Improve scheduler dumps of ready list
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "hashtab.h"
135 #include "hash-set.h"
136 #include "vec.h"
137 #include "machmode.h"
138 #include "input.h"
139 #include "function.h"
140 #include "flags.h"
141 #include "insn-config.h"
142 #include "insn-attr.h"
143 #include "except.h"
144 #include "recog.h"
145 #include "sched-int.h"
146 #include "target.h"
147 #include "common/common-target.h"
148 #include "params.h"
149 #include "dbgcnt.h"
150 #include "cfgloop.h"
151 #include "ira.h"
152 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
153 #include "hash-table.h"
154 #include "dumpfile.h"
155
156 #ifdef INSN_SCHEDULING
157
158 /* True if we do register pressure relief through live-range
159 shrinkage. */
160 static bool live_range_shrinkage_p;
161
162 /* Switch on live range shrinkage. */
163 void
164 initialize_live_range_shrinkage (void)
165 {
166 live_range_shrinkage_p = true;
167 }
168
169 /* Switch off live range shrinkage. */
170 void
171 finish_live_range_shrinkage (void)
172 {
173 live_range_shrinkage_p = false;
174 }
175
176 /* issue_rate is the number of insns that can be scheduled in the same
177 machine cycle. It can be defined in the config/mach/mach.h file,
178 otherwise we set it to 1. */
179
180 int issue_rate;
181
182 /* This can be set to true by a backend if the scheduler should not
183 enable a DCE pass. */
184 bool sched_no_dce;
185
186 /* The current initiation interval used when modulo scheduling. */
187 static int modulo_ii;
188
189 /* The maximum number of stages we are prepared to handle. */
190 static int modulo_max_stages;
191
192 /* The number of insns that exist in each iteration of the loop. We use this
193 to detect when we've scheduled all insns from the first iteration. */
194 static int modulo_n_insns;
195
196 /* The current count of insns in the first iteration of the loop that have
197 already been scheduled. */
198 static int modulo_insns_scheduled;
199
200 /* The maximum uid of insns from the first iteration of the loop. */
201 static int modulo_iter0_max_uid;
202
203 /* The number of times we should attempt to backtrack when modulo scheduling.
204 Decreased each time we have to backtrack. */
205 static int modulo_backtracks_left;
206
207 /* The stage in which the last insn from the original loop was
208 scheduled. */
209 static int modulo_last_stage;
210
211 /* sched-verbose controls the amount of debugging output the
212 scheduler prints. It is controlled by -fsched-verbose=N:
213 N>0 and no -DSR : the output is directed to stderr.
214 N>=10 will direct the printouts to stderr (regardless of -dSR).
215 N=1: same as -dSR.
216 N=2: bb's probabilities, detailed ready list info, unit/insn info.
217 N=3: rtl at abort point, control-flow, regions info.
218 N=5: dependences info. */
219
220 int sched_verbose = 0;
221
222 /* Debugging file. All printouts are sent to dump, which is always set,
223 either to stderr, or to the dump listing file (-dRS). */
224 FILE *sched_dump = 0;
225
226 /* This is a placeholder for the scheduler parameters common
227 to all schedulers. */
228 struct common_sched_info_def *common_sched_info;
229
230 #define INSN_TICK(INSN) (HID (INSN)->tick)
231 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
232 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
233 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
234 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
235 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
236 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
237 /* Cached cost of the instruction. Use insn_cost to get cost of the
238 insn. -1 here means that the field is not initialized. */
239 #define INSN_COST(INSN) (HID (INSN)->cost)
240
241 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
242 then it should be recalculated from scratch. */
243 #define INVALID_TICK (-(max_insn_queue_index + 1))
244 /* The minimal value of the INSN_TICK of an instruction. */
245 #define MIN_TICK (-max_insn_queue_index)
246
247 /* The deciding reason for INSN's place in the ready list. */
248 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
249
250 /* List of important notes we must keep around. This is a pointer to the
251 last element in the list. */
252 rtx_insn *note_list;
253
254 static struct spec_info_def spec_info_var;
255 /* Description of the speculative part of the scheduling.
256 If NULL - no speculation. */
257 spec_info_t spec_info = NULL;
258
259 /* True, if recovery block was added during scheduling of current block.
260 Used to determine, if we need to fix INSN_TICKs. */
261 static bool haifa_recovery_bb_recently_added_p;
262
263 /* True, if recovery block was added during this scheduling pass.
264 Used to determine if we should have empty memory pools of dependencies
265 after finishing current region. */
266 bool haifa_recovery_bb_ever_added_p;
267
268 /* Counters of different types of speculative instructions. */
269 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
270
271 /* Array used in {unlink, restore}_bb_notes. */
272 static rtx_insn **bb_header = 0;
273
274 /* Basic block after which recovery blocks will be created. */
275 static basic_block before_recovery;
276
277 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
278 created it. */
279 basic_block after_recovery;
280
281 /* FALSE if we add bb to another region, so we don't need to initialize it. */
282 bool adding_bb_to_current_region_p = true;
283
284 /* Queues, etc. */
285
286 /* An instruction is ready to be scheduled when all insns preceding it
287 have already been scheduled. It is important to ensure that all
288 insns which use its result will not be executed until its result
289 has been computed. An insn is maintained in one of four structures:
290
291 (P) the "Pending" set of insns which cannot be scheduled until
292 their dependencies have been satisfied.
293 (Q) the "Queued" set of insns that can be scheduled when sufficient
294 time has passed.
295 (R) the "Ready" list of unscheduled, uncommitted insns.
296 (S) the "Scheduled" list of insns.
297
298 Initially, all insns are either "Pending" or "Ready" depending on
299 whether their dependencies are satisfied.
300
301 Insns move from the "Ready" list to the "Scheduled" list as they
302 are committed to the schedule. As this occurs, the insns in the
303 "Pending" list have their dependencies satisfied and move to either
304 the "Ready" list or the "Queued" set depending on whether
305 sufficient time has passed to make them ready. As time passes,
306 insns move from the "Queued" set to the "Ready" list.
307
308 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
309 unscheduled insns, i.e., those that are ready, queued, and pending.
310 The "Queued" set (Q) is implemented by the variable `insn_queue'.
311 The "Ready" list (R) is implemented by the variables `ready' and
312 `n_ready'.
313 The "Scheduled" list (S) is the new insn chain built by this pass.
314
315 The transition (R->S) is implemented in the scheduling loop in
316 `schedule_block' when the best insn to schedule is chosen.
317 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
318 insns move from the ready list to the scheduled list.
319 The transition (Q->R) is implemented in 'queue_to_insn' as time
320 passes or stalls are introduced. */
321
322 /* Implement a circular buffer to delay instructions until sufficient
323 time has passed. For the new pipeline description interface,
324 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
325 than maximal time of instruction execution computed by genattr.c on
326 the base maximal time of functional unit reservations and getting a
327 result. This is the longest time an insn may be queued. */
328
329 static rtx_insn_list **insn_queue;
330 static int q_ptr = 0;
331 static int q_size = 0;
332 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
333 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
334
335 #define QUEUE_SCHEDULED (-3)
336 #define QUEUE_NOWHERE (-2)
337 #define QUEUE_READY (-1)
338 /* QUEUE_SCHEDULED - INSN is scheduled.
339 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
340 queue or ready list.
341 QUEUE_READY - INSN is in ready list.
342 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
343
344 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
345
346 /* The following variable value refers for all current and future
347 reservations of the processor units. */
348 state_t curr_state;
349
350 /* The following variable value is size of memory representing all
351 current and future reservations of the processor units. */
352 size_t dfa_state_size;
353
354 /* The following array is used to find the best insn from ready when
355 the automaton pipeline interface is used. */
356 signed char *ready_try = NULL;
357
358 /* The ready list. */
359 struct ready_list ready = {NULL, 0, 0, 0, 0};
360
361 /* The pointer to the ready list (to be removed). */
362 static struct ready_list *readyp = &ready;
363
364 /* Scheduling clock. */
365 static int clock_var;
366
367 /* Clock at which the previous instruction was issued. */
368 static int last_clock_var;
369
370 /* Set to true if, when queuing a shadow insn, we discover that it would be
371 scheduled too late. */
372 static bool must_backtrack;
373
374 /* The following variable value is number of essential insns issued on
375 the current cycle. An insn is essential one if it changes the
376 processors state. */
377 int cycle_issued_insns;
378
379 /* This records the actual schedule. It is built up during the main phase
380 of schedule_block, and afterwards used to reorder the insns in the RTL. */
381 static vec<rtx_insn *> scheduled_insns;
382
383 static int may_trap_exp (const_rtx, int);
384
385 /* Nonzero iff the address is comprised from at most 1 register. */
386 #define CONST_BASED_ADDRESS_P(x) \
387 (REG_P (x) \
388 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
389 || (GET_CODE (x) == LO_SUM)) \
390 && (CONSTANT_P (XEXP (x, 0)) \
391 || CONSTANT_P (XEXP (x, 1)))))
392
393 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
394 as found by analyzing insn's expression. */
395
396 \f
397 static int haifa_luid_for_non_insn (rtx x);
398
399 /* Haifa version of sched_info hooks common to all headers. */
400 const struct common_sched_info_def haifa_common_sched_info =
401 {
402 NULL, /* fix_recovery_cfg */
403 NULL, /* add_block */
404 NULL, /* estimate_number_of_insns */
405 haifa_luid_for_non_insn, /* luid_for_non_insn */
406 SCHED_PASS_UNKNOWN /* sched_pass_id */
407 };
408
409 /* Mapping from instruction UID to its Logical UID. */
410 vec<int> sched_luids = vNULL;
411
412 /* Next LUID to assign to an instruction. */
413 int sched_max_luid = 1;
414
415 /* Haifa Instruction Data. */
416 vec<haifa_insn_data_def> h_i_d = vNULL;
417
418 void (* sched_init_only_bb) (basic_block, basic_block);
419
420 /* Split block function. Different schedulers might use different functions
421 to handle their internal data consistent. */
422 basic_block (* sched_split_block) (basic_block, rtx);
423
424 /* Create empty basic block after the specified block. */
425 basic_block (* sched_create_empty_bb) (basic_block);
426
427 /* Return the number of cycles until INSN is expected to be ready.
428 Return zero if it already is. */
429 static int
430 insn_delay (rtx_insn *insn)
431 {
432 return MAX (INSN_TICK (insn) - clock_var, 0);
433 }
434
435 static int
436 may_trap_exp (const_rtx x, int is_store)
437 {
438 enum rtx_code code;
439
440 if (x == 0)
441 return TRAP_FREE;
442 code = GET_CODE (x);
443 if (is_store)
444 {
445 if (code == MEM && may_trap_p (x))
446 return TRAP_RISKY;
447 else
448 return TRAP_FREE;
449 }
450 if (code == MEM)
451 {
452 /* The insn uses memory: a volatile load. */
453 if (MEM_VOLATILE_P (x))
454 return IRISKY;
455 /* An exception-free load. */
456 if (!may_trap_p (x))
457 return IFREE;
458 /* A load with 1 base register, to be further checked. */
459 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
460 return PFREE_CANDIDATE;
461 /* No info on the load, to be further checked. */
462 return PRISKY_CANDIDATE;
463 }
464 else
465 {
466 const char *fmt;
467 int i, insn_class = TRAP_FREE;
468
469 /* Neither store nor load, check if it may cause a trap. */
470 if (may_trap_p (x))
471 return TRAP_RISKY;
472 /* Recursive step: walk the insn... */
473 fmt = GET_RTX_FORMAT (code);
474 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
475 {
476 if (fmt[i] == 'e')
477 {
478 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
479 insn_class = WORST_CLASS (insn_class, tmp_class);
480 }
481 else if (fmt[i] == 'E')
482 {
483 int j;
484 for (j = 0; j < XVECLEN (x, i); j++)
485 {
486 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
487 insn_class = WORST_CLASS (insn_class, tmp_class);
488 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
489 break;
490 }
491 }
492 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
493 break;
494 }
495 return insn_class;
496 }
497 }
498
499 /* Classifies rtx X of an insn for the purpose of verifying that X can be
500 executed speculatively (and consequently the insn can be moved
501 speculatively), by examining X, returning:
502 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
503 TRAP_FREE: non-load insn.
504 IFREE: load from a globally safe location.
505 IRISKY: volatile load.
506 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
507 being either PFREE or PRISKY. */
508
509 static int
510 haifa_classify_rtx (const_rtx x)
511 {
512 int tmp_class = TRAP_FREE;
513 int insn_class = TRAP_FREE;
514 enum rtx_code code;
515
516 if (GET_CODE (x) == PARALLEL)
517 {
518 int i, len = XVECLEN (x, 0);
519
520 for (i = len - 1; i >= 0; i--)
521 {
522 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
523 insn_class = WORST_CLASS (insn_class, tmp_class);
524 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
525 break;
526 }
527 }
528 else
529 {
530 code = GET_CODE (x);
531 switch (code)
532 {
533 case CLOBBER:
534 /* Test if it is a 'store'. */
535 tmp_class = may_trap_exp (XEXP (x, 0), 1);
536 break;
537 case SET:
538 /* Test if it is a store. */
539 tmp_class = may_trap_exp (SET_DEST (x), 1);
540 if (tmp_class == TRAP_RISKY)
541 break;
542 /* Test if it is a load. */
543 tmp_class =
544 WORST_CLASS (tmp_class,
545 may_trap_exp (SET_SRC (x), 0));
546 break;
547 case COND_EXEC:
548 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
549 if (tmp_class == TRAP_RISKY)
550 break;
551 tmp_class = WORST_CLASS (tmp_class,
552 may_trap_exp (COND_EXEC_TEST (x), 0));
553 break;
554 case TRAP_IF:
555 tmp_class = TRAP_RISKY;
556 break;
557 default:;
558 }
559 insn_class = tmp_class;
560 }
561
562 return insn_class;
563 }
564
565 int
566 haifa_classify_insn (const_rtx insn)
567 {
568 return haifa_classify_rtx (PATTERN (insn));
569 }
570 \f
571 /* After the scheduler initialization function has been called, this function
572 can be called to enable modulo scheduling. II is the initiation interval
573 we should use, it affects the delays for delay_pairs that were recorded as
574 separated by a given number of stages.
575
576 MAX_STAGES provides us with a limit
577 after which we give up scheduling; the caller must have unrolled at least
578 as many copies of the loop body and recorded delay_pairs for them.
579
580 INSNS is the number of real (non-debug) insns in one iteration of
581 the loop. MAX_UID can be used to test whether an insn belongs to
582 the first iteration of the loop; all of them have a uid lower than
583 MAX_UID. */
584 void
585 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
586 {
587 modulo_ii = ii;
588 modulo_max_stages = max_stages;
589 modulo_n_insns = insns;
590 modulo_iter0_max_uid = max_uid;
591 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
592 }
593
594 /* A structure to record a pair of insns where the first one is a real
595 insn that has delay slots, and the second is its delayed shadow.
596 I1 is scheduled normally and will emit an assembly instruction,
597 while I2 describes the side effect that takes place at the
598 transition between cycles CYCLES and (CYCLES + 1) after I1. */
599 struct delay_pair
600 {
601 struct delay_pair *next_same_i1;
602 rtx_insn *i1, *i2;
603 int cycles;
604 /* When doing modulo scheduling, we a delay_pair can also be used to
605 show that I1 and I2 are the same insn in a different stage. If that
606 is the case, STAGES will be nonzero. */
607 int stages;
608 };
609
610 /* Helpers for delay hashing. */
611
612 struct delay_i1_hasher : typed_noop_remove <delay_pair>
613 {
614 typedef delay_pair value_type;
615 typedef void compare_type;
616 static inline hashval_t hash (const value_type *);
617 static inline bool equal (const value_type *, const compare_type *);
618 };
619
620 /* Returns a hash value for X, based on hashing just I1. */
621
622 inline hashval_t
623 delay_i1_hasher::hash (const value_type *x)
624 {
625 return htab_hash_pointer (x->i1);
626 }
627
628 /* Return true if I1 of pair X is the same as that of pair Y. */
629
630 inline bool
631 delay_i1_hasher::equal (const value_type *x, const compare_type *y)
632 {
633 return x->i1 == y;
634 }
635
636 struct delay_i2_hasher : typed_free_remove <delay_pair>
637 {
638 typedef delay_pair value_type;
639 typedef void compare_type;
640 static inline hashval_t hash (const value_type *);
641 static inline bool equal (const value_type *, const compare_type *);
642 };
643
644 /* Returns a hash value for X, based on hashing just I2. */
645
646 inline hashval_t
647 delay_i2_hasher::hash (const value_type *x)
648 {
649 return htab_hash_pointer (x->i2);
650 }
651
652 /* Return true if I2 of pair X is the same as that of pair Y. */
653
654 inline bool
655 delay_i2_hasher::equal (const value_type *x, const compare_type *y)
656 {
657 return x->i2 == y;
658 }
659
660 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
661 indexed by I2. */
662 static hash_table<delay_i1_hasher> *delay_htab;
663 static hash_table<delay_i2_hasher> *delay_htab_i2;
664
665 /* Called through htab_traverse. Walk the hashtable using I2 as
666 index, and delete all elements involving an UID higher than
667 that pointed to by *DATA. */
668 int
669 haifa_htab_i2_traverse (delay_pair **slot, int *data)
670 {
671 int maxuid = *data;
672 struct delay_pair *p = *slot;
673 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
674 {
675 delay_htab_i2->clear_slot (slot);
676 }
677 return 1;
678 }
679
680 /* Called through htab_traverse. Walk the hashtable using I2 as
681 index, and delete all elements involving an UID higher than
682 that pointed to by *DATA. */
683 int
684 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
685 {
686 int maxuid = *data;
687 struct delay_pair *p, *first, **pprev;
688
689 if (INSN_UID ((*pslot)->i1) >= maxuid)
690 {
691 delay_htab->clear_slot (pslot);
692 return 1;
693 }
694 pprev = &first;
695 for (p = *pslot; p; p = p->next_same_i1)
696 {
697 if (INSN_UID (p->i2) < maxuid)
698 {
699 *pprev = p;
700 pprev = &p->next_same_i1;
701 }
702 }
703 *pprev = NULL;
704 if (first == NULL)
705 delay_htab->clear_slot (pslot);
706 else
707 *pslot = first;
708 return 1;
709 }
710
711 /* Discard all delay pairs which involve an insn with an UID higher
712 than MAX_UID. */
713 void
714 discard_delay_pairs_above (int max_uid)
715 {
716 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
717 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
718 }
719
720 /* This function can be called by a port just before it starts the final
721 scheduling pass. It records the fact that an instruction with delay
722 slots has been split into two insns, I1 and I2. The first one will be
723 scheduled normally and initiates the operation. The second one is a
724 shadow which must follow a specific number of cycles after I1; its only
725 purpose is to show the side effect that occurs at that cycle in the RTL.
726 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
727 while I2 retains the original insn type.
728
729 There are two ways in which the number of cycles can be specified,
730 involving the CYCLES and STAGES arguments to this function. If STAGES
731 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
732 which is multiplied by MODULO_II to give the number of cycles. This is
733 only useful if the caller also calls set_modulo_params to enable modulo
734 scheduling. */
735
736 void
737 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
738 {
739 struct delay_pair *p = XNEW (struct delay_pair);
740 struct delay_pair **slot;
741
742 p->i1 = i1;
743 p->i2 = i2;
744 p->cycles = cycles;
745 p->stages = stages;
746
747 if (!delay_htab)
748 {
749 delay_htab = new hash_table<delay_i1_hasher> (10);
750 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
751 }
752 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
753 p->next_same_i1 = *slot;
754 *slot = p;
755 slot = delay_htab_i2->find_slot (p, INSERT);
756 *slot = p;
757 }
758
759 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
760 and return the other insn if so. Return NULL otherwise. */
761 rtx_insn *
762 real_insn_for_shadow (rtx_insn *insn)
763 {
764 struct delay_pair *pair;
765
766 if (!delay_htab)
767 return NULL;
768
769 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
770 if (!pair || pair->stages > 0)
771 return NULL;
772 return pair->i1;
773 }
774
775 /* For a pair P of insns, return the fixed distance in cycles from the first
776 insn after which the second must be scheduled. */
777 static int
778 pair_delay (struct delay_pair *p)
779 {
780 if (p->stages == 0)
781 return p->cycles;
782 else
783 return p->stages * modulo_ii;
784 }
785
786 /* Given an insn INSN, add a dependence on its delayed shadow if it
787 has one. Also try to find situations where shadows depend on each other
788 and add dependencies to the real insns to limit the amount of backtracking
789 needed. */
790 void
791 add_delay_dependencies (rtx_insn *insn)
792 {
793 struct delay_pair *pair;
794 sd_iterator_def sd_it;
795 dep_t dep;
796
797 if (!delay_htab)
798 return;
799
800 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
801 if (!pair)
802 return;
803 add_dependence (insn, pair->i1, REG_DEP_ANTI);
804 if (pair->stages)
805 return;
806
807 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
808 {
809 rtx_insn *pro = DEP_PRO (dep);
810 struct delay_pair *other_pair
811 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
812 if (!other_pair || other_pair->stages)
813 continue;
814 if (pair_delay (other_pair) >= pair_delay (pair))
815 {
816 if (sched_verbose >= 4)
817 {
818 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
819 INSN_UID (other_pair->i1),
820 INSN_UID (pair->i1));
821 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
822 INSN_UID (pair->i1),
823 INSN_UID (pair->i2),
824 pair_delay (pair));
825 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
826 INSN_UID (other_pair->i1),
827 INSN_UID (other_pair->i2),
828 pair_delay (other_pair));
829 }
830 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
831 }
832 }
833 }
834 \f
835 /* Forward declarations. */
836
837 static int priority (rtx_insn *);
838 static int rank_for_schedule (const void *, const void *);
839 static void swap_sort (rtx_insn **, int);
840 static void queue_insn (rtx_insn *, int, const char *);
841 static int schedule_insn (rtx_insn *);
842 static void adjust_priority (rtx_insn *);
843 static void advance_one_cycle (void);
844 static void extend_h_i_d (void);
845
846
847 /* Notes handling mechanism:
848 =========================
849 Generally, NOTES are saved before scheduling and restored after scheduling.
850 The scheduler distinguishes between two types of notes:
851
852 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
853 Before scheduling a region, a pointer to the note is added to the insn
854 that follows or precedes it. (This happens as part of the data dependence
855 computation). After scheduling an insn, the pointer contained in it is
856 used for regenerating the corresponding note (in reemit_notes).
857
858 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
859 these notes are put in a list (in rm_other_notes() and
860 unlink_other_notes ()). After scheduling the block, these notes are
861 inserted at the beginning of the block (in schedule_block()). */
862
863 static void ready_add (struct ready_list *, rtx_insn *, bool);
864 static rtx_insn *ready_remove_first (struct ready_list *);
865 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
866
867 static void queue_to_ready (struct ready_list *);
868 static int early_queue_to_ready (state_t, struct ready_list *);
869
870 /* The following functions are used to implement multi-pass scheduling
871 on the first cycle. */
872 static rtx_insn *ready_remove (struct ready_list *, int);
873 static void ready_remove_insn (rtx);
874
875 static void fix_inter_tick (rtx_insn *, rtx_insn *);
876 static int fix_tick_ready (rtx_insn *);
877 static void change_queue_index (rtx_insn *, int);
878
879 /* The following functions are used to implement scheduling of data/control
880 speculative instructions. */
881
882 static void extend_h_i_d (void);
883 static void init_h_i_d (rtx_insn *);
884 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
885 static void generate_recovery_code (rtx_insn *);
886 static void process_insn_forw_deps_be_in_spec (rtx, rtx_insn *, ds_t);
887 static void begin_speculative_block (rtx_insn *);
888 static void add_to_speculative_block (rtx_insn *);
889 static void init_before_recovery (basic_block *);
890 static void create_check_block_twin (rtx_insn *, bool);
891 static void fix_recovery_deps (basic_block);
892 static bool haifa_change_pattern (rtx_insn *, rtx);
893 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
894 static void restore_bb_notes (basic_block);
895 static void fix_jump_move (rtx_insn *);
896 static void move_block_after_check (rtx_insn *);
897 static void move_succs (vec<edge, va_gc> **, basic_block);
898 static void sched_remove_insn (rtx_insn *);
899 static void clear_priorities (rtx_insn *, rtx_vec_t *);
900 static void calc_priorities (rtx_vec_t);
901 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
902
903 #endif /* INSN_SCHEDULING */
904 \f
905 /* Point to state used for the current scheduling pass. */
906 struct haifa_sched_info *current_sched_info;
907 \f
908 #ifndef INSN_SCHEDULING
909 void
910 schedule_insns (void)
911 {
912 }
913 #else
914
915 /* Do register pressure sensitive insn scheduling if the flag is set
916 up. */
917 enum sched_pressure_algorithm sched_pressure;
918
919 /* Map regno -> its pressure class. The map defined only when
920 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
921 enum reg_class *sched_regno_pressure_class;
922
923 /* The current register pressure. Only elements corresponding pressure
924 classes are defined. */
925 static int curr_reg_pressure[N_REG_CLASSES];
926
927 /* Saved value of the previous array. */
928 static int saved_reg_pressure[N_REG_CLASSES];
929
930 /* Register living at given scheduling point. */
931 static bitmap curr_reg_live;
932
933 /* Saved value of the previous array. */
934 static bitmap saved_reg_live;
935
936 /* Registers mentioned in the current region. */
937 static bitmap region_ref_regs;
938
939 /* Effective number of available registers of a given class (see comment
940 in sched_pressure_start_bb). */
941 static int sched_class_regs_num[N_REG_CLASSES];
942 /* Number of call_used_regs. This is a helper for calculating of
943 sched_class_regs_num. */
944 static int call_used_regs_num[N_REG_CLASSES];
945
946 /* Initiate register pressure relative info for scheduling the current
947 region. Currently it is only clearing register mentioned in the
948 current region. */
949 void
950 sched_init_region_reg_pressure_info (void)
951 {
952 bitmap_clear (region_ref_regs);
953 }
954
955 /* PRESSURE[CL] describes the pressure on register class CL. Update it
956 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
957 LIVE tracks the set of live registers; if it is null, assume that
958 every birth or death is genuine. */
959 static inline void
960 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
961 {
962 enum reg_class pressure_class;
963
964 pressure_class = sched_regno_pressure_class[regno];
965 if (regno >= FIRST_PSEUDO_REGISTER)
966 {
967 if (pressure_class != NO_REGS)
968 {
969 if (birth_p)
970 {
971 if (!live || bitmap_set_bit (live, regno))
972 pressure[pressure_class]
973 += (ira_reg_class_max_nregs
974 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
975 }
976 else
977 {
978 if (!live || bitmap_clear_bit (live, regno))
979 pressure[pressure_class]
980 -= (ira_reg_class_max_nregs
981 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
982 }
983 }
984 }
985 else if (pressure_class != NO_REGS
986 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
987 {
988 if (birth_p)
989 {
990 if (!live || bitmap_set_bit (live, regno))
991 pressure[pressure_class]++;
992 }
993 else
994 {
995 if (!live || bitmap_clear_bit (live, regno))
996 pressure[pressure_class]--;
997 }
998 }
999 }
1000
1001 /* Initiate current register pressure related info from living
1002 registers given by LIVE. */
1003 static void
1004 initiate_reg_pressure_info (bitmap live)
1005 {
1006 int i;
1007 unsigned int j;
1008 bitmap_iterator bi;
1009
1010 for (i = 0; i < ira_pressure_classes_num; i++)
1011 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1012 bitmap_clear (curr_reg_live);
1013 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1014 if (sched_pressure == SCHED_PRESSURE_MODEL
1015 || current_nr_blocks == 1
1016 || bitmap_bit_p (region_ref_regs, j))
1017 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1018 }
1019
1020 /* Mark registers in X as mentioned in the current region. */
1021 static void
1022 setup_ref_regs (rtx x)
1023 {
1024 int i, j, regno;
1025 const RTX_CODE code = GET_CODE (x);
1026 const char *fmt;
1027
1028 if (REG_P (x))
1029 {
1030 regno = REGNO (x);
1031 if (HARD_REGISTER_NUM_P (regno))
1032 bitmap_set_range (region_ref_regs, regno,
1033 hard_regno_nregs[regno][GET_MODE (x)]);
1034 else
1035 bitmap_set_bit (region_ref_regs, REGNO (x));
1036 return;
1037 }
1038 fmt = GET_RTX_FORMAT (code);
1039 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1040 if (fmt[i] == 'e')
1041 setup_ref_regs (XEXP (x, i));
1042 else if (fmt[i] == 'E')
1043 {
1044 for (j = 0; j < XVECLEN (x, i); j++)
1045 setup_ref_regs (XVECEXP (x, i, j));
1046 }
1047 }
1048
1049 /* Initiate current register pressure related info at the start of
1050 basic block BB. */
1051 static void
1052 initiate_bb_reg_pressure_info (basic_block bb)
1053 {
1054 unsigned int i ATTRIBUTE_UNUSED;
1055 rtx_insn *insn;
1056
1057 if (current_nr_blocks > 1)
1058 FOR_BB_INSNS (bb, insn)
1059 if (NONDEBUG_INSN_P (insn))
1060 setup_ref_regs (PATTERN (insn));
1061 initiate_reg_pressure_info (df_get_live_in (bb));
1062 #ifdef EH_RETURN_DATA_REGNO
1063 if (bb_has_eh_pred (bb))
1064 for (i = 0; ; ++i)
1065 {
1066 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1067
1068 if (regno == INVALID_REGNUM)
1069 break;
1070 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1071 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1072 regno, true);
1073 }
1074 #endif
1075 }
1076
1077 /* Save current register pressure related info. */
1078 static void
1079 save_reg_pressure (void)
1080 {
1081 int i;
1082
1083 for (i = 0; i < ira_pressure_classes_num; i++)
1084 saved_reg_pressure[ira_pressure_classes[i]]
1085 = curr_reg_pressure[ira_pressure_classes[i]];
1086 bitmap_copy (saved_reg_live, curr_reg_live);
1087 }
1088
1089 /* Restore saved register pressure related info. */
1090 static void
1091 restore_reg_pressure (void)
1092 {
1093 int i;
1094
1095 for (i = 0; i < ira_pressure_classes_num; i++)
1096 curr_reg_pressure[ira_pressure_classes[i]]
1097 = saved_reg_pressure[ira_pressure_classes[i]];
1098 bitmap_copy (curr_reg_live, saved_reg_live);
1099 }
1100
1101 /* Return TRUE if the register is dying after its USE. */
1102 static bool
1103 dying_use_p (struct reg_use_data *use)
1104 {
1105 struct reg_use_data *next;
1106
1107 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1108 if (NONDEBUG_INSN_P (next->insn)
1109 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1110 return false;
1111 return true;
1112 }
1113
1114 /* Print info about the current register pressure and its excess for
1115 each pressure class. */
1116 static void
1117 print_curr_reg_pressure (void)
1118 {
1119 int i;
1120 enum reg_class cl;
1121
1122 fprintf (sched_dump, ";;\t");
1123 for (i = 0; i < ira_pressure_classes_num; i++)
1124 {
1125 cl = ira_pressure_classes[i];
1126 gcc_assert (curr_reg_pressure[cl] >= 0);
1127 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1128 curr_reg_pressure[cl],
1129 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1130 }
1131 fprintf (sched_dump, "\n");
1132 }
1133 \f
1134 /* Determine if INSN has a condition that is clobbered if a register
1135 in SET_REGS is modified. */
1136 static bool
1137 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1138 {
1139 rtx pat = PATTERN (insn);
1140 gcc_assert (GET_CODE (pat) == COND_EXEC);
1141 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1142 {
1143 sd_iterator_def sd_it;
1144 dep_t dep;
1145 haifa_change_pattern (insn, ORIG_PAT (insn));
1146 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1147 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1148 TODO_SPEC (insn) = HARD_DEP;
1149 if (sched_verbose >= 2)
1150 fprintf (sched_dump,
1151 ";;\t\tdequeue insn %s because of clobbered condition\n",
1152 (*current_sched_info->print_insn) (insn, 0));
1153 return true;
1154 }
1155
1156 return false;
1157 }
1158
1159 /* This function should be called after modifying the pattern of INSN,
1160 to update scheduler data structures as needed. */
1161 static void
1162 update_insn_after_change (rtx_insn *insn)
1163 {
1164 sd_iterator_def sd_it;
1165 dep_t dep;
1166
1167 dfa_clear_single_insn_cache (insn);
1168
1169 sd_it = sd_iterator_start (insn,
1170 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1171 while (sd_iterator_cond (&sd_it, &dep))
1172 {
1173 DEP_COST (dep) = UNKNOWN_DEP_COST;
1174 sd_iterator_next (&sd_it);
1175 }
1176
1177 /* Invalidate INSN_COST, so it'll be recalculated. */
1178 INSN_COST (insn) = -1;
1179 /* Invalidate INSN_TICK, so it'll be recalculated. */
1180 INSN_TICK (insn) = INVALID_TICK;
1181 }
1182
1183
1184 /* Two VECs, one to hold dependencies for which pattern replacements
1185 need to be applied or restored at the start of the next cycle, and
1186 another to hold an integer that is either one, to apply the
1187 corresponding replacement, or zero to restore it. */
1188 static vec<dep_t> next_cycle_replace_deps;
1189 static vec<int> next_cycle_apply;
1190
1191 static void apply_replacement (dep_t, bool);
1192 static void restore_pattern (dep_t, bool);
1193
1194 /* Look at the remaining dependencies for insn NEXT, and compute and return
1195 the TODO_SPEC value we should use for it. This is called after one of
1196 NEXT's dependencies has been resolved.
1197 We also perform pattern replacements for predication, and for broken
1198 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1199 false. */
1200
1201 static ds_t
1202 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1203 {
1204 ds_t new_ds;
1205 sd_iterator_def sd_it;
1206 dep_t dep, modify_dep = NULL;
1207 int n_spec = 0;
1208 int n_control = 0;
1209 int n_replace = 0;
1210 bool first_p = true;
1211
1212 if (sd_lists_empty_p (next, SD_LIST_BACK))
1213 /* NEXT has all its dependencies resolved. */
1214 return 0;
1215
1216 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1217 return HARD_DEP;
1218
1219 /* Now we've got NEXT with speculative deps only.
