output.h (__gcc_host_wide_int__): Move to hwint.h.
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
27
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
36
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
41
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
56
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
59
60 1. choose insn with the longest path to end of bb, ties
61 broken by
62 2. choose insn with least contribution to register pressure,
63 ties broken by
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
67 broken by
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
72
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
79
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
83
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using insn backward dependences
86 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
87 INSN_FORW_DEPS the purpose of forward list scheduling.
88
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
96 utilization.
97
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
101 of this case.
102
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
107
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
111
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
116
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
120
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
126 \f
127 #include "config.h"
128 #include "system.h"
129 #include "coretypes.h"
130 #include "tm.h"
131 #include "diagnostic-core.h"
132 #include "hard-reg-set.h"
133 #include "rtl.h"
134 #include "tm_p.h"
135 #include "regs.h"
136 #include "function.h"
137 #include "flags.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
140 #include "except.h"
141 #include "recog.h"
142 #include "sched-int.h"
143 #include "target.h"
144 #include "common/common-target.h"
145 #include "params.h"
146 #include "vecprim.h"
147 #include "dbgcnt.h"
148 #include "cfgloop.h"
149 #include "ira.h"
150 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
151 #include "hashtab.h"
152
153 #ifdef INSN_SCHEDULING
154
155 /* issue_rate is the number of insns that can be scheduled in the same
156 machine cycle. It can be defined in the config/mach/mach.h file,
157 otherwise we set it to 1. */
158
159 int issue_rate;
160
161 /* This can be set to true by a backend if the scheduler should not
162 enable a DCE pass. */
163 bool sched_no_dce;
164
165 /* The current initiation interval used when modulo scheduling. */
166 static int modulo_ii;
167
168 /* The maximum number of stages we are prepared to handle. */
169 static int modulo_max_stages;
170
171 /* The number of insns that exist in each iteration of the loop. We use this
172 to detect when we've scheduled all insns from the first iteration. */
173 static int modulo_n_insns;
174
175 /* The current count of insns in the first iteration of the loop that have
176 already been scheduled. */
177 static int modulo_insns_scheduled;
178
179 /* The maximum uid of insns from the first iteration of the loop. */
180 static int modulo_iter0_max_uid;
181
182 /* The number of times we should attempt to backtrack when modulo scheduling.
183 Decreased each time we have to backtrack. */
184 static int modulo_backtracks_left;
185
186 /* The stage in which the last insn from the original loop was
187 scheduled. */
188 static int modulo_last_stage;
189
190 /* sched-verbose controls the amount of debugging output the
191 scheduler prints. It is controlled by -fsched-verbose=N:
192 N>0 and no -DSR : the output is directed to stderr.
193 N>=10 will direct the printouts to stderr (regardless of -dSR).
194 N=1: same as -dSR.
195 N=2: bb's probabilities, detailed ready list info, unit/insn info.
196 N=3: rtl at abort point, control-flow, regions info.
197 N=5: dependences info. */
198
199 int sched_verbose = 0;
200
201 /* Debugging file. All printouts are sent to dump, which is always set,
202 either to stderr, or to the dump listing file (-dRS). */
203 FILE *sched_dump = 0;
204
205 /* This is a placeholder for the scheduler parameters common
206 to all schedulers. */
207 struct common_sched_info_def *common_sched_info;
208
209 #define INSN_TICK(INSN) (HID (INSN)->tick)
210 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
211 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
212 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
213 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
214 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
215 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
216
217 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
218 then it should be recalculated from scratch. */
219 #define INVALID_TICK (-(max_insn_queue_index + 1))
220 /* The minimal value of the INSN_TICK of an instruction. */
221 #define MIN_TICK (-max_insn_queue_index)
222
223 /* List of important notes we must keep around. This is a pointer to the
224 last element in the list. */
225 rtx note_list;
226
227 static struct spec_info_def spec_info_var;
228 /* Description of the speculative part of the scheduling.
229 If NULL - no speculation. */
230 spec_info_t spec_info = NULL;
231
232 /* True, if recovery block was added during scheduling of current block.
233 Used to determine, if we need to fix INSN_TICKs. */
234 static bool haifa_recovery_bb_recently_added_p;
235
236 /* True, if recovery block was added during this scheduling pass.
237 Used to determine if we should have empty memory pools of dependencies
238 after finishing current region. */
239 bool haifa_recovery_bb_ever_added_p;
240
241 /* Counters of different types of speculative instructions. */
242 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
243
244 /* Array used in {unlink, restore}_bb_notes. */
245 static rtx *bb_header = 0;
246
247 /* Basic block after which recovery blocks will be created. */
248 static basic_block before_recovery;
249
250 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
251 created it. */
252 basic_block after_recovery;
253
254 /* FALSE if we add bb to another region, so we don't need to initialize it. */
255 bool adding_bb_to_current_region_p = true;
256
257 /* Queues, etc. */
258
259 /* An instruction is ready to be scheduled when all insns preceding it
260 have already been scheduled. It is important to ensure that all
261 insns which use its result will not be executed until its result
262 has been computed. An insn is maintained in one of four structures:
263
264 (P) the "Pending" set of insns which cannot be scheduled until
265 their dependencies have been satisfied.
266 (Q) the "Queued" set of insns that can be scheduled when sufficient
267 time has passed.
268 (R) the "Ready" list of unscheduled, uncommitted insns.
269 (S) the "Scheduled" list of insns.
270
271 Initially, all insns are either "Pending" or "Ready" depending on
272 whether their dependencies are satisfied.
273
274 Insns move from the "Ready" list to the "Scheduled" list as they
275 are committed to the schedule. As this occurs, the insns in the
276 "Pending" list have their dependencies satisfied and move to either
277 the "Ready" list or the "Queued" set depending on whether
278 sufficient time has passed to make them ready. As time passes,
279 insns move from the "Queued" set to the "Ready" list.
280
281 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
282 unscheduled insns, i.e., those that are ready, queued, and pending.
283 The "Queued" set (Q) is implemented by the variable `insn_queue'.
284 The "Ready" list (R) is implemented by the variables `ready' and
285 `n_ready'.
286 The "Scheduled" list (S) is the new insn chain built by this pass.
287
288 The transition (R->S) is implemented in the scheduling loop in
289 `schedule_block' when the best insn to schedule is chosen.
290 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
291 insns move from the ready list to the scheduled list.
292 The transition (Q->R) is implemented in 'queue_to_insn' as time
293 passes or stalls are introduced. */
294
295 /* Implement a circular buffer to delay instructions until sufficient
296 time has passed. For the new pipeline description interface,
297 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
298 than maximal time of instruction execution computed by genattr.c on
299 the base maximal time of functional unit reservations and getting a
300 result. This is the longest time an insn may be queued. */
301
302 static rtx *insn_queue;
303 static int q_ptr = 0;
304 static int q_size = 0;
305 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
306 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
307
308 #define QUEUE_SCHEDULED (-3)
309 #define QUEUE_NOWHERE (-2)
310 #define QUEUE_READY (-1)
311 /* QUEUE_SCHEDULED - INSN is scheduled.
312 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
313 queue or ready list.
314 QUEUE_READY - INSN is in ready list.
315 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
316
317 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
318
319 /* The following variable value refers for all current and future
320 reservations of the processor units. */
321 state_t curr_state;
322
323 /* The following variable value is size of memory representing all
324 current and future reservations of the processor units. */
325 size_t dfa_state_size;
326
327 /* The following array is used to find the best insn from ready when
328 the automaton pipeline interface is used. */
329 char *ready_try = NULL;
330
331 /* The ready list. */
332 struct ready_list ready = {NULL, 0, 0, 0, 0};
333
334 /* The pointer to the ready list (to be removed). */
335 static struct ready_list *readyp = &ready;
336
337 /* Scheduling clock. */
338 static int clock_var;
339
340 /* Clock at which the previous instruction was issued. */
341 static int last_clock_var;
342
343 /* Set to true if, when queuing a shadow insn, we discover that it would be
344 scheduled too late. */
345 static bool must_backtrack;
346
347 /* The following variable value is number of essential insns issued on
348 the current cycle. An insn is essential one if it changes the
349 processors state. */
350 int cycle_issued_insns;
351
352 /* This records the actual schedule. It is built up during the main phase
353 of schedule_block, and afterwards used to reorder the insns in the RTL. */
354 static VEC(rtx, heap) *scheduled_insns;
355
356 static int may_trap_exp (const_rtx, int);
357
358 /* Nonzero iff the address is comprised from at most 1 register. */
359 #define CONST_BASED_ADDRESS_P(x) \
360 (REG_P (x) \
361 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
362 || (GET_CODE (x) == LO_SUM)) \
363 && (CONSTANT_P (XEXP (x, 0)) \
364 || CONSTANT_P (XEXP (x, 1)))))
365
366 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
367 as found by analyzing insn's expression. */
368
369 \f
370 static int haifa_luid_for_non_insn (rtx x);
371
372 /* Haifa version of sched_info hooks common to all headers. */
373 const struct common_sched_info_def haifa_common_sched_info =
374 {
375 NULL, /* fix_recovery_cfg */
376 NULL, /* add_block */
377 NULL, /* estimate_number_of_insns */
378 haifa_luid_for_non_insn, /* luid_for_non_insn */
379 SCHED_PASS_UNKNOWN /* sched_pass_id */
380 };
381
382 /* Mapping from instruction UID to its Logical UID. */
383 VEC (int, heap) *sched_luids = NULL;
384
385 /* Next LUID to assign to an instruction. */
386 int sched_max_luid = 1;
387
388 /* Haifa Instruction Data. */
389 VEC (haifa_insn_data_def, heap) *h_i_d = NULL;
390
391 void (* sched_init_only_bb) (basic_block, basic_block);
392
393 /* Split block function. Different schedulers might use different functions
394 to handle their internal data consistent. */
395 basic_block (* sched_split_block) (basic_block, rtx);
396
397 /* Create empty basic block after the specified block. */
398 basic_block (* sched_create_empty_bb) (basic_block);
399
400 /* Return the number of cycles until INSN is expected to be ready.
401 Return zero if it already is. */
402 static int
403 insn_delay (rtx insn)
404 {
405 return MAX (INSN_TICK (insn) - clock_var, 0);
406 }
407
408 static int
409 may_trap_exp (const_rtx x, int is_store)
410 {
411 enum rtx_code code;
412
413 if (x == 0)
414 return TRAP_FREE;
415 code = GET_CODE (x);
416 if (is_store)
417 {
418 if (code == MEM && may_trap_p (x))
419 return TRAP_RISKY;
420 else
421 return TRAP_FREE;
422 }
423 if (code == MEM)
424 {
425 /* The insn uses memory: a volatile load. */
426 if (MEM_VOLATILE_P (x))
427 return IRISKY;
428 /* An exception-free load. */
429 if (!may_trap_p (x))
430 return IFREE;
431 /* A load with 1 base register, to be further checked. */
432 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
433 return PFREE_CANDIDATE;
434 /* No info on the load, to be further checked. */
435 return PRISKY_CANDIDATE;
436 }
437 else
438 {
439 const char *fmt;
440 int i, insn_class = TRAP_FREE;
441
442 /* Neither store nor load, check if it may cause a trap. */
443 if (may_trap_p (x))
444 return TRAP_RISKY;
445 /* Recursive step: walk the insn... */
446 fmt = GET_RTX_FORMAT (code);
447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
448 {
449 if (fmt[i] == 'e')
450 {
451 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
452 insn_class = WORST_CLASS (insn_class, tmp_class);
453 }
454 else if (fmt[i] == 'E')
455 {
456 int j;
457 for (j = 0; j < XVECLEN (x, i); j++)
458 {
459 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
460 insn_class = WORST_CLASS (insn_class, tmp_class);
461 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
462 break;
463 }
464 }
465 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
466 break;
467 }
468 return insn_class;
469 }
470 }
471
472 /* Classifies rtx X of an insn for the purpose of verifying that X can be
473 executed speculatively (and consequently the insn can be moved
474 speculatively), by examining X, returning:
475 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
476 TRAP_FREE: non-load insn.
477 IFREE: load from a globally safe location.
478 IRISKY: volatile load.
479 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
480 being either PFREE or PRISKY. */
481
482 static int
483 haifa_classify_rtx (const_rtx x)
484 {
485 int tmp_class = TRAP_FREE;
486 int insn_class = TRAP_FREE;
487 enum rtx_code code;
488
489 if (GET_CODE (x) == PARALLEL)
490 {
491 int i, len = XVECLEN (x, 0);
492
493 for (i = len - 1; i >= 0; i--)
494 {
495 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
496 insn_class = WORST_CLASS (insn_class, tmp_class);
497 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
498 break;
499 }
500 }
501 else
502 {
503 code = GET_CODE (x);
504 switch (code)
505 {
506 case CLOBBER:
507 /* Test if it is a 'store'. */
508 tmp_class = may_trap_exp (XEXP (x, 0), 1);
509 break;
510 case SET:
511 /* Test if it is a store. */
512 tmp_class = may_trap_exp (SET_DEST (x), 1);
513 if (tmp_class == TRAP_RISKY)
514 break;
515 /* Test if it is a load. */
516 tmp_class =
517 WORST_CLASS (tmp_class,
518 may_trap_exp (SET_SRC (x), 0));
519 break;
520 case COND_EXEC:
521 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
522 if (tmp_class == TRAP_RISKY)
523 break;
524 tmp_class = WORST_CLASS (tmp_class,
525 may_trap_exp (COND_EXEC_TEST (x), 0));
526 break;
527 case TRAP_IF:
528 tmp_class = TRAP_RISKY;
529 break;
530 default:;
531 }
532 insn_class = tmp_class;
533 }
534
535 return insn_class;
536 }
537
538 int
539 haifa_classify_insn (const_rtx insn)
540 {
541 return haifa_classify_rtx (PATTERN (insn));
542 }
543 \f
544 /* After the scheduler initialization function has been called, this function
545 can be called to enable modulo scheduling. II is the initiation interval
546 we should use, it affects the delays for delay_pairs that were recorded as
547 separated by a given number of stages.
548
549 MAX_STAGES provides us with a limit
550 after which we give up scheduling; the caller must have unrolled at least
551 as many copies of the loop body and recorded delay_pairs for them.
552
553 INSNS is the number of real (non-debug) insns in one iteration of
554 the loop. MAX_UID can be used to test whether an insn belongs to
555 the first iteration of the loop; all of them have a uid lower than
556 MAX_UID. */
557 void
558 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
559 {
560 modulo_ii = ii;
561 modulo_max_stages = max_stages;
562 modulo_n_insns = insns;
563 modulo_iter0_max_uid = max_uid;
564 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
565 }
566
567 /* A structure to record a pair of insns where the first one is a real
568 insn that has delay slots, and the second is its delayed shadow.
569 I1 is scheduled normally and will emit an assembly instruction,
570 while I2 describes the side effect that takes place at the
571 transition between cycles CYCLES and (CYCLES + 1) after I1. */
572 struct delay_pair
573 {
574 struct delay_pair *next_same_i1;
575 rtx i1, i2;
576 int cycles;
577 /* When doing modulo scheduling, we a delay_pair can also be used to
578 show that I1 and I2 are the same insn in a different stage. If that
579 is the case, STAGES will be nonzero. */
580 int stages;
581 };
582
583 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
584 indexed by I2. */
585 static htab_t delay_htab;
586 static htab_t delay_htab_i2;
587
588 /* Called through htab_traverse. Walk the hashtable using I2 as
589 index, and delete all elements involving an UID higher than
590 that pointed to by *DATA. */
591 static int
592 htab_i2_traverse (void **slot, void *data)
593 {
594 int maxuid = *(int *)data;
595 struct delay_pair *p = *(struct delay_pair **)slot;
596 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
597 {
598 htab_clear_slot (delay_htab_i2, slot);
599 }
600 return 1;
601 }
602
603 /* Called through htab_traverse. Walk the hashtable using I2 as
604 index, and delete all elements involving an UID higher than
605 that pointed to by *DATA. */
606 static int
607 htab_i1_traverse (void **slot, void *data)
608 {
609 int maxuid = *(int *)data;
610 struct delay_pair **pslot = (struct delay_pair **)slot;
611 struct delay_pair *p, *first, **pprev;
612
613 if (INSN_UID ((*pslot)->i1) >= maxuid)
614 {
615 htab_clear_slot (delay_htab, slot);
616 return 1;
617 }
618 pprev = &first;
619 for (p = *pslot; p; p = p->next_same_i1)
620 {
621 if (INSN_UID (p->i2) < maxuid)
622 {
623 *pprev = p;
624 pprev = &p->next_same_i1;
625 }
626 }
627 *pprev = NULL;
628 if (first == NULL)
629 htab_clear_slot (delay_htab, slot);
630 else
631 *pslot = first;
632 return 1;
633 }
634
635 /* Discard all delay pairs which involve an insn with an UID higher
636 than MAX_UID. */
637 void
638 discard_delay_pairs_above (int max_uid)
639 {
640 htab_traverse (delay_htab, htab_i1_traverse, &max_uid);
641 htab_traverse (delay_htab_i2, htab_i2_traverse, &max_uid);
642 }
643
644 /* Returns a hash value for X (which really is a delay_pair), based on
645 hashing just I1. */
646 static hashval_t
647 delay_hash_i1 (const void *x)
648 {
649 return htab_hash_pointer (((const struct delay_pair *) x)->i1);
650 }
651
652 /* Returns a hash value for X (which really is a delay_pair), based on
653 hashing just I2. */
654 static hashval_t
655 delay_hash_i2 (const void *x)
656 {
657 return htab_hash_pointer (((const struct delay_pair *) x)->i2);
658 }
659
660 /* Return nonzero if I1 of pair X is the same as that of pair Y. */
661 static int
662 delay_i1_eq (const void *x, const void *y)
663 {
664 return ((const struct delay_pair *) x)->i1 == y;
665 }
666
667 /* Return nonzero if I2 of pair X is the same as that of pair Y. */
668 static int
669 delay_i2_eq (const void *x, const void *y)
670 {
671 return ((const struct delay_pair *) x)->i2 == y;
672 }
673
674 /* This function can be called by a port just before it starts the final
675 scheduling pass. It records the fact that an instruction with delay
676 slots has been split into two insns, I1 and I2. The first one will be
677 scheduled normally and initiates the operation. The second one is a
678 shadow which must follow a specific number of cycles after I1; its only
679 purpose is to show the side effect that occurs at that cycle in the RTL.
680 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
681 while I2 retains the original insn type.
682
683 There are two ways in which the number of cycles can be specified,
684 involving the CYCLES and STAGES arguments to this function. If STAGES
685 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
686 which is multiplied by MODULO_II to give the number of cycles. This is
687 only useful if the caller also calls set_modulo_params to enable modulo
688 scheduling. */
689
690 void
691 record_delay_slot_pair (rtx i1, rtx i2, int cycles, int stages)
692 {
693 struct delay_pair *p = XNEW (struct delay_pair);
694 struct delay_pair **slot;
695
696 p->i1 = i1;
697 p->i2 = i2;
698 p->cycles = cycles;
699 p->stages = stages;
700
701 if (!delay_htab)
702 {
703 delay_htab = htab_create (10, delay_hash_i1, delay_i1_eq, NULL);
704 delay_htab_i2 = htab_create (10, delay_hash_i2, delay_i2_eq, free);
705 }
706 slot = ((struct delay_pair **)
707 htab_find_slot_with_hash (delay_htab, i1, htab_hash_pointer (i1),
708 INSERT));
709 p->next_same_i1 = *slot;
710 *slot = p;
711 slot = ((struct delay_pair **)
712 htab_find_slot_with_hash (delay_htab_i2, i2, htab_hash_pointer (i2),
713 INSERT));
714 *slot = p;
715 }
716
717 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
718 and return the other insn if so. Return NULL otherwise. */
719 rtx
720 real_insn_for_shadow (rtx insn)
721 {
722 struct delay_pair *pair;
723
724 if (delay_htab == NULL)
725 return NULL_RTX;
726
727 pair
728 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, insn,
729 htab_hash_pointer (insn));
730 if (!pair || pair->stages > 0)
731 return NULL_RTX;
732 return pair->i1;
733 }
734
735 /* For a pair P of insns, return the fixed distance in cycles from the first
736 insn after which the second must be scheduled. */
737 static int
738 pair_delay (struct delay_pair *p)
739 {
740 if (p->stages == 0)
741 return p->cycles;
742 else
743 return p->stages * modulo_ii;
744 }
745
746 /* Given an insn INSN, add a dependence on its delayed shadow if it
747 has one. Also try to find situations where shadows depend on each other
748 and add dependencies to the real insns to limit the amount of backtracking
749 needed. */
750 void
751 add_delay_dependencies (rtx insn)
752 {
753 struct delay_pair *pair;
754 sd_iterator_def sd_it;
755 dep_t dep;
756
757 if (!delay_htab)
758 return;
759
760 pair
761 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, insn,
762 htab_hash_pointer (insn));
763 if (!pair)
764 return;
765 add_dependence (insn, pair->i1, REG_DEP_ANTI);
766 if (pair->stages)
767 return;
768
769 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
770 {
771 rtx pro = DEP_PRO (dep);
772 struct delay_pair *other_pair
773 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, pro,
774 htab_hash_pointer (pro));
775 if (!other_pair || other_pair->stages)
776 continue;
777 if (pair_delay (other_pair) >= pair_delay (pair))
778 {
779 if (sched_verbose >= 4)
780 {
781 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
782 INSN_UID (other_pair->i1),
783 INSN_UID (pair->i1));
784 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
785 INSN_UID (pair->i1),
786 INSN_UID (pair->i2),
787 pair_delay (pair));
788 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
789 INSN_UID (other_pair->i1),
790 INSN_UID (other_pair->i2),
791 pair_delay (other_pair));
792 }
793 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
794 }
795 }
796 }
797 \f
798 /* Forward declarations. */
799
800 static int priority (rtx);
801 static int rank_for_schedule (const void *, const void *);
802 static void swap_sort (rtx *, int);
803 static void queue_insn (rtx, int, const char *);
804 static int schedule_insn (rtx);
805 static void adjust_priority (rtx);
806 static void advance_one_cycle (void);
807 static void extend_h_i_d (void);
808
809
810 /* Notes handling mechanism:
811 =========================
812 Generally, NOTES are saved before scheduling and restored after scheduling.
813 The scheduler distinguishes between two types of notes:
814
815 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
816 Before scheduling a region, a pointer to the note is added to the insn
817 that follows or precedes it. (This happens as part of the data dependence
818 computation). After scheduling an insn, the pointer contained in it is
819 used for regenerating the corresponding note (in reemit_notes).
820
821 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
822 these notes are put in a list (in rm_other_notes() and
823 unlink_other_notes ()). After scheduling the block, these notes are
824 inserted at the beginning of the block (in schedule_block()). */
825
826 static void ready_add (struct ready_list *, rtx, bool);
827 static rtx ready_remove_first (struct ready_list *);
828 static rtx ready_remove_first_dispatch (struct ready_list *ready);
829
830 static void queue_to_ready (struct ready_list *);
831 static int early_queue_to_ready (state_t, struct ready_list *);
832
833 static void debug_ready_list (struct ready_list *);
834
835 /* The following functions are used to implement multi-pass scheduling
836 on the first cycle. */
837 static rtx ready_remove (struct ready_list *, int);
838 static void ready_remove_insn (rtx);
839
840 static void fix_inter_tick (rtx, rtx);
841 static int fix_tick_ready (rtx);
842 static void change_queue_index (rtx, int);
843
844 /* The following functions are used to implement scheduling of data/control
845 speculative instructions. */
846
847 static void extend_h_i_d (void);
848 static void init_h_i_d (rtx);
849 static int haifa_speculate_insn (rtx, ds_t, rtx *);
850 static void generate_recovery_code (rtx);
851 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
852 static void begin_speculative_block (rtx);
853 static void add_to_speculative_block (rtx);
854 static void init_before_recovery (basic_block *);
855 static void create_check_block_twin (rtx, bool);
856 static void fix_recovery_deps (basic_block);
857 static bool haifa_change_pattern (rtx, rtx);
858 static void dump_new_block_header (int, basic_block, rtx, rtx);
859 static void restore_bb_notes (basic_block);
860 static void fix_jump_move (rtx);
861 static void move_block_after_check (rtx);
862 static void move_succs (VEC(edge,gc) **, basic_block);
863 static void sched_remove_insn (rtx);
864 static void clear_priorities (rtx, rtx_vec_t *);
865 static void calc_priorities (rtx_vec_t);
866 static void add_jump_dependencies (rtx, rtx);
867
868 #endif /* INSN_SCHEDULING */
869 \f
870 /* Point to state used for the current scheduling pass. */
871 struct haifa_sched_info *current_sched_info;
872 \f
873 #ifndef INSN_SCHEDULING
874 void
875 schedule_insns (void)
876 {
877 }
878 #else
879
880 /* Do register pressure sensitive insn scheduling if the flag is set
881 up. */
882 enum sched_pressure_algorithm sched_pressure;
883
884 /* Map regno -> its pressure class. The map defined only when
885 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
886 enum reg_class *sched_regno_pressure_class;
887
888 /* The current register pressure. Only elements corresponding pressure
889 classes are defined. */
890 static int curr_reg_pressure[N_REG_CLASSES];
891
892 /* Saved value of the previous array. */
893 static int saved_reg_pressure[N_REG_CLASSES];
894
895 /* Register living at given scheduling point. */
896 static bitmap curr_reg_live;
897
898 /* Saved value of the previous array. */
899 static bitmap saved_reg_live;
900
901 /* Registers mentioned in the current region. */
902 static bitmap region_ref_regs;
903
904 /* Initiate register pressure relative info for scheduling the current
905 region. Currently it is only clearing register mentioned in the
906 current region. */
907 void
908 sched_init_region_reg_pressure_info (void)
909 {
910 bitmap_clear (region_ref_regs);
911 }
912
913 /* PRESSURE[CL] describes the pressure on register class CL. Update it
914 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
915 LIVE tracks the set of live registers; if it is null, assume that
916 every birth or death is genuine. */
917 static inline void
918 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
919 {
920 enum reg_class pressure_class;
921
922 pressure_class = sched_regno_pressure_class[regno];
923 if (regno >= FIRST_PSEUDO_REGISTER)
924 {
925 if (pressure_class != NO_REGS)
926 {
927 if (birth_p)
928 {
929 if (!live || bitmap_set_bit (live, regno))
930 pressure[pressure_class]
931 += (ira_reg_class_max_nregs
932 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
933 }
934 else
935 {
936 if (!live || bitmap_clear_bit (live, regno))
937 pressure[pressure_class]
938 -= (ira_reg_class_max_nregs
939 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
940 }
941 }
942 }
943 else if (pressure_class != NO_REGS
944 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
945 {
946 if (birth_p)
947 {
948 if (!live || bitmap_set_bit (live, regno))
949 pressure[pressure_class]++;
950 }
951 else
952 {
953 if (!live || bitmap_clear_bit (live, regno))
954 pressure[pressure_class]--;
955 }
956 }
957 }
958
959 /* Initiate current register pressure related info from living
960 registers given by LIVE. */
961 static void
962 initiate_reg_pressure_info (bitmap live)
963 {
964 int i;
965 unsigned int j;
966 bitmap_iterator bi;
967
968 for (i = 0; i < ira_pressure_classes_num; i++)
969 curr_reg_pressure[ira_pressure_classes[i]] = 0;
970 bitmap_clear (curr_reg_live);
971 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
972 if (sched_pressure == SCHED_PRESSURE_MODEL
973 || current_nr_blocks == 1
974 || bitmap_bit_p (region_ref_regs, j))
975 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
976 }
977
978 /* Mark registers in X as mentioned in the current region. */
979 static void
980 setup_ref_regs (rtx x)
981 {
982 int i, j, regno;
983 const RTX_CODE code = GET_CODE (x);
984 const char *fmt;
985
986 if (REG_P (x))
987 {
988 regno = REGNO (x);
989 if (HARD_REGISTER_NUM_P (regno))
990 bitmap_set_range (region_ref_regs, regno,
991 hard_regno_nregs[regno][GET_MODE (x)]);
992 else
993 bitmap_set_bit (region_ref_regs, REGNO (x));
994 return;
995 }
996 fmt = GET_RTX_FORMAT (code);
997 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
998 if (fmt[i] == 'e')
999 setup_ref_regs (XEXP (x, i));
1000 else if (fmt[i] == 'E')
1001 {
1002 for (j = 0; j < XVECLEN (x, i); j++)
1003 setup_ref_regs (XVECEXP (x, i, j));
1004 }
1005 }
1006
1007 /* Initiate current register pressure related info at the start of
1008 basic block BB. */
1009 static void
1010 initiate_bb_reg_pressure_info (basic_block bb)
1011 {
1012 unsigned int i ATTRIBUTE_UNUSED;
1013 rtx insn;
1014
1015 if (current_nr_blocks > 1)
1016 FOR_BB_INSNS (bb, insn)
1017 if (NONDEBUG_INSN_P (insn))
1018 setup_ref_regs (PATTERN (insn));
1019 initiate_reg_pressure_info (df_get_live_in (bb));
1020 #ifdef EH_RETURN_DATA_REGNO
1021 if (bb_has_eh_pred (bb))
1022 for (i = 0; ; ++i)
1023 {
1024 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1025
1026 if (regno == INVALID_REGNUM)
1027 break;
1028 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1029 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1030 regno, true);
1031 }
1032 #endif
1033 }
1034
1035 /* Save current register pressure related info. */
1036 static void
1037 save_reg_pressure (void)
1038 {
1039 int i;
1040
1041 for (i = 0; i < ira_pressure_classes_num; i++)
1042 saved_reg_pressure[ira_pressure_classes[i]]
1043 = curr_reg_pressure[ira_pressure_classes[i]];
1044 bitmap_copy (saved_reg_live, curr_reg_live);
1045 }
1046
1047 /* Restore saved register pressure related info. */
1048 static void
1049 restore_reg_pressure (void)
1050 {
1051 int i;
1052
1053 for (i = 0; i < ira_pressure_classes_num; i++)
1054 curr_reg_pressure[ira_pressure_classes[i]]
1055 = saved_reg_pressure[ira_pressure_classes[i]];
1056 bitmap_copy (curr_reg_live, saved_reg_live);
1057 }
1058
1059 /* Return TRUE if the register is dying after its USE. */
1060 static bool
1061 dying_use_p (struct reg_use_data *use)
1062 {
1063 struct reg_use_data *next;
1064
1065 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1066 if (NONDEBUG_INSN_P (next->insn)
1067 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1068 return false;
1069 return true;
1070 }
1071
1072 /* Print info about the current register pressure and its excess for
1073 each pressure class. */
1074 static void
1075 print_curr_reg_pressure (void)
1076 {
1077 int i;
1078 enum reg_class cl;
1079
1080 fprintf (sched_dump, ";;\t");
1081 for (i = 0; i < ira_pressure_classes_num; i++)
1082 {
1083 cl = ira_pressure_classes[i];
1084 gcc_assert (curr_reg_pressure[cl] >= 0);
1085 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1086 curr_reg_pressure[cl],
1087 curr_reg_pressure[cl] - ira_class_hard_regs_num[cl]);
1088 }
1089 fprintf (sched_dump, "\n");
1090 }
1091 \f
1092 /* Determine if INSN has a condition that is clobbered if a register
1093 in SET_REGS is modified. */
1094 static bool
1095 cond_clobbered_p (rtx insn, HARD_REG_SET set_regs)
1096 {
1097 rtx pat = PATTERN (insn);
1098 gcc_assert (GET_CODE (pat) == COND_EXEC);
1099 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1100 {
1101 sd_iterator_def sd_it;
1102 dep_t dep;
1103 haifa_change_pattern (insn, ORIG_PAT (insn));
1104 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1105 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1106 TODO_SPEC (insn) = HARD_DEP;
1107 if (sched_verbose >= 2)
1108 fprintf (sched_dump,
1109 ";;\t\tdequeue insn %s because of clobbered condition\n",
1110 (*current_sched_info->print_insn) (insn, 0));
1111 return true;
1112 }
1113
1114 return false;
1115 }
1116
1117 /* Look at the remaining dependencies for insn NEXT, and compute and return
1118 the TODO_SPEC value we should use for it. This is called after one of
1119 NEXT's dependencies has been resolved. */
1120
1121 static ds_t
1122 recompute_todo_spec (rtx next)
1123 {
1124 ds_t new_ds;
1125 sd_iterator_def sd_it;
1126 dep_t dep, control_dep = NULL;
1127 int n_spec = 0;
1128 int n_control = 0;
1129 bool first_p = true;
1130
1131 if (sd_lists_empty_p (next, SD_LIST_BACK))
1132 /* NEXT has all its dependencies resolved. */
1133 return 0;
1134
1135 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1136 return HARD_DEP;
1137
1138 /* Now we've got NEXT with speculative deps only.
