_var = clock_var;
6665
6666 clock_var++;
6667
6668 advance_one_cycle ();
6669
6670 /* Add to the ready list all pending insns that can be issued now.
6671 If there are no ready insns, increment clock until one
6672 is ready and add all pending insns at that point to the ready
6673 list. */
6674 queue_to_ready (&ready);
6675
6676 gcc_assert (ready.n_ready);
6677
6678 if (sched_verbose >= 2)
6679 {
6680 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6681 debug_ready_list (&ready);
6682 }
6683 advance -= clock_var - start_clock_var;
6684 }
6685 while (advance > 0);
6686
6687 if (ls.modulo_epilogue)
6688 {
6689 int stage = clock_var / modulo_ii;
6690 if (stage > modulo_last_stage * 2 + 2)
6691 {
6692 if (sched_verbose >= 2)
6693 fprintf (sched_dump,
6694 ";;\t\tmodulo scheduled succeeded at II %d\n",
6695 modulo_ii);
6696 success = true;
6697 goto end_schedule;
6698 }
6699 }
6700 else if (modulo_ii > 0)
6701 {
6702 int stage = clock_var / modulo_ii;
6703 if (stage > modulo_max_stages)
6704 {
6705 if (sched_verbose >= 2)
6706 fprintf (sched_dump,
6707 ";;\t\tfailing schedule due to excessive stages\n");
6708 goto end_schedule;
6709 }
6710 if (modulo_n_insns == modulo_insns_scheduled
6711 && stage > modulo_last_stage)
6712 {
6713 if (sched_verbose >= 2)
6714 fprintf (sched_dump,
6715 ";;\t\tfound kernel after %d stages, II %d\n",
6716 stage, modulo_ii);
6717 ls.modulo_epilogue = true;
6718 }
6719 }
6720
6721 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6722 if (ready.n_ready == 0)
6723 continue;
6724 if (must_backtrack)
6725 goto do_backtrack;
6726
6727 ls.shadows_only_p = false;
6728 cycle_issued_insns = 0;
6729 ls.can_issue_more = issue_rate;
6730 for (;;)
6731 {
6732 rtx_insn *insn;
6733 int cost;
6734 bool asm_p;
6735
6736 if (sort_p && ready.n_ready > 0)
6737 {
6738 /* Sort the ready list based on priority. This must be
6739 done every iteration through the loop, as schedule_insn
6740 may have readied additional insns that will not be
6741 sorted correctly. */
6742 ready_sort (&ready);
6743
6744 if (sched_verbose >= 2)
6745 {
6746 fprintf (sched_dump,
6747 ";;\t\tReady list after ready_sort: ");
6748 debug_ready_list (&ready);
6749 }
6750 }
6751
6752 /* We don't want md sched reorder to even see debug isns, so put
6753 them out right away. */
6754 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6755 && (*current_sched_info->schedule_more_p) ())
6756 {
6757 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6758 {
6759 rtx_insn *insn = ready_remove_first (&ready);
6760 gcc_assert (DEBUG_INSN_P (insn));
6761 (*current_sched_info->begin_schedule_ready) (insn);
6762 scheduled_insns.safe_push (insn);
6763 last_scheduled_insn = insn;
6764 advance = schedule_insn (insn);
6765 gcc_assert (advance == 0);
6766 if (ready.n_ready > 0)
6767 ready_sort (&ready);
6768 }
6769 }
6770
6771 if (ls.first_cycle_insn_p && !ready.n_ready)
6772 break;
6773
6774 resume_after_backtrack:
6775 /* Allow the target to reorder the list, typically for
6776 better instruction bundling. */
6777 if (sort_p
6778 && (ready.n_ready == 0
6779 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6780 {
6781 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6782 ls.can_issue_more
6783 = targetm.sched.reorder (sched_dump, sched_verbose,
6784 ready_lastpos (&ready),
6785 &ready.n_ready, clock_var);
6786 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6787 ls.can_issue_more
6788 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6789 ready.n_ready
6790 ? ready_lastpos (&ready) : NULL,
6791 &ready.n_ready, clock_var);
6792 }
6793
6794 restart_choose_ready:
6795 if (sched_verbose >= 2)
6796 {
6797 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6798 clock_var);
6799 debug_ready_list (&ready);
6800 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6801 print_curr_reg_pressure ();
6802 }
6803
6804 if (ready.n_ready == 0
6805 && ls.can_issue_more
6806 && reload_completed)
6807 {
6808 /* Allow scheduling insns directly from the queue in case
6809 there's nothing better to do (ready list is empty) but
6810 there are still vacant dispatch slots in the current cycle. */
6811 if (sched_verbose >= 6)
6812 fprintf (sched_dump,";;\t\tSecond chance\n");
6813 memcpy (temp_state, curr_state, dfa_state_size);
6814 if (early_queue_to_ready (temp_state, &ready))
6815 ready_sort (&ready);
6816 }
6817
6818 if (ready.n_ready == 0
6819 || !ls.can_issue_more
6820 || state_dead_lock_p (curr_state)
6821 || !(*current_sched_info->schedule_more_p) ())
6822 break;
6823
6824 /* Select and remove the insn from the ready list. */
6825 if (sort_p)
6826 {
6827 int res;
6828
6829 insn = NULL;
6830 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6831
6832 if (res < 0)
6833 /* Finish cycle. */
6834 break;
6835 if (res > 0)
6836 goto restart_choose_ready;
6837
6838 gcc_assert (insn != NULL_RTX);
6839 }
6840 else
6841 insn = ready_remove_first (&ready);
6842
6843 if (sched_pressure != SCHED_PRESSURE_NONE
6844 && INSN_TICK (insn) > clock_var)
6845 {
6846 ready_add (&ready, insn, true);
6847 advance = 1;
6848 break;
6849 }
6850
6851 if (targetm.sched.dfa_new_cycle
6852 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6853 insn, last_clock_var,
6854 clock_var, &sort_p))
6855 /* SORT_P is used by the target to override sorting
6856 of the ready list. This is needed when the target
6857 has modified its internal structures expecting that
6858 the insn will be issued next. As we need the insn
6859 to have the highest priority (so it will be returned by
6860 the ready_remove_first call above), we invoke
6861 ready_add (&ready, insn, true).
6862 But, still, there is one issue: INSN can be later
6863 discarded by scheduler's front end through
6864 current_sched_info->can_schedule_ready_p, hence, won't
6865 be issued next. */
6866 {
6867 ready_add (&ready, insn, true);
6868 break;
6869 }
6870
6871 sort_p = TRUE;
6872
6873 if (current_sched_info->can_schedule_ready_p
6874 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6875 /* We normally get here only if we don't want to move
6876 insn from the split block. */
6877 {
6878 TODO_SPEC (insn) = DEP_POSTPONED;
6879 goto restart_choose_ready;
6880 }
6881
6882 if (delay_htab)
6883 {
6884 /* If this insn is the first part of a delay-slot pair, record a
6885 backtrack point. */
6886 struct delay_pair *delay_entry;
6887 delay_entry
6888 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6889 if (delay_entry)
6890 {
6891 save_backtrack_point (delay_entry, ls);
6892 if (sched_verbose >= 2)
6893 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6894 }
6895 }
6896
6897 /* DECISION is made. */
6898
6899 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6900 {
6901 modulo_insns_scheduled++;
6902 modulo_last_stage = clock_var / modulo_ii;
6903 }
6904 if (TODO_SPEC (insn) & SPECULATIVE)
6905 generate_recovery_code (insn);
6906
6907 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6908 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6909
6910 /* Update counters, etc in the scheduler's front end. */
6911 (*current_sched_info->begin_schedule_ready) (insn);
6912 scheduled_insns.safe_push (insn);
6913 gcc_assert (NONDEBUG_INSN_P (insn));
6914 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6915
6916 if (recog_memoized (insn) >= 0)
6917 {
6918 memcpy (temp_state, curr_state, dfa_state_size);
6919 cost = state_transition (curr_state, insn);
6920 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6921 gcc_assert (cost < 0);
6922 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6923 cycle_issued_insns++;
6924 asm_p = false;
6925 }
6926 else
6927 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6928 || asm_noperands (PATTERN (insn)) >= 0);
6929
6930 if (targetm.sched.variable_issue)
6931 ls.can_issue_more =
6932 targetm.sched.variable_issue (sched_dump, sched_verbose,
6933 insn, ls.can_issue_more);
6934 /* A naked CLOBBER or USE generates no instruction, so do
6935 not count them against the issue rate. */
6936 else if (GET_CODE (PATTERN (insn)) != USE
6937 && GET_CODE (PATTERN (insn)) != CLOBBER)
6938 ls.can_issue_more--;
6939 advance = schedule_insn (insn);
6940
6941 if (SHADOW_P (insn))
6942 ls.shadows_only_p = true;
6943
6944 /* After issuing an asm insn we should start a new cycle. */
6945 if (advance == 0 && asm_p)
6946 advance = 1;
6947
6948 if (must_backtrack)
6949 break;
6950
6951 if (advance != 0)
6952 break;
6953
6954 ls.first_cycle_insn_p = false;
6955 if (ready.n_ready > 0)
6956 prune_ready_list (temp_state, false, ls.shadows_only_p,
6957 ls.modulo_epilogue);
6958 }
6959
6960 do_backtrack:
6961 if (!must_backtrack)
6962 for (i = 0; i < ready.n_ready; i++)
6963 {
6964 rtx_insn *insn = ready_element (&ready, i);
6965 if (INSN_EXACT_TICK (insn) == clock_var)
6966 {
6967 must_backtrack = true;
6968 clock_var++;
6969 break;
6970 }
6971 }
6972 if (must_backtrack && modulo_ii > 0)
6973 {
6974 if (modulo_backtracks_left == 0)