1220 1. Look at the deps to see what we have to do.
1221 2. Check if we can do 'todo'. */
1222 new_ds = 0;
1223
1224 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1225 {
1226 rtx_insn *pro = DEP_PRO (dep);
1227 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1228
1229 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1230 continue;
1231
1232 if (ds)
1233 {
1234 n_spec++;
1235 if (first_p)
1236 {
1237 first_p = false;
1238
1239 new_ds = ds;
1240 }
1241 else
1242 new_ds = ds_merge (new_ds, ds);
1243 }
1244 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1245 {
1246 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1247 {
1248 n_control++;
1249 modify_dep = dep;
1250 }
1251 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1252 }
1253 else if (DEP_REPLACE (dep) != NULL)
1254 {
1255 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1256 {
1257 n_replace++;
1258 modify_dep = dep;
1259 }
1260 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1261 }
1262 }
1263
1264 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1265 {
1266 if (!dbg_cnt (sched_breakdep))
1267 return HARD_DEP;
1268 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1269 {
1270 struct dep_replacement *desc = DEP_REPLACE (dep);
1271 if (desc != NULL)
1272 {
1273 if (desc->insn == next && !for_backtrack)
1274 {
1275 gcc_assert (n_replace == 1);
1276 apply_replacement (dep, true);
1277 }
1278 DEP_STATUS (dep) |= DEP_CANCELLED;
1279 }
1280 }
1281 return 0;
1282 }
1283
1284 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1285 {
1286 rtx_insn *pro, *other;
1287 rtx new_pat;
1288 rtx cond = NULL_RTX;
1289 bool success;
1290 rtx_insn *prev = NULL;
1291 int i;
1292 unsigned regno;
1293
1294 if ((current_sched_info->flags & DO_PREDICATION) == 0
1295 || (ORIG_PAT (next) != NULL_RTX
1296 && PREDICATED_PAT (next) == NULL_RTX))
1297 return HARD_DEP;
1298
1299 pro = DEP_PRO (modify_dep);
1300 other = real_insn_for_shadow (pro);
1301 if (other != NULL_RTX)
1302 pro = other;
1303
1304 cond = sched_get_reverse_condition_uncached (pro);
1305 regno = REGNO (XEXP (cond, 0));
1306
1307 /* Find the last scheduled insn that modifies the condition register.
1308 We can stop looking once we find the insn we depend on through the
1309 REG_DEP_CONTROL; if the condition register isn't modified after it,
1310 we know that it still has the right value. */
1311 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1312 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1313 {
1314 HARD_REG_SET t;
1315
1316 find_all_hard_reg_sets (prev, &t, true);
1317 if (TEST_HARD_REG_BIT (t, regno))
1318 return HARD_DEP;
1319 if (prev == pro)
1320 break;
1321 }
1322 if (ORIG_PAT (next) == NULL_RTX)
1323 {
1324 ORIG_PAT (next) = PATTERN (next);
1325
1326 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1327 success = haifa_change_pattern (next, new_pat);
1328 if (!success)
1329 return HARD_DEP;
1330 PREDICATED_PAT (next) = new_pat;
1331 }
1332 else if (PATTERN (next) != PREDICATED_PAT (next))
1333 {
1334 bool success = haifa_change_pattern (next,
1335 PREDICATED_PAT (next));
1336 gcc_assert (success);
1337 }
1338 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1339 return DEP_CONTROL;
1340 }
1341
1342 if (PREDICATED_PAT (next) != NULL_RTX)
1343 {
1344 int tick = INSN_TICK (next);
1345 bool success = haifa_change_pattern (next,
1346 ORIG_PAT (next));
1347 INSN_TICK (next) = tick;
1348 gcc_assert (success);
1349 }
1350
1351 /* We can't handle the case where there are both speculative and control
1352 dependencies, so we return HARD_DEP in such a case. Also fail if
1353 we have speculative dependencies with not enough points, or more than
1354 one control dependency. */
1355 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1356 || (n_spec > 0
1357 /* Too few points? */
1358 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1359 || n_control > 0
1360 || n_replace > 0)
1361 return HARD_DEP;
1362
1363 return new_ds;
1364 }
1365 \f
1366 /* Pointer to the last instruction scheduled. */
1367 static rtx_insn *last_scheduled_insn;
1368
1369 /* Pointer to the last nondebug instruction scheduled within the
1370 block, or the prev_head of the scheduling block. Used by
1371 rank_for_schedule, so that insns independent of the last scheduled
1372 insn will be preferred over dependent instructions. */
1373 static rtx last_nondebug_scheduled_insn;
1374
1375 /* Pointer that iterates through the list of unscheduled insns if we
1376 have a dbg_cnt enabled. It always points at an insn prior to the
1377 first unscheduled one. */
1378 static rtx_insn *nonscheduled_insns_begin;
1379
1380 /* Compute cost of executing INSN.
1381 This is the number of cycles between instruction issue and
1382 instruction results. */
1383 int
1384 insn_cost (rtx_insn *insn)
1385 {
1386 int cost;
1387
1388 if (sel_sched_p ())
1389 {
1390 if (recog_memoized (insn) < 0)
1391 return 0;
1392
1393 cost = insn_default_latency (insn);
1394 if (cost < 0)
1395 cost = 0;
1396
1397 return cost;
1398 }
1399
1400 cost = INSN_COST (insn);
1401
1402 if (cost < 0)
1403 {
1404 /* A USE insn, or something else we don't need to
1405 understand. We can't pass these directly to
1406 result_ready_cost or insn_default_latency because it will
1407 trigger a fatal error for unrecognizable insns. */
1408 if (recog_memoized (insn) < 0)
1409 {
1410 INSN_COST (insn) = 0;
1411 return 0;
1412 }
1413 else
1414 {
1415 cost = insn_default_latency (insn);
1416 if (cost < 0)
1417 cost = 0;
1418
1419 INSN_COST (insn) = cost;
1420 }
1421 }
1422
1423 return cost;
1424 }
1425
1426 /* Compute cost of dependence LINK.
1427 This is the number of cycles between instruction issue and
1428 instruction results.
1429 ??? We also use this function to call recog_memoized on all insns. */
1430 int
1431 dep_cost_1 (dep_t link, dw_t dw)
1432 {
1433 rtx_insn *insn = DEP_PRO (link);
1434 rtx_insn *used = DEP_CON (link);
1435 int cost;
1436
1437 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1438 return DEP_COST (link);
1439
1440 if (delay_htab)
1441 {
1442 struct delay_pair *delay_entry;
1443 delay_entry
1444 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1445 if (delay_entry)
1446 {
1447 if (delay_entry->i1 == insn)
1448 {
1449 DEP_COST (link) = pair_delay (delay_entry);
1450 return DEP_COST (link);
1451 }
1452 }
1453 }
1454
1455 /* A USE insn should never require the value used to be computed.
1456 This allows the computation of a function's result and parameter
1457 values to overlap the return and call. We don't care about the
1458 dependence cost when only decreasing register pressure. */
1459 if (recog_memoized (used) < 0)
1460 {
1461 cost = 0;
1462 recog_memoized (insn);
1463 }
1464 else
1465 {
1466 enum reg_note dep_type = DEP_TYPE (link);
1467
1468 cost = insn_cost (insn);
1469
1470 if (INSN_CODE (insn) >= 0)
1471 {
1472 if (dep_type == REG_DEP_ANTI)
1473 cost = 0;
1474 else if (dep_type == REG_DEP_OUTPUT)
1475 {
1476 cost = (insn_default_latency (insn)
1477 - insn_default_latency (used));
1478 if (cost <= 0)
1479 cost = 1;
1480 }
1481 else if (bypass_p (insn))
1482 cost = insn_latency (insn, used);
1483 }
1484
1485
1486 if (targetm.sched.adjust_cost_2)
1487 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1488 dw);
1489 else if (targetm.sched.adjust_cost != NULL)
1490 {
1491 /* This variable is used for backward compatibility with the
1492 targets. */
1493 rtx_insn_list *dep_cost_rtx_link =
1494 alloc_INSN_LIST (NULL_RTX, NULL);
1495
1496 /* Make it self-cycled, so that if some tries to walk over this
1497 incomplete list he/she will be caught in an endless loop. */
1498 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1499
1500 /* Targets use only REG_NOTE_KIND of the link. */
1501 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1502
1503 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1504 insn, cost);
1505
1506 free_INSN_LIST_node (dep_cost_rtx_link);
1507 }
1508
1509 if (cost < 0)
1510 cost = 0;
1511 }
1512
1513 DEP_COST (link) = cost;
1514 return cost;
1515 }
1516
1517 /* Compute cost of dependence LINK.
1518 This is the number of cycles between instruction issue and
1519 instruction results. */
1520 int
1521 dep_cost (dep_t link)
1522 {
1523 return dep_cost_1 (link, 0);
1524 }
1525
1526 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1527 INSN_PRIORITY explicitly. */
1528 void
1529 increase_insn_priority (rtx_insn *insn, int amount)
1530 {
1531 if (!sel_sched_p ())
1532 {
1533 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1534 if (INSN_PRIORITY_KNOWN (insn))
1535 INSN_PRIORITY (insn) += amount;
1536 }
1537 else
1538 {
1539 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1540 Use EXPR_PRIORITY instead. */
1541 sel_add_to_insn_priority (insn, amount);
1542 }
1543 }
1544
1545 /* Return 'true' if DEP should be included in priority calculations. */
1546 static bool
1547 contributes_to_priority_p (dep_t dep)
1548 {
1549 if (DEBUG_INSN_P (DEP_CON (dep))
1550 || DEBUG_INSN_P (DEP_PRO (dep)))
1551 return false;
1552
1553 /* Critical path is meaningful in block boundaries only. */
1554 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1555 DEP_PRO (dep)))
1556 return false;
1557
1558 if (DEP_REPLACE (dep) != NULL)
1559 return false;
1560
1561 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1562 then speculative instructions will less likely be
1563 scheduled. That is because the priority of
1564 their producers will increase, and, thus, the
1565 producers will more likely be scheduled, thus,
1566 resolving the dependence. */
1567 if (sched_deps_info->generate_spec_deps
1568 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1569 && (DEP_STATUS (dep) & SPECULATIVE))
1570 return false;
1571
1572 return true;
1573 }
1574
1575 /* Compute the number of nondebug deps in list LIST for INSN. */
1576
1577 static int
1578 dep_list_size (rtx insn, sd_list_types_def list)
1579 {
1580 sd_iterator_def sd_it;
1581 dep_t dep;
1582 int dbgcount = 0, nodbgcount = 0;
1583
1584 if (!MAY_HAVE_DEBUG_INSNS)
1585 return sd_lists_size (insn, list);
1586
1587 FOR_EACH_DEP (insn, list, sd_it, dep)
1588 {
1589 if (DEBUG_INSN_P (DEP_CON (dep)))
1590 dbgcount++;
1591 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1592 nodbgcount++;
1593 }
1594
1595 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1596
1597 return nodbgcount;
1598 }
1599
1600 /* Compute the priority number for INSN. */
1601 static int
1602 priority (rtx_insn *insn)
1603 {
1604 if (! INSN_P (insn))
1605 return 0;
1606
1607 /* We should not be interested in priority of an already scheduled insn. */
1608 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1609
1610 if (!INSN_PRIORITY_KNOWN (insn))
1611 {
1612 int this_priority = -1;
1613
1614 if (dep_list_size (insn, SD_LIST_FORW) == 0)
1615 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1616 some forward deps but all of them are ignored by
1617 contributes_to_priority hook. At the moment we set priority of
1618 such insn to 0. */
1619 this_priority = insn_cost (insn);
1620 else
1621 {
1622 rtx_insn *prev_first, *twin;
1623 basic_block rec;
1624
1625 /* For recovery check instructions we calculate priority slightly
1626 different than that of normal instructions. Instead of walking
1627 through INSN_FORW_DEPS (check) list, we walk through
1628 INSN_FORW_DEPS list of each instruction in the corresponding
1629 recovery block. */
1630
1631 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1632 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1633 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1634 {
1635 prev_first = PREV_INSN (insn);
1636 twin = insn;
1637 }
1638 else
1639 {
1640 prev_first = NEXT_INSN (BB_HEAD (rec));
1641 twin = PREV_INSN (BB_END (rec));
1642 }
1643
1644 do
1645 {
1646 sd_iterator_def sd_it;
1647 dep_t dep;
1648
1649 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1650 {
1651 rtx_insn *next;
1652 int next_priority;
1653
1654 next = DEP_CON (dep);
1655
1656 if (BLOCK_FOR_INSN (next) != rec)
1657 {
1658 int cost;
1659
1660 if (!contributes_to_priority_p (dep))
1661 continue;
1662
1663 if (twin == insn)
1664 cost = dep_cost (dep);
1665 else
1666 {
1667 struct _dep _dep1, *dep1 = &_dep1;
1668
1669 init_dep (dep1, insn, next, REG_DEP_ANTI);
1670
1671 cost = dep_cost (dep1);
1672 }
1673
1674 next_priority = cost + priority (next);
1675
1676 if (next_priority > this_priority)
1677 this_priority = next_priority;
1678 }
1679 }
1680
1681 twin = PREV_INSN (twin);
1682 }
1683 while (twin != prev_first);
1684 }
1685
1686 if (this_priority < 0)
1687 {
1688 gcc_assert (this_priority == -1);
1689
1690 this_priority = insn_cost (insn);
1691 }
1692
1693 INSN_PRIORITY (insn) = this_priority;
1694 INSN_PRIORITY_STATUS (insn) = 1;
1695 }
1696
1697 return INSN_PRIORITY (insn);
1698 }
1699 \f
1700 /* Macros and functions for keeping the priority queue sorted, and
1701 dealing with queuing and dequeuing of instructions. */
1702
1703 /* For each pressure class CL, set DEATH[CL] to the number of registers
1704 in that class that die in INSN. */
1705
1706 static void
1707 calculate_reg_deaths (rtx_insn *insn, int *death)
1708 {
1709 int i;
1710 struct reg_use_data *use;
1711
1712 for (i = 0; i < ira_pressure_classes_num; i++)
1713 death[ira_pressure_classes[i]] = 0;
1714 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1715 if (dying_use_p (use))
1716 mark_regno_birth_or_death (0, death, use->regno, true);
1717 }
1718
1719 /* Setup info about the current register pressure impact of scheduling
1720 INSN at the current scheduling point. */
1721 static void
1722 setup_insn_reg_pressure_info (rtx_insn *insn)
1723 {
1724 int i, change, before, after, hard_regno;
1725 int excess_cost_change;
1726 enum machine_mode mode;
1727 enum reg_class cl;
1728 struct reg_pressure_data *pressure_info;
1729 int *max_reg_pressure;
1730 static int death[N_REG_CLASSES];
1731
1732 gcc_checking_assert (!DEBUG_INSN_P (insn));
1733
1734 excess_cost_change = 0;
1735 calculate_reg_deaths (insn, death);
1736 pressure_info = INSN_REG_PRESSURE (insn);
1737 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1738 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1739 for (i = 0; i < ira_pressure_classes_num; i++)
1740 {
1741 cl = ira_pressure_classes[i];
1742 gcc_assert (curr_reg_pressure[cl] >= 0);
1743 change = (int) pressure_info[i].set_increase - death[cl];
1744 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1745 after = MAX (0, max_reg_pressure[i] + change
1746 - sched_class_regs_num[cl]);
1747 hard_regno = ira_class_hard_regs[cl][0];
1748 gcc_assert (hard_regno >= 0);
1749 mode = reg_raw_mode[hard_regno];
1750 excess_cost_change += ((after - before)
1751 * (ira_memory_move_cost[mode][cl][0]
1752 + ira_memory_move_cost[mode][cl][1]));
1753 }
1754 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1755 }
1756 \f
1757 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1758 It tries to make the scheduler take register pressure into account
1759 without introducing too many unnecessary stalls. It hooks into the
1760 main scheduling algorithm at several points:
1761
1762 - Before scheduling starts, model_start_schedule constructs a
1763 "model schedule" for the current block. This model schedule is
1764 chosen solely to keep register pressure down. It does not take the
1765 target's pipeline or the original instruction order into account,
1766 except as a tie-breaker. It also doesn't work to a particular
1767 pressure limit.
1768
1769 This model schedule gives us an idea of what pressure can be
1770 achieved for the block and gives us an example of a schedule that
1771 keeps to that pressure. It also makes the final schedule less
1772 dependent on the original instruction order. This is important
1773 because the original order can either be "wide" (many values live
1774 at once, such as in user-scheduled code) or "narrow" (few values
1775 live at once, such as after loop unrolling, where several
1776 iterations are executed sequentially).
1777
1778 We do not apply this model schedule to the rtx stream. We simply
1779 record it in model_schedule. We also compute the maximum pressure,
1780 MP, that was seen during this schedule.
1781
1782 - Instructions are added to the ready queue even if they require
1783 a stall. The length of the stall is instead computed as:
1784
1785 MAX (INSN_TICK (INSN) - clock_var, 0)
1786
1787 (= insn_delay). This allows rank_for_schedule to choose between
1788 introducing a deliberate stall or increasing pressure.
1789
1790 - Before sorting the ready queue, model_set_excess_costs assigns
1791 a pressure-based cost to each ready instruction in the queue.
1792 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1793 (ECC for short) and is effectively measured in cycles.
1794
1795 - rank_for_schedule ranks instructions based on:
1796
1797 ECC (insn) + insn_delay (insn)
1798
1799 then as:
1800
1801 insn_delay (insn)
1802
1803 So, for example, an instruction X1 with an ECC of 1 that can issue
1804 now will win over an instruction X0 with an ECC of zero that would
1805 introduce a stall of one cycle. However, an instruction X2 with an
1806 ECC of 2 that can issue now will lose to both X0 and X1.
1807
1808 - When an instruction is scheduled, model_recompute updates the model
1809 schedule with the new pressures (some of which might now exceed the
1810 original maximum pressure MP). model_update_limit_points then searches
1811 for the new point of maximum pressure, if not already known. */
1812
1813 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1814 from surrounding debug information. */
1815 #define MODEL_BAR \
1816 ";;\t\t+------------------------------------------------------\n"
1817
1818 /* Information about the pressure on a particular register class at a
1819 particular point of the model schedule. */
1820 struct model_pressure_data {
1821 /* The pressure at this point of the model schedule, or -1 if the
1822 point is associated with an instruction that has already been
1823 scheduled. */
1824 int ref_pressure;
1825
1826 /* The maximum pressure during or after this point of the model schedule. */
1827 int max_pressure;
1828 };
1829
1830 /* Per-instruction information that is used while building the model
1831 schedule. Here, "schedule" refers to the model schedule rather
1832 than the main schedule. */
1833 struct model_insn_info {
1834 /* The instruction itself. */
1835 rtx_insn *insn;
1836
1837 /* If this instruction is in model_worklist, these fields link to the
1838 previous (higher-priority) and next (lower-priority) instructions
1839 in the list. */
1840 struct model_insn_info *prev;
1841 struct model_insn_info *next;
1842
1843 /* While constructing the schedule, QUEUE_INDEX describes whether an
1844 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1845 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1846 old_queue records the value that QUEUE_INDEX had before scheduling
1847 started, so that we can restore it once the schedule is complete. */
1848 int old_queue;
1849
1850 /* The relative importance of an unscheduled instruction. Higher
1851 values indicate greater importance. */
1852 unsigned int model_priority;
1853
1854 /* The length of the longest path of satisfied true dependencies
1855 that leads to this instruction. */
1856 unsigned int depth;
1857
1858 /* The length of the longest path of dependencies of any kind
1859 that leads from this instruction. */
1860 unsigned int alap;
1861
1862 /* The number of predecessor nodes that must still be scheduled. */
1863 int unscheduled_preds;
1864 };
1865
1866 /* Information about the pressure limit for a particular register class.
1867 This structure is used when applying a model schedule to the main
1868 schedule. */
1869 struct model_pressure_limit {
1870 /* The maximum register pressure seen in the original model schedule. */
1871 int orig_pressure;
1872
1873 /* The maximum register pressure seen in the current model schedule
1874 (which excludes instructions that have already been scheduled). */
1875 int pressure;
1876
1877 /* The point of the current model schedule at which PRESSURE is first
1878 reached. It is set to -1 if the value needs to be recomputed. */
1879 int point;
1880 };
1881
1882 /* Describes a particular way of measuring register pressure. */
1883 struct model_pressure_group {
1884 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1885 struct model_pressure_limit limits[N_REG_CLASSES];
1886
1887 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1888 on register class ira_pressure_classes[PCI] at point POINT of the
1889 current model schedule. A POINT of model_num_insns describes the
1890 pressure at the end of the schedule. */
1891 struct model_pressure_data *model;
1892 };
1893
1894 /* Index POINT gives the instruction at point POINT of the model schedule.
1895 This array doesn't change during main scheduling. */
1896 static vec<rtx_insn *> model_schedule;
1897
1898 /* The list of instructions in the model worklist, sorted in order of
1899 decreasing priority. */
1900 static struct model_insn_info *model_worklist;
1901
1902 /* Index I describes the instruction with INSN_LUID I. */
1903 static struct model_insn_info *model_insns;
1904
1905 /* The number of instructions in the model schedule. */
1906 static int model_num_insns;
1907
1908 /* The index of the first instruction in model_schedule that hasn't yet been
1909 added to the main schedule, or model_num_insns if all of them have. */
1910 static int model_curr_point;
1911
1912 /* Describes the pressure before each instruction in the model schedule. */
1913 static struct model_pressure_group model_before_pressure;
1914
1915 /* The first unused model_priority value (as used in model_insn_info). */
1916 static unsigned int model_next_priority;
1917
1918
1919 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1920 at point POINT of the model schedule. */
1921 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1922 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1923
1924 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1925 after point POINT of the model schedule. */
1926 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1927 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1928
1929 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1930 of the model schedule. */
1931 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1932 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1933
1934 /* Information about INSN that is used when creating the model schedule. */
1935 #define MODEL_INSN_INFO(INSN) \
1936 (&model_insns[INSN_LUID (INSN)])
1937
1938 /* The instruction at point POINT of the model schedule. */
1939 #define MODEL_INSN(POINT) \
1940 (model_schedule[POINT])
1941
1942
1943 /* Return INSN's index in the model schedule, or model_num_insns if it
1944 doesn't belong to that schedule. */
1945
1946 static int
1947 model_index (rtx_insn *insn)
1948 {
1949 if (INSN_MODEL_INDEX (insn) == 0)
1950 return model_num_insns;
1951 return INSN_MODEL_INDEX (insn) - 1;
1952 }
1953
1954 /* Make sure that GROUP->limits is up-to-date for the current point
1955 of the model schedule. */
1956
1957 static void
1958 model_update_limit_points_in_group (struct model_pressure_group *group)
1959 {
1960 int pci, max_pressure, point;
1961
1962 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1963 {
1964 /* We may have passed the final point at which the pressure in
1965 group->limits[pci].pressure was reached. Update the limit if so. */
1966 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1967 group->limits[pci].pressure = max_pressure;
1968
1969 /* Find the point at which MAX_PRESSURE is first reached. We need
1970 to search in three cases:
1971
1972 - We've already moved past the previous pressure point.
1973 In this case we search forward from model_curr_point.
1974
1975 - We scheduled the previous point of maximum pressure ahead of
1976 its position in the model schedule, but doing so didn't bring
1977 the pressure point earlier. In this case we search forward
1978 from that previous pressure point.
1979
1980 - Scheduling an instruction early caused the maximum pressure
1981 to decrease. In this case we will have set the pressure
1982 point to -1, and we search forward from model_curr_point. */
1983 point = MAX (group->limits[pci].point, model_curr_point);
1984 while (point < model_num_insns
1985 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1986 point++;
1987 group->limits[pci].point = point;
1988
1989 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1990 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1991 }
1992 }
1993
1994 /* Make sure that all register-pressure limits are up-to-date for the
1995 current position in the model schedule. */
1996
1997 static void
1998 model_update_limit_points (void)
1999 {
2000 model_update_limit_points_in_group (&model_before_pressure);
2001 }
2002
2003 /* Return the model_index of the last unscheduled use in chain USE
2004 outside of USE's instruction. Return -1 if there are no other uses,
2005 or model_num_insns if the register is live at the end of the block. */
2006
2007 static int
2008 model_last_use_except (struct reg_use_data *use)
2009 {
2010 struct reg_use_data *next;
2011 int last, index;
2012
2013 last = -1;
2014 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2015 if (NONDEBUG_INSN_P (next->insn)
2016 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2017 {
2018 index = model_index (next->insn);
2019 if (index == model_num_insns)
2020 return model_num_insns;
2021 if (last < index)
2022 last = index;
2023 }
2024 return last;
2025 }
2026
2027 /* An instruction with model_index POINT has just been scheduled, and it
2028 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2029 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2030 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2031
2032 static void
2033 model_start_update_pressure (struct model_pressure_group *group,
2034 int point, int pci, int delta)
2035 {
2036 int next_max_pressure;
2037
2038 if (point == model_num_insns)
2039 {
2040 /* The instruction wasn't part of the model schedule; it was moved
2041 from a different block. Update the pressure for the end of
2042 the model schedule. */
2043 MODEL_REF_PRESSURE (group, point, pci) += delta;
2044 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2045 }
2046 else
2047 {
2048 /* Record that this instruction has been scheduled. Nothing now
2049 changes between POINT and POINT + 1, so get the maximum pressure
2050 from the latter. If the maximum pressure decreases, the new
2051 pressure point may be before POINT. */
2052 MODEL_REF_PRESSURE (group, point, pci) = -1;
2053 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2054 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2055 {
2056 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2057 if (group->limits[pci].point == point)
2058 group->limits[pci].point = -1;
2059 }
2060 }
2061 }
2062
2063 /* Record that scheduling a later instruction has changed the pressure
2064 at point POINT of the model schedule by DELTA (which might be 0).
2065 Update GROUP accordingly. Return nonzero if these changes might
2066 trigger changes to previous points as well. */
2067
2068 static int
2069 model_update_pressure (struct model_pressure_group *group,
2070 int point, int pci, int delta)
2071 {
2072 int ref_pressure, max_pressure, next_max_pressure;
2073
2074 /* If POINT hasn't yet been scheduled, update its pressure. */
2075 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2076 if (ref_pressure >= 0 && delta != 0)
2077 {
2078 ref_pressure += delta;
2079 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2080
2081 /* Check whether the maximum pressure in the overall schedule
2082 has increased. (This means that the MODEL_MAX_PRESSURE of
2083 every point <= POINT will need to increase too; see below.) */
2084 if (group->limits[pci].pressure < ref_pressure)
2085 group->limits[pci].pressure = ref_pressure;
2086
2087 /* If we are at maximum pressure, and the maximum pressure
2088 point was previously unknown or later than POINT,
2089 bring it forward. */
2090 if (group->limits[pci].pressure == ref_pressure
2091 && !IN_RANGE (group->limits[pci].point, 0, point))
2092 group->limits[pci].point = point;
2093
2094 /* If POINT used to be the point of maximum pressure, but isn't
2095 any longer, we need to recalculate it using a forward walk. */
2096 if (group->limits[pci].pressure > ref_pressure
2097 && group->limits[pci].point == point)
2098 group->limits[pci].point = -1;
2099 }
2100
2101 /* Update the maximum pressure at POINT. Changes here might also
2102 affect the maximum pressure at POINT - 1. */
2103 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2104 max_pressure = MAX (ref_pressure, next_max_pressure);
2105 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2106 {
2107 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2108 return 1;
2109 }
2110 return 0;
2111 }
2112
2113 /* INSN has just been scheduled. Update the model schedule accordingly. */
2114
2115 static void
2116 model_recompute (rtx_insn *insn)
2117 {
2118 struct {
2119 int last_use;
2120 int regno;
2121 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2122 struct reg_use_data *use;
2123 struct reg_pressure_data *reg_pressure;
2124 int delta[N_REG_CLASSES];
2125 int pci, point, mix, new_last, cl, ref_pressure, queue;
2126 unsigned int i, num_uses, num_pending_births;
2127 bool print_p;
2128
2129 /* The destinations of INSN were previously live from POINT onwards, but are
2130 now live from model_curr_point onwards. Set up DELTA accordingly. */
2131 point = model_index (insn);
2132 reg_pressure = INSN_REG_PRESSURE (insn);
2133 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2134 {
2135 cl = ira_pressure_classes[pci];
2136 delta[cl] = reg_pressure[pci].set_increase;
2137 }
2138
2139 /* Record which registers previously died at POINT, but which now die
2140 before POINT. Adjust DELTA so that it represents the effect of
2141 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2142 registers that will be born in the range [model_curr_point, POINT). */
2143 num_uses = 0;
2144 num_pending_births = 0;
2145 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2146 {
2147 new_last = model_last_use_except (use);
2148 if (new_last < point)
2149 {
2150 gcc_assert (num_uses < ARRAY_SIZE (uses));
2151 uses[num_uses].last_use = new_last;
2152 uses[num_uses].regno = use->regno;
2153 /* This register is no longer live after POINT - 1. */
2154 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2155 num_uses++;
2156 if (new_last >= 0)
2157 num_pending_births++;
2158 }
2159 }
2160
2161 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2162 Also set each group pressure limit for POINT. */
2163 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2164 {
2165 cl = ira_pressure_classes[pci];
2166 model_start_update_pressure (&model_before_pressure,
2167 point, pci, delta[cl]);
2168 }
2169
2170 /* Walk the model schedule backwards, starting immediately before POINT. */
2171 print_p = false;
2172 if (point != model_curr_point)
2173 do
2174 {
2175 point--;
2176 insn = MODEL_INSN (point);
2177 queue = QUEUE_INDEX (insn);
2178
2179 if (queue != QUEUE_SCHEDULED)
2180 {
2181 /* DELTA describes the effect of the move on the register pressure
2182 after POINT. Make it describe the effect on the pressure
2183 before POINT. */
2184 i = 0;
2185 while (i < num_uses)
2186 {
2187 if (uses[i].last_use == point)
2188 {
2189 /* This register is now live again. */
2190 mark_regno_birth_or_death (NULL, delta,
2191 uses[i].regno, true);
2192
2193 /* Remove this use from the array. */
2194 uses[i] = uses[num_uses - 1];
2195 num_uses--;
2196 num_pending_births--;
2197 }
2198 else
2199 i++;
2200 }
2201
2202 if (sched_verbose >= 5)
2203 {
2204 if (!print_p)
2205 {
2206 fprintf (sched_dump, MODEL_BAR);
2207 fprintf (sched_dump, ";;\t\t| New pressure for model"
2208 " schedule\n");
2209 fprintf (sched_dump, MODEL_BAR);
2210 print_p = true;
2211 }
2212
2213 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2214 point, INSN_UID (insn),
2215 str_pattern_slim (PATTERN (insn)));
2216 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2217 {
2218 cl = ira_pressure_classes[pci];
2219 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2220 point, pci);
2221 fprintf (sched_dump, " %s:[%d->%d]",
2222 reg_class_names[ira_pressure_classes[pci]],
2223 ref_pressure, ref_pressure + delta[cl]);
2224 }
2225 fprintf (sched_dump, "\n");
2226 }
2227 }
2228
2229 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2230 might have changed as well. */
2231 mix = num_pending_births;
2232 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2233 {
2234 cl = ira_pressure_classes[pci];
2235 mix |= delta[cl];
2236 mix |= model_update_pressure (&model_before_pressure,
2237 point, pci, delta[cl]);
2238 }
2239 }
2240 while (mix && point > model_curr_point);
2241
2242 if (print_p)
2243 fprintf (sched_dump, MODEL_BAR);
2244 }
2245
2246 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2247 check whether the insn's pattern needs restoring. */
2248 static bool
2249 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2250 {
2251 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2252 return false;
2253
2254 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2255 {
2256 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2257 gcc_assert (next == DEP_CON (dep));
2258 }
2259 else
2260 {
2261 struct dep_replacement *desc = DEP_REPLACE (dep);
2262 if (desc->insn != next)
2263 {
2264 gcc_assert (*desc->loc == desc->orig);
2265 return false;
2266 }
2267 }
2268 return true;
2269 }
2270 \f
2271 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2272 pressure on CL from P to P'. We use this to calculate a "base ECC",
2273 baseECC (CL, X), for each pressure class CL and each instruction X.
