Disable max_issue when scheduling for register pressure
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "hashtab.h"
135 #include "hash-set.h"
136 #include "vec.h"
137 #include "machmode.h"
138 #include "input.h"
139 #include "function.h"
140 #include "flags.h"
141 #include "insn-config.h"
142 #include "insn-attr.h"
143 #include "except.h"
144 #include "recog.h"
145 #include "sched-int.h"
146 #include "target.h"
147 #include "common/common-target.h"
148 #include "params.h"
149 #include "dbgcnt.h"
150 #include "cfgloop.h"
151 #include "ira.h"
152 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
153 #include "hash-table.h"
154 #include "dumpfile.h"
155
156 #ifdef INSN_SCHEDULING
157
158 /* True if we do register pressure relief through live-range
159 shrinkage. */
160 static bool live_range_shrinkage_p;
161
162 /* Switch on live range shrinkage. */
163 void
164 initialize_live_range_shrinkage (void)
165 {
166 live_range_shrinkage_p = true;
167 }
168
169 /* Switch off live range shrinkage. */
170 void
171 finish_live_range_shrinkage (void)
172 {
173 live_range_shrinkage_p = false;
174 }
175
176 /* issue_rate is the number of insns that can be scheduled in the same
177 machine cycle. It can be defined in the config/mach/mach.h file,
178 otherwise we set it to 1. */
179
180 int issue_rate;
181
182 /* This can be set to true by a backend if the scheduler should not
183 enable a DCE pass. */
184 bool sched_no_dce;
185
186 /* The current initiation interval used when modulo scheduling. */
187 static int modulo_ii;
188
189 /* The maximum number of stages we are prepared to handle. */
190 static int modulo_max_stages;
191
192 /* The number of insns that exist in each iteration of the loop. We use this
193 to detect when we've scheduled all insns from the first iteration. */
194 static int modulo_n_insns;
195
196 /* The current count of insns in the first iteration of the loop that have
197 already been scheduled. */
198 static int modulo_insns_scheduled;
199
200 /* The maximum uid of insns from the first iteration of the loop. */
201 static int modulo_iter0_max_uid;
202
203 /* The number of times we should attempt to backtrack when modulo scheduling.
204 Decreased each time we have to backtrack. */
205 static int modulo_backtracks_left;
206
207 /* The stage in which the last insn from the original loop was
208 scheduled. */
209 static int modulo_last_stage;
210
211 /* sched-verbose controls the amount of debugging output the
212 scheduler prints. It is controlled by -fsched-verbose=N:
213 N>0 and no -DSR : the output is directed to stderr.
214 N>=10 will direct the printouts to stderr (regardless of -dSR).
215 N=1: same as -dSR.
216 N=2: bb's probabilities, detailed ready list info, unit/insn info.
217 N=3: rtl at abort point, control-flow, regions info.
218 N=5: dependences info. */
219
220 int sched_verbose = 0;
221
222 /* Debugging file. All printouts are sent to dump, which is always set,
223 either to stderr, or to the dump listing file (-dRS). */
224 FILE *sched_dump = 0;
225
226 /* This is a placeholder for the scheduler parameters common
227 to all schedulers. */
228 struct common_sched_info_def *common_sched_info;
229
230 #define INSN_TICK(INSN) (HID (INSN)->tick)
231 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
232 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
233 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
234 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
235 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
236 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
237 /* Cached cost of the instruction. Use insn_cost to get cost of the
238 insn. -1 here means that the field is not initialized. */
239 #define INSN_COST(INSN) (HID (INSN)->cost)
240
241 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
242 then it should be recalculated from scratch. */
243 #define INVALID_TICK (-(max_insn_queue_index + 1))
244 /* The minimal value of the INSN_TICK of an instruction. */
245 #define MIN_TICK (-max_insn_queue_index)
246
247 /* The deciding reason for INSN's place in the ready list. */
248 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
249
250 /* List of important notes we must keep around. This is a pointer to the
251 last element in the list. */
252 rtx_insn *note_list;
253
254 static struct spec_info_def spec_info_var;
255 /* Description of the speculative part of the scheduling.
256 If NULL - no speculation. */
257 spec_info_t spec_info = NULL;
258
259 /* True, if recovery block was added during scheduling of current block.
260 Used to determine, if we need to fix INSN_TICKs. */
261 static bool haifa_recovery_bb_recently_added_p;
262
263 /* True, if recovery block was added during this scheduling pass.
264 Used to determine if we should have empty memory pools of dependencies
265 after finishing current region. */
266 bool haifa_recovery_bb_ever_added_p;
267
268 /* Counters of different types of speculative instructions. */
269 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
270
271 /* Array used in {unlink, restore}_bb_notes. */
272 static rtx_insn **bb_header = 0;
273
274 /* Basic block after which recovery blocks will be created. */
275 static basic_block before_recovery;
276
277 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
278 created it. */
279 basic_block after_recovery;
280
281 /* FALSE if we add bb to another region, so we don't need to initialize it. */
282 bool adding_bb_to_current_region_p = true;
283
284 /* Queues, etc. */
285
286 /* An instruction is ready to be scheduled when all insns preceding it
287 have already been scheduled. It is important to ensure that all
288 insns which use its result will not be executed until its result
289 has been computed. An insn is maintained in one of four structures:
290
291 (P) the "Pending" set of insns which cannot be scheduled until
292 their dependencies have been satisfied.
293 (Q) the "Queued" set of insns that can be scheduled when sufficient
294 time has passed.
295 (R) the "Ready" list of unscheduled, uncommitted insns.
296 (S) the "Scheduled" list of insns.
297
298 Initially, all insns are either "Pending" or "Ready" depending on
299 whether their dependencies are satisfied.