6975 goto end_schedule;
6976 modulo_backtracks_left--;
6977 }
6978 while (must_backtrack)
6979 {
6980 struct haifa_saved_data *failed;
6981 rtx_insn *failed_insn;
6982
6983 must_backtrack = false;
6984 failed = verify_shadows ();
6985 gcc_assert (failed);
6986
6987 failed_insn = failed->delay_pair->i1;
6988 /* Clear these queues. */
6989 perform_replacements_new_cycle ();
6990 toggle_cancelled_flags (false);
6991 unschedule_insns_until (failed_insn);
6992 while (failed != backtrack_queue)
6993 free_topmost_backtrack_point (true);
6994 restore_last_backtrack_point (&ls);
6995 if (sched_verbose >= 2)
6996 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6997 /* Delay by at least a cycle. This could cause additional
6998 backtracking. */
6999 queue_insn (failed_insn, 1, "backtracked");
7000 advance = 0;
7001 if (must_backtrack)
7002 continue;
7003 if (ready.n_ready > 0)
7004 goto resume_after_backtrack;
7005 else
7006 {
7007 if (clock_var == 0 && ls.first_cycle_insn_p)
7008 goto end_schedule;
7009 advance = 1;
7010 break;
7011 }
7012 }
7013 ls.first_cycle_insn_p = true;
7014 }
7015 if (ls.modulo_epilogue)
7016 success = true;
7017 end_schedule:
7018 if (!ls.first_cycle_insn_p || advance)
7019 advance_one_cycle ();
7020 perform_replacements_new_cycle ();
7021 if (modulo_ii > 0)
7022 {
7023 /* Once again, debug insn suckiness: they can be on the ready list
7024 even if they have unresolved dependencies. To make our view
7025 of the world consistent, remove such "ready" insns. */
7026 restart_debug_insn_loop:
7027 for (i = ready.n_ready - 1; i >= 0; i--)
7028 {
7029 rtx_insn *x;
7030
7031 x = ready_element (&ready, i);
7032 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
7033 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
7034 {
7035 ready_remove (&ready, i);
7036 goto restart_debug_insn_loop;
7037 }
7038 }
7039 for (i = ready.n_ready - 1; i >= 0; i--)
7040 {
7041 rtx_insn *x;
7042
7043 x = ready_element (&ready, i);
7044 resolve_dependencies (x);
7045 }
7046 for (i = 0; i <= max_insn_queue_index; i++)
7047 {
7048 rtx_insn_list *link;
7049 while ((link = insn_queue[i]) != NULL)
7050 {
7051 rtx_insn *x = link->insn ();
7052 insn_queue[i] = link->next ();
7053 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7054 free_INSN_LIST_node (link);
7055 resolve_dependencies (x);
7056 }
7057 }
7058 }
7059
7060 if (!success)
7061 undo_all_replacements ();
7062
7063 /* Debug info. */
7064 if (sched_verbose)
7065 {
7066 fprintf (sched_dump, ";;\tReady list (final): ");
7067 debug_ready_list (&ready);
7068 }
7069
7070 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7071 /* Sanity check -- queue must be empty now. Meaningless if region has
7072 multiple bbs. */
7073 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7074 else if (modulo_ii == 0)
7075 {
7076 /* We must maintain QUEUE_INDEX between blocks in region. */
7077 for (i = ready.n_ready - 1; i >= 0; i--)
7078 {
7079 rtx_insn *x;
7080
7081 x = ready_element (&ready, i);
7082 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7083 TODO_SPEC (x) = HARD_DEP;
7084 }
7085
7086 if (q_size)
7087 for (i = 0; i <= max_insn_queue_index; i++)
7088 {
7089 rtx_insn_list *link;
7090 for (link = insn_queue[i]; link; link = link->next ())
7091 {
7092 rtx_insn *x;
7093
7094 x = link->insn ();
7095 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7096 TODO_SPEC (x) = HARD_DEP;
7097 }
7098 free_INSN_LIST_list (&insn_queue[i]);
7099 }
7100 }
7101
7102 if (sched_pressure == SCHED_PRESSURE_MODEL)
7103 model_end_schedule ();
7104
7105 if (success)
7106 {
7107 commit_schedule (prev_head, tail, target_bb);
7108 if (sched_verbose)
7109 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7110 }
7111 else
7112 last_scheduled_insn = tail;
7113
7114 scheduled_insns.truncate (0);
7115
7116 if (!current_sched_info->queue_must_finish_empty
7117 || haifa_recovery_bb_recently_added_p)
7118 {
7119 /* INSN_TICK (minimum clock tick at which the insn becomes
7120 ready) may be not correct for the insn in the subsequent
7121 blocks of the region. We should use a correct value of
7122 `clock_var' or modify INSN_TICK. It is better to keep
7123 clock_var value equal to 0 at the start of a basic block.
7124 Therefore we modify INSN_TICK here. */
7125 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7126 }
7127
7128 if (targetm.sched.finish)
7129 {
7130 targetm.sched.finish (sched_dump, sched_verbose);
7131 /* Target might have added some instructions to the scheduled block
7132 in its md_finish () hook. These new insns don't have any data
7133 initialized and to identify them we extend h_i_d so that they'll
7134 get zero luids. */
7135 sched_extend_luids ();
7136 }
7137
7138 /* Update head/tail boundaries. */
7139 head = NEXT_INSN (prev_head);
7140 tail = last_scheduled_insn;
7141
7142 if (sched_verbose)
7143 {
7144 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7145 INSN_UID (head), INSN_UID (tail));
7146
7147 if (sched_verbose >= 2)
7148 {
7149 dump_insn_stream (head, tail);
7150 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7151 NULL);
7152 }
7153
7154 fprintf (sched_dump, "\n");
7155 }
7156
7157 head = restore_other_notes (head, NULL);
7158
7159 current_sched_info->head = head;
7160 current_sched_info->tail = tail;
7161
7162 free_backtrack_queue ();
7163
7164 return success;
7165 }
7166 \f
7167 /* Set_priorities: compute priority of each insn in the block. */
7168
7169 int
7170 set_priorities (rtx_insn *head, rtx_insn *tail)
7171 {
7172 rtx_insn *insn;
7173 int n_insn;
7174 int sched_max_insns_priority =
7175 current_sched_info->sched_max_insns_priority;
7176 rtx_insn *prev_head;
7177
7178 if (head == tail && ! INSN_P (head))
7179 gcc_unreachable ();
7180
7181 n_insn = 0;
7182
7183 prev_head = PREV_INSN (head);
7184 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7185 {
7186 if (!INSN_P (insn))
7187 continue;
7188
7189 n_insn++;
7190 (void) priority (insn);
7191
7192 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7193
7194 sched_max_insns_priority = MAX (sched_max_insns_priority,
7195 INSN_PRIORITY (insn));
7196 }
7197
7198 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7199
7200 return n_insn;
7201 }
7202
7203 /* Set sched_dump and sched_verbose for the desired debugging output. */
7204 void
7205 setup_sched_dump (void)
7206 {
7207 sched_verbose = sched_verbose_param;
7208 sched_dump = dump_file;
7209 if (!dump_file)
7210 sched_verbose = 0;
7211 }
7212
7213 /* Allocate data for register pressure sensitive scheduling. */
7214 static void
7215 alloc_global_sched_pressure_data (void)
7216 {
7217 if (sched_pressure != SCHED_PRESSURE_NONE)
7218 {
7219 int i, max_regno = max_reg_num ();
7220
7221 if (sched_dump != NULL)
7222 /* We need info about pseudos for rtl dumps about pseudo
7223 classes and costs. */
7224 regstat_init_n_sets_and_refs ();
7225 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7226 sched_regno_pressure_class
7227 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7228 for (i = 0; i < max_regno; i++)
7229 sched_regno_pressure_class[i]
7230 = (i < FIRST_PSEUDO_REGISTER
7231 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7232 : ira_pressure_class_translate[reg_allocno_class (i)]);
7233 curr_reg_live = BITMAP_ALLOC (NULL);
7234 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7235 {
7236 saved_reg_live = BITMAP_ALLOC (NULL);
7237 region_ref_regs = BITMAP_ALLOC (NULL);
7238 }
7239
7240 /* Calculate number of CALL_USED_REGS in register classes that
7241 we calculate register pressure for. */
7242 for (int c = 0; c < ira_pressure_classes_num; ++c)
7243 {
7244 enum reg_class cl = ira_pressure_classes[c];
7245
7246 call_used_regs_num[cl] = 0;
7247
7248 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7249 if (call_used_regs[ira_class_hard_regs[cl][i]])
7250 ++call_used_regs_num[cl];
7251 }
7252 }
7253 }
7254
7255 /* Free data for register pressure sensitive scheduling. Also called
7256 from schedule_region when stopping sched-pressure early. */
7257 void
7258 free_global_sched_pressure_data (void)
7259 {
7260 if (sched_pressure != SCHED_PRESSURE_NONE)
7261 {
7262 if (regstat_n_sets_and_refs != NULL)
7263 regstat_free_n_sets_and_refs ();
7264 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7265 {
7266 BITMAP_FREE (region_ref_regs);
7267 BITMAP_FREE (saved_reg_live);
7268 }
7269 BITMAP_FREE (curr_reg_live);
7270 free (sched_regno_pressure_class);
7271 }
7272 }
7273
7274 /* Initialize some global state for the scheduler. This function works
7275 with the common data shared between all the schedulers. It is called
7276 from the scheduler specific initialization routine. */
7277
7278 void
7279 sched_init (void)
7280 {
7281 /* Disable speculative loads in their presence if cc0 defined. */
7282 if (HAVE_cc0)
7283 flag_schedule_speculative_load = 0;
7284
7285 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7286 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7287
