coretypes.h: Include input.h and as-a.h.
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "function.h"
135 #include "flags.h"
136 #include "insn-config.h"
137 #include "insn-attr.h"
138 #include "except.h"
139 #include "recog.h"
140 #include "dominance.h"
141 #include "cfg.h"
142 #include "cfgrtl.h"
143 #include "cfgbuild.h"
144 #include "predict.h"
145 #include "basic-block.h"
146 #include "sched-int.h"
147 #include "target.h"
148 #include "common/common-target.h"
149 #include "params.h"
150 #include "dbgcnt.h"
151 #include "cfgloop.h"
152 #include "ira.h"
153 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
154 #include "dumpfile.h"
155
156 #ifdef INSN_SCHEDULING
157
158 /* True if we do register pressure relief through live-range
159 shrinkage. */
160 static bool live_range_shrinkage_p;
161
162 /* Switch on live range shrinkage. */
163 void
164 initialize_live_range_shrinkage (void)
165 {
166 live_range_shrinkage_p = true;
167 }
168
169 /* Switch off live range shrinkage. */
170 void
171 finish_live_range_shrinkage (void)
172 {
173 live_range_shrinkage_p = false;
174 }
175
176 /* issue_rate is the number of insns that can be scheduled in the same
177 machine cycle. It can be defined in the config/mach/mach.h file,
178 otherwise we set it to 1. */
179
180 int issue_rate;
181
182 /* This can be set to true by a backend if the scheduler should not
183 enable a DCE pass. */
184 bool sched_no_dce;
185
186 /* The current initiation interval used when modulo scheduling. */
187 static int modulo_ii;
188
189 /* The maximum number of stages we are prepared to handle. */
190 static int modulo_max_stages;
191
192 /* The number of insns that exist in each iteration of the loop. We use this
193 to detect when we've scheduled all insns from the first iteration. */
194 static int modulo_n_insns;
195
196 /* The current count of insns in the first iteration of the loop that have
197 already been scheduled. */
198 static int modulo_insns_scheduled;
199
200 /* The maximum uid of insns from the first iteration of the loop. */
201 static int modulo_iter0_max_uid;
202
203 /* The number of times we should attempt to backtrack when modulo scheduling.
204 Decreased each time we have to backtrack. */
205 static int modulo_backtracks_left;
206
207 /* The stage in which the last insn from the original loop was
208 scheduled. */
209 static int modulo_last_stage;
210
211 /* sched-verbose controls the amount of debugging output the
212 scheduler prints. It is controlled by -fsched-verbose=N:
213 N>0 and no -DSR : the output is directed to stderr.
214 N>=10 will direct the printouts to stderr (regardless of -dSR).
215 N=1: same as -dSR.
216 N=2: bb's probabilities, detailed ready list info, unit/insn info.
217 N=3: rtl at abort point, control-flow, regions info.
218 N=5: dependences info. */
219
220 int sched_verbose = 0;
221
222 /* Debugging file. All printouts are sent to dump, which is always set,
223 either to stderr, or to the dump listing file (-dRS). */
224 FILE *sched_dump = 0;
225
226 /* This is a placeholder for the scheduler parameters common
227 to all schedulers. */
228 struct common_sched_info_def *common_sched_info;
229
230 #define INSN_TICK(INSN) (HID (INSN)->tick)
231 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
232 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
233 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
234 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
235 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
236 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
237 /* Cached cost of the instruction. Use insn_cost to get cost of the
238 insn. -1 here means that the field is not initialized. */
239 #define INSN_COST(INSN) (HID (INSN)->cost)
240
241 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
242 then it should be recalculated from scratch. */
243 #define INVALID_TICK (-(max_insn_queue_index + 1))
244 /* The minimal value of the INSN_TICK of an instruction. */
245 #define MIN_TICK (-max_insn_queue_index)
246
247 /* Original order of insns in the ready list.
248 Used to keep order of normal insns while separating DEBUG_INSNs. */
249 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
250
251 /* The deciding reason for INSN's place in the ready list. */
252 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
253
254 /* List of important notes we must keep around. This is a pointer to the
255 last element in the list. */
256 rtx_insn *note_list;
257
258 static struct spec_info_def spec_info_var;
259 /* Description of the speculative part of the scheduling.
260 If NULL - no speculation. */
261 spec_info_t spec_info = NULL;
262
263 /* True, if recovery block was added during scheduling of current block.
264 Used to determine, if we need to fix INSN_TICKs. */
265 static bool haifa_recovery_bb_recently_added_p;
266
267 /* True, if recovery block was added during this scheduling pass.
268 Used to determine if we should have empty memory pools of dependencies
269 after finishing current region. */
270 bool haifa_recovery_bb_ever_added_p;
271
272 /* Counters of different types of speculative instructions. */
273 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
274
275 /* Array used in {unlink, restore}_bb_notes. */
276 static rtx_insn **bb_header = 0;
277
278 /* Basic block after which recovery blocks will be created. */
279 static basic_block before_recovery;
280
281 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
282 created it. */
283 basic_block after_recovery;
284
285 /* FALSE if we add bb to another region, so we don't need to initialize it. */
286 bool adding_bb_to_current_region_p = true;
287
288 /* Queues, etc. */
289
290 /* An instruction is ready to be scheduled when all insns preceding it
291 have already been scheduled. It is important to ensure that all
292 insns which use its result will not be executed until its result
293 has been computed. An insn is maintained in one of four structures:
294
295 (P) the "Pending" set of insns which cannot be scheduled until
296 their dependencies have been satisfied.
297 (Q) the "Queued" set of insns that can be scheduled when sufficient
298 time has passed.
299 (R) the "Ready" list of unscheduled, uncommitted insns.
300 (S) the "Scheduled" list of insns.
301
302 Initially, all insns are either "Pending" or "Ready" depending on
303 whether their dependencies are satisfied.
304
305 Insns move from the "Ready" list to the "Scheduled" list as they
306 are committed to the schedule. As this occurs, the insns in the
307 "Pending" list have their dependencies satisfied and move to either
308 the "Ready" list or the "Queued" set depending on whether
309 sufficient time has passed to make them ready. As time passes,
310 insns move from the "Queued" set to the "Ready" list.
311
312 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
313 unscheduled insns, i.e., those that are ready, queued, and pending.
314 The "Queued" set (Q) is implemented by the variable `insn_queue'.
315 The "Ready" list (R) is implemented by the variables `ready' and
316 `n_ready'.
317 The "Scheduled" list (S) is the new insn chain built by this pass.
318
319 The transition (R->S) is implemented in the scheduling loop in
320 `schedule_block' when the best insn to schedule is chosen.
321 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
322 insns move from the ready list to the scheduled list.
323 The transition (Q->R) is implemented in 'queue_to_insn' as time
324 passes or stalls are introduced. */
325
326 /* Implement a circular buffer to delay instructions until sufficient
327 time has passed. For the new pipeline description interface,
328 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
329 than maximal time of instruction execution computed by genattr.c on
330 the base maximal time of functional unit reservations and getting a
331 result. This is the longest time an insn may be queued. */
332
333 static rtx_insn_list **insn_queue;
334 static int q_ptr = 0;
335 static int q_size = 0;
336 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
337 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
338
339 #define QUEUE_SCHEDULED (-3)
340 #define QUEUE_NOWHERE (-2)
341 #define QUEUE_READY (-1)
342 /* QUEUE_SCHEDULED - INSN is scheduled.
343 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
344 queue or ready list.
345 QUEUE_READY - INSN is in ready list.
346 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
347
348 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
349
350 /* The following variable value refers for all current and future
351 reservations of the processor units. */
352 state_t curr_state;
353
354 /* The following variable value is size of memory representing all
355 current and future reservations of the processor units. */
356 size_t dfa_state_size;
357
358 /* The following array is used to find the best insn from ready when
359 the automaton pipeline interface is used. */
360 signed char *ready_try = NULL;
361
362 /* The ready list. */
363 struct ready_list ready = {NULL, 0, 0, 0, 0};
364
365 /* The pointer to the ready list (to be removed). */
366 static struct ready_list *readyp = &ready;
367
368 /* Scheduling clock. */
369 static int clock_var;
370
371 /* Clock at which the previous instruction was issued. */
372 static int last_clock_var;
373
374 /* Set to true if, when queuing a shadow insn, we discover that it would be
375 scheduled too late. */
376 static bool must_backtrack;
377
378 /* The following variable value is number of essential insns issued on
379 the current cycle. An insn is essential one if it changes the
380 processors state. */
381 int cycle_issued_insns;
382
383 /* This records the actual schedule. It is built up during the main phase
384 of schedule_block, and afterwards used to reorder the insns in the RTL. */
385 static vec<rtx_insn *> scheduled_insns;
386
387 static int may_trap_exp (const_rtx, int);
388
389 /* Nonzero iff the address is comprised from at most 1 register. */
390 #define CONST_BASED_ADDRESS_P(x) \
391 (REG_P (x) \
392 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
393 || (GET_CODE (x) == LO_SUM)) \
394 && (CONSTANT_P (XEXP (x, 0)) \
395 || CONSTANT_P (XEXP (x, 1)))))
396
397 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
398 as found by analyzing insn's expression. */
399
400 \f
401 static int haifa_luid_for_non_insn (rtx x);
402
403 /* Haifa version of sched_info hooks common to all headers. */
404 const struct common_sched_info_def haifa_common_sched_info =
405 {
406 NULL, /* fix_recovery_cfg */
407 NULL, /* add_block */
408 NULL, /* estimate_number_of_insns */
409 haifa_luid_for_non_insn, /* luid_for_non_insn */
410 SCHED_PASS_UNKNOWN /* sched_pass_id */
411 };
412
413 /* Mapping from instruction UID to its Logical UID. */
414 vec<int> sched_luids = vNULL;
415
416 /* Next LUID to assign to an instruction. */
417 int sched_max_luid = 1;
418
419 /* Haifa Instruction Data. */
420 vec<haifa_insn_data_def> h_i_d = vNULL;
421
422 void (* sched_init_only_bb) (basic_block, basic_block);
423
424 /* Split block function. Different schedulers might use different functions
425 to handle their internal data consistent. */
426 basic_block (* sched_split_block) (basic_block, rtx);
427
428 /* Create empty basic block after the specified block. */
429 basic_block (* sched_create_empty_bb) (basic_block);
430
431 /* Return the number of cycles until INSN is expected to be ready.
432 Return zero if it already is. */
433 static int
434 insn_delay (rtx_insn *insn)
435 {
436 return MAX (INSN_TICK (insn) - clock_var, 0);
437 }
438
439 static int
440 may_trap_exp (const_rtx x, int is_store)
441 {
442 enum rtx_code code;
443
444 if (x == 0)
445 return TRAP_FREE;
446 code = GET_CODE (x);
447 if (is_store)
448 {
449 if (code == MEM && may_trap_p (x))
450 return TRAP_RISKY;
451 else
452 return TRAP_FREE;
453 }
454 if (code == MEM)
455 {
456 /* The insn uses memory: a volatile load. */
457 if (MEM_VOLATILE_P (x))
458 return IRISKY;
459 /* An exception-free load. */
460 if (!may_trap_p (x))
461 return IFREE;
462 /* A load with 1 base register, to be further checked. */
463 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
464 return PFREE_CANDIDATE;
465 /* No info on the load, to be further checked. */
466 return PRISKY_CANDIDATE;
467 }
468 else
469 {
470 const char *fmt;
471 int i, insn_class = TRAP_FREE;
472
473 /* Neither store nor load, check if it may cause a trap. */
474 if (may_trap_p (x))
475 return TRAP_RISKY;
476 /* Recursive step: walk the insn... */
477 fmt = GET_RTX_FORMAT (code);
478 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
479 {
480 if (fmt[i] == 'e')
481 {
482 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
483 insn_class = WORST_CLASS (insn_class, tmp_class);
484 }
485 else if (fmt[i] == 'E')
486 {
487 int j;
488 for (j = 0; j < XVECLEN (x, i); j++)
489 {
490 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
491 insn_class = WORST_CLASS (insn_class, tmp_class);
492 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
493 break;
494 }
495 }
496 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
497 break;
498 }
499 return insn_class;
500 }
501 }
502
503 /* Classifies rtx X of an insn for the purpose of verifying that X can be
504 executed speculatively (and consequently the insn can be moved
505 speculatively), by examining X, returning:
506 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
507 TRAP_FREE: non-load insn.
508 IFREE: load from a globally safe location.
509 IRISKY: volatile load.
510 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
511 being either PFREE or PRISKY. */
512
513 static int
514 haifa_classify_rtx (const_rtx x)
515 {
516 int tmp_class = TRAP_FREE;
517 int insn_class = TRAP_FREE;
518 enum rtx_code code;
519
520 if (GET_CODE (x) == PARALLEL)
521 {
522 int i, len = XVECLEN (x, 0);
523
524 for (i = len - 1; i >= 0; i--)
525 {
526 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
527 insn_class = WORST_CLASS (insn_class, tmp_class);
528 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
529 break;
530 }
531 }
532 else
533 {
534 code = GET_CODE (x);
535 switch (code)
536 {
537 case CLOBBER:
538 /* Test if it is a 'store'. */
539 tmp_class = may_trap_exp (XEXP (x, 0), 1);
540 break;
541 case SET:
542 /* Test if it is a store. */
543 tmp_class = may_trap_exp (SET_DEST (x), 1);
544 if (tmp_class == TRAP_RISKY)
545 break;
546 /* Test if it is a load. */
547 tmp_class =
548 WORST_CLASS (tmp_class,
549 may_trap_exp (SET_SRC (x), 0));
550 break;
551 case COND_EXEC:
552 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
553 if (tmp_class == TRAP_RISKY)
554 break;
555 tmp_class = WORST_CLASS (tmp_class,
556 may_trap_exp (COND_EXEC_TEST (x), 0));
557 break;
558 case TRAP_IF:
559 tmp_class = TRAP_RISKY;
560 break;
561 default:;
562 }
563 insn_class = tmp_class;
564 }
565
566 return insn_class;
567 }
568
569 int
570 haifa_classify_insn (const_rtx insn)
571 {
572 return haifa_classify_rtx (PATTERN (insn));
573 }
574 \f
575 /* After the scheduler initialization function has been called, this function
576 can be called to enable modulo scheduling. II is the initiation interval
577 we should use, it affects the delays for delay_pairs that were recorded as
578 separated by a given number of stages.
579
580 MAX_STAGES provides us with a limit
581 after which we give up scheduling; the caller must have unrolled at least
582 as many copies of the loop body and recorded delay_pairs for them.
583
584 INSNS is the number of real (non-debug) insns in one iteration of
585 the loop. MAX_UID can be used to test whether an insn belongs to
586 the first iteration of the loop; all of them have a uid lower than
587 MAX_UID. */
588 void
589 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
590 {
591 modulo_ii = ii;
592 modulo_max_stages = max_stages;
593 modulo_n_insns = insns;
594 modulo_iter0_max_uid = max_uid;
595 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
596 }
597
598 /* A structure to record a pair of insns where the first one is a real
599 insn that has delay slots, and the second is its delayed shadow.
600 I1 is scheduled normally and will emit an assembly instruction,
601 while I2 describes the side effect that takes place at the
602 transition between cycles CYCLES and (CYCLES + 1) after I1. */
603 struct delay_pair
604 {
605 struct delay_pair *next_same_i1;
606 rtx_insn *i1, *i2;
607 int cycles;
608 /* When doing modulo scheduling, we a delay_pair can also be used to
609 show that I1 and I2 are the same insn in a different stage. If that
610 is the case, STAGES will be nonzero. */
611 int stages;
612 };
613
614 /* Helpers for delay hashing. */
615
616 struct delay_i1_hasher : typed_noop_remove <delay_pair>
617 {
618 typedef delay_pair *value_type;
619 typedef void *compare_type;
620 static inline hashval_t hash (const delay_pair *);
621 static inline bool equal (const delay_pair *, const void *);
622 };
623
624 /* Returns a hash value for X, based on hashing just I1. */
625
626 inline hashval_t
627 delay_i1_hasher::hash (const delay_pair *x)
628 {
629 return htab_hash_pointer (x->i1);
630 }
631
632 /* Return true if I1 of pair X is the same as that of pair Y. */
633
634 inline bool
635 delay_i1_hasher::equal (const delay_pair *x, const void *y)
636 {
637 return x->i1 == y;
638 }
639
640 struct delay_i2_hasher : typed_free_remove <delay_pair>
641 {
642 typedef delay_pair *value_type;
643 typedef void *compare_type;
644 static inline hashval_t hash (const delay_pair *);
645 static inline bool equal (const delay_pair *, const void *);
646 };
647
648 /* Returns a hash value for X, based on hashing just I2. */
649
650 inline hashval_t
651 delay_i2_hasher::hash (const delay_pair *x)
652 {
653 return htab_hash_pointer (x->i2);
654 }
655
656 /* Return true if I2 of pair X is the same as that of pair Y. */
657
658 inline bool
659 delay_i2_hasher::equal (const delay_pair *x, const void *y)
660 {
661 return x->i2 == y;
662 }
663
664 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
665 indexed by I2. */
666 static hash_table<delay_i1_hasher> *delay_htab;
667 static hash_table<delay_i2_hasher> *delay_htab_i2;
668
669 /* Called through htab_traverse. Walk the hashtable using I2 as
670 index, and delete all elements involving an UID higher than
671 that pointed to by *DATA. */
672 int
673 haifa_htab_i2_traverse (delay_pair **slot, int *data)
674 {
675 int maxuid = *data;
676 struct delay_pair *p = *slot;
677 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
678 {
679 delay_htab_i2->clear_slot (slot);
680 }
681 return 1;
682 }
683
684 /* Called through htab_traverse. Walk the hashtable using I2 as
685 index, and delete all elements involving an UID higher than
686 that pointed to by *DATA. */
687 int
688 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
689 {
690 int maxuid = *data;
691 struct delay_pair *p, *first, **pprev;
692
693 if (INSN_UID ((*pslot)->i1) >= maxuid)
694 {
695 delay_htab->clear_slot (pslot);
696 return 1;
697 }
698 pprev = &first;
699 for (p = *pslot; p; p = p->next_same_i1)
700 {
701 if (INSN_UID (p->i2) < maxuid)
702 {
703 *pprev = p;
704 pprev = &p->next_same_i1;
705 }
706 }
707 *pprev = NULL;
708 if (first == NULL)
709 delay_htab->clear_slot (pslot);
710 else
711 *pslot = first;
712 return 1;
713 }
714
715 /* Discard all delay pairs which involve an insn with an UID higher
716 than MAX_UID. */
717 void
718 discard_delay_pairs_above (int max_uid)
719 {
720 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
721 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
722 }
723
724 /* This function can be called by a port just before it starts the final
725 scheduling pass. It records the fact that an instruction with delay
726 slots has been split into two insns, I1 and I2. The first one will be
727 scheduled normally and initiates the operation. The second one is a
728 shadow which must follow a specific number of cycles after I1; its only
729 purpose is to show the side effect that occurs at that cycle in the RTL.
730 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
731 while I2 retains the original insn type.
732
733 There are two ways in which the number of cycles can be specified,
734 involving the CYCLES and STAGES arguments to this function. If STAGES
735 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
736 which is multiplied by MODULO_II to give the number of cycles. This is
737 only useful if the caller also calls set_modulo_params to enable modulo
738 scheduling. */
739
740 void
741 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
742 {
743 struct delay_pair *p = XNEW (struct delay_pair);
744 struct delay_pair **slot;
745
746 p->i1 = i1;
747 p->i2 = i2;
748 p->cycles = cycles;
749 p->stages = stages;
750
751 if (!delay_htab)
752 {
753 delay_htab = new hash_table<delay_i1_hasher> (10);
754 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
755 }
756 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
757 p->next_same_i1 = *slot;
758 *slot = p;
759 slot = delay_htab_i2->find_slot (p, INSERT);
760 *slot = p;
761 }
762
763 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
764 and return the other insn if so. Return NULL otherwise. */
765 rtx_insn *
766 real_insn_for_shadow (rtx_insn *insn)
767 {
768 struct delay_pair *pair;
769
770 if (!delay_htab)
771 return NULL;
772
773 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
774 if (!pair || pair->stages > 0)
775 return NULL;
776 return pair->i1;
777 }
778
779 /* For a pair P of insns, return the fixed distance in cycles from the first
780 insn after which the second must be scheduled. */
781 static int
782 pair_delay (struct delay_pair *p)
783 {
784 if (p->stages == 0)
785 return p->cycles;
786 else
787 return p->stages * modulo_ii;
788 }
789
790 /* Given an insn INSN, add a dependence on its delayed shadow if it
791 has one. Also try to find situations where shadows depend on each other
792 and add dependencies to the real insns to limit the amount of backtracking
793 needed. */
794 void
795 add_delay_dependencies (rtx_insn *insn)
796 {
797 struct delay_pair *pair;
798 sd_iterator_def sd_it;
799 dep_t dep;
800
801 if (!delay_htab)
802 return;
803
804 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
805 if (!pair)
806 return;
807 add_dependence (insn, pair->i1, REG_DEP_ANTI);
808 if (pair->stages)
809 return;
810
811 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
812 {
813 rtx_insn *pro = DEP_PRO (dep);
814 struct delay_pair *other_pair
815 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
816 if (!other_pair || other_pair->stages)
817 continue;
818 if (pair_delay (other_pair) >= pair_delay (pair))
819 {
820 if (sched_verbose >= 4)
821 {
822 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
823 INSN_UID (other_pair->i1),
824 INSN_UID (pair->i1));
825 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
826 INSN_UID (pair->i1),
827 INSN_UID (pair->i2),
828 pair_delay (pair));
829 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
830 INSN_UID (other_pair->i1),
831 INSN_UID (other_pair->i2),
832 pair_delay (other_pair));
833 }
834 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
835 }
836 }
837 }
838 \f
839 /* Forward declarations. */
840
841 static int priority (rtx_insn *);
842 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
843 static int rank_for_schedule (const void *, const void *);
844 static void swap_sort (rtx_insn **, int);
845 static void queue_insn (rtx_insn *, int, const char *);
846 static int schedule_insn (rtx_insn *);
847 static void adjust_priority (rtx_insn *);
848 static void advance_one_cycle (void);
849 static void extend_h_i_d (void);
850
851
852 /* Notes handling mechanism:
853 =========================
854 Generally, NOTES are saved before scheduling and restored after scheduling.
855 The scheduler distinguishes between two types of notes:
856
857 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
858 Before scheduling a region, a pointer to the note is added to the insn
859 that follows or precedes it. (This happens as part of the data dependence
860 computation). After scheduling an insn, the pointer contained in it is
861 used for regenerating the corresponding note (in reemit_notes).
862
863 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
864 these notes are put in a list (in rm_other_notes() and
865 unlink_other_notes ()). After scheduling the block, these notes are
866 inserted at the beginning of the block (in schedule_block()). */
867
868 static void ready_add (struct ready_list *, rtx_insn *, bool);
869 static rtx_insn *ready_remove_first (struct ready_list *);
870 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
871
872 static void queue_to_ready (struct ready_list *);
873 static int early_queue_to_ready (state_t, struct ready_list *);
874
875 /* The following functions are used to implement multi-pass scheduling
876 on the first cycle. */
877 static rtx_insn *ready_remove (struct ready_list *, int);
878 static void ready_remove_insn (rtx_insn *);
879
880 static void fix_inter_tick (rtx_insn *, rtx_insn *);
881 static int fix_tick_ready (rtx_insn *);
882 static void change_queue_index (rtx_insn *, int);
883
884 /* The following functions are used to implement scheduling of data/control
885 speculative instructions. */
886
887 static void extend_h_i_d (void);
888 static void init_h_i_d (rtx_insn *);
889 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
890 static void generate_recovery_code (rtx_insn *);
891 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
892 static void begin_speculative_block (rtx_insn *);
893 static void add_to_speculative_block (rtx_insn *);
894 static void init_before_recovery (basic_block *);
895 static void create_check_block_twin (rtx_insn *, bool);
896 static void fix_recovery_deps (basic_block);
897 static bool haifa_change_pattern (rtx_insn *, rtx);
898 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
899 static void restore_bb_notes (basic_block);
900 static void fix_jump_move (rtx_insn *);
901 static void move_block_after_check (rtx_insn *);
902 static void move_succs (vec<edge, va_gc> **, basic_block);
903 static void sched_remove_insn (rtx_insn *);
904 static void clear_priorities (rtx_insn *, rtx_vec_t *);
905 static void calc_priorities (rtx_vec_t);
906 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
907
908 #endif /* INSN_SCHEDULING */
909 \f
910 /* Point to state used for the current scheduling pass. */
911 struct haifa_sched_info *current_sched_info;
912 \f
913 #ifndef INSN_SCHEDULING
914 void
915 schedule_insns (void)
916 {
917 }
918 #else
919
920 /* Do register pressure sensitive insn scheduling if the flag is set
921 up. */
922 enum sched_pressure_algorithm sched_pressure;
923
924 /* Map regno -> its pressure class. The map defined only when
925 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
926 enum reg_class *sched_regno_pressure_class;
927
928 /* The current register pressure. Only elements corresponding pressure
929 classes are defined. */
930 static int curr_reg_pressure[N_REG_CLASSES];
931
932 /* Saved value of the previous array. */
933 static int saved_reg_pressure[N_REG_CLASSES];
934
935 /* Register living at given scheduling point. */
936 static bitmap curr_reg_live;
937
938 /* Saved value of the previous array. */
939 static bitmap saved_reg_live;
940
941 /* Registers mentioned in the current region. */
942 static bitmap region_ref_regs;
943
944 /* Effective number of available registers of a given class (see comment
945 in sched_pressure_start_bb). */
946 static int sched_class_regs_num[N_REG_CLASSES];
947 /* Number of call_used_regs. This is a helper for calculating of
948 sched_class_regs_num. */
949 static int call_used_regs_num[N_REG_CLASSES];
950
951 /* Initiate register pressure relative info for scheduling the current
952 region. Currently it is only clearing register mentioned in the
953 current region. */
954 void
955 sched_init_region_reg_pressure_info (void)
956 {
957 bitmap_clear (region_ref_regs);
958 }
959
960 /* PRESSURE[CL] describes the pressure on register class CL. Update it
961 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
962 LIVE tracks the set of live registers; if it is null, assume that
963 every birth or death is genuine. */
964 static inline void
965 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
966 {
967 enum reg_class pressure_class;
968
969 pressure_class = sched_regno_pressure_class[regno];
970 if (regno >= FIRST_PSEUDO_REGISTER)
971 {
972 if (pressure_class != NO_REGS)
973 {
974 if (birth_p)
975 {
976 if (!live || bitmap_set_bit (live, regno))
977 pressure[pressure_class]
978 += (ira_reg_class_max_nregs
979 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
980 }
981 else
982 {
983 if (!live || bitmap_clear_bit (live, regno))
984 pressure[pressure_class]
985 -= (ira_reg_class_max_nregs
986 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
987 }
988 }
989 }
990 else if (pressure_class != NO_REGS
991 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
992 {
993 if (birth_p)
994 {
995 if (!live || bitmap_set_bit (live, regno))
996 pressure[pressure_class]++;
997 }
998 else
999 {
1000 if (!live || bitmap_clear_bit (live, regno))
1001 pressure[pressure_class]--;
1002 }
1003 }
1004 }
1005
1006 /* Initiate current register pressure related info from living
1007 registers given by LIVE. */
1008 static void
1009 initiate_reg_pressure_info (bitmap live)
1010 {
1011 int i;
1012 unsigned int j;
1013 bitmap_iterator bi;
1014
1015 for (i = 0; i < ira_pressure_classes_num; i++)
1016 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1017 bitmap_clear (curr_reg_live);
1018 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1019 if (sched_pressure == SCHED_PRESSURE_MODEL
1020 || current_nr_blocks == 1
1021 || bitmap_bit_p (region_ref_regs, j))
1022 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1023 }
1024
1025 /* Mark registers in X as mentioned in the current region. */
1026 static void
1027 setup_ref_regs (rtx x)
1028 {
1029 int i, j;
1030 const RTX_CODE code = GET_CODE (x);
1031 const char *fmt;
1032
1033 if (REG_P (x))
1034 {
1035 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1036 return;
1037 }
1038 fmt = GET_RTX_FORMAT (code);
1039 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1040 if (fmt[i] == 'e')
1041 setup_ref_regs (XEXP (x, i));
1042 else if (fmt[i] == 'E')
1043 {
1044 for (j = 0; j < XVECLEN (x, i); j++)
1045 setup_ref_regs (XVECEXP (x, i, j));
1046 }
1047 }
1048
1049 /* Initiate current register pressure related info at the start of
1050 basic block BB. */
1051 static void
1052 initiate_bb_reg_pressure_info (basic_block bb)
1053 {
1054 unsigned int i ATTRIBUTE_UNUSED;
1055 rtx_insn *insn;
1056
1057 if (current_nr_blocks > 1)
1058 FOR_BB_INSNS (bb, insn)
1059 if (NONDEBUG_INSN_P (insn))
1060 setup_ref_regs (PATTERN (insn));
1061 initiate_reg_pressure_info (df_get_live_in (bb));
1062 if (bb_has_eh_pred (bb))
1063 for (i = 0; ; ++i)
1064 {
1065 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1066
1067 if (regno == INVALID_REGNUM)
1068 break;
1069 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1070 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1071 regno, true);
1072 }
1073 }
1074
1075 /* Save current register pressure related info. */
1076 static void
1077 save_reg_pressure (void)
1078 {
1079 int i;
1080
1081 for (i = 0; i < ira_pressure_classes_num; i++)
1082 saved_reg_pressure[ira_pressure_classes[i]]
1083 = curr_reg_pressure[ira_pressure_classes[i]];
1084 bitmap_copy (saved_reg_live, curr_reg_live);
1085 }
1086
1087 /* Restore saved register pressure related info. */
1088 static void
1089 restore_reg_pressure (void)
1090 {
1091 int i;
1092
1093 for (i = 0; i < ira_pressure_classes_num; i++)
1094 curr_reg_pressure[ira_pressure_classes[i]]
1095 = saved_reg_pressure[ira_pressure_classes[i]];
1096 bitmap_copy (curr_reg_live, saved_reg_live);
1097 }
1098
1099 /* Return TRUE if the register is dying after its USE. */
1100 static bool
1101 dying_use_p (struct reg_use_data *use)
1102 {
1103 struct reg_use_data *next;
1104
1105 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1106 if (NONDEBUG_INSN_P (next->insn)
1107 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1108 return false;
1109 return true;
1110 }
1111
1112 /* Print info about the current register pressure and its excess for
1113 each pressure class. */
1114 static void
1115 print_curr_reg_pressure (void)
1116 {
1117 int i;
1118 enum reg_class cl;
1119
1120 fprintf (sched_dump, ";;\t");
1121 for (i = 0; i < ira_pressure_classes_num; i++)
1122 {
1123 cl = ira_pressure_classes[i];
1124 gcc_assert (curr_reg_pressure[cl] >= 0);
1125 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1126 curr_reg_pressure[cl],
1127 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1128 }
1129 fprintf (sched_dump, "\n");
1130 }
1131 \f
1132 /* Determine if INSN has a condition that is clobbered if a register
1133 in SET_REGS is modified. */
1134 static bool
1135 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1136 {
1137 rtx pat = PATTERN (insn);
1138 gcc_assert (GET_CODE (pat) == COND_EXEC);
1139 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1140 {
1141 sd_iterator_def sd_it;
1142 dep_t dep;
1143 haifa_change_pattern (insn, ORIG_PAT (insn));
1144 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1145 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1146 TODO_SPEC (insn) = HARD_DEP;
1147 if (sched_verbose >= 2)
1148 fprintf (sched_dump,
1149 ";;\t\tdequeue insn %s because of clobbered condition\n",
1150 (*current_sched_info->print_insn) (insn, 0));
1151 return true;
1152 }
1153
1154 return false;
1155 }
1156
1157 /* This function should be called after modifying the pattern of INSN,
1158 to update scheduler data structures as needed. */
1159 static void
1160 update_insn_after_change (rtx_insn *insn)
1161 {
1162 sd_iterator_def sd_it;
1163 dep_t dep;
1164
1165 dfa_clear_single_insn_cache (insn);
1166
1167 sd_it = sd_iterator_start (insn,
1168 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1169 while (sd_iterator_cond (&sd_it, &dep))
1170 {
1171 DEP_COST (dep) = UNKNOWN_DEP_COST;
1172 sd_iterator_next (&sd_it);
1173 }
1174
1175 /* Invalidate INSN_COST, so it'll be recalculated. */
1176 INSN_COST (insn) = -1;
1177 /* Invalidate INSN_TICK, so it'll be recalculated. */
1178 INSN_TICK (insn) = INVALID_TICK;
1179
1180 /* Invalidate autoprefetch data entry. */
1181 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1182 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1183 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1184 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1185 }
1186
1187
1188 /* Two VECs, one to hold dependencies for which pattern replacements
1189 need to be applied or restored at the start of the next cycle, and
1190 another to hold an integer that is either one, to apply the
1191 corresponding replacement, or zero to restore it. */
1192 static vec<dep_t> next_cycle_replace_deps;
1193 static vec<int> next_cycle_apply;
1194
1195 static void apply_replacement (dep_t, bool);
1196 static void restore_pattern (dep_t, bool);
1197
1198 /* Look at the remaining dependencies for insn NEXT, and compute and return
1199 the TODO_SPEC value we should use for it. This is called after one of
1200 NEXT's dependencies has been resolved.
1201 We also perform pattern replacements for predication, and for broken
1202 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1203 false. */
1204
1205 static ds_t
1206 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1207 {
1208 ds_t new_ds;
1209 sd_iterator_def sd_it;
1210 dep_t dep, modify_dep = NULL;
1211 int n_spec = 0;
1212 int n_control = 0;
1213 int n_replace = 0;
1214 bool first_p = true;
1215
1216 if (sd_lists_empty_p (next, SD_LIST_BACK))
1217 /* NEXT has all its dependencies resolved. */
1218 return 0;
1219
1220 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1221 return HARD_DEP;
1222
1223 /* If NEXT is intended to sit adjacent to this instruction, we don't
1224 want to try to break any dependencies. Treat it as a HARD_DEP. */
1225 if (SCHED_GROUP_P (next))
1226 return HARD_DEP;
1227
1228 /* Now we've got NEXT with speculative deps only.