2274 Supposing X changes the pressure on CL from P to P', and that the
2275 maximum pressure on CL in the current model schedule is MP', then:
2276
2277 * if X occurs before or at the next point of maximum pressure in
2278 the model schedule and P' > MP', then:
2279
2280 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2281
2282 The idea is that the pressure after scheduling a fixed set of
2283 instructions -- in this case, the set up to and including the
2284 next maximum pressure point -- is going to be the same regardless
2285 of the order; we simply want to keep the intermediate pressure
2286 under control. Thus X has a cost of zero unless scheduling it
2287 now would exceed MP'.
2288
2289 If all increases in the set are by the same amount, no zero-cost
2290 instruction will ever cause the pressure to exceed MP'. However,
2291 if X is instead moved past an instruction X' with pressure in the
2292 range (MP' - (P' - P), MP'), the pressure at X' will increase
2293 beyond MP'. Since baseECC is very much a heuristic anyway,
2294 it doesn't seem worth the overhead of tracking cases like these.
2295
2296 The cost of exceeding MP' is always based on the original maximum
2297 pressure MP. This is so that going 2 registers over the original
2298 limit has the same cost regardless of whether it comes from two
2299 separate +1 deltas or from a single +2 delta.
2300
2301 * if X occurs after the next point of maximum pressure in the model
2302 schedule and P' > P, then:
2303
2304 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2305
2306 That is, if we move X forward across a point of maximum pressure,
2307 and if X increases the pressure by P' - P, then we conservatively
2308 assume that scheduling X next would increase the maximum pressure
2309 by P' - P. Again, the cost of doing this is based on the original
2310 maximum pressure MP, for the same reason as above.
2311
2312 * if P' < P, P > MP, and X occurs at or after the next point of
2313 maximum pressure, then:
2314
2315 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2316
2317 That is, if we have already exceeded the original maximum pressure MP,
2318 and if X might reduce the maximum pressure again -- or at least push
2319 it further back, and thus allow more scheduling freedom -- it is given
2320 a negative cost to reflect the improvement.
2321
2322 * otherwise,
2323
2324 baseECC (CL, X) = 0
2325
2326 In this case, X is not expected to affect the maximum pressure MP',
2327 so it has zero cost.
2328
2329 We then create a combined value baseECC (X) that is the sum of
2330 baseECC (CL, X) for each pressure class CL.
2331
2332 baseECC (X) could itself be used as the ECC value described above.
2333 However, this is often too conservative, in the sense that it
2334 tends to make high-priority instructions that increase pressure
2335 wait too long in cases where introducing a spill would be better.
2336 For this reason the final ECC is a priority-adjusted form of
2337 baseECC (X). Specifically, we calculate:
2338
2339 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2340 baseP = MAX { P (X) | baseECC (X) <= 0 }
2341
2342 Then:
2343
2344 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2345
2346 Thus an instruction's effect on pressure is ignored if it has a high
2347 enough priority relative to the ones that don't increase pressure.
2348 Negative values of baseECC (X) do not increase the priority of X
2349 itself, but they do make it harder for other instructions to
2350 increase the pressure further.
2351
2352 This pressure cost is deliberately timid. The intention has been
2353 to choose a heuristic that rarely interferes with the normal list
2354 scheduler in cases where that scheduler would produce good code.
2355 We simply want to curb some of its worst excesses. */
2356
2357 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2358
2359 Here we use the very simplistic cost model that every register above
2360 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2361 measures instead, such as one based on MEMORY_MOVE_COST. However:
2362
2363 (1) In order for an instruction to be scheduled, the higher cost
2364 would need to be justified in a single saving of that many stalls.
2365 This is overly pessimistic, because the benefit of spilling is
2366 often to avoid a sequence of several short stalls rather than
2367 a single long one.
2368
2369 (2) The cost is still arbitrary. Because we are not allocating
2370 registers during scheduling, we have no way of knowing for
2371 sure how many memory accesses will be required by each spill,
2372 where the spills will be placed within the block, or even
2373 which block(s) will contain the spills.
2374
2375 So a higher cost than 1 is often too conservative in practice,
2376 forcing blocks to contain unnecessary stalls instead of spill code.
2377 The simple cost below seems to be the best compromise. It reduces
2378 the interference with the normal list scheduler, which helps make
2379 it more suitable for a default-on option. */
2380
2381 static int
2382 model_spill_cost (int cl, int from, int to)
2383 {
2384 from = MAX (from, sched_class_regs_num[cl]);
2385 return MAX (to, from) - from;
2386 }
2387
2388 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2389 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2390 P' = P + DELTA. */
2391
2392 static int
2393 model_excess_group_cost (struct model_pressure_group *group,
2394 int point, int pci, int delta)
2395 {
2396 int pressure, cl;
2397
2398 cl = ira_pressure_classes[pci];
2399 if (delta < 0 && point >= group->limits[pci].point)
2400 {
2401 pressure = MAX (group->limits[pci].orig_pressure,
2402 curr_reg_pressure[cl] + delta);
2403 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2404 }
2405
2406 if (delta > 0)
2407 {
2408 if (point > group->limits[pci].point)
2409 pressure = group->limits[pci].pressure + delta;
2410 else
2411 pressure = curr_reg_pressure[cl] + delta;
2412
2413 if (pressure > group->limits[pci].pressure)
2414 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2415 pressure);
2416 }
2417
2418 return 0;
2419 }
2420
2421 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2422 if PRINT_P. */
2423
2424 static int
2425 model_excess_cost (rtx_insn *insn, bool print_p)
2426 {
2427 int point, pci, cl, cost, this_cost, delta;
2428 struct reg_pressure_data *insn_reg_pressure;
2429 int insn_death[N_REG_CLASSES];
2430
2431 calculate_reg_deaths (insn, insn_death);
2432 point = model_index (insn);
2433 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2434 cost = 0;
2435
2436 if (print_p)
2437 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2438 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2439
2440 /* Sum up the individual costs for each register class. */
2441 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2442 {
2443 cl = ira_pressure_classes[pci];
2444 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2445 this_cost = model_excess_group_cost (&model_before_pressure,
2446 point, pci, delta);
2447 cost += this_cost;
2448 if (print_p)
2449 fprintf (sched_dump, " %s:[%d base cost %d]",
2450 reg_class_names[cl], delta, this_cost);
2451 }
2452
2453 if (print_p)
2454 fprintf (sched_dump, "\n");
2455
2456 return cost;
2457 }
2458
2459 /* Dump the next points of maximum pressure for GROUP. */
2460
2461 static void
2462 model_dump_pressure_points (struct model_pressure_group *group)
2463 {
2464 int pci, cl;
2465
2466 fprintf (sched_dump, ";;\t\t| pressure points");
2467 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2468 {
2469 cl = ira_pressure_classes[pci];
2470 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2471 curr_reg_pressure[cl], group->limits[pci].pressure);
2472 if (group->limits[pci].point < model_num_insns)
2473 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2474 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2475 else
2476 fprintf (sched_dump, "end]");
2477 }
2478 fprintf (sched_dump, "\n");
2479 }
2480
2481 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2482
2483 static void
2484 model_set_excess_costs (rtx_insn **insns, int count)
2485 {
2486 int i, cost, priority_base, priority;
2487 bool print_p;
2488
2489 /* Record the baseECC value for each instruction in the model schedule,
2490 except that negative costs are converted to zero ones now rather than
2491 later. Do not assign a cost to debug instructions, since they must
2492 not change code-generation decisions. Experiments suggest we also
2493 get better results by not assigning a cost to instructions from
2494 a different block.
2495
2496 Set PRIORITY_BASE to baseP in the block comment above. This is the
2497 maximum priority of the "cheap" instructions, which should always
2498 include the next model instruction. */
2499 priority_base = 0;
2500 print_p = false;
2501 for (i = 0; i < count; i++)
2502 if (INSN_MODEL_INDEX (insns[i]))
2503 {
2504 if (sched_verbose >= 6 && !print_p)
2505 {
2506 fprintf (sched_dump, MODEL_BAR);
2507 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2508 model_dump_pressure_points (&model_before_pressure);
2509 fprintf (sched_dump, MODEL_BAR);
2510 print_p = true;
2511 }
2512 cost = model_excess_cost (insns[i], print_p);
2513 if (cost <= 0)
2514 {
2515 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2516 priority_base = MAX (priority_base, priority);
2517 cost = 0;
2518 }
2519 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2520 }
2521 if (print_p)
2522 fprintf (sched_dump, MODEL_BAR);
2523
2524 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2525 instruction. */
2526 for (i = 0; i < count; i++)
2527 {
2528 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2529 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2530 if (cost > 0 && priority > priority_base)
2531 {
2532 cost += priority_base - priority;
2533 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2534 }
2535 }
2536 }
2537 \f
2538
2539 /* Enum of rank_for_schedule heuristic decisions. */
2540 enum rfs_decision {
2541 RFS_DEBUG, RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2542 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2543 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2544 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2545 RFS_DEP_COUNT, RFS_TIE, RFS_N };
2546
2547 /* Corresponding strings for print outs. */
2548 static const char *rfs_str[RFS_N] = {
2549 "RFS_DEBUG", "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2550 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2551 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2552 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2553 "RFS_DEP_COUNT", "RFS_TIE" };
2554
2555 /* Statistical breakdown of rank_for_schedule decisions. */
2556 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2557 static rank_for_schedule_stats_t rank_for_schedule_stats;
2558
2559 /* Return the result of comparing insns TMP and TMP2 and update
2560 Rank_For_Schedule statistics. */
2561 static int
2562 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2563 {
2564 ++rank_for_schedule_stats.stats[decision];
2565 if (result < 0)
2566 INSN_LAST_RFS_WIN (tmp) = decision;
2567 else if (result > 0)
2568 INSN_LAST_RFS_WIN (tmp2) = decision;
2569 else
2570 gcc_unreachable ();
2571 return result;
2572 }
2573
2574 /* Returns a positive value if x is preferred; returns a negative value if
2575 y is preferred. Should never return 0, since that will make the sort
2576 unstable. */
2577
2578 static int
2579 rank_for_schedule (const void *x, const void *y)
2580 {
2581 rtx_insn *tmp = *(rtx_insn * const *) y;
2582 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2583 int tmp_class, tmp2_class;
2584 int val, priority_val, info_val, diff;
2585
2586 if (MAY_HAVE_DEBUG_INSNS)
2587 {
2588 /* Schedule debug insns as early as possible. */
2589 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2590 return rfs_result (RFS_DEBUG, -1, tmp, tmp2);
2591 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2592 return rfs_result (RFS_DEBUG, 1, tmp, tmp2);
2593 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2594 return rfs_result (RFS_DEBUG, INSN_LUID (tmp) - INSN_LUID (tmp2),
2595 tmp, tmp2);
2596 }
2597
2598 if (live_range_shrinkage_p)
2599 {
2600 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2601 code. */
2602 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2603 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2604 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2605 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2606 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2607 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2608 /* Sort by INSN_LUID (original insn order), so that we make the
2609 sort stable. This minimizes instruction movement, thus
2610 minimizing sched's effect on debugging and cross-jumping. */
2611 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2612 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2613 }
2614
2615 /* The insn in a schedule group should be issued the first. */
2616 if (flag_sched_group_heuristic &&
2617 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2618 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2619 tmp, tmp2);
2620
2621 /* Make sure that priority of TMP and TMP2 are initialized. */
2622 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2623
2624 if (sched_pressure != SCHED_PRESSURE_NONE)
2625 {
2626 /* Prefer insn whose scheduling results in the smallest register
2627 pressure excess. */
2628 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2629 + insn_delay (tmp)
2630 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2631 - insn_delay (tmp2))))
2632 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2633 }
2634
2635 if (sched_pressure != SCHED_PRESSURE_NONE
2636 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2637 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2638 {
2639 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2640 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2641 }
2642
2643 /* If we are doing backtracking in this schedule, prefer insns that
2644 have forward dependencies with negative cost against an insn that
2645 was already scheduled. */
2646 if (current_sched_info->flags & DO_BACKTRACKING)
2647 {
2648 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2649 if (priority_val)
2650 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2651 }
2652
2653 /* Prefer insn with higher priority. */
2654 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2655
2656 if (flag_sched_critical_path_heuristic && priority_val)
2657 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2658
2659 /* Prefer speculative insn with greater dependencies weakness. */
2660 if (flag_sched_spec_insn_heuristic && spec_info)
2661 {
2662 ds_t ds1, ds2;
2663 dw_t dw1, dw2;
2664 int dw;
2665
2666 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2667 if (ds1)
2668 dw1 = ds_weak (ds1);
2669 else
2670 dw1 = NO_DEP_WEAK;
2671
2672 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2673 if (ds2)
2674 dw2 = ds_weak (ds2);
2675 else
2676 dw2 = NO_DEP_WEAK;
2677
2678 dw = dw2 - dw1;
2679 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2680 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2681 }
2682
2683 info_val = (*current_sched_info->rank) (tmp, tmp2);
2684 if (flag_sched_rank_heuristic && info_val)
2685 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2686
2687 /* Compare insns based on their relation to the last scheduled
2688 non-debug insn. */
2689 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2690 {
2691 dep_t dep1;
2692 dep_t dep2;
2693 rtx last = last_nondebug_scheduled_insn;
2694
2695 /* Classify the instructions into three classes:
2696 1) Data dependent on last schedule insn.
2697 2) Anti/Output dependent on last scheduled insn.
2698 3) Independent of last scheduled insn, or has latency of one.
2699 Choose the insn from the highest numbered class if different. */
2700 dep1 = sd_find_dep_between (last, tmp, true);
2701
2702 if (dep1 == NULL || dep_cost (dep1) == 1)
2703 tmp_class = 3;
2704 else if (/* Data dependence. */
2705 DEP_TYPE (dep1) == REG_DEP_TRUE)
2706 tmp_class = 1;
2707 else
2708 tmp_class = 2;
2709
2710 dep2 = sd_find_dep_between (last, tmp2, true);
2711
2712 if (dep2 == NULL || dep_cost (dep2) == 1)
2713 tmp2_class = 3;
2714 else if (/* Data dependence. */
2715 DEP_TYPE (dep2) == REG_DEP_TRUE)
2716 tmp2_class = 1;
2717 else
2718 tmp2_class = 2;
2719
2720 if ((val = tmp2_class - tmp_class))
2721 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2722 }
2723
2724 /* Prefer instructions that occur earlier in the model schedule. */
2725 if (sched_pressure == SCHED_PRESSURE_MODEL
2726 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2727 {
2728 diff = model_index (tmp) - model_index (tmp2);
2729 gcc_assert (diff != 0);
2730 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2731 }
2732
2733 /* Prefer the insn which has more later insns that depend on it.
2734 This gives the scheduler more freedom when scheduling later
2735 instructions at the expense of added register pressure. */
2736
2737 val = (dep_list_size (tmp2, SD_LIST_FORW)
2738 - dep_list_size (tmp, SD_LIST_FORW));
2739
2740 if (flag_sched_dep_count_heuristic && val != 0)
2741 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2742
2743 /* If insns are equally good, sort by INSN_LUID (original insn order),
2744 so that we make the sort stable. This minimizes instruction movement,
2745 thus minimizing sched's effect on debugging and cross-jumping. */
2746 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2747 }
2748
2749 /* Resort the array A in which only element at index N may be out of order. */
2750
2751 HAIFA_INLINE static void
2752 swap_sort (rtx_insn **a, int n)
2753 {
2754 rtx_insn *insn = a[n - 1];
2755 int i = n - 2;
2756
2757 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2758 {
2759 a[i + 1] = a[i];
2760 i -= 1;
2761 }
2762 a[i + 1] = insn;
2763 }
2764
2765 /* Add INSN to the insn queue so that it can be executed at least
2766 N_CYCLES after the currently executing insn. Preserve insns
2767 chain for debugging purposes. REASON will be printed in debugging
2768 output. */
2769
2770 HAIFA_INLINE static void
2771 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2772 {
2773 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2774 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2775 int new_tick;
2776
2777 gcc_assert (n_cycles <= max_insn_queue_index);
2778 gcc_assert (!DEBUG_INSN_P (insn));
2779
2780 insn_queue[next_q] = link;
2781 q_size += 1;
2782
2783 if (sched_verbose >= 2)
2784 {
2785 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2786 (*current_sched_info->print_insn) (insn, 0));
2787
2788 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2789 }
2790
2791 QUEUE_INDEX (insn) = next_q;
2792
2793 if (current_sched_info->flags & DO_BACKTRACKING)
2794 {
2795 new_tick = clock_var + n_cycles;
2796 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2797 INSN_TICK (insn) = new_tick;
2798
2799 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2800 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2801 {
2802 must_backtrack = true;
2803 if (sched_verbose >= 2)
2804 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2805 }
2806 }
2807 }
2808
2809 /* Remove INSN from queue. */
2810 static void
2811 queue_remove (rtx_insn *insn)
2812 {
2813 gcc_assert (QUEUE_INDEX (insn) >= 0);
2814 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2815 q_size--;
2816 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2817 }
2818
2819 /* Return a pointer to the bottom of the ready list, i.e. the insn
2820 with the lowest priority. */
2821
2822 rtx_insn **
2823 ready_lastpos (struct ready_list *ready)
2824 {
2825 gcc_assert (ready->n_ready >= 1);
2826 return ready->vec + ready->first - ready->n_ready + 1;
2827 }
2828
2829 /* Add an element INSN to the ready list so that it ends up with the
2830 lowest/highest priority depending on FIRST_P. */
2831
2832 HAIFA_INLINE static void
2833 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2834 {
2835 if (!first_p)
2836 {
2837 if (ready->first == ready->n_ready)
2838 {
2839 memmove (ready->vec + ready->veclen - ready->n_ready,
2840 ready_lastpos (ready),
2841 ready->n_ready * sizeof (rtx));
2842 ready->first = ready->veclen - 1;
2843 }
2844 ready->vec[ready->first - ready->n_ready] = insn;
2845 }
2846 else
2847 {
2848 if (ready->first == ready->veclen - 1)
2849 {
2850 if (ready->n_ready)
2851 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2852 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2853 ready_lastpos (ready),
2854 ready->n_ready * sizeof (rtx));
2855 ready->first = ready->veclen - 2;
2856 }
2857 ready->vec[++(ready->first)] = insn;
2858 }
2859
2860 ready->n_ready++;
2861 if (DEBUG_INSN_P (insn))
2862 ready->n_debug++;
2863
2864 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2865 QUEUE_INDEX (insn) = QUEUE_READY;
2866
2867 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2868 && INSN_EXACT_TICK (insn) < clock_var)
2869 {
2870 must_backtrack = true;
2871 }
2872 }
2873
2874 /* Remove the element with the highest priority from the ready list and
2875 return it. */
2876
2877 HAIFA_INLINE static rtx_insn *
2878 ready_remove_first (struct ready_list *ready)
2879 {
2880 rtx_insn *t;
2881
2882 gcc_assert (ready->n_ready);
2883 t = ready->vec[ready->first--];
2884 ready->n_ready--;
2885 if (DEBUG_INSN_P (t))
2886 ready->n_debug--;
2887 /* If the queue becomes empty, reset it. */
2888 if (ready->n_ready == 0)
2889 ready->first = ready->veclen - 1;
2890
2891 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2892 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2893
2894 return t;
2895 }
2896
2897 /* The following code implements multi-pass scheduling for the first
2898 cycle. In other words, we will try to choose ready insn which
2899 permits to start maximum number of insns on the same cycle. */
2900
2901 /* Return a pointer to the element INDEX from the ready. INDEX for
2902 insn with the highest priority is 0, and the lowest priority has
2903 N_READY - 1. */
2904
2905 rtx_insn *
2906 ready_element (struct ready_list *ready, int index)
2907 {
2908 gcc_assert (ready->n_ready && index < ready->n_ready);
2909
2910 return ready->vec[ready->first - index];
2911 }
2912
2913 /* Remove the element INDEX from the ready list and return it. INDEX
2914 for insn with the highest priority is 0, and the lowest priority
2915 has N_READY - 1. */
2916
2917 HAIFA_INLINE static rtx_insn *
2918 ready_remove (struct ready_list *ready, int index)
2919 {
2920 rtx_insn *t;
2921 int i;
2922
2923 if (index == 0)
2924 return ready_remove_first (ready);
2925 gcc_assert (ready->n_ready && index < ready->n_ready);
2926 t = ready->vec[ready->first - index];
2927 ready->n_ready--;
2928 if (DEBUG_INSN_P (t))
2929 ready->n_debug--;
2930 for (i = index; i < ready->n_ready; i++)
2931 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2932 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2933 return t;
2934 }
2935
2936 /* Remove INSN from the ready list. */
2937 static void
2938 ready_remove_insn (rtx insn)
2939 {
2940 int i;
2941
2942 for (i = 0; i < readyp->n_ready; i++)
2943 if (ready_element (readyp, i) == insn)
2944 {
2945 ready_remove (readyp, i);
2946 return;
2947 }
2948 gcc_unreachable ();
2949 }
2950
2951 /* Calculate difference of two statistics set WAS and NOW.
2952 Result returned in WAS. */
2953 static void
2954 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
2955 const rank_for_schedule_stats_t *now)
2956 {
2957 for (int i = 0; i < RFS_N; ++i)
2958 was->stats[i] = now->stats[i] - was->stats[i];
2959 }
2960
2961 /* Print rank_for_schedule statistics. */
2962 static void
2963 print_rank_for_schedule_stats (const char *prefix,
2964 const rank_for_schedule_stats_t *stats,
2965 struct ready_list *ready)
2966 {
2967 for (int i = 0; i < RFS_N; ++i)
2968 if (stats->stats[i])
2969 {
2970 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
2971
2972 if (ready != NULL)
2973 /* Print out insns that won due to RFS_<I>. */
2974 {
2975 rtx_insn **p = ready_lastpos (ready);
2976
2977 fprintf (sched_dump, ":");
2978 /* Start with 1 since least-priority insn didn't have any wins. */
2979 for (int j = 1; j < ready->n_ready; ++j)
2980 if (INSN_LAST_RFS_WIN (p[j]) == i)
2981 fprintf (sched_dump, " %s",
2982 (*current_sched_info->print_insn) (p[j], 0));
2983 }
2984 fprintf (sched_dump, "\n");
2985 }
2986 }
2987
2988 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
2989 macro. */
2990
2991 void
2992 ready_sort (struct ready_list *ready)
2993 {
2994 int i;
2995 rtx_insn **first = ready_lastpos (ready);
2996
2997 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2998 {
2999 for (i = 0; i < ready->n_ready; i++)
3000 if (!DEBUG_INSN_P (first[i]))
3001 setup_insn_reg_pressure_info (first[i]);
3002 }
3003 if (sched_pressure == SCHED_PRESSURE_MODEL
3004 && model_curr_point < model_num_insns)
3005 model_set_excess_costs (first, ready->n_ready);
3006
3007 rank_for_schedule_stats_t stats1;
3008 if (sched_verbose >= 4)
3009 stats1 = rank_for_schedule_stats;
3010
3011 if (ready->n_ready == 2)
3012 swap_sort (first, ready->n_ready);
3013 else if (ready->n_ready > 2)
3014 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule);
3015
3016 if (sched_verbose >= 4)
3017 {
3018 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3019 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3020 }
3021 }
3022
3023 /* PREV is an insn that is ready to execute. Adjust its priority if that
3024 will help shorten or lengthen register lifetimes as appropriate. Also
3025 provide a hook for the target to tweak itself. */
3026
3027 HAIFA_INLINE static void
3028 adjust_priority (rtx_insn *prev)
3029 {
3030 /* ??? There used to be code here to try and estimate how an insn
3031 affected register lifetimes, but it did it by looking at REG_DEAD
3032 notes, which we removed in schedule_region. Nor did it try to
3033 take into account register pressure or anything useful like that.
3034
3035 Revisit when we have a machine model to work with and not before. */
3036
3037 if (targetm.sched.adjust_priority)
3038 INSN_PRIORITY (prev) =
3039 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3040 }
3041
3042 /* Advance DFA state STATE on one cycle. */
3043 void
3044 advance_state (state_t state)
3045 {
3046 if (targetm.sched.dfa_pre_advance_cycle)
3047 targetm.sched.dfa_pre_advance_cycle ();
3048
3049 if (targetm.sched.dfa_pre_cycle_insn)
3050 state_transition (state,
3051 targetm.sched.dfa_pre_cycle_insn ());
3052
3053 state_transition (state, NULL);
3054
3055 if (targetm.sched.dfa_post_cycle_insn)
3056 state_transition (state,
3057 targetm.sched.dfa_post_cycle_insn ());
3058
3059 if (targetm.sched.dfa_post_advance_cycle)
3060 targetm.sched.dfa_post_advance_cycle ();
3061 }
3062
3063 /* Advance time on one cycle. */
3064 HAIFA_INLINE static void
3065 advance_one_cycle (void)
3066 {
3067 advance_state (curr_state);
3068 if (sched_verbose >= 4)
3069 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3070 }
3071
3072 /* Update register pressure after scheduling INSN. */
3073 static void
3074 update_register_pressure (rtx_insn *insn)
3075 {
3076 struct reg_use_data *use;
3077 struct reg_set_data *set;
3078
3079 gcc_checking_assert (!DEBUG_INSN_P (insn));
3080
3081 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3082 if (dying_use_p (use))
3083 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3084 use->regno, false);
3085 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3086 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3087 set->regno, true);
3088 }
3089
3090 /* Set up or update (if UPDATE_P) max register pressure (see its
3091 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3092 after insn AFTER. */
3093 static void
3094 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3095 {
3096 int i, p;
3097 bool eq_p;
3098 rtx_insn *insn;
3099 static int max_reg_pressure[N_REG_CLASSES];
3100
3101 save_reg_pressure ();
3102 for (i = 0; i < ira_pressure_classes_num; i++)
3103 max_reg_pressure[ira_pressure_classes[i]]
3104 = curr_reg_pressure[ira_pressure_classes[i]];
3105 for (insn = NEXT_INSN (after);
3106 insn != NULL_RTX && ! BARRIER_P (insn)
3107 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3108 insn = NEXT_INSN (insn))
3109 if (NONDEBUG_INSN_P (insn))
3110 {
3111 eq_p = true;
3112 for (i = 0; i < ira_pressure_classes_num; i++)
3113 {
3114 p = max_reg_pressure[ira_pressure_classes[i]];
3115 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3116 {
3117 eq_p = false;
3118 INSN_MAX_REG_PRESSURE (insn)[i]
3119 = max_reg_pressure[ira_pressure_classes[i]];
3120 }
3121 }
3122 if (update_p && eq_p)
3123 break;
3124 update_register_pressure (insn);
3125 for (i = 0; i < ira_pressure_classes_num; i++)
3126 if (max_reg_pressure[ira_pressure_classes[i]]
3127 < curr_reg_pressure[ira_pressure_classes[i]])
3128 max_reg_pressure[ira_pressure_classes[i]]
3129 = curr_reg_pressure[ira_pressure_classes[i]];
3130 }
3131 restore_reg_pressure ();
3132 }
3133
3134 /* Update the current register pressure after scheduling INSN. Update
3135 also max register pressure for unscheduled insns of the current
3136 BB. */
3137 static void
3138 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3139 {
3140 int i;
3141 int before[N_REG_CLASSES];
3142
3143 for (i = 0; i < ira_pressure_classes_num; i++)
3144 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3145 update_register_pressure (insn);
3146 for (i = 0; i < ira_pressure_classes_num; i++)
3147 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3148 break;
3149 if (i < ira_pressure_classes_num)
3150 setup_insn_max_reg_pressure (insn, true);
3151 }
3152
3153 /* Set up register pressure at the beginning of basic block BB whose
3154 insns starting after insn AFTER. Set up also max register pressure
3155 for all insns of the basic block. */
3156 void
3157 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3158 {
3159 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3160 initiate_bb_reg_pressure_info (bb);
3161 setup_insn_max_reg_pressure (after, false);
3162 }
3163 \f
3164 /* If doing predication while scheduling, verify whether INSN, which
3165 has just been scheduled, clobbers the conditions of any
3166 instructions that must be predicated in order to break their
3167 dependencies. If so, remove them from the queues so that they will
3168 only be scheduled once their control dependency is resolved. */
3169
3170 static void
3171 check_clobbered_conditions (rtx insn)
3172 {
3173 HARD_REG_SET t;
3174 int i;
3175
3176 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3177 return;
3178
3179 find_all_hard_reg_sets (insn, &t, true);
3180
3181 restart:
3182 for (i = 0; i < ready.n_ready; i++)
3183 {
3184 rtx_insn *x = ready_element (&ready, i);
3185 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3186 {
3187 ready_remove_insn (x);
3188 goto restart;
3189 }
3190 }
3191 for (i = 0; i <= max_insn_queue_index; i++)
3192 {
3193 rtx_insn_list *link;
3194 int q = NEXT_Q_AFTER (q_ptr, i);
3195
3196 restart_queue:
3197 for (link = insn_queue[q]; link; link = link->next ())
3198 {
3199 rtx_insn *x = link->insn ();
3200 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3201 {
3202 queue_remove (x);
3203 goto restart_queue;
3204 }
3205 }
3206 }
3207 }
3208 \f
3209 /* Return (in order):
3210
3211 - positive if INSN adversely affects the pressure on one
3212 register class
3213
3214 - negative if INSN reduces the pressure on one register class
3215
3216 - 0 if INSN doesn't affect the pressure on any register class. */
3217
3218 static int
3219 model_classify_pressure (struct model_insn_info *insn)
3220 {
3221 struct reg_pressure_data *reg_pressure;
3222 int death[N_REG_CLASSES];
3223 int pci, cl, sum;
3224
3225 calculate_reg_deaths (insn->insn, death);
3226 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3227 sum = 0;
3228 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3229 {
3230 cl = ira_pressure_classes[pci];
3231 if (death[cl] < reg_pressure[pci].set_increase)
3232 return 1;
3233 sum += reg_pressure[pci].set_increase - death[cl];
3234 }
3235 return sum;
3236 }
3237
3238 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3239
3240 static int
3241 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3242 {
3243 unsigned int height1, height2;
3244 unsigned int priority1, priority2;
3245
3246 /* Prefer instructions with a higher model priority. */
3247 if (insn1->model_priority != insn2->model_priority)
3248 return insn1->model_priority > insn2->model_priority;
3249
3250 /* Combine the length of the longest path of satisfied true dependencies
3251 that leads to each instruction (depth) with the length of the longest
3252 path of any dependencies that leads from the instruction (alap).
3253 Prefer instructions with the greatest combined length. If the combined
3254 lengths are equal, prefer instructions with the greatest depth.
3255
3256 The idea is that, if we have a set S of "equal" instructions that each
3257 have ALAP value X, and we pick one such instruction I, any true-dependent
3258 successors of I that have ALAP value X - 1 should be preferred over S.