7288 if (live_range_shrinkage_p)
7289 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7290 else if (flag_sched_pressure
7291 && !reload_completed
7292 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7293 sched_pressure = ((enum sched_pressure_algorithm)
7294 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7295 else
7296 sched_pressure = SCHED_PRESSURE_NONE;
7297
7298 if (sched_pressure != SCHED_PRESSURE_NONE)
7299 ira_setup_eliminable_regset ();
7300
7301 /* Initialize SPEC_INFO. */
7302 if (targetm.sched.set_sched_flags)
7303 {
7304 spec_info = &spec_info_var;
7305 targetm.sched.set_sched_flags (spec_info);
7306
7307 if (spec_info->mask != 0)
7308 {
7309 spec_info->data_weakness_cutoff =
7310 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7311 spec_info->control_weakness_cutoff =
7312 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7313 * REG_BR_PROB_BASE) / 100;
7314 }
7315 else
7316 /* So we won't read anything accidentally. */
7317 spec_info = NULL;
7318
7319 }
7320 else
7321 /* So we won't read anything accidentally. */
7322 spec_info = 0;
7323
7324 /* Initialize issue_rate. */
7325 if (targetm.sched.issue_rate)
7326 issue_rate = targetm.sched.issue_rate ();
7327 else
7328 issue_rate = 1;
7329
7330 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7331 /* Don't use max_issue with reg_pressure scheduling. Multipass
7332 scheduling and reg_pressure scheduling undo each other's decisions. */
7333 && sched_pressure == SCHED_PRESSURE_NONE)
7334 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7335 else
7336 dfa_lookahead = 0;
7337
7338 /* Set to "0" so that we recalculate. */
7339 max_lookahead_tries = 0;
7340
7341 if (targetm.sched.init_dfa_pre_cycle_insn)
7342 targetm.sched.init_dfa_pre_cycle_insn ();
7343
7344 if (targetm.sched.init_dfa_post_cycle_insn)
7345 targetm.sched.init_dfa_post_cycle_insn ();
7346
7347 dfa_start ();
7348 dfa_state_size = state_size ();
7349
7350 init_alias_analysis ();
7351
7352 if (!sched_no_dce)
7353 df_set_flags (DF_LR_RUN_DCE);
7354 df_note_add_problem ();
7355
7356 /* More problems needed for interloop dep calculation in SMS. */
7357 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7358 {
7359 df_rd_add_problem ();
7360 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7361 }
7362
7363 df_analyze ();
7364
7365 /* Do not run DCE after reload, as this can kill nops inserted
7366 by bundling. */
7367 if (reload_completed)
7368 df_clear_flags (DF_LR_RUN_DCE);
7369
7370 regstat_compute_calls_crossed ();
7371
7372 if (targetm.sched.init_global)
7373 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7374
7375 alloc_global_sched_pressure_data ();
7376
7377 curr_state = xmalloc (dfa_state_size);
7378 }
7379
7380 static void haifa_init_only_bb (basic_block, basic_block);
7381
7382 /* Initialize data structures specific to the Haifa scheduler. */
7383 void
7384 haifa_sched_init (void)
7385 {
7386 setup_sched_dump ();
7387 sched_init ();
7388
7389 scheduled_insns.create (0);
7390
7391 if (spec_info != NULL)
7392 {
7393 sched_deps_info->use_deps_list = 1;
7394 sched_deps_info->generate_spec_deps = 1;
7395 }
7396
7397 /* Initialize luids, dependency caches, target and h_i_d for the
7398 whole function. */
7399 {
7400 sched_init_bbs ();
7401
7402 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7403 basic_block bb;
7404 FOR_EACH_BB_FN (bb, cfun)
7405 bbs.quick_push (bb);
7406 sched_init_luids (bbs);
7407 sched_deps_init (true);
7408 sched_extend_target ();
7409 haifa_init_h_i_d (bbs);
7410 }
7411
7412 sched_init_only_bb = haifa_init_only_bb;
7413 sched_split_block = sched_split_block_1;
7414 sched_create_empty_bb = sched_create_empty_bb_1;
7415 haifa_recovery_bb_ever_added_p = false;
7416
7417 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7418 before_recovery = 0;
7419 after_recovery = 0;
7420
7421 modulo_ii = 0;
7422 }
7423
7424 /* Finish work with the data specific to the Haifa scheduler. */
7425 void
7426 haifa_sched_finish (void)
7427 {
7428 sched_create_empty_bb = NULL;
7429 sched_split_block = NULL;
7430 sched_init_only_bb = NULL;
7431
7432 if (spec_info && spec_info->dump)
7433 {
7434 char c = reload_completed ? 'a' : 'b';
7435
7436 fprintf (spec_info->dump,
7437 ";; %s:\n", current_function_name ());
7438
7439 fprintf (spec_info->dump,
7440 ";; Procedure %cr-begin-data-spec motions == %d\n",
7441 c, nr_begin_data);
7442 fprintf (spec_info->dump,
7443 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7444 c, nr_be_in_data);
7445 fprintf (spec_info->dump,
7446 ";; Procedure %cr-begin-control-spec motions == %d\n",
7447 c, nr_begin_control);
7448 fprintf (spec_info->dump,
7449 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7450 c, nr_be_in_control);
7451 }
7452
7453 scheduled_insns.release ();
7454
7455 /* Finalize h_i_d, dependency caches, and luids for the whole
7456 function. Target will be finalized in md_global_finish (). */
7457 sched_deps_finish ();
7458 sched_finish_luids ();
7459 current_sched_info = NULL;
7460 insn_queue = NULL;
7461 sched_finish ();
7462 }
7463
7464 /* Free global data used during insn scheduling. This function works with
7465 the common data shared between the schedulers. */
7466
7467 void
7468 sched_finish (void)
7469 {
7470 haifa_finish_h_i_d ();
7471 free_global_sched_pressure_data ();
7472 free (curr_state);
7473
7474 if (targetm.sched.finish_global)
7475 targetm.sched.finish_global (sched_dump, sched_verbose);
7476
7477 end_alias_analysis ();
7478
7479 regstat_free_calls_crossed ();
7480
7481 dfa_finish ();
7482 }
7483
7484 /* Free all delay_pair structures that were recorded. */
7485 void
7486 free_delay_pairs (void)
7487 {
7488 if (delay_htab)
7489 {
7490 delay_htab->empty ();
7491 delay_htab_i2->empty ();
7492 }
7493 }
7494
7495 /* Fix INSN_TICKs of the instructions in the current block as well as
7496 INSN_TICKs of their dependents.
7497 HEAD and TAIL are the begin and the end of the current scheduled block. */
7498 static void
7499 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7500 {
7501 /* Set of instructions with corrected INSN_TICK. */
7502 bitmap_head processed;
7503 /* ??? It is doubtful if we should assume that cycle advance happens on
7504 basic block boundaries. Basically insns that are unconditionally ready
7505 on the start of the block are more preferable then those which have
7506 a one cycle dependency over insn from the previous block. */
7507 int next_clock = clock_var + 1;
7508
7509 bitmap_initialize (&processed, 0);
7510
7511 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7512 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7513 across different blocks. */
7514 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7515 {
7516 if (INSN_P (head))
7517 {
7518 int tick;
7519 sd_iterator_def sd_it;
7520 dep_t dep;
7521
7522 tick = INSN_TICK (head);
7523 gcc_assert (tick >= MIN_TICK);
7524
7525 /* Fix INSN_TICK of instruction from just scheduled block. */
7526 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7527 {
7528 tick -= next_clock;
7529
7530 if (tick < MIN_TICK)
7531 tick = MIN_TICK;
7532
7533 INSN_TICK (head) = tick;
7534 }
7535
7536 if (DEBUG_INSN_P (head))
7537 continue;
7538
7539 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7540 {
7541 rtx_insn *next;
7542
7543 next = DEP_CON (dep);
7544 tick = INSN_TICK (next);
7545
7546 if (tick != INVALID_TICK
7547 /* If NEXT has its INSN_TICK calculated, fix it.
7548 If not - it will be properly calculated from
7549 scratch later in fix_tick_ready. */
7550 && bitmap_set_bit (&processed, INSN_LUID (next)))
7551 {
7552 tick -= next_clock;
7553
7554 if (tick < MIN_TICK)
7555 tick = MIN_TICK;
7556
7557 if (tick > INTER_TICK (next))
7558 INTER_TICK (next) = tick;
7559 else
7560 tick = INTER_TICK (next);
7561
7562 INSN_TICK (next) = tick;
7563 }
7564 }
7565 }
7566 }
7567 bitmap_clear (&processed);
7568 }
7569
7570 /* Check if NEXT is ready to be added to the ready or queue list.
7571 If "yes", add it to the proper list.
7572 Returns:
7573 -1 - is not ready yet,
7574 0 - added to the ready list,
7575 0 < N - queued for N cycles. */
7576 int
7577 try_ready (rtx_insn *next)
7578 {
7579 ds_t old_ts, new_ts;
7580
7581 old_ts = TODO_SPEC (next);
7582
7583 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7584 && (old_ts == HARD_DEP
7585 || old_ts == DEP_POSTPONED
7586 || (old_ts & SPECULATIVE)
7587 || old_ts == DEP_CONTROL));
7588
7589 new_ts = recompute_todo_spec (next, false);
7590
7591 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7592 gcc_assert (new_ts == old_ts
7593 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7594 else if (current_sched_info->new_ready)
7595 new_ts = current_sched_info->new_ready (next, new_ts);
7596
7597 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7598 have its original pattern or changed (speculative) one. This is due
7599 to changing ebb in region scheduling.