300
301 Insns move from the "Ready" list to the "Scheduled" list as they
302 are committed to the schedule. As this occurs, the insns in the
303 "Pending" list have their dependencies satisfied and move to either
304 the "Ready" list or the "Queued" set depending on whether
305 sufficient time has passed to make them ready. As time passes,
306 insns move from the "Queued" set to the "Ready" list.
307
308 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
309 unscheduled insns, i.e., those that are ready, queued, and pending.
310 The "Queued" set (Q) is implemented by the variable `insn_queue'.
311 The "Ready" list (R) is implemented by the variables `ready' and
312 `n_ready'.
313 The "Scheduled" list (S) is the new insn chain built by this pass.
314
315 The transition (R->S) is implemented in the scheduling loop in
316 `schedule_block' when the best insn to schedule is chosen.
317 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
318 insns move from the ready list to the scheduled list.
319 The transition (Q->R) is implemented in 'queue_to_insn' as time
320 passes or stalls are introduced. */
321
322 /* Implement a circular buffer to delay instructions until sufficient
323 time has passed. For the new pipeline description interface,
324 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
325 than maximal time of instruction execution computed by genattr.c on
326 the base maximal time of functional unit reservations and getting a
327 result. This is the longest time an insn may be queued. */
328
329 static rtx_insn_list **insn_queue;
330 static int q_ptr = 0;
331 static int q_size = 0;
332 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
333 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
334
335 #define QUEUE_SCHEDULED (-3)
336 #define QUEUE_NOWHERE (-2)
337 #define QUEUE_READY (-1)
338 /* QUEUE_SCHEDULED - INSN is scheduled.
339 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
340 queue or ready list.
341 QUEUE_READY - INSN is in ready list.
342 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
343
344 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
345
346 /* The following variable value refers for all current and future
347 reservations of the processor units. */
348 state_t curr_state;
349
350 /* The following variable value is size of memory representing all
351 current and future reservations of the processor units. */
352 size_t dfa_state_size;
353
354 /* The following array is used to find the best insn from ready when
355 the automaton pipeline interface is used. */
356 signed char *ready_try = NULL;
357
358 /* The ready list. */
359 struct ready_list ready = {NULL, 0, 0, 0, 0};
360
361 /* The pointer to the ready list (to be removed). */
362 static struct ready_list *readyp = &ready;
363
364 /* Scheduling clock. */
365 static int clock_var;
366
367 /* Clock at which the previous instruction was issued. */
368 static int last_clock_var;
369
370 /* Set to true if, when queuing a shadow insn, we discover that it would be
371 scheduled too late. */
372 static bool must_backtrack;
373
374 /* The following variable value is number of essential insns issued on
375 the current cycle. An insn is essential one if it changes the
376 processors state. */
377 int cycle_issued_insns;
378
379 /* This records the actual schedule. It is built up during the main phase
380 of schedule_block, and afterwards used to reorder the insns in the RTL. */
381 static vec<rtx_insn *> scheduled_insns;
382
383 static int may_trap_exp (const_rtx, int);
384
385 /* Nonzero iff the address is comprised from at most 1 register. */
386 #define CONST_BASED_ADDRESS_P(x) \
387 (REG_P (x) \
388 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
389 || (GET_CODE (x) == LO_SUM)) \
390 && (CONSTANT_P (XEXP (x, 0)) \
391 || CONSTANT_P (XEXP (x, 1)))))
392
393 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
394 as found by analyzing insn's expression. */
395
396 \f
397 static int haifa_luid_for_non_insn (rtx x);
398
399 /* Haifa version of sched_info hooks common to all headers. */
400 const struct common_sched_info_def haifa_common_sched_info =
401 {
402 NULL, /* fix_recovery_cfg */
403 NULL, /* add_block */
404 NULL, /* estimate_number_of_insns */
405 haifa_luid_for_non_insn, /* luid_for_non_insn */
406 SCHED_PASS_UNKNOWN /* sched_pass_id */
407 };
408
409 /* Mapping from instruction UID to its Logical UID. */
410 vec<int> sched_luids = vNULL;
411
412 /* Next LUID to assign to an instruction. */
413 int sched_max_luid = 1;
414
415 /* Haifa Instruction Data. */
416 vec<haifa_insn_data_def> h_i_d = vNULL;
417
418 void (* sched_init_only_bb) (basic_block, basic_block);
419
420 /* Split block function. Different schedulers might use different functions
421 to handle their internal data consistent. */
422 basic_block (* sched_split_block) (basic_block, rtx);
423
424 /* Create empty basic block after the specified block. */
425 basic_block (* sched_create_empty_bb) (basic_block);
426
427 /* Return the number of cycles until INSN is expected to be ready.
428 Return zero if it already is. */
429 static int
430 insn_delay (rtx_insn *insn)
431 {
432 return MAX (INSN_TICK (insn) - clock_var, 0);
433 }
434
435 static int
436 may_trap_exp (const_rtx x, int is_store)
437 {
438 enum rtx_code code;
439
440 if (x == 0)
441 return TRAP_FREE;
442 code = GET_CODE (x);
443 if (is_store)
444 {
445 if (code == MEM && may_trap_p (x))
446 return TRAP_RISKY;
447 else
448 return TRAP_FREE;
449 }
450 if (code == MEM)
451 {
452 /* The insn uses memory: a volatile load. */
453 if (MEM_VOLATILE_P (x))
454 return IRISKY;
455 /* An exception-free load. */
456 if (!may_trap_p (x))
457 return IFREE;
458 /* A load with 1 base register, to be further checked. */
459 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
460 return PFREE_CANDIDATE;
461 /* No info on the load, to be further checked. */
462 return PRISKY_CANDIDATE;
463 }
464 else
465 {
466 const char *fmt;
467 int i, insn_class = TRAP_FREE;
468
469 /* Neither store nor load, check if it may cause a trap. */
470 if (may_trap_p (x))
471 return TRAP_RISKY;
472 /* Recursive step: walk the insn... */
473 fmt = GET_RTX_FORMAT (code);
474 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
475 {
476 if (fmt[i] == 'e')
477 {
478 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
479 insn_class = WORST_CLASS (insn_class, tmp_class);
480 }
481 else if (fmt[i] == 'E')
482 {
483 int j;
484 for (j = 0; j < XVECLEN (x, i); j++)
485 {
486 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
487 insn_class = WORST_CLASS (insn_class, tmp_class);
488 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
489 break;
490 }
491 }
492 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
493 break;
494 }
495 return insn_class;
496 }
497 }
498
499 /* Classifies rtx X of an insn for the purpose of verifying that X can be
500 executed speculatively (and consequently the insn can be moved
501 speculatively), by examining X, returning:
502 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
503 TRAP_FREE: non-load insn.
504 IFREE: load from a globally safe location.
505 IRISKY: volatile load.
506 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
507 being either PFREE or PRISKY. */
508
509 static int
510 haifa_classify_rtx (const_rtx x)
511 {
512 int tmp_class = TRAP_FREE;
513 int insn_class = TRAP_FREE;
514 enum rtx_code code;
515
516 if (GET_CODE (x) == PARALLEL)
517 {
518 int i, len = XVECLEN (x, 0);
519
520 for (i = len - 1; i >= 0; i--)
521 {
522 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
523 insn_class = WORST_CLASS (insn_class, tmp_class);
524 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
525 break;
526 }
527 }
528 else
529 {
530 code = GET_CODE (x);
531 switch (code)
532 {
533 case CLOBBER:
534 /* Test if it is a 'store'. */
535 tmp_class = may_trap_exp (XEXP (x, 0), 1);
536 break;
537 case SET:
538 /* Test if it is a store. */
539 tmp_class = may_trap_exp (SET_DEST (x), 1);
540 if (tmp_class == TRAP_RISKY)
541 break;
542 /* Test if it is a load. */
543 tmp_class =
544 WORST_CLASS (tmp_class,
545 may_trap_exp (SET_SRC (x), 0));
546 break;
547 case COND_EXEC:
548 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
549 if (tmp_class == TRAP_RISKY)
550 break;
551 tmp_class = WORST_CLASS (tmp_class,
552 may_trap_exp (COND_EXEC_TEST (x), 0));
553 break;
554 case TRAP_IF:
555 tmp_class = TRAP_RISKY;
556 break;
557 default:;
558 }
559 insn_class = tmp_class;
560 }
561
562 return insn_class;
563 }
564
565 int
566 haifa_classify_insn (const_rtx insn)
567 {
568 return haifa_classify_rtx (PATTERN (insn));
569 }
570 \f
571 /* After the scheduler initialization function has been called, this function
572 can be called to enable modulo scheduling. II is the initiation interval
573 we should use, it affects the delays for delay_pairs that were recorded as
574 separated by a given number of stages.
575
576 MAX_STAGES provides us with a limit
577 after which we give up scheduling; the caller must have unrolled at least
578 as many copies of the loop body and recorded delay_pairs for them.
579
580 INSNS is the number of real (non-debug) insns in one iteration of
581 the loop. MAX_UID can be used to test whether an insn belongs to
582 the first iteration of the loop; all of them have a uid lower than
583 MAX_UID. */
584 void
585 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
586 {
587 modulo_ii = ii;
588 modulo_max_stages = max_stages;
589 modulo_n_insns = insns;
590 modulo_iter0_max_uid = max_uid;
591 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
592 }
593
594 /* A structure to record a pair of insns where the first one is a real
595 insn that has delay slots, and the second is its delayed shadow.
596 I1 is scheduled normally and will emit an assembly instruction,
597 while I2 describes the side effect that takes place at the
598 transition between cycles CYCLES and (CYCLES + 1) after I1. */
599 struct delay_pair
600 {
601 struct delay_pair *next_same_i1;
602 rtx_insn *i1, *i2;
603 int cycles;
604 /* When doing modulo scheduling, we a delay_pair can also be used to
605 show that I1 and I2 are the same insn in a different stage. If that
606 is the case, STAGES will be nonzero. */
607 int stages;
608 };
609
610 /* Helpers for delay hashing. */
611
612 struct delay_i1_hasher : typed_noop_remove <delay_pair>
613 {
614 typedef delay_pair value_type;
615 typedef void compare_type;
616 static inline hashval_t hash (const value_type *);
617 static inline bool equal (const value_type *, const compare_type *);
618 };
619
620 /* Returns a hash value for X, based on hashing just I1. */
621
622 inline hashval_t
623 delay_i1_hasher::hash (const value_type *x)
624 {
625 return htab_hash_pointer (x->i1);
626 }
627
628 /* Return true if I1 of pair X is the same as that of pair Y. */
629
630 inline bool
631 delay_i1_hasher::equal (const value_type *x, const compare_type *y)
632 {
633 return x->i1 == y;
634 }
635
636 struct delay_i2_hasher : typed_free_remove <delay_pair>
637 {
638 typedef delay_pair value_type;
639 typedef void compare_type;
640 static inline hashval_t hash (const value_type *);
641 static inline bool equal (const value_type *, const compare_type *);
642 };
643
644 /* Returns a hash value for X, based on hashing just I2. */
645
646 inline hashval_t
647 delay_i2_hasher::hash (const value_type *x)
648 {
649 return htab_hash_pointer (x->i2);
650 }
651
652 /* Return true if I2 of pair X is the same as that of pair Y. */
653
654 inline bool
655 delay_i2_hasher::equal (const value_type *x, const compare_type *y)
656 {
657 return x->i2 == y;
658 }
659
660 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
661 indexed by I2. */
662 static hash_table<delay_i1_hasher> *delay_htab;
663 static hash_table<delay_i2_hasher> *delay_htab_i2;
664
665 /* Called through htab_traverse. Walk the hashtable using I2 as
666 index, and delete all elements involving an UID higher than
667 that pointed to by *DATA. */
668 int
669 haifa_htab_i2_traverse (delay_pair **slot, int *data)
670 {
671 int maxuid = *data;
672 struct delay_pair *p = *slot;
673 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
674 {
675 delay_htab_i2->clear_slot (slot);
676 }
677 return 1;
678 }
679
680 /* Called through htab_traverse. Walk the hashtable using I2 as
681 index, and delete all elements involving an UID higher than
682 that pointed to by *DATA. */