1229 1. Look at the deps to see what we have to do.
1230 2. Check if we can do 'todo'. */
1231 new_ds = 0;
1232
1233 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1234 {
1235 rtx_insn *pro = DEP_PRO (dep);
1236 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1237
1238 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1239 continue;
1240
1241 if (ds)
1242 {
1243 n_spec++;
1244 if (first_p)
1245 {
1246 first_p = false;
1247
1248 new_ds = ds;
1249 }
1250 else
1251 new_ds = ds_merge (new_ds, ds);
1252 }
1253 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1254 {
1255 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1256 {
1257 n_control++;
1258 modify_dep = dep;
1259 }
1260 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1261 }
1262 else if (DEP_REPLACE (dep) != NULL)
1263 {
1264 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1265 {
1266 n_replace++;
1267 modify_dep = dep;
1268 }
1269 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1270 }
1271 }
1272
1273 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1274 {
1275 if (!dbg_cnt (sched_breakdep))
1276 return HARD_DEP;
1277 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1278 {
1279 struct dep_replacement *desc = DEP_REPLACE (dep);
1280 if (desc != NULL)
1281 {
1282 if (desc->insn == next && !for_backtrack)
1283 {
1284 gcc_assert (n_replace == 1);
1285 apply_replacement (dep, true);
1286 }
1287 DEP_STATUS (dep) |= DEP_CANCELLED;
1288 }
1289 }
1290 return 0;
1291 }
1292
1293 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1294 {
1295 rtx_insn *pro, *other;
1296 rtx new_pat;
1297 rtx cond = NULL_RTX;
1298 bool success;
1299 rtx_insn *prev = NULL;
1300 int i;
1301 unsigned regno;
1302
1303 if ((current_sched_info->flags & DO_PREDICATION) == 0
1304 || (ORIG_PAT (next) != NULL_RTX
1305 && PREDICATED_PAT (next) == NULL_RTX))
1306 return HARD_DEP;
1307
1308 pro = DEP_PRO (modify_dep);
1309 other = real_insn_for_shadow (pro);
1310 if (other != NULL_RTX)
1311 pro = other;
1312
1313 cond = sched_get_reverse_condition_uncached (pro);
1314 regno = REGNO (XEXP (cond, 0));
1315
1316 /* Find the last scheduled insn that modifies the condition register.
1317 We can stop looking once we find the insn we depend on through the
1318 REG_DEP_CONTROL; if the condition register isn't modified after it,
1319 we know that it still has the right value. */
1320 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1321 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1322 {
1323 HARD_REG_SET t;
1324
1325 find_all_hard_reg_sets (prev, &t, true);
1326 if (TEST_HARD_REG_BIT (t, regno))
1327 return HARD_DEP;
1328 if (prev == pro)
1329 break;
1330 }
1331 if (ORIG_PAT (next) == NULL_RTX)
1332 {
1333 ORIG_PAT (next) = PATTERN (next);
1334
1335 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1336 success = haifa_change_pattern (next, new_pat);
1337 if (!success)
1338 return HARD_DEP;
1339 PREDICATED_PAT (next) = new_pat;
1340 }
1341 else if (PATTERN (next) != PREDICATED_PAT (next))
1342 {
1343 bool success = haifa_change_pattern (next,
1344 PREDICATED_PAT (next));
1345 gcc_assert (success);
1346 }
1347 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1348 return DEP_CONTROL;
1349 }
1350
1351 if (PREDICATED_PAT (next) != NULL_RTX)
1352 {
1353 int tick = INSN_TICK (next);
1354 bool success = haifa_change_pattern (next,
1355 ORIG_PAT (next));
1356 INSN_TICK (next) = tick;
1357 gcc_assert (success);
1358 }
1359
1360 /* We can't handle the case where there are both speculative and control
1361 dependencies, so we return HARD_DEP in such a case. Also fail if
1362 we have speculative dependencies with not enough points, or more than
1363 one control dependency. */
1364 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1365 || (n_spec > 0
1366 /* Too few points? */
1367 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1368 || n_control > 0
1369 || n_replace > 0)
1370 return HARD_DEP;
1371
1372 return new_ds;
1373 }
1374 \f
1375 /* Pointer to the last instruction scheduled. */
1376 static rtx_insn *last_scheduled_insn;
1377
1378 /* Pointer to the last nondebug instruction scheduled within the
1379 block, or the prev_head of the scheduling block. Used by
1380 rank_for_schedule, so that insns independent of the last scheduled
1381 insn will be preferred over dependent instructions. */
1382 static rtx_insn *last_nondebug_scheduled_insn;
1383
1384 /* Pointer that iterates through the list of unscheduled insns if we
1385 have a dbg_cnt enabled. It always points at an insn prior to the
1386 first unscheduled one. */
1387 static rtx_insn *nonscheduled_insns_begin;
1388
1389 /* Compute cost of executing INSN.
1390 This is the number of cycles between instruction issue and
1391 instruction results. */
1392 int
1393 insn_cost (rtx_insn *insn)
1394 {
1395 int cost;
1396
1397 if (sched_fusion)
1398 return 0;
1399
1400 if (sel_sched_p ())
1401 {
1402 if (recog_memoized (insn) < 0)
1403 return 0;
1404
1405 cost = insn_default_latency (insn);
1406 if (cost < 0)
1407 cost = 0;
1408
1409 return cost;
1410 }
1411
1412 cost = INSN_COST (insn);
1413
1414 if (cost < 0)
1415 {
1416 /* A USE insn, or something else we don't need to
1417 understand. We can't pass these directly to
1418 result_ready_cost or insn_default_latency because it will
1419 trigger a fatal error for unrecognizable insns. */
1420 if (recog_memoized (insn) < 0)
1421 {
1422 INSN_COST (insn) = 0;
1423 return 0;
1424 }
1425 else
1426 {
1427 cost = insn_default_latency (insn);
1428 if (cost < 0)
1429 cost = 0;
1430
1431 INSN_COST (insn) = cost;
1432 }
1433 }
1434
1435 return cost;
1436 }
1437
1438 /* Compute cost of dependence LINK.
1439 This is the number of cycles between instruction issue and
1440 instruction results.
1441 ??? We also use this function to call recog_memoized on all insns. */
1442 int
1443 dep_cost_1 (dep_t link, dw_t dw)
1444 {
1445 rtx_insn *insn = DEP_PRO (link);
1446 rtx_insn *used = DEP_CON (link);
1447 int cost;
1448
1449 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1450 return DEP_COST (link);
1451
1452 if (delay_htab)
1453 {
1454 struct delay_pair *delay_entry;
1455 delay_entry
1456 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1457 if (delay_entry)
1458 {
1459 if (delay_entry->i1 == insn)
1460 {
1461 DEP_COST (link) = pair_delay (delay_entry);
1462 return DEP_COST (link);
1463 }
1464 }
1465 }
1466
1467 /* A USE insn should never require the value used to be computed.
1468 This allows the computation of a function's result and parameter
1469 values to overlap the return and call. We don't care about the
1470 dependence cost when only decreasing register pressure. */
1471 if (recog_memoized (used) < 0)
1472 {
1473 cost = 0;
1474 recog_memoized (insn);
1475 }
1476 else
1477 {
1478 enum reg_note dep_type = DEP_TYPE (link);
1479
1480 cost = insn_cost (insn);
1481
1482 if (INSN_CODE (insn) >= 0)
1483 {
1484 if (dep_type == REG_DEP_ANTI)
1485 cost = 0;
1486 else if (dep_type == REG_DEP_OUTPUT)
1487 {
1488 cost = (insn_default_latency (insn)
1489 - insn_default_latency (used));
1490 if (cost <= 0)
1491 cost = 1;
1492 }
1493 else if (bypass_p (insn))
1494 cost = insn_latency (insn, used);
1495 }
1496
1497
1498 if (targetm.sched.adjust_cost_2)
1499 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1500 dw);
1501 else if (targetm.sched.adjust_cost != NULL)
1502 {
1503 /* This variable is used for backward compatibility with the
1504 targets. */
1505 rtx_insn_list *dep_cost_rtx_link =
1506 alloc_INSN_LIST (NULL_RTX, NULL);
1507
1508 /* Make it self-cycled, so that if some tries to walk over this
1509 incomplete list he/she will be caught in an endless loop. */
1510 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1511
1512 /* Targets use only REG_NOTE_KIND of the link. */
1513 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1514
1515 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1516 insn, cost);
1517
1518 free_INSN_LIST_node (dep_cost_rtx_link);
1519 }
1520
1521 if (cost < 0)
1522 cost = 0;
1523 }
1524
1525 DEP_COST (link) = cost;
1526 return cost;
1527 }
1528
1529 /* Compute cost of dependence LINK.
1530 This is the number of cycles between instruction issue and
1531 instruction results. */
1532 int
1533 dep_cost (dep_t link)
1534 {
1535 return dep_cost_1 (link, 0);
1536 }
1537
1538 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1539 INSN_PRIORITY explicitly. */
1540 void
1541 increase_insn_priority (rtx_insn *insn, int amount)
1542 {
1543 if (!sel_sched_p ())
1544 {
1545 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1546 if (INSN_PRIORITY_KNOWN (insn))
1547 INSN_PRIORITY (insn) += amount;
1548 }
1549 else
1550 {
1551 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1552 Use EXPR_PRIORITY instead. */
1553 sel_add_to_insn_priority (insn, amount);
1554 }
1555 }
1556
1557 /* Return 'true' if DEP should be included in priority calculations. */
1558 static bool
1559 contributes_to_priority_p (dep_t dep)
1560 {
1561 if (DEBUG_INSN_P (DEP_CON (dep))
1562 || DEBUG_INSN_P (DEP_PRO (dep)))
1563 return false;
1564
1565 /* Critical path is meaningful in block boundaries only. */
1566 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1567 DEP_PRO (dep)))
1568 return false;
1569
1570 if (DEP_REPLACE (dep) != NULL)
1571 return false;
1572
1573 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1574 then speculative instructions will less likely be
1575 scheduled. That is because the priority of
1576 their producers will increase, and, thus, the
1577 producers will more likely be scheduled, thus,
1578 resolving the dependence. */
1579 if (sched_deps_info->generate_spec_deps
1580 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1581 && (DEP_STATUS (dep) & SPECULATIVE))
1582 return false;
1583
1584 return true;
1585 }
1586
1587 /* Compute the number of nondebug deps in list LIST for INSN. */
1588
1589 static int
1590 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1591 {
1592 sd_iterator_def sd_it;
1593 dep_t dep;
1594 int dbgcount = 0, nodbgcount = 0;
1595
1596 if (!MAY_HAVE_DEBUG_INSNS)
1597 return sd_lists_size (insn, list);
1598
1599 FOR_EACH_DEP (insn, list, sd_it, dep)
1600 {
1601 if (DEBUG_INSN_P (DEP_CON (dep)))
1602 dbgcount++;
1603 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1604 nodbgcount++;
1605 }
1606
1607 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1608
1609 return nodbgcount;
1610 }
1611
1612 bool sched_fusion;
1613
1614 /* Compute the priority number for INSN. */
1615 static int
1616 priority (rtx_insn *insn)
1617 {
1618 if (! INSN_P (insn))
1619 return 0;
1620
1621 /* We should not be interested in priority of an already scheduled insn. */
1622 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1623
1624 if (!INSN_PRIORITY_KNOWN (insn))
1625 {
1626 int this_priority = -1;
1627
1628 if (sched_fusion)
1629 {
1630 int this_fusion_priority;
1631
1632 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1633 &this_fusion_priority, &this_priority);
1634 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1635 }
1636 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1637 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1638 some forward deps but all of them are ignored by
1639 contributes_to_priority hook. At the moment we set priority of
1640 such insn to 0. */
1641 this_priority = insn_cost (insn);
1642 else
1643 {
1644 rtx_insn *prev_first, *twin;
1645 basic_block rec;
1646
1647 /* For recovery check instructions we calculate priority slightly
1648 different than that of normal instructions. Instead of walking
1649 through INSN_FORW_DEPS (check) list, we walk through
1650 INSN_FORW_DEPS list of each instruction in the corresponding
1651 recovery block. */
1652
1653 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1654 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1655 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1656 {
1657 prev_first = PREV_INSN (insn);
1658 twin = insn;
1659 }
1660 else
1661 {
1662 prev_first = NEXT_INSN (BB_HEAD (rec));
1663 twin = PREV_INSN (BB_END (rec));
1664 }
1665
1666 do
1667 {
1668 sd_iterator_def sd_it;
1669 dep_t dep;
1670
1671 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1672 {
1673 rtx_insn *next;
1674 int next_priority;
1675
1676 next = DEP_CON (dep);
1677
1678 if (BLOCK_FOR_INSN (next) != rec)
1679 {
1680 int cost;
1681
1682 if (!contributes_to_priority_p (dep))
1683 continue;
1684
1685 if (twin == insn)
1686 cost = dep_cost (dep);
1687 else
1688 {
1689 struct _dep _dep1, *dep1 = &_dep1;
1690
1691 init_dep (dep1, insn, next, REG_DEP_ANTI);
1692
1693 cost = dep_cost (dep1);
1694 }
1695
1696 next_priority = cost + priority (next);
1697
1698 if (next_priority > this_priority)
1699 this_priority = next_priority;
1700 }
1701 }
1702
1703 twin = PREV_INSN (twin);
1704 }
1705 while (twin != prev_first);
1706 }
1707
1708 if (this_priority < 0)
1709 {
1710 gcc_assert (this_priority == -1);
1711
1712 this_priority = insn_cost (insn);
1713 }
1714
1715 INSN_PRIORITY (insn) = this_priority;
1716 INSN_PRIORITY_STATUS (insn) = 1;
1717 }
1718
1719 return INSN_PRIORITY (insn);
1720 }
1721 \f
1722 /* Macros and functions for keeping the priority queue sorted, and
1723 dealing with queuing and dequeuing of instructions. */
1724
1725 /* For each pressure class CL, set DEATH[CL] to the number of registers
1726 in that class that die in INSN. */
1727
1728 static void
1729 calculate_reg_deaths (rtx_insn *insn, int *death)
1730 {
1731 int i;
1732 struct reg_use_data *use;
1733
1734 for (i = 0; i < ira_pressure_classes_num; i++)
1735 death[ira_pressure_classes[i]] = 0;
1736 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1737 if (dying_use_p (use))
1738 mark_regno_birth_or_death (0, death, use->regno, true);
1739 }
1740
1741 /* Setup info about the current register pressure impact of scheduling
1742 INSN at the current scheduling point. */
1743 static void
1744 setup_insn_reg_pressure_info (rtx_insn *insn)
1745 {
1746 int i, change, before, after, hard_regno;
1747 int excess_cost_change;
1748 machine_mode mode;
1749 enum reg_class cl;
1750 struct reg_pressure_data *pressure_info;
1751 int *max_reg_pressure;
1752 static int death[N_REG_CLASSES];
1753
1754 gcc_checking_assert (!DEBUG_INSN_P (insn));
1755
1756 excess_cost_change = 0;
1757 calculate_reg_deaths (insn, death);
1758 pressure_info = INSN_REG_PRESSURE (insn);
1759 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1760 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1761 for (i = 0; i < ira_pressure_classes_num; i++)
1762 {
1763 cl = ira_pressure_classes[i];
1764 gcc_assert (curr_reg_pressure[cl] >= 0);
1765 change = (int) pressure_info[i].set_increase - death[cl];
1766 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1767 after = MAX (0, max_reg_pressure[i] + change
1768 - sched_class_regs_num[cl]);
1769 hard_regno = ira_class_hard_regs[cl][0];
1770 gcc_assert (hard_regno >= 0);
1771 mode = reg_raw_mode[hard_regno];
1772 excess_cost_change += ((after - before)
1773 * (ira_memory_move_cost[mode][cl][0]
1774 + ira_memory_move_cost[mode][cl][1]));
1775 }
1776 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1777 }
1778 \f
1779 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1780 It tries to make the scheduler take register pressure into account
1781 without introducing too many unnecessary stalls. It hooks into the
1782 main scheduling algorithm at several points:
1783
1784 - Before scheduling starts, model_start_schedule constructs a
1785 "model schedule" for the current block. This model schedule is
1786 chosen solely to keep register pressure down. It does not take the
1787 target's pipeline or the original instruction order into account,
1788 except as a tie-breaker. It also doesn't work to a particular
1789 pressure limit.
1790
1791 This model schedule gives us an idea of what pressure can be
1792 achieved for the block and gives us an example of a schedule that
1793 keeps to that pressure. It also makes the final schedule less
1794 dependent on the original instruction order. This is important
1795 because the original order can either be "wide" (many values live
1796 at once, such as in user-scheduled code) or "narrow" (few values
1797 live at once, such as after loop unrolling, where several
1798 iterations are executed sequentially).
1799
1800 We do not apply this model schedule to the rtx stream. We simply
1801 record it in model_schedule. We also compute the maximum pressure,
1802 MP, that was seen during this schedule.
1803
1804 - Instructions are added to the ready queue even if they require
1805 a stall. The length of the stall is instead computed as:
1806
1807 MAX (INSN_TICK (INSN) - clock_var, 0)
1808
1809 (= insn_delay). This allows rank_for_schedule to choose between
1810 introducing a deliberate stall or increasing pressure.
1811
1812 - Before sorting the ready queue, model_set_excess_costs assigns
1813 a pressure-based cost to each ready instruction in the queue.
1814 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1815 (ECC for short) and is effectively measured in cycles.
1816
1817 - rank_for_schedule ranks instructions based on:
1818
1819 ECC (insn) + insn_delay (insn)
1820
1821 then as:
1822
1823 insn_delay (insn)
1824
1825 So, for example, an instruction X1 with an ECC of 1 that can issue
1826 now will win over an instruction X0 with an ECC of zero that would
1827 introduce a stall of one cycle. However, an instruction X2 with an
1828 ECC of 2 that can issue now will lose to both X0 and X1.
1829
1830 - When an instruction is scheduled, model_recompute updates the model
1831 schedule with the new pressures (some of which might now exceed the
1832 original maximum pressure MP). model_update_limit_points then searches
1833 for the new point of maximum pressure, if not already known. */
1834
1835 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1836 from surrounding debug information. */
1837 #define MODEL_BAR \
1838 ";;\t\t+------------------------------------------------------\n"
1839
1840 /* Information about the pressure on a particular register class at a
1841 particular point of the model schedule. */
1842 struct model_pressure_data {
1843 /* The pressure at this point of the model schedule, or -1 if the
1844 point is associated with an instruction that has already been
1845 scheduled. */
1846 int ref_pressure;
1847
1848 /* The maximum pressure during or after this point of the model schedule. */
1849 int max_pressure;
1850 };
1851
1852 /* Per-instruction information that is used while building the model
1853 schedule. Here, "schedule" refers to the model schedule rather
1854 than the main schedule. */
1855 struct model_insn_info {
1856 /* The instruction itself. */
1857 rtx_insn *insn;
1858
1859 /* If this instruction is in model_worklist, these fields link to the
1860 previous (higher-priority) and next (lower-priority) instructions
1861 in the list. */
1862 struct model_insn_info *prev;
1863 struct model_insn_info *next;
1864
1865 /* While constructing the schedule, QUEUE_INDEX describes whether an
1866 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1867 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1868 old_queue records the value that QUEUE_INDEX had before scheduling
1869 started, so that we can restore it once the schedule is complete. */
1870 int old_queue;
1871
1872 /* The relative importance of an unscheduled instruction. Higher
1873 values indicate greater importance. */
1874 unsigned int model_priority;
1875
1876 /* The length of the longest path of satisfied true dependencies
1877 that leads to this instruction. */
1878 unsigned int depth;
1879
1880 /* The length of the longest path of dependencies of any kind
1881 that leads from this instruction. */
1882 unsigned int alap;
1883
1884 /* The number of predecessor nodes that must still be scheduled. */
1885 int unscheduled_preds;
1886 };
1887
1888 /* Information about the pressure limit for a particular register class.
1889 This structure is used when applying a model schedule to the main
1890 schedule. */
1891 struct model_pressure_limit {
1892 /* The maximum register pressure seen in the original model schedule. */
1893 int orig_pressure;
1894
1895 /* The maximum register pressure seen in the current model schedule
1896 (which excludes instructions that have already been scheduled). */
1897 int pressure;
1898
1899 /* The point of the current model schedule at which PRESSURE is first
1900 reached. It is set to -1 if the value needs to be recomputed. */
1901 int point;
1902 };
1903
1904 /* Describes a particular way of measuring register pressure. */
1905 struct model_pressure_group {
1906 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1907 struct model_pressure_limit limits[N_REG_CLASSES];
1908
1909 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1910 on register class ira_pressure_classes[PCI] at point POINT of the
1911 current model schedule. A POINT of model_num_insns describes the
1912 pressure at the end of the schedule. */
1913 struct model_pressure_data *model;
1914 };
1915
1916 /* Index POINT gives the instruction at point POINT of the model schedule.
1917 This array doesn't change during main scheduling. */
1918 static vec<rtx_insn *> model_schedule;
1919
1920 /* The list of instructions in the model worklist, sorted in order of
1921 decreasing priority. */
1922 static struct model_insn_info *model_worklist;
1923
1924 /* Index I describes the instruction with INSN_LUID I. */
1925 static struct model_insn_info *model_insns;
1926
1927 /* The number of instructions in the model schedule. */
1928 static int model_num_insns;
1929
1930 /* The index of the first instruction in model_schedule that hasn't yet been
1931 added to the main schedule, or model_num_insns if all of them have. */
1932 static int model_curr_point;
1933
1934 /* Describes the pressure before each instruction in the model schedule. */
1935 static struct model_pressure_group model_before_pressure;
1936
1937 /* The first unused model_priority value (as used in model_insn_info). */
1938 static unsigned int model_next_priority;
1939
1940
1941 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1942 at point POINT of the model schedule. */
1943 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1944 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1945
1946 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1947 after point POINT of the model schedule. */
1948 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1949 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1950
1951 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1952 of the model schedule. */
1953 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1954 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1955
1956 /* Information about INSN that is used when creating the model schedule. */
1957 #define MODEL_INSN_INFO(INSN) \
1958 (&model_insns[INSN_LUID (INSN)])
1959
1960 /* The instruction at point POINT of the model schedule. */
1961 #define MODEL_INSN(POINT) \
1962 (model_schedule[POINT])
1963
1964
1965 /* Return INSN's index in the model schedule, or model_num_insns if it
1966 doesn't belong to that schedule. */
1967
1968 static int
1969 model_index (rtx_insn *insn)
1970 {
1971 if (INSN_MODEL_INDEX (insn) == 0)
1972 return model_num_insns;
1973 return INSN_MODEL_INDEX (insn) - 1;
1974 }
1975
1976 /* Make sure that GROUP->limits is up-to-date for the current point
1977 of the model schedule. */
1978
1979 static void
1980 model_update_limit_points_in_group (struct model_pressure_group *group)
1981 {
1982 int pci, max_pressure, point;
1983
1984 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1985 {
1986 /* We may have passed the final point at which the pressure in
1987 group->limits[pci].pressure was reached. Update the limit if so. */
1988 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1989 group->limits[pci].pressure = max_pressure;
1990
1991 /* Find the point at which MAX_PRESSURE is first reached. We need
1992 to search in three cases:
1993
1994 - We've already moved past the previous pressure point.
1995 In this case we search forward from model_curr_point.
1996
1997 - We scheduled the previous point of maximum pressure ahead of
1998 its position in the model schedule, but doing so didn't bring
1999 the pressure point earlier. In this case we search forward
2000 from that previous pressure point.
2001
2002 - Scheduling an instruction early caused the maximum pressure
2003 to decrease. In this case we will have set the pressure
2004 point to -1, and we search forward from model_curr_point. */
2005 point = MAX (group->limits[pci].point, model_curr_point);
2006 while (point < model_num_insns
2007 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
2008 point++;
2009 group->limits[pci].point = point;
2010
2011 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
2012 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
2013 }
2014 }
2015
2016 /* Make sure that all register-pressure limits are up-to-date for the
2017 current position in the model schedule. */
2018
2019 static void
2020 model_update_limit_points (void)
2021 {
2022 model_update_limit_points_in_group (&model_before_pressure);
2023 }
2024
2025 /* Return the model_index of the last unscheduled use in chain USE
2026 outside of USE's instruction. Return -1 if there are no other uses,
2027 or model_num_insns if the register is live at the end of the block. */
2028
2029 static int
2030 model_last_use_except (struct reg_use_data *use)
2031 {
2032 struct reg_use_data *next;
2033 int last, index;
2034
2035 last = -1;
2036 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2037 if (NONDEBUG_INSN_P (next->insn)
2038 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2039 {
2040 index = model_index (next->insn);
2041 if (index == model_num_insns)
2042 return model_num_insns;
2043 if (last < index)
2044 last = index;
2045 }
2046 return last;
2047 }
2048
2049 /* An instruction with model_index POINT has just been scheduled, and it
2050 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2051 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2052 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2053
2054 static void
2055 model_start_update_pressure (struct model_pressure_group *group,
2056 int point, int pci, int delta)
2057 {
2058 int next_max_pressure;
2059
2060 if (point == model_num_insns)
2061 {
2062 /* The instruction wasn't part of the model schedule; it was moved
2063 from a different block. Update the pressure for the end of
2064 the model schedule. */
2065 MODEL_REF_PRESSURE (group, point, pci) += delta;
2066 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2067 }
2068 else
2069 {
2070 /* Record that this instruction has been scheduled. Nothing now
2071 changes between POINT and POINT + 1, so get the maximum pressure
2072 from the latter. If the maximum pressure decreases, the new
2073 pressure point may be before POINT. */
2074 MODEL_REF_PRESSURE (group, point, pci) = -1;
2075 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2076 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2077 {
2078 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2079 if (group->limits[pci].point == point)
2080 group->limits[pci].point = -1;
2081 }
2082 }
2083 }
2084
2085 /* Record that scheduling a later instruction has changed the pressure
2086 at point POINT of the model schedule by DELTA (which might be 0).
2087 Update GROUP accordingly. Return nonzero if these changes might
2088 trigger changes to previous points as well. */
2089
2090 static int
2091 model_update_pressure (struct model_pressure_group *group,
2092 int point, int pci, int delta)
2093 {
2094 int ref_pressure, max_pressure, next_max_pressure;
2095
2096 /* If POINT hasn't yet been scheduled, update its pressure. */
2097 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2098 if (ref_pressure >= 0 && delta != 0)
2099 {
2100 ref_pressure += delta;
2101 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2102
2103 /* Check whether the maximum pressure in the overall schedule
2104 has increased. (This means that the MODEL_MAX_PRESSURE of
2105 every point <= POINT will need to increase too; see below.) */
2106 if (group->limits[pci].pressure < ref_pressure)
2107 group->limits[pci].pressure = ref_pressure;
2108
2109 /* If we are at maximum pressure, and the maximum pressure
2110 point was previously unknown or later than POINT,
2111 bring it forward. */
2112 if (group->limits[pci].pressure == ref_pressure
2113 && !IN_RANGE (group->limits[pci].point, 0, point))
2114 group->limits[pci].point = point;
2115
2116 /* If POINT used to be the point of maximum pressure, but isn't
2117 any longer, we need to recalculate it using a forward walk. */
2118 if (group->limits[pci].pressure > ref_pressure
2119 && group->limits[pci].point == point)
2120 group->limits[pci].point = -1;
2121 }
2122
2123 /* Update the maximum pressure at POINT. Changes here might also
2124 affect the maximum pressure at POINT - 1. */
2125 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2126 max_pressure = MAX (ref_pressure, next_max_pressure);
2127 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2128 {
2129 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2130 return 1;
2131 }
2132 return 0;
2133 }
2134
2135 /* INSN has just been scheduled. Update the model schedule accordingly. */
2136
2137 static void
2138 model_recompute (rtx_insn *insn)
2139 {
2140 struct {
2141 int last_use;
2142 int regno;
2143 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2144 struct reg_use_data *use;
2145 struct reg_pressure_data *reg_pressure;
2146 int delta[N_REG_CLASSES];
2147 int pci, point, mix, new_last, cl, ref_pressure, queue;
2148 unsigned int i, num_uses, num_pending_births;
2149 bool print_p;
2150
2151 /* The destinations of INSN were previously live from POINT onwards, but are
2152 now live from model_curr_point onwards. Set up DELTA accordingly. */
2153 point = model_index (insn);
2154 reg_pressure = INSN_REG_PRESSURE (insn);
2155 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2156 {
2157 cl = ira_pressure_classes[pci];
2158 delta[cl] = reg_pressure[pci].set_increase;
2159 }
2160
2161 /* Record which registers previously died at POINT, but which now die
2162 before POINT. Adjust DELTA so that it represents the effect of
2163 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2164 registers that will be born in the range [model_curr_point, POINT). */
2165 num_uses = 0;
2166 num_pending_births = 0;
2167 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2168 {
2169 new_last = model_last_use_except (use);
2170 if (new_last < point)
2171 {
2172 gcc_assert (num_uses < ARRAY_SIZE (uses));
2173 uses[num_uses].last_use = new_last;
2174 uses[num_uses].regno = use->regno;
2175 /* This register is no longer live after POINT - 1. */
2176 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2177 num_uses++;
2178 if (new_last >= 0)
2179 num_pending_births++;
2180 }
2181 }
2182
2183 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2184 Also set each group pressure limit for POINT. */
2185 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2186 {
2187 cl = ira_pressure_classes[pci];
2188 model_start_update_pressure (&model_before_pressure,
2189 point, pci, delta[cl]);
2190 }
2191
2192 /* Walk the model schedule backwards, starting immediately before POINT. */
2193 print_p = false;
2194 if (point != model_curr_point)
2195 do
2196 {
2197 point--;
2198 insn = MODEL_INSN (point);
2199 queue = QUEUE_INDEX (insn);
2200
2201 if (queue != QUEUE_SCHEDULED)
2202 {
2203 /* DELTA describes the effect of the move on the register pressure
2204 after POINT. Make it describe the effect on the pressure
2205 before POINT. */
2206 i = 0;
2207 while (i < num_uses)
2208 {
2209 if (uses[i].last_use == point)
2210 {
2211 /* This register is now live again. */
2212 mark_regno_birth_or_death (NULL, delta,
2213 uses[i].regno, true);
2214
2215 /* Remove this use from the array. */
2216 uses[i] = uses[num_uses - 1];
2217 num_uses--;
2218 num_pending_births--;
2219 }
2220 else
2221 i++;
2222 }
2223
2224 if (sched_verbose >= 5)
2225 {
2226 if (!print_p)
2227 {
2228 fprintf (sched_dump, MODEL_BAR);
2229 fprintf (sched_dump, ";;\t\t| New pressure for model"
2230 " schedule\n");
2231 fprintf (sched_dump, MODEL_BAR);
2232 print_p = true;
2233 }
2234
2235 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2236 point, INSN_UID (insn),
2237 str_pattern_slim (PATTERN (insn)));
2238 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2239 {
2240 cl = ira_pressure_classes[pci];
2241 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2242 point, pci);
2243 fprintf (sched_dump, " %s:[%d->%d]",
2244 reg_class_names[ira_pressure_classes[pci]],
2245 ref_pressure, ref_pressure + delta[cl]);
2246 }
2247 fprintf (sched_dump, "\n");
2248 }
2249 }
2250
2251 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2252 might have changed as well. */
2253 mix = num_pending_births;
2254 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2255 {
2256 cl = ira_pressure_classes[pci];
2257 mix |= delta[cl];
2258 mix |= model_update_pressure (&model_before_pressure,
2259 point, pci, delta[cl]);
2260 }
2261 }
2262 while (mix && point > model_curr_point);
2263
2264 if (print_p)
2265 fprintf (sched_dump, MODEL_BAR);
2266 }
2267
2268 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2269 check whether the insn's pattern needs restoring. */
2270 static bool
2271 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2272 {
2273 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2274 return false;
2275
2276 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2277 {
2278 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2279 gcc_assert (next == DEP_CON (dep));
2280 }
2281 else
2282 {
2283 struct dep_replacement *desc = DEP_REPLACE (dep);
2284 if (desc->insn != next)
2285 {
2286 gcc_assert (*desc->loc == desc->orig);
2287 return false;
2288 }
2289 }
2290 return true;
2291 }
2292 \f
2293 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2294 pressure on CL from P to P'. We use this to calculate a "base ECC",
2295 baseECC (CL, X), for each pressure class CL and each instruction X.
2296 Supposing X changes the pressure on CL from P to P', and that the
2297 maximum pressure on CL in the current model schedule is MP', then:
2298
2299 * if X occurs before or at the next point of maximum pressure in
2300 the model schedule and P' > MP', then:
2301
2302 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2303
2304 The idea is that the pressure after scheduling a fixed set of
2305 instructions -- in this case, the set up to and including the
2306 next maximum pressure point -- is going to be the same regardless
2307 of the order; we simply want to keep the intermediate pressure
2308 under control. Thus X has a cost of zero unless scheduling it
2309 now would exceed MP'.
2310
2311 If all increases in the set are by the same amount, no zero-cost
2312 instruction will ever cause the pressure to exceed MP'. However,
2313 if X is instead moved past an instruction X' with pressure in the
2314 range (MP' - (P' - P), MP'), the pressure at X' will increase
2315 beyond MP'. Since baseECC is very much a heuristic anyway,
2316 it doesn't seem worth the overhead of tracking cases like these.