7600 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7601 has speculative pattern.
7602
7603 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7604 control-speculative NEXT could have been discarded by sched-rgn.c
7605 (the same case as when discarded by can_schedule_ready_p ()). */
7606
7607 if ((new_ts & SPECULATIVE)
7608 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7609 need to change anything. */
7610 && new_ts != old_ts)
7611 {
7612 int res;
7613 rtx new_pat;
7614
7615 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7616
7617 res = haifa_speculate_insn (next, new_ts, &new_pat);
7618
7619 switch (res)
7620 {
7621 case -1:
7622 /* It would be nice to change DEP_STATUS of all dependences,
7623 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7624 so we won't reanalyze anything. */
7625 new_ts = HARD_DEP;
7626 break;
7627
7628 case 0:
7629 /* We follow the rule, that every speculative insn
7630 has non-null ORIG_PAT. */
7631 if (!ORIG_PAT (next))
7632 ORIG_PAT (next) = PATTERN (next);
7633 break;
7634
7635 case 1:
7636 if (!ORIG_PAT (next))
7637 /* If we gonna to overwrite the original pattern of insn,
7638 save it. */
7639 ORIG_PAT (next) = PATTERN (next);
7640
7641 res = haifa_change_pattern (next, new_pat);
7642 gcc_assert (res);
7643 break;
7644
7645 default:
7646 gcc_unreachable ();
7647 }
7648 }
7649
7650 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7651 either correct (new_ts & SPECULATIVE),
7652 or we simply don't care (new_ts & HARD_DEP). */
7653
7654 gcc_assert (!ORIG_PAT (next)
7655 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7656
7657 TODO_SPEC (next) = new_ts;
7658
7659 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7660 {
7661 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7662 control-speculative NEXT could have been discarded by sched-rgn.c
7663 (the same case as when discarded by can_schedule_ready_p ()). */
7664 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7665
7666 change_queue_index (next, QUEUE_NOWHERE);
7667
7668 return -1;
7669 }
7670 else if (!(new_ts & BEGIN_SPEC)
7671 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7672 && !IS_SPECULATION_CHECK_P (next))
7673 /* We should change pattern of every previously speculative
7674 instruction - and we determine if NEXT was speculative by using
7675 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7676 pat too, so skip them. */
7677 {
7678 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7679 gcc_assert (success);
7680 ORIG_PAT (next) = 0;
7681 }
7682
7683 if (sched_verbose >= 2)
7684 {
7685 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7686 (*current_sched_info->print_insn) (next, 0));
7687
7688 if (spec_info && spec_info->dump)
7689 {
7690 if (new_ts & BEGIN_DATA)
7691 fprintf (spec_info->dump, "; data-spec;");
7692 if (new_ts & BEGIN_CONTROL)
7693 fprintf (spec_info->dump, "; control-spec;");
7694 if (new_ts & BE_IN_CONTROL)
7695 fprintf (spec_info->dump, "; in-control-spec;");
7696 }
7697 if (TODO_SPEC (next) & DEP_CONTROL)
7698 fprintf (sched_dump, " predicated");
7699 fprintf (sched_dump, "\n");
7700 }
7701
7702 adjust_priority (next);
7703
7704 return fix_tick_ready (next);
7705 }
7706
7707 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7708 static int
7709 fix_tick_ready (rtx_insn *next)
7710 {
7711 int tick, delay;
7712
7713 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7714 {
7715 int full_p;
7716 sd_iterator_def sd_it;
7717 dep_t dep;
7718
7719 tick = INSN_TICK (next);
7720 /* if tick is not equal to INVALID_TICK, then update
7721 INSN_TICK of NEXT with the most recent resolved dependence
7722 cost. Otherwise, recalculate from scratch. */
7723 full_p = (tick == INVALID_TICK);
7724
7725 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7726 {
7727 rtx_insn *pro = DEP_PRO (dep);
7728 int tick1;
7729
7730 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7731
7732 tick1 = INSN_TICK (pro) + dep_cost (dep);
7733 if (tick1 > tick)
7734 tick = tick1;
7735
7736 if (!full_p)
7737 break;
7738 }
7739 }
7740 else
7741 tick = -1;
7742
7743 INSN_TICK (next) = tick;
7744
7745 delay = tick - clock_var;
7746 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7747 delay = QUEUE_READY;
7748
7749 change_queue_index (next, delay);
7750
7751 return delay;
7752 }
7753
7754 /* Move NEXT to the proper queue list with (DELAY >= 1),
7755 or add it to the ready list (DELAY == QUEUE_READY),
7756 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7757 static void
7758 change_queue_index (rtx_insn *next, int delay)
7759 {
7760 int i = QUEUE_INDEX (next);
7761
7762 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7763 && delay != 0);
7764 gcc_assert (i != QUEUE_SCHEDULED);
7765
7766 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7767 || (delay < 0 && delay == i))
7768 /* We have nothing to do. */
7769 return;
7770
7771 /* Remove NEXT from wherever it is now. */
7772 if (i == QUEUE_READY)
7773 ready_remove_insn (next);
7774 else if (i >= 0)
7775 queue_remove (next);
7776
7777 /* Add it to the proper place. */
7778 if (delay == QUEUE_READY)
7779 ready_add (readyp, next, false);
7780 else if (delay >= 1)
7781 queue_insn (next, delay, "change queue index");
7782
7783 if (sched_verbose >= 2)
7784 {
7785 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7786 (*current_sched_info->print_insn) (next, 0));
7787
7788 if (delay == QUEUE_READY)
7789 fprintf (sched_dump, " into ready\n");
7790 else if (delay >= 1)
7791 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7792 else
7793 fprintf (sched_dump, " removed from ready or queue lists\n");
7794 }
7795 }
7796
7797 static int sched_ready_n_insns = -1;
7798
7799 /* Initialize per region data structures. */
7800 void
7801 sched_extend_ready_list (int new_sched_ready_n_insns)
7802 {
7803 int i;
7804
7805 if (sched_ready_n_insns == -1)
7806 /* At the first call we need to initialize one more choice_stack
7807 entry. */
7808 {
7809 i = 0;
7810 sched_ready_n_insns = 0;
7811 scheduled_insns.reserve (new_sched_ready_n_insns);
7812 }
7813 else
7814 i = sched_ready_n_insns + 1;
7815
7816 ready.veclen = new_sched_ready_n_insns + issue_rate;
7817 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7818
7819 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7820
7821 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7822 sched_ready_n_insns,
7823 sizeof (*ready_try));
7824
7825 /* We allocate +1 element to save initial state in the choice_stack[0]
7826 entry. */
7827 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7828 new_sched_ready_n_insns + 1);
7829
7830 for (; i <= new_sched_ready_n_insns; i++)
7831 {
7832 choice_stack[i].state = xmalloc (dfa_state_size);
7833
7834 if (targetm.sched.first_cycle_multipass_init)
7835 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7836 .target_data));
7837 }
7838
7839 sched_ready_n_insns = new_sched_ready_n_insns;
7840 }
7841
7842 /* Free per region data structures. */
7843 void
7844 sched_finish_ready_list (void)
7845 {
7846 int i;
7847
7848 free (ready.vec);
7849 ready.vec = NULL;
7850 ready.veclen = 0;
7851
7852 free (ready_try);
7853 ready_try = NULL;
7854
7855 for (i = 0; i <= sched_ready_n_insns; i++)
7856 {
7857 if (targetm.sched.first_cycle_multipass_fini)
7858 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7859 .target_data));
7860
7861 free (choice_stack [i].state);
7862 }
7863 free (choice_stack);
7864 choice_stack = NULL;
7865
7866 sched_ready_n_insns = -1;
7867 }
7868
7869 static int
7870 haifa_luid_for_non_insn (rtx x)
7871 {
7872 gcc_assert (NOTE_P (x) || LABEL_P (x));
7873
7874 return 0;
7875 }
7876
7877 /* Generates recovery code for INSN. */
7878 static void
7879 generate_recovery_code (rtx_insn *insn)
7880 {
7881 if (TODO_SPEC (insn) & BEGIN_SPEC)
7882 begin_speculative_block (insn);
7883
7884 /* Here we have insn with no dependencies to
7885 instructions other then CHECK_SPEC ones. */
7886
7887 if (TODO_SPEC (insn) & BE_IN_SPEC)
7888 add_to_speculative_block (insn);
7889 }
7890
7891 /* Helper function.