683 int
684 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
685 {
686 int maxuid = *data;
687 struct delay_pair *p, *first, **pprev;
688
689 if (INSN_UID ((*pslot)->i1) >= maxuid)
690 {
691 delay_htab->clear_slot (pslot);
692 return 1;
693 }
694 pprev = &first;
695 for (p = *pslot; p; p = p->next_same_i1)
696 {
697 if (INSN_UID (p->i2) < maxuid)
698 {
699 *pprev = p;
700 pprev = &p->next_same_i1;
701 }
702 }
703 *pprev = NULL;
704 if (first == NULL)
705 delay_htab->clear_slot (pslot);
706 else
707 *pslot = first;
708 return 1;
709 }
710
711 /* Discard all delay pairs which involve an insn with an UID higher
712 than MAX_UID. */
713 void
714 discard_delay_pairs_above (int max_uid)
715 {
716 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
717 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
718 }
719
720 /* This function can be called by a port just before it starts the final
721 scheduling pass. It records the fact that an instruction with delay
722 slots has been split into two insns, I1 and I2. The first one will be
723 scheduled normally and initiates the operation. The second one is a
724 shadow which must follow a specific number of cycles after I1; its only
725 purpose is to show the side effect that occurs at that cycle in the RTL.
726 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
727 while I2 retains the original insn type.
728
729 There are two ways in which the number of cycles can be specified,
730 involving the CYCLES and STAGES arguments to this function. If STAGES
731 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
732 which is multiplied by MODULO_II to give the number of cycles. This is
733 only useful if the caller also calls set_modulo_params to enable modulo
734 scheduling. */
735
736 void
737 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
738 {
739 struct delay_pair *p = XNEW (struct delay_pair);
740 struct delay_pair **slot;
741
742 p->i1 = i1;
743 p->i2 = i2;
744 p->cycles = cycles;
745 p->stages = stages;
746
747 if (!delay_htab)
748 {
749 delay_htab = new hash_table<delay_i1_hasher> (10);
750 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
751 }
752 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
753 p->next_same_i1 = *slot;
754 *slot = p;
755 slot = delay_htab_i2->find_slot (p, INSERT);
756 *slot = p;
757 }
758
759 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
760 and return the other insn if so. Return NULL otherwise. */
761 rtx_insn *
762 real_insn_for_shadow (rtx_insn *insn)
763 {
764 struct delay_pair *pair;
765
766 if (!delay_htab)
767 return NULL;
768
769 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
770 if (!pair || pair->stages > 0)
771 return NULL;
772 return pair->i1;
773 }
774
775 /* For a pair P of insns, return the fixed distance in cycles from the first
776 insn after which the second must be scheduled. */
777 static int
778 pair_delay (struct delay_pair *p)
779 {
780 if (p->stages == 0)
781 return p->cycles;
782 else
783 return p->stages * modulo_ii;
784 }
785
786 /* Given an insn INSN, add a dependence on its delayed shadow if it
787 has one. Also try to find situations where shadows depend on each other
788 and add dependencies to the real insns to limit the amount of backtracking
789 needed. */
790 void
791 add_delay_dependencies (rtx_insn *insn)
792 {
793 struct delay_pair *pair;
794 sd_iterator_def sd_it;
795 dep_t dep;
796
797 if (!delay_htab)
798 return;
799
800 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
801 if (!pair)
802 return;
803 add_dependence (insn, pair->i1, REG_DEP_ANTI);
804 if (pair->stages)
805 return;
806
807 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
808 {
809 rtx_insn *pro = DEP_PRO (dep);
810 struct delay_pair *other_pair
811 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
812 if (!other_pair || other_pair->stages)
813 continue;
814 if (pair_delay (other_pair) >= pair_delay (pair))
815 {
816 if (sched_verbose >= 4)
817 {
818 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
819 INSN_UID (other_pair->i1),
820 INSN_UID (pair->i1));
821 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
822 INSN_UID (pair->i1),
823 INSN_UID (pair->i2),
824 pair_delay (pair));
825 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
826 INSN_UID (other_pair->i1),
827 INSN_UID (other_pair->i2),
828 pair_delay (other_pair));
829 }
830 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
831 }
832 }
833 }
834 \f
835 /* Forward declarations. */
836
837 static int priority (rtx_insn *);
838 static int rank_for_schedule (const void *, const void *);
839 static void swap_sort (rtx_insn **, int);
840 static void queue_insn (rtx_insn *, int, const char *);
841 static int schedule_insn (rtx_insn *);
842 static void adjust_priority (rtx_insn *);
843 static void advance_one_cycle (void);
844 static void extend_h_i_d (void);
845
846
847 /* Notes handling mechanism:
848 =========================
849 Generally, NOTES are saved before scheduling and restored after scheduling.
850 The scheduler distinguishes between two types of notes:
851
852 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
853 Before scheduling a region, a pointer to the note is added to the insn
854 that follows or precedes it. (This happens as part of the data dependence
855 computation). After scheduling an insn, the pointer contained in it is
856 used for regenerating the corresponding note (in reemit_notes).