2317
2318 The cost of exceeding MP' is always based on the original maximum
2319 pressure MP. This is so that going 2 registers over the original
2320 limit has the same cost regardless of whether it comes from two
2321 separate +1 deltas or from a single +2 delta.
2322
2323 * if X occurs after the next point of maximum pressure in the model
2324 schedule and P' > P, then:
2325
2326 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2327
2328 That is, if we move X forward across a point of maximum pressure,
2329 and if X increases the pressure by P' - P, then we conservatively
2330 assume that scheduling X next would increase the maximum pressure
2331 by P' - P. Again, the cost of doing this is based on the original
2332 maximum pressure MP, for the same reason as above.
2333
2334 * if P' < P, P > MP, and X occurs at or after the next point of
2335 maximum pressure, then:
2336
2337 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2338
2339 That is, if we have already exceeded the original maximum pressure MP,
2340 and if X might reduce the maximum pressure again -- or at least push
2341 it further back, and thus allow more scheduling freedom -- it is given
2342 a negative cost to reflect the improvement.
2343
2344 * otherwise,
2345
2346 baseECC (CL, X) = 0
2347
2348 In this case, X is not expected to affect the maximum pressure MP',
2349 so it has zero cost.
2350
2351 We then create a combined value baseECC (X) that is the sum of
2352 baseECC (CL, X) for each pressure class CL.
2353
2354 baseECC (X) could itself be used as the ECC value described above.
2355 However, this is often too conservative, in the sense that it
2356 tends to make high-priority instructions that increase pressure
2357 wait too long in cases where introducing a spill would be better.
2358 For this reason the final ECC is a priority-adjusted form of
2359 baseECC (X). Specifically, we calculate:
2360
2361 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2362 baseP = MAX { P (X) | baseECC (X) <= 0 }
2363
2364 Then:
2365
2366 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2367
2368 Thus an instruction's effect on pressure is ignored if it has a high
2369 enough priority relative to the ones that don't increase pressure.
2370 Negative values of baseECC (X) do not increase the priority of X
2371 itself, but they do make it harder for other instructions to
2372 increase the pressure further.
2373
2374 This pressure cost is deliberately timid. The intention has been
2375 to choose a heuristic that rarely interferes with the normal list
2376 scheduler in cases where that scheduler would produce good code.
2377 We simply want to curb some of its worst excesses. */
2378
2379 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2380
2381 Here we use the very simplistic cost model that every register above
2382 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2383 measures instead, such as one based on MEMORY_MOVE_COST. However:
2384
2385 (1) In order for an instruction to be scheduled, the higher cost
2386 would need to be justified in a single saving of that many stalls.
2387 This is overly pessimistic, because the benefit of spilling is
2388 often to avoid a sequence of several short stalls rather than
2389 a single long one.
2390
2391 (2) The cost is still arbitrary. Because we are not allocating
2392 registers during scheduling, we have no way of knowing for
2393 sure how many memory accesses will be required by each spill,
2394 where the spills will be placed within the block, or even
2395 which block(s) will contain the spills.
2396
2397 So a higher cost than 1 is often too conservative in practice,
2398 forcing blocks to contain unnecessary stalls instead of spill code.
2399 The simple cost below seems to be the best compromise. It reduces
2400 the interference with the normal list scheduler, which helps make
2401 it more suitable for a default-on option. */
2402
2403 static int
2404 model_spill_cost (int cl, int from, int to)
2405 {
2406 from = MAX (from, sched_class_regs_num[cl]);
2407 return MAX (to, from) - from;
2408 }
2409
2410 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2411 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2412 P' = P + DELTA. */
2413
2414 static int
2415 model_excess_group_cost (struct model_pressure_group *group,
2416 int point, int pci, int delta)
2417 {
2418 int pressure, cl;
2419
2420 cl = ira_pressure_classes[pci];
2421 if (delta < 0 && point >= group->limits[pci].point)
2422 {
2423 pressure = MAX (group->limits[pci].orig_pressure,
2424 curr_reg_pressure[cl] + delta);
2425 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2426 }
2427
2428 if (delta > 0)
2429 {
2430 if (point > group->limits[pci].point)
2431 pressure = group->limits[pci].pressure + delta;
2432 else
2433 pressure = curr_reg_pressure[cl] + delta;
2434
2435 if (pressure > group->limits[pci].pressure)
2436 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2437 pressure);
2438 }
2439
2440 return 0;
2441 }
2442
2443 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2444 if PRINT_P. */
2445
2446 static int
2447 model_excess_cost (rtx_insn *insn, bool print_p)
2448 {
2449 int point, pci, cl, cost, this_cost, delta;
2450 struct reg_pressure_data *insn_reg_pressure;
2451 int insn_death[N_REG_CLASSES];
2452
2453 calculate_reg_deaths (insn, insn_death);
2454 point = model_index (insn);
2455 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2456 cost = 0;
2457
2458 if (print_p)
2459 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2460 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2461
2462 /* Sum up the individual costs for each register class. */
2463 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2464 {
2465 cl = ira_pressure_classes[pci];
2466 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2467 this_cost = model_excess_group_cost (&model_before_pressure,
2468 point, pci, delta);
2469 cost += this_cost;
2470 if (print_p)
2471 fprintf (sched_dump, " %s:[%d base cost %d]",
2472 reg_class_names[cl], delta, this_cost);
2473 }
2474
2475 if (print_p)
2476 fprintf (sched_dump, "\n");
2477
2478 return cost;
2479 }
2480
2481 /* Dump the next points of maximum pressure for GROUP. */
2482
2483 static void
2484 model_dump_pressure_points (struct model_pressure_group *group)
2485 {
2486 int pci, cl;
2487
2488 fprintf (sched_dump, ";;\t\t| pressure points");
2489 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2490 {
2491 cl = ira_pressure_classes[pci];
2492 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2493 curr_reg_pressure[cl], group->limits[pci].pressure);
2494 if (group->limits[pci].point < model_num_insns)
2495 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2496 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2497 else
2498 fprintf (sched_dump, "end]");
2499 }
2500 fprintf (sched_dump, "\n");
2501 }
2502
2503 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2504
2505 static void
2506 model_set_excess_costs (rtx_insn **insns, int count)
2507 {
2508 int i, cost, priority_base, priority;
2509 bool print_p;
2510
2511 /* Record the baseECC value for each instruction in the model schedule,
2512 except that negative costs are converted to zero ones now rather than
2513 later. Do not assign a cost to debug instructions, since they must
2514 not change code-generation decisions. Experiments suggest we also
2515 get better results by not assigning a cost to instructions from
2516 a different block.
2517
2518 Set PRIORITY_BASE to baseP in the block comment above. This is the
2519 maximum priority of the "cheap" instructions, which should always
2520 include the next model instruction. */
2521 priority_base = 0;
2522 print_p = false;
2523 for (i = 0; i < count; i++)
2524 if (INSN_MODEL_INDEX (insns[i]))
2525 {
2526 if (sched_verbose >= 6 && !print_p)
2527 {
2528 fprintf (sched_dump, MODEL_BAR);
2529 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2530 model_dump_pressure_points (&model_before_pressure);
2531 fprintf (sched_dump, MODEL_BAR);
2532 print_p = true;
2533 }
2534 cost = model_excess_cost (insns[i], print_p);
2535 if (cost <= 0)
2536 {
2537 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2538 priority_base = MAX (priority_base, priority);
2539 cost = 0;
2540 }
2541 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2542 }
2543 if (print_p)
2544 fprintf (sched_dump, MODEL_BAR);
2545
2546 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2547 instruction. */
2548 for (i = 0; i < count; i++)
2549 {
2550 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2551 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2552 if (cost > 0 && priority > priority_base)
2553 {
2554 cost += priority_base - priority;
2555 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2556 }
2557 }
2558 }
2559 \f
2560
2561 /* Enum of rank_for_schedule heuristic decisions. */
2562 enum rfs_decision {
2563 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2564 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2565 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2566 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2567 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2568
2569 /* Corresponding strings for print outs. */
2570 static const char *rfs_str[RFS_N] = {
2571 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2572 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2573 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2574 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2575 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2576
2577 /* Statistical breakdown of rank_for_schedule decisions. */
2578 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2579 static rank_for_schedule_stats_t rank_for_schedule_stats;
2580
2581 /* Return the result of comparing insns TMP and TMP2 and update
2582 Rank_For_Schedule statistics. */
2583 static int
2584 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2585 {
2586 ++rank_for_schedule_stats.stats[decision];
2587 if (result < 0)
2588 INSN_LAST_RFS_WIN (tmp) = decision;
2589 else if (result > 0)
2590 INSN_LAST_RFS_WIN (tmp2) = decision;
2591 else
2592 gcc_unreachable ();
2593 return result;
2594 }
2595
2596 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2597 keeping normal insns in original order. */
2598
2599 static int
2600 rank_for_schedule_debug (const void *x, const void *y)
2601 {
2602 rtx_insn *tmp = *(rtx_insn * const *) y;
2603 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2604
2605 /* Schedule debug insns as early as possible. */
2606 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2607 return -1;
2608 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2609 return 1;
2610 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2611 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2612 else
2613 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2614 }
2615
2616 /* Returns a positive value if x is preferred; returns a negative value if
2617 y is preferred. Should never return 0, since that will make the sort
2618 unstable. */
2619
2620 static int
2621 rank_for_schedule (const void *x, const void *y)
2622 {
2623 rtx_insn *tmp = *(rtx_insn * const *) y;
2624 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2625 int tmp_class, tmp2_class;
2626 int val, priority_val, info_val, diff;
2627
2628 if (live_range_shrinkage_p)
2629 {
2630 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2631 code. */
2632 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2633 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2634 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2635 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2636 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2637 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2638 /* Sort by INSN_LUID (original insn order), so that we make the
2639 sort stable. This minimizes instruction movement, thus
2640 minimizing sched's effect on debugging and cross-jumping. */
2641 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2642 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2643 }
2644
2645 /* The insn in a schedule group should be issued the first. */
2646 if (flag_sched_group_heuristic &&
2647 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2648 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2649 tmp, tmp2);
2650
2651 /* Make sure that priority of TMP and TMP2 are initialized. */
2652 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2653
2654 if (sched_fusion)
2655 {
2656 /* The instruction that has the same fusion priority as the last
2657 instruction is the instruction we picked next. If that is not
2658 the case, we sort ready list firstly by fusion priority, then
2659 by priority, and at last by INSN_LUID. */
2660 int a = INSN_FUSION_PRIORITY (tmp);
2661 int b = INSN_FUSION_PRIORITY (tmp2);
2662 int last = -1;
2663
2664 if (last_nondebug_scheduled_insn
2665 && !NOTE_P (last_nondebug_scheduled_insn)
2666 && BLOCK_FOR_INSN (tmp)
2667 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2668 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2669
2670 if (a != last && b != last)
2671 {
2672 if (a == b)
2673 {
2674 a = INSN_PRIORITY (tmp);
2675 b = INSN_PRIORITY (tmp2);
2676 }
2677 if (a != b)
2678 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2679 else
2680 return rfs_result (RFS_FUSION,
2681 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2682 }
2683 else if (a == b)
2684 {
2685 gcc_assert (last_nondebug_scheduled_insn
2686 && !NOTE_P (last_nondebug_scheduled_insn));
2687 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2688
2689 a = abs (INSN_PRIORITY (tmp) - last);
2690 b = abs (INSN_PRIORITY (tmp2) - last);
2691 if (a != b)
2692 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2693 else
2694 return rfs_result (RFS_FUSION,
2695 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2696 }
2697 else if (a == last)
2698 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2699 else
2700 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2701 }
2702
2703 if (sched_pressure != SCHED_PRESSURE_NONE)
2704 {
2705 /* Prefer insn whose scheduling results in the smallest register
2706 pressure excess. */
2707 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2708 + insn_delay (tmp)
2709 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2710 - insn_delay (tmp2))))
2711 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2712 }
2713
2714 if (sched_pressure != SCHED_PRESSURE_NONE
2715 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2716 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2717 {
2718 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2719 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2720 }
2721
2722 /* If we are doing backtracking in this schedule, prefer insns that
2723 have forward dependencies with negative cost against an insn that
2724 was already scheduled. */
2725 if (current_sched_info->flags & DO_BACKTRACKING)
2726 {
2727 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2728 if (priority_val)
2729 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2730 }
2731
2732 /* Prefer insn with higher priority. */
2733 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2734
2735 if (flag_sched_critical_path_heuristic && priority_val)
2736 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2737
2738 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2739 {
2740 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2741 if (autopref != 0)
2742 return autopref;
2743 }
2744
2745 /* Prefer speculative insn with greater dependencies weakness. */
2746 if (flag_sched_spec_insn_heuristic && spec_info)
2747 {
2748 ds_t ds1, ds2;
2749 dw_t dw1, dw2;
2750 int dw;
2751
2752 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2753 if (ds1)
2754 dw1 = ds_weak (ds1);
2755 else
2756 dw1 = NO_DEP_WEAK;
2757
2758 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2759 if (ds2)
2760 dw2 = ds_weak (ds2);
2761 else
2762 dw2 = NO_DEP_WEAK;
2763
2764 dw = dw2 - dw1;
2765 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2766 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2767 }
2768
2769 info_val = (*current_sched_info->rank) (tmp, tmp2);
2770 if (flag_sched_rank_heuristic && info_val)
2771 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2772
2773 /* Compare insns based on their relation to the last scheduled
2774 non-debug insn. */
2775 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2776 {
2777 dep_t dep1;
2778 dep_t dep2;
2779 rtx_insn *last = last_nondebug_scheduled_insn;
2780
2781 /* Classify the instructions into three classes:
2782 1) Data dependent on last schedule insn.
2783 2) Anti/Output dependent on last scheduled insn.
2784 3) Independent of last scheduled insn, or has latency of one.
2785 Choose the insn from the highest numbered class if different. */
2786 dep1 = sd_find_dep_between (last, tmp, true);
2787
2788 if (dep1 == NULL || dep_cost (dep1) == 1)
2789 tmp_class = 3;
2790 else if (/* Data dependence. */
2791 DEP_TYPE (dep1) == REG_DEP_TRUE)
2792 tmp_class = 1;
2793 else
2794 tmp_class = 2;
2795
2796 dep2 = sd_find_dep_between (last, tmp2, true);
2797
2798 if (dep2 == NULL || dep_cost (dep2) == 1)
2799 tmp2_class = 3;
2800 else if (/* Data dependence. */
2801 DEP_TYPE (dep2) == REG_DEP_TRUE)
2802 tmp2_class = 1;
2803 else
2804 tmp2_class = 2;
2805
2806 if ((val = tmp2_class - tmp_class))
2807 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2808 }
2809
2810 /* Prefer instructions that occur earlier in the model schedule. */
2811 if (sched_pressure == SCHED_PRESSURE_MODEL
2812 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2813 {
2814 diff = model_index (tmp) - model_index (tmp2);
2815 gcc_assert (diff != 0);
2816 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2817 }
2818
2819 /* Prefer the insn which has more later insns that depend on it.
2820 This gives the scheduler more freedom when scheduling later
2821 instructions at the expense of added register pressure. */
2822
2823 val = (dep_list_size (tmp2, SD_LIST_FORW)
2824 - dep_list_size (tmp, SD_LIST_FORW));
2825
2826 if (flag_sched_dep_count_heuristic && val != 0)
2827 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2828
2829 /* If insns are equally good, sort by INSN_LUID (original insn order),
2830 so that we make the sort stable. This minimizes instruction movement,
2831 thus minimizing sched's effect on debugging and cross-jumping. */
2832 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2833 }
2834
2835 /* Resort the array A in which only element at index N may be out of order. */
2836
2837 HAIFA_INLINE static void
2838 swap_sort (rtx_insn **a, int n)
2839 {
2840 rtx_insn *insn = a[n - 1];
2841 int i = n - 2;
2842
2843 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2844 {
2845 a[i + 1] = a[i];
2846 i -= 1;
2847 }
2848 a[i + 1] = insn;
2849 }
2850
2851 /* Add INSN to the insn queue so that it can be executed at least
2852 N_CYCLES after the currently executing insn. Preserve insns
2853 chain for debugging purposes. REASON will be printed in debugging
2854 output. */
2855
2856 HAIFA_INLINE static void
2857 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2858 {
2859 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2860 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2861 int new_tick;
2862
2863 gcc_assert (n_cycles <= max_insn_queue_index);
2864 gcc_assert (!DEBUG_INSN_P (insn));
2865
2866 insn_queue[next_q] = link;
2867 q_size += 1;
2868
2869 if (sched_verbose >= 2)
2870 {
2871 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2872 (*current_sched_info->print_insn) (insn, 0));
2873
2874 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2875 }
2876
2877 QUEUE_INDEX (insn) = next_q;
2878
2879 if (current_sched_info->flags & DO_BACKTRACKING)
2880 {
2881 new_tick = clock_var + n_cycles;
2882 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2883 INSN_TICK (insn) = new_tick;
2884
2885 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2886 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2887 {
2888 must_backtrack = true;
2889 if (sched_verbose >= 2)
2890 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2891 }
2892 }
2893 }
2894
2895 /* Remove INSN from queue. */
2896 static void
2897 queue_remove (rtx_insn *insn)
2898 {
2899 gcc_assert (QUEUE_INDEX (insn) >= 0);
2900 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2901 q_size--;
2902 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2903 }
2904
2905 /* Return a pointer to the bottom of the ready list, i.e. the insn
2906 with the lowest priority. */
2907
2908 rtx_insn **
2909 ready_lastpos (struct ready_list *ready)
2910 {
2911 gcc_assert (ready->n_ready >= 1);
2912 return ready->vec + ready->first - ready->n_ready + 1;
2913 }
2914
2915 /* Add an element INSN to the ready list so that it ends up with the
2916 lowest/highest priority depending on FIRST_P. */
2917
2918 HAIFA_INLINE static void
2919 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2920 {
2921 if (!first_p)
2922 {
2923 if (ready->first == ready->n_ready)
2924 {
2925 memmove (ready->vec + ready->veclen - ready->n_ready,
2926 ready_lastpos (ready),
2927 ready->n_ready * sizeof (rtx));
2928 ready->first = ready->veclen - 1;
2929 }
2930 ready->vec[ready->first - ready->n_ready] = insn;
2931 }
2932 else
2933 {
2934 if (ready->first == ready->veclen - 1)
2935 {
2936 if (ready->n_ready)
2937 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2938 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2939 ready_lastpos (ready),
2940 ready->n_ready * sizeof (rtx));
2941 ready->first = ready->veclen - 2;
2942 }
2943 ready->vec[++(ready->first)] = insn;
2944 }
2945
2946 ready->n_ready++;
2947 if (DEBUG_INSN_P (insn))
2948 ready->n_debug++;
2949
2950 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2951 QUEUE_INDEX (insn) = QUEUE_READY;
2952
2953 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2954 && INSN_EXACT_TICK (insn) < clock_var)
2955 {
2956 must_backtrack = true;
2957 }
2958 }
2959
2960 /* Remove the element with the highest priority from the ready list and
2961 return it. */
2962
2963 HAIFA_INLINE static rtx_insn *
2964 ready_remove_first (struct ready_list *ready)
2965 {
2966 rtx_insn *t;
2967
2968 gcc_assert (ready->n_ready);
2969 t = ready->vec[ready->first--];
2970 ready->n_ready--;
2971 if (DEBUG_INSN_P (t))
2972 ready->n_debug--;
2973 /* If the queue becomes empty, reset it. */
2974 if (ready->n_ready == 0)
2975 ready->first = ready->veclen - 1;
2976
2977 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2978 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2979
2980 return t;
2981 }
2982
2983 /* The following code implements multi-pass scheduling for the first
2984 cycle. In other words, we will try to choose ready insn which
2985 permits to start maximum number of insns on the same cycle. */
2986
2987 /* Return a pointer to the element INDEX from the ready. INDEX for
2988 insn with the highest priority is 0, and the lowest priority has
2989 N_READY - 1. */
2990
2991 rtx_insn *
2992 ready_element (struct ready_list *ready, int index)
2993 {
2994 gcc_assert (ready->n_ready && index < ready->n_ready);
2995
2996 return ready->vec[ready->first - index];
2997 }
2998
2999 /* Remove the element INDEX from the ready list and return it. INDEX
3000 for insn with the highest priority is 0, and the lowest priority
3001 has N_READY - 1. */
3002
3003 HAIFA_INLINE static rtx_insn *
3004 ready_remove (struct ready_list *ready, int index)
3005 {
3006 rtx_insn *t;
3007 int i;
3008
3009 if (index == 0)
3010 return ready_remove_first (ready);
3011 gcc_assert (ready->n_ready && index < ready->n_ready);
3012 t = ready->vec[ready->first - index];
3013 ready->n_ready--;
3014 if (DEBUG_INSN_P (t))
3015 ready->n_debug--;
3016 for (i = index; i < ready->n_ready; i++)
3017 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3018 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3019 return t;
3020 }
3021
3022 /* Remove INSN from the ready list. */
3023 static void
3024 ready_remove_insn (rtx_insn *insn)
3025 {
3026 int i;
3027
3028 for (i = 0; i < readyp->n_ready; i++)
3029 if (ready_element (readyp, i) == insn)
3030 {
3031 ready_remove (readyp, i);
3032 return;
3033 }
3034 gcc_unreachable ();
3035 }
3036
3037 /* Calculate difference of two statistics set WAS and NOW.
3038 Result returned in WAS. */
3039 static void
3040 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3041 const rank_for_schedule_stats_t *now)
3042 {
3043 for (int i = 0; i < RFS_N; ++i)
3044 was->stats[i] = now->stats[i] - was->stats[i];
3045 }
3046
3047 /* Print rank_for_schedule statistics. */
3048 static void
3049 print_rank_for_schedule_stats (const char *prefix,
3050 const rank_for_schedule_stats_t *stats,
3051 struct ready_list *ready)
3052 {
3053 for (int i = 0; i < RFS_N; ++i)
3054 if (stats->stats[i])
3055 {
3056 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3057
3058 if (ready != NULL)
3059 /* Print out insns that won due to RFS_<I>. */
3060 {
3061 rtx_insn **p = ready_lastpos (ready);
3062
3063 fprintf (sched_dump, ":");
3064 /* Start with 1 since least-priority insn didn't have any wins. */
3065 for (int j = 1; j < ready->n_ready; ++j)
3066 if (INSN_LAST_RFS_WIN (p[j]) == i)
3067 fprintf (sched_dump, " %s",
3068 (*current_sched_info->print_insn) (p[j], 0));
3069 }
3070 fprintf (sched_dump, "\n");
3071 }
3072 }
3073
3074 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3075 of array. */
3076 static void
3077 ready_sort_debug (struct ready_list *ready)
3078 {
3079 int i;
3080 rtx_insn **first = ready_lastpos (ready);
3081
3082 for (i = 0; i < ready->n_ready; ++i)
3083 if (!DEBUG_INSN_P (first[i]))
3084 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3085
3086 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3087 }
3088
3089 /* Sort non-debug insns in the ready list READY by ascending priority.
3090 Assumes that all debug insns are separated from the real insns. */
3091 static void
3092 ready_sort_real (struct ready_list *ready)
3093 {
3094 int i;
3095 rtx_insn **first = ready_lastpos (ready);
3096 int n_ready_real = ready->n_ready - ready->n_debug;
3097
3098 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3099 for (i = 0; i < n_ready_real; ++i)
3100 setup_insn_reg_pressure_info (first[i]);
3101 else if (sched_pressure == SCHED_PRESSURE_MODEL
3102 && model_curr_point < model_num_insns)
3103 model_set_excess_costs (first, n_ready_real);
3104
3105 rank_for_schedule_stats_t stats1;
3106 if (sched_verbose >= 4)
3107 stats1 = rank_for_schedule_stats;
3108
3109 if (n_ready_real == 2)
3110 swap_sort (first, n_ready_real);
3111 else if (n_ready_real > 2)
3112 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3113
3114 if (sched_verbose >= 4)
3115 {
3116 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3117 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3118 }
3119 }
3120
3121 /* Sort the ready list READY by ascending priority. */
3122 static void
3123 ready_sort (struct ready_list *ready)
3124 {
3125 if (ready->n_debug > 0)
3126 ready_sort_debug (ready);
3127 else
3128 ready_sort_real (ready);
3129 }
3130
3131 /* PREV is an insn that is ready to execute. Adjust its priority if that
3132 will help shorten or lengthen register lifetimes as appropriate. Also
3133 provide a hook for the target to tweak itself. */
3134
3135 HAIFA_INLINE static void
3136 adjust_priority (rtx_insn *prev)
3137 {
3138 /* ??? There used to be code here to try and estimate how an insn
3139 affected register lifetimes, but it did it by looking at REG_DEAD
3140 notes, which we removed in schedule_region. Nor did it try to
3141 take into account register pressure or anything useful like that.
3142
3143 Revisit when we have a machine model to work with and not before. */
3144
3145 if (targetm.sched.adjust_priority)
3146 INSN_PRIORITY (prev) =
3147 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3148 }
3149
3150 /* Advance DFA state STATE on one cycle. */
3151 void
3152 advance_state (state_t state)
3153 {
3154 if (targetm.sched.dfa_pre_advance_cycle)
3155 targetm.sched.dfa_pre_advance_cycle ();
3156
3157 if (targetm.sched.dfa_pre_cycle_insn)
3158 state_transition (state,
3159 targetm.sched.dfa_pre_cycle_insn ());
3160
3161 state_transition (state, NULL);
3162
3163 if (targetm.sched.dfa_post_cycle_insn)
3164 state_transition (state,
3165 targetm.sched.dfa_post_cycle_insn ());
3166
3167 if (targetm.sched.dfa_post_advance_cycle)
3168 targetm.sched.dfa_post_advance_cycle ();
3169 }
3170
3171 /* Advance time on one cycle. */
3172 HAIFA_INLINE static void
3173 advance_one_cycle (void)
3174 {
3175 advance_state (curr_state);
3176 if (sched_verbose >= 4)
3177 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3178 }
3179
3180 /* Update register pressure after scheduling INSN. */
3181 static void
3182 update_register_pressure (rtx_insn *insn)
3183 {
3184 struct reg_use_data *use;
3185 struct reg_set_data *set;
3186
3187 gcc_checking_assert (!DEBUG_INSN_P (insn));
3188
3189 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3190 if (dying_use_p (use))
3191 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3192 use->regno, false);
3193 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3194 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3195 set->regno, true);
3196 }
3197
3198 /* Set up or update (if UPDATE_P) max register pressure (see its
3199 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3200 after insn AFTER. */
3201 static void
3202 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3203 {
3204 int i, p;
3205 bool eq_p;
3206 rtx_insn *insn;
3207 static int max_reg_pressure[N_REG_CLASSES];
3208
3209 save_reg_pressure ();
3210 for (i = 0; i < ira_pressure_classes_num; i++)
3211 max_reg_pressure[ira_pressure_classes[i]]
3212 = curr_reg_pressure[ira_pressure_classes[i]];
3213 for (insn = NEXT_INSN (after);
3214 insn != NULL_RTX && ! BARRIER_P (insn)
3215 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3216 insn = NEXT_INSN (insn))
3217 if (NONDEBUG_INSN_P (insn))
3218 {
3219 eq_p = true;
3220 for (i = 0; i < ira_pressure_classes_num; i++)
3221 {
3222 p = max_reg_pressure[ira_pressure_classes[i]];
3223 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3224 {
3225 eq_p = false;
3226 INSN_MAX_REG_PRESSURE (insn)[i]
3227 = max_reg_pressure[ira_pressure_classes[i]];
3228 }
3229 }
3230 if (update_p && eq_p)
3231 break;
3232 update_register_pressure (insn);
3233 for (i = 0; i < ira_pressure_classes_num; i++)
3234 if (max_reg_pressure[ira_pressure_classes[i]]
3235 < curr_reg_pressure[ira_pressure_classes[i]])
3236 max_reg_pressure[ira_pressure_classes[i]]
3237 = curr_reg_pressure[ira_pressure_classes[i]];
3238 }
3239 restore_reg_pressure ();
3240 }
3241
3242 /* Update the current register pressure after scheduling INSN. Update
3243 also max register pressure for unscheduled insns of the current
3244 BB. */
3245 static void
3246 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3247 {
3248 int i;
3249 int before[N_REG_CLASSES];
3250
3251 for (i = 0; i < ira_pressure_classes_num; i++)
3252 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3253 update_register_pressure (insn);
3254 for (i = 0; i < ira_pressure_classes_num; i++)
3255 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3256 break;
3257 if (i < ira_pressure_classes_num)
3258 setup_insn_max_reg_pressure (insn, true);
3259 }
3260
3261 /* Set up register pressure at the beginning of basic block BB whose
3262 insns starting after insn AFTER. Set up also max register pressure
3263 for all insns of the basic block. */
3264 void
3265 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3266 {
3267 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3268 initiate_bb_reg_pressure_info (bb);
3269 setup_insn_max_reg_pressure (after, false);
3270 }
3271 \f
3272 /* If doing predication while scheduling, verify whether INSN, which
3273 has just been scheduled, clobbers the conditions of any
3274 instructions that must be predicated in order to break their
3275 dependencies. If so, remove them from the queues so that they will
3276 only be scheduled once their control dependency is resolved. */
3277
3278 static void
3279 check_clobbered_conditions (rtx_insn *insn)
3280 {
3281 HARD_REG_SET t;
3282 int i;
3283
3284 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3285 return;
3286
3287 find_all_hard_reg_sets (insn, &t, true);
3288
3289 restart:
3290 for (i = 0; i < ready.n_ready; i++)
3291 {
3292 rtx_insn *x = ready_element (&ready, i);
3293 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3294 {
3295 ready_remove_insn (x);
3296 goto restart;
3297 }
3298 }
3299 for (i = 0; i <= max_insn_queue_index; i++)
3300 {
3301 rtx_insn_list *link;
3302 int q = NEXT_Q_AFTER (q_ptr, i);
3303
3304 restart_queue:
3305 for (link = insn_queue[q]; link; link = link->next ())
3306 {
3307 rtx_insn *x = link->insn ();
3308 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3309 {
3310 queue_remove (x);
3311 goto restart_queue;
3312 }
3313 }
3314 }
3315 }
3316 \f
3317 /* Return (in order):
3318
3319 - positive if INSN adversely affects the pressure on one
3320 register class
3321
3322 - negative if INSN reduces the pressure on one register class
3323
3324 - 0 if INSN doesn't affect the pressure on any register class. */
3325
3326 static int
3327 model_classify_pressure (struct model_insn_info *insn)
3328 {
3329 struct reg_pressure_data *reg_pressure;
3330 int death[N_REG_CLASSES];
3331 int pci, cl, sum;
3332
3333 calculate_reg_deaths (insn->insn, death);
3334 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3335 sum = 0;
3336 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3337 {
3338 cl = ira_pressure_classes[pci];
3339 if (death[cl] < reg_pressure[pci].set_increase)
3340 return 1;
3341 sum += reg_pressure[pci].set_increase - death[cl];
3342 }
3343 return sum;
3344 }
3345
3346 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3347
3348 static int
3349 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3350 {
3351 unsigned int height1, height2;
3352 unsigned int priority1, priority2;
3353
3354 /* Prefer instructions with a higher model priority. */
3355 if (insn1->model_priority != insn2->model_priority)
3356 return insn1->model_priority > insn2->model_priority;
3357
3358 /* Combine the length of the longest path of satisfied true dependencies
3359 that leads to each instruction (depth) with the length of the longest
3360 path of any dependencies that leads from the instruction (alap).
3361 Prefer instructions with the greatest combined length. If the combined
3362 lengths are equal, prefer instructions with the greatest depth.
3363
3364 The idea is that, if we have a set S of "equal" instructions that each
3365 have ALAP value X, and we pick one such instruction I, any true-dependent
3366 successors of I that have ALAP value X - 1 should be preferred over S.