7892 Tries to add speculative dependencies of type FS between instructions
7893 in deps_list L and TWIN. */
7894 static void
7895 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7896 {
7897 sd_iterator_def sd_it;
7898 dep_t dep;
7899
7900 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7901 {
7902 ds_t ds;
7903 rtx_insn *consumer;
7904
7905 consumer = DEP_CON (dep);
7906
7907 ds = DEP_STATUS (dep);
7908
7909 if (/* If we want to create speculative dep. */
7910 fs
7911 /* And we can do that because this is a true dep. */
7912 && (ds & DEP_TYPES) == DEP_TRUE)
7913 {
7914 gcc_assert (!(ds & BE_IN_SPEC));
7915
7916 if (/* If this dep can be overcome with 'begin speculation'. */
7917 ds & BEGIN_SPEC)
7918 /* Then we have a choice: keep the dep 'begin speculative'
7919 or transform it into 'be in speculative'. */
7920 {
7921 if (/* In try_ready we assert that if insn once became ready
7922 it can be removed from the ready (or queue) list only
7923 due to backend decision. Hence we can't let the
7924 probability of the speculative dep to decrease. */
7925 ds_weak (ds) <= ds_weak (fs))
7926 {
7927 ds_t new_ds;
7928
7929 new_ds = (ds & ~BEGIN_SPEC) | fs;
7930
7931 if (/* consumer can 'be in speculative'. */
7932 sched_insn_is_legitimate_for_speculation_p (consumer,
7933 new_ds))
7934 /* Transform it to be in speculative. */
7935 ds = new_ds;
7936 }
7937 }
7938 else
7939 /* Mark the dep as 'be in speculative'. */
7940 ds |= fs;
7941 }
7942
7943 {
7944 dep_def _new_dep, *new_dep = &_new_dep;
7945
7946 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7947 sd_add_dep (new_dep, false);
7948 }
7949 }
7950 }
7951
7952 /* Generates recovery code for BEGIN speculative INSN. */
7953 static void
7954 begin_speculative_block (rtx_insn *insn)
7955 {
7956 if (TODO_SPEC (insn) & BEGIN_DATA)
7957 nr_begin_data++;
7958 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7959 nr_begin_control++;
7960
7961 create_check_block_twin (insn, false);
7962
7963 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7964 }
7965
7966 static void haifa_init_insn (rtx_insn *);
7967
7968 /* Generates recovery code for BE_IN speculative INSN. */
7969 static void
7970 add_to_speculative_block (rtx_insn *insn)
7971 {
7972 ds_t ts;
7973 sd_iterator_def sd_it;
7974 dep_t dep;
7975 auto_vec<rtx_insn *, 10> twins;
7976
7977 ts = TODO_SPEC (insn);
7978 gcc_assert (!(ts & ~BE_IN_SPEC));
7979
7980 if (ts & BE_IN_DATA)
7981 nr_be_in_data++;
7982 if (ts & BE_IN_CONTROL)
7983 nr_be_in_control++;
7984
7985 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7986 gcc_assert (!TODO_SPEC (insn));
7987
7988 DONE_SPEC (insn) |= ts;
7989
7990 /* First we convert all simple checks to branchy. */
7991 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7992 sd_iterator_cond (&sd_it, &dep);)
7993 {
7994 rtx_insn *check = DEP_PRO (dep);
7995
7996 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7997 {
7998 create_check_block_twin (check, true);
7999
8000 /* Restart search. */
8001 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8002 }
8003 else
8004 /* Continue search. */
8005 sd_iterator_next (&sd_it);
8006 }
8007
8008 auto_vec<rtx_insn *> priorities_roots;
8009 clear_priorities (insn, &priorities_roots);
8010
8011 while (1)
8012 {
8013 rtx_insn *check, *twin;
8014 basic_block rec;
8015
8016 /* Get the first backward dependency of INSN. */
8017 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8018 if (!sd_iterator_cond (&sd_it, &dep))
8019 /* INSN has no backward dependencies left. */
8020 break;
8021
8022 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
8023 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
8024 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8025
8026 check = DEP_PRO (dep);
8027
8028 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
8029 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
8030
8031 rec = BLOCK_FOR_INSN (check);
8032
8033 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
8034 haifa_init_insn (twin);
8035
8036 sd_copy_back_deps (twin, insn, true);
8037
8038 if (sched_verbose && spec_info->dump)
8039 /* INSN_BB (insn) isn't determined for twin insns yet.
8040 So we can't use current_sched_info->print_insn. */
8041 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8042 INSN_UID (twin), rec->index);
8043
8044 twins.safe_push (twin);
8045
8046 /* Add dependences between TWIN and all appropriate
8047 instructions from REC. */
8048 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
8049 {
8050 rtx_insn *pro = DEP_PRO (dep);
8051
8052 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8053
8054 /* INSN might have dependencies from the instructions from
8055 several recovery blocks. At this iteration we process those
8056 producers that reside in REC. */
8057 if (BLOCK_FOR_INSN (pro) == rec)
8058 {
8059 dep_def _new_dep, *new_dep = &_new_dep;
8060
8061 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8062 sd_add_dep (new_dep, false);
8063 }
8064 }
8065
8066 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8067
8068 /* Remove all dependencies between INSN and insns in REC. */
8069 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8070 sd_iterator_cond (&sd_it, &dep);)
8071 {
8072 rtx_insn *pro = DEP_PRO (dep);
8073
8074 if (BLOCK_FOR_INSN (pro) == rec)
8075 sd_delete_dep (sd_it);
8076 else
8077 sd_iterator_next (&sd_it);
8078 }
8079 }
8080
8081 /* We couldn't have added the dependencies between INSN and TWINS earlier
8082 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8083 unsigned int i;
8084 rtx_insn *twin;
8085 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8086 {
8087 dep_def _new_dep, *new_dep = &_new_dep;
8088
8089 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8090 sd_add_dep (new_dep, false);
8091 }
8092
8093 calc_priorities (priorities_roots);
8094 }
8095
8096 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8097 void *
8098 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8099 {
8100 gcc_assert (new_nmemb >= old_nmemb);
8101 p = XRESIZEVAR (void, p, new_nmemb * size);
8102 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8103 return p;
8104 }
8105
8106 /* Helper function.
8107 Find fallthru edge from PRED. */
8108 edge
8109 find_fallthru_edge_from (basic_block pred)
8110 {
8111 edge e;
8112 basic_block succ;
8113
8114 succ = pred->next_bb;
8115 gcc_assert (succ->prev_bb == pred);
8116
8117 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8118 {
8119 e = find_fallthru_edge (pred->succs);
8120
8121 if (e)
8122 {
8123 gcc_assert (e->dest == succ);
8124 return e;
8125 }
8126 }
8127 else
8128 {
8129 e = find_fallthru_edge (succ->preds);
8130
8131 if (e)
8132 {
8133 gcc_assert (e->src == pred);
8134 return e;
8135 }
8136 }
8137
8138 return NULL;
8139 }
8140
8141 /* Extend per basic block data structures. */
8142 static void
8143 sched_extend_bb (void)
8144 {
8145 /* The following is done to keep current_sched_info->next_tail non null. */
8146 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8147 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8148 if (NEXT_INSN (end) == 0
8149 || (!NOTE_P (insn)
8150 && !LABEL_P (insn)
8151 /* Don't emit a NOTE if it would end up before a BARRIER. */
8152 && !BARRIER_P (NEXT_INSN (end))))
8153 {
8154 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8155 /* Make note appear outside BB. */
8156 set_block_for_insn (note, NULL);
8157 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8158 }
8159 }
8160
8161 /* Init per basic block data structures. */
8162 void
8163 sched_init_bbs (void)
8164 {
8165 sched_extend_bb ();
8166 }
8167
8168 /* Initialize BEFORE_RECOVERY variable. */
8169 static void
8170 init_before_recovery (basic_block *before_recovery_ptr)
8171 {
8172 basic_block last;
8173 edge e;
8174
8175 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8176 e = find_fallthru_edge_from (last);
8177
8178 if (e)
8179 {
8180 /* We create two basic blocks:
8181 1. Single instruction block is inserted right after E->SRC
8182 and has jump to
8183 2. Empty block right before EXIT_BLOCK.