3259 This encourages the schedule to be "narrow" rather than "wide".
3260 However, if I is a low-priority instruction that we decided to
3261 schedule because of its model_classify_pressure, and if there
3262 is a set of higher-priority instructions T, the aforementioned
3263 successors of I should not have the edge over T. */
3264 height1 = insn1->depth + insn1->alap;
3265 height2 = insn2->depth + insn2->alap;
3266 if (height1 != height2)
3267 return height1 > height2;
3268 if (insn1->depth != insn2->depth)
3269 return insn1->depth > insn2->depth;
3270
3271 /* We have no real preference between INSN1 an INSN2 as far as attempts
3272 to reduce pressure go. Prefer instructions with higher priorities. */
3273 priority1 = INSN_PRIORITY (insn1->insn);
3274 priority2 = INSN_PRIORITY (insn2->insn);
3275 if (priority1 != priority2)
3276 return priority1 > priority2;
3277
3278 /* Use the original rtl sequence as a tie-breaker. */
3279 return insn1 < insn2;
3280 }
3281
3282 /* Add INSN to the model worklist immediately after PREV. Add it to the
3283 beginning of the list if PREV is null. */
3284
3285 static void
3286 model_add_to_worklist_at (struct model_insn_info *insn,
3287 struct model_insn_info *prev)
3288 {
3289 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3290 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3291
3292 insn->prev = prev;
3293 if (prev)
3294 {
3295 insn->next = prev->next;
3296 prev->next = insn;
3297 }
3298 else
3299 {
3300 insn->next = model_worklist;
3301 model_worklist = insn;
3302 }
3303 if (insn->next)
3304 insn->next->prev = insn;
3305 }
3306
3307 /* Remove INSN from the model worklist. */
3308
3309 static void
3310 model_remove_from_worklist (struct model_insn_info *insn)
3311 {
3312 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3313 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3314
3315 if (insn->prev)
3316 insn->prev->next = insn->next;
3317 else
3318 model_worklist = insn->next;
3319 if (insn->next)
3320 insn->next->prev = insn->prev;
3321 }
3322
3323 /* Add INSN to the model worklist. Start looking for a suitable position
3324 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3325 insns either side. A null PREV indicates the beginning of the list and
3326 a null NEXT indicates the end. */
3327
3328 static void
3329 model_add_to_worklist (struct model_insn_info *insn,
3330 struct model_insn_info *prev,
3331 struct model_insn_info *next)
3332 {
3333 int count;
3334
3335 count = MAX_SCHED_READY_INSNS;
3336 if (count > 0 && prev && model_order_p (insn, prev))
3337 do
3338 {
3339 count--;
3340 prev = prev->prev;
3341 }
3342 while (count > 0 && prev && model_order_p (insn, prev));
3343 else
3344 while (count > 0 && next && model_order_p (next, insn))
3345 {
3346 count--;
3347 prev = next;
3348 next = next->next;
3349 }
3350 model_add_to_worklist_at (insn, prev);
3351 }
3352
3353 /* INSN may now have a higher priority (in the model_order_p sense)
3354 than before. Move it up the worklist if necessary. */
3355
3356 static void
3357 model_promote_insn (struct model_insn_info *insn)
3358 {
3359 struct model_insn_info *prev;
3360 int count;
3361
3362 prev = insn->prev;
3363 count = MAX_SCHED_READY_INSNS;
3364 while (count > 0 && prev && model_order_p (insn, prev))
3365 {
3366 count--;
3367 prev = prev->prev;
3368 }
3369 if (prev != insn->prev)
3370 {
3371 model_remove_from_worklist (insn);
3372 model_add_to_worklist_at (insn, prev);
3373 }
3374 }
3375
3376 /* Add INSN to the end of the model schedule. */
3377
3378 static void
3379 model_add_to_schedule (rtx_insn *insn)
3380 {
3381 unsigned int point;
3382
3383 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3384 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3385
3386 point = model_schedule.length ();
3387 model_schedule.quick_push (insn);
3388 INSN_MODEL_INDEX (insn) = point + 1;
3389 }
3390
3391 /* Analyze the instructions that are to be scheduled, setting up
3392 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3393 instructions to model_worklist. */
3394
3395 static void
3396 model_analyze_insns (void)
3397 {
3398 rtx_insn *start, *end, *iter;
3399 sd_iterator_def sd_it;
3400 dep_t dep;
3401 struct model_insn_info *insn, *con;
3402
3403 model_num_insns = 0;
3404 start = PREV_INSN (current_sched_info->next_tail);
3405 end = current_sched_info->prev_head;
3406 for (iter = start; iter != end; iter = PREV_INSN (iter))
3407 if (NONDEBUG_INSN_P (iter))
3408 {
3409 insn = MODEL_INSN_INFO (iter);
3410 insn->insn = iter;
3411 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3412 {
3413 con = MODEL_INSN_INFO (DEP_CON (dep));
3414 if (con->insn && insn->alap < con->alap + 1)
3415 insn->alap = con->alap + 1;
3416 }
3417
3418 insn->old_queue = QUEUE_INDEX (iter);
3419 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3420
3421 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3422 if (insn->unscheduled_preds == 0)
3423 model_add_to_worklist (insn, NULL, model_worklist);
3424
3425 model_num_insns++;
3426 }
3427 }
3428
3429 /* The global state describes the register pressure at the start of the
3430 model schedule. Initialize GROUP accordingly. */
3431
3432 static void
3433 model_init_pressure_group (struct model_pressure_group *group)
3434 {
3435 int pci, cl;
3436
3437 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3438 {
3439 cl = ira_pressure_classes[pci];
3440 group->limits[pci].pressure = curr_reg_pressure[cl];
3441 group->limits[pci].point = 0;
3442 }
3443 /* Use index model_num_insns to record the state after the last
3444 instruction in the model schedule. */
3445 group->model = XNEWVEC (struct model_pressure_data,
3446 (model_num_insns + 1) * ira_pressure_classes_num);
3447 }
3448
3449 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3450 Update the maximum pressure for the whole schedule. */
3451
3452 static void
3453 model_record_pressure (struct model_pressure_group *group,
3454 int point, int pci, int pressure)
3455 {
3456 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3457 if (group->limits[pci].pressure < pressure)
3458 {
3459 group->limits[pci].pressure = pressure;
3460 group->limits[pci].point = point;
3461 }
3462 }
3463
3464 /* INSN has just been added to the end of the model schedule. Record its
3465 register-pressure information. */
3466
3467 static void
3468 model_record_pressures (struct model_insn_info *insn)
3469 {
3470 struct reg_pressure_data *reg_pressure;
3471 int point, pci, cl, delta;
3472 int death[N_REG_CLASSES];
3473
3474 point = model_index (insn->insn);
3475 if (sched_verbose >= 2)
3476 {
3477 if (point == 0)
3478 {
3479 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3480 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3481 }
3482 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3483 point, INSN_UID (insn->insn), insn->model_priority,
3484 insn->depth + insn->alap, insn->depth,
3485 INSN_PRIORITY (insn->insn),
3486 str_pattern_slim (PATTERN (insn->insn)));
3487 }
3488 calculate_reg_deaths (insn->insn, death);
3489 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3490 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3491 {
3492 cl = ira_pressure_classes[pci];
3493 delta = reg_pressure[pci].set_increase - death[cl];
3494 if (sched_verbose >= 2)
3495 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3496 curr_reg_pressure[cl], delta);
3497 model_record_pressure (&model_before_pressure, point, pci,
3498 curr_reg_pressure[cl]);
3499 }
3500 if (sched_verbose >= 2)
3501 fprintf (sched_dump, "\n");
3502 }
3503
3504 /* All instructions have been added to the model schedule. Record the
3505 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3506
3507 static void
3508 model_record_final_pressures (struct model_pressure_group *group)
3509 {
3510 int point, pci, max_pressure, ref_pressure, cl;
3511
3512 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3513 {
3514 /* Record the final pressure for this class. */
3515 cl = ira_pressure_classes[pci];
3516 point = model_num_insns;
3517 ref_pressure = curr_reg_pressure[cl];
3518 model_record_pressure (group, point, pci, ref_pressure);
3519
3520 /* Record the original maximum pressure. */
3521 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3522
3523 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3524 max_pressure = ref_pressure;
3525 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3526 while (point > 0)
3527 {
3528 point--;
3529 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3530 max_pressure = MAX (max_pressure, ref_pressure);
3531 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3532 }
3533 }
3534 }
3535
3536 /* Update all successors of INSN, given that INSN has just been scheduled. */
3537
3538 static void
3539 model_add_successors_to_worklist (struct model_insn_info *insn)
3540 {
3541 sd_iterator_def sd_it;
3542 struct model_insn_info *con;
3543 dep_t dep;
3544
3545 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3546 {
3547 con = MODEL_INSN_INFO (DEP_CON (dep));
3548 /* Ignore debug instructions, and instructions from other blocks. */
3549 if (con->insn)
3550 {
3551 con->unscheduled_preds--;
3552
3553 /* Update the depth field of each true-dependent successor.
3554 Increasing the depth gives them a higher priority than
3555 before. */
3556 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3557 {
3558 con->depth = insn->depth + 1;
3559 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3560 model_promote_insn (con);
3561 }
3562
3563 /* If this is a true dependency, or if there are no remaining
3564 dependencies for CON (meaning that CON only had non-true
3565 dependencies), make sure that CON is on the worklist.
3566 We don't bother otherwise because it would tend to fill the
3567 worklist with a lot of low-priority instructions that are not
3568 yet ready to issue. */
3569 if ((con->depth > 0 || con->unscheduled_preds == 0)
3570 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3571 model_add_to_worklist (con, insn, insn->next);
3572 }
3573 }
3574 }
3575
3576 /* Give INSN a higher priority than any current instruction, then give
3577 unscheduled predecessors of INSN a higher priority still. If any of
3578 those predecessors are not on the model worklist, do the same for its
3579 predecessors, and so on. */
3580
3581 static void
3582 model_promote_predecessors (struct model_insn_info *insn)
3583 {
3584 struct model_insn_info *pro, *first;
3585 sd_iterator_def sd_it;
3586 dep_t dep;
3587
3588 if (sched_verbose >= 7)
3589 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3590 INSN_UID (insn->insn), model_next_priority);
3591 insn->model_priority = model_next_priority++;
3592 model_remove_from_worklist (insn);
3593 model_add_to_worklist_at (insn, NULL);
3594
3595 first = NULL;
3596 for (;;)
3597 {
3598 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3599 {
3600 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3601 /* The first test is to ignore debug instructions, and instructions
3602 from other blocks. */
3603 if (pro->insn
3604 && pro->model_priority != model_next_priority
3605 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3606 {
3607 pro->model_priority = model_next_priority;
3608 if (sched_verbose >= 7)
3609 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3610 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3611 {
3612 /* PRO is already in the worklist, but it now has
3613 a higher priority than before. Move it at the
3614 appropriate place. */
3615 model_remove_from_worklist (pro);
3616 model_add_to_worklist (pro, NULL, model_worklist);
3617 }
3618 else
3619 {
3620 /* PRO isn't in the worklist. Recursively process
3621 its predecessors until we find one that is. */
3622 pro->next = first;
3623 first = pro;
3624 }
3625 }
3626 }
3627 if (!first)
3628 break;
3629 insn = first;
3630 first = insn->next;
3631 }
3632 if (sched_verbose >= 7)
3633 fprintf (sched_dump, " = %d\n", model_next_priority);
3634 model_next_priority++;
3635 }
3636
3637 /* Pick one instruction from model_worklist and process it. */
3638
3639 static void
3640 model_choose_insn (void)
3641 {
3642 struct model_insn_info *insn, *fallback;
3643 int count;
3644
3645 if (sched_verbose >= 7)
3646 {
3647 fprintf (sched_dump, ";;\t+--- worklist:\n");
3648 insn = model_worklist;
3649 count = MAX_SCHED_READY_INSNS;
3650 while (count > 0 && insn)
3651 {
3652 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3653 INSN_UID (insn->insn), insn->model_priority,
3654 insn->depth + insn->alap, insn->depth,
3655 INSN_PRIORITY (insn->insn));
3656 count--;
3657 insn = insn->next;
3658 }
3659 }
3660
3661 /* Look for a ready instruction whose model_classify_priority is zero
3662 or negative, picking the highest-priority one. Adding such an
3663 instruction to the schedule now should do no harm, and may actually
3664 do some good.
3665
3666 Failing that, see whether there is an instruction with the highest
3667 extant model_priority that is not yet ready, but which would reduce
3668 pressure if it became ready. This is designed to catch cases like:
3669
3670 (set (mem (reg R1)) (reg R2))
3671
3672 where the instruction is the last remaining use of R1 and where the
3673 value of R2 is not yet available (or vice versa). The death of R1
3674 means that this instruction already reduces pressure. It is of
3675 course possible that the computation of R2 involves other registers
3676 that are hard to kill, but such cases are rare enough for this
3677 heuristic to be a win in general.
3678
3679 Failing that, just pick the highest-priority instruction in the
3680 worklist. */
3681 count = MAX_SCHED_READY_INSNS;
3682 insn = model_worklist;
3683 fallback = 0;
3684 for (;;)
3685 {
3686 if (count == 0 || !insn)
3687 {
3688 insn = fallback ? fallback : model_worklist;
3689 break;
3690 }
3691 if (insn->unscheduled_preds)
3692 {
3693 if (model_worklist->model_priority == insn->model_priority
3694 && !fallback
3695 && model_classify_pressure (insn) < 0)
3696 fallback = insn;
3697 }
3698 else
3699 {
3700 if (model_classify_pressure (insn) <= 0)
3701 break;
3702 }
3703 count--;
3704 insn = insn->next;
3705 }
3706
3707 if (sched_verbose >= 7 && insn != model_worklist)
3708 {
3709 if (insn->unscheduled_preds)
3710 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3711 INSN_UID (insn->insn));
3712 else
3713 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3714 INSN_UID (insn->insn));
3715 }
3716 if (insn->unscheduled_preds)
3717 /* INSN isn't yet ready to issue. Give all its predecessors the
3718 highest priority. */
3719 model_promote_predecessors (insn);
3720 else
3721 {
3722 /* INSN is ready. Add it to the end of model_schedule and
3723 process its successors. */
3724 model_add_successors_to_worklist (insn);
3725 model_remove_from_worklist (insn);
3726 model_add_to_schedule (insn->insn);
3727 model_record_pressures (insn);
3728 update_register_pressure (insn->insn);
3729 }
3730 }
3731
3732 /* Restore all QUEUE_INDEXs to the values that they had before
3733 model_start_schedule was called. */
3734
3735 static void
3736 model_reset_queue_indices (void)
3737 {
3738 unsigned int i;
3739 rtx_insn *insn;
3740
3741 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3742 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3743 }
3744
3745 /* We have calculated the model schedule and spill costs. Print a summary
3746 to sched_dump. */
3747
3748 static void
3749 model_dump_pressure_summary (void)
3750 {
3751 int pci, cl;
3752
3753 fprintf (sched_dump, ";; Pressure summary:");
3754 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3755 {
3756 cl = ira_pressure_classes[pci];
3757 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3758 model_before_pressure.limits[pci].pressure);
3759 }
3760 fprintf (sched_dump, "\n\n");
3761 }
3762
3763 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3764 scheduling region. */
3765
3766 static void
3767 model_start_schedule (basic_block bb)
3768 {
3769 model_next_priority = 1;
3770 model_schedule.create (sched_max_luid);
3771 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3772
3773 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3774 initiate_reg_pressure_info (df_get_live_in (bb));
3775
3776 model_analyze_insns ();
3777 model_init_pressure_group (&model_before_pressure);
3778 while (model_worklist)
3779 model_choose_insn ();
3780 gcc_assert (model_num_insns == (int) model_schedule.length ());
3781 if (sched_verbose >= 2)
3782 fprintf (sched_dump, "\n");
3783
3784 model_record_final_pressures (&model_before_pressure);
3785 model_reset_queue_indices ();
3786
3787 XDELETEVEC (model_insns);
3788
3789 model_curr_point = 0;
3790 initiate_reg_pressure_info (df_get_live_in (bb));
3791 if (sched_verbose >= 1)
3792 model_dump_pressure_summary ();
3793 }
3794
3795 /* Free the information associated with GROUP. */
3796
3797 static void
3798 model_finalize_pressure_group (struct model_pressure_group *group)
3799 {
3800 XDELETEVEC (group->model);
3801 }
3802
3803 /* Free the information created by model_start_schedule. */
3804
3805 static void
3806 model_end_schedule (void)
3807 {
3808 model_finalize_pressure_group (&model_before_pressure);
3809 model_schedule.release ();
3810 }
3811
3812 /* Prepare reg pressure scheduling for basic block BB. */
3813 static void
3814 sched_pressure_start_bb (basic_block bb)
3815 {
3816 /* Set the number of available registers for each class taking into account
3817 relative probability of current basic block versus function prologue and
3818 epilogue.
3819 * If the basic block executes much more often than the prologue/epilogue
3820 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3821 nil, so the effective number of available registers is
3822 (ira_class_hard_regs_num[cl] - 0).
3823 * If the basic block executes as often as the prologue/epilogue,
3824 then spill in the block is as costly as in the prologue, so the effective
3825 number of available registers is
3826 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3827 Note that all-else-equal, we prefer to spill in the prologue, since that
3828 allows "extra" registers for other basic blocks of the function.
3829 * If the basic block is on the cold path of the function and executes
3830 rarely, then we should always prefer to spill in the block, rather than
3831 in the prologue/epilogue. The effective number of available register is
3832 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3833 {
3834 int i;
3835 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3836 int bb_freq = bb->frequency;
3837
3838 if (bb_freq == 0)
3839 {
3840 if (entry_freq == 0)
3841 entry_freq = bb_freq = 1;
3842 }
3843 if (bb_freq < entry_freq)
3844 bb_freq = entry_freq;
3845
3846 for (i = 0; i < ira_pressure_classes_num; ++i)
3847 {
3848 enum reg_class cl = ira_pressure_classes[i];
3849 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3850 sched_class_regs_num[cl]
3851 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3852 }
3853 }
3854
3855 if (sched_pressure == SCHED_PRESSURE_MODEL)
3856 model_start_schedule (bb);
3857 }
3858 \f
3859 /* A structure that holds local state for the loop in schedule_block. */
3860 struct sched_block_state
3861 {
3862 /* True if no real insns have been scheduled in the current cycle. */
3863 bool first_cycle_insn_p;
3864 /* True if a shadow insn has been scheduled in the current cycle, which
3865 means that no more normal insns can be issued. */
3866 bool shadows_only_p;
3867 /* True if we're winding down a modulo schedule, which means that we only
3868 issue insns with INSN_EXACT_TICK set. */
3869 bool modulo_epilogue;
3870 /* Initialized with the machine's issue rate every cycle, and updated
3871 by calls to the variable_issue hook. */
3872 int can_issue_more;
3873 };
3874
3875 /* INSN is the "currently executing insn". Launch each insn which was
3876 waiting on INSN. READY is the ready list which contains the insns
3877 that are ready to fire. CLOCK is the current cycle. The function
3878 returns necessary cycle advance after issuing the insn (it is not
3879 zero for insns in a schedule group). */
3880
3881 static int
3882 schedule_insn (rtx_insn *insn)
3883 {
3884 sd_iterator_def sd_it;
3885 dep_t dep;
3886 int i;
3887 int advance = 0;
3888
3889 if (sched_verbose >= 1)
3890 {
3891 struct reg_pressure_data *pressure_info;
3892 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3893 clock_var, (*current_sched_info->print_insn) (insn, 1),
3894 str_pattern_slim (PATTERN (insn)));
3895
3896 if (recog_memoized (insn) < 0)
3897 fprintf (sched_dump, "nothing");
3898 else
3899 print_reservation (sched_dump, insn);
3900 pressure_info = INSN_REG_PRESSURE (insn);
3901 if (pressure_info != NULL)
3902 {
3903 fputc (':', sched_dump);
3904 for (i = 0; i < ira_pressure_classes_num; i++)
3905 fprintf (sched_dump, "%s%s%+d(%d)",
3906 scheduled_insns.length () > 1
3907 && INSN_LUID (insn)
3908 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3909 reg_class_names[ira_pressure_classes[i]],
3910 pressure_info[i].set_increase, pressure_info[i].change);
3911 }
3912 if (sched_pressure == SCHED_PRESSURE_MODEL
3913 && model_curr_point < model_num_insns
3914 && model_index (insn) == model_curr_point)
3915 fprintf (sched_dump, ":model %d", model_curr_point);
3916 fputc ('\n', sched_dump);
3917 }
3918
3919 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
3920 update_reg_and_insn_max_reg_pressure (insn);
3921
3922 /* Scheduling instruction should have all its dependencies resolved and
3923 should have been removed from the ready list. */
3924 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
3925
3926 /* Reset debug insns invalidated by moving this insn. */
3927 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
3928 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
3929 sd_iterator_cond (&sd_it, &dep);)
3930 {
3931 rtx_insn *dbg = DEP_PRO (dep);
3932 struct reg_use_data *use, *next;
3933
3934 if (DEP_STATUS (dep) & DEP_CANCELLED)
3935 {
3936 sd_iterator_next (&sd_it);
3937 continue;
3938 }
3939
3940 gcc_assert (DEBUG_INSN_P (dbg));
3941
3942 if (sched_verbose >= 6)
3943 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
3944 INSN_UID (dbg));
3945
3946 /* ??? Rather than resetting the debug insn, we might be able
3947 to emit a debug temp before the just-scheduled insn, but
3948 this would involve checking that the expression at the
3949 point of the debug insn is equivalent to the expression
3950 before the just-scheduled insn. They might not be: the
3951 expression in the debug insn may depend on other insns not
3952 yet scheduled that set MEMs, REGs or even other debug
3953 insns. It's not clear that attempting to preserve debug
3954 information in these cases is worth the effort, given how
3955 uncommon these resets are and the likelihood that the debug
3956 temps introduced won't survive the schedule change. */
3957 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
3958 df_insn_rescan (dbg);
3959
3960 /* Unknown location doesn't use any registers. */
3961 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
3962 {
3963 struct reg_use_data *prev = use;
3964
3965 /* Remove use from the cyclic next_regno_use chain first. */
3966 while (prev->next_regno_use != use)
3967 prev = prev->next_regno_use;
3968 prev->next_regno_use = use->next_regno_use;
3969 next = use->next_insn_use;
3970 free (use);
3971 }
3972 INSN_REG_USE_LIST (dbg) = NULL;
3973
3974 /* We delete rather than resolve these deps, otherwise we
3975 crash in sched_free_deps(), because forward deps are
3976 expected to be released before backward deps. */
3977 sd_delete_dep (sd_it);
3978 }
3979
3980 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3981 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3982
3983 if (sched_pressure == SCHED_PRESSURE_MODEL
3984 && model_curr_point < model_num_insns
3985 && NONDEBUG_INSN_P (insn))
3986 {
3987 if (model_index (insn) == model_curr_point)
3988 do
3989 model_curr_point++;
3990 while (model_curr_point < model_num_insns
3991 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
3992 == QUEUE_SCHEDULED));
3993 else
3994 model_recompute (insn);
3995 model_update_limit_points ();
3996 update_register_pressure (insn);
3997 if (sched_verbose >= 2)
3998 print_curr_reg_pressure ();
3999 }
4000
4001 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4002 if (INSN_TICK (insn) > clock_var)
4003 /* INSN has been prematurely moved from the queue to the ready list.
4004 This is possible only if following flag is set. */
4005 gcc_assert (flag_sched_stalled_insns);
4006
4007 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4008 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4009 INSN_TICK (insn) = clock_var;
4010
4011 check_clobbered_conditions (insn);
4012
4013 /* Update dependent instructions. First, see if by scheduling this insn
4014 now we broke a dependence in a way that requires us to change another
4015 insn. */
4016 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4017 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4018 {
4019 struct dep_replacement *desc = DEP_REPLACE (dep);
4020 rtx_insn *pro = DEP_PRO (dep);
4021 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4022 && desc != NULL && desc->insn == pro)
4023 apply_replacement (dep, false);
4024 }
4025
4026 /* Go through and resolve forward dependencies. */
4027 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4028 sd_iterator_cond (&sd_it, &dep);)
4029 {
4030 rtx_insn *next = DEP_CON (dep);
4031 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4032
4033 /* Resolve the dependence between INSN and NEXT.
4034 sd_resolve_dep () moves current dep to another list thus
4035 advancing the iterator. */
4036 sd_resolve_dep (sd_it);
4037
4038 if (cancelled)
4039 {
4040 if (must_restore_pattern_p (next, dep))
4041 restore_pattern (dep, false);
4042 continue;
4043 }
4044
4045 /* Don't bother trying to mark next as ready if insn is a debug
4046 insn. If insn is the last hard dependency, it will have
4047 already been discounted. */
4048 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4049 continue;
4050
4051 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4052 {
4053 int effective_cost;
4054
4055 effective_cost = try_ready (next);
4056
4057 if (effective_cost >= 0
4058 && SCHED_GROUP_P (next)
4059 && advance < effective_cost)
4060 advance = effective_cost;
4061 }
4062 else
4063 /* Check always has only one forward dependence (to the first insn in
4064 the recovery block), therefore, this will be executed only once. */
4065 {
4066 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4067 fix_recovery_deps (RECOVERY_BLOCK (insn));
4068 }
4069 }
4070
4071 /* Annotate the instruction with issue information -- TImode
4072 indicates that the instruction is expected not to be able
4073 to issue on the same cycle as the previous insn. A machine
4074 may use this information to decide how the instruction should
4075 be aligned. */
4076 if (issue_rate > 1
4077 && GET_CODE (PATTERN (insn)) != USE
4078 && GET_CODE (PATTERN (insn)) != CLOBBER
4079 && !DEBUG_INSN_P (insn))
4080 {
4081 if (reload_completed)
4082 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4083 last_clock_var = clock_var;
4084 }
4085
4086 if (nonscheduled_insns_begin != NULL_RTX)
4087 /* Indicate to debug counters that INSN is scheduled. */
4088 nonscheduled_insns_begin = insn;
4089
4090 return advance;
4091 }
4092
4093 /* Functions for handling of notes. */
4094
4095 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4096 void
4097 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4098 {
4099 rtx_insn *from_start;
4100
4101 /* It's easy when have nothing to concat. */
4102 if (from_end == NULL)
4103 return;
4104
4105 /* It's also easy when destination is empty. */
4106 if (*to_endp == NULL)
4107 {
4108 *to_endp = from_end;
4109 return;
4110 }
4111
4112 from_start = from_end;
4113 while (PREV_INSN (from_start) != NULL)
4114 from_start = PREV_INSN (from_start);
4115
4116 SET_PREV_INSN (from_start) = *to_endp;
4117 SET_NEXT_INSN (*to_endp) = from_start;
4118 *to_endp = from_end;
4119 }
4120
4121 /* Delete notes between HEAD and TAIL and put them in the chain
4122 of notes ended by NOTE_LIST. */
4123 void
4124 remove_notes (rtx_insn *head, rtx_insn *tail)
4125 {
4126 rtx_insn *next_tail, *insn, *next;
4127
4128 note_list = 0;
4129 if (head == tail && !INSN_P (head))
4130 return;
4131
4132 next_tail = NEXT_INSN (tail);
4133 for (insn = head; insn != next_tail; insn = next)
4134 {
4135 next = NEXT_INSN (insn);
4136 if (!NOTE_P (insn))
4137 continue;
4138
4139 switch (NOTE_KIND (insn))
4140 {
4141 case NOTE_INSN_BASIC_BLOCK:
4142 continue;
4143
4144 case NOTE_INSN_EPILOGUE_BEG:
4145 if (insn != tail)
4146 {
4147 remove_insn (insn);
4148 add_reg_note (next, REG_SAVE_NOTE,
4149 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4150 break;
4151 }
4152 /* FALLTHRU */
4153
4154 default:
4155 remove_insn (insn);
4156
4157 /* Add the note to list that ends at NOTE_LIST. */
4158 SET_PREV_INSN (insn) = note_list;
4159 SET_NEXT_INSN (insn) = NULL_RTX;
4160 if (note_list)
4161 SET_NEXT_INSN (note_list) = insn;
4162 note_list = insn;
4163 break;
4164 }
4165
4166 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4167 }
4168 }
4169
4170 /* A structure to record enough data to allow us to backtrack the scheduler to
4171 a previous state. */
4172 struct haifa_saved_data
4173 {
4174 /* Next entry on the list. */
4175 struct haifa_saved_data *next;
4176
4177 /* Backtracking is associated with scheduling insns that have delay slots.
4178 DELAY_PAIR points to the structure that contains the insns involved, and
4179 the number of cycles between them. */
4180 struct delay_pair *delay_pair;
4181
4182 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4183 void *fe_saved_data;
4184 /* Data used by the backend. */
4185 void *be_saved_data;
4186
4187 /* Copies of global state. */
4188 int clock_var, last_clock_var;
4189 struct ready_list ready;
4190 state_t curr_state;
4191
4192 rtx_insn *last_scheduled_insn;
4193 rtx last_nondebug_scheduled_insn;
4194 rtx_insn *nonscheduled_insns_begin;
4195 int cycle_issued_insns;
4196
4197 /* Copies of state used in the inner loop of schedule_block. */
4198 struct sched_block_state sched_block;
4199
4200 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4201 to 0 when restoring. */
4202 int q_size;
4203 rtx_insn_list **insn_queue;
4204
4205 /* Describe pattern replacements that occurred since this backtrack point
4206 was queued. */
4207 vec<dep_t> replacement_deps;
4208 vec<int> replace_apply;
4209
4210 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4211 point. */
4212 vec<dep_t> next_cycle_deps;
4213 vec<int> next_cycle_apply;
4214 };
4215
4216 /* A record, in reverse order, of all scheduled insns which have delay slots
4217 and may require backtracking. */
4218 static struct haifa_saved_data *backtrack_queue;
4219
4220 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4221 to SET_P. */
4222 static void
4223 mark_backtrack_feeds (rtx insn, int set_p)
4224 {
4225 sd_iterator_def sd_it;
4226 dep_t dep;
4227 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4228 {
4229 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4230 }
4231 }
4232
4233 /* Save the current scheduler state so that we can backtrack to it
4234 later if necessary. PAIR gives the insns that make it necessary to
4235 save this point. SCHED_BLOCK is the local state of schedule_block
4236 that need to be saved. */
4237 static void
4238 save_backtrack_point (struct delay_pair *pair,
4239 struct sched_block_state sched_block)
4240 {
4241 int i;
4242 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4243
4244 save->curr_state = xmalloc (dfa_state_size);
4245 memcpy (save->curr_state, curr_state, dfa_state_size);
4246
4247 save->ready.first = ready.first;
4248 save->ready.n_ready = ready.n_ready;
4249 save->ready.n_debug = ready.n_debug;
4250 save->ready.veclen = ready.veclen;
4251 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4252 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4253
4254 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4255 save->q_size = q_size;
4256 for (i = 0; i <= max_insn_queue_index; i++)
4257 {
4258 int q = NEXT_Q_AFTER (q_ptr, i);
4259 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4260 }
4261
4262 save->clock_var = clock_var;
4263 save->last_clock_var = last_clock_var;
4264 save->cycle_issued_insns = cycle_issued_insns;
4265 save->last_scheduled_insn = last_scheduled_insn;
4266 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4267 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4268
4269 save->sched_block = sched_block;
4270
4271 save->replacement_deps.create (0);
4272 save->replace_apply.create (0);
4273 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4274 save->next_cycle_apply = next_cycle_apply.copy ();
4275
4276 if (current_sched_info->save_state)
4277 save->fe_saved_data = (*current_sched_info->save_state) ();
4278
4279 if (targetm.sched.alloc_sched_context)
4280 {
4281 save->be_saved_data = targetm.sched.alloc_sched_context ();
4282 targetm.sched.init_sched_context (save->be_saved_data, false);
4283 }
4284 else
4285 save->be_saved_data = NULL;
4286
4287 save->delay_pair = pair;
4288
4289 save->next = backtrack_queue;
4290 backtrack_queue = save;
4291
4292 while (pair)
4293 {
4294 mark_backtrack_feeds (pair->i2, 1);
4295 INSN_TICK (pair->i2) = INVALID_TICK;
4296 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4297 SHADOW_P (pair->i2) = pair->stages == 0;
4298 pair = pair->next_same_i1;
4299 }
4300 }
4301
4302 /* Walk the ready list and all queues. If any insns have unresolved backwards
4303 dependencies, these must be cancelled deps, broken by predication. Set or
4304 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4305
4306 static void
4307 toggle_cancelled_flags (bool set)
4308 {
4309 int i;
4310 sd_iterator_def sd_it;
4311 dep_t dep;
4312
4313 if (ready.n_ready > 0)
4314 {
4315 rtx_insn **first = ready_lastpos (&ready);
4316 for (i = 0; i < ready.n_ready; i++)
4317 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4318 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4319 {
4320 if (set)
4321 DEP_STATUS (dep) |= DEP_CANCELLED;
4322 else
4323 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4324 }
4325 }
4326 for (i = 0; i <= max_insn_queue_index; i++)
4327 {
4328 int q = NEXT_Q_AFTER (q_ptr, i);
4329 rtx_insn_list *link;
4330 for (link = insn_queue[q]; link; link = link->next ())
4331 {
4332 rtx_insn *insn = link->insn ();
4333 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4334 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4335 {
4336 if (set)
4337 DEP_STATUS (dep) |= DEP_CANCELLED;
4338 else
4339 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4340 }
4341 }
4342 }
4343 }
4344
4345 /* Undo the replacements that have occurred after backtrack point SAVE
4346 was placed. */
4347 static void
4348 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4349 {
4350 while (!save->replacement_deps.is_empty ())
4351 {
4352 dep_t dep = save->replacement_deps.pop ();
4353 int apply_p = save->replace_apply.pop ();
4354
4355 if (apply_p)
4356 restore_pattern (dep, true);
4357 else
4358 apply_replacement (dep, true);
4359 }
4360 save->replacement_deps.release ();
4361 save->replace_apply.release ();
4362 }
4363
4364 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4365 Restore their dependencies to an unresolved state, and mark them as
4366 queued nowhere. */
4367
4368 static void
4369 unschedule_insns_until (rtx insn)
4370 {
4371 auto_vec<rtx_insn *> recompute_vec;
4372
4373 /* Make two passes over the insns to be unscheduled. First, we clear out
4374 dependencies and other trivial bookkeeping. */
4375 for (;;)
4376 {
4377 rtx_insn *last;
4378 sd_iterator_def sd_it;
4379 dep_t dep;
4380
4381 last = scheduled_insns.pop ();
4382
4383 /* This will be changed by restore_backtrack_point if the insn is in
4384 any queue. */
4385 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4386 if (last != insn)
4387 INSN_TICK (last) = INVALID_TICK;
4388
4389 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4390 modulo_insns_scheduled--;
4391
4392 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4393 sd_iterator_cond (&sd_it, &dep);)
4394 {
4395 rtx_insn *con = DEP_CON (dep);
4396 sd_unresolve_dep (sd_it);
4397 if (!MUST_RECOMPUTE_SPEC_P (con))
4398 {
4399 MUST_RECOMPUTE_SPEC_P (con) = 1;
4400 recompute_vec.safe_push (con);
4401 }
4402 }
4403
4404 if (last == insn)
4405 break;
4406 }
4407
4408 /* A second pass, to update ready and speculation status for insns
4409 depending on the unscheduled ones. The first pass must have
4410 popped the scheduled_insns vector up to the point where we
4411 restart scheduling, as recompute_todo_spec requires it to be
4412 up-to-date. */
4413 while (!recompute_vec.is_empty ())
4414 {
4415 rtx_insn *con;
4416
4417 con = recompute_vec.pop ();
4418 MUST_RECOMPUTE_SPEC_P (con) = 0;
4419 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4420 {
4421 TODO_SPEC (con) = HARD_DEP;
4422 INSN_TICK (con) = INVALID_TICK;
4423 if (PREDICATED_PAT (con) != NULL_RTX)
4424 haifa_change_pattern (con, ORIG_PAT (con));
4425 }
4426 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4427 TODO_SPEC (con) = recompute_todo_spec (con, true);
4428 }
4429 }
4430
4431 /* Restore scheduler state from the topmost entry on the backtracking queue.