3367 This encourages the schedule to be "narrow" rather than "wide".
3368 However, if I is a low-priority instruction that we decided to
3369 schedule because of its model_classify_pressure, and if there
3370 is a set of higher-priority instructions T, the aforementioned
3371 successors of I should not have the edge over T. */
3372 height1 = insn1->depth + insn1->alap;
3373 height2 = insn2->depth + insn2->alap;
3374 if (height1 != height2)
3375 return height1 > height2;
3376 if (insn1->depth != insn2->depth)
3377 return insn1->depth > insn2->depth;
3378
3379 /* We have no real preference between INSN1 an INSN2 as far as attempts
3380 to reduce pressure go. Prefer instructions with higher priorities. */
3381 priority1 = INSN_PRIORITY (insn1->insn);
3382 priority2 = INSN_PRIORITY (insn2->insn);
3383 if (priority1 != priority2)
3384 return priority1 > priority2;
3385
3386 /* Use the original rtl sequence as a tie-breaker. */
3387 return insn1 < insn2;
3388 }
3389
3390 /* Add INSN to the model worklist immediately after PREV. Add it to the
3391 beginning of the list if PREV is null. */
3392
3393 static void
3394 model_add_to_worklist_at (struct model_insn_info *insn,
3395 struct model_insn_info *prev)
3396 {
3397 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3398 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3399
3400 insn->prev = prev;
3401 if (prev)
3402 {
3403 insn->next = prev->next;
3404 prev->next = insn;
3405 }
3406 else
3407 {
3408 insn->next = model_worklist;
3409 model_worklist = insn;
3410 }
3411 if (insn->next)
3412 insn->next->prev = insn;
3413 }
3414
3415 /* Remove INSN from the model worklist. */
3416
3417 static void
3418 model_remove_from_worklist (struct model_insn_info *insn)
3419 {
3420 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3421 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3422
3423 if (insn->prev)
3424 insn->prev->next = insn->next;
3425 else
3426 model_worklist = insn->next;
3427 if (insn->next)
3428 insn->next->prev = insn->prev;
3429 }
3430
3431 /* Add INSN to the model worklist. Start looking for a suitable position
3432 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3433 insns either side. A null PREV indicates the beginning of the list and
3434 a null NEXT indicates the end. */
3435
3436 static void
3437 model_add_to_worklist (struct model_insn_info *insn,
3438 struct model_insn_info *prev,
3439 struct model_insn_info *next)
3440 {
3441 int count;
3442
3443 count = MAX_SCHED_READY_INSNS;
3444 if (count > 0 && prev && model_order_p (insn, prev))
3445 do
3446 {
3447 count--;
3448 prev = prev->prev;
3449 }
3450 while (count > 0 && prev && model_order_p (insn, prev));
3451 else
3452 while (count > 0 && next && model_order_p (next, insn))
3453 {
3454 count--;
3455 prev = next;
3456 next = next->next;
3457 }
3458 model_add_to_worklist_at (insn, prev);
3459 }
3460
3461 /* INSN may now have a higher priority (in the model_order_p sense)
3462 than before. Move it up the worklist if necessary. */
3463
3464 static void
3465 model_promote_insn (struct model_insn_info *insn)
3466 {
3467 struct model_insn_info *prev;
3468 int count;
3469
3470 prev = insn->prev;
3471 count = MAX_SCHED_READY_INSNS;
3472 while (count > 0 && prev && model_order_p (insn, prev))
3473 {
3474 count--;
3475 prev = prev->prev;
3476 }
3477 if (prev != insn->prev)
3478 {
3479 model_remove_from_worklist (insn);
3480 model_add_to_worklist_at (insn, prev);
3481 }
3482 }
3483
3484 /* Add INSN to the end of the model schedule. */
3485
3486 static void
3487 model_add_to_schedule (rtx_insn *insn)
3488 {
3489 unsigned int point;
3490
3491 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3492 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3493
3494 point = model_schedule.length ();
3495 model_schedule.quick_push (insn);
3496 INSN_MODEL_INDEX (insn) = point + 1;
3497 }
3498
3499 /* Analyze the instructions that are to be scheduled, setting up
3500 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3501 instructions to model_worklist. */
3502
3503 static void
3504 model_analyze_insns (void)
3505 {
3506 rtx_insn *start, *end, *iter;
3507 sd_iterator_def sd_it;
3508 dep_t dep;
3509 struct model_insn_info *insn, *con;
3510
3511 model_num_insns = 0;
3512 start = PREV_INSN (current_sched_info->next_tail);
3513 end = current_sched_info->prev_head;
3514 for (iter = start; iter != end; iter = PREV_INSN (iter))
3515 if (NONDEBUG_INSN_P (iter))
3516 {
3517 insn = MODEL_INSN_INFO (iter);
3518 insn->insn = iter;
3519 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3520 {
3521 con = MODEL_INSN_INFO (DEP_CON (dep));
3522 if (con->insn && insn->alap < con->alap + 1)
3523 insn->alap = con->alap + 1;
3524 }
3525
3526 insn->old_queue = QUEUE_INDEX (iter);
3527 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3528
3529 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3530 if (insn->unscheduled_preds == 0)
3531 model_add_to_worklist (insn, NULL, model_worklist);
3532
3533 model_num_insns++;
3534 }
3535 }
3536
3537 /* The global state describes the register pressure at the start of the
3538 model schedule. Initialize GROUP accordingly. */
3539
3540 static void
3541 model_init_pressure_group (struct model_pressure_group *group)
3542 {
3543 int pci, cl;
3544
3545 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3546 {
3547 cl = ira_pressure_classes[pci];
3548 group->limits[pci].pressure = curr_reg_pressure[cl];
3549 group->limits[pci].point = 0;
3550 }
3551 /* Use index model_num_insns to record the state after the last
3552 instruction in the model schedule. */
3553 group->model = XNEWVEC (struct model_pressure_data,
3554 (model_num_insns + 1) * ira_pressure_classes_num);
3555 }
3556
3557 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3558 Update the maximum pressure for the whole schedule. */
3559
3560 static void
3561 model_record_pressure (struct model_pressure_group *group,
3562 int point, int pci, int pressure)
3563 {
3564 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3565 if (group->limits[pci].pressure < pressure)
3566 {
3567 group->limits[pci].pressure = pressure;
3568 group->limits[pci].point = point;
3569 }
3570 }
3571
3572 /* INSN has just been added to the end of the model schedule. Record its
3573 register-pressure information. */
3574
3575 static void
3576 model_record_pressures (struct model_insn_info *insn)
3577 {
3578 struct reg_pressure_data *reg_pressure;
3579 int point, pci, cl, delta;
3580 int death[N_REG_CLASSES];
3581
3582 point = model_index (insn->insn);
3583 if (sched_verbose >= 2)
3584 {
3585 if (point == 0)
3586 {
3587 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3588 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3589 }
3590 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3591 point, INSN_UID (insn->insn), insn->model_priority,
3592 insn->depth + insn->alap, insn->depth,
3593 INSN_PRIORITY (insn->insn),
3594 str_pattern_slim (PATTERN (insn->insn)));
3595 }
3596 calculate_reg_deaths (insn->insn, death);
3597 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3598 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3599 {
3600 cl = ira_pressure_classes[pci];
3601 delta = reg_pressure[pci].set_increase - death[cl];
3602 if (sched_verbose >= 2)
3603 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3604 curr_reg_pressure[cl], delta);
3605 model_record_pressure (&model_before_pressure, point, pci,
3606 curr_reg_pressure[cl]);
3607 }
3608 if (sched_verbose >= 2)
3609 fprintf (sched_dump, "\n");
3610 }
3611
3612 /* All instructions have been added to the model schedule. Record the
3613 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3614
3615 static void
3616 model_record_final_pressures (struct model_pressure_group *group)
3617 {
3618 int point, pci, max_pressure, ref_pressure, cl;
3619
3620 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3621 {
3622 /* Record the final pressure for this class. */
3623 cl = ira_pressure_classes[pci];
3624 point = model_num_insns;
3625 ref_pressure = curr_reg_pressure[cl];
3626 model_record_pressure (group, point, pci, ref_pressure);
3627
3628 /* Record the original maximum pressure. */
3629 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3630
3631 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3632 max_pressure = ref_pressure;
3633 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3634 while (point > 0)
3635 {
3636 point--;
3637 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3638 max_pressure = MAX (max_pressure, ref_pressure);
3639 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3640 }
3641 }
3642 }
3643
3644 /* Update all successors of INSN, given that INSN has just been scheduled. */
3645
3646 static void
3647 model_add_successors_to_worklist (struct model_insn_info *insn)
3648 {
3649 sd_iterator_def sd_it;
3650 struct model_insn_info *con;
3651 dep_t dep;
3652
3653 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3654 {
3655 con = MODEL_INSN_INFO (DEP_CON (dep));
3656 /* Ignore debug instructions, and instructions from other blocks. */
3657 if (con->insn)
3658 {
3659 con->unscheduled_preds--;
3660
3661 /* Update the depth field of each true-dependent successor.
3662 Increasing the depth gives them a higher priority than
3663 before. */
3664 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3665 {
3666 con->depth = insn->depth + 1;
3667 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3668 model_promote_insn (con);
3669 }
3670
3671 /* If this is a true dependency, or if there are no remaining
3672 dependencies for CON (meaning that CON only had non-true
3673 dependencies), make sure that CON is on the worklist.
3674 We don't bother otherwise because it would tend to fill the
3675 worklist with a lot of low-priority instructions that are not
3676 yet ready to issue. */
3677 if ((con->depth > 0 || con->unscheduled_preds == 0)
3678 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3679 model_add_to_worklist (con, insn, insn->next);
3680 }
3681 }
3682 }
3683
3684 /* Give INSN a higher priority than any current instruction, then give
3685 unscheduled predecessors of INSN a higher priority still. If any of
3686 those predecessors are not on the model worklist, do the same for its
3687 predecessors, and so on. */
3688
3689 static void
3690 model_promote_predecessors (struct model_insn_info *insn)
3691 {
3692 struct model_insn_info *pro, *first;
3693 sd_iterator_def sd_it;
3694 dep_t dep;
3695
3696 if (sched_verbose >= 7)
3697 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3698 INSN_UID (insn->insn), model_next_priority);
3699 insn->model_priority = model_next_priority++;
3700 model_remove_from_worklist (insn);
3701 model_add_to_worklist_at (insn, NULL);
3702
3703 first = NULL;
3704 for (;;)
3705 {
3706 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3707 {
3708 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3709 /* The first test is to ignore debug instructions, and instructions
3710 from other blocks. */
3711 if (pro->insn
3712 && pro->model_priority != model_next_priority
3713 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3714 {
3715 pro->model_priority = model_next_priority;
3716 if (sched_verbose >= 7)
3717 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3718 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3719 {
3720 /* PRO is already in the worklist, but it now has
3721 a higher priority than before. Move it at the
3722 appropriate place. */
3723 model_remove_from_worklist (pro);
3724 model_add_to_worklist (pro, NULL, model_worklist);
3725 }
3726 else
3727 {
3728 /* PRO isn't in the worklist. Recursively process
3729 its predecessors until we find one that is. */
3730 pro->next = first;
3731 first = pro;
3732 }
3733 }
3734 }
3735 if (!first)
3736 break;
3737 insn = first;
3738 first = insn->next;
3739 }
3740 if (sched_verbose >= 7)
3741 fprintf (sched_dump, " = %d\n", model_next_priority);
3742 model_next_priority++;
3743 }
3744
3745 /* Pick one instruction from model_worklist and process it. */
3746
3747 static void
3748 model_choose_insn (void)
3749 {
3750 struct model_insn_info *insn, *fallback;
3751 int count;
3752
3753 if (sched_verbose >= 7)
3754 {
3755 fprintf (sched_dump, ";;\t+--- worklist:\n");
3756 insn = model_worklist;
3757 count = MAX_SCHED_READY_INSNS;
3758 while (count > 0 && insn)
3759 {
3760 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3761 INSN_UID (insn->insn), insn->model_priority,
3762 insn->depth + insn->alap, insn->depth,
3763 INSN_PRIORITY (insn->insn));
3764 count--;
3765 insn = insn->next;
3766 }
3767 }
3768
3769 /* Look for a ready instruction whose model_classify_priority is zero
3770 or negative, picking the highest-priority one. Adding such an
3771 instruction to the schedule now should do no harm, and may actually
3772 do some good.
3773
3774 Failing that, see whether there is an instruction with the highest
3775 extant model_priority that is not yet ready, but which would reduce
3776 pressure if it became ready. This is designed to catch cases like:
3777
3778 (set (mem (reg R1)) (reg R2))
3779
3780 where the instruction is the last remaining use of R1 and where the
3781 value of R2 is not yet available (or vice versa). The death of R1
3782 means that this instruction already reduces pressure. It is of
3783 course possible that the computation of R2 involves other registers
3784 that are hard to kill, but such cases are rare enough for this
3785 heuristic to be a win in general.
3786
3787 Failing that, just pick the highest-priority instruction in the
3788 worklist. */
3789 count = MAX_SCHED_READY_INSNS;
3790 insn = model_worklist;
3791 fallback = 0;
3792 for (;;)
3793 {
3794 if (count == 0 || !insn)
3795 {
3796 insn = fallback ? fallback : model_worklist;
3797 break;
3798 }
3799 if (insn->unscheduled_preds)
3800 {
3801 if (model_worklist->model_priority == insn->model_priority
3802 && !fallback
3803 && model_classify_pressure (insn) < 0)
3804 fallback = insn;
3805 }
3806 else
3807 {
3808 if (model_classify_pressure (insn) <= 0)
3809 break;
3810 }
3811 count--;
3812 insn = insn->next;
3813 }
3814
3815 if (sched_verbose >= 7 && insn != model_worklist)
3816 {
3817 if (insn->unscheduled_preds)
3818 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3819 INSN_UID (insn->insn));
3820 else
3821 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3822 INSN_UID (insn->insn));
3823 }
3824 if (insn->unscheduled_preds)
3825 /* INSN isn't yet ready to issue. Give all its predecessors the
3826 highest priority. */
3827 model_promote_predecessors (insn);
3828 else
3829 {
3830 /* INSN is ready. Add it to the end of model_schedule and
3831 process its successors. */
3832 model_add_successors_to_worklist (insn);
3833 model_remove_from_worklist (insn);
3834 model_add_to_schedule (insn->insn);
3835 model_record_pressures (insn);
3836 update_register_pressure (insn->insn);
3837 }
3838 }
3839
3840 /* Restore all QUEUE_INDEXs to the values that they had before
3841 model_start_schedule was called. */
3842
3843 static void
3844 model_reset_queue_indices (void)
3845 {
3846 unsigned int i;
3847 rtx_insn *insn;
3848
3849 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3850 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3851 }
3852
3853 /* We have calculated the model schedule and spill costs. Print a summary
3854 to sched_dump. */
3855
3856 static void
3857 model_dump_pressure_summary (void)
3858 {
3859 int pci, cl;
3860
3861 fprintf (sched_dump, ";; Pressure summary:");
3862 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3863 {
3864 cl = ira_pressure_classes[pci];
3865 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3866 model_before_pressure.limits[pci].pressure);
3867 }
3868 fprintf (sched_dump, "\n\n");
3869 }
3870
3871 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3872 scheduling region. */
3873
3874 static void
3875 model_start_schedule (basic_block bb)
3876 {
3877 model_next_priority = 1;
3878 model_schedule.create (sched_max_luid);
3879 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3880
3881 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3882 initiate_reg_pressure_info (df_get_live_in (bb));
3883
3884 model_analyze_insns ();
3885 model_init_pressure_group (&model_before_pressure);
3886 while (model_worklist)
3887 model_choose_insn ();
3888 gcc_assert (model_num_insns == (int) model_schedule.length ());
3889 if (sched_verbose >= 2)
3890 fprintf (sched_dump, "\n");
3891
3892 model_record_final_pressures (&model_before_pressure);
3893 model_reset_queue_indices ();
3894
3895 XDELETEVEC (model_insns);
3896
3897 model_curr_point = 0;
3898 initiate_reg_pressure_info (df_get_live_in (bb));
3899 if (sched_verbose >= 1)
3900 model_dump_pressure_summary ();
3901 }
3902
3903 /* Free the information associated with GROUP. */
3904
3905 static void
3906 model_finalize_pressure_group (struct model_pressure_group *group)
3907 {
3908 XDELETEVEC (group->model);
3909 }
3910
3911 /* Free the information created by model_start_schedule. */
3912
3913 static void
3914 model_end_schedule (void)
3915 {
3916 model_finalize_pressure_group (&model_before_pressure);
3917 model_schedule.release ();
3918 }
3919
3920 /* Prepare reg pressure scheduling for basic block BB. */
3921 static void
3922 sched_pressure_start_bb (basic_block bb)
3923 {
3924 /* Set the number of available registers for each class taking into account
3925 relative probability of current basic block versus function prologue and
3926 epilogue.
3927 * If the basic block executes much more often than the prologue/epilogue
3928 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3929 nil, so the effective number of available registers is
3930 (ira_class_hard_regs_num[cl] - 0).
3931 * If the basic block executes as often as the prologue/epilogue,
3932 then spill in the block is as costly as in the prologue, so the effective
3933 number of available registers is
3934 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3935 Note that all-else-equal, we prefer to spill in the prologue, since that
3936 allows "extra" registers for other basic blocks of the function.
3937 * If the basic block is on the cold path of the function and executes
3938 rarely, then we should always prefer to spill in the block, rather than
3939 in the prologue/epilogue. The effective number of available register is
3940 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3941 {
3942 int i;
3943 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3944 int bb_freq = bb->frequency;
3945
3946 if (bb_freq == 0)
3947 {
3948 if (entry_freq == 0)
3949 entry_freq = bb_freq = 1;
3950 }
3951 if (bb_freq < entry_freq)
3952 bb_freq = entry_freq;
3953
3954 for (i = 0; i < ira_pressure_classes_num; ++i)
3955 {
3956 enum reg_class cl = ira_pressure_classes[i];
3957 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3958 sched_class_regs_num[cl]
3959 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3960 }
3961 }
3962
3963 if (sched_pressure == SCHED_PRESSURE_MODEL)
3964 model_start_schedule (bb);
3965 }
3966 \f
3967 /* A structure that holds local state for the loop in schedule_block. */
3968 struct sched_block_state
3969 {
3970 /* True if no real insns have been scheduled in the current cycle. */
3971 bool first_cycle_insn_p;
3972 /* True if a shadow insn has been scheduled in the current cycle, which
3973 means that no more normal insns can be issued. */
3974 bool shadows_only_p;
3975 /* True if we're winding down a modulo schedule, which means that we only
3976 issue insns with INSN_EXACT_TICK set. */
3977 bool modulo_epilogue;
3978 /* Initialized with the machine's issue rate every cycle, and updated
3979 by calls to the variable_issue hook. */
3980 int can_issue_more;
3981 };
3982
3983 /* INSN is the "currently executing insn". Launch each insn which was
3984 waiting on INSN. READY is the ready list which contains the insns
3985 that are ready to fire. CLOCK is the current cycle. The function
3986 returns necessary cycle advance after issuing the insn (it is not
3987 zero for insns in a schedule group). */
3988
3989 static int
3990 schedule_insn (rtx_insn *insn)
3991 {
3992 sd_iterator_def sd_it;
3993 dep_t dep;
3994 int i;
3995 int advance = 0;
3996
3997 if (sched_verbose >= 1)
3998 {
3999 struct reg_pressure_data *pressure_info;
4000 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
4001 clock_var, (*current_sched_info->print_insn) (insn, 1),
4002 str_pattern_slim (PATTERN (insn)));
4003
4004 if (recog_memoized (insn) < 0)
4005 fprintf (sched_dump, "nothing");
4006 else
4007 print_reservation (sched_dump, insn);
4008 pressure_info = INSN_REG_PRESSURE (insn);
4009 if (pressure_info != NULL)
4010 {
4011 fputc (':', sched_dump);
4012 for (i = 0; i < ira_pressure_classes_num; i++)
4013 fprintf (sched_dump, "%s%s%+d(%d)",
4014 scheduled_insns.length () > 1
4015 && INSN_LUID (insn)
4016 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4017 reg_class_names[ira_pressure_classes[i]],
4018 pressure_info[i].set_increase, pressure_info[i].change);
4019 }
4020 if (sched_pressure == SCHED_PRESSURE_MODEL
4021 && model_curr_point < model_num_insns
4022 && model_index (insn) == model_curr_point)
4023 fprintf (sched_dump, ":model %d", model_curr_point);
4024 fputc ('\n', sched_dump);
4025 }
4026
4027 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4028 update_reg_and_insn_max_reg_pressure (insn);
4029
4030 /* Scheduling instruction should have all its dependencies resolved and
4031 should have been removed from the ready list. */
4032 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4033
4034 /* Reset debug insns invalidated by moving this insn. */
4035 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4036 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4037 sd_iterator_cond (&sd_it, &dep);)
4038 {
4039 rtx_insn *dbg = DEP_PRO (dep);
4040 struct reg_use_data *use, *next;
4041
4042 if (DEP_STATUS (dep) & DEP_CANCELLED)
4043 {
4044 sd_iterator_next (&sd_it);
4045 continue;
4046 }
4047
4048 gcc_assert (DEBUG_INSN_P (dbg));
4049
4050 if (sched_verbose >= 6)
4051 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4052 INSN_UID (dbg));
4053
4054 /* ??? Rather than resetting the debug insn, we might be able
4055 to emit a debug temp before the just-scheduled insn, but
4056 this would involve checking that the expression at the
4057 point of the debug insn is equivalent to the expression
4058 before the just-scheduled insn. They might not be: the
4059 expression in the debug insn may depend on other insns not
4060 yet scheduled that set MEMs, REGs or even other debug
4061 insns. It's not clear that attempting to preserve debug
4062 information in these cases is worth the effort, given how
4063 uncommon these resets are and the likelihood that the debug
4064 temps introduced won't survive the schedule change. */
4065 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4066 df_insn_rescan (dbg);
4067
4068 /* Unknown location doesn't use any registers. */
4069 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4070 {
4071 struct reg_use_data *prev = use;
4072
4073 /* Remove use from the cyclic next_regno_use chain first. */
4074 while (prev->next_regno_use != use)
4075 prev = prev->next_regno_use;
4076 prev->next_regno_use = use->next_regno_use;
4077 next = use->next_insn_use;
4078 free (use);
4079 }
4080 INSN_REG_USE_LIST (dbg) = NULL;
4081
4082 /* We delete rather than resolve these deps, otherwise we
4083 crash in sched_free_deps(), because forward deps are
4084 expected to be released before backward deps. */
4085 sd_delete_dep (sd_it);
4086 }
4087
4088 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4089 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4090
4091 if (sched_pressure == SCHED_PRESSURE_MODEL
4092 && model_curr_point < model_num_insns
4093 && NONDEBUG_INSN_P (insn))
4094 {
4095 if (model_index (insn) == model_curr_point)
4096 do
4097 model_curr_point++;
4098 while (model_curr_point < model_num_insns
4099 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4100 == QUEUE_SCHEDULED));
4101 else
4102 model_recompute (insn);
4103 model_update_limit_points ();
4104 update_register_pressure (insn);
4105 if (sched_verbose >= 2)
4106 print_curr_reg_pressure ();
4107 }
4108
4109 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4110 if (INSN_TICK (insn) > clock_var)
4111 /* INSN has been prematurely moved from the queue to the ready list.
4112 This is possible only if following flags are set. */
4113 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4114
4115 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4116 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4117 INSN_TICK (insn) = clock_var;
4118
4119 check_clobbered_conditions (insn);
4120
4121 /* Update dependent instructions. First, see if by scheduling this insn
4122 now we broke a dependence in a way that requires us to change another
4123 insn. */
4124 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4125 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4126 {
4127 struct dep_replacement *desc = DEP_REPLACE (dep);
4128 rtx_insn *pro = DEP_PRO (dep);
4129 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4130 && desc != NULL && desc->insn == pro)
4131 apply_replacement (dep, false);
4132 }
4133
4134 /* Go through and resolve forward dependencies. */
4135 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4136 sd_iterator_cond (&sd_it, &dep);)
4137 {
4138 rtx_insn *next = DEP_CON (dep);
4139 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4140
4141 /* Resolve the dependence between INSN and NEXT.
4142 sd_resolve_dep () moves current dep to another list thus
4143 advancing the iterator. */
4144 sd_resolve_dep (sd_it);
4145
4146 if (cancelled)
4147 {
4148 if (must_restore_pattern_p (next, dep))
4149 restore_pattern (dep, false);
4150 continue;
4151 }
4152
4153 /* Don't bother trying to mark next as ready if insn is a debug
4154 insn. If insn is the last hard dependency, it will have
4155 already been discounted. */
4156 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4157 continue;
4158
4159 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4160 {
4161 int effective_cost;
4162
4163 effective_cost = try_ready (next);
4164
4165 if (effective_cost >= 0
4166 && SCHED_GROUP_P (next)
4167 && advance < effective_cost)
4168 advance = effective_cost;
4169 }
4170 else
4171 /* Check always has only one forward dependence (to the first insn in
4172 the recovery block), therefore, this will be executed only once. */
4173 {
4174 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4175 fix_recovery_deps (RECOVERY_BLOCK (insn));
4176 }
4177 }
4178
4179 /* Annotate the instruction with issue information -- TImode
4180 indicates that the instruction is expected not to be able
4181 to issue on the same cycle as the previous insn. A machine
4182 may use this information to decide how the instruction should
4183 be aligned. */
4184 if (issue_rate > 1
4185 && GET_CODE (PATTERN (insn)) != USE
4186 && GET_CODE (PATTERN (insn)) != CLOBBER
4187 && !DEBUG_INSN_P (insn))
4188 {
4189 if (reload_completed)
4190 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4191 last_clock_var = clock_var;
4192 }
4193
4194 if (nonscheduled_insns_begin != NULL_RTX)
4195 /* Indicate to debug counters that INSN is scheduled. */
4196 nonscheduled_insns_begin = insn;
4197
4198 return advance;
4199 }
4200
4201 /* Functions for handling of notes. */
4202
4203 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4204 void
4205 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4206 {
4207 rtx_insn *from_start;
4208
4209 /* It's easy when have nothing to concat. */
4210 if (from_end == NULL)
4211 return;
4212
4213 /* It's also easy when destination is empty. */
4214 if (*to_endp == NULL)
4215 {
4216 *to_endp = from_end;
4217 return;
4218 }
4219
4220 from_start = from_end;
4221 while (PREV_INSN (from_start) != NULL)
4222 from_start = PREV_INSN (from_start);
4223
4224 SET_PREV_INSN (from_start) = *to_endp;
4225 SET_NEXT_INSN (*to_endp) = from_start;
4226 *to_endp = from_end;
4227 }
4228
4229 /* Delete notes between HEAD and TAIL and put them in the chain
4230 of notes ended by NOTE_LIST. */
4231 void
4232 remove_notes (rtx_insn *head, rtx_insn *tail)
4233 {
4234 rtx_insn *next_tail, *insn, *next;
4235
4236 note_list = 0;
4237 if (head == tail && !INSN_P (head))
4238 return;
4239
4240 next_tail = NEXT_INSN (tail);
4241 for (insn = head; insn != next_tail; insn = next)
4242 {
4243 next = NEXT_INSN (insn);
4244 if (!NOTE_P (insn))
4245 continue;
4246
4247 switch (NOTE_KIND (insn))
4248 {
4249 case NOTE_INSN_BASIC_BLOCK:
4250 continue;
4251
4252 case NOTE_INSN_EPILOGUE_BEG:
4253 if (insn != tail)
4254 {
4255 remove_insn (insn);
4256 add_reg_note (next, REG_SAVE_NOTE,
4257 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4258 break;
4259 }
4260 /* FALLTHRU */
4261
4262 default:
4263 remove_insn (insn);
4264
4265 /* Add the note to list that ends at NOTE_LIST. */
4266 SET_PREV_INSN (insn) = note_list;
4267 SET_NEXT_INSN (insn) = NULL_RTX;
4268 if (note_list)
4269 SET_NEXT_INSN (note_list) = insn;
4270 note_list = insn;
4271 break;
4272 }
4273
4274 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4275 }
4276 }
4277
4278 /* A structure to record enough data to allow us to backtrack the scheduler to
4279 a previous state. */
4280 struct haifa_saved_data
4281 {
4282 /* Next entry on the list. */
4283 struct haifa_saved_data *next;
4284
4285 /* Backtracking is associated with scheduling insns that have delay slots.
4286 DELAY_PAIR points to the structure that contains the insns involved, and
4287 the number of cycles between them. */
4288 struct delay_pair *delay_pair;
4289
4290 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4291 void *fe_saved_data;
4292 /* Data used by the backend. */
4293 void *be_saved_data;
4294
4295 /* Copies of global state. */
4296 int clock_var, last_clock_var;
4297 struct ready_list ready;
4298 state_t curr_state;
4299
4300 rtx_insn *last_scheduled_insn;
4301 rtx_insn *last_nondebug_scheduled_insn;
4302 rtx_insn *nonscheduled_insns_begin;
4303 int cycle_issued_insns;
4304
4305 /* Copies of state used in the inner loop of schedule_block. */
4306 struct sched_block_state sched_block;
4307
4308 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4309 to 0 when restoring. */
4310 int q_size;
4311 rtx_insn_list **insn_queue;
4312
4313 /* Describe pattern replacements that occurred since this backtrack point
4314 was queued. */
4315 vec<dep_t> replacement_deps;
4316 vec<int> replace_apply;
4317
4318 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4319 point. */
4320 vec<dep_t> next_cycle_deps;
4321 vec<int> next_cycle_apply;
4322 };
4323
4324 /* A record, in reverse order, of all scheduled insns which have delay slots
4325 and may require backtracking. */
4326 static struct haifa_saved_data *backtrack_queue;
4327
4328 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4329 to SET_P. */
4330 static void
4331 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4332 {
4333 sd_iterator_def sd_it;
4334 dep_t dep;
4335 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4336 {
4337 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4338 }
4339 }
4340
4341 /* Save the current scheduler state so that we can backtrack to it
4342 later if necessary. PAIR gives the insns that make it necessary to
4343 save this point. SCHED_BLOCK is the local state of schedule_block
4344 that need to be saved. */
4345 static void
4346 save_backtrack_point (struct delay_pair *pair,
4347 struct sched_block_state sched_block)
4348 {
4349 int i;
4350 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4351
4352 save->curr_state = xmalloc (dfa_state_size);
4353 memcpy (save->curr_state, curr_state, dfa_state_size);
4354
4355 save->ready.first = ready.first;
4356 save->ready.n_ready = ready.n_ready;
4357 save->ready.n_debug = ready.n_debug;
4358 save->ready.veclen = ready.veclen;
4359 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4360 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4361
4362 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4363 save->q_size = q_size;
4364 for (i = 0; i <= max_insn_queue_index; i++)
4365 {
4366 int q = NEXT_Q_AFTER (q_ptr, i);
4367 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4368 }
4369
4370 save->clock_var = clock_var;
4371 save->last_clock_var = last_clock_var;
4372 save->cycle_issued_insns = cycle_issued_insns;
4373 save->last_scheduled_insn = last_scheduled_insn;
4374 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4375 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4376
4377 save->sched_block = sched_block;
4378
4379 save->replacement_deps.create (0);
4380 save->replace_apply.create (0);
4381 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4382 save->next_cycle_apply = next_cycle_apply.copy ();
4383
4384 if (current_sched_info->save_state)
4385 save->fe_saved_data = (*current_sched_info->save_state) ();
4386
4387 if (targetm.sched.alloc_sched_context)
4388 {
4389 save->be_saved_data = targetm.sched.alloc_sched_context ();
4390 targetm.sched.init_sched_context (save->be_saved_data, false);
4391 }
4392 else
4393 save->be_saved_data = NULL;
4394
4395 save->delay_pair = pair;
4396
4397 save->next = backtrack_queue;
4398 backtrack_queue = save;
4399
4400 while (pair)
4401 {
4402 mark_backtrack_feeds (pair->i2, 1);
4403 INSN_TICK (pair->i2) = INVALID_TICK;
4404 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4405 SHADOW_P (pair->i2) = pair->stages == 0;
4406 pair = pair->next_same_i1;
4407 }
4408 }
4409
4410 /* Walk the ready list and all queues. If any insns have unresolved backwards
4411 dependencies, these must be cancelled deps, broken by predication. Set or
4412 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4413
4414 static void
4415 toggle_cancelled_flags (bool set)
4416 {
4417 int i;
4418 sd_iterator_def sd_it;
4419 dep_t dep;
4420
4421 if (ready.n_ready > 0)
4422 {
4423 rtx_insn **first = ready_lastpos (&ready);
4424 for (i = 0; i < ready.n_ready; i++)
4425 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4426 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4427 {
4428 if (set)
4429 DEP_STATUS (dep) |= DEP_CANCELLED;
4430 else
4431 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4432 }
4433 }
4434 for (i = 0; i <= max_insn_queue_index; i++)
4435 {
4436 int q = NEXT_Q_AFTER (q_ptr, i);
4437 rtx_insn_list *link;
4438 for (link = insn_queue[q]; link; link = link->next ())
4439 {
4440 rtx_insn *insn = link->insn ();
4441 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4442 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4443 {
4444 if (set)
4445 DEP_STATUS (dep) |= DEP_CANCELLED;
4446 else
4447 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4448 }
4449 }
4450 }
4451 }
4452
4453 /* Undo the replacements that have occurred after backtrack point SAVE
4454 was placed. */
4455 static void
4456 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4457 {
4458 while (!save->replacement_deps.is_empty ())
4459 {
4460 dep_t dep = save->replacement_deps.pop ();
4461 int apply_p = save->replace_apply.pop ();
4462
4463 if (apply_p)
4464 restore_pattern (dep, true);
4465 else
4466 apply_replacement (dep, true);
4467 }
4468 save->replacement_deps.release ();
4469 save->replace_apply.release ();
4470 }
4471
4472 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4473 Restore their dependencies to an unresolved state, and mark them as
4474 queued nowhere. */
4475
4476 static void
4477 unschedule_insns_until (rtx_insn *insn)
4478 {
4479 auto_vec<rtx_insn *> recompute_vec;
4480
4481 /* Make two passes over the insns to be unscheduled. First, we clear out
4482 dependencies and other trivial bookkeeping. */
4483 for (;;)
4484 {
4485 rtx_insn *last;
4486 sd_iterator_def sd_it;
4487 dep_t dep;
4488
4489 last = scheduled_insns.pop ();
4490
4491 /* This will be changed by restore_backtrack_point if the insn is in
4492 any queue. */
4493 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4494 if (last != insn)
4495 INSN_TICK (last) = INVALID_TICK;
4496
4497 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4498 modulo_insns_scheduled--;
4499
4500 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4501 sd_iterator_cond (&sd_it, &dep);)
4502 {
4503 rtx_insn *con = DEP_CON (dep);
4504 sd_unresolve_dep (sd_it);
4505 if (!MUST_RECOMPUTE_SPEC_P (con))
4506 {
4507 MUST_RECOMPUTE_SPEC_P (con) = 1;
4508 recompute_vec.safe_push (con);
4509 }
4510 }
4511
4512 if (last == insn)
4513 break;
4514 }
4515
4516 /* A second pass, to update ready and speculation status for insns
4517 depending on the unscheduled ones. The first pass must have
4518 popped the scheduled_insns vector up to the point where we
4519 restart scheduling, as recompute_todo_spec requires it to be
4520 up-to-date. */
4521 while (!recompute_vec.is_empty ())
4522 {
4523 rtx_insn *con;
4524
4525 con = recompute_vec.pop ();
4526 MUST_RECOMPUTE_SPEC_P (con) = 0;
4527 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4528 {
4529 TODO_SPEC (con) = HARD_DEP;
4530 INSN_TICK (con) = INVALID_TICK;
4531 if (PREDICATED_PAT (con) != NULL_RTX)
4532 haifa_change_pattern (con, ORIG_PAT (con));
4533 }
4534 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4535 TODO_SPEC (con) = recompute_todo_spec (con, true);
4536 }
4537 }
4538
4539 /* Restore scheduler state from the topmost entry on the backtracking queue.