857
858 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
859 these notes are put in a list (in rm_other_notes() and
860 unlink_other_notes ()). After scheduling the block, these notes are
861 inserted at the beginning of the block (in schedule_block()). */
862
863 static void ready_add (struct ready_list *, rtx_insn *, bool);
864 static rtx_insn *ready_remove_first (struct ready_list *);
865 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
866
867 static void queue_to_ready (struct ready_list *);
868 static int early_queue_to_ready (state_t, struct ready_list *);
869
870 /* The following functions are used to implement multi-pass scheduling
871 on the first cycle. */
872 static rtx_insn *ready_remove (struct ready_list *, int);
873 static void ready_remove_insn (rtx);
874
875 static void fix_inter_tick (rtx_insn *, rtx_insn *);
876 static int fix_tick_ready (rtx_insn *);
877 static void change_queue_index (rtx_insn *, int);
878
879 /* The following functions are used to implement scheduling of data/control
880 speculative instructions. */
881
882 static void extend_h_i_d (void);
883 static void init_h_i_d (rtx_insn *);
884 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
885 static void generate_recovery_code (rtx_insn *);
886 static void process_insn_forw_deps_be_in_spec (rtx, rtx_insn *, ds_t);
887 static void begin_speculative_block (rtx_insn *);
888 static void add_to_speculative_block (rtx_insn *);
889 static void init_before_recovery (basic_block *);
890 static void create_check_block_twin (rtx_insn *, bool);
891 static void fix_recovery_deps (basic_block);
892 static bool haifa_change_pattern (rtx_insn *, rtx);
893 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
894 static void restore_bb_notes (basic_block);
895 static void fix_jump_move (rtx_insn *);
896 static void move_block_after_check (rtx_insn *);
897 static void move_succs (vec<edge, va_gc> **, basic_block);
898 static void sched_remove_insn (rtx_insn *);
899 static void clear_priorities (rtx_insn *, rtx_vec_t *);
900 static void calc_priorities (rtx_vec_t);
901 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
902
903 #endif /* INSN_SCHEDULING */
904 \f
905 /* Point to state used for the current scheduling pass. */
906 struct haifa_sched_info *current_sched_info;
907 \f
908 #ifndef INSN_SCHEDULING
909 void
910 schedule_insns (void)
911 {
912 }
913 #else
914
915 /* Do register pressure sensitive insn scheduling if the flag is set
916 up. */
917 enum sched_pressure_algorithm sched_pressure;
918
919 /* Map regno -> its pressure class. The map defined only when
920 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
921 enum reg_class *sched_regno_pressure_class;
922
923 /* The current register pressure. Only elements corresponding pressure
924 classes are defined. */
925 static int curr_reg_pressure[N_REG_CLASSES];
926
927 /* Saved value of the previous array. */
928 static int saved_reg_pressure[N_REG_CLASSES];
929
930 /* Register living at given scheduling point. */
931 static bitmap curr_reg_live;
932
933 /* Saved value of the previous array. */
934 static bitmap saved_reg_live;
935
936 /* Registers mentioned in the current region. */
937 static bitmap region_ref_regs;
938
939 /* Effective number of available registers of a given class (see comment
940 in sched_pressure_start_bb). */
941 static int sched_class_regs_num[N_REG_CLASSES];
942 /* Number of call_used_regs. This is a helper for calculating of
943 sched_class_regs_num. */
944 static int call_used_regs_num[N_REG_CLASSES];
945
946 /* Initiate register pressure relative info for scheduling the current
947 region. Currently it is only clearing register mentioned in the
948 current region. */
949 void
950 sched_init_region_reg_pressure_info (void)
951 {
952 bitmap_clear (region_ref_regs);
953 }
954
955 /* PRESSURE[CL] describes the pressure on register class CL. Update it
956 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
957 LIVE tracks the set of live registers; if it is null, assume that
958 every birth or death is genuine. */
959 static inline void
960 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
961 {
962 enum reg_class pressure_class;
963
964 pressure_class = sched_regno_pressure_class[regno];
965 if (regno >= FIRST_PSEUDO_REGISTER)
966 {
967 if (pressure_class != NO_REGS)
968 {
969 if (birth_p)
970 {
971 if (!live || bitmap_set_bit (live, regno))
972 pressure[pressure_class]
973 += (ira_reg_class_max_nregs
974 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
975 }
976 else
977 {
978 if (!live || bitmap_clear_bit (live, regno))
979 pressure[pressure_class]
980 -= (ira_reg_class_max_nregs
981 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
982 }
983 }
984 }
985 else if (pressure_class != NO_REGS
986 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
987 {
988 if (birth_p)
989 {
990 if (!live || bitmap_set_bit (live, regno))
991 pressure[pressure_class]++;
992 }
993 else
994 {
995 if (!live || bitmap_clear_bit (live, regno))
996 pressure[pressure_class]--;
997 }
998 }
999 }
1000
1001 /* Initiate current register pressure related info from living
1002 registers given by LIVE. */
1003 static void
1004 initiate_reg_pressure_info (bitmap live)
1005 {
1006 int i;
1007 unsigned int j;
1008 bitmap_iterator bi;
1009
1010 for (i = 0; i < ira_pressure_classes_num; i++)
1011 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1012 bitmap_clear (curr_reg_live);
1013 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1014 if (sched_pressure == SCHED_PRESSURE_MODEL
1015 || current_nr_blocks == 1
1016 || bitmap_bit_p (region_ref_regs, j))
1017 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1018 }
1019
1020 /* Mark registers in X as mentioned in the current region. */
1021 static void
1022 setup_ref_regs (rtx x)
1023 {
1024 int i, j, regno;
1025 const RTX_CODE code = GET_CODE (x);