1139 1. Look at the deps to see what we have to do.
1140 2. Check if we can do 'todo'. */
1141 new_ds = 0;
1142
1143 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1144 {
1145 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1146
1147 if (DEBUG_INSN_P (DEP_PRO (dep)) && !DEBUG_INSN_P (next))
1148 continue;
1149
1150 if (ds)
1151 {
1152 n_spec++;
1153 if (first_p)
1154 {
1155 first_p = false;
1156
1157 new_ds = ds;
1158 }
1159 else
1160 new_ds = ds_merge (new_ds, ds);
1161 }
1162 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1163 {
1164 n_control++;
1165 control_dep = dep;
1166 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1167 }
1168 }
1169
1170 if (n_control == 1 && n_spec == 0)
1171 {
1172 rtx pro, other, new_pat;
1173 rtx cond = NULL_RTX;
1174 bool success;
1175 rtx prev = NULL_RTX;
1176 int i;
1177 unsigned regno;
1178
1179 if ((current_sched_info->flags & DO_PREDICATION) == 0
1180 || (ORIG_PAT (next) != NULL_RTX
1181 && PREDICATED_PAT (next) == NULL_RTX))
1182 return HARD_DEP;
1183
1184 pro = DEP_PRO (control_dep);
1185 other = real_insn_for_shadow (pro);
1186 if (other != NULL_RTX)
1187 pro = other;
1188
1189 cond = sched_get_reverse_condition_uncached (pro);
1190 regno = REGNO (XEXP (cond, 0));
1191
1192 /* Find the last scheduled insn that modifies the condition register.
1193 We can stop looking once we find the insn we depend on through the
1194 REG_DEP_CONTROL; if the condition register isn't modified after it,
1195 we know that it still has the right value. */
1196 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1197 FOR_EACH_VEC_ELT_REVERSE (rtx, scheduled_insns, i, prev)
1198 {
1199 HARD_REG_SET t;
1200
1201 find_all_hard_reg_sets (prev, &t);
1202 if (TEST_HARD_REG_BIT (t, regno))
1203 return HARD_DEP;
1204 if (prev == pro)
1205 break;
1206 }
1207 if (ORIG_PAT (next) == NULL_RTX)
1208 {
1209 ORIG_PAT (next) = PATTERN (next);
1210
1211 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1212 success = haifa_change_pattern (next, new_pat);
1213 if (!success)
1214 return HARD_DEP;
1215 PREDICATED_PAT (next) = new_pat;
1216 }
1217 else if (PATTERN (next) != PREDICATED_PAT (next))
1218 {
1219 bool success = haifa_change_pattern (next,
1220 PREDICATED_PAT (next));
1221 gcc_assert (success);
1222 }
1223 DEP_STATUS (control_dep) |= DEP_CANCELLED;
1224 return DEP_CONTROL;
1225 }
1226
1227 if (PREDICATED_PAT (next) != NULL_RTX)
1228 {
1229 int tick = INSN_TICK (next);
1230 bool success = haifa_change_pattern (next,
1231 ORIG_PAT (next));
1232 INSN_TICK (next) = tick;
1233 gcc_assert (success);
1234 }
1235
1236 /* We can't handle the case where there are both speculative and control
1237 dependencies, so we return HARD_DEP in such a case. Also fail if
1238 we have speculative dependencies with not enough points, or more than
1239 one control dependency. */
1240 if ((n_spec > 0 && n_control > 0)
1241 || (n_spec > 0
1242 /* Too few points? */
1243 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1244 || (n_control > 1))
1245 return HARD_DEP;
1246
1247 return new_ds;
1248 }
1249 \f
1250 /* Pointer to the last instruction scheduled. */
1251 static rtx last_scheduled_insn;
1252
1253 /* Pointer to the last nondebug instruction scheduled within the
1254 block, or the prev_head of the scheduling block. Used by
1255 rank_for_schedule, so that insns independent of the last scheduled
1256 insn will be preferred over dependent instructions. */
1257 static rtx last_nondebug_scheduled_insn;
1258
1259 /* Pointer that iterates through the list of unscheduled insns if we
1260 have a dbg_cnt enabled. It always points at an insn prior to the
1261 first unscheduled one. */
1262 static rtx nonscheduled_insns_begin;
1263
1264 /* Cached cost of the instruction. Use below function to get cost of the
1265 insn. -1 here means that the field is not initialized. */
1266 #define INSN_COST(INSN) (HID (INSN)->cost)
1267
1268 /* Compute cost of executing INSN.
1269 This is the number of cycles between instruction issue and
1270 instruction results. */
1271 int
1272 insn_cost (rtx insn)
1273 {
1274 int cost;
1275
1276 if (sel_sched_p ())
1277 {
1278 if (recog_memoized (insn) < 0)
1279 return 0;
1280
1281 cost = insn_default_latency (insn);
1282 if (cost < 0)
1283 cost = 0;
1284
1285 return cost;
1286 }
1287
1288 cost = INSN_COST (insn);
1289
1290 if (cost < 0)
1291 {
1292 /* A USE insn, or something else we don't need to
1293 understand. We can't pass these directly to
1294 result_ready_cost or insn_default_latency because it will
1295 trigger a fatal error for unrecognizable insns. */
1296 if (recog_memoized (insn) < 0)
1297 {
1298 INSN_COST (insn) = 0;
1299 return 0;
1300 }
1301 else
1302 {
1303 cost = insn_default_latency (insn);
1304 if (cost < 0)
1305 cost = 0;
1306
1307 INSN_COST (insn) = cost;
1308 }
1309 }
1310
1311 return cost;
1312 }
1313
1314 /* Compute cost of dependence LINK.
1315 This is the number of cycles between instruction issue and
1316 instruction results.
1317 ??? We also use this function to call recog_memoized on all insns. */
1318 int
1319 dep_cost_1 (dep_t link, dw_t dw)
1320 {
1321 rtx insn = DEP_PRO (link);
1322 rtx used = DEP_CON (link);
1323 int cost;
1324
1325 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1326 return DEP_COST (link);
1327
1328 if (delay_htab)
1329 {
1330 struct delay_pair *delay_entry;
1331 delay_entry
1332 = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, used,
1333 htab_hash_pointer (used));
1334 if (delay_entry)
1335 {
1336 if (delay_entry->i1 == insn)
1337 {
1338 DEP_COST (link) = pair_delay (delay_entry);
1339 return DEP_COST (link);
1340 }
1341 }
1342 }
1343
1344 /* A USE insn should never require the value used to be computed.
1345 This allows the computation of a function's result and parameter
1346 values to overlap the return and call. We don't care about the
1347 dependence cost when only decreasing register pressure. */
1348 if (recog_memoized (used) < 0)
1349 {
1350 cost = 0;
1351 recog_memoized (insn);
1352 }
1353 else
1354 {
1355 enum reg_note dep_type = DEP_TYPE (link);
1356
1357 cost = insn_cost (insn);
1358
1359 if (INSN_CODE (insn) >= 0)
1360 {
1361 if (dep_type == REG_DEP_ANTI)
1362 cost = 0;
1363 else if (dep_type == REG_DEP_OUTPUT)
1364 {
1365 cost = (insn_default_latency (insn)
1366 - insn_default_latency (used));
1367 if (cost <= 0)
1368 cost = 1;
1369 }
1370 else if (bypass_p (insn))
1371 cost = insn_latency (insn, used);
1372 }
1373
1374
1375 if (targetm.sched.adjust_cost_2)
1376 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1377 dw);
1378 else if (targetm.sched.adjust_cost != NULL)
1379 {
1380 /* This variable is used for backward compatibility with the
1381 targets. */
1382 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
1383
1384 /* Make it self-cycled, so that if some tries to walk over this
1385 incomplete list he/she will be caught in an endless loop. */
1386 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1387
1388 /* Targets use only REG_NOTE_KIND of the link. */
1389 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1390
1391 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1392 insn, cost);
1393
1394 free_INSN_LIST_node (dep_cost_rtx_link);
1395 }
1396
1397 if (cost < 0)
1398 cost = 0;
1399 }
1400
1401 DEP_COST (link) = cost;
1402 return cost;
1403 }
1404
1405 /* Compute cost of dependence LINK.
1406 This is the number of cycles between instruction issue and
1407 instruction results. */
1408 int
1409 dep_cost (dep_t link)
1410 {
1411 return dep_cost_1 (link, 0);
1412 }
1413
1414 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1415 INSN_PRIORITY explicitly. */
1416 void
1417 increase_insn_priority (rtx insn, int amount)
1418 {
1419 if (!sel_sched_p ())
1420 {
1421 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1422 if (INSN_PRIORITY_KNOWN (insn))
1423 INSN_PRIORITY (insn) += amount;
1424 }
1425 else
1426 {
1427 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1428 Use EXPR_PRIORITY instead. */
1429 sel_add_to_insn_priority (insn, amount);
1430 }
1431 }
1432
1433 /* Return 'true' if DEP should be included in priority calculations. */
1434 static bool
1435 contributes_to_priority_p (dep_t dep)
1436 {
1437 if (DEBUG_INSN_P (DEP_CON (dep))
1438 || DEBUG_INSN_P (DEP_PRO (dep)))
1439 return false;
1440
1441 /* Critical path is meaningful in block boundaries only. */
1442 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1443 DEP_PRO (dep)))
1444 return false;
1445
1446 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1447 then speculative instructions will less likely be
1448 scheduled. That is because the priority of
1449 their producers will increase, and, thus, the
1450 producers will more likely be scheduled, thus,
1451 resolving the dependence. */
1452 if (sched_deps_info->generate_spec_deps
1453 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1454 && (DEP_STATUS (dep) & SPECULATIVE))
1455 return false;
1456
1457 return true;
1458 }
1459
1460 /* Compute the number of nondebug deps in list LIST for INSN. */
1461
1462 static int
1463 dep_list_size (rtx insn, sd_list_types_def list)
1464 {
1465 sd_iterator_def sd_it;
1466 dep_t dep;
1467 int dbgcount = 0, nodbgcount = 0;
1468
1469 if (!MAY_HAVE_DEBUG_INSNS)
1470 return sd_lists_size (insn, list);
1471
1472 FOR_EACH_DEP (insn, list, sd_it, dep)
1473 {
1474 if (DEBUG_INSN_P (DEP_CON (dep)))
1475 dbgcount++;
1476 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1477 nodbgcount++;
1478 }
1479
1480 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1481
1482 return nodbgcount;
1483 }
1484
1485 /* Compute the priority number for INSN. */
1486 static int
1487 priority (rtx insn)
1488 {
1489 if (! INSN_P (insn))
1490 return 0;
1491
1492 /* We should not be interested in priority of an already scheduled insn. */
1493 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1494
1495 if (!INSN_PRIORITY_KNOWN (insn))
1496 {
1497 int this_priority = -1;
1498
1499 if (dep_list_size (insn, SD_LIST_FORW) == 0)
1500 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1501 some forward deps but all of them are ignored by
1502 contributes_to_priority hook. At the moment we set priority of
1503 such insn to 0. */
1504 this_priority = insn_cost (insn);
1505 else
1506 {
1507 rtx prev_first, twin;
1508 basic_block rec;
1509
1510 /* For recovery check instructions we calculate priority slightly
1511 different than that of normal instructions. Instead of walking
1512 through INSN_FORW_DEPS (check) list, we walk through
1513 INSN_FORW_DEPS list of each instruction in the corresponding
1514 recovery block. */
1515
1516 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1517 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1518 if (!rec || rec == EXIT_BLOCK_PTR)
1519 {
1520 prev_first = PREV_INSN (insn);
1521 twin = insn;
1522 }
1523 else
1524 {
1525 prev_first = NEXT_INSN (BB_HEAD (rec));
1526 twin = PREV_INSN (BB_END (rec));
1527 }
1528
1529 do
1530 {
1531 sd_iterator_def sd_it;
1532 dep_t dep;
1533
1534 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1535 {
1536 rtx next;
1537 int next_priority;
1538
1539 next = DEP_CON (dep);
1540
1541 if (BLOCK_FOR_INSN (next) != rec)
1542 {
1543 int cost;
1544
1545 if (!contributes_to_priority_p (dep))
1546 continue;
1547
1548 if (twin == insn)
1549 cost = dep_cost (dep);
1550 else
1551 {
1552 struct _dep _dep1, *dep1 = &_dep1;
1553
1554 init_dep (dep1, insn, next, REG_DEP_ANTI);
1555
1556 cost = dep_cost (dep1);
1557 }
1558
1559 next_priority = cost + priority (next);
1560
1561 if (next_priority > this_priority)
1562 this_priority = next_priority;
1563 }
1564 }
1565
1566 twin = PREV_INSN (twin);
1567 }
1568 while (twin != prev_first);
1569 }
1570
1571 if (this_priority < 0)
1572 {
1573 gcc_assert (this_priority == -1);
1574
1575 this_priority = insn_cost (insn);
1576 }
1577
1578 INSN_PRIORITY (insn) = this_priority;
1579 INSN_PRIORITY_STATUS (insn) = 1;
1580 }
1581
1582 return INSN_PRIORITY (insn);
1583 }
1584 \f
1585 /* Macros and functions for keeping the priority queue sorted, and
1586 dealing with queuing and dequeuing of instructions. */
1587
1588 #define SCHED_SORT(READY, N_READY) \
1589 do { if ((N_READY) == 2) \
1590 swap_sort (READY, N_READY); \
1591 else if ((N_READY) > 2) \
1592 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1593 while (0)
1594
1595 /* For each pressure class CL, set DEATH[CL] to the number of registers
1596 in that class that die in INSN. */
1597
1598 static void
1599 calculate_reg_deaths (rtx insn, int *death)
1600 {
1601 int i;
1602 struct reg_use_data *use;
1603
1604 for (i = 0; i < ira_pressure_classes_num; i++)
1605 death[ira_pressure_classes[i]] = 0;
1606 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1607 if (dying_use_p (use))
1608 mark_regno_birth_or_death (0, death, use->regno, true);
1609 }
1610
1611 /* Setup info about the current register pressure impact of scheduling
1612 INSN at the current scheduling point. */
1613 static void
1614 setup_insn_reg_pressure_info (rtx insn)
1615 {
1616 int i, change, before, after, hard_regno;
1617 int excess_cost_change;
1618 enum machine_mode mode;
1619 enum reg_class cl;
1620 struct reg_pressure_data *pressure_info;
1621 int *max_reg_pressure;
1622 static int death[N_REG_CLASSES];
1623
1624 gcc_checking_assert (!DEBUG_INSN_P (insn));
1625
1626 excess_cost_change = 0;
1627 calculate_reg_deaths (insn, death);
1628 pressure_info = INSN_REG_PRESSURE (insn);
1629 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1630 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1631 for (i = 0; i < ira_pressure_classes_num; i++)
1632 {
1633 cl = ira_pressure_classes[i];
1634 gcc_assert (curr_reg_pressure[cl] >= 0);
1635 change = (int) pressure_info[i].set_increase - death[cl];
1636 before = MAX (0, max_reg_pressure[i] - ira_class_hard_regs_num[cl]);
1637 after = MAX (0, max_reg_pressure[i] + change
1638 - ira_class_hard_regs_num[cl]);
1639 hard_regno = ira_class_hard_regs[cl][0];
1640 gcc_assert (hard_regno >= 0);
1641 mode = reg_raw_mode[hard_regno];
1642 excess_cost_change += ((after - before)
1643 * (ira_memory_move_cost[mode][cl][0]
1644 + ira_memory_move_cost[mode][cl][1]));
1645 }
1646 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1647 }
1648 \f
1649 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1650 It tries to make the scheduler take register pressure into account
1651 without introducing too many unnecessary stalls. It hooks into the
1652 main scheduling algorithm at several points:
1653
1654 - Before scheduling starts, model_start_schedule constructs a
1655 "model schedule" for the current block. This model schedule is
1656 chosen solely to keep register pressure down. It does not take the
1657 target's pipeline or the original instruction order into account,
1658 except as a tie-breaker. It also doesn't work to a particular
1659 pressure limit.
1660
1661 This model schedule gives us an idea of what pressure can be
1662 achieved for the block and gives us an example of a schedule that
1663 keeps to that pressure. It also makes the final schedule less
1664 dependent on the original instruction order. This is important
1665 because the original order can either be "wide" (many values live
1666 at once, such as in user-scheduled code) or "narrow" (few values
1667 live at once, such as after loop unrolling, where several
1668 iterations are executed sequentially).
1669
1670 We do not apply this model schedule to the rtx stream. We simply
1671 record it in model_schedule. We also compute the maximum pressure,
1672 MP, that was seen during this schedule.
1673
1674 - Instructions are added to the ready queue even if they require
1675 a stall. The length of the stall is instead computed as:
1676
1677 MAX (INSN_TICK (INSN) - clock_var, 0)
1678
1679 (= insn_delay). This allows rank_for_schedule to choose between
1680 introducing a deliberate stall or increasing pressure.
1681
1682 - Before sorting the ready queue, model_set_excess_costs assigns
1683 a pressure-based cost to each ready instruction in the queue.
1684 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1685 (ECC for short) and is effectively measured in cycles.
1686
1687 - rank_for_schedule ranks instructions based on:
1688
1689 ECC (insn) + insn_delay (insn)
1690
1691 then as:
1692
1693 insn_delay (insn)
1694
1695 So, for example, an instruction X1 with an ECC of 1 that can issue
1696 now will win over an instruction X0 with an ECC of zero that would
1697 introduce a stall of one cycle. However, an instruction X2 with an
1698 ECC of 2 that can issue now will lose to both X0 and X1.
1699
1700 - When an instruction is scheduled, model_recompute updates the model
1701 schedule with the new pressures (some of which might now exceed the
1702 original maximum pressure MP). model_update_limit_points then searches
1703 for the new point of maximum pressure, if not already known. */
1704
1705 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1706 from surrounding debug information. */
1707 #define MODEL_BAR \
1708 ";;\t\t+------------------------------------------------------\n"
1709
1710 /* Information about the pressure on a particular register class at a
1711 particular point of the model schedule. */
1712 struct model_pressure_data {
1713 /* The pressure at this point of the model schedule, or -1 if the
1714 point is associated with an instruction that has already been
1715 scheduled. */
1716 int ref_pressure;
1717
1718 /* The maximum pressure during or after this point of the model schedule. */
1719 int max_pressure;
1720 };
1721
1722 /* Per-instruction information that is used while building the model
1723 schedule. Here, "schedule" refers to the model schedule rather
1724 than the main schedule. */
1725 struct model_insn_info {
1726 /* The instruction itself. */
1727 rtx insn;
1728
1729 /* If this instruction is in model_worklist, these fields link to the
1730 previous (higher-priority) and next (lower-priority) instructions
1731 in the list. */
1732 struct model_insn_info *prev;
1733 struct model_insn_info *next;
1734
1735 /* While constructing the schedule, QUEUE_INDEX describes whether an
1736 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1737 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1738 old_queue records the value that QUEUE_INDEX had before scheduling
1739 started, so that we can restore it once the schedule is complete. */
1740 int old_queue;
1741
1742 /* The relative importance of an unscheduled instruction. Higher
1743 values indicate greater importance. */
1744 unsigned int model_priority;
1745
1746 /* The length of the longest path of satisfied true dependencies
1747 that leads to this instruction. */
1748 unsigned int depth;
1749
1750 /* The length of the longest path of dependencies of any kind
1751 that leads from this instruction. */
1752 unsigned int alap;
1753
1754 /* The number of predecessor nodes that must still be scheduled. */
1755 int unscheduled_preds;
1756 };
1757
1758 /* Information about the pressure limit for a particular register class.
1759 This structure is used when applying a model schedule to the main
1760 schedule. */
1761 struct model_pressure_limit {
1762 /* The maximum register pressure seen in the original model schedule. */
1763 int orig_pressure;
1764
1765 /* The maximum register pressure seen in the current model schedule
1766 (which excludes instructions that have already been scheduled). */
1767 int pressure;
1768
1769 /* The point of the current model schedule at which PRESSURE is first
1770 reached. It is set to -1 if the value needs to be recomputed. */
1771 int point;
1772 };
1773
1774 /* Describes a particular way of measuring register pressure. */
1775 struct model_pressure_group {
1776 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1777 struct model_pressure_limit limits[N_REG_CLASSES];
1778
1779 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1780 on register class ira_pressure_classes[PCI] at point POINT of the
1781 current model schedule. A POINT of model_num_insns describes the
1782 pressure at the end of the schedule. */
1783 struct model_pressure_data *model;
1784 };
1785
1786 /* Index POINT gives the instruction at point POINT of the model schedule.
1787 This array doesn't change during main scheduling. */
1788 static VEC (rtx, heap) *model_schedule;
1789
1790 /* The list of instructions in the model worklist, sorted in order of
1791 decreasing priority. */
1792 static struct model_insn_info *model_worklist;
1793
1794 /* Index I describes the instruction with INSN_LUID I. */
1795 static struct model_insn_info *model_insns;
1796
1797 /* The number of instructions in the model schedule. */
1798 static int model_num_insns;
1799
1800 /* The index of the first instruction in model_schedule that hasn't yet been
1801 added to the main schedule, or model_num_insns if all of them have. */
1802 static int model_curr_point;
1803
1804 /* Describes the pressure before each instruction in the model schedule. */
1805 static struct model_pressure_group model_before_pressure;
1806
1807 /* The first unused model_priority value (as used in model_insn_info). */
1808 static unsigned int model_next_priority;
1809
1810
1811 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1812 at point POINT of the model schedule. */
1813 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1814 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1815
1816 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1817 after point POINT of the model schedule. */
1818 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1819 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1820
1821 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1822 of the model schedule. */
1823 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1824 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1825
1826 /* Information about INSN that is used when creating the model schedule. */
1827 #define MODEL_INSN_INFO(INSN) \
1828 (&model_insns[INSN_LUID (INSN)])
1829
1830 /* The instruction at point POINT of the model schedule. */
1831 #define MODEL_INSN(POINT) \
1832 (VEC_index (rtx, model_schedule, POINT))
1833
1834
1835 /* Return INSN's index in the model schedule, or model_num_insns if it
1836 doesn't belong to that schedule. */
1837
1838 static int
1839 model_index (rtx insn)
1840 {
1841 if (INSN_MODEL_INDEX (insn) == 0)
1842 return model_num_insns;
1843 return INSN_MODEL_INDEX (insn) - 1;
1844 }
1845
1846 /* Make sure that GROUP->limits is up-to-date for the current point
1847 of the model schedule. */
1848
1849 static void
1850 model_update_limit_points_in_group (struct model_pressure_group *group)
1851 {
1852 int pci, max_pressure, point;
1853
1854 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1855 {
1856 /* We may have passed the final point at which the pressure in
1857 group->limits[pci].pressure was reached. Update the limit if so. */
1858 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1859 group->limits[pci].pressure = max_pressure;
1860
1861 /* Find the point at which MAX_PRESSURE is first reached. We need
1862 to search in three cases:
1863
1864 - We've already moved past the previous pressure point.
1865 In this case we search forward from model_curr_point.
1866
1867 - We scheduled the previous point of maximum pressure ahead of
1868 its position in the model schedule, but doing so didn't bring
1869 the pressure point earlier. In this case we search forward
1870 from that previous pressure point.
1871
1872 - Scheduling an instruction early caused the maximum pressure
1873 to decrease. In this case we will have set the pressure
1874 point to -1, and we search forward from model_curr_point. */
1875 point = MAX (group->limits[pci].point, model_curr_point);
1876 while (point < model_num_insns
1877 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1878 point++;
1879 group->limits[pci].point = point;
1880
1881 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1882 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1883 }
1884 }
1885
1886 /* Make sure that all register-pressure limits are up-to-date for the
1887 current position in the model schedule. */
1888
1889 static void
1890 model_update_limit_points (void)
1891 {
1892 model_update_limit_points_in_group (&model_before_pressure);
1893 }
1894
1895 /* Return the model_index of the last unscheduled use in chain USE
1896 outside of USE's instruction. Return -1 if there are no other uses,
1897 or model_num_insns if the register is live at the end of the block. */
1898
1899 static int
1900 model_last_use_except (struct reg_use_data *use)
1901 {
1902 struct reg_use_data *next;
1903 int last, index;
1904
1905 last = -1;
1906 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1907 if (NONDEBUG_INSN_P (next->insn)
1908 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1909 {
1910 index = model_index (next->insn);
1911 if (index == model_num_insns)
1912 return model_num_insns;
1913 if (last < index)
1914 last = index;
1915 }
1916 return last;
1917 }
1918
1919 /* An instruction with model_index POINT has just been scheduled, and it
1920 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
1921 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
1922 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
1923
1924 static void
1925 model_start_update_pressure (struct model_pressure_group *group,
1926 int point, int pci, int delta)
1927 {
1928 int next_max_pressure;
1929
1930 if (point == model_num_insns)
1931 {
1932 /* The instruction wasn't part of the model schedule; it was moved
1933 from a different block. Update the pressure for the end of
1934 the model schedule. */
1935 MODEL_REF_PRESSURE (group, point, pci) += delta;
1936 MODEL_MAX_PRESSURE (group, point, pci) += delta;
1937 }
1938 else
1939 {
1940 /* Record that this instruction has been scheduled. Nothing now
1941 changes between POINT and POINT + 1, so get the maximum pressure
1942 from the latter. If the maximum pressure decreases, the new
1943 pressure point may be before POINT. */
1944 MODEL_REF_PRESSURE (group, point, pci) = -1;
1945 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
1946 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
1947 {
1948 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
1949 if (group->limits[pci].point == point)
1950 group->limits[pci].point = -1;
1951 }
1952 }
1953 }
1954
1955 /* Record that scheduling a later instruction has changed the pressure
1956 at point POINT of the model schedule by DELTA (which might be 0).
1957 Update GROUP accordingly. Return nonzero if these changes might
1958 trigger changes to previous points as well. */
1959
1960 static int
1961 model_update_pressure (struct model_pressure_group *group,
1962 int point, int pci, int delta)
1963 {
1964 int ref_pressure, max_pressure, next_max_pressure;
1965
1966 /* If POINT hasn't yet been scheduled, update its pressure. */
1967 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
1968 if (ref_pressure >= 0 && delta != 0)
1969 {
1970 ref_pressure += delta;
1971 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
1972
1973 /* Check whether the maximum pressure in the overall schedule
1974 has increased. (This means that the MODEL_MAX_PRESSURE of
1975 every point <= POINT will need to increae too; see below.) */
1976 if (group->limits[pci].pressure < ref_pressure)
1977 group->limits[pci].pressure = ref_pressure;
1978
1979 /* If we are at maximum pressure, and the maximum pressure
1980 point was previously unknown or later than POINT,
1981 bring it forward. */
1982 if (group->limits[pci].pressure == ref_pressure
1983 && !IN_RANGE (group->limits[pci].point, 0, point))
1984 group->limits[pci].point = point;
1985
1986 /* If POINT used to be the point of maximum pressure, but isn't
1987 any longer, we need to recalculate it using a forward walk. */
1988 if (group->limits[pci].pressure > ref_pressure
1989 && group->limits[pci].point == point)
1990 group->limits[pci].point = -1;
1991 }
1992
1993 /* Update the maximum pressure at POINT. Changes here might also
1994 affect the maximum pressure at POINT - 1. */
1995 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
1996 max_pressure = MAX (ref_pressure, next_max_pressure);
1997 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
1998 {
1999 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2000 return 1;
2001 }
2002 return 0;
2003 }
2004
2005 /* INSN has just been scheduled. Update the model schedule accordingly. */
2006
2007 static void
2008 model_recompute (rtx insn)
2009 {
2010 struct {
2011 int last_use;
2012 int regno;
2013 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2014 struct reg_use_data *use;
2015 struct reg_pressure_data *reg_pressure;
2016 int delta[N_REG_CLASSES];
2017 int pci, point, mix, new_last, cl, ref_pressure, queue;
2018 unsigned int i, num_uses, num_pending_births;
2019 bool print_p;
2020
2021 /* The destinations of INSN were previously live from POINT onwards, but are
2022 now live from model_curr_point onwards. Set up DELTA accordingly. */
2023 point = model_index (insn);
2024 reg_pressure = INSN_REG_PRESSURE (insn);
2025 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2026 {
2027 cl = ira_pressure_classes[pci];
2028 delta[cl] = reg_pressure[pci].set_increase;
2029 }
2030
2031 /* Record which registers previously died at POINT, but which now die
2032 before POINT. Adjust DELTA so that it represents the effect of
2033 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2034 registers that will be born in the range [model_curr_point, POINT). */
2035 num_uses = 0;
2036 num_pending_births = 0;
2037 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2038 {
2039 new_last = model_last_use_except (use);
2040 if (new_last < point)
2041 {
2042 gcc_assert (num_uses < ARRAY_SIZE (uses));
2043 uses[num_uses].last_use = new_last;
2044 uses[num_uses].regno = use->regno;
2045 /* This register is no longer live after POINT - 1. */
2046 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2047 num_uses++;
2048 if (new_last >= 0)
2049 num_pending_births++;
2050 }
2051 }
2052
2053 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2054 Also set each group pressure limit for POINT. */
2055 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2056 {
2057 cl = ira_pressure_classes[pci];
2058 model_start_update_pressure (&model_before_pressure,
2059 point, pci, delta[cl]);
2060 }
2061
2062 /* Walk the model schedule backwards, starting immediately before POINT. */
2063 print_p = false;
2064 if (point != model_curr_point)
2065 do
2066 {
2067 point--;
2068 insn = MODEL_INSN (point);
2069 queue = QUEUE_INDEX (insn);
2070
2071 if (queue != QUEUE_SCHEDULED)
2072 {
2073 /* DELTA describes the effect of the move on the register pressure
2074 after POINT. Make it describe the effect on the pressure
2075 before POINT. */
2076 i = 0;
2077 while (i < num_uses)
2078 {
2079 if (uses[i].last_use == point)
2080 {
2081 /* This register is now live again. */
2082 mark_regno_birth_or_death (NULL, delta,
2083 uses[i].regno, true);
2084
2085 /* Remove this use from the array. */
2086 uses[i] = uses[num_uses - 1];
2087 num_uses--;
2088 num_pending_births--;
2089 }
2090 else
2091 i++;
2092 }
2093
2094 if (sched_verbose >= 5)
2095 {
2096 char buf[2048];
2097
2098 if (!print_p)
2099 {
2100 fprintf (sched_dump, MODEL_BAR);
2101 fprintf (sched_dump, ";;\t\t| New pressure for model"
2102 " schedule\n");
2103 fprintf (sched_dump, MODEL_BAR);
2104 print_p = true;
2105 }
2106
2107 print_pattern (buf, PATTERN (insn), 0);
2108 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2109 point, INSN_UID (insn), buf);
2110 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2111 {
2112 cl = ira_pressure_classes[pci];
2113 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2114 point, pci);
2115 fprintf (sched_dump, " %s:[%d->%d]",
2116 reg_class_names[ira_pressure_classes[pci]],
2117 ref_pressure, ref_pressure + delta[cl]);
2118 }
2119 fprintf (sched_dump, "\n");
2120 }
2121 }
2122
2123 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2124 might have changed as well. */
2125 mix = num_pending_births;
2126 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2127 {
2128 cl = ira_pressure_classes[pci];
2129 mix |= delta[cl];
2130 mix |= model_update_pressure (&model_before_pressure,
2131 point, pci, delta[cl]);
2132 }
2133 }
2134 while (mix && point > model_curr_point);
2135
2136 if (print_p)
2137 fprintf (sched_dump, MODEL_BAR);
2138 }
2139 \f
2140 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2141 pressure on CL from P to P'. We use this to calculate a "base ECC",
2142 baseECC (CL, X), for each pressure class CL and each instruction X.