4540 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4541 overwrite with the saved data.
4542 The caller must already have called unschedule_insns_until. */
4543
4544 static void
4545 restore_last_backtrack_point (struct sched_block_state *psched_block)
4546 {
4547 int i;
4548 struct haifa_saved_data *save = backtrack_queue;
4549
4550 backtrack_queue = save->next;
4551
4552 if (current_sched_info->restore_state)
4553 (*current_sched_info->restore_state) (save->fe_saved_data);
4554
4555 if (targetm.sched.alloc_sched_context)
4556 {
4557 targetm.sched.set_sched_context (save->be_saved_data);
4558 targetm.sched.free_sched_context (save->be_saved_data);
4559 }
4560
4561 /* Do this first since it clobbers INSN_TICK of the involved
4562 instructions. */
4563 undo_replacements_for_backtrack (save);
4564
4565 /* Clear the QUEUE_INDEX of everything in the ready list or one
4566 of the queues. */
4567 if (ready.n_ready > 0)
4568 {
4569 rtx_insn **first = ready_lastpos (&ready);
4570 for (i = 0; i < ready.n_ready; i++)
4571 {
4572 rtx_insn *insn = first[i];
4573 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4574 INSN_TICK (insn) = INVALID_TICK;
4575 }
4576 }
4577 for (i = 0; i <= max_insn_queue_index; i++)
4578 {
4579 int q = NEXT_Q_AFTER (q_ptr, i);
4580
4581 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4582 {
4583 rtx_insn *x = link->insn ();
4584 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4585 INSN_TICK (x) = INVALID_TICK;
4586 }
4587 free_INSN_LIST_list (&insn_queue[q]);
4588 }
4589
4590 free (ready.vec);
4591 ready = save->ready;
4592
4593 if (ready.n_ready > 0)
4594 {
4595 rtx_insn **first = ready_lastpos (&ready);
4596 for (i = 0; i < ready.n_ready; i++)
4597 {
4598 rtx_insn *insn = first[i];
4599 QUEUE_INDEX (insn) = QUEUE_READY;
4600 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4601 INSN_TICK (insn) = save->clock_var;
4602 }
4603 }
4604
4605 q_ptr = 0;
4606 q_size = save->q_size;
4607 for (i = 0; i <= max_insn_queue_index; i++)
4608 {
4609 int q = NEXT_Q_AFTER (q_ptr, i);
4610
4611 insn_queue[q] = save->insn_queue[q];
4612
4613 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4614 {
4615 rtx_insn *x = link->insn ();
4616 QUEUE_INDEX (x) = i;
4617 TODO_SPEC (x) = recompute_todo_spec (x, true);
4618 INSN_TICK (x) = save->clock_var + i;
4619 }
4620 }
4621 free (save->insn_queue);
4622
4623 toggle_cancelled_flags (true);
4624
4625 clock_var = save->clock_var;
4626 last_clock_var = save->last_clock_var;
4627 cycle_issued_insns = save->cycle_issued_insns;
4628 last_scheduled_insn = save->last_scheduled_insn;
4629 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4630 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4631
4632 *psched_block = save->sched_block;
4633
4634 memcpy (curr_state, save->curr_state, dfa_state_size);
4635 free (save->curr_state);
4636
4637 mark_backtrack_feeds (save->delay_pair->i2, 0);
4638
4639 gcc_assert (next_cycle_replace_deps.is_empty ());
4640 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4641 next_cycle_apply = save->next_cycle_apply.copy ();
4642
4643 free (save);
4644
4645 for (save = backtrack_queue; save; save = save->next)
4646 {
4647 mark_backtrack_feeds (save->delay_pair->i2, 1);
4648 }
4649 }
4650
4651 /* Discard all data associated with the topmost entry in the backtrack
4652 queue. If RESET_TICK is false, we just want to free the data. If true,
4653 we are doing this because we discovered a reason to backtrack. In the
4654 latter case, also reset the INSN_TICK for the shadow insn. */
4655 static void
4656 free_topmost_backtrack_point (bool reset_tick)
4657 {
4658 struct haifa_saved_data *save = backtrack_queue;
4659 int i;
4660
4661 backtrack_queue = save->next;
4662
4663 if (reset_tick)
4664 {
4665 struct delay_pair *pair = save->delay_pair;
4666 while (pair)
4667 {
4668 INSN_TICK (pair->i2) = INVALID_TICK;
4669 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4670 pair = pair->next_same_i1;
4671 }
4672 undo_replacements_for_backtrack (save);
4673 }
4674 else
4675 {
4676 save->replacement_deps.release ();
4677 save->replace_apply.release ();
4678 }
4679
4680 if (targetm.sched.free_sched_context)
4681 targetm.sched.free_sched_context (save->be_saved_data);
4682 if (current_sched_info->restore_state)
4683 free (save->fe_saved_data);
4684 for (i = 0; i <= max_insn_queue_index; i++)
4685 free_INSN_LIST_list (&save->insn_queue[i]);
4686 free (save->insn_queue);
4687 free (save->curr_state);
4688 free (save->ready.vec);
4689 free (save);
4690 }
4691
4692 /* Free the entire backtrack queue. */
4693 static void
4694 free_backtrack_queue (void)
4695 {
4696 while (backtrack_queue)
4697 free_topmost_backtrack_point (false);
4698 }
4699
4700 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4701 may have to postpone the replacement until the start of the next cycle,
4702 at which point we will be called again with IMMEDIATELY true. This is
4703 only done for machines which have instruction packets with explicit
4704 parallelism however. */
4705 static void
4706 apply_replacement (dep_t dep, bool immediately)
4707 {
4708 struct dep_replacement *desc = DEP_REPLACE (dep);
4709 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4710 {
4711 next_cycle_replace_deps.safe_push (dep);
4712 next_cycle_apply.safe_push (1);
4713 }
4714 else
4715 {
4716 bool success;
4717
4718 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4719 return;
4720
4721 if (sched_verbose >= 5)
4722 fprintf (sched_dump, "applying replacement for insn %d\n",
4723 INSN_UID (desc->insn));
4724
4725 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4726 gcc_assert (success);
4727
4728 update_insn_after_change (desc->insn);
4729 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4730 fix_tick_ready (desc->insn);
4731
4732 if (backtrack_queue != NULL)
4733 {
4734 backtrack_queue->replacement_deps.safe_push (dep);
4735 backtrack_queue->replace_apply.safe_push (1);
4736 }
4737 }
4738 }
4739
4740 /* We have determined that a pattern involved in DEP must be restored.
4741 If IMMEDIATELY is false, we may have to postpone the replacement
4742 until the start of the next cycle, at which point we will be called
4743 again with IMMEDIATELY true. */
4744 static void
4745 restore_pattern (dep_t dep, bool immediately)
4746 {
4747 rtx_insn *next = DEP_CON (dep);
4748 int tick = INSN_TICK (next);
4749
4750 /* If we already scheduled the insn, the modified version is
4751 correct. */
4752 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4753 return;
4754
4755 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4756 {
4757 next_cycle_replace_deps.safe_push (dep);
4758 next_cycle_apply.safe_push (0);
4759 return;
4760 }
4761
4762
4763 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4764 {
4765 if (sched_verbose >= 5)
4766 fprintf (sched_dump, "restoring pattern for insn %d\n",
4767 INSN_UID (next));
4768 haifa_change_pattern (next, ORIG_PAT (next));
4769 }
4770 else
4771 {
4772 struct dep_replacement *desc = DEP_REPLACE (dep);
4773 bool success;
4774
4775 if (sched_verbose >= 5)
4776 fprintf (sched_dump, "restoring pattern for insn %d\n",
4777 INSN_UID (desc->insn));
4778 tick = INSN_TICK (desc->insn);
4779
4780 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4781 gcc_assert (success);
4782 update_insn_after_change (desc->insn);
4783 if (backtrack_queue != NULL)
4784 {
4785 backtrack_queue->replacement_deps.safe_push (dep);
4786 backtrack_queue->replace_apply.safe_push (0);
4787 }
4788 }
4789 INSN_TICK (next) = tick;
4790 if (TODO_SPEC (next) == DEP_POSTPONED)
4791 return;
4792
4793 if (sd_lists_empty_p (next, SD_LIST_BACK))
4794 TODO_SPEC (next) = 0;
4795 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4796 TODO_SPEC (next) = HARD_DEP;
4797 }
4798
4799 /* Perform pattern replacements that were queued up until the next
4800 cycle. */
4801 static void
4802 perform_replacements_new_cycle (void)
4803 {
4804 int i;
4805 dep_t dep;
4806 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4807 {
4808 int apply_p = next_cycle_apply[i];
4809 if (apply_p)
4810 apply_replacement (dep, true);
4811 else
4812 restore_pattern (dep, true);
4813 }
4814 next_cycle_replace_deps.truncate (0);
4815 next_cycle_apply.truncate (0);
4816 }
4817
4818 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4819 instructions we've previously encountered, a set bit prevents
4820 recursion. BUDGET is a limit on how far ahead we look, it is
4821 reduced on recursive calls. Return true if we produced a good
4822 estimate, or false if we exceeded the budget. */
4823 static bool
4824 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4825 {
4826 sd_iterator_def sd_it;
4827 dep_t dep;
4828 int earliest = INSN_TICK (insn);
4829
4830 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4831 {
4832 rtx_insn *pro = DEP_PRO (dep);
4833 int t;
4834
4835 if (DEP_STATUS (dep) & DEP_CANCELLED)
4836 continue;
4837
4838 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4839 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4840 else
4841 {
4842 int cost = dep_cost (dep);
4843 if (cost >= budget)
4844 return false;
4845 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4846 {
4847 if (!estimate_insn_tick (processed, pro, budget - cost))
4848 return false;
4849 }
4850 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4851 t = INSN_TICK_ESTIMATE (pro) + cost;
4852 if (earliest == INVALID_TICK || t > earliest)
4853 earliest = t;
4854 }
4855 }
4856 bitmap_set_bit (processed, INSN_LUID (insn));
4857 INSN_TICK_ESTIMATE (insn) = earliest;
4858 return true;
4859 }
4860
4861 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4862 infinite resources) the cycle in which the delayed shadow can be issued.
4863 Return the number of cycles that must pass before the real insn can be
4864 issued in order to meet this constraint. */
4865 static int
4866 estimate_shadow_tick (struct delay_pair *p)
4867 {
4868 bitmap_head processed;
4869 int t;
4870 bool cutoff;
4871 bitmap_initialize (&processed, 0);
4872
4873 cutoff = !estimate_insn_tick (&processed, p->i2,
4874 max_insn_queue_index + pair_delay (p));
4875 bitmap_clear (&processed);
4876 if (cutoff)
4877 return max_insn_queue_index;
4878 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4879 if (t > 0)
4880 return t;
4881 return 0;
4882 }
4883
4884 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4885 recursively resolve all its forward dependencies. */
4886 static void
4887 resolve_dependencies (rtx_insn *insn)
4888 {
4889 sd_iterator_def sd_it;
4890 dep_t dep;
4891
4892 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4893 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4894 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4895 return;
4896
4897 if (sched_verbose >= 4)
4898 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4899
4900 if (QUEUE_INDEX (insn) >= 0)
4901 queue_remove (insn);
4902
4903 scheduled_insns.safe_push (insn);
4904
4905 /* Update dependent instructions. */
4906 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4907 sd_iterator_cond (&sd_it, &dep);)
4908 {
4909 rtx_insn *next = DEP_CON (dep);
4910
4911 if (sched_verbose >= 4)
4912 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4913 INSN_UID (next));
4914
4915 /* Resolve the dependence between INSN and NEXT.
4916 sd_resolve_dep () moves current dep to another list thus
4917 advancing the iterator. */
4918 sd_resolve_dep (sd_it);
4919
4920 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4921 {
4922 resolve_dependencies (next);
4923 }
4924 else
4925 /* Check always has only one forward dependence (to the first insn in
4926 the recovery block), therefore, this will be executed only once. */
4927 {
4928 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4929 }
4930 }
4931 }
4932
4933
4934 /* Return the head and tail pointers of ebb starting at BEG and ending
4935 at END. */
4936 void
4937 get_ebb_head_tail (basic_block beg, basic_block end,
4938 rtx_insn **headp, rtx_insn **tailp)
4939 {
4940 rtx_insn *beg_head = BB_HEAD (beg);
4941 rtx_insn * beg_tail = BB_END (beg);
4942 rtx_insn * end_head = BB_HEAD (end);
4943 rtx_insn * end_tail = BB_END (end);
4944
4945 /* Don't include any notes or labels at the beginning of the BEG
4946 basic block, or notes at the end of the END basic blocks. */
4947
4948 if (LABEL_P (beg_head))
4949 beg_head = NEXT_INSN (beg_head);
4950
4951 while (beg_head != beg_tail)
4952 if (NOTE_P (beg_head))
4953 beg_head = NEXT_INSN (beg_head);
4954 else if (DEBUG_INSN_P (beg_head))
4955 {
4956 rtx_insn * note, *next;
4957
4958 for (note = NEXT_INSN (beg_head);
4959 note != beg_tail;
4960 note = next)
4961 {
4962 next = NEXT_INSN (note);
4963 if (NOTE_P (note))
4964 {
4965 if (sched_verbose >= 9)
4966 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4967
4968 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4969
4970 if (BLOCK_FOR_INSN (note) != beg)
4971 df_insn_change_bb (note, beg);
4972 }
4973 else if (!DEBUG_INSN_P (note))
4974 break;
4975 }
4976
4977 break;
4978 }
4979 else
4980 break;
4981
4982 *headp = beg_head;
4983
4984 if (beg == end)
4985 end_head = beg_head;
4986 else if (LABEL_P (end_head))
4987 end_head = NEXT_INSN (end_head);
4988
4989 while (end_head != end_tail)
4990 if (NOTE_P (end_tail))
4991 end_tail = PREV_INSN (end_tail);
4992 else if (DEBUG_INSN_P (end_tail))
4993 {
4994 rtx_insn * note, *prev;
4995
4996 for (note = PREV_INSN (end_tail);
4997 note != end_head;
4998 note = prev)
4999 {
5000 prev = PREV_INSN (note);
5001 if (NOTE_P (note))
5002 {
5003 if (sched_verbose >= 9)
5004 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5005
5006 reorder_insns_nobb (note, note, end_tail);
5007
5008 if (end_tail == BB_END (end))
5009 BB_END (end) = note;
5010
5011 if (BLOCK_FOR_INSN (note) != end)
5012 df_insn_change_bb (note, end);
5013 }
5014 else if (!DEBUG_INSN_P (note))
5015 break;
5016 }
5017
5018 break;
5019 }
5020 else
5021 break;
5022
5023 *tailp = end_tail;
5024 }
5025
5026 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5027
5028 int
5029 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5030 {
5031 while (head != NEXT_INSN (tail))
5032 {
5033 if (!NOTE_P (head) && !LABEL_P (head))
5034 return 0;
5035 head = NEXT_INSN (head);
5036 }
5037 return 1;
5038 }
5039
5040 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5041 previously found among the insns. Insert them just before HEAD. */
5042 rtx_insn *
5043 restore_other_notes (rtx_insn *head, basic_block head_bb)
5044 {
5045 if (note_list != 0)
5046 {
5047 rtx_insn *note_head = note_list;
5048
5049 if (head)
5050 head_bb = BLOCK_FOR_INSN (head);
5051 else
5052 head = NEXT_INSN (bb_note (head_bb));
5053
5054 while (PREV_INSN (note_head))
5055 {
5056 set_block_for_insn (note_head, head_bb);
5057 note_head = PREV_INSN (note_head);
5058 }
5059 /* In the above cycle we've missed this note. */
5060 set_block_for_insn (note_head, head_bb);
5061
5062 SET_PREV_INSN (note_head) = PREV_INSN (head);
5063 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5064 SET_PREV_INSN (head) = note_list;
5065 SET_NEXT_INSN (note_list) = head;
5066
5067 if (BLOCK_FOR_INSN (head) != head_bb)
5068 BB_END (head_bb) = note_list;
5069
5070 head = note_head;
5071 }
5072
5073 return head;
5074 }
5075
5076 /* When we know we are going to discard the schedule due to a failed attempt
5077 at modulo scheduling, undo all replacements. */
5078 static void
5079 undo_all_replacements (void)
5080 {
5081 rtx_insn *insn;
5082 int i;
5083
5084 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5085 {
5086 sd_iterator_def sd_it;
5087 dep_t dep;
5088
5089 /* See if we must undo a replacement. */
5090 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5091 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5092 {
5093 struct dep_replacement *desc = DEP_REPLACE (dep);
5094 if (desc != NULL)
5095 validate_change (desc->insn, desc->loc, desc->orig, 0);
5096 }
5097 }
5098 }
5099
5100 /* Return first non-scheduled insn in the current scheduling block.
5101 This is mostly used for debug-counter purposes. */
5102 static rtx_insn *
5103 first_nonscheduled_insn (void)
5104 {
5105 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5106 ? nonscheduled_insns_begin
5107 : current_sched_info->prev_head);
5108
5109 do
5110 {
5111 insn = next_nonnote_nondebug_insn (insn);
5112 }
5113 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5114
5115 return insn;
5116 }
5117
5118 /* Move insns that became ready to fire from queue to ready list. */
5119
5120 static void
5121 queue_to_ready (struct ready_list *ready)
5122 {
5123 rtx_insn *insn;
5124 rtx_insn_list *link;
5125 rtx_insn *skip_insn;
5126
5127 q_ptr = NEXT_Q (q_ptr);
5128
5129 if (dbg_cnt (sched_insn) == false)
5130 /* If debug counter is activated do not requeue the first
5131 nonscheduled insn. */
5132 skip_insn = first_nonscheduled_insn ();
5133 else
5134 skip_insn = NULL;
5135
5136 /* Add all pending insns that can be scheduled without stalls to the
5137 ready list. */
5138 for (link = insn_queue[q_ptr]; link; link = link->next ())
5139 {
5140 insn = link->insn ();
5141 q_size -= 1;
5142
5143 if (sched_verbose >= 2)
5144 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5145 (*current_sched_info->print_insn) (insn, 0));
5146
5147 /* If the ready list is full, delay the insn for 1 cycle.
5148 See the comment in schedule_block for the rationale. */
5149 if (!reload_completed
5150 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5151 || (sched_pressure == SCHED_PRESSURE_MODEL
5152 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5153 instructions too. */
5154 && model_index (insn) > (model_curr_point
5155 + MAX_SCHED_READY_INSNS)))
5156 && !(sched_pressure == SCHED_PRESSURE_MODEL
5157 && model_curr_point < model_num_insns
5158 /* Always allow the next model instruction to issue. */
5159 && model_index (insn) == model_curr_point)
5160 && !SCHED_GROUP_P (insn)
5161 && insn != skip_insn)
5162 {
5163 if (sched_verbose >= 2)
5164 fprintf (sched_dump, "keeping in queue, ready full\n");
5165 queue_insn (insn, 1, "ready full");
5166 }
5167 else
5168 {
5169 ready_add (ready, insn, false);
5170 if (sched_verbose >= 2)
5171 fprintf (sched_dump, "moving to ready without stalls\n");
5172 }
5173 }
5174 free_INSN_LIST_list (&insn_queue[q_ptr]);
5175
5176 /* If there are no ready insns, stall until one is ready and add all
5177 of the pending insns at that point to the ready list. */
5178 if (ready->n_ready == 0)
5179 {
5180 int stalls;
5181
5182 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5183 {
5184 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5185 {
5186 for (; link; link = link->next ())
5187 {
5188 insn = link->insn ();
5189 q_size -= 1;
5190
5191 if (sched_verbose >= 2)
5192 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5193 (*current_sched_info->print_insn) (insn, 0));
5194
5195 ready_add (ready, insn, false);
5196 if (sched_verbose >= 2)
5197 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5198 }
5199 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5200
5201 advance_one_cycle ();
5202
5203 break;
5204 }
5205
5206 advance_one_cycle ();
5207 }
5208
5209 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5210 clock_var += stalls;
5211 if (sched_verbose >= 2)
5212 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5213 stalls, clock_var);
5214 }
5215 }
5216
5217 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5218 prematurely move INSN from the queue to the ready list. Currently,
5219 if a target defines the hook 'is_costly_dependence', this function
5220 uses the hook to check whether there exist any dependences which are
5221 considered costly by the target, between INSN and other insns that
5222 have already been scheduled. Dependences are checked up to Y cycles
5223 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5224 controlling this value.
5225 (Other considerations could be taken into account instead (or in
5226 addition) depending on user flags and target hooks. */
5227
5228 static bool
5229 ok_for_early_queue_removal (rtx_insn *insn)
5230 {
5231 if (targetm.sched.is_costly_dependence)
5232 {
5233 int n_cycles;
5234 int i = scheduled_insns.length ();
5235 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5236 {
5237 while (i-- > 0)
5238 {
5239 int cost;
5240
5241 rtx_insn *prev_insn = scheduled_insns[i];
5242
5243 if (!NOTE_P (prev_insn))
5244 {
5245 dep_t dep;
5246
5247 dep = sd_find_dep_between (prev_insn, insn, true);
5248
5249 if (dep != NULL)
5250 {
5251 cost = dep_cost (dep);
5252
5253 if (targetm.sched.is_costly_dependence (dep, cost,
5254 flag_sched_stalled_insns_dep - n_cycles))
5255 return false;
5256 }
5257 }
5258
5259 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5260 break;
5261 }
5262
5263 if (i == 0)
5264 break;
5265 }
5266 }
5267
5268 return true;
5269 }
5270
5271
5272 /* Remove insns from the queue, before they become "ready" with respect
5273 to FU latency considerations. */
5274
5275 static int
5276 early_queue_to_ready (state_t state, struct ready_list *ready)
5277 {
5278 rtx_insn *insn;
5279 rtx_insn_list *link;
5280 rtx_insn_list *next_link;
5281 rtx_insn_list *prev_link;
5282 bool move_to_ready;
5283 int cost;
5284 state_t temp_state = alloca (dfa_state_size);
5285 int stalls;
5286 int insns_removed = 0;
5287
5288 /*
5289 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5290 function:
5291
5292 X == 0: There is no limit on how many queued insns can be removed
5293 prematurely. (flag_sched_stalled_insns = -1).
5294
5295 X >= 1: Only X queued insns can be removed prematurely in each
5296 invocation. (flag_sched_stalled_insns = X).
5297
5298 Otherwise: Early queue removal is disabled.
5299 (flag_sched_stalled_insns = 0)
5300 */
5301
5302 if (! flag_sched_stalled_insns)
5303 return 0;
5304
5305 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5306 {
5307 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5308 {
5309 if (sched_verbose > 6)
5310 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5311
5312 prev_link = 0;
5313 while (link)
5314 {
5315 next_link = link->next ();
5316 insn = link->insn ();
5317 if (insn && sched_verbose > 6)
5318 print_rtl_single (sched_dump, insn);
5319
5320 memcpy (temp_state, state, dfa_state_size);
5321 if (recog_memoized (insn) < 0)
5322 /* non-negative to indicate that it's not ready
5323 to avoid infinite Q->R->Q->R... */
5324 cost = 0;
5325 else
5326 cost = state_transition (temp_state, insn);
5327
5328 if (sched_verbose >= 6)
5329 fprintf (sched_dump, "transition cost = %d\n", cost);
5330
5331 move_to_ready = false;
5332 if (cost < 0)
5333 {
5334 move_to_ready = ok_for_early_queue_removal (insn);
5335 if (move_to_ready == true)
5336 {
5337 /* move from Q to R */
5338 q_size -= 1;
5339 ready_add (ready, insn, false);
5340
5341 if (prev_link)
5342 XEXP (prev_link, 1) = next_link;
5343 else
5344 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5345
5346 free_INSN_LIST_node (link);
5347
5348 if (sched_verbose >= 2)
5349 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5350 (*current_sched_info->print_insn) (insn, 0));
5351
5352 insns_removed++;
5353 if (insns_removed == flag_sched_stalled_insns)
5354 /* Remove no more than flag_sched_stalled_insns insns
5355 from Q at a time. */
5356 return insns_removed;
5357 }
5358 }
5359
5360 if (move_to_ready == false)
5361 prev_link = link;
5362
5363 link = next_link;
5364 } /* while link */
5365 } /* if link */
5366
5367 } /* for stalls.. */
5368
5369 return insns_removed;
5370 }
5371
5372
5373 /* Print the ready list for debugging purposes.
5374 If READY_TRY is non-zero then only print insns that max_issue
5375 will consider. */
5376 static void
5377 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5378 {
5379 rtx_insn **p;
5380 int i;
5381
5382 if (ready->n_ready == 0)
5383 {
5384 fprintf (sched_dump, "\n");
5385 return;
5386 }
5387
5388 p = ready_lastpos (ready);
5389 for (i = 0; i < ready->n_ready; i++)
5390 {
5391 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5392 continue;
5393
5394 fprintf (sched_dump, " %s:%d",
5395 (*current_sched_info->print_insn) (p[i], 0),
5396 INSN_LUID (p[i]));
5397 if (sched_pressure != SCHED_PRESSURE_NONE)
5398 fprintf (sched_dump, "(cost=%d",
5399 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5400 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5401 if (INSN_TICK (p[i]) > clock_var)
5402 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5403 if (sched_pressure == SCHED_PRESSURE_MODEL)
5404 fprintf (sched_dump, ":idx=%d",
5405 model_index (p[i]));
5406 if (sched_pressure != SCHED_PRESSURE_NONE)
5407 fprintf (sched_dump, ")");
5408 }
5409 fprintf (sched_dump, "\n");
5410 }
5411
5412 /* Print the ready list. Callable from debugger. */
5413 static void
5414 debug_ready_list (struct ready_list *ready)
5415 {
5416 debug_ready_list_1 (ready, NULL);
5417 }
5418
5419 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5420 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5421 replaces the epilogue note in the correct basic block. */
5422 void
5423 reemit_notes (rtx_insn *insn)
5424 {
5425 rtx note;
5426 rtx_insn *last = insn;
5427
5428 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5429 {
5430 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5431 {
5432 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5433
5434 last = emit_note_before (note_type, last);
5435 remove_note (insn, note);
5436 }
5437 }
5438 }
5439
5440 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5441 static void
5442 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5443 {
5444 if (PREV_INSN (insn) != last)
5445 {
5446 basic_block bb;
5447 rtx_insn *note;
5448 int jump_p = 0;
5449
5450 bb = BLOCK_FOR_INSN (insn);
5451
5452 /* BB_HEAD is either LABEL or NOTE. */
5453 gcc_assert (BB_HEAD (bb) != insn);
5454
5455 if (BB_END (bb) == insn)
5456 /* If this is last instruction in BB, move end marker one
5457 instruction up. */
5458 {
5459 /* Jumps are always placed at the end of basic block. */
5460 jump_p = control_flow_insn_p (insn);
5461
5462 gcc_assert (!jump_p
5463 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5464 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5465 || (common_sched_info->sched_pass_id
5466 == SCHED_EBB_PASS));
5467
5468 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5469
5470 BB_END (bb) = PREV_INSN (insn);
5471 }
5472
5473 gcc_assert (BB_END (bb) != last);
5474
5475 if (jump_p)
5476 /* We move the block note along with jump. */
5477 {
5478 gcc_assert (nt);
5479
5480 note = NEXT_INSN (insn);
5481 while (NOTE_NOT_BB_P (note) && note != nt)
5482 note = NEXT_INSN (note);
5483
5484 if (note != nt
5485 && (LABEL_P (note)
5486 || BARRIER_P (note)))
5487 note = NEXT_INSN (note);
5488
5489 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5490 }
5491 else
5492 note = insn;
5493
5494 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5495 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5496
5497 SET_NEXT_INSN (note) = NEXT_INSN (last);
5498 SET_PREV_INSN (NEXT_INSN (last)) = note;
5499
5500 SET_NEXT_INSN (last) = insn;
5501 SET_PREV_INSN (insn) = last;
5502
5503 bb = BLOCK_FOR_INSN (last);
5504
5505 if (jump_p)
5506 {
5507 fix_jump_move (insn);
5508
5509 if (BLOCK_FOR_INSN (insn) != bb)
5510 move_block_after_check (insn);
5511
5512 gcc_assert (BB_END (bb) == last);
5513 }
5514
5515 df_insn_change_bb (insn, bb);
5516
5517 /* Update BB_END, if needed. */
5518 if (BB_END (bb) == last)
5519 BB_END (bb) = insn;
5520 }
5521
5522 SCHED_GROUP_P (insn) = 0;
5523 }
5524
5525 /* Return true if scheduling INSN will finish current clock cycle. */
5526 static bool
5527 insn_finishes_cycle_p (rtx_insn *insn)
5528 {
5529 if (SCHED_GROUP_P (insn))
5530 /* After issuing INSN, rest of the sched_group will be forced to issue
5531 in order. Don't make any plans for the rest of cycle. */
5532 return true;
5533
5534 /* Finishing the block will, apparently, finish the cycle. */
5535 if (current_sched_info->insn_finishes_block_p
5536 && current_sched_info->insn_finishes_block_p (insn))
5537 return true;
5538
5539 return false;
5540 }
5541
5542 /* Functions to model cache auto-prefetcher.
5543
5544 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5545 memory prefetches if it sees instructions with consequitive memory accesses
5546 in the instruction stream. Details of such hardware units are not published,
5547 so we can only guess what exactly is going on there.
5548 In the scheduler, we model abstract auto-prefetcher. If there are memory
5549 insns in the ready list (or the queue) that have same memory base, but
5550 different offsets, then we delay the insns with larger offsets until insns
5551 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5552 is "1", then we look at the ready list; if it is N>1, then we also look
5553 through N-1 queue entries.
5554 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5555 among its heuristics.
5556 Param value of "-1" disables modelling of the auto-prefetcher. */
5557
5558 /* Initialize autoprefetcher model data for INSN. */
5559 static void
5560 autopref_multipass_init (const rtx_insn *insn, int write)
5561 {
5562 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5563
5564 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5565 data->base = NULL_RTX;
5566 data->offset = 0;
5567 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5568 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5569
5570 rtx set = single_set (insn);
5571 if (set == NULL_RTX)
5572 return;
5573
5574 rtx mem = write ? SET_DEST (set) : SET_SRC (set);
5575 if (!MEM_P (mem))
5576 return;
5577
5578 struct address_info info;
5579 decompose_mem_address (&info, mem);
5580
5581 /* TODO: Currently only (base+const) addressing is supported. */
5582 if (info.base == NULL || !REG_P (*info.base)
5583 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5584 return;
5585
5586 /* This insn is relevant for auto-prefetcher. */
5587 data->base = *info.base;
5588 data->offset = info.disp ? INTVAL (*info.disp) : 0;
5589 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5590 }
5591
5592 /* Helper function for rank_for_schedule sorting. */
5593 static int
5594 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5595 {
5596 for (int write = 0; write < 2; ++write)
5597 {
5598 autopref_multipass_data_t data1
5599 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5600 autopref_multipass_data_t data2
5601 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5602
5603 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5604 autopref_multipass_init (insn1, write);
5605 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5606 continue;
5607
5608 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5609 autopref_multipass_init (insn2, write);
5610 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5611 continue;
5612
5613 if (!rtx_equal_p (data1->base, data2->base))
5614 continue;
5615
5616 return data1->offset - data2->offset;
5617 }
5618
5619 return 0;
5620 }
5621
5622 /* True if header of debug dump was printed. */
5623 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5624
5625 /* Helper for autopref_multipass_dfa_lookahead_guard.
5626 Return "1" if INSN1 should be delayed in favor of INSN2. */
5627 static int
5628 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5629 const rtx_insn *insn2, int write)
5630 {
5631 autopref_multipass_data_t data1
5632 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5633 autopref_multipass_data_t data2
5634 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5635
5636 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5637 autopref_multipass_init (insn2, write);
5638 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5639 return 0;
5640
5641 if (rtx_equal_p (data1->base, data2->base)
5642 && data1->offset > data2->offset)
5643 {
5644 if (sched_verbose >= 2)
5645 {
5646 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5647 {
5648 fprintf (sched_dump,
5649 ";;\t\tnot trying in max_issue due to autoprefetch "
5650 "model: ");
5651 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5652 }
5653
5654 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5655 }
5656
5657 return 1;
5658 }
5659
5660 return 0;
5661 }
5662
5663 /* General note:
5664
5665 We could have also hooked autoprefetcher model into
5666 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5667 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5668 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5669 unblocked). We don't bother about this yet because target of interest
5670 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5671
5672 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5673 Return "1" if INSN1 should not be considered in max_issue due to
5674 auto-prefetcher considerations. */
5675 int
5676 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5677 {
5678 int r = 0;
5679
5680 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5681 return 0;
5682
5683 if (sched_verbose >= 2 && ready_index == 0)
5684 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5685
5686 for (int write = 0; write < 2; ++write)
5687 {
5688 autopref_multipass_data_t data1
5689 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5690
5691 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5692 autopref_multipass_init (insn1, write);
5693 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5694 continue;
5695
5696 if (ready_index == 0
5697 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5698 /* We allow only a single delay on priviledged instructions.