1026 const char *fmt;
1027
1028 if (REG_P (x))
1029 {
1030 regno = REGNO (x);
1031 if (HARD_REGISTER_NUM_P (regno))
1032 bitmap_set_range (region_ref_regs, regno,
1033 hard_regno_nregs[regno][GET_MODE (x)]);
1034 else
1035 bitmap_set_bit (region_ref_regs, REGNO (x));
1036 return;
1037 }
1038 fmt = GET_RTX_FORMAT (code);
1039 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1040 if (fmt[i] == 'e')
1041 setup_ref_regs (XEXP (x, i));
1042 else if (fmt[i] == 'E')
1043 {
1044 for (j = 0; j < XVECLEN (x, i); j++)
1045 setup_ref_regs (XVECEXP (x, i, j));
1046 }
1047 }
1048
1049 /* Initiate current register pressure related info at the start of
1050 basic block BB. */
1051 static void
1052 initiate_bb_reg_pressure_info (basic_block bb)
1053 {
1054 unsigned int i ATTRIBUTE_UNUSED;
1055 rtx_insn *insn;
1056
1057 if (current_nr_blocks > 1)
1058 FOR_BB_INSNS (bb, insn)
1059 if (NONDEBUG_INSN_P (insn))
1060 setup_ref_regs (PATTERN (insn));
1061 initiate_reg_pressure_info (df_get_live_in (bb));
1062 #ifdef EH_RETURN_DATA_REGNO
1063 if (bb_has_eh_pred (bb))
1064 for (i = 0; ; ++i)
1065 {
1066 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1067
1068 if (regno == INVALID_REGNUM)
1069 break;
1070 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1071 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1072 regno, true);
1073 }
1074 #endif
1075 }
1076
1077 /* Save current register pressure related info. */
1078 static void
1079 save_reg_pressure (void)
1080 {
1081 int i;
1082
1083 for (i = 0; i < ira_pressure_classes_num; i++)
1084 saved_reg_pressure[ira_pressure_classes[i]]
1085 = curr_reg_pressure[ira_pressure_classes[i]];
1086 bitmap_copy (saved_reg_live, curr_reg_live);
1087 }
1088
1089 /* Restore saved register pressure related info. */
1090 static void
1091 restore_reg_pressure (void)
1092 {
1093 int i;
1094
1095 for (i = 0; i < ira_pressure_classes_num; i++)
1096 curr_reg_pressure[ira_pressure_classes[i]]
1097 = saved_reg_pressure[ira_pressure_classes[i]];
1098 bitmap_copy (curr_reg_live, saved_reg_live);
1099 }
1100
1101 /* Return TRUE if the register is dying after its USE. */
1102 static bool
1103 dying_use_p (struct reg_use_data *use)
1104 {
1105 struct reg_use_data *next;
1106
1107 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1108 if (NONDEBUG_INSN_P (next->insn)
1109 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1110 return false;
1111 return true;
1112 }
1113
1114 /* Print info about the current register pressure and its excess for
1115 each pressure class. */
1116 static void
1117 print_curr_reg_pressure (void)
1118 {
1119 int i;
1120 enum reg_class cl;
1121
1122 fprintf (sched_dump, ";;\t");
1123 for (i = 0; i < ira_pressure_classes_num; i++)
1124 {
1125 cl = ira_pressure_classes[i];
1126 gcc_assert (curr_reg_pressure[cl] >= 0);
1127 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1128 curr_reg_pressure[cl],
1129 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1130 }
1131 fprintf (sched_dump, "\n");
1132 }
1133 \f
1134 /* Determine if INSN has a condition that is clobbered if a register
1135 in SET_REGS is modified. */
1136 static bool
1137 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1138 {
1139 rtx pat = PATTERN (insn);
1140 gcc_assert (GET_CODE (pat) == COND_EXEC);
1141 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1142 {
1143 sd_iterator_def sd_it;
1144 dep_t dep;
1145 haifa_change_pattern (insn, ORIG_PAT (insn));
1146 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1147 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1148 TODO_SPEC (insn) = HARD_DEP;
1149 if (sched_verbose >= 2)
1150 fprintf (sched_dump,
1151 ";;\t\tdequeue insn %s because of clobbered condition\n",
1152 (*current_sched_info->print_insn) (insn, 0));
1153 return true;
1154 }
1155
1156 return false;
1157 }
1158
1159 /* This function should be called after modifying the pattern of INSN,
1160 to update scheduler data structures as needed. */
1161 static void
1162 update_insn_after_change (rtx_insn *insn)
1163 {
1164 sd_iterator_def sd_it;
1165 dep_t dep;
1166
1167 dfa_clear_single_insn_cache (insn);
1168
1169 sd_it = sd_iterator_start (insn,
1170 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1171 while (sd_iterator_cond (&sd_it, &dep))
1172 {
1173 DEP_COST (dep) = UNKNOWN_DEP_COST;
1174 sd_iterator_next (&sd_it);
1175 }
1176
1177 /* Invalidate INSN_COST, so it'll be recalculated. */
1178 INSN_COST (insn) = -1;
1179 /* Invalidate INSN_TICK, so it'll be recalculated. */
1180 INSN_TICK (insn) = INVALID_TICK;
1181 }
1182
1183
1184 /* Two VECs, one to hold dependencies for which pattern replacements
1185 need to be applied or restored at the start of the next cycle, and
1186 another to hold an integer that is either one, to apply the
1187 corresponding replacement, or zero to restore it. */
1188 static vec<dep_t> next_cycle_replace_deps;
1189 static vec<int> next_cycle_apply;
1190
1191 static void apply_replacement (dep_t, bool);
1192 static void restore_pattern (dep_t, bool);
1193
1194 /* Look at the remaining dependencies for insn NEXT, and compute and return
1195 the TODO_SPEC value we should use for it. This is called after one of
1196 NEXT's dependencies has been resolved.
1197 We also perform pattern replacements for predication, and for broken
1198 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1199 false. */
1200
1201 static ds_t
1202 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1203 {
1204 ds_t new_ds;
1205 sd_iterator_def sd_it;
1206 dep_t dep, modify_dep = NULL;
1207 int n_spec = 0;
1208 int n_control = 0;
1209 int n_replace = 0;
1210 bool first_p = true;
1211
1212 if (sd_lists_empty_p (next, SD_LIST_BACK))
1213 /* NEXT has all its dependencies resolved. */
1214 return 0;
1215
1216 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1217 return HARD_DEP;
1218
1219 /* Now we've got NEXT with speculative deps only.