2143 Supposing X changes the pressure on CL from P to P', and that the
2144 maximum pressure on CL in the current model schedule is MP', then:
2145
2146 * if X occurs before or at the next point of maximum pressure in
2147 the model schedule and P' > MP', then:
2148
2149 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2150
2151 The idea is that the pressure after scheduling a fixed set of
2152 instructions -- in this case, the set up to and including the
2153 next maximum pressure point -- is going to be the same regardless
2154 of the order; we simply want to keep the intermediate pressure
2155 under control. Thus X has a cost of zero unless scheduling it
2156 now would exceed MP'.
2157
2158 If all increases in the set are by the same amount, no zero-cost
2159 instruction will ever cause the pressure to exceed MP'. However,
2160 if X is instead moved past an instruction X' with pressure in the
2161 range (MP' - (P' - P), MP'), the pressure at X' will increase
2162 beyond MP'. Since baseECC is very much a heuristic anyway,
2163 it doesn't seem worth the overhead of tracking cases like these.
2164
2165 The cost of exceeding MP' is always based on the original maximum
2166 pressure MP. This is so that going 2 registers over the original
2167 limit has the same cost regardless of whether it comes from two
2168 separate +1 deltas or from a single +2 delta.
2169
2170 * if X occurs after the next point of maximum pressure in the model
2171 schedule and P' > P, then:
2172
2173 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2174
2175 That is, if we move X forward across a point of maximum pressure,
2176 and if X increases the pressure by P' - P, then we conservatively
2177 assume that scheduling X next would increase the maximum pressure
2178 by P' - P. Again, the cost of doing this is based on the original
2179 maximum pressure MP, for the same reason as above.
2180
2181 * if P' < P, P > MP, and X occurs at or after the next point of
2182 maximum pressure, then:
2183
2184 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2185
2186 That is, if we have already exceeded the original maximum pressure MP,
2187 and if X might reduce the maximum pressure again -- or at least push
2188 it further back, and thus allow more scheduling freedom -- it is given
2189 a negative cost to reflect the improvement.
2190
2191 * otherwise,
2192
2193 baseECC (CL, X) = 0
2194
2195 In this case, X is not expected to affect the maximum pressure MP',
2196 so it has zero cost.
2197
2198 We then create a combined value baseECC (X) that is the sum of
2199 baseECC (CL, X) for each pressure class CL.
2200
2201 baseECC (X) could itself be used as the ECC value described above.
2202 However, this is often too conservative, in the sense that it
2203 tends to make high-priority instructions that increase pressure
2204 wait too long in cases where introducing a spill would be better.
2205 For this reason the final ECC is a priority-adjusted form of
2206 baseECC (X). Specifically, we calculate:
2207
2208 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2209 baseP = MAX { P (X) | baseECC (X) <= 0 }
2210
2211 Then:
2212
2213 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2214
2215 Thus an instruction's effect on pressure is ignored if it has a high
2216 enough priority relative to the ones that don't increase pressure.
2217 Negative values of baseECC (X) do not increase the priority of X
2218 itself, but they do make it harder for other instructions to
2219 increase the pressure further.
2220
2221 This pressure cost is deliberately timid. The intention has been
2222 to choose a heuristic that rarely interferes with the normal list
2223 scheduler in cases where that scheduler would produce good code.
2224 We simply want to curb some of its worst excesses. */
2225
2226 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2227
2228 Here we use the very simplistic cost model that every register above
2229 ira_class_hard_regs_num[CL] has a spill cost of 1. We could use other
2230 measures instead, such as one based on MEMORY_MOVE_COST. However:
2231
2232 (1) In order for an instruction to be scheduled, the higher cost
2233 would need to be justified in a single saving of that many stalls.
2234 This is overly pessimistic, because the benefit of spilling is
2235 often to avoid a sequence of several short stalls rather than
2236 a single long one.
2237
2238 (2) The cost is still arbitrary. Because we are not allocating
2239 registers during scheduling, we have no way of knowing for
2240 sure how many memory accesses will be required by each spill,
2241 where the spills will be placed within the block, or even
2242 which block(s) will contain the spills.
2243
2244 So a higher cost than 1 is often too conservative in practice,
2245 forcing blocks to contain unnecessary stalls instead of spill code.
2246 The simple cost below seems to be the best compromise. It reduces
2247 the interference with the normal list scheduler, which helps make
2248 it more suitable for a default-on option. */
2249
2250 static int
2251 model_spill_cost (int cl, int from, int to)
2252 {
2253 from = MAX (from, ira_class_hard_regs_num[cl]);
2254 return MAX (to, from) - from;
2255 }
2256
2257 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2258 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2259 P' = P + DELTA. */
2260
2261 static int
2262 model_excess_group_cost (struct model_pressure_group *group,
2263 int point, int pci, int delta)
2264 {
2265 int pressure, cl;
2266
2267 cl = ira_pressure_classes[pci];
2268 if (delta < 0 && point >= group->limits[pci].point)
2269 {
2270 pressure = MAX (group->limits[pci].orig_pressure,
2271 curr_reg_pressure[cl] + delta);
2272 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2273 }
2274
2275 if (delta > 0)
2276 {
2277 if (point > group->limits[pci].point)
2278 pressure = group->limits[pci].pressure + delta;
2279 else
2280 pressure = curr_reg_pressure[cl] + delta;
2281
2282 if (pressure > group->limits[pci].pressure)
2283 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2284 pressure);
2285 }
2286
2287 return 0;
2288 }
2289
2290 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2291 if PRINT_P. */
2292
2293 static int
2294 model_excess_cost (rtx insn, bool print_p)
2295 {
2296 int point, pci, cl, cost, this_cost, delta;
2297 struct reg_pressure_data *insn_reg_pressure;
2298 int insn_death[N_REG_CLASSES];
2299
2300 calculate_reg_deaths (insn, insn_death);
2301 point = model_index (insn);
2302 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2303 cost = 0;
2304
2305 if (print_p)
2306 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2307 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2308
2309 /* Sum up the individual costs for each register class. */
2310 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2311 {
2312 cl = ira_pressure_classes[pci];
2313 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2314 this_cost = model_excess_group_cost (&model_before_pressure,
2315 point, pci, delta);
2316 cost += this_cost;
2317 if (print_p)
2318 fprintf (sched_dump, " %s:[%d base cost %d]",
2319 reg_class_names[cl], delta, this_cost);
2320 }
2321
2322 if (print_p)
2323 fprintf (sched_dump, "\n");
2324
2325 return cost;
2326 }
2327
2328 /* Dump the next points of maximum pressure for GROUP. */
2329
2330 static void
2331 model_dump_pressure_points (struct model_pressure_group *group)
2332 {
2333 int pci, cl;
2334
2335 fprintf (sched_dump, ";;\t\t| pressure points");
2336 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2337 {
2338 cl = ira_pressure_classes[pci];
2339 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2340 curr_reg_pressure[cl], group->limits[pci].pressure);
2341 if (group->limits[pci].point < model_num_insns)
2342 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2343 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2344 else
2345 fprintf (sched_dump, "end]");
2346 }
2347 fprintf (sched_dump, "\n");
2348 }
2349
2350 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2351
2352 static void
2353 model_set_excess_costs (rtx *insns, int count)
2354 {
2355 int i, cost, priority_base, priority;
2356 bool print_p;
2357
2358 /* Record the baseECC value for each instruction in the model schedule,
2359 except that negative costs are converted to zero ones now rather thatn
2360 later. Do not assign a cost to debug instructions, since they must
2361 not change code-generation decisions. Experiments suggest we also
2362 get better results by not assigning a cost to instructions from
2363 a different block.
2364
2365 Set PRIORITY_BASE to baseP in the block comment above. This is the
2366 maximum priority of the "cheap" instructions, which should always
2367 include the next model instruction. */
2368 priority_base = 0;
2369 print_p = false;
2370 for (i = 0; i < count; i++)
2371 if (INSN_MODEL_INDEX (insns[i]))
2372 {
2373 if (sched_verbose >= 6 && !print_p)
2374 {
2375 fprintf (sched_dump, MODEL_BAR);
2376 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2377 model_dump_pressure_points (&model_before_pressure);
2378 fprintf (sched_dump, MODEL_BAR);
2379 print_p = true;
2380 }
2381 cost = model_excess_cost (insns[i], print_p);
2382 if (cost <= 0)
2383 {
2384 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2385 priority_base = MAX (priority_base, priority);
2386 cost = 0;
2387 }
2388 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2389 }
2390 if (print_p)
2391 fprintf (sched_dump, MODEL_BAR);
2392
2393 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2394 instruction. */
2395 for (i = 0; i < count; i++)
2396 {
2397 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2398 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2399 if (cost > 0 && priority > priority_base)
2400 {
2401 cost += priority_base - priority;
2402 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2403 }
2404 }
2405 }
2406 \f
2407 /* Returns a positive value if x is preferred; returns a negative value if
2408 y is preferred. Should never return 0, since that will make the sort
2409 unstable. */
2410
2411 static int
2412 rank_for_schedule (const void *x, const void *y)
2413 {
2414 rtx tmp = *(const rtx *) y;
2415 rtx tmp2 = *(const rtx *) x;
2416 int tmp_class, tmp2_class;
2417 int val, priority_val, info_val;
2418
2419 if (MAY_HAVE_DEBUG_INSNS)
2420 {
2421 /* Schedule debug insns as early as possible. */
2422 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2423 return -1;
2424 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2425 return 1;
2426 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2427 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2428 }
2429
2430 /* The insn in a schedule group should be issued the first. */
2431 if (flag_sched_group_heuristic &&
2432 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2433 return SCHED_GROUP_P (tmp2) ? 1 : -1;
2434
2435 /* Make sure that priority of TMP and TMP2 are initialized. */
2436 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2437
2438 if (sched_pressure != SCHED_PRESSURE_NONE)
2439 {
2440 int diff;
2441
2442 /* Prefer insn whose scheduling results in the smallest register
2443 pressure excess. */
2444 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2445 + insn_delay (tmp)
2446 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2447 - insn_delay (tmp2))))
2448 return diff;
2449 }
2450
2451 if (sched_pressure != SCHED_PRESSURE_NONE
2452 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
2453 {
2454 if (INSN_TICK (tmp) <= clock_var)
2455 return -1;
2456 else if (INSN_TICK (tmp2) <= clock_var)
2457 return 1;
2458 else
2459 return INSN_TICK (tmp) - INSN_TICK (tmp2);
2460 }
2461
2462 /* If we are doing backtracking in this schedule, prefer insns that
2463 have forward dependencies with negative cost against an insn that
2464 was already scheduled. */
2465 if (current_sched_info->flags & DO_BACKTRACKING)
2466 {
2467 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2468 if (priority_val)
2469 return priority_val;
2470 }
2471
2472 /* Prefer insn with higher priority. */
2473 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2474
2475 if (flag_sched_critical_path_heuristic && priority_val)
2476 return priority_val;
2477
2478 /* Prefer speculative insn with greater dependencies weakness. */
2479 if (flag_sched_spec_insn_heuristic && spec_info)
2480 {
2481 ds_t ds1, ds2;
2482 dw_t dw1, dw2;
2483 int dw;
2484
2485 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2486 if (ds1)
2487 dw1 = ds_weak (ds1);
2488 else
2489 dw1 = NO_DEP_WEAK;
2490
2491 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2492 if (ds2)
2493 dw2 = ds_weak (ds2);
2494 else
2495 dw2 = NO_DEP_WEAK;
2496
2497 dw = dw2 - dw1;
2498 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2499 return dw;
2500 }
2501
2502 info_val = (*current_sched_info->rank) (tmp, tmp2);
2503 if(flag_sched_rank_heuristic && info_val)
2504 return info_val;
2505
2506 /* Compare insns based on their relation to the last scheduled
2507 non-debug insn. */
2508 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2509 {
2510 dep_t dep1;
2511 dep_t dep2;
2512 rtx last = last_nondebug_scheduled_insn;
2513
2514 /* Classify the instructions into three classes:
2515 1) Data dependent on last schedule insn.
2516 2) Anti/Output dependent on last scheduled insn.
2517 3) Independent of last scheduled insn, or has latency of one.
2518 Choose the insn from the highest numbered class if different. */
2519 dep1 = sd_find_dep_between (last, tmp, true);
2520
2521 if (dep1 == NULL || dep_cost (dep1) == 1)
2522 tmp_class = 3;
2523 else if (/* Data dependence. */
2524 DEP_TYPE (dep1) == REG_DEP_TRUE)
2525 tmp_class = 1;
2526 else
2527 tmp_class = 2;
2528
2529 dep2 = sd_find_dep_between (last, tmp2, true);
2530
2531 if (dep2 == NULL || dep_cost (dep2) == 1)
2532 tmp2_class = 3;
2533 else if (/* Data dependence. */
2534 DEP_TYPE (dep2) == REG_DEP_TRUE)
2535 tmp2_class = 1;
2536 else
2537 tmp2_class = 2;
2538
2539 if ((val = tmp2_class - tmp_class))
2540 return val;
2541 }
2542
2543 /* Prefer instructions that occur earlier in the model schedule. */
2544 if (sched_pressure == SCHED_PRESSURE_MODEL)
2545 {
2546 int diff;
2547
2548 diff = model_index (tmp) - model_index (tmp2);
2549 if (diff != 0)
2550 return diff;
2551 }
2552
2553 /* Prefer the insn which has more later insns that depend on it.
2554 This gives the scheduler more freedom when scheduling later
2555 instructions at the expense of added register pressure. */
2556
2557 val = (dep_list_size (tmp2, SD_LIST_FORW)
2558 - dep_list_size (tmp, SD_LIST_FORW));
2559
2560 if (flag_sched_dep_count_heuristic && val != 0)
2561 return val;
2562
2563 /* If insns are equally good, sort by INSN_LUID (original insn order),
2564 so that we make the sort stable. This minimizes instruction movement,
2565 thus minimizing sched's effect on debugging and cross-jumping. */
2566 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2567 }
2568
2569 /* Resort the array A in which only element at index N may be out of order. */
2570
2571 HAIFA_INLINE static void
2572 swap_sort (rtx *a, int n)
2573 {
2574 rtx insn = a[n - 1];
2575 int i = n - 2;
2576
2577 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2578 {
2579 a[i + 1] = a[i];
2580 i -= 1;
2581 }
2582 a[i + 1] = insn;
2583 }
2584
2585 /* Add INSN to the insn queue so that it can be executed at least
2586 N_CYCLES after the currently executing insn. Preserve insns
2587 chain for debugging purposes. REASON will be printed in debugging
2588 output. */
2589
2590 HAIFA_INLINE static void
2591 queue_insn (rtx insn, int n_cycles, const char *reason)
2592 {
2593 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2594 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2595 int new_tick;
2596
2597 gcc_assert (n_cycles <= max_insn_queue_index);
2598 gcc_assert (!DEBUG_INSN_P (insn));
2599
2600 insn_queue[next_q] = link;
2601 q_size += 1;
2602
2603 if (sched_verbose >= 2)
2604 {
2605 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2606 (*current_sched_info->print_insn) (insn, 0));
2607
2608 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2609 }
2610
2611 QUEUE_INDEX (insn) = next_q;
2612
2613 if (current_sched_info->flags & DO_BACKTRACKING)
2614 {
2615 new_tick = clock_var + n_cycles;
2616 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2617 INSN_TICK (insn) = new_tick;
2618
2619 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2620 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2621 {
2622 must_backtrack = true;
2623 if (sched_verbose >= 2)
2624 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2625 }
2626 }
2627 }
2628
2629 /* Remove INSN from queue. */
2630 static void
2631 queue_remove (rtx insn)
2632 {
2633 gcc_assert (QUEUE_INDEX (insn) >= 0);
2634 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2635 q_size--;
2636 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2637 }
2638
2639 /* Return a pointer to the bottom of the ready list, i.e. the insn
2640 with the lowest priority. */
2641
2642 rtx *
2643 ready_lastpos (struct ready_list *ready)
2644 {
2645 gcc_assert (ready->n_ready >= 1);
2646 return ready->vec + ready->first - ready->n_ready + 1;
2647 }
2648
2649 /* Add an element INSN to the ready list so that it ends up with the
2650 lowest/highest priority depending on FIRST_P. */
2651
2652 HAIFA_INLINE static void
2653 ready_add (struct ready_list *ready, rtx insn, bool first_p)
2654 {
2655 if (!first_p)
2656 {
2657 if (ready->first == ready->n_ready)
2658 {
2659 memmove (ready->vec + ready->veclen - ready->n_ready,
2660 ready_lastpos (ready),
2661 ready->n_ready * sizeof (rtx));
2662 ready->first = ready->veclen - 1;
2663 }
2664 ready->vec[ready->first - ready->n_ready] = insn;
2665 }
2666 else
2667 {
2668 if (ready->first == ready->veclen - 1)
2669 {
2670 if (ready->n_ready)
2671 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2672 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2673 ready_lastpos (ready),
2674 ready->n_ready * sizeof (rtx));
2675 ready->first = ready->veclen - 2;
2676 }
2677 ready->vec[++(ready->first)] = insn;
2678 }
2679
2680 ready->n_ready++;
2681 if (DEBUG_INSN_P (insn))
2682 ready->n_debug++;
2683
2684 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2685 QUEUE_INDEX (insn) = QUEUE_READY;
2686
2687 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2688 && INSN_EXACT_TICK (insn) < clock_var)
2689 {
2690 must_backtrack = true;
2691 }
2692 }
2693
2694 /* Remove the element with the highest priority from the ready list and
2695 return it. */
2696
2697 HAIFA_INLINE static rtx
2698 ready_remove_first (struct ready_list *ready)
2699 {
2700 rtx t;
2701
2702 gcc_assert (ready->n_ready);
2703 t = ready->vec[ready->first--];
2704 ready->n_ready--;
2705 if (DEBUG_INSN_P (t))
2706 ready->n_debug--;
2707 /* If the queue becomes empty, reset it. */
2708 if (ready->n_ready == 0)
2709 ready->first = ready->veclen - 1;
2710
2711 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2712 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2713
2714 return t;
2715 }
2716
2717 /* The following code implements multi-pass scheduling for the first
2718 cycle. In other words, we will try to choose ready insn which
2719 permits to start maximum number of insns on the same cycle. */
2720
2721 /* Return a pointer to the element INDEX from the ready. INDEX for
2722 insn with the highest priority is 0, and the lowest priority has
2723 N_READY - 1. */
2724
2725 rtx
2726 ready_element (struct ready_list *ready, int index)
2727 {
2728 gcc_assert (ready->n_ready && index < ready->n_ready);
2729
2730 return ready->vec[ready->first - index];
2731 }
2732
2733 /* Remove the element INDEX from the ready list and return it. INDEX
2734 for insn with the highest priority is 0, and the lowest priority
2735 has N_READY - 1. */
2736
2737 HAIFA_INLINE static rtx
2738 ready_remove (struct ready_list *ready, int index)
2739 {
2740 rtx t;
2741 int i;
2742
2743 if (index == 0)
2744 return ready_remove_first (ready);
2745 gcc_assert (ready->n_ready && index < ready->n_ready);
2746 t = ready->vec[ready->first - index];
2747 ready->n_ready--;
2748 if (DEBUG_INSN_P (t))
2749 ready->n_debug--;
2750 for (i = index; i < ready->n_ready; i++)
2751 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2752 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2753 return t;
2754 }
2755
2756 /* Remove INSN from the ready list. */
2757 static void
2758 ready_remove_insn (rtx insn)
2759 {
2760 int i;
2761
2762 for (i = 0; i < readyp->n_ready; i++)
2763 if (ready_element (readyp, i) == insn)
2764 {
2765 ready_remove (readyp, i);
2766 return;
2767 }
2768 gcc_unreachable ();
2769 }
2770
2771 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
2772 macro. */
2773
2774 void
2775 ready_sort (struct ready_list *ready)
2776 {
2777 int i;
2778 rtx *first = ready_lastpos (ready);
2779
2780 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2781 {
2782 for (i = 0; i < ready->n_ready; i++)
2783 if (!DEBUG_INSN_P (first[i]))
2784 setup_insn_reg_pressure_info (first[i]);
2785 }
2786 if (sched_pressure == SCHED_PRESSURE_MODEL
2787 && model_curr_point < model_num_insns)
2788 model_set_excess_costs (first, ready->n_ready);
2789 SCHED_SORT (first, ready->n_ready);
2790 }
2791
2792 /* PREV is an insn that is ready to execute. Adjust its priority if that
2793 will help shorten or lengthen register lifetimes as appropriate. Also
2794 provide a hook for the target to tweak itself. */
2795
2796 HAIFA_INLINE static void
2797 adjust_priority (rtx prev)
2798 {
2799 /* ??? There used to be code here to try and estimate how an insn
2800 affected register lifetimes, but it did it by looking at REG_DEAD
2801 notes, which we removed in schedule_region. Nor did it try to
2802 take into account register pressure or anything useful like that.
2803
2804 Revisit when we have a machine model to work with and not before. */
2805
2806 if (targetm.sched.adjust_priority)
2807 INSN_PRIORITY (prev) =
2808 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
2809 }
2810
2811 /* Advance DFA state STATE on one cycle. */
2812 void
2813 advance_state (state_t state)
2814 {
2815 if (targetm.sched.dfa_pre_advance_cycle)
2816 targetm.sched.dfa_pre_advance_cycle ();
2817
2818 if (targetm.sched.dfa_pre_cycle_insn)
2819 state_transition (state,
2820 targetm.sched.dfa_pre_cycle_insn ());
2821
2822 state_transition (state, NULL);
2823
2824 if (targetm.sched.dfa_post_cycle_insn)
2825 state_transition (state,
2826 targetm.sched.dfa_post_cycle_insn ());
2827
2828 if (targetm.sched.dfa_post_advance_cycle)
2829 targetm.sched.dfa_post_advance_cycle ();
2830 }
2831
2832 /* Advance time on one cycle. */
2833 HAIFA_INLINE static void
2834 advance_one_cycle (void)
2835 {
2836 advance_state (curr_state);
2837 if (sched_verbose >= 6)
2838 fprintf (sched_dump, ";;\tAdvanced a state.\n");
2839 }
2840
2841 /* Update register pressure after scheduling INSN. */
2842 static void
2843 update_register_pressure (rtx insn)
2844 {
2845 struct reg_use_data *use;
2846 struct reg_set_data *set;
2847
2848 gcc_checking_assert (!DEBUG_INSN_P (insn));
2849
2850 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2851 if (dying_use_p (use))
2852 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
2853 use->regno, false);
2854 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
2855 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
2856 set->regno, true);
2857 }
2858
2859 /* Set up or update (if UPDATE_P) max register pressure (see its
2860 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
2861 after insn AFTER. */
2862 static void
2863 setup_insn_max_reg_pressure (rtx after, bool update_p)
2864 {
2865 int i, p;
2866 bool eq_p;
2867 rtx insn;
2868 static int max_reg_pressure[N_REG_CLASSES];
2869
2870 save_reg_pressure ();
2871 for (i = 0; i < ira_pressure_classes_num; i++)
2872 max_reg_pressure[ira_pressure_classes[i]]
2873 = curr_reg_pressure[ira_pressure_classes[i]];
2874 for (insn = NEXT_INSN (after);
2875 insn != NULL_RTX && ! BARRIER_P (insn)
2876 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
2877 insn = NEXT_INSN (insn))
2878 if (NONDEBUG_INSN_P (insn))
2879 {
2880 eq_p = true;
2881 for (i = 0; i < ira_pressure_classes_num; i++)
2882 {
2883 p = max_reg_pressure[ira_pressure_classes[i]];
2884 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
2885 {
2886 eq_p = false;
2887 INSN_MAX_REG_PRESSURE (insn)[i]
2888 = max_reg_pressure[ira_pressure_classes[i]];
2889 }
2890 }
2891 if (update_p && eq_p)
2892 break;
2893 update_register_pressure (insn);
2894 for (i = 0; i < ira_pressure_classes_num; i++)
2895 if (max_reg_pressure[ira_pressure_classes[i]]
2896 < curr_reg_pressure[ira_pressure_classes[i]])
2897 max_reg_pressure[ira_pressure_classes[i]]
2898 = curr_reg_pressure[ira_pressure_classes[i]];
2899 }
2900 restore_reg_pressure ();
2901 }
2902
2903 /* Update the current register pressure after scheduling INSN. Update
2904 also max register pressure for unscheduled insns of the current
2905 BB. */
2906 static void
2907 update_reg_and_insn_max_reg_pressure (rtx insn)
2908 {
2909 int i;
2910 int before[N_REG_CLASSES];
2911
2912 for (i = 0; i < ira_pressure_classes_num; i++)
2913 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
2914 update_register_pressure (insn);
2915 for (i = 0; i < ira_pressure_classes_num; i++)
2916 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
2917 break;
2918 if (i < ira_pressure_classes_num)
2919 setup_insn_max_reg_pressure (insn, true);
2920 }
2921
2922 /* Set up register pressure at the beginning of basic block BB whose
2923 insns starting after insn AFTER. Set up also max register pressure
2924 for all insns of the basic block. */
2925 void
2926 sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
2927 {
2928 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2929 initiate_bb_reg_pressure_info (bb);
2930 setup_insn_max_reg_pressure (after, false);
2931 }
2932 \f
2933 /* If doing predication while scheduling, verify whether INSN, which
2934 has just been scheduled, clobbers the conditions of any
2935 instructions that must be predicated in order to break their
2936 dependencies. If so, remove them from the queues so that they will
2937 only be scheduled once their control dependency is resolved. */
2938
2939 static void
2940 check_clobbered_conditions (rtx insn)
2941 {
2942 HARD_REG_SET t;
2943 int i;
2944
2945 if ((current_sched_info->flags & DO_PREDICATION) == 0)
2946 return;
2947
2948 find_all_hard_reg_sets (insn, &t);
2949
2950 restart:
2951 for (i = 0; i < ready.n_ready; i++)
2952 {
2953 rtx x = ready_element (&ready, i);
2954 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
2955 {
2956 ready_remove_insn (x);
2957 goto restart;
2958 }
2959 }
2960 for (i = 0; i <= max_insn_queue_index; i++)
2961 {
2962 rtx link;
2963 int q = NEXT_Q_AFTER (q_ptr, i);
2964
2965 restart_queue:
2966 for (link = insn_queue[q]; link; link = XEXP (link, 1))
2967 {
2968 rtx x = XEXP (link, 0);
2969 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
2970 {
2971 queue_remove (x);
2972 goto restart_queue;
2973 }
2974 }
2975 }
2976 }
2977 \f
2978 /* Return (in order):
2979
2980 - positive if INSN adversely affects the pressure on one
2981 register class
2982
2983 - negative if INSN reduces the pressure on one register class
2984
2985 - 0 if INSN doesn't affect the pressure on any register class. */
2986
2987 static int
2988 model_classify_pressure (struct model_insn_info *insn)
2989 {
2990 struct reg_pressure_data *reg_pressure;
2991 int death[N_REG_CLASSES];
2992 int pci, cl, sum;
2993
2994 calculate_reg_deaths (insn->insn, death);
2995 reg_pressure = INSN_REG_PRESSURE (insn->insn);
2996 sum = 0;
2997 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2998 {
2999 cl = ira_pressure_classes[pci];
3000 if (death[cl] < reg_pressure[pci].set_increase)
3001 return 1;
3002 sum += reg_pressure[pci].set_increase - death[cl];
3003 }
3004 return sum;
3005 }
3006
3007 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3008
3009 static int
3010 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3011 {
3012 unsigned int height1, height2;
3013 unsigned int priority1, priority2;
3014
3015 /* Prefer instructions with a higher model priority. */
3016 if (insn1->model_priority != insn2->model_priority)
3017 return insn1->model_priority > insn2->model_priority;
3018
3019 /* Combine the length of the longest path of satisfied true dependencies
3020 that leads to each instruction (depth) with the length of the longest
3021 path of any dependencies that leads from the instruction (alap).
3022 Prefer instructions with the greatest combined length. If the combined
3023 lengths are equal, prefer instructions with the greatest depth.
3024
3025 The idea is that, if we have a set S of "equal" instructions that each
3026 have ALAP value X, and we pick one such instruction I, any true-dependent
3027 successors of I that have ALAP value X - 1 should be preferred over S.