5699 Doing otherwise would cause infinite loop. */
5700 {
5701 if (sched_verbose >= 2)
5702 {
5703 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5704 {
5705 fprintf (sched_dump,
5706 ";;\t\tnot trying in max_issue due to autoprefetch "
5707 "model: ");
5708 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5709 }
5710
5711 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5712 }
5713 continue;
5714 }
5715
5716 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5717 {
5718 rtx_insn *insn2 = get_ready_element (i2);
5719 if (insn1 == insn2)
5720 continue;
5721 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5722 if (r)
5723 {
5724 if (ready_index == 0)
5725 {
5726 r = -1;
5727 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5728 }
5729 goto finish;
5730 }
5731 }
5732
5733 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5734 continue;
5735
5736 /* Everything from the current queue slot should have been moved to
5737 the ready list. */
5738 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5739
5740 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5741 if (n_stalls > max_insn_queue_index)
5742 n_stalls = max_insn_queue_index;
5743
5744 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5745 {
5746 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5747 link != NULL_RTX;
5748 link = link->next ())
5749 {
5750 rtx_insn *insn2 = link->insn ();
5751 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5752 write);
5753 if (r)
5754 {
5755 /* Queue INSN1 until INSN2 can issue. */
5756 r = -stalls;
5757 if (ready_index == 0)
5758 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5759 goto finish;
5760 }
5761 }
5762 }
5763 }
5764
5765 finish:
5766 if (sched_verbose >= 2
5767 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5768 && (ready_index == ready.n_ready - 1 || r < 0))
5769 /* This does not /always/ trigger. We don't output EOL if the last
5770 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5771 called. We can live with this. */
5772 fprintf (sched_dump, "\n");
5773
5774 return r;
5775 }
5776
5777 /* Define type for target data used in multipass scheduling. */
5778 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5779 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5780 #endif
5781 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5782
5783 /* The following structure describe an entry of the stack of choices. */
5784 struct choice_entry
5785 {
5786 /* Ordinal number of the issued insn in the ready queue. */
5787 int index;
5788 /* The number of the rest insns whose issues we should try. */
5789 int rest;
5790 /* The number of issued essential insns. */
5791 int n;
5792 /* State after issuing the insn. */
5793 state_t state;
5794 /* Target-specific data. */
5795 first_cycle_multipass_data_t target_data;
5796 };
5797
5798 /* The following array is used to implement a stack of choices used in
5799 function max_issue. */
5800 static struct choice_entry *choice_stack;
5801
5802 /* This holds the value of the target dfa_lookahead hook. */
5803 int dfa_lookahead;
5804
5805 /* The following variable value is maximal number of tries of issuing
5806 insns for the first cycle multipass insn scheduling. We define
5807 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5808 need this constraint if all real insns (with non-negative codes)
5809 had reservations because in this case the algorithm complexity is
5810 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5811 might be incomplete and such insn might occur. For such
5812 descriptions, the complexity of algorithm (without the constraint)
5813 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5814 static int max_lookahead_tries;
5815
5816 /* The following function returns maximal (or close to maximal) number
5817 of insns which can be issued on the same cycle and one of which
5818 insns is insns with the best rank (the first insn in READY). To
5819 make this function tries different samples of ready insns. READY
5820 is current queue `ready'. Global array READY_TRY reflects what
5821 insns are already issued in this try. The function stops immediately,
5822 if it reached the such a solution, that all instruction can be issued.
5823 INDEX will contain index of the best insn in READY. The following
5824 function is used only for first cycle multipass scheduling.
5825
5826 PRIVILEGED_N >= 0
5827
5828 This function expects recognized insns only. All USEs,
5829 CLOBBERs, etc must be filtered elsewhere. */
5830 int
5831 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5832 bool first_cycle_insn_p, int *index)
5833 {
5834 int n, i, all, n_ready, best, delay, tries_num;
5835 int more_issue;
5836 struct choice_entry *top;
5837 rtx_insn *insn;
5838
5839 if (sched_fusion)
5840 return 0;
5841
5842 n_ready = ready->n_ready;
5843 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5844 && privileged_n <= n_ready);
5845
5846 /* Init MAX_LOOKAHEAD_TRIES. */
5847 if (max_lookahead_tries == 0)
5848 {
5849 max_lookahead_tries = 100;
5850 for (i = 0; i < issue_rate; i++)
5851 max_lookahead_tries *= dfa_lookahead;
5852 }
5853
5854 /* Init max_points. */
5855 more_issue = issue_rate - cycle_issued_insns;
5856 gcc_assert (more_issue >= 0);
5857
5858 /* The number of the issued insns in the best solution. */
5859 best = 0;
5860
5861 top = choice_stack;
5862
5863 /* Set initial state of the search. */
5864 memcpy (top->state, state, dfa_state_size);
5865 top->rest = dfa_lookahead;
5866 top->n = 0;
5867 if (targetm.sched.first_cycle_multipass_begin)
5868 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5869 ready_try, n_ready,
5870 first_cycle_insn_p);
5871
5872 /* Count the number of the insns to search among. */
5873 for (all = i = 0; i < n_ready; i++)
5874 if (!ready_try [i])
5875 all++;
5876
5877 if (sched_verbose >= 2)
5878 {
5879 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5880 debug_ready_list_1 (ready, ready_try);
5881 }
5882
5883 /* I is the index of the insn to try next. */
5884 i = 0;
5885 tries_num = 0;
5886 for (;;)
5887 {
5888 if (/* If we've reached a dead end or searched enough of what we have
5889 been asked... */
5890 top->rest == 0
5891 /* or have nothing else to try... */
5892 || i >= n_ready
5893 /* or should not issue more. */
5894 || top->n >= more_issue)
5895 {
5896 /* ??? (... || i == n_ready). */
5897 gcc_assert (i <= n_ready);
5898
5899 /* We should not issue more than issue_rate instructions. */
5900 gcc_assert (top->n <= more_issue);
5901
5902 if (top == choice_stack)
5903 break;
5904
5905 if (best < top - choice_stack)
5906 {
5907 if (privileged_n)
5908 {
5909 n = privileged_n;
5910 /* Try to find issued privileged insn. */
5911 while (n && !ready_try[--n])
5912 ;
5913 }
5914
5915 if (/* If all insns are equally good... */
5916 privileged_n == 0
5917 /* Or a privileged insn will be issued. */
5918 || ready_try[n])
5919 /* Then we have a solution. */
5920 {
5921 best = top - choice_stack;
5922 /* This is the index of the insn issued first in this
5923 solution. */
5924 *index = choice_stack [1].index;
5925 if (top->n == more_issue || best == all)
5926 break;
5927 }
5928 }
5929
5930 /* Set ready-list index to point to the last insn
5931 ('i++' below will advance it to the next insn). */
5932 i = top->index;
5933
5934 /* Backtrack. */
5935 ready_try [i] = 0;
5936
5937 if (targetm.sched.first_cycle_multipass_backtrack)
5938 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5939 ready_try, n_ready);
5940
5941 top--;
5942 memcpy (state, top->state, dfa_state_size);
5943 }
5944 else if (!ready_try [i])
5945 {
5946 tries_num++;
5947 if (tries_num > max_lookahead_tries)
5948 break;
5949 insn = ready_element (ready, i);
5950 delay = state_transition (state, insn);
5951 if (delay < 0)
5952 {
5953 if (state_dead_lock_p (state)
5954 || insn_finishes_cycle_p (insn))
5955 /* We won't issue any more instructions in the next
5956 choice_state. */
5957 top->rest = 0;
5958 else
5959 top->rest--;
5960
5961 n = top->n;
5962 if (memcmp (top->state, state, dfa_state_size) != 0)
5963 n++;
5964
5965 /* Advance to the next choice_entry. */
5966 top++;
5967 /* Initialize it. */
5968 top->rest = dfa_lookahead;
5969 top->index = i;
5970 top->n = n;
5971 memcpy (top->state, state, dfa_state_size);
5972 ready_try [i] = 1;
5973
5974 if (targetm.sched.first_cycle_multipass_issue)
5975 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5976 ready_try, n_ready,
5977 insn,
5978 &((top - 1)
5979 ->target_data));
5980
5981 i = -1;
5982 }
5983 }
5984
5985 /* Increase ready-list index. */
5986 i++;
5987 }
5988
5989 if (targetm.sched.first_cycle_multipass_end)
5990 targetm.sched.first_cycle_multipass_end (best != 0
5991 ? &choice_stack[1].target_data
5992 : NULL);
5993
5994 /* Restore the original state of the DFA. */
5995 memcpy (state, choice_stack->state, dfa_state_size);
5996
5997 return best;
5998 }
5999
6000 /* The following function chooses insn from READY and modifies
6001 READY. The following function is used only for first
6002 cycle multipass scheduling.
6003 Return:
6004 -1 if cycle should be advanced,
6005 0 if INSN_PTR is set to point to the desirable insn,
6006 1 if choose_ready () should be restarted without advancing the cycle. */
6007 static int
6008 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6009 rtx_insn **insn_ptr)
6010 {
6011 if (dbg_cnt (sched_insn) == false)
6012 {
6013 if (nonscheduled_insns_begin == NULL_RTX)
6014 nonscheduled_insns_begin = current_sched_info->prev_head;
6015
6016 rtx_insn *insn = first_nonscheduled_insn ();
6017
6018 if (QUEUE_INDEX (insn) == QUEUE_READY)
6019 /* INSN is in the ready_list. */
6020 {
6021 ready_remove_insn (insn);
6022 *insn_ptr = insn;
6023 return 0;
6024 }
6025
6026 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6027 gcc_assert (QUEUE_INDEX (insn) >= 0);
6028 return -1;
6029 }
6030
6031 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6032 || DEBUG_INSN_P (ready_element (ready, 0)))
6033 {
6034 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6035 *insn_ptr = ready_remove_first_dispatch (ready);
6036 else
6037 *insn_ptr = ready_remove_first (ready);
6038
6039 return 0;
6040 }
6041 else
6042 {
6043 /* Try to choose the best insn. */
6044 int index = 0, i;
6045 rtx_insn *insn;
6046
6047 insn = ready_element (ready, 0);
6048 if (INSN_CODE (insn) < 0)
6049 {
6050 *insn_ptr = ready_remove_first (ready);
6051 return 0;
6052 }
6053
6054 /* Filter the search space. */
6055 for (i = 0; i < ready->n_ready; i++)
6056 {
6057 ready_try[i] = 0;
6058
6059 insn = ready_element (ready, i);
6060
6061 /* If this insn is recognizable we should have already
6062 recognized it earlier.
6063 ??? Not very clear where this is supposed to be done.
6064 See dep_cost_1. */
6065 gcc_checking_assert (INSN_CODE (insn) >= 0
6066 || recog_memoized (insn) < 0);
6067 if (INSN_CODE (insn) < 0)
6068 {
6069 /* Non-recognized insns at position 0 are handled above. */
6070 gcc_assert (i > 0);
6071 ready_try[i] = 1;
6072 continue;
6073 }
6074
6075 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6076 {
6077 ready_try[i]
6078 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6079 (insn, i));
6080
6081 if (ready_try[i] < 0)
6082 /* Queue instruction for several cycles.
6083 We need to restart choose_ready as we have changed
6084 the ready list. */
6085 {
6086 change_queue_index (insn, -ready_try[i]);
6087 return 1;
6088 }
6089
6090 /* Make sure that we didn't end up with 0'th insn filtered out.
6091 Don't be tempted to make life easier for backends and just
6092 requeue 0'th insn if (ready_try[0] == 0) and restart
6093 choose_ready. Backends should be very considerate about
6094 requeueing instructions -- especially the highest priority
6095 one at position 0. */
6096 gcc_assert (ready_try[i] == 0 || i > 0);
6097 if (ready_try[i])
6098 continue;
6099 }
6100
6101 gcc_assert (ready_try[i] == 0);
6102 /* INSN made it through the scrutiny of filters! */
6103 }
6104
6105 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6106 {
6107 *insn_ptr = ready_remove_first (ready);
6108 if (sched_verbose >= 4)
6109 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6110 (*current_sched_info->print_insn) (*insn_ptr, 0));
6111 return 0;
6112 }
6113 else
6114 {
6115 if (sched_verbose >= 4)
6116 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6117 (*current_sched_info->print_insn)
6118 (ready_element (ready, index), 0));
6119
6120 *insn_ptr = ready_remove (ready, index);
6121 return 0;
6122 }
6123 }
6124 }
6125
6126 /* This function is called when we have successfully scheduled a
6127 block. It uses the schedule stored in the scheduled_insns vector
6128 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6129 append the scheduled insns; TAIL is the insn after the scheduled
6130 block. TARGET_BB is the argument passed to schedule_block. */
6131
6132 static void
6133 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6134 {
6135 unsigned int i;
6136 rtx_insn *insn;
6137
6138 last_scheduled_insn = prev_head;
6139 for (i = 0;
6140 scheduled_insns.iterate (i, &insn);
6141 i++)
6142 {
6143 if (control_flow_insn_p (last_scheduled_insn)
6144 || current_sched_info->advance_target_bb (*target_bb, insn))
6145 {
6146 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6147
6148 if (sched_verbose)
6149 {
6150 rtx_insn *x;
6151
6152 x = next_real_insn (last_scheduled_insn);
6153 gcc_assert (x);
6154 dump_new_block_header (1, *target_bb, x, tail);
6155 }
6156
6157 last_scheduled_insn = bb_note (*target_bb);
6158 }
6159
6160 if (current_sched_info->begin_move_insn)
6161 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6162 move_insn (insn, last_scheduled_insn,
6163 current_sched_info->next_tail);
6164 if (!DEBUG_INSN_P (insn))
6165 reemit_notes (insn);
6166 last_scheduled_insn = insn;
6167 }
6168
6169 scheduled_insns.truncate (0);
6170 }
6171
6172 /* Examine all insns on the ready list and queue those which can't be
6173 issued in this cycle. TEMP_STATE is temporary scheduler state we
6174 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6175 have been issued for the current cycle, which means it is valid to
6176 issue an asm statement.
6177
6178 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6179 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6180 we only leave insns which have an INSN_EXACT_TICK. */
6181
6182 static void
6183 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6184 bool shadows_only_p, bool modulo_epilogue_p)
6185 {
6186 int i, pass;
6187 bool sched_group_found = false;
6188 int min_cost_group = 1;
6189
6190 if (sched_fusion)
6191 return;
6192
6193 for (i = 0; i < ready.n_ready; i++)
6194 {
6195 rtx_insn *insn = ready_element (&ready, i);
6196 if (SCHED_GROUP_P (insn))
6197 {
6198 sched_group_found = true;
6199 break;
6200 }
6201 }
6202
6203 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6204 such an insn first and note its cost, then schedule all other insns
6205 for one cycle later. */
6206 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6207 {
6208 int n = ready.n_ready;
6209 for (i = 0; i < n; i++)
6210 {
6211 rtx_insn *insn = ready_element (&ready, i);
6212 int cost = 0;
6213 const char *reason = "resource conflict";
6214
6215 if (DEBUG_INSN_P (insn))
6216 continue;
6217
6218 if (sched_group_found && !SCHED_GROUP_P (insn))
6219 {
6220 if (pass == 0)
6221 continue;
6222 cost = min_cost_group;
6223 reason = "not in sched group";
6224 }
6225 else if (modulo_epilogue_p
6226 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6227 {
6228 cost = max_insn_queue_index;
6229 reason = "not an epilogue insn";
6230 }
6231 else if (shadows_only_p && !SHADOW_P (insn))
6232 {
6233 cost = 1;
6234 reason = "not a shadow";
6235 }
6236 else if (recog_memoized (insn) < 0)
6237 {
6238 if (!first_cycle_insn_p
6239 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6240 || asm_noperands (PATTERN (insn)) >= 0))
6241 cost = 1;
6242 reason = "asm";
6243 }
6244 else if (sched_pressure != SCHED_PRESSURE_NONE)
6245 {
6246 if (sched_pressure == SCHED_PRESSURE_MODEL
6247 && INSN_TICK (insn) <= clock_var)
6248 {
6249 memcpy (temp_state, curr_state, dfa_state_size);
6250 if (state_transition (temp_state, insn) >= 0)
6251 INSN_TICK (insn) = clock_var + 1;
6252 }
6253 cost = 0;
6254 }
6255 else
6256 {
6257 int delay_cost = 0;
6258
6259 if (delay_htab)
6260 {
6261 struct delay_pair *delay_entry;
6262 delay_entry
6263 = delay_htab->find_with_hash (insn,
6264 htab_hash_pointer (insn));
6265 while (delay_entry && delay_cost == 0)
6266 {
6267 delay_cost = estimate_shadow_tick (delay_entry);
6268 if (delay_cost > max_insn_queue_index)
6269 delay_cost = max_insn_queue_index;
6270 delay_entry = delay_entry->next_same_i1;
6271 }
6272 }
6273
6274 memcpy (temp_state, curr_state, dfa_state_size);
6275 cost = state_transition (temp_state, insn);
6276 if (cost < 0)
6277 cost = 0;
6278 else if (cost == 0)
6279 cost = 1;
6280 if (cost < delay_cost)
6281 {
6282 cost = delay_cost;
6283 reason = "shadow tick";
6284 }
6285 }
6286 if (cost >= 1)
6287 {
6288 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6289 min_cost_group = cost;
6290 ready_remove (&ready, i);
6291 /* Normally we'd want to queue INSN for COST cycles. However,
6292 if SCHED_GROUP_P is set, then we must ensure that nothing
6293 else comes between INSN and its predecessor. If there is
6294 some other insn ready to fire on the next cycle, then that
6295 invariant would be broken.
6296
6297 So when SCHED_GROUP_P is set, just queue this insn for a
6298 single cycle. */
6299 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6300 if (i + 1 < n)
6301 break;
6302 }
6303 }
6304 if (i == n)
6305 pass++;
6306 }
6307 }
6308
6309 /* Called when we detect that the schedule is impossible. We examine the
6310 backtrack queue to find the earliest insn that caused this condition. */
6311
6312 static struct haifa_saved_data *
6313 verify_shadows (void)
6314 {
6315 struct haifa_saved_data *save, *earliest_fail = NULL;
6316 for (save = backtrack_queue; save; save = save->next)
6317 {
6318 int t;
6319 struct delay_pair *pair = save->delay_pair;
6320 rtx_insn *i1 = pair->i1;
6321
6322 for (; pair; pair = pair->next_same_i1)
6323 {
6324 rtx_insn *i2 = pair->i2;
6325
6326 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6327 continue;
6328
6329 t = INSN_TICK (i1) + pair_delay (pair);
6330 if (t < clock_var)
6331 {
6332 if (sched_verbose >= 2)
6333 fprintf (sched_dump,
6334 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6335 ", not ready\n",
6336 INSN_UID (pair->i1), INSN_UID (pair->i2),
6337 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6338 earliest_fail = save;
6339 break;
6340 }
6341 if (QUEUE_INDEX (i2) >= 0)
6342 {
6343 int queued_for = INSN_TICK (i2);
6344
6345 if (t < queued_for)
6346 {
6347 if (sched_verbose >= 2)
6348 fprintf (sched_dump,
6349 ";;\t\tfailed delay requirements for %d/%d"
6350 " (%d->%d), queued too late\n",
6351 INSN_UID (pair->i1), INSN_UID (pair->i2),
6352 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6353 earliest_fail = save;
6354 break;
6355 }
6356 }
6357 }
6358 }
6359
6360 return earliest_fail;
6361 }
6362
6363 /* Print instructions together with useful scheduling information between
6364 HEAD and TAIL (inclusive). */
6365 static void
6366 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6367 {
6368 fprintf (sched_dump, ";;\t| insn | prio |\n");
6369
6370 rtx_insn *next_tail = NEXT_INSN (tail);
6371 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6372 {
6373 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6374 const char *pattern = (NOTE_P (insn)
6375 ? "note"
6376 : str_pattern_slim (PATTERN (insn)));
6377
6378 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6379 INSN_UID (insn), priority, pattern);
6380
6381 if (sched_verbose >= 4)
6382 {
6383 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6384 fprintf (sched_dump, "nothing");
6385 else
6386 print_reservation (sched_dump, insn);
6387 }
6388 fprintf (sched_dump, "\n");
6389 }
6390 }
6391
6392 /* Use forward list scheduling to rearrange insns of block pointed to by
6393 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6394 region. */
6395
6396 bool
6397 schedule_block (basic_block *target_bb, state_t init_state)
6398 {
6399 int i;
6400 bool success = modulo_ii == 0;
6401 struct sched_block_state ls;
6402 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6403 int sort_p, advance, start_clock_var;
6404
6405 /* Head/tail info for this block. */
6406 rtx_insn *prev_head = current_sched_info->prev_head;
6407 rtx_insn *next_tail = current_sched_info->next_tail;
6408 rtx_insn *head = NEXT_INSN (prev_head);
6409 rtx_insn *tail = PREV_INSN (next_tail);
6410
6411 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6412 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6413 find_modifiable_mems (head, tail);
6414
6415 /* We used to have code to avoid getting parameters moved from hard
6416 argument registers into pseudos.
6417
6418 However, it was removed when it proved to be of marginal benefit
6419 and caused problems because schedule_block and compute_forward_dependences
6420 had different notions of what the "head" insn was. */
6421
6422 gcc_assert (head != tail || INSN_P (head));
6423
6424 haifa_recovery_bb_recently_added_p = false;
6425
6426 backtrack_queue = NULL;
6427
6428 /* Debug info. */
6429 if (sched_verbose)
6430 {
6431 dump_new_block_header (0, *target_bb, head, tail);
6432
6433 if (sched_verbose >= 2)
6434 {
6435 dump_insn_stream (head, tail);
6436 memset (&rank_for_schedule_stats, 0,
6437 sizeof (rank_for_schedule_stats));
6438 }
6439 }
6440
6441 if (init_state == NULL)
6442 state_reset (curr_state);
6443 else
6444 memcpy (curr_state, init_state, dfa_state_size);
6445
6446 /* Clear the ready list. */
6447 ready.first = ready.veclen - 1;
6448 ready.n_ready = 0;
6449 ready.n_debug = 0;
6450
6451 /* It is used for first cycle multipass scheduling. */
6452 temp_state = alloca (dfa_state_size);
6453
6454 if (targetm.sched.init)
6455 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6456
6457 /* We start inserting insns after PREV_HEAD. */
6458 last_scheduled_insn = prev_head;
6459 last_nondebug_scheduled_insn = NULL;
6460 nonscheduled_insns_begin = NULL;
6461
6462 gcc_assert ((NOTE_P (last_scheduled_insn)
6463 || DEBUG_INSN_P (last_scheduled_insn))
6464 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6465
6466 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6467 queue. */
6468 q_ptr = 0;
6469 q_size = 0;
6470
6471 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6472 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6473
6474 /* Start just before the beginning of time. */
6475 clock_var = -1;
6476
6477 /* We need queue and ready lists and clock_var be initialized
6478 in try_ready () (which is called through init_ready_list ()). */
6479 (*current_sched_info->init_ready_list) ();
6480
6481 if (sched_pressure)
6482 sched_pressure_start_bb (*target_bb);
6483
6484 /* The algorithm is O(n^2) in the number of ready insns at any given
6485 time in the worst case. Before reload we are more likely to have
6486 big lists so truncate them to a reasonable size. */
6487 if (!reload_completed
6488 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6489 {
6490 ready_sort_debug (&ready);
6491 ready_sort_real (&ready);
6492
6493 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6494 If there are debug insns, we know they're first. */
6495 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6496 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6497 break;
6498
6499 if (sched_verbose >= 2)
6500 {
6501 fprintf (sched_dump,
6502 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6503 debug_ready_list (&ready);
6504 fprintf (sched_dump,
6505 ";;\t\t before reload => truncated to %d insns\n", i);
6506 }
6507
6508 /* Delay all insns past it for 1 cycle. If debug counter is
6509 activated make an exception for the insn right after
6510 nonscheduled_insns_begin. */
6511 {
6512 rtx_insn *skip_insn;
6513
6514 if (dbg_cnt (sched_insn) == false)
6515 skip_insn = first_nonscheduled_insn ();
6516 else
6517 skip_insn = NULL;
6518
6519 while (i < ready.n_ready)
6520 {
6521 rtx_insn *insn;
6522
6523 insn = ready_remove (&ready, i);
6524
6525 if (insn != skip_insn)
6526 queue_insn (insn, 1, "list truncated");
6527 }
6528 if (skip_insn)
6529 ready_add (&ready, skip_insn, true);
6530 }
6531 }
6532
6533 /* Now we can restore basic block notes and maintain precise cfg. */
6534 restore_bb_notes (*target_bb);
6535
6536 last_clock_var = -1;
6537
6538 advance = 0;
6539
6540 gcc_assert (scheduled_insns.length () == 0);
6541 sort_p = TRUE;
6542 must_backtrack = false;
6543 modulo_insns_scheduled = 0;
6544
6545 ls.modulo_epilogue = false;
6546 ls.first_cycle_insn_p = true;
6547
6548 /* Loop until all the insns in BB are scheduled. */
6549 while ((*current_sched_info->schedule_more_p) ())
6550 {
6551 perform_replacements_new_cycle ();
6552 do
6553 {
6554 start_clock_var = clock_var;
6555
6556 clock_var++;
6557
6558 advance_one_cycle ();
6559
6560 /* Add to the ready list all pending insns that can be issued now.
6561 If there are no ready insns, increment clock until one
6562 is ready and add all pending insns at that point to the ready
6563 list. */
6564 queue_to_ready (&ready);
6565
6566 gcc_assert (ready.n_ready);
6567
6568 if (sched_verbose >= 2)
6569 {
6570 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6571 debug_ready_list (&ready);
6572 }
6573 advance -= clock_var - start_clock_var;
6574 }
6575 while (advance > 0);
6576
6577 if (ls.modulo_epilogue)
6578 {
6579 int stage = clock_var / modulo_ii;
6580 if (stage > modulo_last_stage * 2 + 2)
6581 {
6582 if (sched_verbose >= 2)
6583 fprintf (sched_dump,
6584 ";;\t\tmodulo scheduled succeeded at II %d\n",
6585 modulo_ii);
6586 success = true;
6587 goto end_schedule;
6588 }
6589 }
6590 else if (modulo_ii > 0)
6591 {
6592 int stage = clock_var / modulo_ii;
6593 if (stage > modulo_max_stages)
6594 {
6595 if (sched_verbose >= 2)
6596 fprintf (sched_dump,
6597 ";;\t\tfailing schedule due to excessive stages\n");
6598 goto end_schedule;
6599 }
6600 if (modulo_n_insns == modulo_insns_scheduled
6601 && stage > modulo_last_stage)
6602 {
6603 if (sched_verbose >= 2)
6604 fprintf (sched_dump,
6605 ";;\t\tfound kernel after %d stages, II %d\n",
6606 stage, modulo_ii);
6607 ls.modulo_epilogue = true;
6608 }
6609 }
6610
6611 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6612 if (ready.n_ready == 0)
6613 continue;
6614 if (must_backtrack)
6615 goto do_backtrack;
6616
6617 ls.shadows_only_p = false;
6618 cycle_issued_insns = 0;
6619 ls.can_issue_more = issue_rate;
6620 for (;;)
6621 {
6622 rtx_insn *insn;
6623 int cost;
6624 bool asm_p;
6625
6626 if (sort_p && ready.n_ready > 0)
6627 {
6628 /* Sort the ready list based on priority. This must be
6629 done every iteration through the loop, as schedule_insn
6630 may have readied additional insns that will not be
6631 sorted correctly. */
6632 ready_sort (&ready);
6633
6634 if (sched_verbose >= 2)
6635 {
6636 fprintf (sched_dump,
6637 ";;\t\tReady list after ready_sort: ");
6638 debug_ready_list (&ready);
6639 }
6640 }
6641
6642 /* We don't want md sched reorder to even see debug isns, so put
6643 them out right away. */
6644 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6645 && (*current_sched_info->schedule_more_p) ())
6646 {
6647 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6648 {
6649 rtx_insn *insn = ready_remove_first (&ready);
6650 gcc_assert (DEBUG_INSN_P (insn));
6651 (*current_sched_info->begin_schedule_ready) (insn);
6652 scheduled_insns.safe_push (insn);
6653 last_scheduled_insn = insn;
6654 advance = schedule_insn (insn);
6655 gcc_assert (advance == 0);
6656 if (ready.n_ready > 0)
6657 ready_sort (&ready);
6658 }
6659 }
6660
6661 if (ls.first_cycle_insn_p && !ready.n_ready)
6662 break;
6663
6664 resume_after_backtrack:
6665 /* Allow the target to reorder the list, typically for
6666 better instruction bundling. */
6667 if (sort_p
6668 && (ready.n_ready == 0
6669 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6670 {
6671 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6672 ls.can_issue_more
6673 = targetm.sched.reorder (sched_dump, sched_verbose,
6674 ready_lastpos (&ready),
6675 &ready.n_ready, clock_var);
6676 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6677 ls.can_issue_more
6678 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6679 ready.n_ready
6680 ? ready_lastpos (&ready) : NULL,
6681 &ready.n_ready, clock_var);
6682 }
6683
6684 restart_choose_ready:
6685 if (sched_verbose >= 2)
6686 {
6687 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6688 clock_var);
6689 debug_ready_list (&ready);
6690 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6691 print_curr_reg_pressure ();
6692 }
6693
6694 if (ready.n_ready == 0
6695 && ls.can_issue_more
6696 && reload_completed)
6697 {
6698 /* Allow scheduling insns directly from the queue in case
6699 there's nothing better to do (ready list is empty) but
6700 there are still vacant dispatch slots in the current cycle. */
6701 if (sched_verbose >= 6)
6702 fprintf (sched_dump,";;\t\tSecond chance\n");
6703 memcpy (temp_state, curr_state, dfa_state_size);
6704 if (early_queue_to_ready (temp_state, &ready))
6705 ready_sort (&ready);
6706 }
6707
6708 if (ready.n_ready == 0
6709 || !ls.can_issue_more
6710 || state_dead_lock_p (curr_state)
6711 || !(*current_sched_info->schedule_more_p) ())
6712 break;
6713
6714 /* Select and remove the insn from the ready list. */
6715 if (sort_p)
6716 {
6717 int res;
6718
6719 insn = NULL;
6720 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6721
6722 if (res < 0)
6723 /* Finish cycle. */
6724 break;
6725 if (res > 0)
6726 goto restart_choose_ready;
6727
6728 gcc_assert (insn != NULL_RTX);
6729 }
6730 else
6731 insn = ready_remove_first (&ready);
6732
6733 if (sched_pressure != SCHED_PRESSURE_NONE
6734 && INSN_TICK (insn) > clock_var)
6735 {
6736 ready_add (&ready, insn, true);
6737 advance = 1;
6738 break;
6739 }
6740
6741 if (targetm.sched.dfa_new_cycle
6742 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6743 insn, last_clock_var,
6744 clock_var, &sort_p))
6745 /* SORT_P is used by the target to override sorting
6746 of the ready list. This is needed when the target
6747 has modified its internal structures expecting that
6748 the insn will be issued next. As we need the insn
6749 to have the highest priority (so it will be returned by
6750 the ready_remove_first call above), we invoke
6751 ready_add (&ready, insn, true).