4432 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4433 overwrite with the saved data.
4434 The caller must already have called unschedule_insns_until. */
4435
4436 static void
4437 restore_last_backtrack_point (struct sched_block_state *psched_block)
4438 {
4439 int i;
4440 struct haifa_saved_data *save = backtrack_queue;
4441
4442 backtrack_queue = save->next;
4443
4444 if (current_sched_info->restore_state)
4445 (*current_sched_info->restore_state) (save->fe_saved_data);
4446
4447 if (targetm.sched.alloc_sched_context)
4448 {
4449 targetm.sched.set_sched_context (save->be_saved_data);
4450 targetm.sched.free_sched_context (save->be_saved_data);
4451 }
4452
4453 /* Do this first since it clobbers INSN_TICK of the involved
4454 instructions. */
4455 undo_replacements_for_backtrack (save);
4456
4457 /* Clear the QUEUE_INDEX of everything in the ready list or one
4458 of the queues. */
4459 if (ready.n_ready > 0)
4460 {
4461 rtx_insn **first = ready_lastpos (&ready);
4462 for (i = 0; i < ready.n_ready; i++)
4463 {
4464 rtx_insn *insn = first[i];
4465 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4466 INSN_TICK (insn) = INVALID_TICK;
4467 }
4468 }
4469 for (i = 0; i <= max_insn_queue_index; i++)
4470 {
4471 int q = NEXT_Q_AFTER (q_ptr, i);
4472
4473 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4474 {
4475 rtx_insn *x = link->insn ();
4476 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4477 INSN_TICK (x) = INVALID_TICK;
4478 }
4479 free_INSN_LIST_list (&insn_queue[q]);
4480 }
4481
4482 free (ready.vec);
4483 ready = save->ready;
4484
4485 if (ready.n_ready > 0)
4486 {
4487 rtx_insn **first = ready_lastpos (&ready);
4488 for (i = 0; i < ready.n_ready; i++)
4489 {
4490 rtx_insn *insn = first[i];
4491 QUEUE_INDEX (insn) = QUEUE_READY;
4492 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4493 INSN_TICK (insn) = save->clock_var;
4494 }
4495 }
4496
4497 q_ptr = 0;
4498 q_size = save->q_size;
4499 for (i = 0; i <= max_insn_queue_index; i++)
4500 {
4501 int q = NEXT_Q_AFTER (q_ptr, i);
4502
4503 insn_queue[q] = save->insn_queue[q];
4504
4505 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4506 {
4507 rtx_insn *x = link->insn ();
4508 QUEUE_INDEX (x) = i;
4509 TODO_SPEC (x) = recompute_todo_spec (x, true);
4510 INSN_TICK (x) = save->clock_var + i;
4511 }
4512 }
4513 free (save->insn_queue);
4514
4515 toggle_cancelled_flags (true);
4516
4517 clock_var = save->clock_var;
4518 last_clock_var = save->last_clock_var;
4519 cycle_issued_insns = save->cycle_issued_insns;
4520 last_scheduled_insn = save->last_scheduled_insn;
4521 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4522 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4523
4524 *psched_block = save->sched_block;
4525
4526 memcpy (curr_state, save->curr_state, dfa_state_size);
4527 free (save->curr_state);
4528
4529 mark_backtrack_feeds (save->delay_pair->i2, 0);
4530
4531 gcc_assert (next_cycle_replace_deps.is_empty ());
4532 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4533 next_cycle_apply = save->next_cycle_apply.copy ();
4534
4535 free (save);
4536
4537 for (save = backtrack_queue; save; save = save->next)
4538 {
4539 mark_backtrack_feeds (save->delay_pair->i2, 1);
4540 }
4541 }
4542
4543 /* Discard all data associated with the topmost entry in the backtrack
4544 queue. If RESET_TICK is false, we just want to free the data. If true,
4545 we are doing this because we discovered a reason to backtrack. In the
4546 latter case, also reset the INSN_TICK for the shadow insn. */
4547 static void
4548 free_topmost_backtrack_point (bool reset_tick)
4549 {
4550 struct haifa_saved_data *save = backtrack_queue;
4551 int i;
4552
4553 backtrack_queue = save->next;
4554
4555 if (reset_tick)
4556 {
4557 struct delay_pair *pair = save->delay_pair;
4558 while (pair)
4559 {
4560 INSN_TICK (pair->i2) = INVALID_TICK;
4561 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4562 pair = pair->next_same_i1;
4563 }
4564 undo_replacements_for_backtrack (save);
4565 }
4566 else
4567 {
4568 save->replacement_deps.release ();
4569 save->replace_apply.release ();
4570 }
4571
4572 if (targetm.sched.free_sched_context)
4573 targetm.sched.free_sched_context (save->be_saved_data);
4574 if (current_sched_info->restore_state)
4575 free (save->fe_saved_data);
4576 for (i = 0; i <= max_insn_queue_index; i++)
4577 free_INSN_LIST_list (&save->insn_queue[i]);
4578 free (save->insn_queue);
4579 free (save->curr_state);
4580 free (save->ready.vec);
4581 free (save);
4582 }
4583
4584 /* Free the entire backtrack queue. */
4585 static void
4586 free_backtrack_queue (void)
4587 {
4588 while (backtrack_queue)
4589 free_topmost_backtrack_point (false);
4590 }
4591
4592 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4593 may have to postpone the replacement until the start of the next cycle,
4594 at which point we will be called again with IMMEDIATELY true. This is
4595 only done for machines which have instruction packets with explicit
4596 parallelism however. */
4597 static void
4598 apply_replacement (dep_t dep, bool immediately)
4599 {
4600 struct dep_replacement *desc = DEP_REPLACE (dep);
4601 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4602 {
4603 next_cycle_replace_deps.safe_push (dep);
4604 next_cycle_apply.safe_push (1);
4605 }
4606 else
4607 {
4608 bool success;
4609
4610 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4611 return;
4612
4613 if (sched_verbose >= 5)
4614 fprintf (sched_dump, "applying replacement for insn %d\n",
4615 INSN_UID (desc->insn));
4616
4617 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4618 gcc_assert (success);
4619
4620 update_insn_after_change (desc->insn);
4621 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4622 fix_tick_ready (desc->insn);
4623
4624 if (backtrack_queue != NULL)
4625 {
4626 backtrack_queue->replacement_deps.safe_push (dep);
4627 backtrack_queue->replace_apply.safe_push (1);
4628 }
4629 }
4630 }
4631
4632 /* We have determined that a pattern involved in DEP must be restored.
4633 If IMMEDIATELY is false, we may have to postpone the replacement
4634 until the start of the next cycle, at which point we will be called
4635 again with IMMEDIATELY true. */
4636 static void
4637 restore_pattern (dep_t dep, bool immediately)
4638 {
4639 rtx_insn *next = DEP_CON (dep);
4640 int tick = INSN_TICK (next);
4641
4642 /* If we already scheduled the insn, the modified version is
4643 correct. */
4644 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4645 return;
4646
4647 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4648 {
4649 next_cycle_replace_deps.safe_push (dep);
4650 next_cycle_apply.safe_push (0);
4651 return;
4652 }
4653
4654
4655 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4656 {
4657 if (sched_verbose >= 5)
4658 fprintf (sched_dump, "restoring pattern for insn %d\n",
4659 INSN_UID (next));
4660 haifa_change_pattern (next, ORIG_PAT (next));
4661 }
4662 else
4663 {
4664 struct dep_replacement *desc = DEP_REPLACE (dep);
4665 bool success;
4666
4667 if (sched_verbose >= 5)
4668 fprintf (sched_dump, "restoring pattern for insn %d\n",
4669 INSN_UID (desc->insn));
4670 tick = INSN_TICK (desc->insn);
4671
4672 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4673 gcc_assert (success);
4674 update_insn_after_change (desc->insn);
4675 if (backtrack_queue != NULL)
4676 {
4677 backtrack_queue->replacement_deps.safe_push (dep);
4678 backtrack_queue->replace_apply.safe_push (0);
4679 }
4680 }
4681 INSN_TICK (next) = tick;
4682 if (TODO_SPEC (next) == DEP_POSTPONED)
4683 return;
4684
4685 if (sd_lists_empty_p (next, SD_LIST_BACK))
4686 TODO_SPEC (next) = 0;
4687 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4688 TODO_SPEC (next) = HARD_DEP;
4689 }
4690
4691 /* Perform pattern replacements that were queued up until the next
4692 cycle. */
4693 static void
4694 perform_replacements_new_cycle (void)
4695 {
4696 int i;
4697 dep_t dep;
4698 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4699 {
4700 int apply_p = next_cycle_apply[i];
4701 if (apply_p)
4702 apply_replacement (dep, true);
4703 else
4704 restore_pattern (dep, true);
4705 }
4706 next_cycle_replace_deps.truncate (0);
4707 next_cycle_apply.truncate (0);
4708 }
4709
4710 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4711 instructions we've previously encountered, a set bit prevents
4712 recursion. BUDGET is a limit on how far ahead we look, it is
4713 reduced on recursive calls. Return true if we produced a good
4714 estimate, or false if we exceeded the budget. */
4715 static bool
4716 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4717 {
4718 sd_iterator_def sd_it;
4719 dep_t dep;
4720 int earliest = INSN_TICK (insn);
4721
4722 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4723 {
4724 rtx_insn *pro = DEP_PRO (dep);
4725 int t;
4726
4727 if (DEP_STATUS (dep) & DEP_CANCELLED)
4728 continue;
4729
4730 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4731 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4732 else
4733 {
4734 int cost = dep_cost (dep);
4735 if (cost >= budget)
4736 return false;
4737 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4738 {
4739 if (!estimate_insn_tick (processed, pro, budget - cost))
4740 return false;
4741 }
4742 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4743 t = INSN_TICK_ESTIMATE (pro) + cost;
4744 if (earliest == INVALID_TICK || t > earliest)
4745 earliest = t;
4746 }
4747 }
4748 bitmap_set_bit (processed, INSN_LUID (insn));
4749 INSN_TICK_ESTIMATE (insn) = earliest;
4750 return true;
4751 }
4752
4753 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4754 infinite resources) the cycle in which the delayed shadow can be issued.
4755 Return the number of cycles that must pass before the real insn can be
4756 issued in order to meet this constraint. */
4757 static int
4758 estimate_shadow_tick (struct delay_pair *p)
4759 {
4760 bitmap_head processed;
4761 int t;
4762 bool cutoff;
4763 bitmap_initialize (&processed, 0);
4764
4765 cutoff = !estimate_insn_tick (&processed, p->i2,
4766 max_insn_queue_index + pair_delay (p));
4767 bitmap_clear (&processed);
4768 if (cutoff)
4769 return max_insn_queue_index;
4770 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4771 if (t > 0)
4772 return t;
4773 return 0;
4774 }
4775
4776 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4777 recursively resolve all its forward dependencies. */
4778 static void
4779 resolve_dependencies (rtx_insn *insn)
4780 {
4781 sd_iterator_def sd_it;
4782 dep_t dep;
4783
4784 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4785 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4786 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4787 return;
4788
4789 if (sched_verbose >= 4)
4790 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4791
4792 if (QUEUE_INDEX (insn) >= 0)
4793 queue_remove (insn);
4794
4795 scheduled_insns.safe_push (insn);
4796
4797 /* Update dependent instructions. */
4798 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4799 sd_iterator_cond (&sd_it, &dep);)
4800 {
4801 rtx_insn *next = DEP_CON (dep);
4802
4803 if (sched_verbose >= 4)
4804 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4805 INSN_UID (next));
4806
4807 /* Resolve the dependence between INSN and NEXT.
4808 sd_resolve_dep () moves current dep to another list thus
4809 advancing the iterator. */
4810 sd_resolve_dep (sd_it);
4811
4812 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4813 {
4814 resolve_dependencies (next);
4815 }
4816 else
4817 /* Check always has only one forward dependence (to the first insn in
4818 the recovery block), therefore, this will be executed only once. */
4819 {
4820 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4821 }
4822 }
4823 }
4824
4825
4826 /* Return the head and tail pointers of ebb starting at BEG and ending
4827 at END. */
4828 void
4829 get_ebb_head_tail (basic_block beg, basic_block end,
4830 rtx_insn **headp, rtx_insn **tailp)
4831 {
4832 rtx_insn *beg_head = BB_HEAD (beg);
4833 rtx_insn * beg_tail = BB_END (beg);
4834 rtx_insn * end_head = BB_HEAD (end);
4835 rtx_insn * end_tail = BB_END (end);
4836
4837 /* Don't include any notes or labels at the beginning of the BEG
4838 basic block, or notes at the end of the END basic blocks. */
4839
4840 if (LABEL_P (beg_head))
4841 beg_head = NEXT_INSN (beg_head);
4842
4843 while (beg_head != beg_tail)
4844 if (NOTE_P (beg_head))
4845 beg_head = NEXT_INSN (beg_head);
4846 else if (DEBUG_INSN_P (beg_head))
4847 {
4848 rtx_insn * note, *next;
4849
4850 for (note = NEXT_INSN (beg_head);
4851 note != beg_tail;
4852 note = next)
4853 {
4854 next = NEXT_INSN (note);
4855 if (NOTE_P (note))
4856 {
4857 if (sched_verbose >= 9)
4858 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4859
4860 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4861
4862 if (BLOCK_FOR_INSN (note) != beg)
4863 df_insn_change_bb (note, beg);
4864 }
4865 else if (!DEBUG_INSN_P (note))
4866 break;
4867 }
4868
4869 break;
4870 }
4871 else
4872 break;
4873
4874 *headp = beg_head;
4875
4876 if (beg == end)
4877 end_head = beg_head;
4878 else if (LABEL_P (end_head))
4879 end_head = NEXT_INSN (end_head);
4880
4881 while (end_head != end_tail)
4882 if (NOTE_P (end_tail))
4883 end_tail = PREV_INSN (end_tail);
4884 else if (DEBUG_INSN_P (end_tail))
4885 {
4886 rtx_insn * note, *prev;
4887
4888 for (note = PREV_INSN (end_tail);
4889 note != end_head;
4890 note = prev)
4891 {
4892 prev = PREV_INSN (note);
4893 if (NOTE_P (note))
4894 {
4895 if (sched_verbose >= 9)
4896 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4897
4898 reorder_insns_nobb (note, note, end_tail);
4899
4900 if (end_tail == BB_END (end))
4901 BB_END (end) = note;
4902
4903 if (BLOCK_FOR_INSN (note) != end)
4904 df_insn_change_bb (note, end);
4905 }
4906 else if (!DEBUG_INSN_P (note))
4907 break;
4908 }
4909
4910 break;
4911 }
4912 else
4913 break;
4914
4915 *tailp = end_tail;
4916 }
4917
4918 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
4919
4920 int
4921 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
4922 {
4923 while (head != NEXT_INSN (tail))
4924 {
4925 if (!NOTE_P (head) && !LABEL_P (head))
4926 return 0;
4927 head = NEXT_INSN (head);
4928 }
4929 return 1;
4930 }
4931
4932 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
4933 previously found among the insns. Insert them just before HEAD. */
4934 rtx_insn *
4935 restore_other_notes (rtx_insn *head, basic_block head_bb)
4936 {
4937 if (note_list != 0)
4938 {
4939 rtx_insn *note_head = note_list;
4940
4941 if (head)
4942 head_bb = BLOCK_FOR_INSN (head);
4943 else
4944 head = NEXT_INSN (bb_note (head_bb));
4945
4946 while (PREV_INSN (note_head))
4947 {
4948 set_block_for_insn (note_head, head_bb);
4949 note_head = PREV_INSN (note_head);
4950 }
4951 /* In the above cycle we've missed this note. */
4952 set_block_for_insn (note_head, head_bb);
4953
4954 SET_PREV_INSN (note_head) = PREV_INSN (head);
4955 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
4956 SET_PREV_INSN (head) = note_list;
4957 SET_NEXT_INSN (note_list) = head;
4958
4959 if (BLOCK_FOR_INSN (head) != head_bb)
4960 BB_END (head_bb) = note_list;
4961
4962 head = note_head;
4963 }
4964
4965 return head;
4966 }
4967
4968 /* When we know we are going to discard the schedule due to a failed attempt
4969 at modulo scheduling, undo all replacements. */
4970 static void
4971 undo_all_replacements (void)
4972 {
4973 rtx_insn *insn;
4974 int i;
4975
4976 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
4977 {
4978 sd_iterator_def sd_it;
4979 dep_t dep;
4980
4981 /* See if we must undo a replacement. */
4982 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
4983 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4984 {
4985 struct dep_replacement *desc = DEP_REPLACE (dep);
4986 if (desc != NULL)
4987 validate_change (desc->insn, desc->loc, desc->orig, 0);
4988 }
4989 }
4990 }
4991
4992 /* Return first non-scheduled insn in the current scheduling block.
4993 This is mostly used for debug-counter purposes. */
4994 static rtx_insn *
4995 first_nonscheduled_insn (void)
4996 {
4997 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
4998 ? nonscheduled_insns_begin
4999 : current_sched_info->prev_head);
5000
5001 do
5002 {
5003 insn = next_nonnote_nondebug_insn (insn);
5004 }
5005 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5006
5007 return insn;
5008 }
5009
5010 /* Move insns that became ready to fire from queue to ready list. */
5011
5012 static void
5013 queue_to_ready (struct ready_list *ready)
5014 {
5015 rtx_insn *insn;
5016 rtx_insn_list *link;
5017 rtx skip_insn;
5018
5019 q_ptr = NEXT_Q (q_ptr);
5020
5021 if (dbg_cnt (sched_insn) == false)
5022 /* If debug counter is activated do not requeue the first
5023 nonscheduled insn. */
5024 skip_insn = first_nonscheduled_insn ();
5025 else
5026 skip_insn = NULL_RTX;
5027
5028 /* Add all pending insns that can be scheduled without stalls to the
5029 ready list. */
5030 for (link = insn_queue[q_ptr]; link; link = link->next ())
5031 {
5032 insn = link->insn ();
5033 q_size -= 1;
5034
5035 if (sched_verbose >= 2)
5036 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5037 (*current_sched_info->print_insn) (insn, 0));
5038
5039 /* If the ready list is full, delay the insn for 1 cycle.
5040 See the comment in schedule_block for the rationale. */
5041 if (!reload_completed
5042 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5043 || (sched_pressure == SCHED_PRESSURE_MODEL
5044 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5045 instructions too. */
5046 && model_index (insn) > (model_curr_point
5047 + MAX_SCHED_READY_INSNS)))
5048 && !(sched_pressure == SCHED_PRESSURE_MODEL
5049 && model_curr_point < model_num_insns
5050 /* Always allow the next model instruction to issue. */
5051 && model_index (insn) == model_curr_point)
5052 && !SCHED_GROUP_P (insn)
5053 && insn != skip_insn)
5054 {
5055 if (sched_verbose >= 2)
5056 fprintf (sched_dump, "keeping in queue, ready full\n");
5057 queue_insn (insn, 1, "ready full");
5058 }
5059 else
5060 {
5061 ready_add (ready, insn, false);
5062 if (sched_verbose >= 2)
5063 fprintf (sched_dump, "moving to ready without stalls\n");
5064 }
5065 }
5066 free_INSN_LIST_list (&insn_queue[q_ptr]);
5067
5068 /* If there are no ready insns, stall until one is ready and add all
5069 of the pending insns at that point to the ready list. */
5070 if (ready->n_ready == 0)
5071 {
5072 int stalls;
5073
5074 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5075 {
5076 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5077 {
5078 for (; link; link = link->next ())
5079 {
5080 insn = link->insn ();
5081 q_size -= 1;
5082
5083 if (sched_verbose >= 2)
5084 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5085 (*current_sched_info->print_insn) (insn, 0));
5086
5087 ready_add (ready, insn, false);
5088 if (sched_verbose >= 2)
5089 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5090 }
5091 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5092
5093 advance_one_cycle ();
5094
5095 break;
5096 }
5097
5098 advance_one_cycle ();
5099 }
5100
5101 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5102 clock_var += stalls;
5103 if (sched_verbose >= 2)
5104 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5105 stalls, clock_var);
5106 }
5107 }
5108
5109 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5110 prematurely move INSN from the queue to the ready list. Currently,
5111 if a target defines the hook 'is_costly_dependence', this function
5112 uses the hook to check whether there exist any dependences which are
5113 considered costly by the target, between INSN and other insns that
5114 have already been scheduled. Dependences are checked up to Y cycles
5115 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5116 controlling this value.
5117 (Other considerations could be taken into account instead (or in
5118 addition) depending on user flags and target hooks. */
5119
5120 static bool
5121 ok_for_early_queue_removal (rtx insn)
5122 {
5123 if (targetm.sched.is_costly_dependence)
5124 {
5125 rtx prev_insn;
5126 int n_cycles;
5127 int i = scheduled_insns.length ();
5128 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5129 {
5130 while (i-- > 0)
5131 {
5132 int cost;
5133
5134 prev_insn = scheduled_insns[i];
5135
5136 if (!NOTE_P (prev_insn))
5137 {
5138 dep_t dep;
5139
5140 dep = sd_find_dep_between (prev_insn, insn, true);
5141
5142 if (dep != NULL)
5143 {
5144 cost = dep_cost (dep);
5145
5146 if (targetm.sched.is_costly_dependence (dep, cost,
5147 flag_sched_stalled_insns_dep - n_cycles))
5148 return false;
5149 }
5150 }
5151
5152 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5153 break;
5154 }
5155
5156 if (i == 0)
5157 break;
5158 }
5159 }
5160
5161 return true;
5162 }
5163
5164
5165 /* Remove insns from the queue, before they become "ready" with respect
5166 to FU latency considerations. */
5167
5168 static int
5169 early_queue_to_ready (state_t state, struct ready_list *ready)
5170 {
5171 rtx_insn *insn;
5172 rtx_insn_list *link;
5173 rtx_insn_list *next_link;
5174 rtx_insn_list *prev_link;
5175 bool move_to_ready;
5176 int cost;
5177 state_t temp_state = alloca (dfa_state_size);
5178 int stalls;
5179 int insns_removed = 0;
5180
5181 /*
5182 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5183 function:
5184
5185 X == 0: There is no limit on how many queued insns can be removed
5186 prematurely. (flag_sched_stalled_insns = -1).
5187
5188 X >= 1: Only X queued insns can be removed prematurely in each
5189 invocation. (flag_sched_stalled_insns = X).
5190
5191 Otherwise: Early queue removal is disabled.
5192 (flag_sched_stalled_insns = 0)
5193 */
5194
5195 if (! flag_sched_stalled_insns)
5196 return 0;
5197
5198 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5199 {
5200 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5201 {
5202 if (sched_verbose > 6)
5203 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5204
5205 prev_link = 0;
5206 while (link)
5207 {
5208 next_link = link->next ();
5209 insn = link->insn ();
5210 if (insn && sched_verbose > 6)
5211 print_rtl_single (sched_dump, insn);
5212
5213 memcpy (temp_state, state, dfa_state_size);
5214 if (recog_memoized (insn) < 0)
5215 /* non-negative to indicate that it's not ready
5216 to avoid infinite Q->R->Q->R... */
5217 cost = 0;
5218 else
5219 cost = state_transition (temp_state, insn);
5220
5221 if (sched_verbose >= 6)
5222 fprintf (sched_dump, "transition cost = %d\n", cost);
5223
5224 move_to_ready = false;
5225 if (cost < 0)
5226 {
5227 move_to_ready = ok_for_early_queue_removal (insn);
5228 if (move_to_ready == true)
5229 {
5230 /* move from Q to R */
5231 q_size -= 1;
5232 ready_add (ready, insn, false);
5233
5234 if (prev_link)
5235 XEXP (prev_link, 1) = next_link;
5236 else
5237 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5238
5239 free_INSN_LIST_node (link);
5240
5241 if (sched_verbose >= 2)
5242 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5243 (*current_sched_info->print_insn) (insn, 0));
5244
5245 insns_removed++;
5246 if (insns_removed == flag_sched_stalled_insns)
5247 /* Remove no more than flag_sched_stalled_insns insns
5248 from Q at a time. */
5249 return insns_removed;
5250 }
5251 }
5252
5253 if (move_to_ready == false)
5254 prev_link = link;
5255
5256 link = next_link;
5257 } /* while link */
5258 } /* if link */
5259
5260 } /* for stalls.. */
5261
5262 return insns_removed;
5263 }
5264
5265
5266 /* Print the ready list for debugging purposes.
5267 If READY_TRY is non-zero then only print insns that max_issue
5268 will consider. */
5269 static void
5270 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5271 {
5272 rtx_insn **p;
5273 int i;
5274
5275 if (ready->n_ready == 0)
5276 {
5277 fprintf (sched_dump, "\n");
5278 return;
5279 }
5280
5281 p = ready_lastpos (ready);
5282 for (i = 0; i < ready->n_ready; i++)
5283 {
5284 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5285 continue;
5286
5287 fprintf (sched_dump, " %s:%d",
5288 (*current_sched_info->print_insn) (p[i], 0),
5289 INSN_LUID (p[i]));
5290 if (sched_pressure != SCHED_PRESSURE_NONE)
5291 fprintf (sched_dump, "(cost=%d",
5292 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5293 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5294 if (INSN_TICK (p[i]) > clock_var)
5295 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5296 if (sched_pressure == SCHED_PRESSURE_MODEL)
5297 fprintf (sched_dump, ":idx=%d",
5298 model_index (p[i]));
5299 if (sched_pressure != SCHED_PRESSURE_NONE)
5300 fprintf (sched_dump, ")");
5301 }
5302 fprintf (sched_dump, "\n");
5303 }
5304
5305 /* Print the ready list. Callable from debugger. */
5306 static void
5307 debug_ready_list (struct ready_list *ready)
5308 {
5309 debug_ready_list_1 (ready, NULL);
5310 }
5311
5312 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5313 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5314 replaces the epilogue note in the correct basic block. */
5315 void
5316 reemit_notes (rtx_insn *insn)
5317 {
5318 rtx note;
5319 rtx_insn *last = insn;
5320
5321 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5322 {
5323 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5324 {
5325 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5326
5327 last = emit_note_before (note_type, last);
5328 remove_note (insn, note);
5329 }
5330 }
5331 }
5332
5333 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5334 static void
5335 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5336 {
5337 if (PREV_INSN (insn) != last)
5338 {
5339 basic_block bb;
5340 rtx_insn *note;
5341 int jump_p = 0;
5342
5343 bb = BLOCK_FOR_INSN (insn);
5344
5345 /* BB_HEAD is either LABEL or NOTE. */
5346 gcc_assert (BB_HEAD (bb) != insn);
5347
5348 if (BB_END (bb) == insn)
5349 /* If this is last instruction in BB, move end marker one
5350 instruction up. */
5351 {
5352 /* Jumps are always placed at the end of basic block. */
5353 jump_p = control_flow_insn_p (insn);
5354
5355 gcc_assert (!jump_p
5356 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5357 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5358 || (common_sched_info->sched_pass_id
5359 == SCHED_EBB_PASS));
5360
5361 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5362
5363 BB_END (bb) = PREV_INSN (insn);
5364 }
5365
5366 gcc_assert (BB_END (bb) != last);
5367
5368 if (jump_p)
5369 /* We move the block note along with jump. */
5370 {
5371 gcc_assert (nt);
5372
5373 note = NEXT_INSN (insn);
5374 while (NOTE_NOT_BB_P (note) && note != nt)
5375 note = NEXT_INSN (note);
5376
5377 if (note != nt
5378 && (LABEL_P (note)
5379 || BARRIER_P (note)))
5380 note = NEXT_INSN (note);
5381
5382 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5383 }
5384 else
5385 note = insn;
5386
5387 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5388 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5389
5390 SET_NEXT_INSN (note) = NEXT_INSN (last);
5391 SET_PREV_INSN (NEXT_INSN (last)) = note;
5392
5393 SET_NEXT_INSN (last) = insn;
5394 SET_PREV_INSN (insn) = last;
5395
5396 bb = BLOCK_FOR_INSN (last);
5397
5398 if (jump_p)
5399 {
5400 fix_jump_move (insn);
5401
5402 if (BLOCK_FOR_INSN (insn) != bb)
5403 move_block_after_check (insn);
5404
5405 gcc_assert (BB_END (bb) == last);
5406 }
5407
5408 df_insn_change_bb (insn, bb);
5409
5410 /* Update BB_END, if needed. */
5411 if (BB_END (bb) == last)
5412 BB_END (bb) = insn;
5413 }
5414
5415 SCHED_GROUP_P (insn) = 0;
5416 }
5417
5418 /* Return true if scheduling INSN will finish current clock cycle. */
5419 static bool
5420 insn_finishes_cycle_p (rtx_insn *insn)
5421 {
5422 if (SCHED_GROUP_P (insn))
5423 /* After issuing INSN, rest of the sched_group will be forced to issue
5424 in order. Don't make any plans for the rest of cycle. */
5425 return true;
5426
5427 /* Finishing the block will, apparently, finish the cycle. */
5428 if (current_sched_info->insn_finishes_block_p
5429 && current_sched_info->insn_finishes_block_p (insn))
5430 return true;
5431
5432 return false;
5433 }
5434
5435 /* Define type for target data used in multipass scheduling. */
5436 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5437 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5438 #endif
5439 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5440
5441 /* The following structure describe an entry of the stack of choices. */
5442 struct choice_entry
5443 {
5444 /* Ordinal number of the issued insn in the ready queue. */
5445 int index;
5446 /* The number of the rest insns whose issues we should try. */
5447 int rest;
5448 /* The number of issued essential insns. */
5449 int n;
5450 /* State after issuing the insn. */
5451 state_t state;
5452 /* Target-specific data. */
5453 first_cycle_multipass_data_t target_data;
5454 };
5455
5456 /* The following array is used to implement a stack of choices used in
5457 function max_issue. */
5458 static struct choice_entry *choice_stack;
5459
5460 /* This holds the value of the target dfa_lookahead hook. */
5461 int dfa_lookahead;
5462
5463 /* The following variable value is maximal number of tries of issuing
5464 insns for the first cycle multipass insn scheduling. We define
5465 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5466 need this constraint if all real insns (with non-negative codes)
5467 had reservations because in this case the algorithm complexity is
5468 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5469 might be incomplete and such insn might occur. For such
5470 descriptions, the complexity of algorithm (without the constraint)
5471 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5472 static int max_lookahead_tries;
5473
5474 /* The following value is value of hook
5475 `first_cycle_multipass_dfa_lookahead' at the last call of
5476 `max_issue'. */
5477 static int cached_first_cycle_multipass_dfa_lookahead = 0;
5478
5479 /* The following value is value of `issue_rate' at the last call of
5480 `sched_init'. */
5481 static int cached_issue_rate = 0;
5482
5483 /* The following function returns maximal (or close to maximal) number
5484 of insns which can be issued on the same cycle and one of which
5485 insns is insns with the best rank (the first insn in READY). To
5486 make this function tries different samples of ready insns. READY
5487 is current queue `ready'. Global array READY_TRY reflects what
5488 insns are already issued in this try. The function stops immediately,
5489 if it reached the such a solution, that all instruction can be issued.