3028 This encourages the schedule to be "narrow" rather than "wide".
3029 However, if I is a low-priority instruction that we decided to
3030 schedule because of its model_classify_pressure, and if there
3031 is a set of higher-priority instructions T, the aforementioned
3032 successors of I should not have the edge over T. */
3033 height1 = insn1->depth + insn1->alap;
3034 height2 = insn2->depth + insn2->alap;
3035 if (height1 != height2)
3036 return height1 > height2;
3037 if (insn1->depth != insn2->depth)
3038 return insn1->depth > insn2->depth;
3039
3040 /* We have no real preference between INSN1 an INSN2 as far as attempts
3041 to reduce pressure go. Prefer instructions with higher priorities. */
3042 priority1 = INSN_PRIORITY (insn1->insn);
3043 priority2 = INSN_PRIORITY (insn2->insn);
3044 if (priority1 != priority2)
3045 return priority1 > priority2;
3046
3047 /* Use the original rtl sequence as a tie-breaker. */
3048 return insn1 < insn2;
3049 }
3050
3051 /* Add INSN to the model worklist immediately after PREV. Add it to the
3052 beginning of the list if PREV is null. */
3053
3054 static void
3055 model_add_to_worklist_at (struct model_insn_info *insn,
3056 struct model_insn_info *prev)
3057 {
3058 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3059 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3060
3061 insn->prev = prev;
3062 if (prev)
3063 {
3064 insn->next = prev->next;
3065 prev->next = insn;
3066 }
3067 else
3068 {
3069 insn->next = model_worklist;
3070 model_worklist = insn;
3071 }
3072 if (insn->next)
3073 insn->next->prev = insn;
3074 }
3075
3076 /* Remove INSN from the model worklist. */
3077
3078 static void
3079 model_remove_from_worklist (struct model_insn_info *insn)
3080 {
3081 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3082 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3083
3084 if (insn->prev)
3085 insn->prev->next = insn->next;
3086 else
3087 model_worklist = insn->next;
3088 if (insn->next)
3089 insn->next->prev = insn->prev;
3090 }
3091
3092 /* Add INSN to the model worklist. Start looking for a suitable position
3093 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3094 insns either side. A null PREV indicates the beginning of the list and
3095 a null NEXT indicates the end. */
3096
3097 static void
3098 model_add_to_worklist (struct model_insn_info *insn,
3099 struct model_insn_info *prev,
3100 struct model_insn_info *next)
3101 {
3102 int count;
3103
3104 count = MAX_SCHED_READY_INSNS;
3105 if (count > 0 && prev && model_order_p (insn, prev))
3106 do
3107 {
3108 count--;
3109 prev = prev->prev;
3110 }
3111 while (count > 0 && prev && model_order_p (insn, prev));
3112 else
3113 while (count > 0 && next && model_order_p (next, insn))
3114 {
3115 count--;
3116 prev = next;
3117 next = next->next;
3118 }
3119 model_add_to_worklist_at (insn, prev);
3120 }
3121
3122 /* INSN may now have a higher priority (in the model_order_p sense)
3123 than before. Move it up the worklist if necessary. */
3124
3125 static void
3126 model_promote_insn (struct model_insn_info *insn)
3127 {
3128 struct model_insn_info *prev;
3129 int count;
3130
3131 prev = insn->prev;
3132 count = MAX_SCHED_READY_INSNS;
3133 while (count > 0 && prev && model_order_p (insn, prev))
3134 {
3135 count--;
3136 prev = prev->prev;
3137 }
3138 if (prev != insn->prev)
3139 {
3140 model_remove_from_worklist (insn);
3141 model_add_to_worklist_at (insn, prev);
3142 }
3143 }
3144
3145 /* Add INSN to the end of the model schedule. */
3146
3147 static void
3148 model_add_to_schedule (rtx insn)
3149 {
3150 unsigned int point;
3151
3152 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3153 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3154
3155 point = VEC_length (rtx, model_schedule);
3156 VEC_quick_push (rtx, model_schedule, insn);
3157 INSN_MODEL_INDEX (insn) = point + 1;
3158 }
3159
3160 /* Analyze the instructions that are to be scheduled, setting up
3161 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3162 instructions to model_worklist. */
3163
3164 static void
3165 model_analyze_insns (void)
3166 {
3167 rtx start, end, iter;
3168 sd_iterator_def sd_it;
3169 dep_t dep;
3170 struct model_insn_info *insn, *con;
3171
3172 model_num_insns = 0;
3173 start = PREV_INSN (current_sched_info->next_tail);
3174 end = current_sched_info->prev_head;
3175 for (iter = start; iter != end; iter = PREV_INSN (iter))
3176 if (NONDEBUG_INSN_P (iter))
3177 {
3178 insn = MODEL_INSN_INFO (iter);
3179 insn->insn = iter;
3180 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3181 {
3182 con = MODEL_INSN_INFO (DEP_CON (dep));
3183 if (con->insn && insn->alap < con->alap + 1)
3184 insn->alap = con->alap + 1;
3185 }
3186
3187 insn->old_queue = QUEUE_INDEX (iter);
3188 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3189
3190 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3191 if (insn->unscheduled_preds == 0)
3192 model_add_to_worklist (insn, NULL, model_worklist);
3193
3194 model_num_insns++;
3195 }
3196 }
3197
3198 /* The global state describes the register pressure at the start of the
3199 model schedule. Initialize GROUP accordingly. */
3200
3201 static void
3202 model_init_pressure_group (struct model_pressure_group *group)
3203 {
3204 int pci, cl;
3205
3206 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3207 {
3208 cl = ira_pressure_classes[pci];
3209 group->limits[pci].pressure = curr_reg_pressure[cl];
3210 group->limits[pci].point = 0;
3211 }
3212 /* Use index model_num_insns to record the state after the last
3213 instruction in the model schedule. */
3214 group->model = XNEWVEC (struct model_pressure_data,
3215 (model_num_insns + 1) * ira_pressure_classes_num);
3216 }
3217
3218 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3219 Update the maximum pressure for the whole schedule. */
3220
3221 static void
3222 model_record_pressure (struct model_pressure_group *group,
3223 int point, int pci, int pressure)
3224 {
3225 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3226 if (group->limits[pci].pressure < pressure)
3227 {
3228 group->limits[pci].pressure = pressure;
3229 group->limits[pci].point = point;
3230 }
3231 }
3232
3233 /* INSN has just been added to the end of the model schedule. Record its
3234 register-pressure information. */
3235
3236 static void
3237 model_record_pressures (struct model_insn_info *insn)
3238 {
3239 struct reg_pressure_data *reg_pressure;
3240 int point, pci, cl, delta;
3241 int death[N_REG_CLASSES];
3242
3243 point = model_index (insn->insn);
3244 if (sched_verbose >= 2)
3245 {
3246 char buf[2048];
3247
3248 if (point == 0)
3249 {
3250 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3251 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3252 }
3253 print_pattern (buf, PATTERN (insn->insn), 0);
3254 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3255 point, INSN_UID (insn->insn), insn->model_priority,
3256 insn->depth + insn->alap, insn->depth,
3257 INSN_PRIORITY (insn->insn), buf);
3258 }
3259 calculate_reg_deaths (insn->insn, death);
3260 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3261 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3262 {
3263 cl = ira_pressure_classes[pci];
3264 delta = reg_pressure[pci].set_increase - death[cl];
3265 if (sched_verbose >= 2)
3266 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3267 curr_reg_pressure[cl], delta);
3268 model_record_pressure (&model_before_pressure, point, pci,
3269 curr_reg_pressure[cl]);
3270 }
3271 if (sched_verbose >= 2)
3272 fprintf (sched_dump, "\n");
3273 }
3274
3275 /* All instructions have been added to the model schedule. Record the
3276 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3277
3278 static void
3279 model_record_final_pressures (struct model_pressure_group *group)
3280 {
3281 int point, pci, max_pressure, ref_pressure, cl;
3282
3283 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3284 {
3285 /* Record the final pressure for this class. */
3286 cl = ira_pressure_classes[pci];
3287 point = model_num_insns;
3288 ref_pressure = curr_reg_pressure[cl];
3289 model_record_pressure (group, point, pci, ref_pressure);
3290
3291 /* Record the original maximum pressure. */
3292 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3293
3294 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3295 max_pressure = ref_pressure;
3296 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3297 while (point > 0)
3298 {
3299 point--;
3300 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3301 max_pressure = MAX (max_pressure, ref_pressure);
3302 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3303 }
3304 }
3305 }
3306
3307 /* Update all successors of INSN, given that INSN has just been scheduled. */
3308
3309 static void
3310 model_add_successors_to_worklist (struct model_insn_info *insn)
3311 {
3312 sd_iterator_def sd_it;
3313 struct model_insn_info *con;
3314 dep_t dep;
3315
3316 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3317 {
3318 con = MODEL_INSN_INFO (DEP_CON (dep));
3319 /* Ignore debug instructions, and instructions from other blocks. */
3320 if (con->insn)
3321 {
3322 con->unscheduled_preds--;
3323
3324 /* Update the depth field of each true-dependent successor.
3325 Increasing the depth gives them a higher priority than
3326 before. */
3327 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3328 {
3329 con->depth = insn->depth + 1;
3330 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3331 model_promote_insn (con);
3332 }
3333
3334 /* If this is a true dependency, or if there are no remaining
3335 dependencies for CON (meaning that CON only had non-true
3336 dependencies), make sure that CON is on the worklist.
3337 We don't bother otherwise because it would tend to fill the
3338 worklist with a lot of low-priority instructions that are not
3339 yet ready to issue. */
3340 if ((con->depth > 0 || con->unscheduled_preds == 0)
3341 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3342 model_add_to_worklist (con, insn, insn->next);
3343 }
3344 }
3345 }
3346
3347 /* Give INSN a higher priority than any current instruction, then give
3348 unscheduled predecessors of INSN a higher priority still. If any of
3349 those predecessors are not on the model worklist, do the same for its
3350 predecessors, and so on. */
3351
3352 static void
3353 model_promote_predecessors (struct model_insn_info *insn)
3354 {
3355 struct model_insn_info *pro, *first;
3356 sd_iterator_def sd_it;
3357 dep_t dep;
3358
3359 if (sched_verbose >= 7)
3360 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3361 INSN_UID (insn->insn), model_next_priority);
3362 insn->model_priority = model_next_priority++;
3363 model_remove_from_worklist (insn);
3364 model_add_to_worklist_at (insn, NULL);
3365
3366 first = NULL;
3367 for (;;)
3368 {
3369 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3370 {
3371 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3372 /* The first test is to ignore debug instructions, and instructions
3373 from other blocks. */
3374 if (pro->insn
3375 && pro->model_priority != model_next_priority
3376 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3377 {
3378 pro->model_priority = model_next_priority;
3379 if (sched_verbose >= 7)
3380 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3381 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3382 {
3383 /* PRO is already in the worklist, but it now has
3384 a higher priority than before. Move it at the
3385 appropriate place. */
3386 model_remove_from_worklist (pro);
3387 model_add_to_worklist (pro, NULL, model_worklist);
3388 }
3389 else
3390 {
3391 /* PRO isn't in the worklist. Recursively process
3392 its predecessors until we find one that is. */
3393 pro->next = first;
3394 first = pro;
3395 }
3396 }
3397 }
3398 if (!first)
3399 break;
3400 insn = first;
3401 first = insn->next;
3402 }
3403 if (sched_verbose >= 7)
3404 fprintf (sched_dump, " = %d\n", model_next_priority);
3405 model_next_priority++;
3406 }
3407
3408 /* Pick one instruction from model_worklist and process it. */
3409
3410 static void
3411 model_choose_insn (void)
3412 {
3413 struct model_insn_info *insn, *fallback;
3414 int count;
3415
3416 if (sched_verbose >= 7)
3417 {
3418 fprintf (sched_dump, ";;\t+--- worklist:\n");
3419 insn = model_worklist;
3420 count = MAX_SCHED_READY_INSNS;
3421 while (count > 0 && insn)
3422 {
3423 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3424 INSN_UID (insn->insn), insn->model_priority,
3425 insn->depth + insn->alap, insn->depth,
3426 INSN_PRIORITY (insn->insn));
3427 count--;
3428 insn = insn->next;
3429 }
3430 }
3431
3432 /* Look for a ready instruction whose model_classify_priority is zero
3433 or negative, picking the highest-priority one. Adding such an
3434 instruction to the schedule now should do no harm, and may actually
3435 do some good.
3436
3437 Failing that, see whether there is an instruction with the highest
3438 extant model_priority that is not yet ready, but which would reduce
3439 pressure if it became ready. This is designed to catch cases like:
3440
3441 (set (mem (reg R1)) (reg R2))
3442
3443 where the instruction is the last remaining use of R1 and where the
3444 value of R2 is not yet available (or vice versa). The death of R1
3445 means that this instruction already reduces pressure. It is of
3446 course possible that the computation of R2 involves other registers
3447 that are hard to kill, but such cases are rare enough for this
3448 heuristic to be a win in general.
3449
3450 Failing that, just pick the highest-priority instruction in the
3451 worklist. */
3452 count = MAX_SCHED_READY_INSNS;
3453 insn = model_worklist;
3454 fallback = 0;
3455 for (;;)
3456 {
3457 if (count == 0 || !insn)
3458 {
3459 insn = fallback ? fallback : model_worklist;
3460 break;
3461 }
3462 if (insn->unscheduled_preds)
3463 {
3464 if (model_worklist->model_priority == insn->model_priority
3465 && !fallback
3466 && model_classify_pressure (insn) < 0)
3467 fallback = insn;
3468 }
3469 else
3470 {
3471 if (model_classify_pressure (insn) <= 0)
3472 break;
3473 }
3474 count--;
3475 insn = insn->next;
3476 }
3477
3478 if (sched_verbose >= 7 && insn != model_worklist)
3479 {
3480 if (insn->unscheduled_preds)
3481 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3482 INSN_UID (insn->insn));
3483 else
3484 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3485 INSN_UID (insn->insn));
3486 }
3487 if (insn->unscheduled_preds)
3488 /* INSN isn't yet ready to issue. Give all its predecessors the
3489 highest priority. */
3490 model_promote_predecessors (insn);
3491 else
3492 {
3493 /* INSN is ready. Add it to the end of model_schedule and
3494 process its successors. */
3495 model_add_successors_to_worklist (insn);
3496 model_remove_from_worklist (insn);
3497 model_add_to_schedule (insn->insn);
3498 model_record_pressures (insn);
3499 update_register_pressure (insn->insn);
3500 }
3501 }
3502
3503 /* Restore all QUEUE_INDEXs to the values that they had before
3504 model_start_schedule was called. */
3505
3506 static void
3507 model_reset_queue_indices (void)
3508 {
3509 unsigned int i;
3510 rtx insn;
3511
3512 FOR_EACH_VEC_ELT (rtx, model_schedule, i, insn)
3513 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3514 }
3515
3516 /* We have calculated the model schedule and spill costs. Print a summary
3517 to sched_dump. */
3518
3519 static void
3520 model_dump_pressure_summary (void)
3521 {
3522 int pci, cl;
3523
3524 fprintf (sched_dump, ";; Pressure summary:");
3525 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3526 {
3527 cl = ira_pressure_classes[pci];
3528 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3529 model_before_pressure.limits[pci].pressure);
3530 }
3531 fprintf (sched_dump, "\n\n");
3532 }
3533
3534 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3535 scheduling region. */
3536
3537 static void
3538 model_start_schedule (void)
3539 {
3540 basic_block bb;
3541
3542 model_next_priority = 1;
3543 model_schedule = VEC_alloc (rtx, heap, sched_max_luid);
3544 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3545
3546 bb = BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head));
3547 initiate_reg_pressure_info (df_get_live_in (bb));
3548
3549 model_analyze_insns ();
3550 model_init_pressure_group (&model_before_pressure);
3551 while (model_worklist)
3552 model_choose_insn ();
3553 gcc_assert (model_num_insns == (int) VEC_length (rtx, model_schedule));
3554 if (sched_verbose >= 2)
3555 fprintf (sched_dump, "\n");
3556
3557 model_record_final_pressures (&model_before_pressure);
3558 model_reset_queue_indices ();
3559
3560 XDELETEVEC (model_insns);
3561
3562 model_curr_point = 0;
3563 initiate_reg_pressure_info (df_get_live_in (bb));
3564 if (sched_verbose >= 1)
3565 model_dump_pressure_summary ();
3566 }
3567
3568 /* Free the information associated with GROUP. */
3569
3570 static void
3571 model_finalize_pressure_group (struct model_pressure_group *group)
3572 {
3573 XDELETEVEC (group->model);
3574 }
3575
3576 /* Free the information created by model_start_schedule. */
3577
3578 static void
3579 model_end_schedule (void)
3580 {
3581 model_finalize_pressure_group (&model_before_pressure);
3582 VEC_free (rtx, heap, model_schedule);
3583 }
3584 \f
3585 /* A structure that holds local state for the loop in schedule_block. */
3586 struct sched_block_state
3587 {
3588 /* True if no real insns have been scheduled in the current cycle. */
3589 bool first_cycle_insn_p;
3590 /* True if a shadow insn has been scheduled in the current cycle, which
3591 means that no more normal insns can be issued. */
3592 bool shadows_only_p;
3593 /* True if we're winding down a modulo schedule, which means that we only
3594 issue insns with INSN_EXACT_TICK set. */
3595 bool modulo_epilogue;
3596 /* Initialized with the machine's issue rate every cycle, and updated
3597 by calls to the variable_issue hook. */
3598 int can_issue_more;
3599 };
3600
3601 /* INSN is the "currently executing insn". Launch each insn which was
3602 waiting on INSN. READY is the ready list which contains the insns
3603 that are ready to fire. CLOCK is the current cycle. The function
3604 returns necessary cycle advance after issuing the insn (it is not
3605 zero for insns in a schedule group). */
3606
3607 static int
3608 schedule_insn (rtx insn)
3609 {
3610 sd_iterator_def sd_it;
3611 dep_t dep;
3612 int i;
3613 int advance = 0;
3614
3615 if (sched_verbose >= 1)
3616 {
3617 struct reg_pressure_data *pressure_info;
3618 char buf[2048];
3619
3620 print_insn (buf, insn, 0);
3621 buf[40] = 0;
3622 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
3623
3624 if (recog_memoized (insn) < 0)
3625 fprintf (sched_dump, "nothing");
3626 else
3627 print_reservation (sched_dump, insn);
3628 pressure_info = INSN_REG_PRESSURE (insn);
3629 if (pressure_info != NULL)
3630 {
3631 fputc (':', sched_dump);
3632 for (i = 0; i < ira_pressure_classes_num; i++)
3633 fprintf (sched_dump, "%s%+d(%d)",
3634 reg_class_names[ira_pressure_classes[i]],
3635 pressure_info[i].set_increase, pressure_info[i].change);
3636 }
3637 if (sched_pressure == SCHED_PRESSURE_MODEL
3638 && model_curr_point < model_num_insns
3639 && model_index (insn) == model_curr_point)
3640 fprintf (sched_dump, ":model %d", model_curr_point);
3641 fputc ('\n', sched_dump);
3642 }
3643
3644 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
3645 update_reg_and_insn_max_reg_pressure (insn);
3646
3647 /* Scheduling instruction should have all its dependencies resolved and
3648 should have been removed from the ready list. */
3649 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
3650
3651 /* Reset debug insns invalidated by moving this insn. */
3652 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
3653 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
3654 sd_iterator_cond (&sd_it, &dep);)
3655 {
3656 rtx dbg = DEP_PRO (dep);
3657 struct reg_use_data *use, *next;
3658
3659 if (DEP_STATUS (dep) & DEP_CANCELLED)
3660 {
3661 sd_iterator_next (&sd_it);
3662 continue;
3663 }
3664
3665 gcc_assert (DEBUG_INSN_P (dbg));
3666
3667 if (sched_verbose >= 6)
3668 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
3669 INSN_UID (dbg));
3670
3671 /* ??? Rather than resetting the debug insn, we might be able
3672 to emit a debug temp before the just-scheduled insn, but
3673 this would involve checking that the expression at the
3674 point of the debug insn is equivalent to the expression
3675 before the just-scheduled insn. They might not be: the
3676 expression in the debug insn may depend on other insns not
3677 yet scheduled that set MEMs, REGs or even other debug
3678 insns. It's not clear that attempting to preserve debug
3679 information in these cases is worth the effort, given how
3680 uncommon these resets are and the likelihood that the debug
3681 temps introduced won't survive the schedule change. */
3682 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
3683 df_insn_rescan (dbg);
3684
3685 /* Unknown location doesn't use any registers. */
3686 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
3687 {
3688 struct reg_use_data *prev = use;
3689
3690 /* Remove use from the cyclic next_regno_use chain first. */
3691 while (prev->next_regno_use != use)
3692 prev = prev->next_regno_use;
3693 prev->next_regno_use = use->next_regno_use;
3694 next = use->next_insn_use;
3695 free (use);
3696 }
3697 INSN_REG_USE_LIST (dbg) = NULL;
3698
3699 /* We delete rather than resolve these deps, otherwise we
3700 crash in sched_free_deps(), because forward deps are
3701 expected to be released before backward deps. */
3702 sd_delete_dep (sd_it);
3703 }
3704
3705 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3706 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3707
3708 if (sched_pressure == SCHED_PRESSURE_MODEL
3709 && model_curr_point < model_num_insns
3710 && NONDEBUG_INSN_P (insn))
3711 {
3712 if (model_index (insn) == model_curr_point)
3713 do
3714 model_curr_point++;
3715 while (model_curr_point < model_num_insns
3716 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
3717 == QUEUE_SCHEDULED));
3718 else
3719 model_recompute (insn);
3720 model_update_limit_points ();
3721 update_register_pressure (insn);
3722 if (sched_verbose >= 2)
3723 print_curr_reg_pressure ();
3724 }
3725
3726 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
3727 if (INSN_TICK (insn) > clock_var)
3728 /* INSN has been prematurely moved from the queue to the ready list.
3729 This is possible only if following flag is set. */
3730 gcc_assert (flag_sched_stalled_insns);
3731
3732 /* ??? Probably, if INSN is scheduled prematurely, we should leave
3733 INSN_TICK untouched. This is a machine-dependent issue, actually. */
3734 INSN_TICK (insn) = clock_var;
3735
3736 check_clobbered_conditions (insn);
3737
3738 /* Update dependent instructions. */
3739 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
3740 sd_iterator_cond (&sd_it, &dep);)
3741 {
3742 rtx next = DEP_CON (dep);
3743 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
3744
3745 /* Resolve the dependence between INSN and NEXT.
3746 sd_resolve_dep () moves current dep to another list thus
3747 advancing the iterator. */
3748 sd_resolve_dep (sd_it);
3749
3750 if (cancelled)
3751 {
3752 if (QUEUE_INDEX (next) != QUEUE_SCHEDULED)
3753 {
3754 int tick = INSN_TICK (next);
3755 gcc_assert (ORIG_PAT (next) != NULL_RTX);
3756 haifa_change_pattern (next, ORIG_PAT (next));
3757 INSN_TICK (next) = tick;
3758 if (sd_lists_empty_p (next, SD_LIST_BACK))
3759 TODO_SPEC (next) = 0;
3760 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
3761 TODO_SPEC (next) = HARD_DEP;
3762 }
3763 continue;
3764 }
3765
3766 /* Don't bother trying to mark next as ready if insn is a debug
3767 insn. If insn is the last hard dependency, it will have
3768 already been discounted. */
3769 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
3770 continue;
3771
3772 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
3773 {
3774 int effective_cost;
3775
3776 effective_cost = try_ready (next);
3777
3778 if (effective_cost >= 0
3779 && SCHED_GROUP_P (next)
3780 && advance < effective_cost)
3781 advance = effective_cost;
3782 }
3783 else
3784 /* Check always has only one forward dependence (to the first insn in
3785 the recovery block), therefore, this will be executed only once. */
3786 {
3787 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
3788 fix_recovery_deps (RECOVERY_BLOCK (insn));
3789 }
3790 }
3791
3792 /* Annotate the instruction with issue information -- TImode
3793 indicates that the instruction is expected not to be able
3794 to issue on the same cycle as the previous insn. A machine
3795 may use this information to decide how the instruction should
3796 be aligned. */
3797 if (issue_rate > 1
3798 && GET_CODE (PATTERN (insn)) != USE
3799 && GET_CODE (PATTERN (insn)) != CLOBBER
3800 && !DEBUG_INSN_P (insn))
3801 {
3802 if (reload_completed)
3803 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
3804 last_clock_var = clock_var;
3805 }
3806
3807 return advance;
3808 }
3809
3810 /* Functions for handling of notes. */
3811
3812 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
3813 void
3814 concat_note_lists (rtx from_end, rtx *to_endp)
3815 {
3816 rtx from_start;
3817
3818 /* It's easy when have nothing to concat. */
3819 if (from_end == NULL)
3820 return;
3821
3822 /* It's also easy when destination is empty. */
3823 if (*to_endp == NULL)
3824 {
3825 *to_endp = from_end;
3826 return;
3827 }
3828
3829 from_start = from_end;
3830 while (PREV_INSN (from_start) != NULL)
3831 from_start = PREV_INSN (from_start);
3832
3833 PREV_INSN (from_start) = *to_endp;
3834 NEXT_INSN (*to_endp) = from_start;
3835 *to_endp = from_end;
3836 }
3837
3838 /* Delete notes between HEAD and TAIL and put them in the chain
3839 of notes ended by NOTE_LIST. */
3840 void
3841 remove_notes (rtx head, rtx tail)
3842 {
3843 rtx next_tail, insn, next;
3844
3845 note_list = 0;
3846 if (head == tail && !INSN_P (head))
3847 return;
3848
3849 next_tail = NEXT_INSN (tail);
3850 for (insn = head; insn != next_tail; insn = next)
3851 {
3852 next = NEXT_INSN (insn);
3853 if (!NOTE_P (insn))
3854 continue;
3855
3856 switch (NOTE_KIND (insn))
3857 {
3858 case NOTE_INSN_BASIC_BLOCK:
3859 continue;
3860
3861 case NOTE_INSN_EPILOGUE_BEG:
3862 if (insn != tail)
3863 {
3864 remove_insn (insn);
3865 add_reg_note (next, REG_SAVE_NOTE,
3866 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
3867 break;
3868 }
3869 /* FALLTHRU */
3870
3871 default:
3872 remove_insn (insn);
3873
3874 /* Add the note to list that ends at NOTE_LIST. */
3875 PREV_INSN (insn) = note_list;
3876 NEXT_INSN (insn) = NULL_RTX;
3877 if (note_list)
3878 NEXT_INSN (note_list) = insn;
3879 note_list = insn;
3880 break;
3881 }
3882
3883 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
3884 }
3885 }
3886
3887 /* A structure to record enough data to allow us to backtrack the scheduler to
3888 a previous state. */
3889 struct haifa_saved_data
3890 {
3891 /* Next entry on the list. */
3892 struct haifa_saved_data *next;
3893
3894 /* Backtracking is associated with scheduling insns that have delay slots.
3895 DELAY_PAIR points to the structure that contains the insns involved, and
3896 the number of cycles between them. */
3897 struct delay_pair *delay_pair;
3898
3899 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
3900 void *fe_saved_data;
3901 /* Data used by the backend. */
3902 void *be_saved_data;
3903
3904 /* Copies of global state. */
3905 int clock_var, last_clock_var;
3906 struct ready_list ready;
3907 state_t curr_state;
3908
3909 rtx last_scheduled_insn;
3910 rtx last_nondebug_scheduled_insn;
3911 int cycle_issued_insns;
3912
3913 /* Copies of state used in the inner loop of schedule_block. */
3914 struct sched_block_state sched_block;
3915
3916 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
3917 to 0 when restoring. */
3918 int q_size;
3919 rtx *insn_queue;
3920 };
3921
3922 /* A record, in reverse order, of all scheduled insns which have delay slots
3923 and may require backtracking. */
3924 static struct haifa_saved_data *backtrack_queue;
3925
3926 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
3927 to SET_P. */
3928 static void
3929 mark_backtrack_feeds (rtx insn, int set_p)
3930 {
3931 sd_iterator_def sd_it;
3932 dep_t dep;
3933 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
3934 {
3935 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
3936 }
3937 }
3938
3939 /* Save the current scheduler state so that we can backtrack to it
3940 later if necessary. PAIR gives the insns that make it necessary to
3941 save this point. SCHED_BLOCK is the local state of schedule_block
3942 that need to be saved. */
3943 static void
3944 save_backtrack_point (struct delay_pair *pair,
3945 struct sched_block_state sched_block)
3946 {
3947 int i;
3948 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
3949
3950 save->curr_state = xmalloc (dfa_state_size);
3951 memcpy (save->curr_state, curr_state, dfa_state_size);
3952
3953 save->ready.first = ready.first;
3954 save->ready.n_ready = ready.n_ready;
3955 save->ready.n_debug = ready.n_debug;
3956 save->ready.veclen = ready.veclen;
3957 save->ready.vec = XNEWVEC (rtx, ready.veclen);
3958 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
3959
3960 save->insn_queue = XNEWVEC (rtx, max_insn_queue_index + 1);
3961 save->q_size = q_size;
3962 for (i = 0; i <= max_insn_queue_index; i++)
3963 {
3964 int q = NEXT_Q_AFTER (q_ptr, i);
3965 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
3966 }
3967
3968 save->clock_var = clock_var;
3969 save->last_clock_var = last_clock_var;
3970 save->cycle_issued_insns = cycle_issued_insns;
3971 save->last_scheduled_insn = last_scheduled_insn;
3972 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
3973
3974 save->sched_block = sched_block;
3975
3976 if (current_sched_info->save_state)
3977 save->fe_saved_data = (*current_sched_info->save_state) ();
3978
3979 if (targetm.sched.alloc_sched_context)
3980 {
3981 save->be_saved_data = targetm.sched.alloc_sched_context ();
3982 targetm.sched.init_sched_context (save->be_saved_data, false);
3983 }
3984 else
3985 save->be_saved_data = NULL;
3986
3987 save->delay_pair = pair;
3988
3989 save->next = backtrack_queue;
3990 backtrack_queue = save;
3991
3992 while (pair)
3993 {
3994 mark_backtrack_feeds (pair->i2, 1);
3995 INSN_TICK (pair->i2) = INVALID_TICK;
3996 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
3997 SHADOW_P (pair->i2) = pair->stages == 0;
3998 pair = pair->next_same_i1;
3999 }
4000 }
4001
4002 /* Walk the ready list and all queues. If any insns have unresolved backwards
4003 dependencies, these must be cancelled deps, broken by predication. Set or
4004 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4005
4006 static void
4007 toggle_cancelled_flags (bool set)
4008 {
4009 int i;
4010 sd_iterator_def sd_it;
4011 dep_t dep;
4012
4013 if (ready.n_ready > 0)
4014 {
4015 rtx *first = ready_lastpos (&ready);
4016 for (i = 0; i < ready.n_ready; i++)
4017 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4018 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4019 {
4020 if (set)
4021 DEP_STATUS (dep) |= DEP_CANCELLED;
4022 else
4023 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4024 }
4025 }
4026 for (i = 0; i <= max_insn_queue_index; i++)
4027 {
4028 int q = NEXT_Q_AFTER (q_ptr, i);
4029 rtx link;
4030 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4031 {
4032 rtx insn = XEXP (link, 0);
4033 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4034 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4035 {
4036 if (set)
4037 DEP_STATUS (dep) |= DEP_CANCELLED;
4038 else
4039 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4040 }
4041 }
4042 }
4043 }
4044
4045 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4046 Restore their dependencies to an unresolved state, and mark them as
4047 queued nowhere. */
4048
4049 static void
4050 unschedule_insns_until (rtx insn)
4051 {
4052 VEC (rtx, heap) *recompute_vec;
4053
4054 recompute_vec = VEC_alloc (rtx, heap, 0);
4055
4056 /* Make two passes over the insns to be unscheduled. First, we clear out
4057 dependencies and other trivial bookkeeping. */
4058 for (;;)
4059 {
4060 rtx last;
4061 sd_iterator_def sd_it;
4062 dep_t dep;
4063
4064 last = VEC_pop (rtx, scheduled_insns);
4065
4066 /* This will be changed by restore_backtrack_point if the insn is in
4067 any queue. */
4068 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4069 if (last != insn)
4070 INSN_TICK (last) = INVALID_TICK;
4071
4072 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4073 modulo_insns_scheduled--;
4074
4075 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4076 sd_iterator_cond (&sd_it, &dep);)
4077 {
4078 rtx con = DEP_CON (dep);
4079 sd_unresolve_dep (sd_it);
4080 if (!MUST_RECOMPUTE_SPEC_P (con))
4081 {
4082 MUST_RECOMPUTE_SPEC_P (con) = 1;
4083 VEC_safe_push (rtx, heap, recompute_vec, con);
4084 }
4085 }
4086
4087 if (last == insn)
4088 break;
4089 }
4090
4091 /* A second pass, to update ready and speculation status for insns
4092 depending on the unscheduled ones. The first pass must have
4093 popped the scheduled_insns vector up to the point where we
4094 restart scheduling, as recompute_todo_spec requires it to be
4095 up-to-date. */
4096 while (!VEC_empty (rtx, recompute_vec))
4097 {
4098 rtx con;
4099
4100 con = VEC_pop (rtx, recompute_vec);
4101 MUST_RECOMPUTE_SPEC_P (con) = 0;
4102 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4103 {
4104 TODO_SPEC (con) = HARD_DEP;
4105 INSN_TICK (con) = INVALID_TICK;
4106 if (PREDICATED_PAT (con) != NULL_RTX)
4107 haifa_change_pattern (con, ORIG_PAT (con));
4108 }
4109 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4110 TODO_SPEC (con) = recompute_todo_spec (con);
4111 }
4112 VEC_free (rtx, heap, recompute_vec);
4113 }
4114
4115 /* Restore scheduler state from the topmost entry on the backtracking queue.