8184 Between these two blocks recovery blocks will be emitted. */
8185
8186 basic_block single, empty;
8187
8188 /* If the fallthrough edge to exit we've found is from the block we've
8189 created before, don't do anything more. */
8190 if (last == after_recovery)
8191 return;
8192
8193 adding_bb_to_current_region_p = false;
8194
8195 single = sched_create_empty_bb (last);
8196 empty = sched_create_empty_bb (single);
8197
8198 /* Add new blocks to the root loop. */
8199 if (current_loops != NULL)
8200 {
8201 add_bb_to_loop (single, (*current_loops->larray)[0]);
8202 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8203 }
8204
8205 single->count = last->count;
8206 empty->count = last->count;
8207 single->frequency = last->frequency;
8208 empty->frequency = last->frequency;
8209 BB_COPY_PARTITION (single, last);
8210 BB_COPY_PARTITION (empty, last);
8211
8212 redirect_edge_succ (e, single);
8213 make_single_succ_edge (single, empty, 0);
8214 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8215 EDGE_FALLTHRU);
8216
8217 rtx_code_label *label = block_label (empty);
8218 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8219 BB_END (single));
8220 JUMP_LABEL (x) = label;
8221 LABEL_NUSES (label)++;
8222 haifa_init_insn (x);
8223
8224 emit_barrier_after (x);
8225
8226 sched_init_only_bb (empty, NULL);
8227 sched_init_only_bb (single, NULL);
8228 sched_extend_bb ();
8229
8230 adding_bb_to_current_region_p = true;
8231 before_recovery = single;
8232 after_recovery = empty;
8233
8234 if (before_recovery_ptr)
8235 *before_recovery_ptr = before_recovery;
8236
8237 if (sched_verbose >= 2 && spec_info->dump)
8238 fprintf (spec_info->dump,
8239 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8240 last->index, single->index, empty->index);
8241 }
8242 else
8243 before_recovery = last;
8244 }
8245
8246 /* Returns new recovery block. */
8247 basic_block
8248 sched_create_recovery_block (basic_block *before_recovery_ptr)
8249 {
8250 rtx_insn *barrier;
8251 basic_block rec;
8252
8253 haifa_recovery_bb_recently_added_p = true;
8254 haifa_recovery_bb_ever_added_p = true;
8255
8256 init_before_recovery (before_recovery_ptr);
8257
8258 barrier = get_last_bb_insn (before_recovery);
8259 gcc_assert (BARRIER_P (barrier));
8260
8261 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8262
8263 rec = create_basic_block (label, label, before_recovery);
8264
8265 /* A recovery block always ends with an unconditional jump. */
8266 emit_barrier_after (BB_END (rec));
8267
8268 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8269 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8270
8271 if (sched_verbose && spec_info->dump)
8272 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8273 rec->index);
8274
8275 return rec;
8276 }
8277
8278 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8279 and emit necessary jumps. */
8280 void
8281 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8282 basic_block second_bb)
8283 {
8284 int edge_flags;
8285
8286 /* This is fixing of incoming edge. */
8287 /* ??? Which other flags should be specified? */
8288 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8289 /* Partition type is the same, if it is "unpartitioned". */
8290 edge_flags = EDGE_CROSSING;
8291 else
8292 edge_flags = 0;
8293
8294 make_edge (first_bb, rec, edge_flags);
8295 rtx_code_label *label = block_label (second_bb);
8296 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8297 BB_END (rec));
8298 JUMP_LABEL (jump) = label;
8299 LABEL_NUSES (label)++;
8300
8301 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8302 /* Partition type is the same, if it is "unpartitioned". */
8303 {
8304 /* Rewritten from cfgrtl.c. */
8305 if (flag_reorder_blocks_and_partition
8306 && targetm_common.have_named_sections)
8307 {
8308 /* We don't need the same note for the check because
8309 any_condjump_p (check) == true. */
8310 CROSSING_JUMP_P (jump) = 1;
8311 }
8312 edge_flags = EDGE_CROSSING;
8313 }
8314 else
8315 edge_flags = 0;
8316
8317 make_single_succ_edge (rec, second_bb, edge_flags);
8318 if (dom_info_available_p (CDI_DOMINATORS))
8319 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8320 }
8321
8322 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8323 INSN is a simple check, that should be converted to branchy one. */
8324 static void
8325 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8326 {
8327 basic_block rec;
8328 rtx_insn *label, *check, *twin;
8329 rtx check_pat;
8330 ds_t fs;
8331 sd_iterator_def sd_it;
8332 dep_t dep;
8333 dep_def _new_dep, *new_dep = &_new_dep;
8334 ds_t todo_spec;
8335
8336 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8337
8338 if (!mutate_p)
8339 todo_spec = TODO_SPEC (insn);
8340 else
8341 {
8342 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8343 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8344
8345 todo_spec = CHECK_SPEC (insn);
8346 }
8347
8348 todo_spec &= SPECULATIVE;
8349
8350 /* Create recovery block. */
8351 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8352 {
8353 rec = sched_create_recovery_block (NULL);
8354 label = BB_HEAD (rec);
8355 }
8356 else
8357 {
8358 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8359 label = NULL;
8360 }
8361
8362 /* Emit CHECK. */
8363 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8364
8365 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8366 {
8367 /* To have mem_reg alive at the beginning of second_bb,
8368 we emit check BEFORE insn, so insn after splitting
8369 insn will be at the beginning of second_bb, which will
8370 provide us with the correct life information. */
8371 check = emit_jump_insn_before (check_pat, insn);
8372 JUMP_LABEL (check) = label;
8373 LABEL_NUSES (label)++;
8374 }
8375 else
8376 check = emit_insn_before (check_pat, insn);
8377
8378 /* Extend data structures. */
8379 haifa_init_insn (check);
8380
8381 /* CHECK is being added to current region. Extend ready list. */
8382 gcc_assert (sched_ready_n_insns != -1);
8383 sched_extend_ready_list (sched_ready_n_insns + 1);
8384
8385 if (current_sched_info->add_remove_insn)
8386 current_sched_info->add_remove_insn (insn, 0);
8387
8388 RECOVERY_BLOCK (check) = rec;
8389
8390 if (sched_verbose && spec_info->dump)
8391 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8392 (*current_sched_info->print_insn) (check, 0));
8393
8394 gcc_assert (ORIG_PAT (insn));
8395
8396 /* Initialize TWIN (twin is a duplicate of original instruction
8397 in the recovery block). */
8398 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8399 {
8400 sd_iterator_def sd_it;
8401 dep_t dep;
8402
8403 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8404 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8405 {
8406 struct _dep _dep2, *dep2 = &_dep2;
8407
8408 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8409
8410 sd_add_dep (dep2, true);
8411 }
8412
8413 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8414 haifa_init_insn (twin);
8415
8416 if (sched_verbose && spec_info->dump)
8417 /* INSN_BB (insn) isn't determined for twin insns yet.
8418 So we can't use current_sched_info->print_insn. */
8419 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8420 INSN_UID (twin), rec->index);
8421 }
8422 else
8423 {
8424 ORIG_PAT (check) = ORIG_PAT (insn);
8425 HAS_INTERNAL_DEP (check) = 1;
8426 twin = check;
8427 /* ??? We probably should change all OUTPUT dependencies to
8428 (TRUE | OUTPUT). */
8429 }
8430
8431 /* Copy all resolved back dependencies of INSN to TWIN. This will
8432 provide correct value for INSN_TICK (TWIN). */
8433 sd_copy_back_deps (twin, insn, true);
8434
8435 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8436 /* In case of branchy check, fix CFG. */
8437 {
8438 basic_block first_bb, second_bb;
8439 rtx_insn *jump;
8440
8441 first_bb = BLOCK_FOR_INSN (check);
8442 second_bb = sched_split_block (first_bb, check);
8443
8444 sched_create_recovery_edges (first_bb, rec, second_bb);
8445
8446 sched_init_only_bb (second_bb, first_bb);
8447 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8448
8449 jump = BB_END (rec);
8450 haifa_init_insn (jump);
8451 }
8452
8453 /* Move backward dependences from INSN to CHECK and
8454 move forward dependences from INSN to TWIN. */
8455
8456 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8457 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8458 {
8459 rtx_insn *pro = DEP_PRO (dep);
8460 ds_t ds;
8461
8462 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8463 check --TRUE--> producer ??? or ANTI ???
8464 twin --TRUE--> producer
8465 twin --ANTI--> check
8466
8467 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8468 check --ANTI--> producer
8469 twin --ANTI--> producer
8470 twin --ANTI--> check
8471
8472 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8473 check ~~TRUE~~> producer
8474 twin ~~TRUE~~> producer
8475 twin --ANTI--> check */
8476
8477 ds = DEP_STATUS (dep);
8478
8479 if (ds & BEGIN_SPEC)
8480 {
8481 gcc_assert (!mutate_p);
8482 ds &= ~BEGIN_SPEC;
8483 }
8484
8485 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8486 sd_add_dep (new_dep, false);
8487
8488 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8489 {
8490 DEP_CON (new_dep) = twin;
8491 sd_add_dep (new_dep, false);
8492 }
8493 }
8494
8495 /* Second, remove backward dependencies of INSN. */
8496 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8497 sd_iterator_cond (&sd_it, &dep);)
8498 {
8499 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8500 || mutate_p)
8501 /* We can delete this dep because we overcome it with
8502 BEGIN_SPECULATION. */
8503 sd_delete_dep (sd_it);
8504 else
8505 sd_iterator_next (&sd_it);
8506 }
8507
8508 /* Future Speculations. Determine what BE_IN speculations will be like. */
8509 fs = 0;
8510
8511 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8512 here. */
8513
8514 gcc_assert (!DONE_SPEC (insn));
8515
8516 if (!mutate_p)
8517 {
8518 ds_t ts = TODO_SPEC (insn);
8519
8520 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8521 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8522
8523 /* Luckiness of future speculations solely depends upon initial
8524 BEGIN speculation. */
8525 if (ts & BEGIN_DATA)
8526 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8527 if (ts & BEGIN_CONTROL)
8528 fs = set_dep_weak (fs, BE_IN_CONTROL,
8529 get_dep_weak (ts, BEGIN_CONTROL));
8530 }
8531 else
8532 CHECK_SPEC (check) = CHECK_SPEC (insn);
8533
8534 /* Future speculations: call the helper. */
8535 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8536
8537 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8538 {
8539 /* Which types of dependencies should we use here is,
8540 generally, machine-dependent question... But, for now,
8541 it is not. */
8542
8543 if (!mutate_p)
8544 {
8545 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8546 sd_add_dep (new_dep, false);
8547
8548 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8549 sd_add_dep (new_dep, false);
8550 }
8551 else
8552 {
8553 if (spec_info->dump)
8554 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8555 (*current_sched_info->print_insn) (insn, 0));
8556
8557 /* Remove all dependencies of the INSN. */
8558 {
8559 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8560 | SD_LIST_BACK
8561 | SD_LIST_RES_BACK));
8562 while (sd_iterator_cond (&sd_it, &dep))
8563 sd_delete_dep (sd_it);
8564 }
8565
8566 /* If former check (INSN) already was moved to the ready (or queue)
8567 list, add new check (CHECK) there too. */
8568 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8569 try_ready (check);
8570
8571 /* Remove old check from instruction stream and free its
8572 data. */
8573 sched_remove_insn (insn);
8574 }
8575
8576 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8577 sd_add_dep (new_dep, false);
8578 }
8579 else
8580 {
8581 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8582 sd_add_dep (new_dep, false);
8583 }
8584
8585 if (!mutate_p)
8586 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8587 because it'll be done later in add_to_speculative_block. */
8588 {
8589 auto_vec<rtx_insn *> priorities_roots;
8590
8591 clear_priorities (twin, &priorities_roots);
8592 calc_priorities (priorities_roots);
8593 }
8594 }
8595
8596 /* Removes dependency between instructions in the recovery block REC
8597 and usual region instructions. It keeps inner dependences so it
8598 won't be necessary to recompute them. */
8599 static void
8600 fix_recovery_deps (basic_block rec)
8601 {
8602 rtx_insn *note, *insn, *jump;
8603 auto_vec<rtx_insn *, 10> ready_list;
8604 bitmap_head in_ready;
8605
8606 bitmap_initialize (&in_ready, 0);
8607
8608 /* NOTE - a basic block note. */
8609 note = NEXT_INSN (BB_HEAD (rec));
8610 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8611 insn = BB_END (rec);
8612 gcc_assert (JUMP_P (insn));
8613 insn = PREV_INSN (insn);
8614
8615 do
8616 {
8617 sd_iterator_def sd_it;
8618 dep_t dep;
8619
8620 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8621 sd_iterator_cond (&sd_it, &dep);)
8622 {
8623 rtx_insn *consumer = DEP_CON (dep);
8624
8625 if (BLOCK_FOR_INSN (consumer) != rec)
8626 {
8627 sd_delete_dep (sd_it);
8628
8629 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8630 ready_list.safe_push (consumer);
8631 }
8632 else
8633 {
8634 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8635
8636 sd_iterator_next (&sd_it);
8637 }
8638 }
8639
8640 insn = PREV_INSN (insn);
8641 }
8642 while (insn != note);
8643
8644 bitmap_clear (&in_ready);
8645
8646 /* Try to add instructions to the ready or queue list. */
8647 unsigned int i;
8648 rtx_insn *temp;
8649 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8650 try_ready (temp);
8651
8652 /* Fixing jump's dependences. */
8653 insn = BB_HEAD (rec);
8654 jump = BB_END (rec);
8655
8656 gcc_assert (LABEL_P (insn));
8657 insn = NEXT_INSN (insn);
8658
8659 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8660 add_jump_dependencies (insn, jump);
8661 }
8662
8663 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8664 instruction data. */
8665 static bool
8666 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8667 {
8668 int t;
8669
8670 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8671 if (!t)
8672 return false;
8673
8674 update_insn_after_change (insn);
8675 return true;
8676 }
8677
8678 /* -1 - can't speculate,
8679 0 - for speculation with REQUEST mode it is OK to use
8680 current instruction pattern,
8681 1 - need to change pattern for *NEW_PAT to be speculative. */
8682 int
8683 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8684 {
8685 gcc_assert (current_sched_info->flags & DO_SPECULATION
8686 && (request & SPECULATIVE)
8687 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8688
8689 if ((request & spec_info->mask) != request)
8690 return -1;
8691
8692 if (request & BE_IN_SPEC
8693 && !(request & BEGIN_SPEC))
8694 return 0;
8695
8696 return targetm.sched.speculate_insn (insn, request, new_pat);
8697 }
8698
8699 static int
8700 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8701 {
8702 gcc_assert (sched_deps_info->generate_spec_deps
8703 && !IS_SPECULATION_CHECK_P (insn));
8704
8705 if (HAS_INTERNAL_DEP (insn)
8706 || SCHED_GROUP_P (insn))
8707 return -1;
8708
8709 return sched_speculate_insn (insn, request, new_pat);
8710 }
8711
8712 /* Print some information about block BB, which starts with HEAD and
8713 ends with TAIL, before scheduling it.