5490 INDEX will contain index of the best insn in READY. The following
5491 function is used only for first cycle multipass scheduling.
5492
5493 PRIVILEGED_N >= 0
5494
5495 This function expects recognized insns only. All USEs,
5496 CLOBBERs, etc must be filtered elsewhere. */
5497 int
5498 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5499 bool first_cycle_insn_p, int *index)
5500 {
5501 int n, i, all, n_ready, best, delay, tries_num;
5502 int more_issue;
5503 struct choice_entry *top;
5504 rtx_insn *insn;
5505
5506 n_ready = ready->n_ready;
5507 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5508 && privileged_n <= n_ready);
5509
5510 /* Init MAX_LOOKAHEAD_TRIES. */
5511 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
5512 {
5513 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
5514 max_lookahead_tries = 100;
5515 for (i = 0; i < issue_rate; i++)
5516 max_lookahead_tries *= dfa_lookahead;
5517 }
5518
5519 /* Init max_points. */
5520 more_issue = issue_rate - cycle_issued_insns;
5521 gcc_assert (more_issue >= 0);
5522
5523 /* The number of the issued insns in the best solution. */
5524 best = 0;
5525
5526 top = choice_stack;
5527
5528 /* Set initial state of the search. */
5529 memcpy (top->state, state, dfa_state_size);
5530 top->rest = dfa_lookahead;
5531 top->n = 0;
5532 if (targetm.sched.first_cycle_multipass_begin)
5533 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5534 ready_try, n_ready,
5535 first_cycle_insn_p);
5536
5537 /* Count the number of the insns to search among. */
5538 for (all = i = 0; i < n_ready; i++)
5539 if (!ready_try [i])
5540 all++;
5541
5542 if (sched_verbose >= 2)
5543 {
5544 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5545 debug_ready_list_1 (ready, ready_try);
5546 }
5547
5548 /* I is the index of the insn to try next. */
5549 i = 0;
5550 tries_num = 0;
5551 for (;;)
5552 {
5553 if (/* If we've reached a dead end or searched enough of what we have
5554 been asked... */
5555 top->rest == 0
5556 /* or have nothing else to try... */
5557 || i >= n_ready
5558 /* or should not issue more. */
5559 || top->n >= more_issue)
5560 {
5561 /* ??? (... || i == n_ready). */
5562 gcc_assert (i <= n_ready);
5563
5564 /* We should not issue more than issue_rate instructions. */
5565 gcc_assert (top->n <= more_issue);
5566
5567 if (top == choice_stack)
5568 break;
5569
5570 if (best < top - choice_stack)
5571 {
5572 if (privileged_n)
5573 {
5574 n = privileged_n;
5575 /* Try to find issued privileged insn. */
5576 while (n && !ready_try[--n])
5577 ;
5578 }
5579
5580 if (/* If all insns are equally good... */
5581 privileged_n == 0
5582 /* Or a privileged insn will be issued. */
5583 || ready_try[n])
5584 /* Then we have a solution. */
5585 {
5586 best = top - choice_stack;
5587 /* This is the index of the insn issued first in this
5588 solution. */
5589 *index = choice_stack [1].index;
5590 if (top->n == more_issue || best == all)
5591 break;
5592 }
5593 }
5594
5595 /* Set ready-list index to point to the last insn
5596 ('i++' below will advance it to the next insn). */
5597 i = top->index;
5598
5599 /* Backtrack. */
5600 ready_try [i] = 0;
5601
5602 if (targetm.sched.first_cycle_multipass_backtrack)
5603 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5604 ready_try, n_ready);
5605
5606 top--;
5607 memcpy (state, top->state, dfa_state_size);
5608 }
5609 else if (!ready_try [i])
5610 {
5611 tries_num++;
5612 if (tries_num > max_lookahead_tries)
5613 break;
5614 insn = ready_element (ready, i);
5615 delay = state_transition (state, insn);
5616 if (delay < 0)
5617 {
5618 if (state_dead_lock_p (state)
5619 || insn_finishes_cycle_p (insn))
5620 /* We won't issue any more instructions in the next
5621 choice_state. */
5622 top->rest = 0;
5623 else
5624 top->rest--;
5625
5626 n = top->n;
5627 if (memcmp (top->state, state, dfa_state_size) != 0)
5628 n++;
5629
5630 /* Advance to the next choice_entry. */
5631 top++;
5632 /* Initialize it. */
5633 top->rest = dfa_lookahead;
5634 top->index = i;
5635 top->n = n;
5636 memcpy (top->state, state, dfa_state_size);
5637 ready_try [i] = 1;
5638
5639 if (targetm.sched.first_cycle_multipass_issue)
5640 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5641 ready_try, n_ready,
5642 insn,
5643 &((top - 1)
5644 ->target_data));
5645
5646 i = -1;
5647 }
5648 }
5649
5650 /* Increase ready-list index. */
5651 i++;
5652 }
5653
5654 if (targetm.sched.first_cycle_multipass_end)
5655 targetm.sched.first_cycle_multipass_end (best != 0
5656 ? &choice_stack[1].target_data
5657 : NULL);
5658
5659 /* Restore the original state of the DFA. */
5660 memcpy (state, choice_stack->state, dfa_state_size);
5661
5662 return best;
5663 }
5664
5665 /* The following function chooses insn from READY and modifies
5666 READY. The following function is used only for first
5667 cycle multipass scheduling.
5668 Return:
5669 -1 if cycle should be advanced,
5670 0 if INSN_PTR is set to point to the desirable insn,
5671 1 if choose_ready () should be restarted without advancing the cycle. */
5672 static int
5673 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
5674 rtx_insn **insn_ptr)
5675 {
5676 int lookahead;
5677
5678 if (dbg_cnt (sched_insn) == false)
5679 {
5680 if (nonscheduled_insns_begin == NULL_RTX)
5681 nonscheduled_insns_begin = current_sched_info->prev_head;
5682
5683 rtx_insn *insn = first_nonscheduled_insn ();
5684
5685 if (QUEUE_INDEX (insn) == QUEUE_READY)
5686 /* INSN is in the ready_list. */
5687 {
5688 ready_remove_insn (insn);
5689 *insn_ptr = insn;
5690 return 0;
5691 }
5692
5693 /* INSN is in the queue. Advance cycle to move it to the ready list. */
5694 gcc_assert (QUEUE_INDEX (insn) >= 0);
5695 return -1;
5696 }
5697
5698 lookahead = 0;
5699
5700 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
5701 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
5702 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
5703 || DEBUG_INSN_P (ready_element (ready, 0)))
5704 {
5705 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
5706 *insn_ptr = ready_remove_first_dispatch (ready);
5707 else
5708 *insn_ptr = ready_remove_first (ready);
5709
5710 return 0;
5711 }
5712 else
5713 {
5714 /* Try to choose the best insn. */
5715 int index = 0, i;
5716 rtx_insn *insn;
5717
5718 insn = ready_element (ready, 0);
5719 if (INSN_CODE (insn) < 0)
5720 {
5721 *insn_ptr = ready_remove_first (ready);
5722 return 0;
5723 }
5724
5725 /* Filter the search space. */
5726 for (i = 0; i < ready->n_ready; i++)
5727 {
5728 ready_try[i] = 0;
5729
5730 insn = ready_element (ready, i);
5731
5732 /* If this insn is recognizable we should have already
5733 recognized it earlier.
5734 ??? Not very clear where this is supposed to be done.
5735 See dep_cost_1. */
5736 gcc_checking_assert (INSN_CODE (insn) >= 0
5737 || recog_memoized (insn) < 0);
5738 if (INSN_CODE (insn) < 0)
5739 {
5740 /* Non-recognized insns at position 0 are handled above. */
5741 gcc_assert (i > 0);
5742 ready_try[i] = 1;
5743 continue;
5744 }
5745
5746 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
5747 {
5748 ready_try[i]
5749 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5750 (insn, i));
5751
5752 if (ready_try[i] < 0)
5753 /* Queue instruction for several cycles.
5754 We need to restart choose_ready as we have changed
5755 the ready list. */
5756 {
5757 change_queue_index (insn, -ready_try[i]);
5758 return 1;
5759 }
5760
5761 /* Make sure that we didn't end up with 0'th insn filtered out.
5762 Don't be tempted to make life easier for backends and just
5763 requeue 0'th insn if (ready_try[0] == 0) and restart
5764 choose_ready. Backends should be very considerate about
5765 requeueing instructions -- especially the highest priority
5766 one at position 0. */
5767 gcc_assert (ready_try[i] == 0 || i > 0);
5768 if (ready_try[i])
5769 continue;
5770 }
5771
5772 gcc_assert (ready_try[i] == 0);
5773 /* INSN made it through the scrutiny of filters! */
5774 }
5775
5776 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
5777 {
5778 *insn_ptr = ready_remove_first (ready);
5779 if (sched_verbose >= 4)
5780 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
5781 (*current_sched_info->print_insn) (*insn_ptr, 0));
5782 return 0;
5783 }
5784 else
5785 {
5786 if (sched_verbose >= 4)
5787 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
5788 (*current_sched_info->print_insn)
5789 (ready_element (ready, index), 0));
5790
5791 *insn_ptr = ready_remove (ready, index);
5792 return 0;
5793 }
5794 }
5795 }
5796
5797 /* This function is called when we have successfully scheduled a
5798 block. It uses the schedule stored in the scheduled_insns vector
5799 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
5800 append the scheduled insns; TAIL is the insn after the scheduled
5801 block. TARGET_BB is the argument passed to schedule_block. */
5802
5803 static void
5804 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
5805 {
5806 unsigned int i;
5807 rtx_insn *insn;
5808
5809 last_scheduled_insn = prev_head;
5810 for (i = 0;
5811 scheduled_insns.iterate (i, &insn);
5812 i++)
5813 {
5814 if (control_flow_insn_p (last_scheduled_insn)
5815 || current_sched_info->advance_target_bb (*target_bb, insn))
5816 {
5817 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
5818
5819 if (sched_verbose)
5820 {
5821 rtx_insn *x;
5822
5823 x = next_real_insn (last_scheduled_insn);
5824 gcc_assert (x);
5825 dump_new_block_header (1, *target_bb, x, tail);
5826 }
5827
5828 last_scheduled_insn = bb_note (*target_bb);
5829 }
5830
5831 if (current_sched_info->begin_move_insn)
5832 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
5833 move_insn (insn, last_scheduled_insn,
5834 current_sched_info->next_tail);
5835 if (!DEBUG_INSN_P (insn))
5836 reemit_notes (insn);
5837 last_scheduled_insn = insn;
5838 }
5839
5840 scheduled_insns.truncate (0);
5841 }
5842
5843 /* Examine all insns on the ready list and queue those which can't be
5844 issued in this cycle. TEMP_STATE is temporary scheduler state we
5845 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
5846 have been issued for the current cycle, which means it is valid to
5847 issue an asm statement.
5848
5849 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
5850 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
5851 we only leave insns which have an INSN_EXACT_TICK. */
5852
5853 static void
5854 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
5855 bool shadows_only_p, bool modulo_epilogue_p)
5856 {
5857 int i, pass;
5858 bool sched_group_found = false;
5859 int min_cost_group = 1;
5860
5861 for (i = 0; i < ready.n_ready; i++)
5862 {
5863 rtx_insn *insn = ready_element (&ready, i);
5864 if (SCHED_GROUP_P (insn))
5865 {
5866 sched_group_found = true;
5867 break;
5868 }
5869 }
5870
5871 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
5872 such an insn first and note its cost, then schedule all other insns
5873 for one cycle later. */
5874 for (pass = sched_group_found ? 0 : 1; pass < 2; )
5875 {
5876 int n = ready.n_ready;
5877 for (i = 0; i < n; i++)
5878 {
5879 rtx_insn *insn = ready_element (&ready, i);
5880 int cost = 0;
5881 const char *reason = "resource conflict";
5882
5883 if (DEBUG_INSN_P (insn))
5884 continue;
5885
5886 if (sched_group_found && !SCHED_GROUP_P (insn))
5887 {
5888 if (pass == 0)
5889 continue;
5890 cost = min_cost_group;
5891 reason = "not in sched group";
5892 }
5893 else if (modulo_epilogue_p
5894 && INSN_EXACT_TICK (insn) == INVALID_TICK)
5895 {
5896 cost = max_insn_queue_index;
5897 reason = "not an epilogue insn";
5898 }
5899 else if (shadows_only_p && !SHADOW_P (insn))
5900 {
5901 cost = 1;
5902 reason = "not a shadow";
5903 }
5904 else if (recog_memoized (insn) < 0)
5905 {
5906 if (!first_cycle_insn_p
5907 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
5908 || asm_noperands (PATTERN (insn)) >= 0))
5909 cost = 1;
5910 reason = "asm";
5911 }
5912 else if (sched_pressure != SCHED_PRESSURE_NONE)
5913 {
5914 if (sched_pressure == SCHED_PRESSURE_MODEL
5915 && INSN_TICK (insn) <= clock_var)
5916 {
5917 memcpy (temp_state, curr_state, dfa_state_size);
5918 if (state_transition (temp_state, insn) >= 0)
5919 INSN_TICK (insn) = clock_var + 1;
5920 }
5921 cost = 0;
5922 }
5923 else
5924 {
5925 int delay_cost = 0;
5926
5927 if (delay_htab)
5928 {
5929 struct delay_pair *delay_entry;
5930 delay_entry
5931 = delay_htab->find_with_hash (insn,
5932 htab_hash_pointer (insn));
5933 while (delay_entry && delay_cost == 0)
5934 {
5935 delay_cost = estimate_shadow_tick (delay_entry);
5936 if (delay_cost > max_insn_queue_index)
5937 delay_cost = max_insn_queue_index;
5938 delay_entry = delay_entry->next_same_i1;
5939 }
5940 }
5941
5942 memcpy (temp_state, curr_state, dfa_state_size);
5943 cost = state_transition (temp_state, insn);
5944 if (cost < 0)
5945 cost = 0;
5946 else if (cost == 0)
5947 cost = 1;
5948 if (cost < delay_cost)
5949 {
5950 cost = delay_cost;
5951 reason = "shadow tick";
5952 }
5953 }
5954 if (cost >= 1)
5955 {
5956 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
5957 min_cost_group = cost;
5958 ready_remove (&ready, i);
5959 queue_insn (insn, cost, reason);
5960 if (i + 1 < n)
5961 break;
5962 }
5963 }
5964 if (i == n)
5965 pass++;
5966 }
5967 }
5968
5969 /* Called when we detect that the schedule is impossible. We examine the
5970 backtrack queue to find the earliest insn that caused this condition. */
5971
5972 static struct haifa_saved_data *
5973 verify_shadows (void)
5974 {
5975 struct haifa_saved_data *save, *earliest_fail = NULL;
5976 for (save = backtrack_queue; save; save = save->next)
5977 {
5978 int t;
5979 struct delay_pair *pair = save->delay_pair;
5980 rtx_insn *i1 = pair->i1;
5981
5982 for (; pair; pair = pair->next_same_i1)
5983 {
5984 rtx_insn *i2 = pair->i2;
5985
5986 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
5987 continue;
5988
5989 t = INSN_TICK (i1) + pair_delay (pair);
5990 if (t < clock_var)
5991 {
5992 if (sched_verbose >= 2)
5993 fprintf (sched_dump,
5994 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
5995 ", not ready\n",
5996 INSN_UID (pair->i1), INSN_UID (pair->i2),
5997 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5998 earliest_fail = save;
5999 break;
6000 }
6001 if (QUEUE_INDEX (i2) >= 0)
6002 {
6003 int queued_for = INSN_TICK (i2);
6004
6005 if (t < queued_for)
6006 {
6007 if (sched_verbose >= 2)
6008 fprintf (sched_dump,
6009 ";;\t\tfailed delay requirements for %d/%d"
6010 " (%d->%d), queued too late\n",
6011 INSN_UID (pair->i1), INSN_UID (pair->i2),
6012 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6013 earliest_fail = save;
6014 break;
6015 }
6016 }
6017 }
6018 }
6019
6020 return earliest_fail;
6021 }
6022
6023 /* Print instructions together with useful scheduling information between
6024 HEAD and TAIL (inclusive). */
6025 static void
6026 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6027 {
6028 fprintf (sched_dump, ";;\t| insn | prio |\n");
6029
6030 rtx_insn *next_tail = NEXT_INSN (tail);
6031 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6032 {
6033 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6034 const char *pattern = (NOTE_P (insn)
6035 ? "note"
6036 : str_pattern_slim (PATTERN (insn)));
6037
6038 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6039 INSN_UID (insn), priority, pattern);
6040
6041 if (sched_verbose >= 4)
6042 {
6043 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6044 fprintf (sched_dump, "nothing");
6045 else
6046 print_reservation (sched_dump, insn);
6047 }
6048 fprintf (sched_dump, "\n");
6049 }
6050 }
6051
6052 /* Use forward list scheduling to rearrange insns of block pointed to by
6053 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6054 region. */
6055
6056 bool
6057 schedule_block (basic_block *target_bb, state_t init_state)
6058 {
6059 int i;
6060 bool success = modulo_ii == 0;
6061 struct sched_block_state ls;
6062 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6063 int sort_p, advance, start_clock_var;
6064
6065 /* Head/tail info for this block. */
6066 rtx_insn *prev_head = current_sched_info->prev_head;
6067 rtx_insn *next_tail = current_sched_info->next_tail;
6068 rtx_insn *head = NEXT_INSN (prev_head);
6069 rtx_insn *tail = PREV_INSN (next_tail);
6070
6071 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6072 && sched_pressure != SCHED_PRESSURE_MODEL)
6073 find_modifiable_mems (head, tail);
6074
6075 /* We used to have code to avoid getting parameters moved from hard
6076 argument registers into pseudos.
6077
6078 However, it was removed when it proved to be of marginal benefit
6079 and caused problems because schedule_block and compute_forward_dependences
6080 had different notions of what the "head" insn was. */
6081
6082 gcc_assert (head != tail || INSN_P (head));
6083
6084 haifa_recovery_bb_recently_added_p = false;
6085
6086 backtrack_queue = NULL;
6087
6088 /* Debug info. */
6089 if (sched_verbose)
6090 {
6091 dump_new_block_header (0, *target_bb, head, tail);
6092
6093 if (sched_verbose >= 2)
6094 {
6095 dump_insn_stream (head, tail);
6096 memset (&rank_for_schedule_stats, 0,
6097 sizeof (rank_for_schedule_stats));
6098 }
6099 }
6100
6101 if (init_state == NULL)
6102 state_reset (curr_state);
6103 else
6104 memcpy (curr_state, init_state, dfa_state_size);
6105
6106 /* Clear the ready list. */
6107 ready.first = ready.veclen - 1;
6108 ready.n_ready = 0;
6109 ready.n_debug = 0;
6110
6111 /* It is used for first cycle multipass scheduling. */
6112 temp_state = alloca (dfa_state_size);
6113
6114 if (targetm.sched.init)
6115 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6116
6117 /* We start inserting insns after PREV_HEAD. */
6118 last_scheduled_insn = prev_head;
6119 last_nondebug_scheduled_insn = NULL_RTX;
6120 nonscheduled_insns_begin = NULL;
6121
6122 gcc_assert ((NOTE_P (last_scheduled_insn)
6123 || DEBUG_INSN_P (last_scheduled_insn))
6124 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6125
6126 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6127 queue. */
6128 q_ptr = 0;
6129 q_size = 0;
6130
6131 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6132 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6133
6134 /* Start just before the beginning of time. */
6135 clock_var = -1;
6136
6137 /* We need queue and ready lists and clock_var be initialized
6138 in try_ready () (which is called through init_ready_list ()). */
6139 (*current_sched_info->init_ready_list) ();
6140
6141 if (sched_pressure)
6142 sched_pressure_start_bb (*target_bb);
6143
6144 /* The algorithm is O(n^2) in the number of ready insns at any given
6145 time in the worst case. Before reload we are more likely to have
6146 big lists so truncate them to a reasonable size. */
6147 if (!reload_completed
6148 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6149 {
6150 ready_sort (&ready);
6151
6152 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6153 If there are debug insns, we know they're first. */
6154 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6155 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6156 break;
6157
6158 if (sched_verbose >= 2)
6159 {
6160 fprintf (sched_dump,
6161 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
6162 fprintf (sched_dump,
6163 ";;\t\t before reload => truncated to %d insns\n", i);
6164 }
6165
6166 /* Delay all insns past it for 1 cycle. If debug counter is
6167 activated make an exception for the insn right after
6168 nonscheduled_insns_begin. */
6169 {
6170 rtx_insn *skip_insn;
6171
6172 if (dbg_cnt (sched_insn) == false)
6173 skip_insn = first_nonscheduled_insn ();
6174 else
6175 skip_insn = NULL;
6176
6177 while (i < ready.n_ready)
6178 {
6179 rtx_insn *insn;
6180
6181 insn = ready_remove (&ready, i);
6182
6183 if (insn != skip_insn)
6184 queue_insn (insn, 1, "list truncated");
6185 }
6186 if (skip_insn)
6187 ready_add (&ready, skip_insn, true);
6188 }
6189 }
6190
6191 /* Now we can restore basic block notes and maintain precise cfg. */
6192 restore_bb_notes (*target_bb);
6193
6194 last_clock_var = -1;
6195
6196 advance = 0;
6197
6198 gcc_assert (scheduled_insns.length () == 0);
6199 sort_p = TRUE;
6200 must_backtrack = false;
6201 modulo_insns_scheduled = 0;
6202
6203 ls.modulo_epilogue = false;
6204 ls.first_cycle_insn_p = true;
6205
6206 /* Loop until all the insns in BB are scheduled. */
6207 while ((*current_sched_info->schedule_more_p) ())
6208 {
6209 perform_replacements_new_cycle ();
6210 do
6211 {
6212 start_clock_var = clock_var;
6213
6214 clock_var++;
6215
6216 advance_one_cycle ();
6217
6218 /* Add to the ready list all pending insns that can be issued now.
6219 If there are no ready insns, increment clock until one
6220 is ready and add all pending insns at that point to the ready
6221 list. */
6222 queue_to_ready (&ready);
6223
6224 gcc_assert (ready.n_ready);
6225
6226 if (sched_verbose >= 2)
6227 {
6228 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6229 debug_ready_list (&ready);
6230 }
6231 advance -= clock_var - start_clock_var;
6232 }
6233 while (advance > 0);
6234
6235 if (ls.modulo_epilogue)
6236 {
6237 int stage = clock_var / modulo_ii;
6238 if (stage > modulo_last_stage * 2 + 2)
6239 {
6240 if (sched_verbose >= 2)
6241 fprintf (sched_dump,
6242 ";;\t\tmodulo scheduled succeeded at II %d\n",
6243 modulo_ii);
6244 success = true;
6245 goto end_schedule;
6246 }
6247 }
6248 else if (modulo_ii > 0)
6249 {
6250 int stage = clock_var / modulo_ii;
6251 if (stage > modulo_max_stages)
6252 {
6253 if (sched_verbose >= 2)
6254 fprintf (sched_dump,
6255 ";;\t\tfailing schedule due to excessive stages\n");
6256 goto end_schedule;
6257 }
6258 if (modulo_n_insns == modulo_insns_scheduled
6259 && stage > modulo_last_stage)
6260 {
6261 if (sched_verbose >= 2)
6262 fprintf (sched_dump,
6263 ";;\t\tfound kernel after %d stages, II %d\n",
6264 stage, modulo_ii);
6265 ls.modulo_epilogue = true;
6266 }
6267 }
6268
6269 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6270 if (ready.n_ready == 0)
6271 continue;
6272 if (must_backtrack)
6273 goto do_backtrack;
6274
6275 ls.shadows_only_p = false;
6276 cycle_issued_insns = 0;
6277 ls.can_issue_more = issue_rate;
6278 for (;;)
6279 {
6280 rtx_insn *insn;
6281 int cost;
6282 bool asm_p;
6283
6284 if (sort_p && ready.n_ready > 0)
6285 {
6286 /* Sort the ready list based on priority. This must be
6287 done every iteration through the loop, as schedule_insn
6288 may have readied additional insns that will not be
6289 sorted correctly. */
6290 ready_sort (&ready);
6291
6292 if (sched_verbose >= 2)
6293 {
6294 fprintf (sched_dump,
6295 ";;\t\tReady list after ready_sort: ");
6296 debug_ready_list (&ready);
6297 }
6298 }
6299
6300 /* We don't want md sched reorder to even see debug isns, so put
6301 them out right away. */
6302 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6303 && (*current_sched_info->schedule_more_p) ())
6304 {
6305 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6306 {
6307 rtx_insn *insn = ready_remove_first (&ready);
6308 gcc_assert (DEBUG_INSN_P (insn));
6309 (*current_sched_info->begin_schedule_ready) (insn);
6310 scheduled_insns.safe_push (insn);
6311 last_scheduled_insn = insn;
6312 advance = schedule_insn (insn);
6313 gcc_assert (advance == 0);
6314 if (ready.n_ready > 0)
6315 ready_sort (&ready);
6316 }
6317 }
6318
6319 if (ls.first_cycle_insn_p && !ready.n_ready)
6320 break;
6321
6322 resume_after_backtrack:
6323 /* Allow the target to reorder the list, typically for
6324 better instruction bundling. */
6325 if (sort_p
6326 && (ready.n_ready == 0
6327 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6328 {
6329 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6330 ls.can_issue_more
6331 = targetm.sched.reorder (sched_dump, sched_verbose,
6332 ready_lastpos (&ready),
6333 &ready.n_ready, clock_var);
6334 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6335 ls.can_issue_more
6336 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6337 ready.n_ready
6338 ? ready_lastpos (&ready) : NULL,
6339 &ready.n_ready, clock_var);
6340 }
6341
6342 restart_choose_ready:
6343 if (sched_verbose >= 2)
6344 {
6345 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6346 clock_var);
6347 debug_ready_list (&ready);
6348 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6349 print_curr_reg_pressure ();
6350 }
6351
6352 if (ready.n_ready == 0
6353 && ls.can_issue_more
6354 && reload_completed)
6355 {
6356 /* Allow scheduling insns directly from the queue in case
6357 there's nothing better to do (ready list is empty) but
6358 there are still vacant dispatch slots in the current cycle. */
6359 if (sched_verbose >= 6)
6360 fprintf (sched_dump,";;\t\tSecond chance\n");
6361 memcpy (temp_state, curr_state, dfa_state_size);
6362 if (early_queue_to_ready (temp_state, &ready))
6363 ready_sort (&ready);
6364 }
6365
6366 if (ready.n_ready == 0
6367 || !ls.can_issue_more
6368 || state_dead_lock_p (curr_state)
6369 || !(*current_sched_info->schedule_more_p) ())
6370 break;
6371
6372 /* Select and remove the insn from the ready list. */
6373 if (sort_p)
6374 {
6375 int res;
6376
6377 insn = NULL;
6378 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6379
6380 if (res < 0)
6381 /* Finish cycle. */
6382 break;
6383 if (res > 0)
6384 goto restart_choose_ready;
6385
6386 gcc_assert (insn != NULL_RTX);
6387 }
6388 else
6389 insn = ready_remove_first (&ready);
6390
6391 if (sched_pressure != SCHED_PRESSURE_NONE
6392 && INSN_TICK (insn) > clock_var)
6393 {
6394 ready_add (&ready, insn, true);
6395 advance = 1;
6396 break;
6397 }
6398
6399 if (targetm.sched.dfa_new_cycle
6400 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6401 insn, last_clock_var,
6402 clock_var, &sort_p))
6403 /* SORT_P is used by the target to override sorting
6404 of the ready list. This is needed when the target
6405 has modified its internal structures expecting that
6406 the insn will be issued next. As we need the insn
6407 to have the highest priority (so it will be returned by
6408 the ready_remove_first call above), we invoke
6409 ready_add (&ready, insn, true).
6410 But, still, there is one issue: INSN can be later
6411 discarded by scheduler's front end through
6412 current_sched_info->can_schedule_ready_p, hence, won't
6413 be issued next. */
6414 {
6415 ready_add (&ready, insn, true);
6416 break;
6417 }
6418
6419 sort_p = TRUE;
6420
6421 if (current_sched_info->can_schedule_ready_p
6422 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6423 /* We normally get here only if we don't want to move
6424 insn from the split block. */
6425 {
6426 TODO_SPEC (insn) = DEP_POSTPONED;
6427 goto restart_choose_ready;
6428 }
6429
6430 if (delay_htab)
6431 {
6432 /* If this insn is the first part of a delay-slot pair, record a
6433 backtrack point. */
6434 struct delay_pair *delay_entry;
6435 delay_entry
6436 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6437 if (delay_entry)
6438 {
6439 save_backtrack_point (delay_entry, ls);
6440 if (sched_verbose >= 2)
6441 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6442 }
6443 }
6444
6445 /* DECISION is made. */
6446
6447 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6448 {
6449 modulo_insns_scheduled++;
6450 modulo_last_stage = clock_var / modulo_ii;
6451 }
6452 if (TODO_SPEC (insn) & SPECULATIVE)
6453 generate_recovery_code (insn);
6454
6455 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6456 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6457
6458 /* Update counters, etc in the scheduler's front end. */
6459 (*current_sched_info->begin_schedule_ready) (insn);
6460 scheduled_insns.safe_push (insn);
6461 gcc_assert (NONDEBUG_INSN_P (insn));
6462 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6463
6464 if (recog_memoized (insn) >= 0)
6465 {
6466 memcpy (temp_state, curr_state, dfa_state_size);
6467 cost = state_transition (curr_state, insn);
6468 if (sched_pressure != SCHED_PRESSURE_WEIGHTED)
6469 gcc_assert (cost < 0);
6470 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6471 cycle_issued_insns++;
6472 asm_p = false;
6473 }
6474 else
6475 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6476 || asm_noperands (PATTERN (insn)) >= 0);
6477
6478 if (targetm.sched.variable_issue)
6479 ls.can_issue_more =
6480 targetm.sched.variable_issue (sched_dump, sched_verbose,
6481 insn, ls.can_issue_more);
6482 /* A naked CLOBBER or USE generates no instruction, so do
6483 not count them against the issue rate. */
6484 else if (GET_CODE (PATTERN (insn)) != USE
6485 && GET_CODE (PATTERN (insn)) != CLOBBER)
6486 ls.can_issue_more--;
6487 advance = schedule_insn (insn);
6488
6489 if (SHADOW_P (insn))
6490 ls.shadows_only_p = true;
6491
6492 /* After issuing an asm insn we should start a new cycle. */
6493 if (advance == 0 && asm_p)
6494 advance = 1;
6495
6496 if (must_backtrack)
6497 break;
6498
6499 if (advance != 0)
6500 break;
6501
6502 ls.first_cycle_insn_p = false;
6503 if (ready.n_ready > 0)
6504 prune_ready_list (temp_state, false, ls.shadows_only_p,
6505 ls.modulo_epilogue);
6506 }
6507
6508 do_backtrack:
6509 if (!must_backtrack)
6510 for (i = 0; i < ready.n_ready; i++)
6511 {
6512 rtx_insn *insn = ready_element (&ready, i);
6513 if (INSN_EXACT_TICK (insn) == clock_var)
6514 {
6515 must_backtrack = true;
6516 clock_var++;
6517 break;
6518 }
6519 }
6520 if (must_backtrack && modulo_ii > 0)
6521 {
6522 if (modulo_backtracks_left == 0)
6523 goto end_schedule;
6524 modulo_backtracks_left--;
6525 }
6526 while (must_backtrack)
6527 {
6528 struct haifa_saved_data *failed;
6529 rtx_insn *failed_insn;
6530
6531 must_backtrack = false;
6532 failed = verify_shadows ();
6533 gcc_assert (failed);
6534
6535 failed_insn = failed->delay_pair->i1;
6536 /* Clear these queues. */
6537 perform_replacements_new_cycle ();
6538 toggle_cancelled_flags (false);
6539 unschedule_insns_until (failed_insn);
6540 while (failed != backtrack_queue)
6541 free_topmost_backtrack_point (true);
6542 restore_last_backtrack_point (&ls);
6543 if (sched_verbose >= 2)
6544 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6545 /* Delay by at least a cycle. This could cause additional
6546 backtracking. */
6547 queue_insn (failed_insn, 1, "backtracked");
6548 advance = 0;
6549 if (must_backtrack)
6550 continue;
6551 if (ready.n_ready > 0)
6552 goto resume_after_backtrack;
6553 else
6554 {
6555 if (clock_var == 0 && ls.first_cycle_insn_p)
6556 goto end_schedule;
6557 advance = 1;
6558 break;
6559 }
6560 }
6561 ls.first_cycle_insn_p = true;
6562 }
6563 if (ls.modulo_epilogue)
6564 success = true;
6565 end_schedule:
6566 if (!ls.first_cycle_insn_p || advance)
6567 advance_one_cycle ();
6568 perform_replacements_new_cycle ();
6569 if (modulo_ii > 0)
6570 {
6571 /* Once again, debug insn suckiness: they can be on the ready list
6572 even if they have unresolved dependencies. To make our view
6573 of the world consistent, remove such "ready" insns. */
6574 restart_debug_insn_loop:
6575 for (i = ready.n_ready - 1; i >= 0; i--)
6576 {
6577 rtx_insn *x;
6578
6579 x = ready_element (&ready, i);
6580 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6581 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6582 {
6583 ready_remove (&ready, i);
6584 goto restart_debug_insn_loop;
6585 }
6586 }
6587 for (i = ready.n_ready - 1; i >= 0; i--)
6588 {
6589 rtx_insn *x;
6590
6591 x = ready_element (&ready, i);
6592 resolve_dependencies (x);
6593 }
6594 for (i = 0; i <= max_insn_queue_index; i++)
6595 {
6596 rtx_insn_list *link;
6597 while ((link = insn_queue[i]) != NULL)
6598 {
6599 rtx_insn *x = link->insn ();
6600 insn_queue[i] = link->next ();
6601 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6602 free_INSN_LIST_node (link);
6603 resolve_dependencies (x);
6604 }
6605 }
6606 }
6607
6608 if (!success)
6609 undo_all_replacements ();
6610
6611 /* Debug info. */
6612 if (sched_verbose)
6613 {
6614 fprintf (sched_dump, ";;\tReady list (final): ");
6615 debug_ready_list (&ready);
6616 }
6617
6618 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6619 /* Sanity check -- queue must be empty now. Meaningless if region has
6620 multiple bbs. */
6621 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6622 else if (modulo_ii == 0)
6623 {
6624 /* We must maintain QUEUE_INDEX between blocks in region. */
6625 for (i = ready.n_ready - 1; i >= 0; i--)
6626 {
6627 rtx_insn *x;
6628
6629 x = ready_element (&ready, i);
6630 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6631 TODO_SPEC (x) = HARD_DEP;
6632 }
6633
6634 if (q_size)
6635 for (i = 0; i <= max_insn_queue_index; i++)
6636 {
6637 rtx_insn_list *link;
6638 for (link = insn_queue[i]; link; link = link->next ())
6639 {
6640 rtx_insn *x;
6641
6642 x = link->insn ();
6643 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6644 TODO_SPEC (x) = HARD_DEP;
6645 }
6646 free_INSN_LIST_list (&insn_queue[i]);
6647 }
6648 }
6649
6650 if (sched_pressure == SCHED_PRESSURE_MODEL)
6651 model_end_schedule ();
6652
6653 if (success)
6654 {
6655 commit_schedule (prev_head, tail, target_bb);
6656 if (sched_verbose)
6657 fprintf (sched_dump, ";; total time = %d\n", clock_var);
6658 }
6659 else
6660 last_scheduled_insn = tail;
6661
6662 scheduled_insns.truncate (0);
6663
6664 if (!current_sched_info->queue_must_finish_empty
6665 || haifa_recovery_bb_recently_added_p)
6666 {
6667 /* INSN_TICK (minimum clock tick at which the insn becomes
6668 ready) may be not correct for the insn in the subsequent
6669 blocks of the region. We should use a correct value of
6670 `clock_var' or modify INSN_TICK. It is better to keep
6671 clock_var value equal to 0 at the start of a basic block.