4116 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4117 overwrite with the saved data.
4118 The caller must already have called unschedule_insns_until. */
4119
4120 static void
4121 restore_last_backtrack_point (struct sched_block_state *psched_block)
4122 {
4123 rtx link;
4124 int i;
4125 struct haifa_saved_data *save = backtrack_queue;
4126
4127 backtrack_queue = save->next;
4128
4129 if (current_sched_info->restore_state)
4130 (*current_sched_info->restore_state) (save->fe_saved_data);
4131
4132 if (targetm.sched.alloc_sched_context)
4133 {
4134 targetm.sched.set_sched_context (save->be_saved_data);
4135 targetm.sched.free_sched_context (save->be_saved_data);
4136 }
4137
4138 /* Clear the QUEUE_INDEX of everything in the ready list or one
4139 of the queues. */
4140 if (ready.n_ready > 0)
4141 {
4142 rtx *first = ready_lastpos (&ready);
4143 for (i = 0; i < ready.n_ready; i++)
4144 {
4145 rtx insn = first[i];
4146 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4147 INSN_TICK (insn) = INVALID_TICK;
4148 }
4149 }
4150 for (i = 0; i <= max_insn_queue_index; i++)
4151 {
4152 int q = NEXT_Q_AFTER (q_ptr, i);
4153
4154 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4155 {
4156 rtx x = XEXP (link, 0);
4157 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4158 INSN_TICK (x) = INVALID_TICK;
4159 }
4160 free_INSN_LIST_list (&insn_queue[q]);
4161 }
4162
4163 free (ready.vec);
4164 ready = save->ready;
4165
4166 if (ready.n_ready > 0)
4167 {
4168 rtx *first = ready_lastpos (&ready);
4169 for (i = 0; i < ready.n_ready; i++)
4170 {
4171 rtx insn = first[i];
4172 QUEUE_INDEX (insn) = QUEUE_READY;
4173 TODO_SPEC (insn) = recompute_todo_spec (insn);
4174 INSN_TICK (insn) = save->clock_var;
4175 }
4176 }
4177
4178 q_ptr = 0;
4179 q_size = save->q_size;
4180 for (i = 0; i <= max_insn_queue_index; i++)
4181 {
4182 int q = NEXT_Q_AFTER (q_ptr, i);
4183
4184 insn_queue[q] = save->insn_queue[q];
4185
4186 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4187 {
4188 rtx x = XEXP (link, 0);
4189 QUEUE_INDEX (x) = i;
4190 TODO_SPEC (x) = recompute_todo_spec (x);
4191 INSN_TICK (x) = save->clock_var + i;
4192 }
4193 }
4194 free (save->insn_queue);
4195
4196 toggle_cancelled_flags (true);
4197
4198 clock_var = save->clock_var;
4199 last_clock_var = save->last_clock_var;
4200 cycle_issued_insns = save->cycle_issued_insns;
4201 last_scheduled_insn = save->last_scheduled_insn;
4202 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4203
4204 *psched_block = save->sched_block;
4205
4206 memcpy (curr_state, save->curr_state, dfa_state_size);
4207 free (save->curr_state);
4208
4209 mark_backtrack_feeds (save->delay_pair->i2, 0);
4210
4211 free (save);
4212
4213 for (save = backtrack_queue; save; save = save->next)
4214 {
4215 mark_backtrack_feeds (save->delay_pair->i2, 1);
4216 }
4217 }
4218
4219 /* Discard all data associated with the topmost entry in the backtrack
4220 queue. If RESET_TICK is false, we just want to free the data. If true,
4221 we are doing this because we discovered a reason to backtrack. In the
4222 latter case, also reset the INSN_TICK for the shadow insn. */
4223 static void
4224 free_topmost_backtrack_point (bool reset_tick)
4225 {
4226 struct haifa_saved_data *save = backtrack_queue;
4227 int i;
4228
4229 backtrack_queue = save->next;
4230
4231 if (reset_tick)
4232 {
4233 struct delay_pair *pair = save->delay_pair;
4234 while (pair)
4235 {
4236 INSN_TICK (pair->i2) = INVALID_TICK;
4237 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4238 pair = pair->next_same_i1;
4239 }
4240 }
4241 if (targetm.sched.free_sched_context)
4242 targetm.sched.free_sched_context (save->be_saved_data);
4243 if (current_sched_info->restore_state)
4244 free (save->fe_saved_data);
4245 for (i = 0; i <= max_insn_queue_index; i++)
4246 free_INSN_LIST_list (&save->insn_queue[i]);
4247 free (save->insn_queue);
4248 free (save->curr_state);
4249 free (save->ready.vec);
4250 free (save);
4251 }
4252
4253 /* Free the entire backtrack queue. */
4254 static void
4255 free_backtrack_queue (void)
4256 {
4257 while (backtrack_queue)
4258 free_topmost_backtrack_point (false);
4259 }
4260
4261 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4262 instructions we've previously encountered, a set bit prevents
4263 recursion. BUDGET is a limit on how far ahead we look, it is
4264 reduced on recursive calls. Return true if we produced a good
4265 estimate, or false if we exceeded the budget. */
4266 static bool
4267 estimate_insn_tick (bitmap processed, rtx insn, int budget)
4268 {
4269 sd_iterator_def sd_it;
4270 dep_t dep;
4271 int earliest = INSN_TICK (insn);
4272
4273 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4274 {
4275 rtx pro = DEP_PRO (dep);
4276 int t;
4277
4278 if (DEP_STATUS (dep) & DEP_CANCELLED)
4279 continue;
4280
4281 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4282 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4283 else
4284 {
4285 int cost = dep_cost (dep);
4286 if (cost >= budget)
4287 return false;
4288 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4289 {
4290 if (!estimate_insn_tick (processed, pro, budget - cost))
4291 return false;
4292 }
4293 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4294 t = INSN_TICK_ESTIMATE (pro) + cost;
4295 if (earliest == INVALID_TICK || t > earliest)
4296 earliest = t;
4297 }
4298 }
4299 bitmap_set_bit (processed, INSN_LUID (insn));
4300 INSN_TICK_ESTIMATE (insn) = earliest;
4301 return true;
4302 }
4303
4304 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4305 infinite resources) the cycle in which the delayed shadow can be issued.
4306 Return the number of cycles that must pass before the real insn can be
4307 issued in order to meet this constraint. */
4308 static int
4309 estimate_shadow_tick (struct delay_pair *p)
4310 {
4311 bitmap_head processed;
4312 int t;
4313 bool cutoff;
4314 bitmap_initialize (&processed, 0);
4315
4316 cutoff = !estimate_insn_tick (&processed, p->i2,
4317 max_insn_queue_index + pair_delay (p));
4318 bitmap_clear (&processed);
4319 if (cutoff)
4320 return max_insn_queue_index;
4321 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4322 if (t > 0)
4323 return t;
4324 return 0;
4325 }
4326
4327 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4328 recursively resolve all its forward dependencies. */
4329 static void
4330 resolve_dependencies (rtx insn)
4331 {
4332 sd_iterator_def sd_it;
4333 dep_t dep;
4334
4335 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4336 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4337 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4338 return;
4339
4340 if (sched_verbose >= 4)
4341 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4342
4343 if (QUEUE_INDEX (insn) >= 0)
4344 queue_remove (insn);
4345
4346 VEC_safe_push (rtx, heap, scheduled_insns, insn);
4347
4348 /* Update dependent instructions. */
4349 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4350 sd_iterator_cond (&sd_it, &dep);)
4351 {
4352 rtx next = DEP_CON (dep);
4353
4354 if (sched_verbose >= 4)
4355 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4356 INSN_UID (next));
4357
4358 /* Resolve the dependence between INSN and NEXT.
4359 sd_resolve_dep () moves current dep to another list thus
4360 advancing the iterator. */
4361 sd_resolve_dep (sd_it);
4362
4363 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4364 {
4365 resolve_dependencies (next);
4366 }
4367 else
4368 /* Check always has only one forward dependence (to the first insn in
4369 the recovery block), therefore, this will be executed only once. */
4370 {
4371 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4372 }
4373 }
4374 }
4375
4376
4377 /* Return the head and tail pointers of ebb starting at BEG and ending
4378 at END. */
4379 void
4380 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
4381 {
4382 rtx beg_head = BB_HEAD (beg);
4383 rtx beg_tail = BB_END (beg);
4384 rtx end_head = BB_HEAD (end);
4385 rtx end_tail = BB_END (end);
4386
4387 /* Don't include any notes or labels at the beginning of the BEG
4388 basic block, or notes at the end of the END basic blocks. */
4389
4390 if (LABEL_P (beg_head))
4391 beg_head = NEXT_INSN (beg_head);
4392
4393 while (beg_head != beg_tail)
4394 if (NOTE_P (beg_head))
4395 beg_head = NEXT_INSN (beg_head);
4396 else if (DEBUG_INSN_P (beg_head))
4397 {
4398 rtx note, next;
4399
4400 for (note = NEXT_INSN (beg_head);
4401 note != beg_tail;
4402 note = next)
4403 {
4404 next = NEXT_INSN (note);
4405 if (NOTE_P (note))
4406 {
4407 if (sched_verbose >= 9)
4408 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4409
4410 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4411
4412 if (BLOCK_FOR_INSN (note) != beg)
4413 df_insn_change_bb (note, beg);
4414 }
4415 else if (!DEBUG_INSN_P (note))
4416 break;
4417 }
4418
4419 break;
4420 }
4421 else
4422 break;
4423
4424 *headp = beg_head;
4425
4426 if (beg == end)
4427 end_head = beg_head;
4428 else if (LABEL_P (end_head))
4429 end_head = NEXT_INSN (end_head);
4430
4431 while (end_head != end_tail)
4432 if (NOTE_P (end_tail))
4433 end_tail = PREV_INSN (end_tail);
4434 else if (DEBUG_INSN_P (end_tail))
4435 {
4436 rtx note, prev;
4437
4438 for (note = PREV_INSN (end_tail);
4439 note != end_head;
4440 note = prev)
4441 {
4442 prev = PREV_INSN (note);
4443 if (NOTE_P (note))
4444 {
4445 if (sched_verbose >= 9)
4446 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4447
4448 reorder_insns_nobb (note, note, end_tail);
4449
4450 if (end_tail == BB_END (end))
4451 BB_END (end) = note;
4452
4453 if (BLOCK_FOR_INSN (note) != end)
4454 df_insn_change_bb (note, end);
4455 }
4456 else if (!DEBUG_INSN_P (note))
4457 break;
4458 }
4459
4460 break;
4461 }
4462 else
4463 break;
4464
4465 *tailp = end_tail;
4466 }
4467
4468 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
4469
4470 int
4471 no_real_insns_p (const_rtx head, const_rtx tail)
4472 {
4473 while (head != NEXT_INSN (tail))
4474 {
4475 if (!NOTE_P (head) && !LABEL_P (head))
4476 return 0;
4477 head = NEXT_INSN (head);
4478 }
4479 return 1;
4480 }
4481
4482 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
4483 previously found among the insns. Insert them just before HEAD. */
4484 rtx
4485 restore_other_notes (rtx head, basic_block head_bb)
4486 {
4487 if (note_list != 0)
4488 {
4489 rtx note_head = note_list;
4490
4491 if (head)
4492 head_bb = BLOCK_FOR_INSN (head);
4493 else
4494 head = NEXT_INSN (bb_note (head_bb));
4495
4496 while (PREV_INSN (note_head))
4497 {
4498 set_block_for_insn (note_head, head_bb);
4499 note_head = PREV_INSN (note_head);
4500 }
4501 /* In the above cycle we've missed this note. */
4502 set_block_for_insn (note_head, head_bb);
4503
4504 PREV_INSN (note_head) = PREV_INSN (head);
4505 NEXT_INSN (PREV_INSN (head)) = note_head;
4506 PREV_INSN (head) = note_list;
4507 NEXT_INSN (note_list) = head;
4508
4509 if (BLOCK_FOR_INSN (head) != head_bb)
4510 BB_END (head_bb) = note_list;
4511
4512 head = note_head;
4513 }
4514
4515 return head;
4516 }
4517
4518 /* Move insns that became ready to fire from queue to ready list. */
4519
4520 static void
4521 queue_to_ready (struct ready_list *ready)
4522 {
4523 rtx insn;
4524 rtx link;
4525 rtx skip_insn;
4526
4527 q_ptr = NEXT_Q (q_ptr);
4528
4529 if (dbg_cnt (sched_insn) == false)
4530 {
4531 /* If debug counter is activated do not requeue the first
4532 nonscheduled insn. */
4533 skip_insn = nonscheduled_insns_begin;
4534 do
4535 {
4536 skip_insn = next_nonnote_nondebug_insn (skip_insn);
4537 }
4538 while (QUEUE_INDEX (skip_insn) == QUEUE_SCHEDULED);
4539 }
4540 else
4541 skip_insn = NULL_RTX;
4542
4543 /* Add all pending insns that can be scheduled without stalls to the
4544 ready list. */
4545 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
4546 {
4547 insn = XEXP (link, 0);
4548 q_size -= 1;
4549
4550 if (sched_verbose >= 2)
4551 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4552 (*current_sched_info->print_insn) (insn, 0));
4553
4554 /* If the ready list is full, delay the insn for 1 cycle.
4555 See the comment in schedule_block for the rationale. */
4556 if (!reload_completed
4557 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
4558 || (sched_pressure == SCHED_PRESSURE_MODEL
4559 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
4560 instructions too. */
4561 && model_index (insn) > (model_curr_point
4562 + MAX_SCHED_READY_INSNS)))
4563 && !(sched_pressure == SCHED_PRESSURE_MODEL
4564 && model_curr_point < model_num_insns
4565 /* Always allow the next model instruction to issue. */
4566 && model_index (insn) == model_curr_point)
4567 && !SCHED_GROUP_P (insn)
4568 && insn != skip_insn)
4569 queue_insn (insn, 1, "ready full");
4570 else
4571 {
4572 ready_add (ready, insn, false);
4573 if (sched_verbose >= 2)
4574 fprintf (sched_dump, "moving to ready without stalls\n");
4575 }
4576 }
4577 free_INSN_LIST_list (&insn_queue[q_ptr]);
4578
4579 /* If there are no ready insns, stall until one is ready and add all
4580 of the pending insns at that point to the ready list. */
4581 if (ready->n_ready == 0)
4582 {
4583 int stalls;
4584
4585 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
4586 {
4587 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
4588 {
4589 for (; link; link = XEXP (link, 1))
4590 {
4591 insn = XEXP (link, 0);
4592 q_size -= 1;
4593
4594 if (sched_verbose >= 2)
4595 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4596 (*current_sched_info->print_insn) (insn, 0));
4597
4598 ready_add (ready, insn, false);
4599 if (sched_verbose >= 2)
4600 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
4601 }
4602 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
4603
4604 advance_one_cycle ();
4605
4606 break;
4607 }
4608
4609 advance_one_cycle ();
4610 }
4611
4612 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
4613 clock_var += stalls;
4614 }
4615 }
4616
4617 /* Used by early_queue_to_ready. Determines whether it is "ok" to
4618 prematurely move INSN from the queue to the ready list. Currently,
4619 if a target defines the hook 'is_costly_dependence', this function
4620 uses the hook to check whether there exist any dependences which are
4621 considered costly by the target, between INSN and other insns that
4622 have already been scheduled. Dependences are checked up to Y cycles
4623 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
4624 controlling this value.
4625 (Other considerations could be taken into account instead (or in
4626 addition) depending on user flags and target hooks. */
4627
4628 static bool
4629 ok_for_early_queue_removal (rtx insn)
4630 {
4631 if (targetm.sched.is_costly_dependence)
4632 {
4633 rtx prev_insn;
4634 int n_cycles;
4635 int i = VEC_length (rtx, scheduled_insns);
4636 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
4637 {
4638 while (i-- > 0)
4639 {
4640 int cost;
4641
4642 prev_insn = VEC_index (rtx, scheduled_insns, i);
4643
4644 if (!NOTE_P (prev_insn))
4645 {
4646 dep_t dep;
4647
4648 dep = sd_find_dep_between (prev_insn, insn, true);
4649
4650 if (dep != NULL)
4651 {
4652 cost = dep_cost (dep);
4653
4654 if (targetm.sched.is_costly_dependence (dep, cost,
4655 flag_sched_stalled_insns_dep - n_cycles))
4656 return false;
4657 }
4658 }
4659
4660 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
4661 break;
4662 }
4663
4664 if (i == 0)
4665 break;
4666 }
4667 }
4668
4669 return true;
4670 }
4671
4672
4673 /* Remove insns from the queue, before they become "ready" with respect
4674 to FU latency considerations. */
4675
4676 static int
4677 early_queue_to_ready (state_t state, struct ready_list *ready)
4678 {
4679 rtx insn;
4680 rtx link;
4681 rtx next_link;
4682 rtx prev_link;
4683 bool move_to_ready;
4684 int cost;
4685 state_t temp_state = alloca (dfa_state_size);
4686 int stalls;
4687 int insns_removed = 0;
4688
4689 /*
4690 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
4691 function:
4692
4693 X == 0: There is no limit on how many queued insns can be removed
4694 prematurely. (flag_sched_stalled_insns = -1).
4695
4696 X >= 1: Only X queued insns can be removed prematurely in each
4697 invocation. (flag_sched_stalled_insns = X).
4698
4699 Otherwise: Early queue removal is disabled.
4700 (flag_sched_stalled_insns = 0)
4701 */
4702
4703 if (! flag_sched_stalled_insns)
4704 return 0;
4705
4706 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
4707 {
4708 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
4709 {
4710 if (sched_verbose > 6)
4711 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
4712
4713 prev_link = 0;
4714 while (link)
4715 {
4716 next_link = XEXP (link, 1);
4717 insn = XEXP (link, 0);
4718 if (insn && sched_verbose > 6)
4719 print_rtl_single (sched_dump, insn);
4720
4721 memcpy (temp_state, state, dfa_state_size);
4722 if (recog_memoized (insn) < 0)
4723 /* non-negative to indicate that it's not ready
4724 to avoid infinite Q->R->Q->R... */
4725 cost = 0;
4726 else
4727 cost = state_transition (temp_state, insn);
4728
4729 if (sched_verbose >= 6)
4730 fprintf (sched_dump, "transition cost = %d\n", cost);
4731
4732 move_to_ready = false;
4733 if (cost < 0)
4734 {
4735 move_to_ready = ok_for_early_queue_removal (insn);
4736 if (move_to_ready == true)
4737 {
4738 /* move from Q to R */
4739 q_size -= 1;
4740 ready_add (ready, insn, false);
4741
4742 if (prev_link)
4743 XEXP (prev_link, 1) = next_link;
4744 else
4745 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
4746
4747 free_INSN_LIST_node (link);
4748
4749 if (sched_verbose >= 2)
4750 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
4751 (*current_sched_info->print_insn) (insn, 0));
4752
4753 insns_removed++;
4754 if (insns_removed == flag_sched_stalled_insns)
4755 /* Remove no more than flag_sched_stalled_insns insns
4756 from Q at a time. */
4757 return insns_removed;
4758 }
4759 }
4760
4761 if (move_to_ready == false)
4762 prev_link = link;
4763
4764 link = next_link;
4765 } /* while link */
4766 } /* if link */
4767
4768 } /* for stalls.. */
4769
4770 return insns_removed;
4771 }
4772
4773
4774 /* Print the ready list for debugging purposes. Callable from debugger. */
4775
4776 static void
4777 debug_ready_list (struct ready_list *ready)
4778 {
4779 rtx *p;
4780 int i;
4781
4782 if (ready->n_ready == 0)
4783 {
4784 fprintf (sched_dump, "\n");
4785 return;
4786 }
4787
4788 p = ready_lastpos (ready);
4789 for (i = 0; i < ready->n_ready; i++)
4790 {
4791 fprintf (sched_dump, " %s:%d",
4792 (*current_sched_info->print_insn) (p[i], 0),
4793 INSN_LUID (p[i]));
4794 if (sched_pressure != SCHED_PRESSURE_NONE)
4795 fprintf (sched_dump, "(cost=%d",
4796 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
4797 if (INSN_TICK (p[i]) > clock_var)
4798 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
4799 if (sched_pressure != SCHED_PRESSURE_NONE)
4800 fprintf (sched_dump, ")");
4801 }
4802 fprintf (sched_dump, "\n");
4803 }
4804
4805 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
4806 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
4807 replaces the epilogue note in the correct basic block. */
4808 void
4809 reemit_notes (rtx insn)
4810 {
4811 rtx note, last = insn;
4812
4813 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
4814 {
4815 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
4816 {
4817 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
4818
4819 last = emit_note_before (note_type, last);
4820 remove_note (insn, note);
4821 }
4822 }
4823 }
4824
4825 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
4826 static void
4827 move_insn (rtx insn, rtx last, rtx nt)
4828 {
4829 if (PREV_INSN (insn) != last)
4830 {
4831 basic_block bb;
4832 rtx note;
4833 int jump_p = 0;
4834
4835 bb = BLOCK_FOR_INSN (insn);
4836
4837 /* BB_HEAD is either LABEL or NOTE. */
4838 gcc_assert (BB_HEAD (bb) != insn);
4839
4840 if (BB_END (bb) == insn)
4841 /* If this is last instruction in BB, move end marker one
4842 instruction up. */
4843 {
4844 /* Jumps are always placed at the end of basic block. */
4845 jump_p = control_flow_insn_p (insn);
4846
4847 gcc_assert (!jump_p
4848 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
4849 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
4850 || (common_sched_info->sched_pass_id
4851 == SCHED_EBB_PASS));
4852
4853 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
4854
4855 BB_END (bb) = PREV_INSN (insn);
4856 }
4857
4858 gcc_assert (BB_END (bb) != last);
4859
4860 if (jump_p)
4861 /* We move the block note along with jump. */
4862 {
4863 gcc_assert (nt);
4864
4865 note = NEXT_INSN (insn);
4866 while (NOTE_NOT_BB_P (note) && note != nt)
4867 note = NEXT_INSN (note);
4868
4869 if (note != nt
4870 && (LABEL_P (note)
4871 || BARRIER_P (note)))
4872 note = NEXT_INSN (note);
4873
4874 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4875 }
4876 else
4877 note = insn;
4878
4879 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
4880 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
4881
4882 NEXT_INSN (note) = NEXT_INSN (last);
4883 PREV_INSN (NEXT_INSN (last)) = note;
4884
4885 NEXT_INSN (last) = insn;
4886 PREV_INSN (insn) = last;
4887
4888 bb = BLOCK_FOR_INSN (last);
4889
4890 if (jump_p)
4891 {
4892 fix_jump_move (insn);
4893
4894 if (BLOCK_FOR_INSN (insn) != bb)
4895 move_block_after_check (insn);
4896
4897 gcc_assert (BB_END (bb) == last);
4898 }
4899
4900 df_insn_change_bb (insn, bb);
4901
4902 /* Update BB_END, if needed. */
4903 if (BB_END (bb) == last)
4904 BB_END (bb) = insn;
4905 }
4906
4907 SCHED_GROUP_P (insn) = 0;
4908 }
4909
4910 /* Return true if scheduling INSN will finish current clock cycle. */
4911 static bool
4912 insn_finishes_cycle_p (rtx insn)
4913 {
4914 if (SCHED_GROUP_P (insn))
4915 /* After issuing INSN, rest of the sched_group will be forced to issue
4916 in order. Don't make any plans for the rest of cycle. */
4917 return true;
4918
4919 /* Finishing the block will, apparently, finish the cycle. */
4920 if (current_sched_info->insn_finishes_block_p
4921 && current_sched_info->insn_finishes_block_p (insn))
4922 return true;
4923
4924 return false;
4925 }
4926
4927 /* Define type for target data used in multipass scheduling. */
4928 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
4929 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
4930 #endif
4931 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
4932
4933 /* The following structure describe an entry of the stack of choices. */
4934 struct choice_entry
4935 {
4936 /* Ordinal number of the issued insn in the ready queue. */
4937 int index;
4938 /* The number of the rest insns whose issues we should try. */
4939 int rest;
4940 /* The number of issued essential insns. */
4941 int n;
4942 /* State after issuing the insn. */
4943 state_t state;
4944 /* Target-specific data. */
4945 first_cycle_multipass_data_t target_data;
4946 };
4947
4948 /* The following array is used to implement a stack of choices used in
4949 function max_issue. */
4950 static struct choice_entry *choice_stack;
4951
4952 /* This holds the value of the target dfa_lookahead hook. */
4953 int dfa_lookahead;
4954
4955 /* The following variable value is maximal number of tries of issuing
4956 insns for the first cycle multipass insn scheduling. We define
4957 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
4958 need this constraint if all real insns (with non-negative codes)
4959 had reservations because in this case the algorithm complexity is
4960 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
4961 might be incomplete and such insn might occur. For such
4962 descriptions, the complexity of algorithm (without the constraint)
4963 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
4964 static int max_lookahead_tries;
4965
4966 /* The following value is value of hook
4967 `first_cycle_multipass_dfa_lookahead' at the last call of
4968 `max_issue'. */
4969 static int cached_first_cycle_multipass_dfa_lookahead = 0;
4970
4971 /* The following value is value of `issue_rate' at the last call of
4972 `sched_init'. */
4973 static int cached_issue_rate = 0;
4974
4975 /* The following function returns maximal (or close to maximal) number
4976 of insns which can be issued on the same cycle and one of which
4977 insns is insns with the best rank (the first insn in READY). To
4978 make this function tries different samples of ready insns. READY
4979 is current queue `ready'. Global array READY_TRY reflects what
4980 insns are already issued in this try. The function stops immediately,
4981 if it reached the such a solution, that all instruction can be issued.
4982 INDEX will contain index of the best insn in READY. The following
4983 function is used only for first cycle multipass scheduling.
4984
4985 PRIVILEGED_N >= 0
4986
4987 This function expects recognized insns only. All USEs,
4988 CLOBBERs, etc must be filtered elsewhere. */
4989 int
4990 max_issue (struct ready_list *ready, int privileged_n, state_t state,
4991 bool first_cycle_insn_p, int *index)
4992 {
4993 int n, i, all, n_ready, best, delay, tries_num;
4994 int more_issue;
4995 struct choice_entry *top;
4996 rtx insn;
4997
4998 n_ready = ready->n_ready;
4999 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5000 && privileged_n <= n_ready);
5001
5002 /* Init MAX_LOOKAHEAD_TRIES. */
5003 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
5004 {
5005 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
5006 max_lookahead_tries = 100;
5007 for (i = 0; i < issue_rate; i++)
5008 max_lookahead_tries *= dfa_lookahead;
5009 }
5010
5011 /* Init max_points. */
5012 more_issue = issue_rate - cycle_issued_insns;
5013 gcc_assert (more_issue >= 0);
5014
5015 /* The number of the issued insns in the best solution. */
5016 best = 0;
5017
5018 top = choice_stack;
5019
5020 /* Set initial state of the search. */
5021 memcpy (top->state, state, dfa_state_size);
5022 top->rest = dfa_lookahead;
5023 top->n = 0;
5024 if (targetm.sched.first_cycle_multipass_begin)
5025 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5026 ready_try, n_ready,
5027 first_cycle_insn_p);
5028
5029 /* Count the number of the insns to search among. */
5030 for (all = i = 0; i < n_ready; i++)
5031 if (!ready_try [i])
5032 all++;
5033
5034 /* I is the index of the insn to try next. */
5035 i = 0;
5036 tries_num = 0;
5037 for (;;)
5038 {
5039 if (/* If we've reached a dead end or searched enough of what we have
5040 been asked... */
5041 top->rest == 0
5042 /* or have nothing else to try... */
5043 || i >= n_ready
5044 /* or should not issue more. */
5045 || top->n >= more_issue)
5046 {
5047 /* ??? (... || i == n_ready). */
5048 gcc_assert (i <= n_ready);
5049
5050 /* We should not issue more than issue_rate instructions. */
5051 gcc_assert (top->n <= more_issue);
5052
5053 if (top == choice_stack)
5054 break;
5055
5056 if (best < top - choice_stack)
5057 {
5058 if (privileged_n)
5059 {
5060 n = privileged_n;
5061 /* Try to find issued privileged insn. */
5062 while (n && !ready_try[--n])
5063 ;
5064 }
5065
5066 if (/* If all insns are equally good... */
5067 privileged_n == 0
5068 /* Or a privileged insn will be issued. */
5069 || ready_try[n])
5070 /* Then we have a solution. */
5071 {
5072 best = top - choice_stack;
5073 /* This is the index of the insn issued first in this
5074 solution. */
5075 *index = choice_stack [1].index;
5076 if (top->n == more_issue || best == all)
5077 break;
5078 }
5079 }
5080
5081 /* Set ready-list index to point to the last insn
5082 ('i++' below will advance it to the next insn). */
5083 i = top->index;
5084
5085 /* Backtrack. */
5086 ready_try [i] = 0;
5087
5088 if (targetm.sched.first_cycle_multipass_backtrack)
5089 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5090 ready_try, n_ready);
5091
5092 top--;
5093 memcpy (state, top->state, dfa_state_size);
5094 }
5095 else if (!ready_try [i])
5096 {
5097 tries_num++;
5098 if (tries_num > max_lookahead_tries)
5099 break;
5100 insn = ready_element (ready, i);
5101 delay = state_transition (state, insn);
5102 if (delay < 0)
5103 {
5104 if (state_dead_lock_p (state)
5105 || insn_finishes_cycle_p (insn))
5106 /* We won't issue any more instructions in the next
5107 choice_state. */
5108 top->rest = 0;
5109 else
5110 top->rest--;
5111
5112 n = top->n;
5113 if (memcmp (top->state, state, dfa_state_size) != 0)
5114 n++;
5115
5116 /* Advance to the next choice_entry. */
5117 top++;
5118 /* Initialize it. */
5119 top->rest = dfa_lookahead;
5120 top->index = i;
5121 top->n = n;
5122 memcpy (top->state, state, dfa_state_size);
5123 ready_try [i] = 1;
5124
5125 if (targetm.sched.first_cycle_multipass_issue)
5126 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5127 ready_try, n_ready,
5128 insn,
5129 &((top - 1)
5130 ->target_data));
5131
5132 i = -1;
5133 }
5134 }
5135
5136 /* Increase ready-list index. */
5137 i++;
5138 }
5139
5140 if (targetm.sched.first_cycle_multipass_end)
5141 targetm.sched.first_cycle_multipass_end (best != 0
5142 ? &choice_stack[1].target_data
5143 : NULL);
5144
5145 /* Restore the original state of the DFA. */
5146 memcpy (state, choice_stack->state, dfa_state_size);
5147
5148 return best;
5149 }
5150
5151 /* The following function chooses insn from READY and modifies
5152 READY. The following function is used only for first
5153 cycle multipass scheduling.