1220 1. Look at the deps to see what we have to do.
1221 2. Check if we can do 'todo'. */
1222 new_ds = 0;
1223
1224 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1225 {
1226 rtx_insn *pro = DEP_PRO (dep);
1227 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1228
1229 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1230 continue;
1231
1232 if (ds)
1233 {
1234 n_spec++;
1235 if (first_p)
1236 {
1237 first_p = false;
1238
1239 new_ds = ds;
1240 }
1241 else
1242 new_ds = ds_merge (new_ds, ds);
1243 }
1244 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1245 {
1246 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1247 {
1248 n_control++;
1249 modify_dep = dep;
1250 }
1251 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1252 }
1253 else if (DEP_REPLACE (dep) != NULL)
1254 {
1255 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1256 {
1257 n_replace++;
1258 modify_dep = dep;
1259 }
1260 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1261 }
1262 }
1263
1264 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1265 {
1266 if (!dbg_cnt (sched_breakdep))
1267 return HARD_DEP;
1268 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1269 {
1270 struct dep_replacement *desc = DEP_REPLACE (dep);
1271 if (desc != NULL)
1272 {
1273 if (desc->insn == next && !for_backtrack)
1274 {
1275 gcc_assert (n_replace == 1);
1276 apply_replacement (dep, true);
1277 }
1278 DEP_STATUS (dep) |= DEP_CANCELLED;
1279 }
1280 }
1281 return 0;
1282 }
1283
1284 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1285 {
1286 rtx_insn *pro, *other;
1287 rtx new_pat;
1288 rtx cond = NULL_RTX;
1289 bool success;
1290 rtx_insn *prev = NULL;
1291 int i;
1292 unsigned regno;
1293
1294 if ((current_sched_info->flags & DO_PREDICATION) == 0
1295 || (ORIG_PAT (next) != NULL_RTX
1296 && PREDICATED_PAT (next) == NULL_RTX))
1297 return HARD_DEP;
1298
1299 pro = DEP_PRO (modify_dep);
1300 other = real_insn_for_shadow (pro);
1301 if (other != NULL_RTX)
1302 pro = other;
1303
1304 cond = sched_get_reverse_condition_uncached (pro);
1305 regno = REGNO (XEXP (cond, 0));
1306
1307 /* Find the last scheduled insn that modifies the condition register.
1308 We can stop looking once we find the insn we depend on through the
1309 REG_DEP_CONTROL; if the condition register isn't modified after it,
1310 we know that it still has the right value. */
1311 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1312 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1313 {
1314 HARD_REG_SET t;
1315
1316 find_all_hard_reg_sets (prev, &t, true);
1317 if (TEST_HARD_REG_BIT (t, regno))
1318 return HARD_DEP;
1319 if (prev == pro)
1320 break;
1321 }
1322 if (ORIG_PAT (next) == NULL_RTX)
1323 {
1324 ORIG_PAT (next) = PATTERN (next);
1325
1326 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1327 success = haifa_change_pattern (next, new_pat);
1328 if (!success)
1329 return HARD_DEP;
1330 PREDICATED_PAT (next) = new_pat;
1331 }
1332 else if (PATTERN (next) != PREDICATED_PAT (next))
1333 {
1334 bool success = haifa_change_pattern (next,
1335 PREDICATED_PAT (next));
1336 gcc_assert (success);
1337 }
1338 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1339 return DEP_CONTROL;
1340 }
1341
1342 if (PREDICATED_PAT (next) != NULL_RTX)
1343 {
1344 int tick = INSN_TICK (next);
1345 bool success = haifa_change_pattern (next,
1346 ORIG_PAT (next));
1347 INSN_TICK (next) = tick;
1348 gcc_assert (success);
1349 }
1350
1351 /* We can't handle the case where there are both speculative and control
1352 dependencies, so we return HARD_DEP in such a case. Also fail if
1353 we have speculative dependencies with not enough points, or more than
1354 one control dependency. */
1355 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1356 || (n_spec > 0
1357 /* Too few points? */
1358 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1359 || n_control > 0
1360 || n_replace > 0)
1361 return HARD_DEP;
1362
1363 return new_ds;
1364 }
1365 \f
1366 /* Pointer to the last instruction scheduled. */
1367 static rtx_insn *last_scheduled_insn;
1368
1369 /* Pointer to the last nondebug instruction scheduled within the
1370 block, or the prev_head of the scheduling block. Used by
1371 rank_for_schedule, so that insns independent of the last scheduled
1372 insn will be preferred over dependent instructions. */
1373 static rtx last_nondebug_scheduled_insn;
1374
1375 /* Pointer that iterates through the list of unscheduled insns if we
1376 have a dbg_cnt enabled. It always points at an insn prior to the
1377 first unscheduled one. */
1378 static rtx_insn *nonscheduled_insns_begin;
1379
1380 /* Compute cost of executing INSN.