8714 I is zero, if scheduler is about to start with the fresh ebb. */
8715 static void
8716 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8717 {
8718 if (!i)
8719 fprintf (sched_dump,
8720 ";; ======================================================\n");
8721 else
8722 fprintf (sched_dump,
8723 ";; =====================ADVANCING TO=====================\n");
8724 fprintf (sched_dump,
8725 ";; -- basic block %d from %d to %d -- %s reload\n",
8726 bb->index, INSN_UID (head), INSN_UID (tail),
8727 (reload_completed ? "after" : "before"));
8728 fprintf (sched_dump,
8729 ";; ======================================================\n");
8730 fprintf (sched_dump, "\n");
8731 }
8732
8733 /* Unlink basic block notes and labels and saves them, so they
8734 can be easily restored. We unlink basic block notes in EBB to
8735 provide back-compatibility with the previous code, as target backends
8736 assume, that there'll be only instructions between
8737 current_sched_info->{head and tail}. We restore these notes as soon
8738 as we can.
8739 FIRST (LAST) is the first (last) basic block in the ebb.
8740 NB: In usual case (FIRST == LAST) nothing is really done. */
8741 void
8742 unlink_bb_notes (basic_block first, basic_block last)
8743 {
8744 /* We DON'T unlink basic block notes of the first block in the ebb. */
8745 if (first == last)
8746 return;
8747
8748 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8749
8750 /* Make a sentinel. */
8751 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8752 bb_header[last->next_bb->index] = 0;
8753
8754 first = first->next_bb;
8755 do
8756 {
8757 rtx_insn *prev, *label, *note, *next;
8758
8759 label = BB_HEAD (last);
8760 if (LABEL_P (label))
8761 note = NEXT_INSN (label);
8762 else
8763 note = label;
8764 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8765
8766 prev = PREV_INSN (label);
8767 next = NEXT_INSN (note);
8768 gcc_assert (prev && next);
8769
8770 SET_NEXT_INSN (prev) = next;
8771 SET_PREV_INSN (next) = prev;
8772
8773 bb_header[last->index] = label;
8774
8775 if (last == first)
8776 break;
8777
8778 last = last->prev_bb;
8779 }
8780 while (1);
8781 }
8782
8783 /* Restore basic block notes.
8784 FIRST is the first basic block in the ebb. */
8785 static void
8786 restore_bb_notes (basic_block first)
8787 {
8788 if (!bb_header)
8789 return;
8790
8791 /* We DON'T unlink basic block notes of the first block in the ebb. */
8792 first = first->next_bb;
8793 /* Remember: FIRST is actually a second basic block in the ebb. */
8794
8795 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8796 && bb_header[first->index])
8797 {
8798 rtx_insn *prev, *label, *note, *next;
8799
8800 label = bb_header[first->index];
8801 prev = PREV_INSN (label);
8802 next = NEXT_INSN (prev);
8803
8804 if (LABEL_P (label))
8805 note = NEXT_INSN (label);
8806 else
8807 note = label;
8808 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8809
8810 bb_header[first->index] = 0;
8811
8812 SET_NEXT_INSN (prev) = label;
8813 SET_NEXT_INSN (note) = next;
8814 SET_PREV_INSN (next) = note;
8815
8816 first = first->next_bb;
8817 }
8818
8819 free (bb_header);
8820 bb_header = 0;
8821 }
8822
8823 /* Helper function.
8824 Fix CFG after both in- and inter-block movement of
8825 control_flow_insn_p JUMP. */
8826 static void
8827 fix_jump_move (rtx_insn *jump)
8828 {
8829 basic_block bb, jump_bb, jump_bb_next;
8830
8831 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8832 jump_bb = BLOCK_FOR_INSN (jump);
8833 jump_bb_next = jump_bb->next_bb;
8834
8835 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8836 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8837
8838 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8839 /* if jump_bb_next is not empty. */
8840 BB_END (jump_bb) = BB_END (jump_bb_next);
8841
8842 if (BB_END (bb) != PREV_INSN (jump))
8843 /* Then there are instruction after jump that should be placed
8844 to jump_bb_next. */
8845 BB_END (jump_bb_next) = BB_END (bb);
8846 else
8847 /* Otherwise jump_bb_next is empty. */
8848 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8849
8850 /* To make assertion in move_insn happy. */
8851 BB_END (bb) = PREV_INSN (jump);
8852
8853 update_bb_for_insn (jump_bb_next);
8854 }
8855
8856 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8857 static void
8858 move_block_after_check (rtx_insn *jump)
8859 {
8860 basic_block bb, jump_bb, jump_bb_next;
8861 vec<edge, va_gc> *t;
8862
8863 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8864 jump_bb = BLOCK_FOR_INSN (jump);
8865 jump_bb_next = jump_bb->next_bb;
8866
8867 update_bb_for_insn (jump_bb);
8868
8869 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8870 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8871
8872 unlink_block (jump_bb_next);
8873 link_block (jump_bb_next, bb);
8874
8875 t = bb->succs;
8876 bb->succs = 0;
8877 move_succs (&(jump_bb->succs), bb);
8878 move_succs (&(jump_bb_next->succs), jump_bb);
8879 move_succs (&t, jump_bb_next);
8880
8881 df_mark_solutions_dirty ();
8882
8883 common_sched_info->fix_recovery_cfg
8884 (bb->index, jump_bb->index, jump_bb_next->index);
8885 }
8886
8887 /* Helper function for move_block_after_check.
8888 This functions attaches edge vector pointed to by SUCCSP to
8889 block TO. */
8890 static void
8891 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8892 {
8893 edge e;
8894 edge_iterator ei;
8895
8896 gcc_assert (to->succs == 0);
8897
8898 to->succs = *succsp;
8899
8900 FOR_EACH_EDGE (e, ei, to->succs)
8901 e->src = to;
8902
8903 *succsp = 0;
8904 }
8905
8906 /* Remove INSN from the instruction stream.
8907 INSN should have any dependencies. */
8908 static void
8909 sched_remove_insn (rtx_insn *insn)
8910 {
8911 sd_finish_insn (insn);
8912
8913 change_queue_index (insn, QUEUE_NOWHERE);
8914 current_sched_info->add_remove_insn (insn, 1);
8915 delete_insn (insn);
8916 }
8917
8918 /* Clear priorities of all instructions, that are forward dependent on INSN.