5154 Return:
5155 -1 if cycle should be advanced,
5156 0 if INSN_PTR is set to point to the desirable insn,
5157 1 if choose_ready () should be restarted without advancing the cycle. */
5158 static int
5159 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
5160 rtx *insn_ptr)
5161 {
5162 int lookahead;
5163
5164 if (dbg_cnt (sched_insn) == false)
5165 {
5166 rtx insn = nonscheduled_insns_begin;
5167 do
5168 {
5169 insn = next_nonnote_insn (insn);
5170 }
5171 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5172
5173 if (QUEUE_INDEX (insn) == QUEUE_READY)
5174 /* INSN is in the ready_list. */
5175 {
5176 nonscheduled_insns_begin = insn;
5177 ready_remove_insn (insn);
5178 *insn_ptr = insn;
5179 return 0;
5180 }
5181
5182 /* INSN is in the queue. Advance cycle to move it to the ready list. */
5183 return -1;
5184 }
5185
5186 lookahead = 0;
5187
5188 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
5189 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
5190 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
5191 || DEBUG_INSN_P (ready_element (ready, 0)))
5192 {
5193 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
5194 *insn_ptr = ready_remove_first_dispatch (ready);
5195 else
5196 *insn_ptr = ready_remove_first (ready);
5197
5198 return 0;
5199 }
5200 else
5201 {
5202 /* Try to choose the better insn. */
5203 int index = 0, i, n;
5204 rtx insn;
5205 int try_data = 1, try_control = 1;
5206 ds_t ts;
5207
5208 insn = ready_element (ready, 0);
5209 if (INSN_CODE (insn) < 0)
5210 {
5211 *insn_ptr = ready_remove_first (ready);
5212 return 0;
5213 }
5214
5215 if (spec_info
5216 && spec_info->flags & (PREFER_NON_DATA_SPEC
5217 | PREFER_NON_CONTROL_SPEC))
5218 {
5219 for (i = 0, n = ready->n_ready; i < n; i++)
5220 {
5221 rtx x;
5222 ds_t s;
5223
5224 x = ready_element (ready, i);
5225 s = TODO_SPEC (x);
5226
5227 if (spec_info->flags & PREFER_NON_DATA_SPEC
5228 && !(s & DATA_SPEC))
5229 {
5230 try_data = 0;
5231 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
5232 || !try_control)
5233 break;
5234 }
5235
5236 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
5237 && !(s & CONTROL_SPEC))
5238 {
5239 try_control = 0;
5240 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
5241 break;
5242 }
5243 }
5244 }
5245
5246 ts = TODO_SPEC (insn);
5247 if ((ts & SPECULATIVE)
5248 && (((!try_data && (ts & DATA_SPEC))
5249 || (!try_control && (ts & CONTROL_SPEC)))
5250 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
5251 && !targetm.sched
5252 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
5253 /* Discard speculative instruction that stands first in the ready
5254 list. */
5255 {
5256 change_queue_index (insn, 1);
5257 return 1;
5258 }
5259
5260 ready_try[0] = 0;
5261
5262 for (i = 1; i < ready->n_ready; i++)
5263 {
5264 insn = ready_element (ready, i);
5265
5266 ready_try [i]
5267 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
5268 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
5269 }
5270
5271 /* Let the target filter the search space. */
5272 for (i = 1; i < ready->n_ready; i++)
5273 if (!ready_try[i])
5274 {
5275 insn = ready_element (ready, i);
5276
5277 /* If this insn is recognizable we should have already
5278 recognized it earlier.
5279 ??? Not very clear where this is supposed to be done.
5280 See dep_cost_1. */
5281 gcc_checking_assert (INSN_CODE (insn) >= 0
5282 || recog_memoized (insn) < 0);
5283
5284 ready_try [i]
5285 = (/* INSN_CODE check can be omitted here as it is also done later
5286 in max_issue (). */
5287 INSN_CODE (insn) < 0
5288 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5289 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5290 (insn)));
5291 }
5292
5293 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
5294 {
5295 *insn_ptr = ready_remove_first (ready);
5296 if (sched_verbose >= 4)
5297 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
5298 (*current_sched_info->print_insn) (*insn_ptr, 0));
5299 return 0;
5300 }
5301 else
5302 {
5303 if (sched_verbose >= 4)
5304 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
5305 (*current_sched_info->print_insn)
5306 (ready_element (ready, index), 0));
5307
5308 *insn_ptr = ready_remove (ready, index);
5309 return 0;
5310 }
5311 }
5312 }
5313
5314 /* This function is called when we have successfully scheduled a
5315 block. It uses the schedule stored in the scheduled_insns vector
5316 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
5317 append the scheduled insns; TAIL is the insn after the scheduled
5318 block. TARGET_BB is the argument passed to schedule_block. */
5319
5320 static void
5321 commit_schedule (rtx prev_head, rtx tail, basic_block *target_bb)
5322 {
5323 unsigned int i;
5324 rtx insn;
5325
5326 last_scheduled_insn = prev_head;
5327 for (i = 0;
5328 VEC_iterate (rtx, scheduled_insns, i, insn);
5329 i++)
5330 {
5331 if (control_flow_insn_p (last_scheduled_insn)
5332 || current_sched_info->advance_target_bb (*target_bb, insn))
5333 {
5334 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
5335
5336 if (sched_verbose)
5337 {
5338 rtx x;
5339
5340 x = next_real_insn (last_scheduled_insn);
5341 gcc_assert (x);
5342 dump_new_block_header (1, *target_bb, x, tail);
5343 }
5344
5345 last_scheduled_insn = bb_note (*target_bb);
5346 }
5347
5348 if (current_sched_info->begin_move_insn)
5349 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
5350 move_insn (insn, last_scheduled_insn,
5351 current_sched_info->next_tail);
5352 if (!DEBUG_INSN_P (insn))
5353 reemit_notes (insn);
5354 last_scheduled_insn = insn;
5355 }
5356
5357 VEC_truncate (rtx, scheduled_insns, 0);
5358 }
5359
5360 /* Examine all insns on the ready list and queue those which can't be
5361 issued in this cycle. TEMP_STATE is temporary scheduler state we
5362 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
5363 have been issued for the current cycle, which means it is valid to
5364 issue an asm statement.
5365
5366 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
5367 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
5368 we only leave insns which have an INSN_EXACT_TICK. */
5369
5370 static void
5371 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
5372 bool shadows_only_p, bool modulo_epilogue_p)
5373 {
5374 int i, pass;
5375 bool sched_group_found = false;
5376 int min_cost_group = 1;
5377
5378 for (i = 0; i < ready.n_ready; i++)
5379 {
5380 rtx insn = ready_element (&ready, i);
5381 if (SCHED_GROUP_P (insn))
5382 {
5383 sched_group_found = true;
5384 break;
5385 }
5386 }
5387
5388 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
5389 such an insn first and note its cost, then schedule all other insns
5390 for one cycle later. */
5391 for (pass = sched_group_found ? 0 : 1; pass < 2; )
5392 {
5393 int n = ready.n_ready;
5394 for (i = 0; i < n; i++)
5395 {
5396 rtx insn = ready_element (&ready, i);
5397 int cost = 0;
5398 const char *reason = "resource conflict";
5399
5400 if (DEBUG_INSN_P (insn))
5401 continue;
5402
5403 if (sched_group_found && !SCHED_GROUP_P (insn))
5404 {
5405 if (pass == 0)
5406 continue;
5407 cost = min_cost_group;
5408 reason = "not in sched group";
5409 }
5410 else if (modulo_epilogue_p
5411 && INSN_EXACT_TICK (insn) == INVALID_TICK)
5412 {
5413 cost = max_insn_queue_index;
5414 reason = "not an epilogue insn";
5415 }
5416 else if (shadows_only_p && !SHADOW_P (insn))
5417 {
5418 cost = 1;
5419 reason = "not a shadow";
5420 }
5421 else if (recog_memoized (insn) < 0)
5422 {
5423 if (!first_cycle_insn_p
5424 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
5425 || asm_noperands (PATTERN (insn)) >= 0))
5426 cost = 1;
5427 reason = "asm";
5428 }
5429 else if (sched_pressure != SCHED_PRESSURE_NONE)
5430 {
5431 if (sched_pressure == SCHED_PRESSURE_MODEL
5432 && INSN_TICK (insn) <= clock_var)
5433 {
5434 memcpy (temp_state, curr_state, dfa_state_size);
5435 if (state_transition (temp_state, insn) >= 0)
5436 INSN_TICK (insn) = clock_var + 1;
5437 }
5438 cost = 0;
5439 }
5440 else
5441 {
5442 int delay_cost = 0;
5443
5444 if (delay_htab)
5445 {
5446 struct delay_pair *delay_entry;
5447 delay_entry
5448 = (struct delay_pair *)htab_find_with_hash (delay_htab, insn,
5449 htab_hash_pointer (insn));
5450 while (delay_entry && delay_cost == 0)
5451 {
5452 delay_cost = estimate_shadow_tick (delay_entry);
5453 if (delay_cost > max_insn_queue_index)
5454 delay_cost = max_insn_queue_index;
5455 delay_entry = delay_entry->next_same_i1;
5456 }
5457 }
5458
5459 memcpy (temp_state, curr_state, dfa_state_size);
5460 cost = state_transition (temp_state, insn);
5461 if (cost < 0)
5462 cost = 0;
5463 else if (cost == 0)
5464 cost = 1;
5465 if (cost < delay_cost)
5466 {
5467 cost = delay_cost;
5468 reason = "shadow tick";
5469 }
5470 }
5471 if (cost >= 1)
5472 {
5473 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
5474 min_cost_group = cost;
5475 ready_remove (&ready, i);
5476 queue_insn (insn, cost, reason);
5477 if (i + 1 < n)
5478 break;
5479 }
5480 }
5481 if (i == n)
5482 pass++;
5483 }
5484 }
5485
5486 /* Called when we detect that the schedule is impossible. We examine the
5487 backtrack queue to find the earliest insn that caused this condition. */
5488
5489 static struct haifa_saved_data *
5490 verify_shadows (void)
5491 {
5492 struct haifa_saved_data *save, *earliest_fail = NULL;
5493 for (save = backtrack_queue; save; save = save->next)
5494 {
5495 int t;
5496 struct delay_pair *pair = save->delay_pair;
5497 rtx i1 = pair->i1;
5498
5499 for (; pair; pair = pair->next_same_i1)
5500 {
5501 rtx i2 = pair->i2;
5502
5503 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
5504 continue;
5505
5506 t = INSN_TICK (i1) + pair_delay (pair);
5507 if (t < clock_var)
5508 {
5509 if (sched_verbose >= 2)
5510 fprintf (sched_dump,
5511 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
5512 ", not ready\n",
5513 INSN_UID (pair->i1), INSN_UID (pair->i2),
5514 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5515 earliest_fail = save;
5516 break;
5517 }
5518 if (QUEUE_INDEX (i2) >= 0)
5519 {
5520 int queued_for = INSN_TICK (i2);
5521
5522 if (t < queued_for)
5523 {
5524 if (sched_verbose >= 2)
5525 fprintf (sched_dump,
5526 ";;\t\tfailed delay requirements for %d/%d"
5527 " (%d->%d), queued too late\n",
5528 INSN_UID (pair->i1), INSN_UID (pair->i2),
5529 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5530 earliest_fail = save;
5531 break;
5532 }
5533 }
5534 }
5535 }
5536
5537 return earliest_fail;
5538 }
5539
5540 /* Use forward list scheduling to rearrange insns of block pointed to by
5541 TARGET_BB, possibly bringing insns from subsequent blocks in the same
5542 region. */
5543
5544 bool
5545 schedule_block (basic_block *target_bb)
5546 {
5547 int i;
5548 bool success = modulo_ii == 0;
5549 struct sched_block_state ls;
5550 state_t temp_state = NULL; /* It is used for multipass scheduling. */
5551 int sort_p, advance, start_clock_var;
5552
5553 /* Head/tail info for this block. */
5554 rtx prev_head = current_sched_info->prev_head;
5555 rtx next_tail = current_sched_info->next_tail;
5556 rtx head = NEXT_INSN (prev_head);
5557 rtx tail = PREV_INSN (next_tail);
5558
5559 /* We used to have code to avoid getting parameters moved from hard
5560 argument registers into pseudos.
5561
5562 However, it was removed when it proved to be of marginal benefit
5563 and caused problems because schedule_block and compute_forward_dependences
5564 had different notions of what the "head" insn was. */
5565
5566 gcc_assert (head != tail || INSN_P (head));
5567
5568 haifa_recovery_bb_recently_added_p = false;
5569
5570 backtrack_queue = NULL;
5571
5572 /* Debug info. */
5573 if (sched_verbose)
5574 dump_new_block_header (0, *target_bb, head, tail);
5575
5576 state_reset (curr_state);
5577
5578 /* Clear the ready list. */
5579 ready.first = ready.veclen - 1;
5580 ready.n_ready = 0;
5581 ready.n_debug = 0;
5582
5583 /* It is used for first cycle multipass scheduling. */
5584 temp_state = alloca (dfa_state_size);
5585
5586 if (targetm.sched.init)
5587 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
5588
5589 /* We start inserting insns after PREV_HEAD. */
5590 last_scheduled_insn = nonscheduled_insns_begin = prev_head;
5591 last_nondebug_scheduled_insn = NULL_RTX;
5592
5593 gcc_assert ((NOTE_P (last_scheduled_insn)
5594 || DEBUG_INSN_P (last_scheduled_insn))
5595 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
5596
5597 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
5598 queue. */
5599 q_ptr = 0;
5600 q_size = 0;
5601
5602 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
5603 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
5604
5605 /* Start just before the beginning of time. */
5606 clock_var = -1;
5607
5608 /* We need queue and ready lists and clock_var be initialized
5609 in try_ready () (which is called through init_ready_list ()). */
5610 (*current_sched_info->init_ready_list) ();
5611
5612 if (sched_pressure == SCHED_PRESSURE_MODEL)
5613 model_start_schedule ();
5614
5615 /* The algorithm is O(n^2) in the number of ready insns at any given
5616 time in the worst case. Before reload we are more likely to have
5617 big lists so truncate them to a reasonable size. */
5618 if (!reload_completed
5619 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
5620 {
5621 ready_sort (&ready);
5622
5623 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
5624 If there are debug insns, we know they're first. */
5625 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
5626 if (!SCHED_GROUP_P (ready_element (&ready, i)))
5627 break;
5628
5629 if (sched_verbose >= 2)
5630 {
5631 fprintf (sched_dump,
5632 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
5633 fprintf (sched_dump,
5634 ";;\t\t before reload => truncated to %d insns\n", i);
5635 }
5636
5637 /* Delay all insns past it for 1 cycle. If debug counter is
5638 activated make an exception for the insn right after
5639 nonscheduled_insns_begin. */
5640 {
5641 rtx skip_insn;
5642
5643 if (dbg_cnt (sched_insn) == false)
5644 skip_insn = next_nonnote_insn (nonscheduled_insns_begin);
5645 else
5646 skip_insn = NULL_RTX;
5647
5648 while (i < ready.n_ready)
5649 {
5650 rtx insn;
5651
5652 insn = ready_remove (&ready, i);
5653
5654 if (insn != skip_insn)
5655 queue_insn (insn, 1, "list truncated");
5656 }
5657 if (skip_insn)
5658 ready_add (&ready, skip_insn, true);
5659 }
5660 }
5661
5662 /* Now we can restore basic block notes and maintain precise cfg. */
5663 restore_bb_notes (*target_bb);
5664
5665 last_clock_var = -1;
5666
5667 advance = 0;
5668
5669 gcc_assert (VEC_length (rtx, scheduled_insns) == 0);
5670 sort_p = TRUE;
5671 must_backtrack = false;
5672 modulo_insns_scheduled = 0;
5673
5674 ls.modulo_epilogue = false;
5675
5676 /* Loop until all the insns in BB are scheduled. */
5677 while ((*current_sched_info->schedule_more_p) ())
5678 {
5679 do
5680 {
5681 start_clock_var = clock_var;
5682
5683 clock_var++;
5684
5685 advance_one_cycle ();
5686
5687 /* Add to the ready list all pending insns that can be issued now.
5688 If there are no ready insns, increment clock until one
5689 is ready and add all pending insns at that point to the ready
5690 list. */
5691 queue_to_ready (&ready);
5692
5693 gcc_assert (ready.n_ready);
5694
5695 if (sched_verbose >= 2)
5696 {
5697 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
5698 debug_ready_list (&ready);
5699 }
5700 advance -= clock_var - start_clock_var;
5701 }
5702 while (advance > 0);
5703
5704 if (ls.modulo_epilogue)
5705 {
5706 int stage = clock_var / modulo_ii;
5707 if (stage > modulo_last_stage * 2 + 2)
5708 {
5709 if (sched_verbose >= 2)
5710 fprintf (sched_dump,
5711 ";;\t\tmodulo scheduled succeeded at II %d\n",
5712 modulo_ii);
5713 success = true;
5714 goto end_schedule;
5715 }
5716 }
5717 else if (modulo_ii > 0)
5718 {
5719 int stage = clock_var / modulo_ii;
5720 if (stage > modulo_max_stages)
5721 {
5722 if (sched_verbose >= 2)
5723 fprintf (sched_dump,
5724 ";;\t\tfailing schedule due to excessive stages\n");
5725 goto end_schedule;
5726 }
5727 if (modulo_n_insns == modulo_insns_scheduled
5728 && stage > modulo_last_stage)
5729 {
5730 if (sched_verbose >= 2)
5731 fprintf (sched_dump,
5732 ";;\t\tfound kernel after %d stages, II %d\n",
5733 stage, modulo_ii);
5734 ls.modulo_epilogue = true;
5735 }
5736 }
5737
5738 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
5739 if (ready.n_ready == 0)
5740 continue;
5741 if (must_backtrack)
5742 goto do_backtrack;
5743
5744 ls.first_cycle_insn_p = true;
5745 ls.shadows_only_p = false;
5746 cycle_issued_insns = 0;
5747 ls.can_issue_more = issue_rate;
5748 for (;;)
5749 {
5750 rtx insn;
5751 int cost;
5752 bool asm_p;
5753
5754 if (sort_p && ready.n_ready > 0)
5755 {
5756 /* Sort the ready list based on priority. This must be
5757 done every iteration through the loop, as schedule_insn
5758 may have readied additional insns that will not be
5759 sorted correctly. */
5760 ready_sort (&ready);
5761
5762 if (sched_verbose >= 2)
5763 {
5764 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
5765 debug_ready_list (&ready);
5766 }
5767 }
5768
5769 /* We don't want md sched reorder to even see debug isns, so put
5770 them out right away. */
5771 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
5772 && (*current_sched_info->schedule_more_p) ())
5773 {
5774 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
5775 {
5776 rtx insn = ready_remove_first (&ready);
5777 gcc_assert (DEBUG_INSN_P (insn));
5778 (*current_sched_info->begin_schedule_ready) (insn);
5779 VEC_safe_push (rtx, heap, scheduled_insns, insn);
5780 last_scheduled_insn = insn;
5781 advance = schedule_insn (insn);
5782 gcc_assert (advance == 0);
5783 if (ready.n_ready > 0)
5784 ready_sort (&ready);
5785 }
5786 }
5787
5788 if (ls.first_cycle_insn_p && !ready.n_ready)
5789 break;
5790
5791 resume_after_backtrack:
5792 /* Allow the target to reorder the list, typically for
5793 better instruction bundling. */
5794 if (sort_p
5795 && (ready.n_ready == 0
5796 || !SCHED_GROUP_P (ready_element (&ready, 0))))
5797 {
5798 if (ls.first_cycle_insn_p && targetm.sched.reorder)
5799 ls.can_issue_more
5800 = targetm.sched.reorder (sched_dump, sched_verbose,
5801 ready_lastpos (&ready),
5802 &ready.n_ready, clock_var);
5803 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
5804 ls.can_issue_more
5805 = targetm.sched.reorder2 (sched_dump, sched_verbose,
5806 ready.n_ready
5807 ? ready_lastpos (&ready) : NULL,
5808 &ready.n_ready, clock_var);
5809 }
5810
5811 restart_choose_ready:
5812 if (sched_verbose >= 2)
5813 {
5814 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
5815 clock_var);
5816 debug_ready_list (&ready);
5817 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
5818 print_curr_reg_pressure ();
5819 }
5820
5821 if (ready.n_ready == 0
5822 && ls.can_issue_more
5823 && reload_completed)
5824 {
5825 /* Allow scheduling insns directly from the queue in case
5826 there's nothing better to do (ready list is empty) but
5827 there are still vacant dispatch slots in the current cycle. */
5828 if (sched_verbose >= 6)
5829 fprintf (sched_dump,";;\t\tSecond chance\n");
5830 memcpy (temp_state, curr_state, dfa_state_size);
5831 if (early_queue_to_ready (temp_state, &ready))
5832 ready_sort (&ready);
5833 }
5834
5835 if (ready.n_ready == 0
5836 || !ls.can_issue_more
5837 || state_dead_lock_p (curr_state)
5838 || !(*current_sched_info->schedule_more_p) ())
5839 break;
5840
5841 /* Select and remove the insn from the ready list. */
5842 if (sort_p)
5843 {
5844 int res;
5845
5846 insn = NULL_RTX;
5847 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
5848
5849 if (res < 0)
5850 /* Finish cycle. */
5851 break;
5852 if (res > 0)
5853 goto restart_choose_ready;
5854
5855 gcc_assert (insn != NULL_RTX);
5856 }
5857 else
5858 insn = ready_remove_first (&ready);
5859
5860 if (sched_pressure != SCHED_PRESSURE_NONE
5861 && INSN_TICK (insn) > clock_var)
5862 {
5863 ready_add (&ready, insn, true);
5864 advance = 1;
5865 break;
5866 }
5867
5868 if (targetm.sched.dfa_new_cycle
5869 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
5870 insn, last_clock_var,
5871 clock_var, &sort_p))
5872 /* SORT_P is used by the target to override sorting
5873 of the ready list. This is needed when the target
5874 has modified its internal structures expecting that
5875 the insn will be issued next. As we need the insn
5876 to have the highest priority (so it will be returned by
5877 the ready_remove_first call above), we invoke
5878 ready_add (&ready, insn, true).
5879 But, still, there is one issue: INSN can be later
5880 discarded by scheduler's front end through
5881 current_sched_info->can_schedule_ready_p, hence, won't
5882 be issued next. */
5883 {
5884 ready_add (&ready, insn, true);
5885 break;
5886 }
5887
5888 sort_p = TRUE;
5889
5890 if (current_sched_info->can_schedule_ready_p
5891 && ! (*current_sched_info->can_schedule_ready_p) (insn))
5892 /* We normally get here only if we don't want to move
5893 insn from the split block. */
5894 {
5895 TODO_SPEC (insn) = HARD_DEP;
5896 goto restart_choose_ready;
5897 }
5898
5899 if (delay_htab)
5900 {
5901 /* If this insn is the first part of a delay-slot pair, record a
5902 backtrack point. */
5903 struct delay_pair *delay_entry;
5904 delay_entry
5905 = (struct delay_pair *)htab_find_with_hash (delay_htab, insn,
5906 htab_hash_pointer (insn));
5907 if (delay_entry)
5908 {
5909 save_backtrack_point (delay_entry, ls);
5910 if (sched_verbose >= 2)
5911 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
5912 }
5913 }
5914
5915 /* DECISION is made. */
5916
5917 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
5918 {
5919 modulo_insns_scheduled++;
5920 modulo_last_stage = clock_var / modulo_ii;
5921 }
5922 if (TODO_SPEC (insn) & SPECULATIVE)
5923 generate_recovery_code (insn);
5924
5925 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
5926 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
5927
5928 /* Update counters, etc in the scheduler's front end. */
5929 (*current_sched_info->begin_schedule_ready) (insn);
5930 VEC_safe_push (rtx, heap, scheduled_insns, insn);
5931 gcc_assert (NONDEBUG_INSN_P (insn));
5932 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
5933
5934 if (recog_memoized (insn) >= 0)
5935 {
5936 memcpy (temp_state, curr_state, dfa_state_size);
5937 cost = state_transition (curr_state, insn);
5938 if (sched_pressure != SCHED_PRESSURE_WEIGHTED)
5939 gcc_assert (cost < 0);
5940 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
5941 cycle_issued_insns++;
5942 asm_p = false;
5943 }
5944 else
5945 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
5946 || asm_noperands (PATTERN (insn)) >= 0);
5947
5948 if (targetm.sched.variable_issue)
5949 ls.can_issue_more =
5950 targetm.sched.variable_issue (sched_dump, sched_verbose,
5951 insn, ls.can_issue_more);
5952 /* A naked CLOBBER or USE generates no instruction, so do
5953 not count them against the issue rate. */
5954 else if (GET_CODE (PATTERN (insn)) != USE
5955 && GET_CODE (PATTERN (insn)) != CLOBBER)
5956 ls.can_issue_more--;
5957 advance = schedule_insn (insn);
5958
5959 if (SHADOW_P (insn))
5960 ls.shadows_only_p = true;
5961
5962 /* After issuing an asm insn we should start a new cycle. */
5963 if (advance == 0 && asm_p)
5964 advance = 1;
5965
5966 if (must_backtrack)
5967 break;
5968
5969 if (advance != 0)
5970 break;
5971
5972 ls.first_cycle_insn_p = false;
5973 if (ready.n_ready > 0)
5974 prune_ready_list (temp_state, false, ls.shadows_only_p,
5975 ls.modulo_epilogue);
5976 }
5977
5978 do_backtrack:
5979 if (!must_backtrack)
5980 for (i = 0; i < ready.n_ready; i++)
5981 {
5982 rtx insn = ready_element (&ready, i);
5983 if (INSN_EXACT_TICK (insn) == clock_var)
5984 {
5985 must_backtrack = true;
5986 clock_var++;
5987 break;
5988 }
5989 }
5990 if (must_backtrack && modulo_ii > 0)
5991 {
5992 if (modulo_backtracks_left == 0)
5993 goto end_schedule;
5994 modulo_backtracks_left--;
5995 }
5996 while (must_backtrack)
5997 {
5998 struct haifa_saved_data *failed;
5999 rtx failed_insn;
6000
6001 must_backtrack = false;
6002 failed = verify_shadows ();
6003 gcc_assert (failed);
6004
6005 failed_insn = failed->delay_pair->i1;
6006 toggle_cancelled_flags (false);
6007 unschedule_insns_until (failed_insn);
6008 while (failed != backtrack_queue)
6009 free_topmost_backtrack_point (true);
6010 restore_last_backtrack_point (&ls);
6011 if (sched_verbose >= 2)
6012 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6013 /* Delay by at least a cycle. This could cause additional
6014 backtracking. */
6015 queue_insn (failed_insn, 1, "backtracked");
6016 advance = 0;
6017 if (must_backtrack)
6018 continue;
6019 if (ready.n_ready > 0)
6020 goto resume_after_backtrack;
6021 else
6022 {
6023 if (clock_var == 0 && ls.first_cycle_insn_p)
6024 goto end_schedule;
6025 advance = 1;
6026 break;
6027 }
6028 }
6029 }
6030 if (ls.modulo_epilogue)
6031 success = true;
6032 end_schedule:
6033 if (modulo_ii > 0)
6034 {
6035 /* Once again, debug insn suckiness: they can be on the ready list
6036 even if they have unresolved dependencies. To make our view
6037 of the world consistent, remove such "ready" insns. */
6038 restart_debug_insn_loop:
6039 for (i = ready.n_ready - 1; i >= 0; i--)
6040 {
6041 rtx x;
6042
6043 x = ready_element (&ready, i);
6044 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6045 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6046 {
6047 ready_remove (&ready, i);
6048 goto restart_debug_insn_loop;
6049 }
6050 }
6051 for (i = ready.n_ready - 1; i >= 0; i--)
6052 {
6053 rtx x;
6054
6055 x = ready_element (&ready, i);
6056 resolve_dependencies (x);
6057 }
6058 for (i = 0; i <= max_insn_queue_index; i++)
6059 {
6060 rtx link;
6061 while ((link = insn_queue[i]) != NULL)
6062 {
6063 rtx x = XEXP (link, 0);
6064 insn_queue[i] = XEXP (link, 1);
6065 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6066 free_INSN_LIST_node (link);
6067 resolve_dependencies (x);
6068 }
6069 }
6070 }
6071
6072 /* Debug info. */
6073 if (sched_verbose)
6074 {
6075 fprintf (sched_dump, ";;\tReady list (final): ");
6076 debug_ready_list (&ready);
6077 }
6078
6079 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6080 /* Sanity check -- queue must be empty now. Meaningless if region has
6081 multiple bbs. */
6082 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6083 else if (modulo_ii == 0)
6084 {
6085 /* We must maintain QUEUE_INDEX between blocks in region. */
6086 for (i = ready.n_ready - 1; i >= 0; i--)
6087 {
6088 rtx x;
6089
6090 x = ready_element (&ready, i);
6091 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6092 TODO_SPEC (x) = HARD_DEP;
6093 }
6094
6095 if (q_size)
6096 for (i = 0; i <= max_insn_queue_index; i++)
6097 {
6098 rtx link;
6099 for (link = insn_queue[i]; link; link = XEXP (link, 1))
6100 {
6101 rtx x;
6102
6103 x = XEXP (link, 0);
6104 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6105 TODO_SPEC (x) = HARD_DEP;
6106 }
6107 free_INSN_LIST_list (&insn_queue[i]);
6108 }
6109 }
6110
6111 if (sched_pressure == SCHED_PRESSURE_MODEL)
6112 model_end_schedule ();
6113
6114 if (success)
6115 {
6116 commit_schedule (prev_head, tail, target_bb);
6117 if (sched_verbose)
6118 fprintf (sched_dump, ";; total time = %d\n", clock_var);
6119 }
6120 else
6121 last_scheduled_insn = tail;
6122
6123 VEC_truncate (rtx, scheduled_insns, 0);
6124
6125 if (!current_sched_info->queue_must_finish_empty
6126 || haifa_recovery_bb_recently_added_p)
6127 {
6128 /* INSN_TICK (minimum clock tick at which the insn becomes
6129 ready) may be not correct for the insn in the subsequent
6130 blocks of the region. We should use a correct value of
6131 `clock_var' or modify INSN_TICK. It is better to keep
6132 clock_var value equal to 0 at the start of a basic block.