6752 But, still, there is one issue: INSN can be later
6753 discarded by scheduler's front end through
6754 current_sched_info->can_schedule_ready_p, hence, won't
6755 be issued next. */
6756 {
6757 ready_add (&ready, insn, true);
6758 break;
6759 }
6760
6761 sort_p = TRUE;
6762
6763 if (current_sched_info->can_schedule_ready_p
6764 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6765 /* We normally get here only if we don't want to move
6766 insn from the split block. */
6767 {
6768 TODO_SPEC (insn) = DEP_POSTPONED;
6769 goto restart_choose_ready;
6770 }
6771
6772 if (delay_htab)
6773 {
6774 /* If this insn is the first part of a delay-slot pair, record a
6775 backtrack point. */
6776 struct delay_pair *delay_entry;
6777 delay_entry
6778 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6779 if (delay_entry)
6780 {
6781 save_backtrack_point (delay_entry, ls);
6782 if (sched_verbose >= 2)
6783 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6784 }
6785 }
6786
6787 /* DECISION is made. */
6788
6789 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6790 {
6791 modulo_insns_scheduled++;
6792 modulo_last_stage = clock_var / modulo_ii;
6793 }
6794 if (TODO_SPEC (insn) & SPECULATIVE)
6795 generate_recovery_code (insn);
6796
6797 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6798 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6799
6800 /* Update counters, etc in the scheduler's front end. */
6801 (*current_sched_info->begin_schedule_ready) (insn);
6802 scheduled_insns.safe_push (insn);
6803 gcc_assert (NONDEBUG_INSN_P (insn));
6804 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6805
6806 if (recog_memoized (insn) >= 0)
6807 {
6808 memcpy (temp_state, curr_state, dfa_state_size);
6809 cost = state_transition (curr_state, insn);
6810 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6811 gcc_assert (cost < 0);
6812 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6813 cycle_issued_insns++;
6814 asm_p = false;
6815 }
6816 else
6817 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6818 || asm_noperands (PATTERN (insn)) >= 0);
6819
6820 if (targetm.sched.variable_issue)
6821 ls.can_issue_more =
6822 targetm.sched.variable_issue (sched_dump, sched_verbose,
6823 insn, ls.can_issue_more);
6824 /* A naked CLOBBER or USE generates no instruction, so do
6825 not count them against the issue rate. */
6826 else if (GET_CODE (PATTERN (insn)) != USE
6827 && GET_CODE (PATTERN (insn)) != CLOBBER)
6828 ls.can_issue_more--;
6829 advance = schedule_insn (insn);
6830
6831 if (SHADOW_P (insn))
6832 ls.shadows_only_p = true;
6833
6834 /* After issuing an asm insn we should start a new cycle. */
6835 if (advance == 0 && asm_p)
6836 advance = 1;
6837
6838 if (must_backtrack)
6839 break;
6840
6841 if (advance != 0)
6842 break;
6843
6844 ls.first_cycle_insn_p = false;
6845 if (ready.n_ready > 0)
6846 prune_ready_list (temp_state, false, ls.shadows_only_p,
6847 ls.modulo_epilogue);
6848 }
6849
6850 do_backtrack:
6851 if (!must_backtrack)
6852 for (i = 0; i < ready.n_ready; i++)
6853 {
6854 rtx_insn *insn = ready_element (&ready, i);
6855 if (INSN_EXACT_TICK (insn) == clock_var)
6856 {
6857 must_backtrack = true;
6858 clock_var++;
6859 break;
6860 }
6861 }
6862 if (must_backtrack && modulo_ii > 0)
6863 {
6864 if (modulo_backtracks_left == 0)
6865 goto end_schedule;
6866 modulo_backtracks_left--;
6867 }
6868 while (must_backtrack)
6869 {
6870 struct haifa_saved_data *failed;
6871 rtx_insn *failed_insn;
6872
6873 must_backtrack = false;
6874 failed = verify_shadows ();
6875 gcc_assert (failed);
6876
6877 failed_insn = failed->delay_pair->i1;
6878 /* Clear these queues. */
6879 perform_replacements_new_cycle ();
6880 toggle_cancelled_flags (false);
6881 unschedule_insns_until (failed_insn);
6882 while (failed != backtrack_queue)
6883 free_topmost_backtrack_point (true);
6884 restore_last_backtrack_point (&ls);
6885 if (sched_verbose >= 2)
6886 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6887 /* Delay by at least a cycle. This could cause additional
6888 backtracking. */
6889 queue_insn (failed_insn, 1, "backtracked");
6890 advance = 0;
6891 if (must_backtrack)
6892 continue;
6893 if (ready.n_ready > 0)
6894 goto resume_after_backtrack;
6895 else
6896 {
6897 if (clock_var == 0 && ls.first_cycle_insn_p)
6898 goto end_schedule;
6899 advance = 1;
6900 break;
6901 }
6902 }
6903 ls.first_cycle_insn_p = true;
6904 }
6905 if (ls.modulo_epilogue)
6906 success = true;
6907 end_schedule:
6908 if (!ls.first_cycle_insn_p || advance)
6909 advance_one_cycle ();
6910 perform_replacements_new_cycle ();
6911 if (modulo_ii > 0)
6912 {
6913 /* Once again, debug insn suckiness: they can be on the ready list
6914 even if they have unresolved dependencies. To make our view
6915 of the world consistent, remove such "ready" insns. */
6916 restart_debug_insn_loop:
6917 for (i = ready.n_ready - 1; i >= 0; i--)
6918 {
6919 rtx_insn *x;
6920
6921 x = ready_element (&ready, i);
6922 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6923 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6924 {
6925 ready_remove (&ready, i);
6926 goto restart_debug_insn_loop;
6927 }
6928 }
6929 for (i = ready.n_ready - 1; i >= 0; i--)
6930 {
6931 rtx_insn *x;
6932
6933 x = ready_element (&ready, i);
6934 resolve_dependencies (x);
6935 }
6936 for (i = 0; i <= max_insn_queue_index; i++)
6937 {
6938 rtx_insn_list *link;
6939 while ((link = insn_queue[i]) != NULL)
6940 {
6941 rtx_insn *x = link->insn ();
6942 insn_queue[i] = link->next ();
6943 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6944 free_INSN_LIST_node (link);
6945 resolve_dependencies (x);
6946 }
6947 }
6948 }
6949
6950 if (!success)
6951 undo_all_replacements ();
6952
6953 /* Debug info. */
6954 if (sched_verbose)
6955 {
6956 fprintf (sched_dump, ";;\tReady list (final): ");
6957 debug_ready_list (&ready);
6958 }
6959
6960 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6961 /* Sanity check -- queue must be empty now. Meaningless if region has
6962 multiple bbs. */
6963 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6964 else if (modulo_ii == 0)
6965 {
6966 /* We must maintain QUEUE_INDEX between blocks in region. */
6967 for (i = ready.n_ready - 1; i >= 0; i--)
6968 {
6969 rtx_insn *x;
6970
6971 x = ready_element (&ready, i);
6972 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6973 TODO_SPEC (x) = HARD_DEP;
6974 }
6975
6976 if (q_size)
6977 for (i = 0; i <= max_insn_queue_index; i++)
6978 {
6979 rtx_insn_list *link;
6980 for (link = insn_queue[i]; link; link = link->next ())
6981 {
6982 rtx_insn *x;
6983
6984 x = link->insn ();
6985 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6986 TODO_SPEC (x) = HARD_DEP;
6987 }
6988 free_INSN_LIST_list (&insn_queue[i]);
6989 }
6990 }
6991
6992 if (sched_pressure == SCHED_PRESSURE_MODEL)
6993 model_end_schedule ();
6994
6995 if (success)
6996 {
6997 commit_schedule (prev_head, tail, target_bb);
6998 if (sched_verbose)
6999 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7000 }
7001 else
7002 last_scheduled_insn = tail;
7003
7004 scheduled_insns.truncate (0);
7005
7006 if (!current_sched_info->queue_must_finish_empty
7007 || haifa_recovery_bb_recently_added_p)
7008 {
7009 /* INSN_TICK (minimum clock tick at which the insn becomes
7010 ready) may be not correct for the insn in the subsequent
7011 blocks of the region. We should use a correct value of
7012 `clock_var' or modify INSN_TICK. It is better to keep
7013 clock_var value equal to 0 at the start of a basic block.
7014 Therefore we modify INSN_TICK here. */
7015 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7016 }
7017
7018 if (targetm.sched.finish)
7019 {
7020 targetm.sched.finish (sched_dump, sched_verbose);
7021 /* Target might have added some instructions to the scheduled block
7022 in its md_finish () hook. These new insns don't have any data
7023 initialized and to identify them we extend h_i_d so that they'll
7024 get zero luids. */
7025 sched_extend_luids ();
7026 }
7027
7028 /* Update head/tail boundaries. */
7029 head = NEXT_INSN (prev_head);
7030 tail = last_scheduled_insn;
7031
7032 if (sched_verbose)
7033 {
7034 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7035 INSN_UID (head), INSN_UID (tail));
7036
7037 if (sched_verbose >= 2)
7038 {
7039 dump_insn_stream (head, tail);
7040 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7041 NULL);
7042 }
7043
7044 fprintf (sched_dump, "\n");
7045 }
7046
7047 head = restore_other_notes (head, NULL);
7048
7049 current_sched_info->head = head;
7050 current_sched_info->tail = tail;
7051
7052 free_backtrack_queue ();
7053
7054 return success;
7055 }
7056 \f
7057 /* Set_priorities: compute priority of each insn in the block. */
7058
7059 int
7060 set_priorities (rtx_insn *head, rtx_insn *tail)
7061 {
7062 rtx_insn *insn;
7063 int n_insn;
7064 int sched_max_insns_priority =
7065 current_sched_info->sched_max_insns_priority;
7066 rtx_insn *prev_head;
7067
7068 if (head == tail && ! INSN_P (head))
7069 gcc_unreachable ();
7070
7071 n_insn = 0;
7072
7073 prev_head = PREV_INSN (head);
7074 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7075 {
7076 if (!INSN_P (insn))
7077 continue;
7078
7079 n_insn++;
7080 (void) priority (insn);
7081
7082 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7083
7084 sched_max_insns_priority = MAX (sched_max_insns_priority,
7085 INSN_PRIORITY (insn));
7086 }
7087
7088 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7089
7090 return n_insn;
7091 }
7092
7093 /* Set dump and sched_verbose for the desired debugging output. If no
7094 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
7095 For -fsched-verbose=N, N>=10, print everything to stderr. */
7096 void
7097 setup_sched_dump (void)
7098 {
7099 sched_verbose = sched_verbose_param;
7100 if (sched_verbose_param == 0 && dump_file)
7101 sched_verbose = 1;
7102 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
7103 ? stderr : dump_file);
7104 }
7105
7106 /* Allocate data for register pressure sensitive scheduling. */
7107 static void
7108 alloc_global_sched_pressure_data (void)
7109 {
7110 if (sched_pressure != SCHED_PRESSURE_NONE)
7111 {
7112 int i, max_regno = max_reg_num ();
7113
7114 if (sched_dump != NULL)
7115 /* We need info about pseudos for rtl dumps about pseudo
7116 classes and costs. */
7117 regstat_init_n_sets_and_refs ();
7118 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7119 sched_regno_pressure_class
7120 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7121 for (i = 0; i < max_regno; i++)
7122 sched_regno_pressure_class[i]
7123 = (i < FIRST_PSEUDO_REGISTER
7124 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7125 : ira_pressure_class_translate[reg_allocno_class (i)]);
7126 curr_reg_live = BITMAP_ALLOC (NULL);
7127 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7128 {
7129 saved_reg_live = BITMAP_ALLOC (NULL);
7130 region_ref_regs = BITMAP_ALLOC (NULL);
7131 }
7132
7133 /* Calculate number of CALL_USED_REGS in register classes that
7134 we calculate register pressure for. */
7135 for (int c = 0; c < ira_pressure_classes_num; ++c)
7136 {
7137 enum reg_class cl = ira_pressure_classes[c];
7138
7139 call_used_regs_num[cl] = 0;
7140
7141 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7142 if (call_used_regs[ira_class_hard_regs[cl][i]])
7143 ++call_used_regs_num[cl];
7144 }
7145 }
7146 }
7147
7148 /* Free data for register pressure sensitive scheduling. Also called
7149 from schedule_region when stopping sched-pressure early. */
7150 void
7151 free_global_sched_pressure_data (void)
7152 {
7153 if (sched_pressure != SCHED_PRESSURE_NONE)
7154 {
7155 if (regstat_n_sets_and_refs != NULL)
7156 regstat_free_n_sets_and_refs ();
7157 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7158 {
7159 BITMAP_FREE (region_ref_regs);
7160 BITMAP_FREE (saved_reg_live);
7161 }
7162 BITMAP_FREE (curr_reg_live);
7163 free (sched_regno_pressure_class);
7164 }
7165 }
7166
7167 /* Initialize some global state for the scheduler. This function works
7168 with the common data shared between all the schedulers. It is called
7169 from the scheduler specific initialization routine. */
7170
7171 void
7172 sched_init (void)
7173 {
7174 /* Disable speculative loads in their presence if cc0 defined. */
7175 if (HAVE_cc0)
7176 flag_schedule_speculative_load = 0;
7177
7178 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7179 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7180
7181 if (live_range_shrinkage_p)
7182 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7183 else if (flag_sched_pressure
7184 && !reload_completed
7185 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7186 sched_pressure = ((enum sched_pressure_algorithm)
7187 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7188 else
7189 sched_pressure = SCHED_PRESSURE_NONE;
7190
7191 if (sched_pressure != SCHED_PRESSURE_NONE)
7192 ira_setup_eliminable_regset ();
7193
7194 /* Initialize SPEC_INFO. */
7195 if (targetm.sched.set_sched_flags)
7196 {
7197 spec_info = &spec_info_var;
7198 targetm.sched.set_sched_flags (spec_info);
7199
7200 if (spec_info->mask != 0)
7201 {
7202 spec_info->data_weakness_cutoff =
7203 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7204 spec_info->control_weakness_cutoff =
7205 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7206 * REG_BR_PROB_BASE) / 100;
7207 }
7208 else
7209 /* So we won't read anything accidentally. */
7210 spec_info = NULL;
7211
7212 }
7213 else
7214 /* So we won't read anything accidentally. */
7215 spec_info = 0;
7216
7217 /* Initialize issue_rate. */
7218 if (targetm.sched.issue_rate)
7219 issue_rate = targetm.sched.issue_rate ();
7220 else
7221 issue_rate = 1;
7222
7223 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7224 /* Don't use max_issue with reg_pressure scheduling. Multipass
7225 scheduling and reg_pressure scheduling undo each other's decisions. */
7226 && sched_pressure == SCHED_PRESSURE_NONE)
7227 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7228 else
7229 dfa_lookahead = 0;
7230
7231 /* Set to "0" so that we recalculate. */
7232 max_lookahead_tries = 0;
7233
7234 if (targetm.sched.init_dfa_pre_cycle_insn)
7235 targetm.sched.init_dfa_pre_cycle_insn ();
7236
7237 if (targetm.sched.init_dfa_post_cycle_insn)
7238 targetm.sched.init_dfa_post_cycle_insn ();
7239
7240 dfa_start ();
7241 dfa_state_size = state_size ();
7242
7243 init_alias_analysis ();
7244
7245 if (!sched_no_dce)
7246 df_set_flags (DF_LR_RUN_DCE);
7247 df_note_add_problem ();
7248
7249 /* More problems needed for interloop dep calculation in SMS. */
7250 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7251 {
7252 df_rd_add_problem ();
7253 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7254 }
7255
7256 df_analyze ();
7257
7258 /* Do not run DCE after reload, as this can kill nops inserted
7259 by bundling. */
7260 if (reload_completed)
7261 df_clear_flags (DF_LR_RUN_DCE);
7262
7263 regstat_compute_calls_crossed ();
7264
7265 if (targetm.sched.init_global)
7266 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7267
7268 alloc_global_sched_pressure_data ();
7269
7270 curr_state = xmalloc (dfa_state_size);
7271 }
7272
7273 static void haifa_init_only_bb (basic_block, basic_block);
7274
7275 /* Initialize data structures specific to the Haifa scheduler. */
7276 void
7277 haifa_sched_init (void)
7278 {
7279 setup_sched_dump ();
7280 sched_init ();
7281
7282 scheduled_insns.create (0);
7283
7284 if (spec_info != NULL)
7285 {
7286 sched_deps_info->use_deps_list = 1;
7287 sched_deps_info->generate_spec_deps = 1;
7288 }
7289
7290 /* Initialize luids, dependency caches, target and h_i_d for the
7291 whole function. */
7292 {
7293 bb_vec_t bbs;
7294 bbs.create (n_basic_blocks_for_fn (cfun));
7295 basic_block bb;
7296
7297 sched_init_bbs ();
7298
7299 FOR_EACH_BB_FN (bb, cfun)
7300 bbs.quick_push (bb);
7301 sched_init_luids (bbs);
7302 sched_deps_init (true);
7303 sched_extend_target ();
7304 haifa_init_h_i_d (bbs);
7305
7306 bbs.release ();
7307 }
7308
7309 sched_init_only_bb = haifa_init_only_bb;
7310 sched_split_block = sched_split_block_1;
7311 sched_create_empty_bb = sched_create_empty_bb_1;
7312 haifa_recovery_bb_ever_added_p = false;
7313
7314 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7315 before_recovery = 0;
7316 after_recovery = 0;
7317
7318 modulo_ii = 0;
7319 }
7320
7321 /* Finish work with the data specific to the Haifa scheduler. */
7322 void
7323 haifa_sched_finish (void)
7324 {
7325 sched_create_empty_bb = NULL;
7326 sched_split_block = NULL;
7327 sched_init_only_bb = NULL;
7328
7329 if (spec_info && spec_info->dump)
7330 {
7331 char c = reload_completed ? 'a' : 'b';
7332
7333 fprintf (spec_info->dump,
7334 ";; %s:\n", current_function_name ());
7335
7336 fprintf (spec_info->dump,
7337 ";; Procedure %cr-begin-data-spec motions == %d\n",
7338 c, nr_begin_data);
7339 fprintf (spec_info->dump,
7340 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7341 c, nr_be_in_data);
7342 fprintf (spec_info->dump,
7343 ";; Procedure %cr-begin-control-spec motions == %d\n",
7344 c, nr_begin_control);
7345 fprintf (spec_info->dump,
7346 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7347 c, nr_be_in_control);
7348 }
7349
7350 scheduled_insns.release ();
7351
7352 /* Finalize h_i_d, dependency caches, and luids for the whole
7353 function. Target will be finalized in md_global_finish (). */
7354 sched_deps_finish ();
7355 sched_finish_luids ();
7356 current_sched_info = NULL;
7357 sched_finish ();
7358 }
7359
7360 /* Free global data used during insn scheduling. This function works with
7361 the common data shared between the schedulers. */
7362
7363 void
7364 sched_finish (void)
7365 {
7366 haifa_finish_h_i_d ();
7367 free_global_sched_pressure_data ();
7368 free (curr_state);
7369
7370 if (targetm.sched.finish_global)
7371 targetm.sched.finish_global (sched_dump, sched_verbose);
7372
7373 end_alias_analysis ();
7374
7375 regstat_free_calls_crossed ();
7376
7377 dfa_finish ();
7378 }
7379
7380 /* Free all delay_pair structures that were recorded. */
7381 void
7382 free_delay_pairs (void)
7383 {
7384 if (delay_htab)
7385 {
7386 delay_htab->empty ();
7387 delay_htab_i2->empty ();
7388 }
7389 }
7390
7391 /* Fix INSN_TICKs of the instructions in the current block as well as
7392 INSN_TICKs of their dependents.
7393 HEAD and TAIL are the begin and the end of the current scheduled block. */
7394 static void
7395 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7396 {
7397 /* Set of instructions with corrected INSN_TICK. */
7398 bitmap_head processed;
7399 /* ??? It is doubtful if we should assume that cycle advance happens on
7400 basic block boundaries. Basically insns that are unconditionally ready
7401 on the start of the block are more preferable then those which have
7402 a one cycle dependency over insn from the previous block. */
7403 int next_clock = clock_var + 1;
7404
7405 bitmap_initialize (&processed, 0);
7406
7407 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7408 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7409 across different blocks. */
7410 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7411 {
7412 if (INSN_P (head))
7413 {
7414 int tick;
7415 sd_iterator_def sd_it;
7416 dep_t dep;
7417
7418 tick = INSN_TICK (head);
7419 gcc_assert (tick >= MIN_TICK);
7420
7421 /* Fix INSN_TICK of instruction from just scheduled block. */
7422 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7423 {
7424 tick -= next_clock;
7425
7426 if (tick < MIN_TICK)
7427 tick = MIN_TICK;
7428
7429 INSN_TICK (head) = tick;
7430 }
7431
7432 if (DEBUG_INSN_P (head))
7433 continue;
7434
7435 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7436 {
7437 rtx_insn *next;
7438
7439 next = DEP_CON (dep);
7440 tick = INSN_TICK (next);
7441
7442 if (tick != INVALID_TICK
7443 /* If NEXT has its INSN_TICK calculated, fix it.
7444 If not - it will be properly calculated from
7445 scratch later in fix_tick_ready. */
7446 && bitmap_set_bit (&processed, INSN_LUID (next)))
7447 {
7448 tick -= next_clock;
7449
7450 if (tick < MIN_TICK)
7451 tick = MIN_TICK;
7452
7453 if (tick > INTER_TICK (next))
7454 INTER_TICK (next) = tick;
7455 else
7456 tick = INTER_TICK (next);
7457
7458 INSN_TICK (next) = tick;
7459 }
7460 }
7461 }
7462 }
7463 bitmap_clear (&processed);
7464 }
7465
7466 /* Check if NEXT is ready to be added to the ready or queue list.
7467 If "yes", add it to the proper list.
7468 Returns:
7469 -1 - is not ready yet,
7470 0 - added to the ready list,
7471 0 < N - queued for N cycles. */
7472 int
7473 try_ready (rtx_insn *next)
7474 {
7475 ds_t old_ts, new_ts;
7476
7477 old_ts = TODO_SPEC (next);
7478
7479 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7480 && (old_ts == HARD_DEP
7481 || old_ts == DEP_POSTPONED
7482 || (old_ts & SPECULATIVE)
7483 || old_ts == DEP_CONTROL));
7484
7485 new_ts = recompute_todo_spec (next, false);
7486
7487 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7488 gcc_assert (new_ts == old_ts
7489 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7490 else if (current_sched_info->new_ready)
7491 new_ts = current_sched_info->new_ready (next, new_ts);
7492
7493 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7494 have its original pattern or changed (speculative) one. This is due
7495 to changing ebb in region scheduling.
7496 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7497 has speculative pattern.
7498
7499 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7500 control-speculative NEXT could have been discarded by sched-rgn.c
7501 (the same case as when discarded by can_schedule_ready_p ()). */
7502
7503 if ((new_ts & SPECULATIVE)
7504 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7505 need to change anything. */
7506 && new_ts != old_ts)
7507 {
7508 int res;
7509 rtx new_pat;
7510
7511 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7512
7513 res = haifa_speculate_insn (next, new_ts, &new_pat);
7514
7515 switch (res)
7516 {
7517 case -1:
7518 /* It would be nice to change DEP_STATUS of all dependences,
7519 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7520 so we won't reanalyze anything. */
7521 new_ts = HARD_DEP;
7522 break;
7523
7524 case 0:
7525 /* We follow the rule, that every speculative insn
7526 has non-null ORIG_PAT. */
7527 if (!ORIG_PAT (next))
7528 ORIG_PAT (next) = PATTERN (next);
7529 break;
7530
7531 case 1:
7532 if (!ORIG_PAT (next))
7533 /* If we gonna to overwrite the original pattern of insn,
7534 save it. */
7535 ORIG_PAT (next) = PATTERN (next);
7536
7537 res = haifa_change_pattern (next, new_pat);
7538 gcc_assert (res);
7539 break;
7540
7541 default:
7542 gcc_unreachable ();
7543 }
7544 }
7545
7546 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7547 either correct (new_ts & SPECULATIVE),
7548 or we simply don't care (new_ts & HARD_DEP). */
7549
7550 gcc_assert (!ORIG_PAT (next)
7551 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7552
7553 TODO_SPEC (next) = new_ts;
7554
7555 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7556 {
7557 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7558 control-speculative NEXT could have been discarded by sched-rgn.c
7559 (the same case as when discarded by can_schedule_ready_p ()). */
7560 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7561
7562 change_queue_index (next, QUEUE_NOWHERE);
7563
7564 return -1;
7565 }
7566 else if (!(new_ts & BEGIN_SPEC)
7567 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7568 && !IS_SPECULATION_CHECK_P (next))
7569 /* We should change pattern of every previously speculative
7570 instruction - and we determine if NEXT was speculative by using
7571 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7572 pat too, so skip them. */
7573 {
7574 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7575 gcc_assert (success);
7576 ORIG_PAT (next) = 0;
7577 }
7578
7579 if (sched_verbose >= 2)
7580 {
7581 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7582 (*current_sched_info->print_insn) (next, 0));
7583
7584 if (spec_info && spec_info->dump)
7585 {
7586 if (new_ts & BEGIN_DATA)
7587 fprintf (spec_info->dump, "; data-spec;");
7588 if (new_ts & BEGIN_CONTROL)
7589 fprintf (spec_info->dump, "; control-spec;");
7590 if (new_ts & BE_IN_CONTROL)
7591 fprintf (spec_info->dump, "; in-control-spec;");
7592 }
7593 if (TODO_SPEC (next) & DEP_CONTROL)
7594 fprintf (sched_dump, " predicated");
7595 fprintf (sched_dump, "\n");
7596 }
7597
7598 adjust_priority (next);
7599
7600 return fix_tick_ready (next);
7601 }
7602
7603 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7604 static int
7605 fix_tick_ready (rtx_insn *next)
7606 {
7607 int tick, delay;
7608
7609 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7610 {
7611 int full_p;
7612 sd_iterator_def sd_it;
7613 dep_t dep;
7614
7615 tick = INSN_TICK (next);
7616 /* if tick is not equal to INVALID_TICK, then update
7617 INSN_TICK of NEXT with the most recent resolved dependence
7618 cost. Otherwise, recalculate from scratch. */
7619 full_p = (tick == INVALID_TICK);
7620
7621 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7622 {
7623 rtx_insn *pro = DEP_PRO (dep);
7624 int tick1;
7625
7626 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7627
7628 tick1 = INSN_TICK (pro) + dep_cost (dep);
7629 if (tick1 > tick)
7630 tick = tick1;
7631
7632 if (!full_p)
7633 break;
7634 }
7635 }
7636 else
7637 tick = -1;
7638
7639 INSN_TICK (next) = tick;
7640
7641 delay = tick - clock_var;
7642 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7643 delay = QUEUE_READY;
7644
7645 change_queue_index (next, delay);
7646
7647 return delay;
7648 }
7649
7650 /* Move NEXT to the proper queue list with (DELAY >= 1),
7651 or add it to the ready list (DELAY == QUEUE_READY),
7652 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7653 static void
7654 change_queue_index (rtx_insn *next, int delay)
7655 {
7656 int i = QUEUE_INDEX (next);
7657
7658 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7659 && delay != 0);
7660 gcc_assert (i != QUEUE_SCHEDULED);
7661
7662 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7663 || (delay < 0 && delay == i))
7664 /* We have nothing to do. */
7665 return;
7666
7667 /* Remove NEXT from wherever it is now. */
7668 if (i == QUEUE_READY)
7669 ready_remove_insn (next);
7670 else if (i >= 0)
7671 queue_remove (next);
7672
7673 /* Add it to the proper place. */
7674 if (delay == QUEUE_READY)
7675 ready_add (readyp, next, false);
7676 else if (delay >= 1)
7677 queue_insn (next, delay, "change queue index");
7678
7679 if (sched_verbose >= 2)
7680 {
7681 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7682 (*current_sched_info->print_insn) (next, 0));
7683
7684 if (delay == QUEUE_READY)
7685 fprintf (sched_dump, " into ready\n");
7686 else if (delay >= 1)
7687 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7688 else
7689 fprintf (sched_dump, " removed from ready or queue lists\n");
7690 }
7691 }
7692
7693 static int sched_ready_n_insns = -1;
7694
7695 /* Initialize per region data structures. */
7696 void
7697 sched_extend_ready_list (int new_sched_ready_n_insns)
7698 {
7699 int i;
7700
7701 if (sched_ready_n_insns == -1)
7702 /* At the first call we need to initialize one more choice_stack
7703 entry. */
7704 {
7705 i = 0;
7706 sched_ready_n_insns = 0;
7707 scheduled_insns.reserve (new_sched_ready_n_insns);
7708 }
7709 else
7710 i = sched_ready_n_insns + 1;
7711
7712 ready.veclen = new_sched_ready_n_insns + issue_rate;
7713 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7714
7715 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7716
7717 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7718 sched_ready_n_insns,
7719 sizeof (*ready_try));
7720
7721 /* We allocate +1 element to save initial state in the choice_stack[0]
7722 entry. */
7723 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7724 new_sched_ready_n_insns + 1);
7725
7726 for (; i <= new_sched_ready_n_insns; i++)
7727 {
7728 choice_stack[i].state = xmalloc (dfa_state_size);
7729
7730 if (targetm.sched.first_cycle_multipass_init)
7731 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7732 .target_data));
7733 }
7734
7735 sched_ready_n_insns = new_sched_ready_n_insns;
7736 }
7737
7738 /* Free per region data structures. */
7739 void
7740 sched_finish_ready_list (void)
7741 {
7742 int i;
7743
7744 free (ready.vec);
7745 ready.vec = NULL;
7746 ready.veclen = 0;
7747
7748 free (ready_try);
7749 ready_try = NULL;
7750
7751 for (i = 0; i <= sched_ready_n_insns; i++)
7752 {
7753 if (targetm.sched.first_cycle_multipass_fini)
7754 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7755 .target_data));
7756
7757 free (choice_stack [i].state);
7758 }
7759 free (choice_stack);
7760 choice_stack = NULL;
7761
7762 sched_ready_n_insns = -1;
7763 }
7764
7765 static int
7766 haifa_luid_for_non_insn (rtx x)
7767 {
7768 gcc_assert (NOTE_P (x) || LABEL_P (x));
7769
7770 return 0;
7771 }
7772
7773 /* Generates recovery code for INSN. */
7774 static void
7775 generate_recovery_code (rtx_insn *insn)
7776 {
7777 if (TODO_SPEC (insn) & BEGIN_SPEC)
7778 begin_speculative_block (insn);
7779
7780 /* Here we have insn with no dependencies to
7781 instructions other then CHECK_SPEC ones. */
7782
7783 if (TODO_SPEC (insn) & BE_IN_SPEC)
7784 add_to_speculative_block (insn);
7785 }
7786
7787 /* Helper function.
7788 Tries to add speculative dependencies of type FS between instructions
7789 in deps_list L and TWIN. */
7790 static void
7791 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7792 {
7793 sd_iterator_def sd_it;
7794 dep_t dep;
7795
7796 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7797 {
7798 ds_t ds;
7799 rtx_insn *consumer;
7800
7801 consumer = DEP_CON (dep);
7802
7803 ds = DEP_STATUS (dep);
7804
7805 if (/* If we want to create speculative dep. */
7806 fs
7807 /* And we can do that because this is a true dep. */
7808 && (ds & DEP_TYPES) == DEP_TRUE)
7809 {
7810 gcc_assert (!(ds & BE_IN_SPEC));
7811
7812 if (/* If this dep can be overcome with 'begin speculation'. */
7813 ds & BEGIN_SPEC)
7814 /* Then we have a choice: keep the dep 'begin speculative'
7815 or transform it into 'be in speculative'. */
7816 {
7817 if (/* In try_ready we assert that if insn once became ready
7818 it can be removed from the ready (or queue) list only
7819 due to backend decision. Hence we can't let the
7820 probability of the speculative dep to decrease. */
7821 ds_weak (ds) <= ds_weak (fs))
7822 {
7823 ds_t new_ds;
7824
7825 new_ds = (ds & ~BEGIN_SPEC) | fs;
7826
7827 if (/* consumer can 'be in speculative'. */
7828 sched_insn_is_legitimate_for_speculation_p (consumer,
7829 new_ds))
7830 /* Transform it to be in speculative. */
7831 ds = new_ds;
7832 }
7833 }
7834 else
7835 /* Mark the dep as 'be in speculative'. */
7836 ds |= fs;
7837 }
7838
7839 {
7840 dep_def _new_dep, *new_dep = &_new_dep;
7841
7842 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7843 sd_add_dep (new_dep, false);
7844 }
7845 }
7846 }
7847
7848 /* Generates recovery code for BEGIN speculative INSN. */
7849 static void
7850 begin_speculative_block (rtx_insn *insn)
7851 {
7852 if (TODO_SPEC (insn) & BEGIN_DATA)
7853 nr_begin_data++;
7854 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7855 nr_begin_control++;
7856
7857 create_check_block_twin (insn, false);
7858
7859 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7860 }
7861
7862 static void haifa_init_insn (rtx_insn *);
7863
7864 /* Generates recovery code for BE_IN speculative INSN. */
7865 static void
7866 add_to_speculative_block (rtx_insn *insn)
7867 {
7868 ds_t ts;
7869 sd_iterator_def sd_it;
7870 dep_t dep;
7871 rtx_insn_list *twins = NULL;
7872 rtx_vec_t priorities_roots;
7873
7874 ts = TODO_SPEC (insn);
7875 gcc_assert (!(ts & ~BE_IN_SPEC));
7876
7877 if (ts & BE_IN_DATA)
7878 nr_be_in_data++;
7879 if (ts & BE_IN_CONTROL)
7880 nr_be_in_control++;
7881
7882 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7883 gcc_assert (!TODO_SPEC (insn));
7884
7885 DONE_SPEC (insn) |= ts;
7886
7887 /* First we convert all simple checks to branchy. */
7888 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7889 sd_iterator_cond (&sd_it, &dep);)
7890 {
7891 rtx_insn *check = DEP_PRO (dep);
7892
7893 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7894 {
7895 create_check_block_twin (check, true);
7896
7897 /* Restart search. */
7898 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7899 }
7900 else
7901 /* Continue search. */
7902 sd_iterator_next (&sd_it);
7903 }
7904
7905 priorities_roots.create (0);
7906 clear_priorities (insn, &priorities_roots);
7907
7908 while (1)
7909 {
7910 rtx_insn *check, *twin;
7911 basic_block rec;
7912
7913 /* Get the first backward dependency of INSN. */
7914 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7915 if (!sd_iterator_cond (&sd_it, &dep))
7916 /* INSN has no backward dependencies left. */
7917 break;
7918
7919 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7920 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7921 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7922
7923 check = DEP_PRO (dep);
7924
7925 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7926 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7927
7928 rec = BLOCK_FOR_INSN (check);
7929
7930 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7931 haifa_init_insn (twin);
7932
7933 sd_copy_back_deps (twin, insn, true);
7934
7935 if (sched_verbose && spec_info->dump)
7936 /* INSN_BB (insn) isn't determined for twin insns yet.
7937 So we can't use current_sched_info->print_insn. */
7938 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7939 INSN_UID (twin), rec->index);
7940
7941 twins = alloc_INSN_LIST (twin, twins);
7942
7943 /* Add dependences between TWIN and all appropriate
7944 instructions from REC. */
7945 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7946 {
7947 rtx_insn *pro = DEP_PRO (dep);
7948
7949 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7950
7951 /* INSN might have dependencies from the instructions from
7952 several recovery blocks. At this iteration we process those
7953 producers that reside in REC. */
7954 if (BLOCK_FOR_INSN (pro) == rec)
7955 {
7956 dep_def _new_dep, *new_dep = &_new_dep;
7957
7958 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7959 sd_add_dep (new_dep, false);
7960 }
7961 }
7962
7963 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7964
7965 /* Remove all dependencies between INSN and insns in REC. */
7966 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7967 sd_iterator_cond (&sd_it, &dep);)
7968 {
7969 rtx_insn *pro = DEP_PRO (dep);
7970
7971 if (BLOCK_FOR_INSN (pro) == rec)
7972 sd_delete_dep (sd_it);
7973 else
7974 sd_iterator_next (&sd_it);
7975 }
7976 }
7977
7978 /* We couldn't have added the dependencies between INSN and TWINS earlier
7979 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7980 while (twins)
7981 {
7982 rtx_insn *twin;
7983 rtx_insn_list *next_node;
7984
7985 twin = twins->insn ();
7986
7987 {
7988 dep_def _new_dep, *new_dep = &_new_dep;
7989
7990 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7991 sd_add_dep (new_dep, false);
7992 }
7993
7994 next_node = twins->next ();
7995 free_INSN_LIST_node (twins);
7996 twins = next_node;
7997 }
7998
7999 calc_priorities (priorities_roots);
8000 priorities_roots.release ();
8001 }
8002
8003 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8004 void *
8005 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8006 {
8007 gcc_assert (new_nmemb >= old_nmemb);
8008 p = XRESIZEVAR (void, p, new_nmemb * size);
8009 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8010 return p;
8011 }
8012
8013 /* Helper function.