8919 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8920 be invoked to initialize all cleared priorities. */
8921 static void
8922 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8923 {
8924 sd_iterator_def sd_it;
8925 dep_t dep;
8926 bool insn_is_root_p = true;
8927
8928 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8929
8930 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8931 {
8932 rtx_insn *pro = DEP_PRO (dep);
8933
8934 if (INSN_PRIORITY_STATUS (pro) >= 0
8935 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8936 {
8937 /* If DEP doesn't contribute to priority then INSN itself should
8938 be added to priority roots. */
8939 if (contributes_to_priority_p (dep))
8940 insn_is_root_p = false;
8941
8942 INSN_PRIORITY_STATUS (pro) = -1;
8943 clear_priorities (pro, roots_ptr);
8944 }
8945 }
8946
8947 if (insn_is_root_p)
8948 roots_ptr->safe_push (insn);
8949 }
8950
8951 /* Recompute priorities of instructions, whose priorities might have been
8952 changed. ROOTS is a vector of instructions whose priority computation will
8953 trigger initialization of all cleared priorities. */
8954 static void
8955 calc_priorities (rtx_vec_t roots)
8956 {
8957 int i;
8958 rtx_insn *insn;
8959
8960 FOR_EACH_VEC_ELT (roots, i, insn)
8961 priority (insn);
8962 }
8963
8964
8965 /* Add dependences between JUMP and other instructions in the recovery
8966 block. INSN is the first insn the recovery block. */
8967 static void
8968 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8969 {
8970 do
8971 {
8972 insn = NEXT_INSN (insn);
8973 if (insn == jump)
8974 break;
8975
8976 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8977 {
8978 dep_def _new_dep, *new_dep = &_new_dep;
8979
8980 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8981 sd_add_dep (new_dep, false);
8982 }
8983 }
8984 while (1);
8985
8986 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8987 }
8988
8989 /* Extend data structures for logical insn UID. */
8990 void
8991 sched_extend_luids (void)
8992 {
8993 int new_luids_max_uid = get_max_uid () + 1;
8994
8995 sched_luids.safe_grow_cleared (new_luids_max_uid);
8996 }
8997
8998 /* Initialize LUID for INSN. */
8999 void
9000 sched_init_insn_luid (rtx_insn *insn)
9001 {
9002 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
9003 int luid;
9004
9005 if (i >= 0)
9006 {
9007 luid = sched_max_luid;
9008 sched_max_luid += i;
9009 }
9010 else
9011 luid = -1;
9012
9013 SET_INSN_LUID (insn, luid);
9014 }
9015
9016 /* Initialize luids for BBS.
9017 The hook common_sched_info->luid_for_non_insn () is used to determine
9018 if notes, labels, etc. need luids. */
9019 void
9020 sched_init_luids (bb_vec_t bbs)
9021 {
9022 int i;
9023 basic_block bb;
9024
9025 sched_extend_luids ();
9026 FOR_EACH_VEC_ELT (bbs, i, bb)
9027 {
9028 rtx_insn *insn;
9029
9030 FOR_BB_INSNS (bb, insn)
9031 sched_init_insn_luid (insn);
9032 }
9033 }
9034
9035 /* Free LUIDs. */
9036 void
9037 sched_finish_luids (void)
9038 {
9039 sched_luids.release ();
9040 sched_max_luid = 1;
9041 }
9042
9043 /* Return logical uid of INSN. Helpful while debugging. */
9044 int
9045 insn_luid (rtx_insn *insn)
9046 {
9047 return INSN_LUID (insn);
9048 }
9049
9050 /* Extend per insn data in the target. */
9051 void
9052 sched_extend_target (void)
9053 {
9054 if (targetm.sched.h_i_d_extended)
9055 targetm.sched.h_i_d_extended ();
9056 }
9057
9058 /* Extend global scheduler structures (those, that live across calls to
9059 schedule_block) to include information about just emitted INSN. */
9060 static void
9061 extend_h_i_d (void)
9062 {
9063 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9064 if (reserve > 0
9065 && ! h_i_d.space (reserve))
9066 {
9067 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9068 sched_extend_target ();
9069 }
9070 }
9071
9072 /* Initialize h_i_d entry of the INSN with default values.
9073 Values, that are not explicitly initialized here, hold zero. */
9074 static void
9075 init_h_i_d (rtx_insn *insn)
9076 {
9077 if (INSN_LUID (insn) > 0)
9078 {
9079 INSN_COST (insn) = -1;
9080 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9081 INSN_TICK (insn) = INVALID_TICK;
9082 INSN_EXACT_TICK (insn) = INVALID_TICK;
9083 INTER_TICK (insn) = INVALID_TICK;
9084 TODO_SPEC (insn) = HARD_DEP;
9085 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9086 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9087 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9088 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9089 }
9090 }
9091
9092 /* Initialize haifa_insn_data for BBS. */
9093 void
9094 haifa_init_h_i_d (bb_vec_t bbs)
9095 {
9096 int i;
9097 basic_block bb;
9098
9099 extend_h_i_d ();
9100 FOR_EACH_VEC_ELT (bbs, i, bb)
9101 {
9102 rtx_insn *insn;
9103
9104 FOR_BB_INSNS (bb, insn)
9105 init_h_i_d (insn);
9106 }
9107 }
9108
9109 /* Finalize haifa_insn_data. */
9110 void
9111 haifa_finish_h_i_d (void)
9112 {
9113 int i;
9114 haifa_insn_data_t data;
9115 reg_use_data *use, *next_use;
9116 reg_set_data *set, *next_set;
9117
9118 FOR_EACH_VEC_ELT (h_i_d, i, data)
9119 {
9120 free (data->max_reg_pressure);
9121 free (data->reg_pressure);
9122 for (use = data->reg_use_list; use != NULL; use = next_use)
9123 {
9124 next_use = use->next_insn_use;
9125 free (use);
9126 }
9127 for (set = data->reg_set_list; set != NULL; set = next_set)
9128 {
9129 next_set = set->next_insn_set;
9130 free (set);
9131 }
9132
9133 }
9134 h_i_d.release ();
9135 }
9136
9137 /* Init data for the new insn INSN. */
9138 static void
9139 haifa_init_insn (rtx_insn *insn)
9140 {
9141 gcc_assert (insn != NULL);
9142
9143 sched_extend_luids ();
9144 sched_init_insn_luid (insn);
9145 sched_extend_target ();
9146 sched_deps_init (false);
9147 extend_h_i_d ();
9148 init_h_i_d (insn);
9149
9150 if (adding_bb_to_current_region_p)
9151 {
9152 sd_init_insn (insn);
9153
9154 /* Extend dependency caches by one element. */
9155 extend_dependency_caches (1, false);
9156 }
9157 if (sched_pressure != SCHED_PRESSURE_NONE)
9158 init_insn_reg_pressure_info (insn);
9159 }
9160
9161 /* Init data for the new basic block BB which comes after AFTER. */
9162 static void
9163 haifa_init_only_bb (basic_block bb, basic_block after)
9164 {
9165 gcc_assert (bb != NULL);
9166
9167 sched_init_bbs ();
9168
9169 if (common_sched_info->add_block)
9170 /* This changes only data structures of the front-end. */
9171 common_sched_info->add_block (bb, after);
9172 }
9173
9174 /* A generic version of sched_split_block (). */
9175 basic_block
9176 sched_split_block_1 (basic_block first_bb, rtx after)
9177 {
9178 edge e;
9179
9180 e = split_block (first_bb, after);
9181 gcc_assert (e->src == first_bb);
9182
9183 /* sched_split_block emits note if *check == BB_END. Probably it
9184 is better to rip that note off. */
9185
9186 return e->dest;
9187 }
9188
9189 /* A generic version of sched_create_empty_bb (). */
9190 basic_block
9191 sched_create_empty_bb_1 (basic_block after)
9192 {
9193 return create_empty_bb (after);
9194 }
9195
9196 /* Insert PAT as an INSN into the schedule and update the necessary data
9197 structures to account for it. */
9198 rtx_insn *
9199 sched_emit_insn (rtx pat)
9200 {
9201 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9202 haifa_init_insn (insn);
9203
9204 if (current_sched_info->add_remove_insn)
9205 current_sched_info->add_remove_insn (insn, 0);
9206
9207 (*current_sched_info->begin_schedule_ready) (insn);
9208 scheduled_insns.safe_push (insn);
9209
9210 last_scheduled_insn = insn;
9211 return insn;
9212 }
9213
9214 /* This function returns a candidate satisfying dispatch constraints from
9215 the ready list. */
9216
9217 static rtx_insn *
9218 ready_remove_first_dispatch (struct ready_list *ready)
9219 {
9220 int i;
9221 rtx_insn *insn = ready_element (ready, 0);
9222
9223 if (ready->n_ready == 1
9224 || !INSN_P (insn)
9225 || INSN_CODE (insn) < 0
9226 || !active_insn_p (insn)
9227 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9228 return ready_remove_first (ready);
9229
9230 for (i = 1; i < ready->n_ready; i++)
9231 {
9232 insn = ready_element (ready, i);
9233
9234 if (!INSN_P (insn)
9235 || INSN_CODE (insn) < 0
9236 || !active_insn_p (insn))
9237 continue;
9238
9239 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9240 {
9241 /* Return ith element of ready. */
9242 insn = ready_remove (ready, i);
9243 return insn;
9244 }
9245 }
9246
9247 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9248 return ready_remove_first (ready);
9249
9250 for (i = 1; i < ready->n_ready; i++)
9251 {
9252 insn = ready_element (ready, i);
9253
9254 if (!INSN_P (insn)
9255 || INSN_CODE (insn) < 0
9256 || !active_insn_p (insn))
9257 continue;
9258
9259 /* Return i-th element of ready. */
9260 if (targetm.sched.dispatch (insn, IS_CMP))
9261 return ready_remove (ready, i);
9262 }
9263
9264 return ready_remove_first (ready);
9265 }
9266
9267 /* Get number of ready insn in the ready list. */
9268
9269 int
9270 number_in_ready (void)
9271 {
9272 return ready.n_ready;
9273 }
9274
9275 /* Get number of ready's in the ready list. */
9276
9277 rtx_insn *
9278 get_ready_element (int i)
9279 {
9280 return ready_element (&ready, i);
9281 }
9282
9283 #endif /* INSN_SCHEDULING */