6672 Therefore we modify INSN_TICK here. */
6673 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
6674 }
6675
6676 if (targetm.sched.finish)
6677 {
6678 targetm.sched.finish (sched_dump, sched_verbose);
6679 /* Target might have added some instructions to the scheduled block
6680 in its md_finish () hook. These new insns don't have any data
6681 initialized and to identify them we extend h_i_d so that they'll
6682 get zero luids. */
6683 sched_extend_luids ();
6684 }
6685
6686 /* Update head/tail boundaries. */
6687 head = NEXT_INSN (prev_head);
6688 tail = last_scheduled_insn;
6689
6690 if (sched_verbose)
6691 {
6692 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
6693 INSN_UID (head), INSN_UID (tail));
6694
6695 if (sched_verbose >= 2)
6696 {
6697 dump_insn_stream (head, tail);
6698 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
6699 NULL);
6700 }
6701
6702 fprintf (sched_dump, "\n");
6703 }
6704
6705 head = restore_other_notes (head, NULL);
6706
6707 current_sched_info->head = head;
6708 current_sched_info->tail = tail;
6709
6710 free_backtrack_queue ();
6711
6712 return success;
6713 }
6714 \f
6715 /* Set_priorities: compute priority of each insn in the block. */
6716
6717 int
6718 set_priorities (rtx_insn *head, rtx_insn *tail)
6719 {
6720 rtx_insn *insn;
6721 int n_insn;
6722 int sched_max_insns_priority =
6723 current_sched_info->sched_max_insns_priority;
6724 rtx_insn *prev_head;
6725
6726 if (head == tail && ! INSN_P (head))
6727 gcc_unreachable ();
6728
6729 n_insn = 0;
6730
6731 prev_head = PREV_INSN (head);
6732 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
6733 {
6734 if (!INSN_P (insn))
6735 continue;
6736
6737 n_insn++;
6738 (void) priority (insn);
6739
6740 gcc_assert (INSN_PRIORITY_KNOWN (insn));
6741
6742 sched_max_insns_priority = MAX (sched_max_insns_priority,
6743 INSN_PRIORITY (insn));
6744 }
6745
6746 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
6747
6748 return n_insn;
6749 }
6750
6751 /* Set dump and sched_verbose for the desired debugging output. If no
6752 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
6753 For -fsched-verbose=N, N>=10, print everything to stderr. */
6754 void
6755 setup_sched_dump (void)
6756 {
6757 sched_verbose = sched_verbose_param;
6758 if (sched_verbose_param == 0 && dump_file)
6759 sched_verbose = 1;
6760 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
6761 ? stderr : dump_file);
6762 }
6763
6764 /* Allocate data for register pressure sensitive scheduling. */
6765 static void
6766 alloc_global_sched_pressure_data (void)
6767 {
6768 if (sched_pressure != SCHED_PRESSURE_NONE)
6769 {
6770 int i, max_regno = max_reg_num ();
6771
6772 if (sched_dump != NULL)
6773 /* We need info about pseudos for rtl dumps about pseudo
6774 classes and costs. */
6775 regstat_init_n_sets_and_refs ();
6776 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
6777 sched_regno_pressure_class
6778 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
6779 for (i = 0; i < max_regno; i++)
6780 sched_regno_pressure_class[i]
6781 = (i < FIRST_PSEUDO_REGISTER
6782 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
6783 : ira_pressure_class_translate[reg_allocno_class (i)]);
6784 curr_reg_live = BITMAP_ALLOC (NULL);
6785 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6786 {
6787 saved_reg_live = BITMAP_ALLOC (NULL);
6788 region_ref_regs = BITMAP_ALLOC (NULL);
6789 }
6790
6791 /* Calculate number of CALL_USED_REGS in register classes that
6792 we calculate register pressure for. */
6793 for (int c = 0; c < ira_pressure_classes_num; ++c)
6794 {
6795 enum reg_class cl = ira_pressure_classes[c];
6796
6797 call_used_regs_num[cl] = 0;
6798
6799 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
6800 if (call_used_regs[ira_class_hard_regs[cl][i]])
6801 ++call_used_regs_num[cl];
6802 }
6803 }
6804 }
6805
6806 /* Free data for register pressure sensitive scheduling. Also called
6807 from schedule_region when stopping sched-pressure early. */
6808 void
6809 free_global_sched_pressure_data (void)
6810 {
6811 if (sched_pressure != SCHED_PRESSURE_NONE)
6812 {
6813 if (regstat_n_sets_and_refs != NULL)
6814 regstat_free_n_sets_and_refs ();
6815 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6816 {
6817 BITMAP_FREE (region_ref_regs);
6818 BITMAP_FREE (saved_reg_live);
6819 }
6820 BITMAP_FREE (curr_reg_live);
6821 free (sched_regno_pressure_class);
6822 }
6823 }
6824
6825 /* Initialize some global state for the scheduler. This function works
6826 with the common data shared between all the schedulers. It is called
6827 from the scheduler specific initialization routine. */
6828
6829 void
6830 sched_init (void)
6831 {
6832 /* Disable speculative loads in their presence if cc0 defined. */
6833 #ifdef HAVE_cc0
6834 flag_schedule_speculative_load = 0;
6835 #endif
6836
6837 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6838 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
6839
6840 if (live_range_shrinkage_p)
6841 sched_pressure = SCHED_PRESSURE_WEIGHTED;
6842 else if (flag_sched_pressure
6843 && !reload_completed
6844 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
6845 sched_pressure = ((enum sched_pressure_algorithm)
6846 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
6847 else
6848 sched_pressure = SCHED_PRESSURE_NONE;
6849
6850 if (sched_pressure != SCHED_PRESSURE_NONE)
6851 ira_setup_eliminable_regset ();
6852
6853 /* Initialize SPEC_INFO. */
6854 if (targetm.sched.set_sched_flags)
6855 {
6856 spec_info = &spec_info_var;
6857 targetm.sched.set_sched_flags (spec_info);
6858
6859 if (spec_info->mask != 0)
6860 {
6861 spec_info->data_weakness_cutoff =
6862 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
6863 spec_info->control_weakness_cutoff =
6864 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
6865 * REG_BR_PROB_BASE) / 100;
6866 }
6867 else
6868 /* So we won't read anything accidentally. */
6869 spec_info = NULL;
6870
6871 }
6872 else
6873 /* So we won't read anything accidentally. */
6874 spec_info = 0;
6875
6876 /* Initialize issue_rate. */
6877 if (targetm.sched.issue_rate)
6878 issue_rate = targetm.sched.issue_rate ();
6879 else
6880 issue_rate = 1;
6881
6882 if (cached_issue_rate != issue_rate)
6883 {
6884 cached_issue_rate = issue_rate;
6885 /* To invalidate max_lookahead_tries: */
6886 cached_first_cycle_multipass_dfa_lookahead = 0;
6887 }
6888
6889 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
6890 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
6891 else
6892 dfa_lookahead = 0;
6893
6894 if (targetm.sched.init_dfa_pre_cycle_insn)
6895 targetm.sched.init_dfa_pre_cycle_insn ();
6896
6897 if (targetm.sched.init_dfa_post_cycle_insn)
6898 targetm.sched.init_dfa_post_cycle_insn ();
6899
6900 dfa_start ();
6901 dfa_state_size = state_size ();
6902
6903 init_alias_analysis ();
6904
6905 if (!sched_no_dce)
6906 df_set_flags (DF_LR_RUN_DCE);
6907 df_note_add_problem ();
6908
6909 /* More problems needed for interloop dep calculation in SMS. */
6910 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
6911 {
6912 df_rd_add_problem ();
6913 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
6914 }
6915
6916 df_analyze ();
6917
6918 /* Do not run DCE after reload, as this can kill nops inserted
6919 by bundling. */
6920 if (reload_completed)
6921 df_clear_flags (DF_LR_RUN_DCE);
6922
6923 regstat_compute_calls_crossed ();
6924
6925 if (targetm.sched.init_global)
6926 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
6927
6928 alloc_global_sched_pressure_data ();
6929
6930 curr_state = xmalloc (dfa_state_size);
6931 }
6932
6933 static void haifa_init_only_bb (basic_block, basic_block);
6934
6935 /* Initialize data structures specific to the Haifa scheduler. */
6936 void
6937 haifa_sched_init (void)
6938 {
6939 setup_sched_dump ();
6940 sched_init ();
6941
6942 scheduled_insns.create (0);
6943
6944 if (spec_info != NULL)
6945 {
6946 sched_deps_info->use_deps_list = 1;
6947 sched_deps_info->generate_spec_deps = 1;
6948 }
6949
6950 /* Initialize luids, dependency caches, target and h_i_d for the
6951 whole function. */
6952 {
6953 bb_vec_t bbs;
6954 bbs.create (n_basic_blocks_for_fn (cfun));
6955 basic_block bb;
6956
6957 sched_init_bbs ();
6958
6959 FOR_EACH_BB_FN (bb, cfun)
6960 bbs.quick_push (bb);
6961 sched_init_luids (bbs);
6962 sched_deps_init (true);
6963 sched_extend_target ();
6964 haifa_init_h_i_d (bbs);
6965
6966 bbs.release ();
6967 }
6968
6969 sched_init_only_bb = haifa_init_only_bb;
6970 sched_split_block = sched_split_block_1;
6971 sched_create_empty_bb = sched_create_empty_bb_1;
6972 haifa_recovery_bb_ever_added_p = false;
6973
6974 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
6975 before_recovery = 0;
6976 after_recovery = 0;
6977
6978 modulo_ii = 0;
6979 }
6980
6981 /* Finish work with the data specific to the Haifa scheduler. */
6982 void
6983 haifa_sched_finish (void)
6984 {
6985 sched_create_empty_bb = NULL;
6986 sched_split_block = NULL;
6987 sched_init_only_bb = NULL;
6988
6989 if (spec_info && spec_info->dump)
6990 {
6991 char c = reload_completed ? 'a' : 'b';
6992
6993 fprintf (spec_info->dump,
6994 ";; %s:\n", current_function_name ());
6995
6996 fprintf (spec_info->dump,
6997 ";; Procedure %cr-begin-data-spec motions == %d\n",
6998 c, nr_begin_data);
6999 fprintf (spec_info->dump,
7000 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7001 c, nr_be_in_data);
7002 fprintf (spec_info->dump,
7003 ";; Procedure %cr-begin-control-spec motions == %d\n",
7004 c, nr_begin_control);
7005 fprintf (spec_info->dump,
7006 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7007 c, nr_be_in_control);
7008 }
7009
7010 scheduled_insns.release ();
7011
7012 /* Finalize h_i_d, dependency caches, and luids for the whole
7013 function. Target will be finalized in md_global_finish (). */
7014 sched_deps_finish ();
7015 sched_finish_luids ();
7016 current_sched_info = NULL;
7017 sched_finish ();
7018 }
7019
7020 /* Free global data used during insn scheduling. This function works with
7021 the common data shared between the schedulers. */
7022
7023 void
7024 sched_finish (void)
7025 {
7026 haifa_finish_h_i_d ();
7027 free_global_sched_pressure_data ();
7028 free (curr_state);
7029
7030 if (targetm.sched.finish_global)
7031 targetm.sched.finish_global (sched_dump, sched_verbose);
7032
7033 end_alias_analysis ();
7034
7035 regstat_free_calls_crossed ();
7036
7037 dfa_finish ();
7038 }
7039
7040 /* Free all delay_pair structures that were recorded. */
7041 void
7042 free_delay_pairs (void)
7043 {
7044 if (delay_htab)
7045 {
7046 delay_htab->empty ();
7047 delay_htab_i2->empty ();
7048 }
7049 }
7050
7051 /* Fix INSN_TICKs of the instructions in the current block as well as
7052 INSN_TICKs of their dependents.
7053 HEAD and TAIL are the begin and the end of the current scheduled block. */
7054 static void
7055 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7056 {
7057 /* Set of instructions with corrected INSN_TICK. */
7058 bitmap_head processed;
7059 /* ??? It is doubtful if we should assume that cycle advance happens on
7060 basic block boundaries. Basically insns that are unconditionally ready
7061 on the start of the block are more preferable then those which have
7062 a one cycle dependency over insn from the previous block. */
7063 int next_clock = clock_var + 1;
7064
7065 bitmap_initialize (&processed, 0);
7066
7067 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7068 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7069 across different blocks. */
7070 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7071 {
7072 if (INSN_P (head))
7073 {
7074 int tick;
7075 sd_iterator_def sd_it;
7076 dep_t dep;
7077
7078 tick = INSN_TICK (head);
7079 gcc_assert (tick >= MIN_TICK);
7080
7081 /* Fix INSN_TICK of instruction from just scheduled block. */
7082 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7083 {
7084 tick -= next_clock;
7085
7086 if (tick < MIN_TICK)
7087 tick = MIN_TICK;
7088
7089 INSN_TICK (head) = tick;
7090 }
7091
7092 if (DEBUG_INSN_P (head))
7093 continue;
7094
7095 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7096 {
7097 rtx_insn *next;
7098
7099 next = DEP_CON (dep);
7100 tick = INSN_TICK (next);
7101
7102 if (tick != INVALID_TICK
7103 /* If NEXT has its INSN_TICK calculated, fix it.
7104 If not - it will be properly calculated from
7105 scratch later in fix_tick_ready. */
7106 && bitmap_set_bit (&processed, INSN_LUID (next)))
7107 {
7108 tick -= next_clock;
7109
7110 if (tick < MIN_TICK)
7111 tick = MIN_TICK;
7112
7113 if (tick > INTER_TICK (next))
7114 INTER_TICK (next) = tick;
7115 else
7116 tick = INTER_TICK (next);
7117
7118 INSN_TICK (next) = tick;
7119 }
7120 }
7121 }
7122 }
7123 bitmap_clear (&processed);
7124 }
7125
7126 /* Check if NEXT is ready to be added to the ready or queue list.
7127 If "yes", add it to the proper list.
7128 Returns:
7129 -1 - is not ready yet,
7130 0 - added to the ready list,
7131 0 < N - queued for N cycles. */
7132 int
7133 try_ready (rtx_insn *next)
7134 {
7135 ds_t old_ts, new_ts;
7136
7137 old_ts = TODO_SPEC (next);
7138
7139 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7140 && (old_ts == HARD_DEP
7141 || old_ts == DEP_POSTPONED
7142 || (old_ts & SPECULATIVE)
7143 || old_ts == DEP_CONTROL));
7144
7145 new_ts = recompute_todo_spec (next, false);
7146
7147 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7148 gcc_assert (new_ts == old_ts
7149 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7150 else if (current_sched_info->new_ready)
7151 new_ts = current_sched_info->new_ready (next, new_ts);
7152
7153 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7154 have its original pattern or changed (speculative) one. This is due
7155 to changing ebb in region scheduling.
7156 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7157 has speculative pattern.
7158
7159 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7160 control-speculative NEXT could have been discarded by sched-rgn.c
7161 (the same case as when discarded by can_schedule_ready_p ()). */
7162
7163 if ((new_ts & SPECULATIVE)
7164 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7165 need to change anything. */
7166 && new_ts != old_ts)
7167 {
7168 int res;
7169 rtx new_pat;
7170
7171 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7172
7173 res = haifa_speculate_insn (next, new_ts, &new_pat);
7174
7175 switch (res)
7176 {
7177 case -1:
7178 /* It would be nice to change DEP_STATUS of all dependences,
7179 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7180 so we won't reanalyze anything. */
7181 new_ts = HARD_DEP;
7182 break;
7183
7184 case 0:
7185 /* We follow the rule, that every speculative insn
7186 has non-null ORIG_PAT. */
7187 if (!ORIG_PAT (next))
7188 ORIG_PAT (next) = PATTERN (next);
7189 break;
7190
7191 case 1:
7192 if (!ORIG_PAT (next))
7193 /* If we gonna to overwrite the original pattern of insn,
7194 save it. */
7195 ORIG_PAT (next) = PATTERN (next);
7196
7197 res = haifa_change_pattern (next, new_pat);
7198 gcc_assert (res);
7199 break;
7200
7201 default:
7202 gcc_unreachable ();
7203 }
7204 }
7205
7206 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7207 either correct (new_ts & SPECULATIVE),
7208 or we simply don't care (new_ts & HARD_DEP). */
7209
7210 gcc_assert (!ORIG_PAT (next)
7211 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7212
7213 TODO_SPEC (next) = new_ts;
7214
7215 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7216 {
7217 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7218 control-speculative NEXT could have been discarded by sched-rgn.c
7219 (the same case as when discarded by can_schedule_ready_p ()). */
7220 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7221
7222 change_queue_index (next, QUEUE_NOWHERE);
7223
7224 return -1;
7225 }
7226 else if (!(new_ts & BEGIN_SPEC)
7227 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7228 && !IS_SPECULATION_CHECK_P (next))
7229 /* We should change pattern of every previously speculative
7230 instruction - and we determine if NEXT was speculative by using
7231 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7232 pat too, so skip them. */
7233 {
7234 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7235 gcc_assert (success);
7236 ORIG_PAT (next) = 0;
7237 }
7238
7239 if (sched_verbose >= 2)
7240 {
7241 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7242 (*current_sched_info->print_insn) (next, 0));
7243
7244 if (spec_info && spec_info->dump)
7245 {
7246 if (new_ts & BEGIN_DATA)
7247 fprintf (spec_info->dump, "; data-spec;");
7248 if (new_ts & BEGIN_CONTROL)
7249 fprintf (spec_info->dump, "; control-spec;");
7250 if (new_ts & BE_IN_CONTROL)
7251 fprintf (spec_info->dump, "; in-control-spec;");
7252 }
7253 if (TODO_SPEC (next) & DEP_CONTROL)
7254 fprintf (sched_dump, " predicated");
7255 fprintf (sched_dump, "\n");
7256 }
7257
7258 adjust_priority (next);
7259
7260 return fix_tick_ready (next);
7261 }
7262
7263 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7264 static int
7265 fix_tick_ready (rtx_insn *next)
7266 {
7267 int tick, delay;
7268
7269 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7270 {
7271 int full_p;
7272 sd_iterator_def sd_it;
7273 dep_t dep;
7274
7275 tick = INSN_TICK (next);
7276 /* if tick is not equal to INVALID_TICK, then update
7277 INSN_TICK of NEXT with the most recent resolved dependence
7278 cost. Otherwise, recalculate from scratch. */
7279 full_p = (tick == INVALID_TICK);
7280
7281 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7282 {
7283 rtx_insn *pro = DEP_PRO (dep);
7284 int tick1;
7285
7286 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7287
7288 tick1 = INSN_TICK (pro) + dep_cost (dep);
7289 if (tick1 > tick)
7290 tick = tick1;
7291
7292 if (!full_p)
7293 break;
7294 }
7295 }
7296 else
7297 tick = -1;
7298
7299 INSN_TICK (next) = tick;
7300
7301 delay = tick - clock_var;
7302 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE)
7303 delay = QUEUE_READY;
7304
7305 change_queue_index (next, delay);
7306
7307 return delay;
7308 }
7309
7310 /* Move NEXT to the proper queue list with (DELAY >= 1),
7311 or add it to the ready list (DELAY == QUEUE_READY),
7312 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7313 static void
7314 change_queue_index (rtx_insn *next, int delay)
7315 {
7316 int i = QUEUE_INDEX (next);
7317
7318 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7319 && delay != 0);
7320 gcc_assert (i != QUEUE_SCHEDULED);
7321
7322 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7323 || (delay < 0 && delay == i))
7324 /* We have nothing to do. */
7325 return;
7326
7327 /* Remove NEXT from wherever it is now. */
7328 if (i == QUEUE_READY)
7329 ready_remove_insn (next);
7330 else if (i >= 0)
7331 queue_remove (next);
7332
7333 /* Add it to the proper place. */
7334 if (delay == QUEUE_READY)
7335 ready_add (readyp, next, false);
7336 else if (delay >= 1)
7337 queue_insn (next, delay, "change queue index");
7338
7339 if (sched_verbose >= 2)
7340 {
7341 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7342 (*current_sched_info->print_insn) (next, 0));
7343
7344 if (delay == QUEUE_READY)
7345 fprintf (sched_dump, " into ready\n");
7346 else if (delay >= 1)
7347 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7348 else
7349 fprintf (sched_dump, " removed from ready or queue lists\n");
7350 }
7351 }
7352
7353 static int sched_ready_n_insns = -1;
7354
7355 /* Initialize per region data structures. */
7356 void
7357 sched_extend_ready_list (int new_sched_ready_n_insns)
7358 {
7359 int i;
7360
7361 if (sched_ready_n_insns == -1)
7362 /* At the first call we need to initialize one more choice_stack
7363 entry. */
7364 {
7365 i = 0;
7366 sched_ready_n_insns = 0;
7367 scheduled_insns.reserve (new_sched_ready_n_insns);
7368 }
7369 else
7370 i = sched_ready_n_insns + 1;
7371
7372 ready.veclen = new_sched_ready_n_insns + issue_rate;
7373 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7374
7375 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7376
7377 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7378 sched_ready_n_insns,
7379 sizeof (*ready_try));
7380
7381 /* We allocate +1 element to save initial state in the choice_stack[0]
7382 entry. */
7383 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7384 new_sched_ready_n_insns + 1);
7385
7386 for (; i <= new_sched_ready_n_insns; i++)
7387 {
7388 choice_stack[i].state = xmalloc (dfa_state_size);
7389
7390 if (targetm.sched.first_cycle_multipass_init)
7391 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7392 .target_data));
7393 }
7394
7395 sched_ready_n_insns = new_sched_ready_n_insns;
7396 }
7397
7398 /* Free per region data structures. */
7399 void
7400 sched_finish_ready_list (void)
7401 {
7402 int i;
7403
7404 free (ready.vec);
7405 ready.vec = NULL;
7406 ready.veclen = 0;
7407
7408 free (ready_try);
7409 ready_try = NULL;
7410
7411 for (i = 0; i <= sched_ready_n_insns; i++)
7412 {
7413 if (targetm.sched.first_cycle_multipass_fini)
7414 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7415 .target_data));
7416
7417 free (choice_stack [i].state);
7418 }
7419 free (choice_stack);
7420 choice_stack = NULL;
7421
7422 sched_ready_n_insns = -1;
7423 }
7424
7425 static int
7426 haifa_luid_for_non_insn (rtx x)
7427 {
7428 gcc_assert (NOTE_P (x) || LABEL_P (x));
7429
7430 return 0;
7431 }
7432
7433 /* Generates recovery code for INSN. */
7434 static void
7435 generate_recovery_code (rtx_insn *insn)
7436 {
7437 if (TODO_SPEC (insn) & BEGIN_SPEC)
7438 begin_speculative_block (insn);
7439
7440 /* Here we have insn with no dependencies to
7441 instructions other then CHECK_SPEC ones. */
7442
7443 if (TODO_SPEC (insn) & BE_IN_SPEC)
7444 add_to_speculative_block (insn);
7445 }
7446
7447 /* Helper function.
7448 Tries to add speculative dependencies of type FS between instructions
7449 in deps_list L and TWIN. */
7450 static void
7451 process_insn_forw_deps_be_in_spec (rtx insn, rtx_insn *twin, ds_t fs)
7452 {
7453 sd_iterator_def sd_it;
7454 dep_t dep;
7455
7456 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7457 {
7458 ds_t ds;
7459 rtx_insn *consumer;
7460
7461 consumer = DEP_CON (dep);
7462
7463 ds = DEP_STATUS (dep);
7464
7465 if (/* If we want to create speculative dep. */
7466 fs
7467 /* And we can do that because this is a true dep. */
7468 && (ds & DEP_TYPES) == DEP_TRUE)
7469 {
7470 gcc_assert (!(ds & BE_IN_SPEC));
7471
7472 if (/* If this dep can be overcome with 'begin speculation'. */
7473 ds & BEGIN_SPEC)
7474 /* Then we have a choice: keep the dep 'begin speculative'
7475 or transform it into 'be in speculative'. */
7476 {
7477 if (/* In try_ready we assert that if insn once became ready
7478 it can be removed from the ready (or queue) list only
7479 due to backend decision. Hence we can't let the
7480 probability of the speculative dep to decrease. */
7481 ds_weak (ds) <= ds_weak (fs))
7482 {
7483 ds_t new_ds;
7484
7485 new_ds = (ds & ~BEGIN_SPEC) | fs;
7486
7487 if (/* consumer can 'be in speculative'. */
7488 sched_insn_is_legitimate_for_speculation_p (consumer,
7489 new_ds))
7490 /* Transform it to be in speculative. */
7491 ds = new_ds;
7492 }
7493 }
7494 else
7495 /* Mark the dep as 'be in speculative'. */
7496 ds |= fs;
7497 }
7498
7499 {
7500 dep_def _new_dep, *new_dep = &_new_dep;
7501
7502 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7503 sd_add_dep (new_dep, false);
7504 }
7505 }
7506 }
7507
7508 /* Generates recovery code for BEGIN speculative INSN. */
7509 static void
7510 begin_speculative_block (rtx_insn *insn)
7511 {
7512 if (TODO_SPEC (insn) & BEGIN_DATA)
7513 nr_begin_data++;
7514 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7515 nr_begin_control++;
7516
7517 create_check_block_twin (insn, false);
7518
7519 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7520 }
7521
7522 static void haifa_init_insn (rtx_insn *);
7523
7524 /* Generates recovery code for BE_IN speculative INSN. */
7525 static void
7526 add_to_speculative_block (rtx_insn *insn)
7527 {
7528 ds_t ts;
7529 sd_iterator_def sd_it;
7530 dep_t dep;
7531 rtx_insn_list *twins = NULL;
7532 rtx_vec_t priorities_roots;
7533
7534 ts = TODO_SPEC (insn);
7535 gcc_assert (!(ts & ~BE_IN_SPEC));
7536
7537 if (ts & BE_IN_DATA)
7538 nr_be_in_data++;
7539 if (ts & BE_IN_CONTROL)
7540 nr_be_in_control++;
7541
7542 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7543 gcc_assert (!TODO_SPEC (insn));
7544
7545 DONE_SPEC (insn) |= ts;
7546
7547 /* First we convert all simple checks to branchy. */
7548 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7549 sd_iterator_cond (&sd_it, &dep);)
7550 {
7551 rtx_insn *check = DEP_PRO (dep);
7552
7553 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7554 {
7555 create_check_block_twin (check, true);
7556
7557 /* Restart search. */
7558 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7559 }
7560 else
7561 /* Continue search. */
7562 sd_iterator_next (&sd_it);
7563 }
7564
7565 priorities_roots.create (0);
7566 clear_priorities (insn, &priorities_roots);
7567
7568 while (1)
7569 {
7570 rtx_insn *check, *twin;
7571 basic_block rec;
7572
7573 /* Get the first backward dependency of INSN. */
7574 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7575 if (!sd_iterator_cond (&sd_it, &dep))
7576 /* INSN has no backward dependencies left. */
7577 break;
7578
7579 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7580 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7581 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7582
7583 check = DEP_PRO (dep);
7584
7585 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7586 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7587
7588 rec = BLOCK_FOR_INSN (check);
7589
7590 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7591 haifa_init_insn (twin);
7592
7593 sd_copy_back_deps (twin, insn, true);
7594
7595 if (sched_verbose && spec_info->dump)
7596 /* INSN_BB (insn) isn't determined for twin insns yet.
7597 So we can't use current_sched_info->print_insn. */
7598 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7599 INSN_UID (twin), rec->index);
7600
7601 twins = alloc_INSN_LIST (twin, twins);
7602
7603 /* Add dependences between TWIN and all appropriate
7604 instructions from REC. */
7605 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7606 {
7607 rtx_insn *pro = DEP_PRO (dep);
7608
7609 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7610
7611 /* INSN might have dependencies from the instructions from
7612 several recovery blocks. At this iteration we process those
7613 producers that reside in REC. */
7614 if (BLOCK_FOR_INSN (pro) == rec)
7615 {
7616 dep_def _new_dep, *new_dep = &_new_dep;
7617
7618 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7619 sd_add_dep (new_dep, false);
7620 }
7621 }
7622
7623 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7624
7625 /* Remove all dependencies between INSN and insns in REC. */
7626 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7627 sd_iterator_cond (&sd_it, &dep);)
7628 {
7629 rtx_insn *pro = DEP_PRO (dep);
7630
7631 if (BLOCK_FOR_INSN (pro) == rec)
7632 sd_delete_dep (sd_it);
7633 else
7634 sd_iterator_next (&sd_it);
7635 }
7636 }
7637
7638 /* We couldn't have added the dependencies between INSN and TWINS earlier
7639 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7640 while (twins)
7641 {
7642 rtx_insn *twin;
7643 rtx_insn_list *next_node;
7644
7645 twin = twins->insn ();
7646
7647 {
7648 dep_def _new_dep, *new_dep = &_new_dep;
7649
7650 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7651 sd_add_dep (new_dep, false);
7652 }
7653
7654 next_node = twins->next ();
7655 free_INSN_LIST_node (twins);
7656 twins = next_node;
7657 }
7658
7659 calc_priorities (priorities_roots);
7660 priorities_roots.release ();
7661 }
7662
7663 /* Extends and fills with zeros (only the new part) array pointed to by P. */
7664 void *
7665 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
7666 {
7667 gcc_assert (new_nmemb >= old_nmemb);
7668 p = XRESIZEVAR (void, p, new_nmemb * size);
7669 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
7670 return p;
7671 }
7672
7673 /* Helper function.