6133 Therefore we modify INSN_TICK here. */
6134 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
6135 }
6136
6137 if (targetm.sched.finish)
6138 {
6139 targetm.sched.finish (sched_dump, sched_verbose);
6140 /* Target might have added some instructions to the scheduled block
6141 in its md_finish () hook. These new insns don't have any data
6142 initialized and to identify them we extend h_i_d so that they'll
6143 get zero luids. */
6144 sched_extend_luids ();
6145 }
6146
6147 if (sched_verbose)
6148 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
6149 INSN_UID (head), INSN_UID (tail));
6150
6151 /* Update head/tail boundaries. */
6152 head = NEXT_INSN (prev_head);
6153 tail = last_scheduled_insn;
6154
6155 head = restore_other_notes (head, NULL);
6156
6157 current_sched_info->head = head;
6158 current_sched_info->tail = tail;
6159
6160 free_backtrack_queue ();
6161
6162 return success;
6163 }
6164 \f
6165 /* Set_priorities: compute priority of each insn in the block. */
6166
6167 int
6168 set_priorities (rtx head, rtx tail)
6169 {
6170 rtx insn;
6171 int n_insn;
6172 int sched_max_insns_priority =
6173 current_sched_info->sched_max_insns_priority;
6174 rtx prev_head;
6175
6176 if (head == tail && ! INSN_P (head))
6177 gcc_unreachable ();
6178
6179 n_insn = 0;
6180
6181 prev_head = PREV_INSN (head);
6182 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
6183 {
6184 if (!INSN_P (insn))
6185 continue;
6186
6187 n_insn++;
6188 (void) priority (insn);
6189
6190 gcc_assert (INSN_PRIORITY_KNOWN (insn));
6191
6192 sched_max_insns_priority = MAX (sched_max_insns_priority,
6193 INSN_PRIORITY (insn));
6194 }
6195
6196 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
6197
6198 return n_insn;
6199 }
6200
6201 /* Set dump and sched_verbose for the desired debugging output. If no
6202 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
6203 For -fsched-verbose=N, N>=10, print everything to stderr. */
6204 void
6205 setup_sched_dump (void)
6206 {
6207 sched_verbose = sched_verbose_param;
6208 if (sched_verbose_param == 0 && dump_file)
6209 sched_verbose = 1;
6210 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
6211 ? stderr : dump_file);
6212 }
6213
6214 /* Initialize some global state for the scheduler. This function works
6215 with the common data shared between all the schedulers. It is called
6216 from the scheduler specific initialization routine. */
6217
6218 void
6219 sched_init (void)
6220 {
6221 /* Disable speculative loads in their presence if cc0 defined. */
6222 #ifdef HAVE_cc0
6223 flag_schedule_speculative_load = 0;
6224 #endif
6225
6226 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
6227 targetm.sched.dispatch_do (NULL_RTX, DISPATCH_INIT);
6228
6229 if (flag_sched_pressure
6230 && !reload_completed
6231 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
6232 sched_pressure = flag_sched_pressure_algorithm;
6233 else
6234 sched_pressure = SCHED_PRESSURE_NONE;
6235
6236 if (sched_pressure != SCHED_PRESSURE_NONE)
6237 ira_setup_eliminable_regset ();
6238
6239 /* Initialize SPEC_INFO. */
6240 if (targetm.sched.set_sched_flags)
6241 {
6242 spec_info = &spec_info_var;
6243 targetm.sched.set_sched_flags (spec_info);
6244
6245 if (spec_info->mask != 0)
6246 {
6247 spec_info->data_weakness_cutoff =
6248 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
6249 spec_info->control_weakness_cutoff =
6250 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
6251 * REG_BR_PROB_BASE) / 100;
6252 }
6253 else
6254 /* So we won't read anything accidentally. */
6255 spec_info = NULL;
6256
6257 }
6258 else
6259 /* So we won't read anything accidentally. */
6260 spec_info = 0;
6261
6262 /* Initialize issue_rate. */
6263 if (targetm.sched.issue_rate)
6264 issue_rate = targetm.sched.issue_rate ();
6265 else
6266 issue_rate = 1;
6267
6268 if (cached_issue_rate != issue_rate)
6269 {
6270 cached_issue_rate = issue_rate;
6271 /* To invalidate max_lookahead_tries: */
6272 cached_first_cycle_multipass_dfa_lookahead = 0;
6273 }
6274
6275 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
6276 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
6277 else
6278 dfa_lookahead = 0;
6279
6280 if (targetm.sched.init_dfa_pre_cycle_insn)
6281 targetm.sched.init_dfa_pre_cycle_insn ();
6282
6283 if (targetm.sched.init_dfa_post_cycle_insn)
6284 targetm.sched.init_dfa_post_cycle_insn ();
6285
6286 dfa_start ();
6287 dfa_state_size = state_size ();
6288
6289 init_alias_analysis ();
6290
6291 if (!sched_no_dce)
6292 df_set_flags (DF_LR_RUN_DCE);
6293 df_note_add_problem ();
6294
6295 /* More problems needed for interloop dep calculation in SMS. */
6296 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
6297 {
6298 df_rd_add_problem ();
6299 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
6300 }
6301
6302 df_analyze ();
6303
6304 /* Do not run DCE after reload, as this can kill nops inserted
6305 by bundling. */
6306 if (reload_completed)
6307 df_clear_flags (DF_LR_RUN_DCE);
6308
6309 regstat_compute_calls_crossed ();
6310
6311 if (targetm.sched.init_global)
6312 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
6313
6314 if (sched_pressure != SCHED_PRESSURE_NONE)
6315 {
6316 int i, max_regno = max_reg_num ();
6317
6318 if (sched_dump != NULL)
6319 /* We need info about pseudos for rtl dumps about pseudo
6320 classes and costs. */
6321 regstat_init_n_sets_and_refs ();
6322 ira_set_pseudo_classes (sched_verbose ? sched_dump : NULL);
6323 sched_regno_pressure_class
6324 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
6325 for (i = 0; i < max_regno; i++)
6326 sched_regno_pressure_class[i]
6327 = (i < FIRST_PSEUDO_REGISTER
6328 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
6329 : ira_pressure_class_translate[reg_allocno_class (i)]);
6330 curr_reg_live = BITMAP_ALLOC (NULL);
6331 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6332 {
6333 saved_reg_live = BITMAP_ALLOC (NULL);
6334 region_ref_regs = BITMAP_ALLOC (NULL);
6335 }
6336 }
6337
6338 curr_state = xmalloc (dfa_state_size);
6339 }
6340
6341 static void haifa_init_only_bb (basic_block, basic_block);
6342
6343 /* Initialize data structures specific to the Haifa scheduler. */
6344 void
6345 haifa_sched_init (void)
6346 {
6347 setup_sched_dump ();
6348 sched_init ();
6349
6350 scheduled_insns = VEC_alloc (rtx, heap, 0);
6351
6352 if (spec_info != NULL)
6353 {
6354 sched_deps_info->use_deps_list = 1;
6355 sched_deps_info->generate_spec_deps = 1;
6356 }
6357
6358 /* Initialize luids, dependency caches, target and h_i_d for the
6359 whole function. */
6360 {
6361 bb_vec_t bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
6362 basic_block bb;
6363
6364 sched_init_bbs ();
6365
6366 FOR_EACH_BB (bb)
6367 VEC_quick_push (basic_block, bbs, bb);
6368 sched_init_luids (bbs);
6369 sched_deps_init (true);
6370 sched_extend_target ();
6371 haifa_init_h_i_d (bbs);
6372
6373 VEC_free (basic_block, heap, bbs);
6374 }
6375
6376 sched_init_only_bb = haifa_init_only_bb;
6377 sched_split_block = sched_split_block_1;
6378 sched_create_empty_bb = sched_create_empty_bb_1;
6379 haifa_recovery_bb_ever_added_p = false;
6380
6381 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
6382 before_recovery = 0;
6383 after_recovery = 0;
6384
6385 modulo_ii = 0;
6386 }
6387
6388 /* Finish work with the data specific to the Haifa scheduler. */
6389 void
6390 haifa_sched_finish (void)
6391 {
6392 sched_create_empty_bb = NULL;
6393 sched_split_block = NULL;
6394 sched_init_only_bb = NULL;
6395
6396 if (spec_info && spec_info->dump)
6397 {
6398 char c = reload_completed ? 'a' : 'b';
6399
6400 fprintf (spec_info->dump,
6401 ";; %s:\n", current_function_name ());
6402
6403 fprintf (spec_info->dump,
6404 ";; Procedure %cr-begin-data-spec motions == %d\n",
6405 c, nr_begin_data);
6406 fprintf (spec_info->dump,
6407 ";; Procedure %cr-be-in-data-spec motions == %d\n",
6408 c, nr_be_in_data);
6409 fprintf (spec_info->dump,
6410 ";; Procedure %cr-begin-control-spec motions == %d\n",
6411 c, nr_begin_control);
6412 fprintf (spec_info->dump,
6413 ";; Procedure %cr-be-in-control-spec motions == %d\n",
6414 c, nr_be_in_control);
6415 }
6416
6417 VEC_free (rtx, heap, scheduled_insns);
6418
6419 /* Finalize h_i_d, dependency caches, and luids for the whole
6420 function. Target will be finalized in md_global_finish (). */
6421 sched_deps_finish ();
6422 sched_finish_luids ();
6423 current_sched_info = NULL;
6424 sched_finish ();
6425 }
6426
6427 /* Free global data used during insn scheduling. This function works with
6428 the common data shared between the schedulers. */
6429
6430 void
6431 sched_finish (void)
6432 {
6433 haifa_finish_h_i_d ();
6434 if (sched_pressure != SCHED_PRESSURE_NONE)
6435 {
6436 if (regstat_n_sets_and_refs != NULL)
6437 regstat_free_n_sets_and_refs ();
6438 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6439 {
6440 BITMAP_FREE (region_ref_regs);
6441 BITMAP_FREE (saved_reg_live);
6442 }
6443 BITMAP_FREE (curr_reg_live);
6444 free (sched_regno_pressure_class);
6445 }
6446 free (curr_state);
6447
6448 if (targetm.sched.finish_global)
6449 targetm.sched.finish_global (sched_dump, sched_verbose);
6450
6451 end_alias_analysis ();
6452
6453 regstat_free_calls_crossed ();
6454
6455 dfa_finish ();
6456 }
6457
6458 /* Free all delay_pair structures that were recorded. */
6459 void
6460 free_delay_pairs (void)
6461 {
6462 if (delay_htab)
6463 {
6464 htab_empty (delay_htab);
6465 htab_empty (delay_htab_i2);
6466 }
6467 }
6468
6469 /* Fix INSN_TICKs of the instructions in the current block as well as
6470 INSN_TICKs of their dependents.
6471 HEAD and TAIL are the begin and the end of the current scheduled block. */
6472 static void
6473 fix_inter_tick (rtx head, rtx tail)
6474 {
6475 /* Set of instructions with corrected INSN_TICK. */
6476 bitmap_head processed;
6477 /* ??? It is doubtful if we should assume that cycle advance happens on
6478 basic block boundaries. Basically insns that are unconditionally ready
6479 on the start of the block are more preferable then those which have
6480 a one cycle dependency over insn from the previous block. */
6481 int next_clock = clock_var + 1;
6482
6483 bitmap_initialize (&processed, 0);
6484
6485 /* Iterates over scheduled instructions and fix their INSN_TICKs and
6486 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
6487 across different blocks. */
6488 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
6489 {
6490 if (INSN_P (head))
6491 {
6492 int tick;
6493 sd_iterator_def sd_it;
6494 dep_t dep;
6495
6496 tick = INSN_TICK (head);
6497 gcc_assert (tick >= MIN_TICK);
6498
6499 /* Fix INSN_TICK of instruction from just scheduled block. */
6500 if (bitmap_set_bit (&processed, INSN_LUID (head)))
6501 {
6502 tick -= next_clock;
6503
6504 if (tick < MIN_TICK)
6505 tick = MIN_TICK;
6506
6507 INSN_TICK (head) = tick;
6508 }
6509
6510 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
6511 {
6512 rtx next;
6513
6514 next = DEP_CON (dep);
6515 tick = INSN_TICK (next);
6516
6517 if (tick != INVALID_TICK
6518 /* If NEXT has its INSN_TICK calculated, fix it.
6519 If not - it will be properly calculated from
6520 scratch later in fix_tick_ready. */
6521 && bitmap_set_bit (&processed, INSN_LUID (next)))
6522 {
6523 tick -= next_clock;
6524
6525 if (tick < MIN_TICK)
6526 tick = MIN_TICK;
6527
6528 if (tick > INTER_TICK (next))
6529 INTER_TICK (next) = tick;
6530 else
6531 tick = INTER_TICK (next);
6532
6533 INSN_TICK (next) = tick;
6534 }
6535 }
6536 }
6537 }
6538 bitmap_clear (&processed);
6539 }
6540
6541 /* Check if NEXT is ready to be added to the ready or queue list.
6542 If "yes", add it to the proper list.
6543 Returns:
6544 -1 - is not ready yet,
6545 0 - added to the ready list,
6546 0 < N - queued for N cycles. */
6547 int
6548 try_ready (rtx next)
6549 {
6550 ds_t old_ts, new_ts;
6551
6552 old_ts = TODO_SPEC (next);
6553
6554 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL))
6555 && ((old_ts & HARD_DEP)
6556 || (old_ts & SPECULATIVE)
6557 || (old_ts & DEP_CONTROL)));
6558
6559 new_ts = recompute_todo_spec (next);
6560
6561 if (new_ts & HARD_DEP)
6562 gcc_assert (new_ts == old_ts
6563 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
6564 else if (current_sched_info->new_ready)
6565 new_ts = current_sched_info->new_ready (next, new_ts);
6566
6567 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
6568 have its original pattern or changed (speculative) one. This is due
6569 to changing ebb in region scheduling.
6570 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
6571 has speculative pattern.
6572
6573 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
6574 control-speculative NEXT could have been discarded by sched-rgn.c
6575 (the same case as when discarded by can_schedule_ready_p ()). */
6576
6577 if ((new_ts & SPECULATIVE)
6578 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
6579 need to change anything. */
6580 && new_ts != old_ts)
6581 {
6582 int res;
6583 rtx new_pat;
6584
6585 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
6586
6587 res = haifa_speculate_insn (next, new_ts, &new_pat);
6588
6589 switch (res)
6590 {
6591 case -1:
6592 /* It would be nice to change DEP_STATUS of all dependences,
6593 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
6594 so we won't reanalyze anything. */
6595 new_ts = HARD_DEP;
6596 break;
6597
6598 case 0:
6599 /* We follow the rule, that every speculative insn
6600 has non-null ORIG_PAT. */
6601 if (!ORIG_PAT (next))
6602 ORIG_PAT (next) = PATTERN (next);
6603 break;
6604
6605 case 1:
6606 if (!ORIG_PAT (next))
6607 /* If we gonna to overwrite the original pattern of insn,
6608 save it. */
6609 ORIG_PAT (next) = PATTERN (next);
6610
6611 res = haifa_change_pattern (next, new_pat);
6612 gcc_assert (res);
6613 break;
6614
6615 default:
6616 gcc_unreachable ();
6617 }
6618 }
6619
6620 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
6621 either correct (new_ts & SPECULATIVE),
6622 or we simply don't care (new_ts & HARD_DEP). */
6623
6624 gcc_assert (!ORIG_PAT (next)
6625 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
6626
6627 TODO_SPEC (next) = new_ts;
6628
6629 if (new_ts & HARD_DEP)
6630 {
6631 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
6632 control-speculative NEXT could have been discarded by sched-rgn.c
6633 (the same case as when discarded by can_schedule_ready_p ()). */
6634 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
6635
6636 change_queue_index (next, QUEUE_NOWHERE);
6637
6638 return -1;
6639 }
6640 else if (!(new_ts & BEGIN_SPEC)
6641 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
6642 && !IS_SPECULATION_CHECK_P (next))
6643 /* We should change pattern of every previously speculative
6644 instruction - and we determine if NEXT was speculative by using
6645 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
6646 pat too, so skip them. */
6647 {
6648 bool success = haifa_change_pattern (next, ORIG_PAT (next));
6649 gcc_assert (success);
6650 ORIG_PAT (next) = 0;
6651 }
6652
6653 if (sched_verbose >= 2)
6654 {
6655 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
6656 (*current_sched_info->print_insn) (next, 0));
6657
6658 if (spec_info && spec_info->dump)
6659 {
6660 if (new_ts & BEGIN_DATA)
6661 fprintf (spec_info->dump, "; data-spec;");
6662 if (new_ts & BEGIN_CONTROL)
6663 fprintf (spec_info->dump, "; control-spec;");
6664 if (new_ts & BE_IN_CONTROL)
6665 fprintf (spec_info->dump, "; in-control-spec;");
6666 }
6667 if (TODO_SPEC (next) & DEP_CONTROL)
6668 fprintf (sched_dump, " predicated");
6669 fprintf (sched_dump, "\n");
6670 }
6671
6672 adjust_priority (next);
6673
6674 return fix_tick_ready (next);
6675 }
6676
6677 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
6678 static int
6679 fix_tick_ready (rtx next)
6680 {
6681 int tick, delay;
6682
6683 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
6684 {
6685 int full_p;
6686 sd_iterator_def sd_it;
6687 dep_t dep;
6688
6689 tick = INSN_TICK (next);
6690 /* if tick is not equal to INVALID_TICK, then update
6691 INSN_TICK of NEXT with the most recent resolved dependence
6692 cost. Otherwise, recalculate from scratch. */
6693 full_p = (tick == INVALID_TICK);
6694
6695 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
6696 {
6697 rtx pro = DEP_PRO (dep);
6698 int tick1;
6699
6700 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
6701
6702 tick1 = INSN_TICK (pro) + dep_cost (dep);
6703 if (tick1 > tick)
6704 tick = tick1;
6705
6706 if (!full_p)
6707 break;
6708 }
6709 }
6710 else
6711 tick = -1;
6712
6713 INSN_TICK (next) = tick;
6714
6715 delay = tick - clock_var;
6716 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE)
6717 delay = QUEUE_READY;
6718
6719 change_queue_index (next, delay);
6720
6721 return delay;
6722 }
6723
6724 /* Move NEXT to the proper queue list with (DELAY >= 1),
6725 or add it to the ready list (DELAY == QUEUE_READY),
6726 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
6727 static void
6728 change_queue_index (rtx next, int delay)
6729 {
6730 int i = QUEUE_INDEX (next);
6731
6732 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
6733 && delay != 0);
6734 gcc_assert (i != QUEUE_SCHEDULED);
6735
6736 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
6737 || (delay < 0 && delay == i))
6738 /* We have nothing to do. */
6739 return;
6740
6741 /* Remove NEXT from wherever it is now. */
6742 if (i == QUEUE_READY)
6743 ready_remove_insn (next);
6744 else if (i >= 0)
6745 queue_remove (next);
6746
6747 /* Add it to the proper place. */
6748 if (delay == QUEUE_READY)
6749 ready_add (readyp, next, false);
6750 else if (delay >= 1)
6751 queue_insn (next, delay, "change queue index");
6752
6753 if (sched_verbose >= 2)
6754 {
6755 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
6756 (*current_sched_info->print_insn) (next, 0));
6757
6758 if (delay == QUEUE_READY)
6759 fprintf (sched_dump, " into ready\n");
6760 else if (delay >= 1)
6761 fprintf (sched_dump, " into queue with cost=%d\n", delay);
6762 else
6763 fprintf (sched_dump, " removed from ready or queue lists\n");
6764 }
6765 }
6766
6767 static int sched_ready_n_insns = -1;
6768
6769 /* Initialize per region data structures. */
6770 void
6771 sched_extend_ready_list (int new_sched_ready_n_insns)
6772 {
6773 int i;
6774
6775 if (sched_ready_n_insns == -1)
6776 /* At the first call we need to initialize one more choice_stack
6777 entry. */
6778 {
6779 i = 0;
6780 sched_ready_n_insns = 0;
6781 VEC_reserve (rtx, heap, scheduled_insns, new_sched_ready_n_insns);
6782 }
6783 else
6784 i = sched_ready_n_insns + 1;
6785
6786 ready.veclen = new_sched_ready_n_insns + issue_rate;
6787 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
6788
6789 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
6790
6791 ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
6792 sched_ready_n_insns, sizeof (*ready_try));
6793
6794 /* We allocate +1 element to save initial state in the choice_stack[0]
6795 entry. */
6796 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
6797 new_sched_ready_n_insns + 1);
6798
6799 for (; i <= new_sched_ready_n_insns; i++)
6800 {
6801 choice_stack[i].state = xmalloc (dfa_state_size);
6802
6803 if (targetm.sched.first_cycle_multipass_init)
6804 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
6805 .target_data));
6806 }
6807
6808 sched_ready_n_insns = new_sched_ready_n_insns;
6809 }
6810
6811 /* Free per region data structures. */
6812 void
6813 sched_finish_ready_list (void)
6814 {
6815 int i;
6816
6817 free (ready.vec);
6818 ready.vec = NULL;
6819 ready.veclen = 0;
6820
6821 free (ready_try);
6822 ready_try = NULL;
6823
6824 for (i = 0; i <= sched_ready_n_insns; i++)
6825 {
6826 if (targetm.sched.first_cycle_multipass_fini)
6827 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
6828 .target_data));
6829
6830 free (choice_stack [i].state);
6831 }
6832 free (choice_stack);
6833 choice_stack = NULL;
6834
6835 sched_ready_n_insns = -1;
6836 }
6837
6838 static int
6839 haifa_luid_for_non_insn (rtx x)
6840 {
6841 gcc_assert (NOTE_P (x) || LABEL_P (x));
6842
6843 return 0;
6844 }
6845
6846 /* Generates recovery code for INSN. */
6847 static void
6848 generate_recovery_code (rtx insn)
6849 {
6850 if (TODO_SPEC (insn) & BEGIN_SPEC)
6851 begin_speculative_block (insn);
6852
6853 /* Here we have insn with no dependencies to
6854 instructions other then CHECK_SPEC ones. */
6855
6856 if (TODO_SPEC (insn) & BE_IN_SPEC)
6857 add_to_speculative_block (insn);
6858 }
6859
6860 /* Helper function.
6861 Tries to add speculative dependencies of type FS between instructions
6862 in deps_list L and TWIN. */
6863 static void
6864 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
6865 {
6866 sd_iterator_def sd_it;
6867 dep_t dep;
6868
6869 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
6870 {
6871 ds_t ds;
6872 rtx consumer;
6873
6874 consumer = DEP_CON (dep);
6875
6876 ds = DEP_STATUS (dep);
6877
6878 if (/* If we want to create speculative dep. */
6879 fs
6880 /* And we can do that because this is a true dep. */
6881 && (ds & DEP_TYPES) == DEP_TRUE)
6882 {
6883 gcc_assert (!(ds & BE_IN_SPEC));
6884
6885 if (/* If this dep can be overcome with 'begin speculation'. */
6886 ds & BEGIN_SPEC)
6887 /* Then we have a choice: keep the dep 'begin speculative'
6888 or transform it into 'be in speculative'. */
6889 {
6890 if (/* In try_ready we assert that if insn once became ready
6891 it can be removed from the ready (or queue) list only
6892 due to backend decision. Hence we can't let the
6893 probability of the speculative dep to decrease. */
6894 ds_weak (ds) <= ds_weak (fs))
6895 {
6896 ds_t new_ds;
6897
6898 new_ds = (ds & ~BEGIN_SPEC) | fs;
6899
6900 if (/* consumer can 'be in speculative'. */
6901 sched_insn_is_legitimate_for_speculation_p (consumer,
6902 new_ds))
6903 /* Transform it to be in speculative. */
6904 ds = new_ds;
6905 }
6906 }
6907 else
6908 /* Mark the dep as 'be in speculative'. */
6909 ds |= fs;
6910 }
6911
6912 {
6913 dep_def _new_dep, *new_dep = &_new_dep;
6914
6915 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
6916 sd_add_dep (new_dep, false);
6917 }
6918 }
6919 }
6920
6921 /* Generates recovery code for BEGIN speculative INSN. */
6922 static void
6923 begin_speculative_block (rtx insn)
6924 {
6925 if (TODO_SPEC (insn) & BEGIN_DATA)
6926 nr_begin_data++;
6927 if (TODO_SPEC (insn) & BEGIN_CONTROL)
6928 nr_begin_control++;
6929
6930 create_check_block_twin (insn, false);
6931
6932 TODO_SPEC (insn) &= ~BEGIN_SPEC;
6933 }
6934
6935 static void haifa_init_insn (rtx);
6936
6937 /* Generates recovery code for BE_IN speculative INSN. */
6938 static void
6939 add_to_speculative_block (rtx insn)
6940 {
6941 ds_t ts;
6942 sd_iterator_def sd_it;
6943 dep_t dep;
6944 rtx twins = NULL;
6945 rtx_vec_t priorities_roots;
6946
6947 ts = TODO_SPEC (insn);
6948 gcc_assert (!(ts & ~BE_IN_SPEC));
6949
6950 if (ts & BE_IN_DATA)
6951 nr_be_in_data++;
6952 if (ts & BE_IN_CONTROL)
6953 nr_be_in_control++;
6954
6955 TODO_SPEC (insn) &= ~BE_IN_SPEC;
6956 gcc_assert (!TODO_SPEC (insn));
6957
6958 DONE_SPEC (insn) |= ts;
6959
6960 /* First we convert all simple checks to branchy. */
6961 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
6962 sd_iterator_cond (&sd_it, &dep);)
6963 {
6964 rtx check = DEP_PRO (dep);
6965
6966 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
6967 {
6968 create_check_block_twin (check, true);
6969
6970 /* Restart search. */
6971 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
6972 }
6973 else
6974 /* Continue search. */
6975 sd_iterator_next (&sd_it);
6976 }
6977
6978 priorities_roots = NULL;
6979 clear_priorities (insn, &priorities_roots);
6980
6981 while (1)
6982 {
6983 rtx check, twin;
6984 basic_block rec;
6985
6986 /* Get the first backward dependency of INSN. */
6987 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
6988 if (!sd_iterator_cond (&sd_it, &dep))
6989 /* INSN has no backward dependencies left. */
6990 break;
6991
6992 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
6993 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
6994 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
6995
6996 check = DEP_PRO (dep);
6997
6998 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
6999 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7000
7001 rec = BLOCK_FOR_INSN (check);
7002
7003 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7004 haifa_init_insn (twin);
7005
7006 sd_copy_back_deps (twin, insn, true);
7007
7008 if (sched_verbose && spec_info->dump)
7009 /* INSN_BB (insn) isn't determined for twin insns yet.
7010 So we can't use current_sched_info->print_insn. */
7011 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7012 INSN_UID (twin), rec->index);
7013
7014 twins = alloc_INSN_LIST (twin, twins);
7015
7016 /* Add dependences between TWIN and all appropriate
7017 instructions from REC. */
7018 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7019 {
7020 rtx pro = DEP_PRO (dep);
7021
7022 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7023
7024 /* INSN might have dependencies from the instructions from
7025 several recovery blocks. At this iteration we process those
7026 producers that reside in REC. */
7027 if (BLOCK_FOR_INSN (pro) == rec)
7028 {
7029 dep_def _new_dep, *new_dep = &_new_dep;
7030
7031 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7032 sd_add_dep (new_dep, false);
7033 }
7034 }
7035
7036 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7037
7038 /* Remove all dependencies between INSN and insns in REC. */
7039 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7040 sd_iterator_cond (&sd_it, &dep);)
7041 {
7042 rtx pro = DEP_PRO (dep);
7043
7044 if (BLOCK_FOR_INSN (pro) == rec)
7045 sd_delete_dep (sd_it);
7046 else
7047 sd_iterator_next (&sd_it);
7048 }
7049 }
7050
7051 /* We couldn't have added the dependencies between INSN and TWINS earlier
7052 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7053 while (twins)
7054 {
7055 rtx twin;
7056
7057 twin = XEXP (twins, 0);
7058
7059 {
7060 dep_def _new_dep, *new_dep = &_new_dep;
7061
7062 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7063 sd_add_dep (new_dep, false);
7064 }
7065
7066 twin = XEXP (twins, 1);
7067 free_INSN_LIST_node (twins);
7068 twins = twin;
7069 }
7070
7071 calc_priorities (priorities_roots);
7072 VEC_free (rtx, heap, priorities_roots);
7073 }
7074
7075 /* Extends and fills with zeros (only the new part) array pointed to by P. */
7076 void *
7077 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
7078 {
7079 gcc_assert (new_nmemb >= old_nmemb);
7080 p = XRESIZEVAR (void, p, new_nmemb * size);
7081 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
7082 return p;
7083 }
7084
7085 /* Helper function.
7086 Find fallthru edge from PRED. */
7087 edge
7088 find_fallthru_edge_from (basic_block pred)
7089 {
7090 edge e;
7091 basic_block succ;
7092
7093 succ = pred->next_bb;
7094 gcc_assert (succ->prev_bb == pred);
7095
7096 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
7097 {
7098 e = find_fallthru_edge (pred->succs);
7099
7100 if (e)
7101 {
7102 gcc_assert (e->dest == succ);
7103 return e;
7104 }
7105 }
7106 else
7107 {
7108 e = find_fallthru_edge (succ->preds);
7109
7110 if (e)
7111 {
7112 gcc_assert (e->src == pred);
7113 return e;
7114 }
7115 }
7116
7117 return NULL;
7118 }
7119
7120 /* Extend per basic block data structures. */
7121 static void
7122 sched_extend_bb (void)
7123 {
7124 rtx insn;
7125
7126 /* The following is done to keep current_sched_info->next_tail non null. */
7127 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
7128 if (NEXT_INSN (insn) == 0
7129 || (!NOTE_P (insn)
7130 && !LABEL_P (insn)
7131 /* Don't emit a NOTE if it would end up before a BARRIER. */
7132 && !BARRIER_P (NEXT_INSN (insn))))
7133 {
7134 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
7135 /* Make insn appear outside BB. */
7136 set_block_for_insn (note, NULL);
7137 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
7138 }
7139 }
7140
7141 /* Init per basic block data structures. */
7142 void
7143 sched_init_bbs (void)
7144 {
7145 sched_extend_bb ();
7146 }
7147
7148 /* Initialize BEFORE_RECOVERY variable. */
7149 static void
7150 init_before_recovery (basic_block *before_recovery_ptr)
7151 {
7152 basic_block last;
7153 edge e;
7154
7155 last = EXIT_BLOCK_PTR->prev_bb;
7156 e = find_fallthru_edge_from (last);
7157
7158 if (e)
7159 {
7160 /* We create two basic blocks:
7161 1. Single instruction block is inserted right after E->SRC
7162 and has jump to
7163 2. Empty block right before EXIT_BLOCK.