8014 Find fallthru edge from PRED. */
8015 edge
8016 find_fallthru_edge_from (basic_block pred)
8017 {
8018 edge e;
8019 basic_block succ;
8020
8021 succ = pred->next_bb;
8022 gcc_assert (succ->prev_bb == pred);
8023
8024 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8025 {
8026 e = find_fallthru_edge (pred->succs);
8027
8028 if (e)
8029 {
8030 gcc_assert (e->dest == succ);
8031 return e;
8032 }
8033 }
8034 else
8035 {
8036 e = find_fallthru_edge (succ->preds);
8037
8038 if (e)
8039 {
8040 gcc_assert (e->src == pred);
8041 return e;
8042 }
8043 }
8044
8045 return NULL;
8046 }
8047
8048 /* Extend per basic block data structures. */
8049 static void
8050 sched_extend_bb (void)
8051 {
8052 /* The following is done to keep current_sched_info->next_tail non null. */
8053 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8054 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8055 if (NEXT_INSN (end) == 0
8056 || (!NOTE_P (insn)
8057 && !LABEL_P (insn)
8058 /* Don't emit a NOTE if it would end up before a BARRIER. */
8059 && !BARRIER_P (NEXT_INSN (end))))
8060 {
8061 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8062 /* Make note appear outside BB. */
8063 set_block_for_insn (note, NULL);
8064 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8065 }
8066 }
8067
8068 /* Init per basic block data structures. */
8069 void
8070 sched_init_bbs (void)
8071 {
8072 sched_extend_bb ();
8073 }
8074
8075 /* Initialize BEFORE_RECOVERY variable. */
8076 static void
8077 init_before_recovery (basic_block *before_recovery_ptr)
8078 {
8079 basic_block last;
8080 edge e;
8081
8082 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8083 e = find_fallthru_edge_from (last);
8084
8085 if (e)
8086 {
8087 /* We create two basic blocks:
8088 1. Single instruction block is inserted right after E->SRC
8089 and has jump to
8090 2. Empty block right before EXIT_BLOCK.
8091 Between these two blocks recovery blocks will be emitted. */
8092
8093 basic_block single, empty;
8094
8095 /* If the fallthrough edge to exit we've found is from the block we've
8096 created before, don't do anything more. */
8097 if (last == after_recovery)
8098 return;
8099
8100 adding_bb_to_current_region_p = false;
8101
8102 single = sched_create_empty_bb (last);
8103 empty = sched_create_empty_bb (single);
8104
8105 /* Add new blocks to the root loop. */
8106 if (current_loops != NULL)
8107 {
8108 add_bb_to_loop (single, (*current_loops->larray)[0]);
8109 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8110 }
8111
8112 single->count = last->count;
8113 empty->count = last->count;
8114 single->frequency = last->frequency;
8115 empty->frequency = last->frequency;
8116 BB_COPY_PARTITION (single, last);
8117 BB_COPY_PARTITION (empty, last);
8118
8119 redirect_edge_succ (e, single);
8120 make_single_succ_edge (single, empty, 0);
8121 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8122 EDGE_FALLTHRU);
8123
8124 rtx_code_label *label = block_label (empty);
8125 rtx_jump_insn *x = emit_jump_insn_after (gen_jump (label),
8126 BB_END (single));
8127 JUMP_LABEL (x) = label;
8128 LABEL_NUSES (label)++;
8129 haifa_init_insn (x);
8130
8131 emit_barrier_after (x);
8132
8133 sched_init_only_bb (empty, NULL);
8134 sched_init_only_bb (single, NULL);
8135 sched_extend_bb ();
8136
8137 adding_bb_to_current_region_p = true;
8138 before_recovery = single;
8139 after_recovery = empty;
8140
8141 if (before_recovery_ptr)
8142 *before_recovery_ptr = before_recovery;
8143
8144 if (sched_verbose >= 2 && spec_info->dump)
8145 fprintf (spec_info->dump,
8146 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8147 last->index, single->index, empty->index);
8148 }
8149 else
8150 before_recovery = last;
8151 }
8152
8153 /* Returns new recovery block. */
8154 basic_block
8155 sched_create_recovery_block (basic_block *before_recovery_ptr)
8156 {
8157 rtx_insn *barrier;
8158 basic_block rec;
8159
8160 haifa_recovery_bb_recently_added_p = true;
8161 haifa_recovery_bb_ever_added_p = true;
8162
8163 init_before_recovery (before_recovery_ptr);
8164
8165 barrier = get_last_bb_insn (before_recovery);
8166 gcc_assert (BARRIER_P (barrier));
8167
8168 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8169
8170 rec = create_basic_block (label, label, before_recovery);
8171
8172 /* A recovery block always ends with an unconditional jump. */
8173 emit_barrier_after (BB_END (rec));
8174
8175 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8176 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8177
8178 if (sched_verbose && spec_info->dump)
8179 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8180 rec->index);
8181
8182 return rec;
8183 }
8184
8185 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8186 and emit necessary jumps. */
8187 void
8188 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8189 basic_block second_bb)
8190 {
8191 int edge_flags;
8192
8193 /* This is fixing of incoming edge. */
8194 /* ??? Which other flags should be specified? */
8195 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8196 /* Partition type is the same, if it is "unpartitioned". */
8197 edge_flags = EDGE_CROSSING;
8198 else
8199 edge_flags = 0;
8200
8201 make_edge (first_bb, rec, edge_flags);
8202 rtx_code_label *label = block_label (second_bb);
8203 rtx_jump_insn *jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
8204 JUMP_LABEL (jump) = label;
8205 LABEL_NUSES (label)++;
8206
8207 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8208 /* Partition type is the same, if it is "unpartitioned". */
8209 {
8210 /* Rewritten from cfgrtl.c. */
8211 if (flag_reorder_blocks_and_partition
8212 && targetm_common.have_named_sections)
8213 {
8214 /* We don't need the same note for the check because
8215 any_condjump_p (check) == true. */
8216 CROSSING_JUMP_P (jump) = 1;
8217 }
8218 edge_flags = EDGE_CROSSING;
8219 }
8220 else
8221 edge_flags = 0;
8222
8223 make_single_succ_edge (rec, second_bb, edge_flags);
8224 if (dom_info_available_p (CDI_DOMINATORS))
8225 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8226 }
8227
8228 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8229 INSN is a simple check, that should be converted to branchy one. */
8230 static void
8231 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8232 {
8233 basic_block rec;
8234 rtx_insn *label, *check, *twin;
8235 rtx check_pat;
8236 ds_t fs;
8237 sd_iterator_def sd_it;
8238 dep_t dep;
8239 dep_def _new_dep, *new_dep = &_new_dep;
8240 ds_t todo_spec;
8241
8242 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8243
8244 if (!mutate_p)
8245 todo_spec = TODO_SPEC (insn);
8246 else
8247 {
8248 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8249 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8250
8251 todo_spec = CHECK_SPEC (insn);
8252 }
8253
8254 todo_spec &= SPECULATIVE;
8255
8256 /* Create recovery block. */
8257 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8258 {
8259 rec = sched_create_recovery_block (NULL);
8260 label = BB_HEAD (rec);
8261 }
8262 else
8263 {
8264 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8265 label = NULL;
8266 }
8267
8268 /* Emit CHECK. */
8269 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8270
8271 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8272 {
8273 /* To have mem_reg alive at the beginning of second_bb,
8274 we emit check BEFORE insn, so insn after splitting
8275 insn will be at the beginning of second_bb, which will
8276 provide us with the correct life information. */
8277 check = emit_jump_insn_before (check_pat, insn);
8278 JUMP_LABEL (check) = label;
8279 LABEL_NUSES (label)++;
8280 }
8281 else
8282 check = emit_insn_before (check_pat, insn);
8283
8284 /* Extend data structures. */
8285 haifa_init_insn (check);
8286
8287 /* CHECK is being added to current region. Extend ready list. */
8288 gcc_assert (sched_ready_n_insns != -1);
8289 sched_extend_ready_list (sched_ready_n_insns + 1);
8290
8291 if (current_sched_info->add_remove_insn)
8292 current_sched_info->add_remove_insn (insn, 0);
8293
8294 RECOVERY_BLOCK (check) = rec;
8295
8296 if (sched_verbose && spec_info->dump)
8297 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8298 (*current_sched_info->print_insn) (check, 0));
8299
8300 gcc_assert (ORIG_PAT (insn));
8301
8302 /* Initialize TWIN (twin is a duplicate of original instruction
8303 in the recovery block). */
8304 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8305 {
8306 sd_iterator_def sd_it;
8307 dep_t dep;
8308
8309 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8310 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8311 {
8312 struct _dep _dep2, *dep2 = &_dep2;
8313
8314 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8315
8316 sd_add_dep (dep2, true);
8317 }
8318
8319 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8320 haifa_init_insn (twin);
8321
8322 if (sched_verbose && spec_info->dump)
8323 /* INSN_BB (insn) isn't determined for twin insns yet.
8324 So we can't use current_sched_info->print_insn. */
8325 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8326 INSN_UID (twin), rec->index);
8327 }
8328 else
8329 {
8330 ORIG_PAT (check) = ORIG_PAT (insn);
8331 HAS_INTERNAL_DEP (check) = 1;
8332 twin = check;
8333 /* ??? We probably should change all OUTPUT dependencies to
8334 (TRUE | OUTPUT). */
8335 }
8336
8337 /* Copy all resolved back dependencies of INSN to TWIN. This will
8338 provide correct value for INSN_TICK (TWIN). */
8339 sd_copy_back_deps (twin, insn, true);
8340
8341 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8342 /* In case of branchy check, fix CFG. */
8343 {
8344 basic_block first_bb, second_bb;
8345 rtx_insn *jump;
8346
8347 first_bb = BLOCK_FOR_INSN (check);
8348 second_bb = sched_split_block (first_bb, check);
8349
8350 sched_create_recovery_edges (first_bb, rec, second_bb);
8351
8352 sched_init_only_bb (second_bb, first_bb);
8353 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8354
8355 jump = BB_END (rec);
8356 haifa_init_insn (jump);
8357 }
8358
8359 /* Move backward dependences from INSN to CHECK and
8360 move forward dependences from INSN to TWIN. */
8361
8362 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8363 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8364 {
8365 rtx_insn *pro = DEP_PRO (dep);
8366 ds_t ds;
8367
8368 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8369 check --TRUE--> producer ??? or ANTI ???
8370 twin --TRUE--> producer
8371 twin --ANTI--> check
8372
8373 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8374 check --ANTI--> producer
8375 twin --ANTI--> producer
8376 twin --ANTI--> check
8377
8378 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8379 check ~~TRUE~~> producer
8380 twin ~~TRUE~~> producer
8381 twin --ANTI--> check */
8382
8383 ds = DEP_STATUS (dep);
8384
8385 if (ds & BEGIN_SPEC)
8386 {
8387 gcc_assert (!mutate_p);
8388 ds &= ~BEGIN_SPEC;
8389 }
8390
8391 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8392 sd_add_dep (new_dep, false);
8393
8394 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8395 {
8396 DEP_CON (new_dep) = twin;
8397 sd_add_dep (new_dep, false);
8398 }
8399 }
8400
8401 /* Second, remove backward dependencies of INSN. */
8402 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8403 sd_iterator_cond (&sd_it, &dep);)
8404 {
8405 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8406 || mutate_p)
8407 /* We can delete this dep because we overcome it with
8408 BEGIN_SPECULATION. */
8409 sd_delete_dep (sd_it);
8410 else
8411 sd_iterator_next (&sd_it);
8412 }
8413
8414 /* Future Speculations. Determine what BE_IN speculations will be like. */
8415 fs = 0;
8416
8417 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8418 here. */
8419
8420 gcc_assert (!DONE_SPEC (insn));
8421
8422 if (!mutate_p)
8423 {
8424 ds_t ts = TODO_SPEC (insn);
8425
8426 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8427 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8428
8429 /* Luckiness of future speculations solely depends upon initial
8430 BEGIN speculation. */
8431 if (ts & BEGIN_DATA)
8432 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8433 if (ts & BEGIN_CONTROL)
8434 fs = set_dep_weak (fs, BE_IN_CONTROL,
8435 get_dep_weak (ts, BEGIN_CONTROL));
8436 }
8437 else
8438 CHECK_SPEC (check) = CHECK_SPEC (insn);
8439
8440 /* Future speculations: call the helper. */
8441 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8442
8443 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8444 {
8445 /* Which types of dependencies should we use here is,
8446 generally, machine-dependent question... But, for now,
8447 it is not. */
8448
8449 if (!mutate_p)
8450 {
8451 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8452 sd_add_dep (new_dep, false);
8453
8454 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8455 sd_add_dep (new_dep, false);
8456 }
8457 else
8458 {
8459 if (spec_info->dump)
8460 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8461 (*current_sched_info->print_insn) (insn, 0));
8462
8463 /* Remove all dependencies of the INSN. */
8464 {
8465 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8466 | SD_LIST_BACK
8467 | SD_LIST_RES_BACK));
8468 while (sd_iterator_cond (&sd_it, &dep))
8469 sd_delete_dep (sd_it);
8470 }
8471
8472 /* If former check (INSN) already was moved to the ready (or queue)
8473 list, add new check (CHECK) there too. */
8474 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8475 try_ready (check);
8476
8477 /* Remove old check from instruction stream and free its
8478 data. */
8479 sched_remove_insn (insn);
8480 }
8481
8482 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8483 sd_add_dep (new_dep, false);
8484 }
8485 else
8486 {
8487 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8488 sd_add_dep (new_dep, false);
8489 }
8490
8491 if (!mutate_p)
8492 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8493 because it'll be done later in add_to_speculative_block. */
8494 {
8495 rtx_vec_t priorities_roots = rtx_vec_t ();
8496
8497 clear_priorities (twin, &priorities_roots);
8498 calc_priorities (priorities_roots);
8499 priorities_roots.release ();
8500 }
8501 }
8502
8503 /* Removes dependency between instructions in the recovery block REC
8504 and usual region instructions. It keeps inner dependences so it
8505 won't be necessary to recompute them. */
8506 static void
8507 fix_recovery_deps (basic_block rec)
8508 {
8509 rtx_insn *note, *insn, *jump;
8510 rtx_insn_list *ready_list = 0;
8511 bitmap_head in_ready;
8512 rtx_insn_list *link;
8513
8514 bitmap_initialize (&in_ready, 0);
8515
8516 /* NOTE - a basic block note. */
8517 note = NEXT_INSN (BB_HEAD (rec));
8518 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8519 insn = BB_END (rec);
8520 gcc_assert (JUMP_P (insn));
8521 insn = PREV_INSN (insn);
8522
8523 do
8524 {
8525 sd_iterator_def sd_it;
8526 dep_t dep;
8527
8528 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8529 sd_iterator_cond (&sd_it, &dep);)
8530 {
8531 rtx_insn *consumer = DEP_CON (dep);
8532
8533 if (BLOCK_FOR_INSN (consumer) != rec)
8534 {
8535 sd_delete_dep (sd_it);
8536
8537 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8538 ready_list = alloc_INSN_LIST (consumer, ready_list);
8539 }
8540 else
8541 {
8542 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8543
8544 sd_iterator_next (&sd_it);
8545 }
8546 }
8547
8548 insn = PREV_INSN (insn);
8549 }
8550 while (insn != note);
8551
8552 bitmap_clear (&in_ready);
8553
8554 /* Try to add instructions to the ready or queue list. */
8555 for (link = ready_list; link; link = link->next ())
8556 try_ready (link->insn ());
8557 free_INSN_LIST_list (&ready_list);
8558
8559 /* Fixing jump's dependences. */
8560 insn = BB_HEAD (rec);
8561 jump = BB_END (rec);
8562
8563 gcc_assert (LABEL_P (insn));
8564 insn = NEXT_INSN (insn);
8565
8566 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8567 add_jump_dependencies (insn, jump);
8568 }
8569
8570 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8571 instruction data. */
8572 static bool
8573 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8574 {
8575 int t;
8576
8577 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8578 if (!t)
8579 return false;
8580
8581 update_insn_after_change (insn);
8582 return true;
8583 }
8584
8585 /* -1 - can't speculate,
8586 0 - for speculation with REQUEST mode it is OK to use
8587 current instruction pattern,
8588 1 - need to change pattern for *NEW_PAT to be speculative. */
8589 int
8590 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8591 {
8592 gcc_assert (current_sched_info->flags & DO_SPECULATION
8593 && (request & SPECULATIVE)
8594 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8595
8596 if ((request & spec_info->mask) != request)
8597 return -1;
8598
8599 if (request & BE_IN_SPEC
8600 && !(request & BEGIN_SPEC))
8601 return 0;
8602
8603 return targetm.sched.speculate_insn (insn, request, new_pat);
8604 }
8605
8606 static int
8607 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8608 {
8609 gcc_assert (sched_deps_info->generate_spec_deps
8610 && !IS_SPECULATION_CHECK_P (insn));
8611
8612 if (HAS_INTERNAL_DEP (insn)
8613 || SCHED_GROUP_P (insn))
8614 return -1;
8615
8616 return sched_speculate_insn (insn, request, new_pat);
8617 }
8618
8619 /* Print some information about block BB, which starts with HEAD and
8620 ends with TAIL, before scheduling it.
8621 I is zero, if scheduler is about to start with the fresh ebb. */
8622 static void
8623 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8624 {
8625 if (!i)
8626 fprintf (sched_dump,
8627 ";; ======================================================\n");
8628 else
8629 fprintf (sched_dump,
8630 ";; =====================ADVANCING TO=====================\n");
8631 fprintf (sched_dump,
8632 ";; -- basic block %d from %d to %d -- %s reload\n",
8633 bb->index, INSN_UID (head), INSN_UID (tail),
8634 (reload_completed ? "after" : "before"));
8635 fprintf (sched_dump,
8636 ";; ======================================================\n");
8637 fprintf (sched_dump, "\n");
8638 }
8639
8640 /* Unlink basic block notes and labels and saves them, so they
8641 can be easily restored. We unlink basic block notes in EBB to
8642 provide back-compatibility with the previous code, as target backends
8643 assume, that there'll be only instructions between
8644 current_sched_info->{head and tail}. We restore these notes as soon
8645 as we can.
8646 FIRST (LAST) is the first (last) basic block in the ebb.
8647 NB: In usual case (FIRST == LAST) nothing is really done. */
8648 void
8649 unlink_bb_notes (basic_block first, basic_block last)
8650 {
8651 /* We DON'T unlink basic block notes of the first block in the ebb. */
8652 if (first == last)
8653 return;
8654
8655 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8656
8657 /* Make a sentinel. */
8658 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8659 bb_header[last->next_bb->index] = 0;
8660
8661 first = first->next_bb;
8662 do
8663 {
8664 rtx_insn *prev, *label, *note, *next;
8665
8666 label = BB_HEAD (last);
8667 if (LABEL_P (label))
8668 note = NEXT_INSN (label);
8669 else
8670 note = label;
8671 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8672
8673 prev = PREV_INSN (label);
8674 next = NEXT_INSN (note);
8675 gcc_assert (prev && next);
8676
8677 SET_NEXT_INSN (prev) = next;
8678 SET_PREV_INSN (next) = prev;
8679
8680 bb_header[last->index] = label;
8681
8682 if (last == first)
8683 break;
8684
8685 last = last->prev_bb;
8686 }
8687 while (1);
8688 }
8689
8690 /* Restore basic block notes.
8691 FIRST is the first basic block in the ebb. */
8692 static void
8693 restore_bb_notes (basic_block first)
8694 {
8695 if (!bb_header)
8696 return;
8697
8698 /* We DON'T unlink basic block notes of the first block in the ebb. */
8699 first = first->next_bb;
8700 /* Remember: FIRST is actually a second basic block in the ebb. */
8701
8702 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8703 && bb_header[first->index])
8704 {
8705 rtx_insn *prev, *label, *note, *next;
8706
8707 label = bb_header[first->index];
8708 prev = PREV_INSN (label);
8709 next = NEXT_INSN (prev);
8710
8711 if (LABEL_P (label))
8712 note = NEXT_INSN (label);
8713 else
8714 note = label;
8715 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8716
8717 bb_header[first->index] = 0;
8718
8719 SET_NEXT_INSN (prev) = label;
8720 SET_NEXT_INSN (note) = next;
8721 SET_PREV_INSN (next) = note;
8722
8723 first = first->next_bb;
8724 }
8725
8726 free (bb_header);
8727 bb_header = 0;
8728 }
8729
8730 /* Helper function.
8731 Fix CFG after both in- and inter-block movement of
8732 control_flow_insn_p JUMP. */
8733 static void
8734 fix_jump_move (rtx_insn *jump)
8735 {
8736 basic_block bb, jump_bb, jump_bb_next;
8737
8738 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8739 jump_bb = BLOCK_FOR_INSN (jump);
8740 jump_bb_next = jump_bb->next_bb;
8741
8742 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8743 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8744
8745 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8746 /* if jump_bb_next is not empty. */
8747 BB_END (jump_bb) = BB_END (jump_bb_next);
8748
8749 if (BB_END (bb) != PREV_INSN (jump))
8750 /* Then there are instruction after jump that should be placed
8751 to jump_bb_next. */
8752 BB_END (jump_bb_next) = BB_END (bb);
8753 else
8754 /* Otherwise jump_bb_next is empty. */
8755 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8756
8757 /* To make assertion in move_insn happy. */
8758 BB_END (bb) = PREV_INSN (jump);
8759
8760 update_bb_for_insn (jump_bb_next);
8761 }
8762
8763 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8764 static void
8765 move_block_after_check (rtx_insn *jump)
8766 {
8767 basic_block bb, jump_bb, jump_bb_next;
8768 vec<edge, va_gc> *t;
8769
8770 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8771 jump_bb = BLOCK_FOR_INSN (jump);
8772 jump_bb_next = jump_bb->next_bb;
8773
8774 update_bb_for_insn (jump_bb);
8775
8776 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8777 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8778
8779 unlink_block (jump_bb_next);
8780 link_block (jump_bb_next, bb);
8781
8782 t = bb->succs;
8783 bb->succs = 0;
8784 move_succs (&(jump_bb->succs), bb);
8785 move_succs (&(jump_bb_next->succs), jump_bb);
8786 move_succs (&t, jump_bb_next);
8787
8788 df_mark_solutions_dirty ();
8789
8790 common_sched_info->fix_recovery_cfg
8791 (bb->index, jump_bb->index, jump_bb_next->index);
8792 }
8793
8794 /* Helper function for move_block_after_check.
8795 This functions attaches edge vector pointed to by SUCCSP to
8796 block TO. */
8797 static void
8798 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8799 {
8800 edge e;
8801 edge_iterator ei;
8802
8803 gcc_assert (to->succs == 0);
8804
8805 to->succs = *succsp;
8806
8807 FOR_EACH_EDGE (e, ei, to->succs)
8808 e->src = to;
8809
8810 *succsp = 0;
8811 }
8812
8813 /* Remove INSN from the instruction stream.
8814 INSN should have any dependencies. */
8815 static void
8816 sched_remove_insn (rtx_insn *insn)
8817 {
8818 sd_finish_insn (insn);
8819
8820 change_queue_index (insn, QUEUE_NOWHERE);
8821 current_sched_info->add_remove_insn (insn, 1);
8822 delete_insn (insn);
8823 }
8824
8825 /* Clear priorities of all instructions, that are forward dependent on INSN.
8826 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8827 be invoked to initialize all cleared priorities. */
8828 static void
8829 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8830 {
8831 sd_iterator_def sd_it;
8832 dep_t dep;
8833 bool insn_is_root_p = true;
8834
8835 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8836
8837 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8838 {
8839 rtx_insn *pro = DEP_PRO (dep);
8840
8841 if (INSN_PRIORITY_STATUS (pro) >= 0
8842 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8843 {
8844 /* If DEP doesn't contribute to priority then INSN itself should
8845 be added to priority roots. */
8846 if (contributes_to_priority_p (dep))
8847 insn_is_root_p = false;
8848
8849 INSN_PRIORITY_STATUS (pro) = -1;
8850 clear_priorities (pro, roots_ptr);
8851 }
8852 }
8853
8854 if (insn_is_root_p)
8855 roots_ptr->safe_push (insn);
8856 }
8857
8858 /* Recompute priorities of instructions, whose priorities might have been
8859 changed. ROOTS is a vector of instructions whose priority computation will
8860 trigger initialization of all cleared priorities. */
8861 static void
8862 calc_priorities (rtx_vec_t roots)
8863 {
8864 int i;
8865 rtx_insn *insn;
8866
8867 FOR_EACH_VEC_ELT (roots, i, insn)
8868 priority (insn);
8869 }
8870
8871
8872 /* Add dependences between JUMP and other instructions in the recovery
8873 block. INSN is the first insn the recovery block. */
8874 static void
8875 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8876 {
8877 do
8878 {
8879 insn = NEXT_INSN (insn);
8880 if (insn == jump)
8881 break;
8882
8883 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8884 {
8885 dep_def _new_dep, *new_dep = &_new_dep;
8886
8887 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8888 sd_add_dep (new_dep, false);
8889 }
8890 }
8891 while (1);
8892
8893 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8894 }
8895
8896 /* Extend data structures for logical insn UID. */
8897 void
8898 sched_extend_luids (void)
8899 {
8900 int new_luids_max_uid = get_max_uid () + 1;
8901
8902 sched_luids.safe_grow_cleared (new_luids_max_uid);
8903 }
8904
8905 /* Initialize LUID for INSN. */
8906 void
8907 sched_init_insn_luid (rtx_insn *insn)
8908 {
8909 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8910 int luid;
8911
8912 if (i >= 0)
8913 {
8914 luid = sched_max_luid;
8915 sched_max_luid += i;
8916 }
8917 else
8918 luid = -1;
8919
8920 SET_INSN_LUID (insn, luid);
8921 }
8922
8923 /* Initialize luids for BBS.
8924 The hook common_sched_info->luid_for_non_insn () is used to determine
8925 if notes, labels, etc. need luids. */
8926 void
8927 sched_init_luids (bb_vec_t bbs)
8928 {
8929 int i;
8930 basic_block bb;
8931
8932 sched_extend_luids ();
8933 FOR_EACH_VEC_ELT (bbs, i, bb)
8934 {
8935 rtx_insn *insn;
8936
8937 FOR_BB_INSNS (bb, insn)
8938 sched_init_insn_luid (insn);
8939 }
8940 }
8941
8942 /* Free LUIDs. */
8943 void
8944 sched_finish_luids (void)
8945 {
8946 sched_luids.release ();
8947 sched_max_luid = 1;
8948 }
8949
8950 /* Return logical uid of INSN. Helpful while debugging. */
8951 int
8952 insn_luid (rtx_insn *insn)
8953 {
8954 return INSN_LUID (insn);
8955 }
8956
8957 /* Extend per insn data in the target. */
8958 void
8959 sched_extend_target (void)
8960 {
8961 if (targetm.sched.h_i_d_extended)
8962 targetm.sched.h_i_d_extended ();
8963 }
8964
8965 /* Extend global scheduler structures (those, that live across calls to
8966 schedule_block) to include information about just emitted INSN. */
8967 static void
8968 extend_h_i_d (void)
8969 {
8970 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8971 if (reserve > 0
8972 && ! h_i_d.space (reserve))
8973 {
8974 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8975 sched_extend_target ();
8976 }
8977 }
8978
8979 /* Initialize h_i_d entry of the INSN with default values.
8980 Values, that are not explicitly initialized here, hold zero. */
8981 static void
8982 init_h_i_d (rtx_insn *insn)
8983 {
8984 if (INSN_LUID (insn) > 0)
8985 {
8986 INSN_COST (insn) = -1;
8987 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8988 INSN_TICK (insn) = INVALID_TICK;
8989 INSN_EXACT_TICK (insn) = INVALID_TICK;
8990 INTER_TICK (insn) = INVALID_TICK;
8991 TODO_SPEC (insn) = HARD_DEP;
8992 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
8993 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
8994 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
8995 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
8996 }
8997 }
8998
8999 /* Initialize haifa_insn_data for BBS. */
9000 void
9001 haifa_init_h_i_d (bb_vec_t bbs)
9002 {
9003 int i;
9004 basic_block bb;
9005
9006 extend_h_i_d ();
9007 FOR_EACH_VEC_ELT (bbs, i, bb)
9008 {
9009 rtx_insn *insn;
9010
9011 FOR_BB_INSNS (bb, insn)
9012 init_h_i_d (insn);
9013 }
9014 }
9015
9016 /* Finalize haifa_insn_data. */
9017 void
9018 haifa_finish_h_i_d (void)
9019 {
9020 int i;
9021 haifa_insn_data_t data;
9022 struct reg_use_data *use, *next;
9023
9024 FOR_EACH_VEC_ELT (h_i_d, i, data)
9025 {
9026 free (data->max_reg_pressure);
9027 free (data->reg_pressure);
9028 for (use = data->reg_use_list; use != NULL; use = next)
9029 {
9030 next = use->next_insn_use;
9031 free (use);
9032 }
9033 }
9034 h_i_d.release ();
9035 }
9036
9037 /* Init data for the new insn INSN. */
9038 static void
9039 haifa_init_insn (rtx_insn *insn)
9040 {
9041 gcc_assert (insn != NULL);
9042
9043 sched_extend_luids ();
9044 sched_init_insn_luid (insn);
9045 sched_extend_target ();
9046 sched_deps_init (false);
9047 extend_h_i_d ();
9048 init_h_i_d (insn);
9049
9050 if (adding_bb_to_current_region_p)
9051 {
9052 sd_init_insn (insn);
9053
9054 /* Extend dependency caches by one element. */
9055 extend_dependency_caches (1, false);
9056 }
9057 if (sched_pressure != SCHED_PRESSURE_NONE)
9058 init_insn_reg_pressure_info (insn);
9059 }
9060
9061 /* Init data for the new basic block BB which comes after AFTER. */
9062 static void
9063 haifa_init_only_bb (basic_block bb, basic_block after)
9064 {
9065 gcc_assert (bb != NULL);
9066
9067 sched_init_bbs ();
9068
9069 if (common_sched_info->add_block)
9070 /* This changes only data structures of the front-end. */
9071 common_sched_info->add_block (bb, after);
9072 }
9073
9074 /* A generic version of sched_split_block (). */
9075 basic_block
9076 sched_split_block_1 (basic_block first_bb, rtx after)
9077 {
9078 edge e;
9079
9080 e = split_block (first_bb, after);
9081 gcc_assert (e->src == first_bb);
9082
9083 /* sched_split_block emits note if *check == BB_END. Probably it
9084 is better to rip that note off. */
9085
9086 return e->dest;
9087 }
9088
9089 /* A generic version of sched_create_empty_bb (). */
9090 basic_block
9091 sched_create_empty_bb_1 (basic_block after)
9092 {
9093 return create_empty_bb (after);
9094 }
9095
9096 /* Insert PAT as an INSN into the schedule and update the necessary data
9097 structures to account for it. */
9098 rtx_insn *
9099 sched_emit_insn (rtx pat)
9100 {
9101 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9102 haifa_init_insn (insn);
9103
9104 if (current_sched_info->add_remove_insn)
9105 current_sched_info->add_remove_insn (insn, 0);
9106
9107 (*current_sched_info->begin_schedule_ready) (insn);
9108 scheduled_insns.safe_push (insn);
9109
9110 last_scheduled_insn = insn;
9111 return insn;
9112 }
9113
9114 /* This function returns a candidate satisfying dispatch constraints from
9115 the ready list. */
9116
9117 static rtx_insn *
9118 ready_remove_first_dispatch (struct ready_list *ready)
9119 {
9120 int i;
9121 rtx_insn *insn = ready_element (ready, 0);
9122
9123 if (ready->n_ready == 1
9124 || !INSN_P (insn)
9125 || INSN_CODE (insn) < 0
9126 || !active_insn_p (insn)
9127 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9128 return ready_remove_first (ready);
9129
9130 for (i = 1; i < ready->n_ready; i++)
9131 {
9132 insn = ready_element (ready, i);
9133
9134 if (!INSN_P (insn)
9135 || INSN_CODE (insn) < 0
9136 || !active_insn_p (insn))
9137 continue;
9138
9139 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9140 {
9141 /* Return ith element of ready. */
9142 insn = ready_remove (ready, i);
9143 return insn;
9144 }
9145 }
9146
9147 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9148 return ready_remove_first (ready);
9149
9150 for (i = 1; i < ready->n_ready; i++)
9151 {
9152 insn = ready_element (ready, i);
9153
9154 if (!INSN_P (insn)
9155 || INSN_CODE (insn) < 0
9156 || !active_insn_p (insn))
9157 continue;
9158
9159 /* Return i-th element of ready. */
9160 if (targetm.sched.dispatch (insn, IS_CMP))
9161 return ready_remove (ready, i);
9162 }
9163
9164 return ready_remove_first (ready);
9165 }
9166
9167 /* Get number of ready insn in the ready list. */
9168
9169 int
9170 number_in_ready (void)
9171 {
9172 return ready.n_ready;
9173 }
9174
9175 /* Get number of ready's in the ready list. */
9176
9177 rtx_insn *
9178 get_ready_element (int i)
9179 {
9180 return ready_element (&ready, i);
9181 }
9182
9183 #endif /* INSN_SCHEDULING */