7674 Find fallthru edge from PRED. */
7675 edge
7676 find_fallthru_edge_from (basic_block pred)
7677 {
7678 edge e;
7679 basic_block succ;
7680
7681 succ = pred->next_bb;
7682 gcc_assert (succ->prev_bb == pred);
7683
7684 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
7685 {
7686 e = find_fallthru_edge (pred->succs);
7687
7688 if (e)
7689 {
7690 gcc_assert (e->dest == succ);
7691 return e;
7692 }
7693 }
7694 else
7695 {
7696 e = find_fallthru_edge (succ->preds);
7697
7698 if (e)
7699 {
7700 gcc_assert (e->src == pred);
7701 return e;
7702 }
7703 }
7704
7705 return NULL;
7706 }
7707
7708 /* Extend per basic block data structures. */
7709 static void
7710 sched_extend_bb (void)
7711 {
7712 /* The following is done to keep current_sched_info->next_tail non null. */
7713 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
7714 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
7715 if (NEXT_INSN (end) == 0
7716 || (!NOTE_P (insn)
7717 && !LABEL_P (insn)
7718 /* Don't emit a NOTE if it would end up before a BARRIER. */
7719 && !BARRIER_P (NEXT_INSN (end))))
7720 {
7721 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
7722 /* Make note appear outside BB. */
7723 set_block_for_insn (note, NULL);
7724 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
7725 }
7726 }
7727
7728 /* Init per basic block data structures. */
7729 void
7730 sched_init_bbs (void)
7731 {
7732 sched_extend_bb ();
7733 }
7734
7735 /* Initialize BEFORE_RECOVERY variable. */
7736 static void
7737 init_before_recovery (basic_block *before_recovery_ptr)
7738 {
7739 basic_block last;
7740 edge e;
7741
7742 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7743 e = find_fallthru_edge_from (last);
7744
7745 if (e)
7746 {
7747 /* We create two basic blocks:
7748 1. Single instruction block is inserted right after E->SRC
7749 and has jump to
7750 2. Empty block right before EXIT_BLOCK.
7751 Between these two blocks recovery blocks will be emitted. */
7752
7753 basic_block single, empty;
7754 rtx_insn *x;
7755 rtx label;
7756
7757 /* If the fallthrough edge to exit we've found is from the block we've
7758 created before, don't do anything more. */
7759 if (last == after_recovery)
7760 return;
7761
7762 adding_bb_to_current_region_p = false;
7763
7764 single = sched_create_empty_bb (last);
7765 empty = sched_create_empty_bb (single);
7766
7767 /* Add new blocks to the root loop. */
7768 if (current_loops != NULL)
7769 {
7770 add_bb_to_loop (single, (*current_loops->larray)[0]);
7771 add_bb_to_loop (empty, (*current_loops->larray)[0]);
7772 }
7773
7774 single->count = last->count;
7775 empty->count = last->count;
7776 single->frequency = last->frequency;
7777 empty->frequency = last->frequency;
7778 BB_COPY_PARTITION (single, last);
7779 BB_COPY_PARTITION (empty, last);
7780
7781 redirect_edge_succ (e, single);
7782 make_single_succ_edge (single, empty, 0);
7783 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
7784 EDGE_FALLTHRU);
7785
7786 label = block_label (empty);
7787 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
7788 JUMP_LABEL (x) = label;
7789 LABEL_NUSES (label)++;
7790 haifa_init_insn (x);
7791
7792 emit_barrier_after (x);
7793
7794 sched_init_only_bb (empty, NULL);
7795 sched_init_only_bb (single, NULL);
7796 sched_extend_bb ();
7797
7798 adding_bb_to_current_region_p = true;
7799 before_recovery = single;
7800 after_recovery = empty;
7801
7802 if (before_recovery_ptr)
7803 *before_recovery_ptr = before_recovery;
7804
7805 if (sched_verbose >= 2 && spec_info->dump)
7806 fprintf (spec_info->dump,
7807 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
7808 last->index, single->index, empty->index);
7809 }
7810 else
7811 before_recovery = last;
7812 }
7813
7814 /* Returns new recovery block. */
7815 basic_block
7816 sched_create_recovery_block (basic_block *before_recovery_ptr)
7817 {
7818 rtx label;
7819 rtx_insn *barrier;
7820 basic_block rec;
7821
7822 haifa_recovery_bb_recently_added_p = true;
7823 haifa_recovery_bb_ever_added_p = true;
7824
7825 init_before_recovery (before_recovery_ptr);
7826
7827 barrier = get_last_bb_insn (before_recovery);
7828 gcc_assert (BARRIER_P (barrier));
7829
7830 label = emit_label_after (gen_label_rtx (), barrier);
7831
7832 rec = create_basic_block (label, label, before_recovery);
7833
7834 /* A recovery block always ends with an unconditional jump. */
7835 emit_barrier_after (BB_END (rec));
7836
7837 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
7838 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
7839
7840 if (sched_verbose && spec_info->dump)
7841 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
7842 rec->index);
7843
7844 return rec;
7845 }
7846
7847 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
7848 and emit necessary jumps. */
7849 void
7850 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
7851 basic_block second_bb)
7852 {
7853 rtx label;
7854 rtx jump;
7855 int edge_flags;
7856
7857 /* This is fixing of incoming edge. */
7858 /* ??? Which other flags should be specified? */
7859 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
7860 /* Partition type is the same, if it is "unpartitioned". */
7861 edge_flags = EDGE_CROSSING;
7862 else
7863 edge_flags = 0;
7864
7865 make_edge (first_bb, rec, edge_flags);
7866 label = block_label (second_bb);
7867 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
7868 JUMP_LABEL (jump) = label;
7869 LABEL_NUSES (label)++;
7870
7871 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
7872 /* Partition type is the same, if it is "unpartitioned". */
7873 {
7874 /* Rewritten from cfgrtl.c. */
7875 if (flag_reorder_blocks_and_partition
7876 && targetm_common.have_named_sections)
7877 {
7878 /* We don't need the same note for the check because
7879 any_condjump_p (check) == true. */
7880 CROSSING_JUMP_P (jump) = 1;
7881 }
7882 edge_flags = EDGE_CROSSING;
7883 }
7884 else
7885 edge_flags = 0;
7886
7887 make_single_succ_edge (rec, second_bb, edge_flags);
7888 if (dom_info_available_p (CDI_DOMINATORS))
7889 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
7890 }
7891
7892 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
7893 INSN is a simple check, that should be converted to branchy one. */
7894 static void
7895 create_check_block_twin (rtx_insn *insn, bool mutate_p)
7896 {
7897 basic_block rec;
7898 rtx_insn *label, *check, *twin;
7899 rtx check_pat;
7900 ds_t fs;
7901 sd_iterator_def sd_it;
7902 dep_t dep;
7903 dep_def _new_dep, *new_dep = &_new_dep;
7904 ds_t todo_spec;
7905
7906 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
7907
7908 if (!mutate_p)
7909 todo_spec = TODO_SPEC (insn);
7910 else
7911 {
7912 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
7913 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
7914
7915 todo_spec = CHECK_SPEC (insn);
7916 }
7917
7918 todo_spec &= SPECULATIVE;
7919
7920 /* Create recovery block. */
7921 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
7922 {
7923 rec = sched_create_recovery_block (NULL);
7924 label = BB_HEAD (rec);
7925 }
7926 else
7927 {
7928 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
7929 label = NULL;
7930 }
7931
7932 /* Emit CHECK. */
7933 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
7934
7935 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7936 {
7937 /* To have mem_reg alive at the beginning of second_bb,
7938 we emit check BEFORE insn, so insn after splitting
7939 insn will be at the beginning of second_bb, which will
7940 provide us with the correct life information. */
7941 check = emit_jump_insn_before (check_pat, insn);
7942 JUMP_LABEL (check) = label;
7943 LABEL_NUSES (label)++;
7944 }
7945 else
7946 check = emit_insn_before (check_pat, insn);
7947
7948 /* Extend data structures. */
7949 haifa_init_insn (check);
7950
7951 /* CHECK is being added to current region. Extend ready list. */
7952 gcc_assert (sched_ready_n_insns != -1);
7953 sched_extend_ready_list (sched_ready_n_insns + 1);
7954
7955 if (current_sched_info->add_remove_insn)
7956 current_sched_info->add_remove_insn (insn, 0);
7957
7958 RECOVERY_BLOCK (check) = rec;
7959
7960 if (sched_verbose && spec_info->dump)
7961 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
7962 (*current_sched_info->print_insn) (check, 0));
7963
7964 gcc_assert (ORIG_PAT (insn));
7965
7966 /* Initialize TWIN (twin is a duplicate of original instruction
7967 in the recovery block). */
7968 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7969 {
7970 sd_iterator_def sd_it;
7971 dep_t dep;
7972
7973 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
7974 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
7975 {
7976 struct _dep _dep2, *dep2 = &_dep2;
7977
7978 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
7979
7980 sd_add_dep (dep2, true);
7981 }
7982
7983 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
7984 haifa_init_insn (twin);
7985
7986 if (sched_verbose && spec_info->dump)
7987 /* INSN_BB (insn) isn't determined for twin insns yet.
7988 So we can't use current_sched_info->print_insn. */
7989 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7990 INSN_UID (twin), rec->index);
7991 }
7992 else
7993 {
7994 ORIG_PAT (check) = ORIG_PAT (insn);
7995 HAS_INTERNAL_DEP (check) = 1;
7996 twin = check;
7997 /* ??? We probably should change all OUTPUT dependencies to
7998 (TRUE | OUTPUT). */
7999 }
8000
8001 /* Copy all resolved back dependencies of INSN to TWIN. This will
8002 provide correct value for INSN_TICK (TWIN). */
8003 sd_copy_back_deps (twin, insn, true);
8004
8005 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8006 /* In case of branchy check, fix CFG. */
8007 {
8008 basic_block first_bb, second_bb;
8009 rtx_insn *jump;
8010
8011 first_bb = BLOCK_FOR_INSN (check);
8012 second_bb = sched_split_block (first_bb, check);
8013
8014 sched_create_recovery_edges (first_bb, rec, second_bb);
8015
8016 sched_init_only_bb (second_bb, first_bb);
8017 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8018
8019 jump = BB_END (rec);
8020 haifa_init_insn (jump);
8021 }
8022
8023 /* Move backward dependences from INSN to CHECK and
8024 move forward dependences from INSN to TWIN. */
8025
8026 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8027 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8028 {
8029 rtx_insn *pro = DEP_PRO (dep);
8030 ds_t ds;
8031
8032 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8033 check --TRUE--> producer ??? or ANTI ???
8034 twin --TRUE--> producer
8035 twin --ANTI--> check
8036
8037 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8038 check --ANTI--> producer
8039 twin --ANTI--> producer
8040 twin --ANTI--> check
8041
8042 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8043 check ~~TRUE~~> producer
8044 twin ~~TRUE~~> producer
8045 twin --ANTI--> check */
8046
8047 ds = DEP_STATUS (dep);
8048
8049 if (ds & BEGIN_SPEC)
8050 {
8051 gcc_assert (!mutate_p);
8052 ds &= ~BEGIN_SPEC;
8053 }
8054
8055 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8056 sd_add_dep (new_dep, false);
8057
8058 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8059 {
8060 DEP_CON (new_dep) = twin;
8061 sd_add_dep (new_dep, false);
8062 }
8063 }
8064
8065 /* Second, remove backward dependencies of INSN. */
8066 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8067 sd_iterator_cond (&sd_it, &dep);)
8068 {
8069 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8070 || mutate_p)
8071 /* We can delete this dep because we overcome it with
8072 BEGIN_SPECULATION. */
8073 sd_delete_dep (sd_it);
8074 else
8075 sd_iterator_next (&sd_it);
8076 }
8077
8078 /* Future Speculations. Determine what BE_IN speculations will be like. */
8079 fs = 0;
8080
8081 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8082 here. */
8083
8084 gcc_assert (!DONE_SPEC (insn));
8085
8086 if (!mutate_p)
8087 {
8088 ds_t ts = TODO_SPEC (insn);
8089
8090 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8091 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8092
8093 /* Luckiness of future speculations solely depends upon initial
8094 BEGIN speculation. */
8095 if (ts & BEGIN_DATA)
8096 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8097 if (ts & BEGIN_CONTROL)
8098 fs = set_dep_weak (fs, BE_IN_CONTROL,
8099 get_dep_weak (ts, BEGIN_CONTROL));
8100 }
8101 else
8102 CHECK_SPEC (check) = CHECK_SPEC (insn);
8103
8104 /* Future speculations: call the helper. */
8105 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8106
8107 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8108 {
8109 /* Which types of dependencies should we use here is,
8110 generally, machine-dependent question... But, for now,
8111 it is not. */
8112
8113 if (!mutate_p)
8114 {
8115 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8116 sd_add_dep (new_dep, false);
8117
8118 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8119 sd_add_dep (new_dep, false);
8120 }
8121 else
8122 {
8123 if (spec_info->dump)
8124 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8125 (*current_sched_info->print_insn) (insn, 0));
8126
8127 /* Remove all dependencies of the INSN. */
8128 {
8129 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8130 | SD_LIST_BACK
8131 | SD_LIST_RES_BACK));
8132 while (sd_iterator_cond (&sd_it, &dep))
8133 sd_delete_dep (sd_it);
8134 }
8135
8136 /* If former check (INSN) already was moved to the ready (or queue)
8137 list, add new check (CHECK) there too. */
8138 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8139 try_ready (check);
8140
8141 /* Remove old check from instruction stream and free its
8142 data. */
8143 sched_remove_insn (insn);
8144 }
8145
8146 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8147 sd_add_dep (new_dep, false);
8148 }
8149 else
8150 {
8151 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8152 sd_add_dep (new_dep, false);
8153 }
8154
8155 if (!mutate_p)
8156 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8157 because it'll be done later in add_to_speculative_block. */
8158 {
8159 rtx_vec_t priorities_roots = rtx_vec_t ();
8160
8161 clear_priorities (twin, &priorities_roots);
8162 calc_priorities (priorities_roots);
8163 priorities_roots.release ();
8164 }
8165 }
8166
8167 /* Removes dependency between instructions in the recovery block REC
8168 and usual region instructions. It keeps inner dependences so it
8169 won't be necessary to recompute them. */
8170 static void
8171 fix_recovery_deps (basic_block rec)
8172 {
8173 rtx_insn *note, *insn, *jump;
8174 rtx_insn_list *ready_list = 0;
8175 bitmap_head in_ready;
8176 rtx_insn_list *link;
8177
8178 bitmap_initialize (&in_ready, 0);
8179
8180 /* NOTE - a basic block note. */
8181 note = NEXT_INSN (BB_HEAD (rec));
8182 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8183 insn = BB_END (rec);
8184 gcc_assert (JUMP_P (insn));
8185 insn = PREV_INSN (insn);
8186
8187 do
8188 {
8189 sd_iterator_def sd_it;
8190 dep_t dep;
8191
8192 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8193 sd_iterator_cond (&sd_it, &dep);)
8194 {
8195 rtx_insn *consumer = DEP_CON (dep);
8196
8197 if (BLOCK_FOR_INSN (consumer) != rec)
8198 {
8199 sd_delete_dep (sd_it);
8200
8201 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8202 ready_list = alloc_INSN_LIST (consumer, ready_list);
8203 }
8204 else
8205 {
8206 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8207
8208 sd_iterator_next (&sd_it);
8209 }
8210 }
8211
8212 insn = PREV_INSN (insn);
8213 }
8214 while (insn != note);
8215
8216 bitmap_clear (&in_ready);
8217
8218 /* Try to add instructions to the ready or queue list. */
8219 for (link = ready_list; link; link = link->next ())
8220 try_ready (link->insn ());
8221 free_INSN_LIST_list (&ready_list);
8222
8223 /* Fixing jump's dependences. */
8224 insn = BB_HEAD (rec);
8225 jump = BB_END (rec);
8226
8227 gcc_assert (LABEL_P (insn));
8228 insn = NEXT_INSN (insn);
8229
8230 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8231 add_jump_dependencies (insn, jump);
8232 }
8233
8234 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8235 instruction data. */
8236 static bool
8237 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8238 {
8239 int t;
8240
8241 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8242 if (!t)
8243 return false;
8244
8245 update_insn_after_change (insn);
8246 return true;
8247 }
8248
8249 /* -1 - can't speculate,
8250 0 - for speculation with REQUEST mode it is OK to use
8251 current instruction pattern,
8252 1 - need to change pattern for *NEW_PAT to be speculative. */
8253 int
8254 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8255 {
8256 gcc_assert (current_sched_info->flags & DO_SPECULATION
8257 && (request & SPECULATIVE)
8258 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8259
8260 if ((request & spec_info->mask) != request)
8261 return -1;
8262
8263 if (request & BE_IN_SPEC
8264 && !(request & BEGIN_SPEC))
8265 return 0;
8266
8267 return targetm.sched.speculate_insn (insn, request, new_pat);
8268 }
8269
8270 static int
8271 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8272 {
8273 gcc_assert (sched_deps_info->generate_spec_deps
8274 && !IS_SPECULATION_CHECK_P (insn));
8275
8276 if (HAS_INTERNAL_DEP (insn)
8277 || SCHED_GROUP_P (insn))
8278 return -1;
8279
8280 return sched_speculate_insn (insn, request, new_pat);
8281 }
8282
8283 /* Print some information about block BB, which starts with HEAD and
8284 ends with TAIL, before scheduling it.
8285 I is zero, if scheduler is about to start with the fresh ebb. */
8286 static void
8287 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8288 {
8289 if (!i)
8290 fprintf (sched_dump,
8291 ";; ======================================================\n");
8292 else
8293 fprintf (sched_dump,
8294 ";; =====================ADVANCING TO=====================\n");
8295 fprintf (sched_dump,
8296 ";; -- basic block %d from %d to %d -- %s reload\n",
8297 bb->index, INSN_UID (head), INSN_UID (tail),
8298 (reload_completed ? "after" : "before"));
8299 fprintf (sched_dump,
8300 ";; ======================================================\n");
8301 fprintf (sched_dump, "\n");
8302 }
8303
8304 /* Unlink basic block notes and labels and saves them, so they
8305 can be easily restored. We unlink basic block notes in EBB to
8306 provide back-compatibility with the previous code, as target backends
8307 assume, that there'll be only instructions between
8308 current_sched_info->{head and tail}. We restore these notes as soon
8309 as we can.
8310 FIRST (LAST) is the first (last) basic block in the ebb.
8311 NB: In usual case (FIRST == LAST) nothing is really done. */
8312 void
8313 unlink_bb_notes (basic_block first, basic_block last)
8314 {
8315 /* We DON'T unlink basic block notes of the first block in the ebb. */
8316 if (first == last)
8317 return;
8318
8319 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8320
8321 /* Make a sentinel. */
8322 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8323 bb_header[last->next_bb->index] = 0;
8324
8325 first = first->next_bb;
8326 do
8327 {
8328 rtx_insn *prev, *label, *note, *next;
8329
8330 label = BB_HEAD (last);
8331 if (LABEL_P (label))
8332 note = NEXT_INSN (label);
8333 else
8334 note = label;
8335 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8336
8337 prev = PREV_INSN (label);
8338 next = NEXT_INSN (note);
8339 gcc_assert (prev && next);
8340
8341 SET_NEXT_INSN (prev) = next;
8342 SET_PREV_INSN (next) = prev;
8343
8344 bb_header[last->index] = label;
8345
8346 if (last == first)
8347 break;
8348
8349 last = last->prev_bb;
8350 }
8351 while (1);
8352 }
8353
8354 /* Restore basic block notes.
8355 FIRST is the first basic block in the ebb. */
8356 static void
8357 restore_bb_notes (basic_block first)
8358 {
8359 if (!bb_header)
8360 return;
8361
8362 /* We DON'T unlink basic block notes of the first block in the ebb. */
8363 first = first->next_bb;
8364 /* Remember: FIRST is actually a second basic block in the ebb. */
8365
8366 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8367 && bb_header[first->index])
8368 {
8369 rtx_insn *prev, *label, *note, *next;
8370
8371 label = bb_header[first->index];
8372 prev = PREV_INSN (label);
8373 next = NEXT_INSN (prev);
8374
8375 if (LABEL_P (label))
8376 note = NEXT_INSN (label);
8377 else
8378 note = label;
8379 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8380
8381 bb_header[first->index] = 0;
8382
8383 SET_NEXT_INSN (prev) = label;
8384 SET_NEXT_INSN (note) = next;
8385 SET_PREV_INSN (next) = note;
8386
8387 first = first->next_bb;
8388 }
8389
8390 free (bb_header);
8391 bb_header = 0;
8392 }
8393
8394 /* Helper function.
8395 Fix CFG after both in- and inter-block movement of
8396 control_flow_insn_p JUMP. */
8397 static void
8398 fix_jump_move (rtx_insn *jump)
8399 {
8400 basic_block bb, jump_bb, jump_bb_next;
8401
8402 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8403 jump_bb = BLOCK_FOR_INSN (jump);
8404 jump_bb_next = jump_bb->next_bb;
8405
8406 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8407 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8408
8409 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8410 /* if jump_bb_next is not empty. */
8411 BB_END (jump_bb) = BB_END (jump_bb_next);
8412
8413 if (BB_END (bb) != PREV_INSN (jump))
8414 /* Then there are instruction after jump that should be placed
8415 to jump_bb_next. */
8416 BB_END (jump_bb_next) = BB_END (bb);
8417 else
8418 /* Otherwise jump_bb_next is empty. */
8419 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8420
8421 /* To make assertion in move_insn happy. */
8422 BB_END (bb) = PREV_INSN (jump);
8423
8424 update_bb_for_insn (jump_bb_next);
8425 }
8426
8427 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8428 static void
8429 move_block_after_check (rtx_insn *jump)
8430 {
8431 basic_block bb, jump_bb, jump_bb_next;
8432 vec<edge, va_gc> *t;
8433
8434 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8435 jump_bb = BLOCK_FOR_INSN (jump);
8436 jump_bb_next = jump_bb->next_bb;
8437
8438 update_bb_for_insn (jump_bb);
8439
8440 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8441 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8442
8443 unlink_block (jump_bb_next);
8444 link_block (jump_bb_next, bb);
8445
8446 t = bb->succs;
8447 bb->succs = 0;
8448 move_succs (&(jump_bb->succs), bb);
8449 move_succs (&(jump_bb_next->succs), jump_bb);
8450 move_succs (&t, jump_bb_next);
8451
8452 df_mark_solutions_dirty ();
8453
8454 common_sched_info->fix_recovery_cfg
8455 (bb->index, jump_bb->index, jump_bb_next->index);
8456 }
8457
8458 /* Helper function for move_block_after_check.
8459 This functions attaches edge vector pointed to by SUCCSP to
8460 block TO. */
8461 static void
8462 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8463 {
8464 edge e;
8465 edge_iterator ei;
8466
8467 gcc_assert (to->succs == 0);
8468
8469 to->succs = *succsp;
8470
8471 FOR_EACH_EDGE (e, ei, to->succs)
8472 e->src = to;
8473
8474 *succsp = 0;
8475 }
8476
8477 /* Remove INSN from the instruction stream.
8478 INSN should have any dependencies. */
8479 static void
8480 sched_remove_insn (rtx_insn *insn)
8481 {
8482 sd_finish_insn (insn);
8483
8484 change_queue_index (insn, QUEUE_NOWHERE);
8485 current_sched_info->add_remove_insn (insn, 1);
8486 delete_insn (insn);
8487 }
8488
8489 /* Clear priorities of all instructions, that are forward dependent on INSN.
8490 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8491 be invoked to initialize all cleared priorities. */
8492 static void
8493 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8494 {
8495 sd_iterator_def sd_it;
8496 dep_t dep;
8497 bool insn_is_root_p = true;
8498
8499 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8500
8501 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8502 {
8503 rtx_insn *pro = DEP_PRO (dep);
8504
8505 if (INSN_PRIORITY_STATUS (pro) >= 0
8506 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8507 {
8508 /* If DEP doesn't contribute to priority then INSN itself should
8509 be added to priority roots. */
8510 if (contributes_to_priority_p (dep))
8511 insn_is_root_p = false;
8512
8513 INSN_PRIORITY_STATUS (pro) = -1;
8514 clear_priorities (pro, roots_ptr);
8515 }
8516 }
8517
8518 if (insn_is_root_p)
8519 roots_ptr->safe_push (insn);
8520 }
8521
8522 /* Recompute priorities of instructions, whose priorities might have been
8523 changed. ROOTS is a vector of instructions whose priority computation will
8524 trigger initialization of all cleared priorities. */
8525 static void
8526 calc_priorities (rtx_vec_t roots)
8527 {
8528 int i;
8529 rtx_insn *insn;
8530
8531 FOR_EACH_VEC_ELT (roots, i, insn)
8532 priority (insn);
8533 }
8534
8535
8536 /* Add dependences between JUMP and other instructions in the recovery
8537 block. INSN is the first insn the recovery block. */
8538 static void
8539 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8540 {
8541 do
8542 {
8543 insn = NEXT_INSN (insn);
8544 if (insn == jump)
8545 break;
8546
8547 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8548 {
8549 dep_def _new_dep, *new_dep = &_new_dep;
8550
8551 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8552 sd_add_dep (new_dep, false);
8553 }
8554 }
8555 while (1);
8556
8557 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8558 }
8559
8560 /* Extend data structures for logical insn UID. */
8561 void
8562 sched_extend_luids (void)
8563 {
8564 int new_luids_max_uid = get_max_uid () + 1;
8565
8566 sched_luids.safe_grow_cleared (new_luids_max_uid);
8567 }
8568
8569 /* Initialize LUID for INSN. */
8570 void
8571 sched_init_insn_luid (rtx_insn *insn)
8572 {
8573 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8574 int luid;
8575
8576 if (i >= 0)
8577 {
8578 luid = sched_max_luid;
8579 sched_max_luid += i;
8580 }
8581 else
8582 luid = -1;
8583
8584 SET_INSN_LUID (insn, luid);
8585 }
8586
8587 /* Initialize luids for BBS.
8588 The hook common_sched_info->luid_for_non_insn () is used to determine
8589 if notes, labels, etc. need luids. */
8590 void
8591 sched_init_luids (bb_vec_t bbs)
8592 {
8593 int i;
8594 basic_block bb;
8595
8596 sched_extend_luids ();
8597 FOR_EACH_VEC_ELT (bbs, i, bb)
8598 {
8599 rtx_insn *insn;
8600
8601 FOR_BB_INSNS (bb, insn)
8602 sched_init_insn_luid (insn);
8603 }
8604 }
8605
8606 /* Free LUIDs. */
8607 void
8608 sched_finish_luids (void)
8609 {
8610 sched_luids.release ();
8611 sched_max_luid = 1;
8612 }
8613
8614 /* Return logical uid of INSN. Helpful while debugging. */
8615 int
8616 insn_luid (rtx_insn *insn)
8617 {
8618 return INSN_LUID (insn);
8619 }
8620
8621 /* Extend per insn data in the target. */
8622 void
8623 sched_extend_target (void)
8624 {
8625 if (targetm.sched.h_i_d_extended)
8626 targetm.sched.h_i_d_extended ();
8627 }
8628
8629 /* Extend global scheduler structures (those, that live across calls to
8630 schedule_block) to include information about just emitted INSN. */
8631 static void
8632 extend_h_i_d (void)
8633 {
8634 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8635 if (reserve > 0
8636 && ! h_i_d.space (reserve))
8637 {
8638 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8639 sched_extend_target ();
8640 }
8641 }
8642
8643 /* Initialize h_i_d entry of the INSN with default values.
8644 Values, that are not explicitly initialized here, hold zero. */
8645 static void
8646 init_h_i_d (rtx_insn *insn)
8647 {
8648 if (INSN_LUID (insn) > 0)
8649 {
8650 INSN_COST (insn) = -1;
8651 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8652 INSN_TICK (insn) = INVALID_TICK;
8653 INSN_EXACT_TICK (insn) = INVALID_TICK;
8654 INTER_TICK (insn) = INVALID_TICK;
8655 TODO_SPEC (insn) = HARD_DEP;
8656 }
8657 }
8658
8659 /* Initialize haifa_insn_data for BBS. */
8660 void
8661 haifa_init_h_i_d (bb_vec_t bbs)
8662 {
8663 int i;
8664 basic_block bb;
8665
8666 extend_h_i_d ();
8667 FOR_EACH_VEC_ELT (bbs, i, bb)
8668 {
8669 rtx_insn *insn;
8670
8671 FOR_BB_INSNS (bb, insn)
8672 init_h_i_d (insn);
8673 }
8674 }
8675
8676 /* Finalize haifa_insn_data. */
8677 void
8678 haifa_finish_h_i_d (void)
8679 {
8680 int i;
8681 haifa_insn_data_t data;
8682 struct reg_use_data *use, *next;
8683
8684 FOR_EACH_VEC_ELT (h_i_d, i, data)
8685 {
8686 free (data->max_reg_pressure);
8687 free (data->reg_pressure);
8688 for (use = data->reg_use_list; use != NULL; use = next)
8689 {
8690 next = use->next_insn_use;
8691 free (use);
8692 }
8693 }
8694 h_i_d.release ();
8695 }
8696
8697 /* Init data for the new insn INSN. */
8698 static void
8699 haifa_init_insn (rtx_insn *insn)
8700 {
8701 gcc_assert (insn != NULL);
8702
8703 sched_extend_luids ();
8704 sched_init_insn_luid (insn);
8705 sched_extend_target ();
8706 sched_deps_init (false);
8707 extend_h_i_d ();
8708 init_h_i_d (insn);
8709
8710 if (adding_bb_to_current_region_p)
8711 {
8712 sd_init_insn (insn);
8713
8714 /* Extend dependency caches by one element. */
8715 extend_dependency_caches (1, false);
8716 }
8717 if (sched_pressure != SCHED_PRESSURE_NONE)
8718 init_insn_reg_pressure_info (insn);
8719 }
8720
8721 /* Init data for the new basic block BB which comes after AFTER. */
8722 static void
8723 haifa_init_only_bb (basic_block bb, basic_block after)
8724 {
8725 gcc_assert (bb != NULL);
8726
8727 sched_init_bbs ();
8728
8729 if (common_sched_info->add_block)
8730 /* This changes only data structures of the front-end. */
8731 common_sched_info->add_block (bb, after);
8732 }
8733
8734 /* A generic version of sched_split_block (). */
8735 basic_block
8736 sched_split_block_1 (basic_block first_bb, rtx after)
8737 {
8738 edge e;
8739
8740 e = split_block (first_bb, after);
8741 gcc_assert (e->src == first_bb);
8742
8743 /* sched_split_block emits note if *check == BB_END. Probably it
8744 is better to rip that note off. */
8745
8746 return e->dest;
8747 }
8748
8749 /* A generic version of sched_create_empty_bb (). */
8750 basic_block
8751 sched_create_empty_bb_1 (basic_block after)
8752 {
8753 return create_empty_bb (after);
8754 }
8755
8756 /* Insert PAT as an INSN into the schedule and update the necessary data
8757 structures to account for it. */
8758 rtx_insn *
8759 sched_emit_insn (rtx pat)
8760 {
8761 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
8762 haifa_init_insn (insn);
8763
8764 if (current_sched_info->add_remove_insn)
8765 current_sched_info->add_remove_insn (insn, 0);
8766
8767 (*current_sched_info->begin_schedule_ready) (insn);
8768 scheduled_insns.safe_push (insn);
8769
8770 last_scheduled_insn = insn;
8771 return insn;
8772 }
8773
8774 /* This function returns a candidate satisfying dispatch constraints from
8775 the ready list. */
8776
8777 static rtx_insn *
8778 ready_remove_first_dispatch (struct ready_list *ready)
8779 {
8780 int i;
8781 rtx_insn *insn = ready_element (ready, 0);
8782
8783 if (ready->n_ready == 1
8784 || !INSN_P (insn)
8785 || INSN_CODE (insn) < 0
8786 || !active_insn_p (insn)
8787 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8788 return ready_remove_first (ready);
8789
8790 for (i = 1; i < ready->n_ready; i++)
8791 {
8792 insn = ready_element (ready, i);
8793
8794 if (!INSN_P (insn)
8795 || INSN_CODE (insn) < 0
8796 || !active_insn_p (insn))
8797 continue;
8798
8799 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8800 {
8801 /* Return ith element of ready. */
8802 insn = ready_remove (ready, i);
8803 return insn;
8804 }
8805 }
8806
8807 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
8808 return ready_remove_first (ready);
8809
8810 for (i = 1; i < ready->n_ready; i++)
8811 {
8812 insn = ready_element (ready, i);
8813
8814 if (!INSN_P (insn)
8815 || INSN_CODE (insn) < 0
8816 || !active_insn_p (insn))
8817 continue;
8818
8819 /* Return i-th element of ready. */
8820 if (targetm.sched.dispatch (insn, IS_CMP))
8821 return ready_remove (ready, i);
8822 }
8823
8824 return ready_remove_first (ready);
8825 }
8826
8827 /* Get number of ready insn in the ready list. */
8828
8829 int
8830 number_in_ready (void)
8831 {
8832 return ready.n_ready;
8833 }
8834
8835 /* Get number of ready's in the ready list. */
8836
8837 rtx_insn *
8838 get_ready_element (int i)
8839 {
8840 return ready_element (&ready, i);
8841 }
8842
8843 #endif /* INSN_SCHEDULING */