7164 Between these two blocks recovery blocks will be emitted. */
7165
7166 basic_block single, empty;
7167 rtx x, label;
7168
7169 /* If the fallthrough edge to exit we've found is from the block we've
7170 created before, don't do anything more. */
7171 if (last == after_recovery)
7172 return;
7173
7174 adding_bb_to_current_region_p = false;
7175
7176 single = sched_create_empty_bb (last);
7177 empty = sched_create_empty_bb (single);
7178
7179 /* Add new blocks to the root loop. */
7180 if (current_loops != NULL)
7181 {
7182 add_bb_to_loop (single, VEC_index (loop_p, current_loops->larray, 0));
7183 add_bb_to_loop (empty, VEC_index (loop_p, current_loops->larray, 0));
7184 }
7185
7186 single->count = last->count;
7187 empty->count = last->count;
7188 single->frequency = last->frequency;
7189 empty->frequency = last->frequency;
7190 BB_COPY_PARTITION (single, last);
7191 BB_COPY_PARTITION (empty, last);
7192
7193 redirect_edge_succ (e, single);
7194 make_single_succ_edge (single, empty, 0);
7195 make_single_succ_edge (empty, EXIT_BLOCK_PTR,
7196 EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
7197
7198 label = block_label (empty);
7199 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
7200 JUMP_LABEL (x) = label;
7201 LABEL_NUSES (label)++;
7202 haifa_init_insn (x);
7203
7204 emit_barrier_after (x);
7205
7206 sched_init_only_bb (empty, NULL);
7207 sched_init_only_bb (single, NULL);
7208 sched_extend_bb ();
7209
7210 adding_bb_to_current_region_p = true;
7211 before_recovery = single;
7212 after_recovery = empty;
7213
7214 if (before_recovery_ptr)
7215 *before_recovery_ptr = before_recovery;
7216
7217 if (sched_verbose >= 2 && spec_info->dump)
7218 fprintf (spec_info->dump,
7219 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
7220 last->index, single->index, empty->index);
7221 }
7222 else
7223 before_recovery = last;
7224 }
7225
7226 /* Returns new recovery block. */
7227 basic_block
7228 sched_create_recovery_block (basic_block *before_recovery_ptr)
7229 {
7230 rtx label;
7231 rtx barrier;
7232 basic_block rec;
7233
7234 haifa_recovery_bb_recently_added_p = true;
7235 haifa_recovery_bb_ever_added_p = true;
7236
7237 init_before_recovery (before_recovery_ptr);
7238
7239 barrier = get_last_bb_insn (before_recovery);
7240 gcc_assert (BARRIER_P (barrier));
7241
7242 label = emit_label_after (gen_label_rtx (), barrier);
7243
7244 rec = create_basic_block (label, label, before_recovery);
7245
7246 /* A recovery block always ends with an unconditional jump. */
7247 emit_barrier_after (BB_END (rec));
7248
7249 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
7250 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
7251
7252 if (sched_verbose && spec_info->dump)
7253 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
7254 rec->index);
7255
7256 return rec;
7257 }
7258
7259 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
7260 and emit necessary jumps. */
7261 void
7262 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
7263 basic_block second_bb)
7264 {
7265 rtx label;
7266 rtx jump;
7267 int edge_flags;
7268
7269 /* This is fixing of incoming edge. */
7270 /* ??? Which other flags should be specified? */
7271 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
7272 /* Partition type is the same, if it is "unpartitioned". */
7273 edge_flags = EDGE_CROSSING;
7274 else
7275 edge_flags = 0;
7276
7277 make_edge (first_bb, rec, edge_flags);
7278 label = block_label (second_bb);
7279 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
7280 JUMP_LABEL (jump) = label;
7281 LABEL_NUSES (label)++;
7282
7283 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
7284 /* Partition type is the same, if it is "unpartitioned". */
7285 {
7286 /* Rewritten from cfgrtl.c. */
7287 if (flag_reorder_blocks_and_partition
7288 && targetm_common.have_named_sections)
7289 {
7290 /* We don't need the same note for the check because
7291 any_condjump_p (check) == true. */
7292 add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
7293 }
7294 edge_flags = EDGE_CROSSING;
7295 }
7296 else
7297 edge_flags = 0;
7298
7299 make_single_succ_edge (rec, second_bb, edge_flags);
7300 if (dom_info_available_p (CDI_DOMINATORS))
7301 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
7302 }
7303
7304 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
7305 INSN is a simple check, that should be converted to branchy one. */
7306 static void
7307 create_check_block_twin (rtx insn, bool mutate_p)
7308 {
7309 basic_block rec;
7310 rtx label, check, twin;
7311 ds_t fs;
7312 sd_iterator_def sd_it;
7313 dep_t dep;
7314 dep_def _new_dep, *new_dep = &_new_dep;
7315 ds_t todo_spec;
7316
7317 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
7318
7319 if (!mutate_p)
7320 todo_spec = TODO_SPEC (insn);
7321 else
7322 {
7323 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
7324 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
7325
7326 todo_spec = CHECK_SPEC (insn);
7327 }
7328
7329 todo_spec &= SPECULATIVE;
7330
7331 /* Create recovery block. */
7332 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
7333 {
7334 rec = sched_create_recovery_block (NULL);
7335 label = BB_HEAD (rec);
7336 }
7337 else
7338 {
7339 rec = EXIT_BLOCK_PTR;
7340 label = NULL_RTX;
7341 }
7342
7343 /* Emit CHECK. */
7344 check = targetm.sched.gen_spec_check (insn, label, todo_spec);
7345
7346 if (rec != EXIT_BLOCK_PTR)
7347 {
7348 /* To have mem_reg alive at the beginning of second_bb,
7349 we emit check BEFORE insn, so insn after splitting
7350 insn will be at the beginning of second_bb, which will
7351 provide us with the correct life information. */
7352 check = emit_jump_insn_before (check, insn);
7353 JUMP_LABEL (check) = label;
7354 LABEL_NUSES (label)++;
7355 }
7356 else
7357 check = emit_insn_before (check, insn);
7358
7359 /* Extend data structures. */
7360 haifa_init_insn (check);
7361
7362 /* CHECK is being added to current region. Extend ready list. */
7363 gcc_assert (sched_ready_n_insns != -1);
7364 sched_extend_ready_list (sched_ready_n_insns + 1);
7365
7366 if (current_sched_info->add_remove_insn)
7367 current_sched_info->add_remove_insn (insn, 0);
7368
7369 RECOVERY_BLOCK (check) = rec;
7370
7371 if (sched_verbose && spec_info->dump)
7372 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
7373 (*current_sched_info->print_insn) (check, 0));
7374
7375 gcc_assert (ORIG_PAT (insn));
7376
7377 /* Initialize TWIN (twin is a duplicate of original instruction
7378 in the recovery block). */
7379 if (rec != EXIT_BLOCK_PTR)
7380 {
7381 sd_iterator_def sd_it;
7382 dep_t dep;
7383
7384 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
7385 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
7386 {
7387 struct _dep _dep2, *dep2 = &_dep2;
7388
7389 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
7390
7391 sd_add_dep (dep2, true);
7392 }
7393
7394 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
7395 haifa_init_insn (twin);
7396
7397 if (sched_verbose && spec_info->dump)
7398 /* INSN_BB (insn) isn't determined for twin insns yet.
7399 So we can't use current_sched_info->print_insn. */
7400 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7401 INSN_UID (twin), rec->index);
7402 }
7403 else
7404 {
7405 ORIG_PAT (check) = ORIG_PAT (insn);
7406 HAS_INTERNAL_DEP (check) = 1;
7407 twin = check;
7408 /* ??? We probably should change all OUTPUT dependencies to
7409 (TRUE | OUTPUT). */
7410 }
7411
7412 /* Copy all resolved back dependencies of INSN to TWIN. This will
7413 provide correct value for INSN_TICK (TWIN). */
7414 sd_copy_back_deps (twin, insn, true);
7415
7416 if (rec != EXIT_BLOCK_PTR)
7417 /* In case of branchy check, fix CFG. */
7418 {
7419 basic_block first_bb, second_bb;
7420 rtx jump;
7421
7422 first_bb = BLOCK_FOR_INSN (check);
7423 second_bb = sched_split_block (first_bb, check);
7424
7425 sched_create_recovery_edges (first_bb, rec, second_bb);
7426
7427 sched_init_only_bb (second_bb, first_bb);
7428 sched_init_only_bb (rec, EXIT_BLOCK_PTR);
7429
7430 jump = BB_END (rec);
7431 haifa_init_insn (jump);
7432 }
7433
7434 /* Move backward dependences from INSN to CHECK and
7435 move forward dependences from INSN to TWIN. */
7436
7437 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
7438 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
7439 {
7440 rtx pro = DEP_PRO (dep);
7441 ds_t ds;
7442
7443 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
7444 check --TRUE--> producer ??? or ANTI ???
7445 twin --TRUE--> producer
7446 twin --ANTI--> check
7447
7448 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
7449 check --ANTI--> producer
7450 twin --ANTI--> producer
7451 twin --ANTI--> check
7452
7453 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
7454 check ~~TRUE~~> producer
7455 twin ~~TRUE~~> producer
7456 twin --ANTI--> check */
7457
7458 ds = DEP_STATUS (dep);
7459
7460 if (ds & BEGIN_SPEC)
7461 {
7462 gcc_assert (!mutate_p);
7463 ds &= ~BEGIN_SPEC;
7464 }
7465
7466 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
7467 sd_add_dep (new_dep, false);
7468
7469 if (rec != EXIT_BLOCK_PTR)
7470 {
7471 DEP_CON (new_dep) = twin;
7472 sd_add_dep (new_dep, false);
7473 }
7474 }
7475
7476 /* Second, remove backward dependencies of INSN. */
7477 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7478 sd_iterator_cond (&sd_it, &dep);)
7479 {
7480 if ((DEP_STATUS (dep) & BEGIN_SPEC)
7481 || mutate_p)
7482 /* We can delete this dep because we overcome it with
7483 BEGIN_SPECULATION. */
7484 sd_delete_dep (sd_it);
7485 else
7486 sd_iterator_next (&sd_it);
7487 }
7488
7489 /* Future Speculations. Determine what BE_IN speculations will be like. */
7490 fs = 0;
7491
7492 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
7493 here. */
7494
7495 gcc_assert (!DONE_SPEC (insn));
7496
7497 if (!mutate_p)
7498 {
7499 ds_t ts = TODO_SPEC (insn);
7500
7501 DONE_SPEC (insn) = ts & BEGIN_SPEC;
7502 CHECK_SPEC (check) = ts & BEGIN_SPEC;
7503
7504 /* Luckiness of future speculations solely depends upon initial
7505 BEGIN speculation. */
7506 if (ts & BEGIN_DATA)
7507 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
7508 if (ts & BEGIN_CONTROL)
7509 fs = set_dep_weak (fs, BE_IN_CONTROL,
7510 get_dep_weak (ts, BEGIN_CONTROL));
7511 }
7512 else
7513 CHECK_SPEC (check) = CHECK_SPEC (insn);
7514
7515 /* Future speculations: call the helper. */
7516 process_insn_forw_deps_be_in_spec (insn, twin, fs);
7517
7518 if (rec != EXIT_BLOCK_PTR)
7519 {
7520 /* Which types of dependencies should we use here is,
7521 generally, machine-dependent question... But, for now,
7522 it is not. */
7523
7524 if (!mutate_p)
7525 {
7526 init_dep (new_dep, insn, check, REG_DEP_TRUE);
7527 sd_add_dep (new_dep, false);
7528
7529 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7530 sd_add_dep (new_dep, false);
7531 }
7532 else
7533 {
7534 if (spec_info->dump)
7535 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
7536 (*current_sched_info->print_insn) (insn, 0));
7537
7538 /* Remove all dependencies of the INSN. */
7539 {
7540 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
7541 | SD_LIST_BACK
7542 | SD_LIST_RES_BACK));
7543 while (sd_iterator_cond (&sd_it, &dep))
7544 sd_delete_dep (sd_it);
7545 }
7546
7547 /* If former check (INSN) already was moved to the ready (or queue)
7548 list, add new check (CHECK) there too. */
7549 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
7550 try_ready (check);
7551
7552 /* Remove old check from instruction stream and free its
7553 data. */
7554 sched_remove_insn (insn);
7555 }
7556
7557 init_dep (new_dep, check, twin, REG_DEP_ANTI);
7558 sd_add_dep (new_dep, false);
7559 }
7560 else
7561 {
7562 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
7563 sd_add_dep (new_dep, false);
7564 }
7565
7566 if (!mutate_p)
7567 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
7568 because it'll be done later in add_to_speculative_block. */
7569 {
7570 rtx_vec_t priorities_roots = NULL;
7571
7572 clear_priorities (twin, &priorities_roots);
7573 calc_priorities (priorities_roots);
7574 VEC_free (rtx, heap, priorities_roots);
7575 }
7576 }
7577
7578 /* Removes dependency between instructions in the recovery block REC
7579 and usual region instructions. It keeps inner dependences so it
7580 won't be necessary to recompute them. */
7581 static void
7582 fix_recovery_deps (basic_block rec)
7583 {
7584 rtx note, insn, jump, ready_list = 0;
7585 bitmap_head in_ready;
7586 rtx link;
7587
7588 bitmap_initialize (&in_ready, 0);
7589
7590 /* NOTE - a basic block note. */
7591 note = NEXT_INSN (BB_HEAD (rec));
7592 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
7593 insn = BB_END (rec);
7594 gcc_assert (JUMP_P (insn));
7595 insn = PREV_INSN (insn);
7596
7597 do
7598 {
7599 sd_iterator_def sd_it;
7600 dep_t dep;
7601
7602 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
7603 sd_iterator_cond (&sd_it, &dep);)
7604 {
7605 rtx consumer = DEP_CON (dep);
7606
7607 if (BLOCK_FOR_INSN (consumer) != rec)
7608 {
7609 sd_delete_dep (sd_it);
7610
7611 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
7612 ready_list = alloc_INSN_LIST (consumer, ready_list);
7613 }
7614 else
7615 {
7616 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7617
7618 sd_iterator_next (&sd_it);
7619 }
7620 }
7621
7622 insn = PREV_INSN (insn);
7623 }
7624 while (insn != note);
7625
7626 bitmap_clear (&in_ready);
7627
7628 /* Try to add instructions to the ready or queue list. */
7629 for (link = ready_list; link; link = XEXP (link, 1))
7630 try_ready (XEXP (link, 0));
7631 free_INSN_LIST_list (&ready_list);
7632
7633 /* Fixing jump's dependences. */
7634 insn = BB_HEAD (rec);
7635 jump = BB_END (rec);
7636
7637 gcc_assert (LABEL_P (insn));
7638 insn = NEXT_INSN (insn);
7639
7640 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
7641 add_jump_dependencies (insn, jump);
7642 }
7643
7644 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
7645 instruction data. */
7646 static bool
7647 haifa_change_pattern (rtx insn, rtx new_pat)
7648 {
7649 sd_iterator_def sd_it;
7650 dep_t dep;
7651 int t;
7652
7653 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
7654 if (!t)
7655 return false;
7656 dfa_clear_single_insn_cache (insn);
7657
7658 sd_it = sd_iterator_start (insn,
7659 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
7660 while (sd_iterator_cond (&sd_it, &dep))
7661 {
7662 DEP_COST (dep) = UNKNOWN_DEP_COST;
7663 sd_iterator_next (&sd_it);
7664 }
7665
7666 /* Invalidate INSN_COST, so it'll be recalculated. */
7667 INSN_COST (insn) = -1;
7668 /* Invalidate INSN_TICK, so it'll be recalculated. */
7669 INSN_TICK (insn) = INVALID_TICK;
7670 return true;
7671 }
7672
7673 /* -1 - can't speculate,
7674 0 - for speculation with REQUEST mode it is OK to use
7675 current instruction pattern,
7676 1 - need to change pattern for *NEW_PAT to be speculative. */
7677 int
7678 sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
7679 {
7680 gcc_assert (current_sched_info->flags & DO_SPECULATION
7681 && (request & SPECULATIVE)
7682 && sched_insn_is_legitimate_for_speculation_p (insn, request));
7683
7684 if ((request & spec_info->mask) != request)
7685 return -1;
7686
7687 if (request & BE_IN_SPEC
7688 && !(request & BEGIN_SPEC))
7689 return 0;
7690
7691 return targetm.sched.speculate_insn (insn, request, new_pat);
7692 }
7693
7694 static int
7695 haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
7696 {
7697 gcc_assert (sched_deps_info->generate_spec_deps
7698 && !IS_SPECULATION_CHECK_P (insn));
7699
7700 if (HAS_INTERNAL_DEP (insn)
7701 || SCHED_GROUP_P (insn))
7702 return -1;
7703
7704 return sched_speculate_insn (insn, request, new_pat);
7705 }
7706
7707 /* Print some information about block BB, which starts with HEAD and
7708 ends with TAIL, before scheduling it.
7709 I is zero, if scheduler is about to start with the fresh ebb. */
7710 static void
7711 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
7712 {
7713 if (!i)
7714 fprintf (sched_dump,
7715 ";; ======================================================\n");
7716 else
7717 fprintf (sched_dump,
7718 ";; =====================ADVANCING TO=====================\n");
7719 fprintf (sched_dump,
7720 ";; -- basic block %d from %d to %d -- %s reload\n",
7721 bb->index, INSN_UID (head), INSN_UID (tail),
7722 (reload_completed ? "after" : "before"));
7723 fprintf (sched_dump,
7724 ";; ======================================================\n");
7725 fprintf (sched_dump, "\n");
7726 }
7727
7728 /* Unlink basic block notes and labels and saves them, so they
7729 can be easily restored. We unlink basic block notes in EBB to
7730 provide back-compatibility with the previous code, as target backends
7731 assume, that there'll be only instructions between
7732 current_sched_info->{head and tail}. We restore these notes as soon
7733 as we can.
7734 FIRST (LAST) is the first (last) basic block in the ebb.
7735 NB: In usual case (FIRST == LAST) nothing is really done. */
7736 void
7737 unlink_bb_notes (basic_block first, basic_block last)
7738 {
7739 /* We DON'T unlink basic block notes of the first block in the ebb. */
7740 if (first == last)
7741 return;
7742
7743 bb_header = XNEWVEC (rtx, last_basic_block);
7744
7745 /* Make a sentinel. */
7746 if (last->next_bb != EXIT_BLOCK_PTR)
7747 bb_header[last->next_bb->index] = 0;
7748
7749 first = first->next_bb;
7750 do
7751 {
7752 rtx prev, label, note, next;
7753
7754 label = BB_HEAD (last);
7755 if (LABEL_P (label))
7756 note = NEXT_INSN (label);
7757 else
7758 note = label;
7759 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
7760
7761 prev = PREV_INSN (label);
7762 next = NEXT_INSN (note);
7763 gcc_assert (prev && next);
7764
7765 NEXT_INSN (prev) = next;
7766 PREV_INSN (next) = prev;
7767
7768 bb_header[last->index] = label;
7769
7770 if (last == first)
7771 break;
7772
7773 last = last->prev_bb;
7774 }
7775 while (1);
7776 }
7777
7778 /* Restore basic block notes.
7779 FIRST is the first basic block in the ebb. */
7780 static void
7781 restore_bb_notes (basic_block first)
7782 {
7783 if (!bb_header)
7784 return;
7785
7786 /* We DON'T unlink basic block notes of the first block in the ebb. */
7787 first = first->next_bb;
7788 /* Remember: FIRST is actually a second basic block in the ebb. */
7789
7790 while (first != EXIT_BLOCK_PTR
7791 && bb_header[first->index])
7792 {
7793 rtx prev, label, note, next;
7794
7795 label = bb_header[first->index];
7796 prev = PREV_INSN (label);
7797 next = NEXT_INSN (prev);
7798
7799 if (LABEL_P (label))
7800 note = NEXT_INSN (label);
7801 else
7802 note = label;
7803 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
7804
7805 bb_header[first->index] = 0;
7806
7807 NEXT_INSN (prev) = label;
7808 NEXT_INSN (note) = next;
7809 PREV_INSN (next) = note;
7810
7811 first = first->next_bb;
7812 }
7813
7814 free (bb_header);
7815 bb_header = 0;
7816 }
7817
7818 /* Helper function.
7819 Fix CFG after both in- and inter-block movement of
7820 control_flow_insn_p JUMP. */
7821 static void
7822 fix_jump_move (rtx jump)
7823 {
7824 basic_block bb, jump_bb, jump_bb_next;
7825
7826 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
7827 jump_bb = BLOCK_FOR_INSN (jump);
7828 jump_bb_next = jump_bb->next_bb;
7829
7830 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
7831 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
7832
7833 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
7834 /* if jump_bb_next is not empty. */
7835 BB_END (jump_bb) = BB_END (jump_bb_next);
7836
7837 if (BB_END (bb) != PREV_INSN (jump))
7838 /* Then there are instruction after jump that should be placed
7839 to jump_bb_next. */
7840 BB_END (jump_bb_next) = BB_END (bb);
7841 else
7842 /* Otherwise jump_bb_next is empty. */
7843 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
7844
7845 /* To make assertion in move_insn happy. */
7846 BB_END (bb) = PREV_INSN (jump);
7847
7848 update_bb_for_insn (jump_bb_next);
7849 }
7850
7851 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
7852 static void
7853 move_block_after_check (rtx jump)
7854 {
7855 basic_block bb, jump_bb, jump_bb_next;
7856 VEC(edge,gc) *t;
7857
7858 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
7859 jump_bb = BLOCK_FOR_INSN (jump);
7860 jump_bb_next = jump_bb->next_bb;
7861
7862 update_bb_for_insn (jump_bb);
7863
7864 gcc_assert (IS_SPECULATION_CHECK_P (jump)
7865 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
7866
7867 unlink_block (jump_bb_next);
7868 link_block (jump_bb_next, bb);
7869
7870 t = bb->succs;
7871 bb->succs = 0;
7872 move_succs (&(jump_bb->succs), bb);
7873 move_succs (&(jump_bb_next->succs), jump_bb);
7874 move_succs (&t, jump_bb_next);
7875
7876 df_mark_solutions_dirty ();
7877
7878 common_sched_info->fix_recovery_cfg
7879 (bb->index, jump_bb->index, jump_bb_next->index);
7880 }
7881
7882 /* Helper function for move_block_after_check.
7883 This functions attaches edge vector pointed to by SUCCSP to
7884 block TO. */
7885 static void
7886 move_succs (VEC(edge,gc) **succsp, basic_block to)
7887 {
7888 edge e;
7889 edge_iterator ei;
7890
7891 gcc_assert (to->succs == 0);
7892
7893 to->succs = *succsp;
7894
7895 FOR_EACH_EDGE (e, ei, to->succs)
7896 e->src = to;
7897
7898 *succsp = 0;
7899 }
7900
7901 /* Remove INSN from the instruction stream.
7902 INSN should have any dependencies. */
7903 static void
7904 sched_remove_insn (rtx insn)
7905 {
7906 sd_finish_insn (insn);
7907
7908 change_queue_index (insn, QUEUE_NOWHERE);
7909 current_sched_info->add_remove_insn (insn, 1);
7910 remove_insn (insn);
7911 }
7912
7913 /* Clear priorities of all instructions, that are forward dependent on INSN.
7914 Store in vector pointed to by ROOTS_PTR insns on which priority () should
7915 be invoked to initialize all cleared priorities. */
7916 static void
7917 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
7918 {
7919 sd_iterator_def sd_it;
7920 dep_t dep;
7921 bool insn_is_root_p = true;
7922
7923 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
7924
7925 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
7926 {
7927 rtx pro = DEP_PRO (dep);
7928
7929 if (INSN_PRIORITY_STATUS (pro) >= 0
7930 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
7931 {
7932 /* If DEP doesn't contribute to priority then INSN itself should
7933 be added to priority roots. */
7934 if (contributes_to_priority_p (dep))
7935 insn_is_root_p = false;
7936
7937 INSN_PRIORITY_STATUS (pro) = -1;
7938 clear_priorities (pro, roots_ptr);
7939 }
7940 }
7941
7942 if (insn_is_root_p)
7943 VEC_safe_push (rtx, heap, *roots_ptr, insn);
7944 }
7945
7946 /* Recompute priorities of instructions, whose priorities might have been
7947 changed. ROOTS is a vector of instructions whose priority computation will
7948 trigger initialization of all cleared priorities. */
7949 static void
7950 calc_priorities (rtx_vec_t roots)
7951 {
7952 int i;
7953 rtx insn;
7954
7955 FOR_EACH_VEC_ELT (rtx, roots, i, insn)
7956 priority (insn);
7957 }
7958
7959
7960 /* Add dependences between JUMP and other instructions in the recovery
7961 block. INSN is the first insn the recovery block. */
7962 static void
7963 add_jump_dependencies (rtx insn, rtx jump)
7964 {
7965 do
7966 {
7967 insn = NEXT_INSN (insn);
7968 if (insn == jump)
7969 break;
7970
7971 if (dep_list_size (insn, SD_LIST_FORW) == 0)
7972 {
7973 dep_def _new_dep, *new_dep = &_new_dep;
7974
7975 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
7976 sd_add_dep (new_dep, false);
7977 }
7978 }
7979 while (1);
7980
7981 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
7982 }
7983
7984 /* Extend data structures for logical insn UID. */
7985 void
7986 sched_extend_luids (void)
7987 {
7988 int new_luids_max_uid = get_max_uid () + 1;
7989
7990 VEC_safe_grow_cleared (int, heap, sched_luids, new_luids_max_uid);
7991 }
7992
7993 /* Initialize LUID for INSN. */
7994 void
7995 sched_init_insn_luid (rtx insn)
7996 {
7997 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
7998 int luid;
7999
8000 if (i >= 0)
8001 {
8002 luid = sched_max_luid;
8003 sched_max_luid += i;
8004 }
8005 else
8006 luid = -1;
8007
8008 SET_INSN_LUID (insn, luid);
8009 }
8010
8011 /* Initialize luids for BBS.
8012 The hook common_sched_info->luid_for_non_insn () is used to determine
8013 if notes, labels, etc. need luids. */
8014 void
8015 sched_init_luids (bb_vec_t bbs)
8016 {
8017 int i;
8018 basic_block bb;
8019
8020 sched_extend_luids ();
8021 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
8022 {
8023 rtx insn;
8024
8025 FOR_BB_INSNS (bb, insn)
8026 sched_init_insn_luid (insn);
8027 }
8028 }
8029
8030 /* Free LUIDs. */
8031 void
8032 sched_finish_luids (void)
8033 {
8034 VEC_free (int, heap, sched_luids);
8035 sched_max_luid = 1;
8036 }
8037
8038 /* Return logical uid of INSN. Helpful while debugging. */
8039 int
8040 insn_luid (rtx insn)
8041 {
8042 return INSN_LUID (insn);
8043 }
8044
8045 /* Extend per insn data in the target. */
8046 void
8047 sched_extend_target (void)
8048 {
8049 if (targetm.sched.h_i_d_extended)
8050 targetm.sched.h_i_d_extended ();
8051 }
8052
8053 /* Extend global scheduler structures (those, that live across calls to
8054 schedule_block) to include information about just emitted INSN. */
8055 static void
8056 extend_h_i_d (void)
8057 {
8058 int reserve = (get_max_uid () + 1
8059 - VEC_length (haifa_insn_data_def, h_i_d));
8060 if (reserve > 0
8061 && ! VEC_space (haifa_insn_data_def, h_i_d, reserve))
8062 {
8063 VEC_safe_grow_cleared (haifa_insn_data_def, heap, h_i_d,
8064 3 * get_max_uid () / 2);
8065 sched_extend_target ();
8066 }
8067 }
8068
8069 /* Initialize h_i_d entry of the INSN with default values.
8070 Values, that are not explicitly initialized here, hold zero. */
8071 static void
8072 init_h_i_d (rtx insn)
8073 {
8074 if (INSN_LUID (insn) > 0)
8075 {
8076 INSN_COST (insn) = -1;
8077 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8078 INSN_TICK (insn) = INVALID_TICK;
8079 INSN_EXACT_TICK (insn) = INVALID_TICK;
8080 INTER_TICK (insn) = INVALID_TICK;
8081 TODO_SPEC (insn) = HARD_DEP;
8082 }
8083 }
8084
8085 /* Initialize haifa_insn_data for BBS. */
8086 void
8087 haifa_init_h_i_d (bb_vec_t bbs)
8088 {
8089 int i;
8090 basic_block bb;
8091
8092 extend_h_i_d ();
8093 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
8094 {
8095 rtx insn;
8096
8097 FOR_BB_INSNS (bb, insn)
8098 init_h_i_d (insn);
8099 }
8100 }
8101
8102 /* Finalize haifa_insn_data. */
8103 void
8104 haifa_finish_h_i_d (void)
8105 {
8106 int i;
8107 haifa_insn_data_t data;
8108 struct reg_use_data *use, *next;
8109
8110 FOR_EACH_VEC_ELT (haifa_insn_data_def, h_i_d, i, data)
8111 {
8112 free (data->max_reg_pressure);
8113 free (data->reg_pressure);
8114 for (use = data->reg_use_list; use != NULL; use = next)
8115 {
8116 next = use->next_insn_use;
8117 free (use);
8118 }
8119 }
8120 VEC_free (haifa_insn_data_def, heap, h_i_d);
8121 }
8122
8123 /* Init data for the new insn INSN. */
8124 static void
8125 haifa_init_insn (rtx insn)
8126 {
8127 gcc_assert (insn != NULL);
8128
8129 sched_extend_luids ();
8130 sched_init_insn_luid (insn);
8131 sched_extend_target ();
8132 sched_deps_init (false);
8133 extend_h_i_d ();
8134 init_h_i_d (insn);
8135
8136 if (adding_bb_to_current_region_p)
8137 {
8138 sd_init_insn (insn);
8139
8140 /* Extend dependency caches by one element. */
8141 extend_dependency_caches (1, false);
8142 }
8143 if (sched_pressure != SCHED_PRESSURE_NONE)
8144 init_insn_reg_pressure_info (insn);
8145 }
8146
8147 /* Init data for the new basic block BB which comes after AFTER. */
8148 static void
8149 haifa_init_only_bb (basic_block bb, basic_block after)
8150 {
8151 gcc_assert (bb != NULL);
8152
8153 sched_init_bbs ();
8154
8155 if (common_sched_info->add_block)
8156 /* This changes only data structures of the front-end. */
8157 common_sched_info->add_block (bb, after);
8158 }
8159
8160 /* A generic version of sched_split_block (). */
8161 basic_block
8162 sched_split_block_1 (basic_block first_bb, rtx after)
8163 {
8164 edge e;
8165
8166 e = split_block (first_bb, after);
8167 gcc_assert (e->src == first_bb);
8168
8169 /* sched_split_block emits note if *check == BB_END. Probably it
8170 is better to rip that note off. */
8171
8172 return e->dest;
8173 }
8174
8175 /* A generic version of sched_create_empty_bb (). */
8176 basic_block
8177 sched_create_empty_bb_1 (basic_block after)
8178 {
8179 return create_empty_bb (after);
8180 }
8181
8182 /* Insert PAT as an INSN into the schedule and update the necessary data
8183 structures to account for it. */
8184 rtx
8185 sched_emit_insn (rtx pat)
8186 {
8187 rtx insn = emit_insn_before (pat, nonscheduled_insns_begin);
8188 haifa_init_insn (insn);
8189
8190 if (current_sched_info->add_remove_insn)
8191 current_sched_info->add_remove_insn (insn, 0);
8192
8193 (*current_sched_info->begin_schedule_ready) (insn);
8194 VEC_safe_push (rtx, heap, scheduled_insns, insn);
8195
8196 last_scheduled_insn = insn;
8197 return insn;
8198 }
8199
8200 /* This function returns a candidate satisfying dispatch constraints from
8201 the ready list. */
8202
8203 static rtx
8204 ready_remove_first_dispatch (struct ready_list *ready)
8205 {
8206 int i;
8207 rtx insn = ready_element (ready, 0);
8208
8209 if (ready->n_ready == 1
8210 || INSN_CODE (insn) < 0
8211 || !INSN_P (insn)
8212 || !active_insn_p (insn)
8213 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8214 return ready_remove_first (ready);
8215
8216 for (i = 1; i < ready->n_ready; i++)
8217 {
8218 insn = ready_element (ready, i);
8219
8220 if (INSN_CODE (insn) < 0
8221 || !INSN_P (insn)
8222 || !active_insn_p (insn))
8223 continue;
8224
8225 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8226 {
8227 /* Return ith element of ready. */
8228 insn = ready_remove (ready, i);
8229 return insn;
8230 }
8231 }
8232
8233 if (targetm.sched.dispatch (NULL_RTX, DISPATCH_VIOLATION))
8234 return ready_remove_first (ready);
8235
8236 for (i = 1; i < ready->n_ready; i++)
8237 {
8238 insn = ready_element (ready, i);
8239
8240 if (INSN_CODE (insn) < 0
8241 || !INSN_P (insn)
8242 || !active_insn_p (insn))
8243 continue;
8244
8245 /* Return i-th element of ready. */
8246 if (targetm.sched.dispatch (insn, IS_CMP))
8247 return ready_remove (ready, i);
8248 }
8249
8250 return ready_remove_first (ready);
8251 }
8252
8253 /* Get number of ready insn in the ready list. */
8254
8255 int
8256 number_in_ready (void)
8257 {
8258 return ready.n_ready;
8259 }
8260
8261 /* Get number of ready's in the ready list. */
8262
8263 rtx
8264 get_ready_element (int i)
8265 {
8266 return ready_element (&ready, i);
8267 }
8268
8269 #endif /* INSN_SCHEDULING */