1381 This is the number of cycles between instruction issue and
1382 instruction results. */
1383 int
1384 insn_cost (rtx_insn *insn)
1385 {
1386 int cost;
1387
1388 if (sel_sched_p ())
1389 {
1390 if (recog_memoized (insn) < 0)
1391 return 0;
1392
1393 cost = insn_default_latency (insn);
1394 if (cost < 0)
1395 cost = 0;
1396
1397 return cost;
1398 }
1399
1400 cost = INSN_COST (insn);
1401
1402 if (cost < 0)
1403 {
1404 /* A USE insn, or something else we don't need to
1405 understand. We can't pass these directly to
1406 result_ready_cost or insn_default_latency because it will
1407 trigger a fatal error for unrecognizable insns. */
1408 if (recog_memoized (insn) < 0)
1409 {
1410 INSN_COST (insn) = 0;
1411 return 0;
1412 }
1413 else
1414 {
1415 cost = insn_default_latency (insn);
1416 if (cost < 0)
1417 cost = 0;
1418
1419 INSN_COST (insn) = cost;
1420 }
1421 }
1422
1423 return cost;
1424 }
1425
1426 /* Compute cost of dependence LINK.
1427 This is the number of cycles between instruction issue and
1428 instruction results.
1429 ??? We also use this function to call recog_memoized on all insns. */
1430 int
1431 dep_cost_1 (dep_t link, dw_t dw)
1432 {
1433 rtx_insn *insn = DEP_PRO (link);
1434 rtx_insn *used = DEP_CON (link);
1435 int cost;
1436
1437 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1438 return DEP_COST (link);
1439
1440 if (delay_htab)
1441 {
1442 struct delay_pair *delay_entry;
1443 delay_entry
1444 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1445 if (delay_entry)
1446 {
1447 if (delay_entry->i1 == insn)
1448 {
1449 DEP_COST (link) = pair_delay (delay_entry);
1450 return DEP_COST (link);
1451 }
1452 }
1453 }
1454
1455 /* A USE insn should never require the value used to be computed.
1456 This allows the computation of a function's result and parameter
1457 values to overlap the return and call. We don't care about the
1458 dependence cost when only decreasing register pressure. */
1459 if (recog_memoized (used) < 0)
1460 {
1461 cost = 0;
1462 recog_memoized (insn);
1463 }
1464 else
1465 {
1466 enum reg_note dep_type = DEP_TYPE (link);
1467
1468 cost = insn_cost (insn);
1469
1470 if (INSN_CODE (insn) >= 0)
1471 {
1472 if (dep_type == REG_DEP_ANTI)
1473 cost = 0;
1474 else if (dep_type == REG_DEP_OUTPUT)
1475 {
1476 cost = (insn_default_latency (insn)
1477 - insn_default_latency (used));
1478 if (cost <= 0)
1479 cost = 1;
1480 }
1481 else if (bypass_p (insn))
1482 cost = insn_latency (insn, used);
1483 }
1484
1485
1486 if (targetm.sched.adjust_cost_2)
1487 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1488 dw);
1489 else if (targetm.sched.adjust_cost != NULL)
1490 {
1491 /* This variable is used for backward compatibility with the
1492 targets. */
1493 rtx_insn_list *dep_cost_rtx_link =
1494 alloc_INSN_LIST (NULL_RTX, NULL);
1495
1496 /* Make it self-cycled, so that if some tries to walk over this
1497 incomplete list he/she will be caught in an endless loop. */
1498 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1499
1500 /* Targets use only REG_NOTE_KIND of the link. */
1501 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1502
1503 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1504 insn, cost);
1505
1506 free_INSN_LIST_node (dep_cost_rtx_link);
1507 }
1508
1509 if (cost < 0)
1510 cost = 0;
1511 }
1512
1513 DEP_COST (link) = cost;
1514 return cost;
1515 }
1516
1517 /* Compute cost of dependence LINK.
1518 This is the number of cycles between instruction issue and
1519 instruction results. */
1520 int
1521 dep_cost (dep_t link)
1522 {
1523 return dep_cost_1 (link, 0);
1524 }
1525
1526 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1527 INSN_PRIORITY explicitly. */
1528 void
1529 increase_insn_priority (rtx_insn *insn, int amount)
1530 {
1531 if (!sel_sched_p ())
1532 {
1533 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1534 if (INSN_PRIORITY_KNOWN (insn))
1535 INSN_PRIORITY (insn) += amount;
1536 }
1537 else
1538 {
1539 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1540 Use EXPR_PRIORITY instead. */
1541 sel_add_to_insn_priority (insn, amount);
1542 }
1543 }
1544
1545 /* Return 'true' if DEP should be included in priority calculations. */
1546 static bool
1547 contributes_to_priority_p (dep_t dep)
1548 {
1549 if (DEBUG_INSN_P (DEP_CON (dep))
1550 || DEBUG_INSN_P (DEP_PRO (dep)))
1551 return false;
1552
1553 /* Critical path is meaningful in block boundaries only. */
1554 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1555 DEP_PRO (dep)))
1556 return false;
1557
1558 if (DEP_REPLACE (dep) != NULL)
1559 return false;
1560
1561 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1562 then speculative instructions will less likely be
1563 scheduled. That is because the priority of
1564 their producers will increase, and, thus, the
1565 producers will more likely be scheduled, thus,
1566 resolving the dependence. */
1567 if (sched_deps_info->generate_spec_deps
1568 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1569 && (DEP_STATUS (dep) & SPECULATIVE))
1570 return false;
1571
1572 return true;
1573 }
1574
1575 /* Compute the number of nondebug deps in list LIST for INSN. */
1576
1577 static int
1578 dep_list_size (rtx insn, sd_list_types_def list)
1579 {
1580 sd_iterator_def sd_it;
1581 dep_t dep;
1582 int dbgcount = 0, nodbgcount = 0;
1583
1584 if (!MAY_HAVE_DEBUG_INSNS)
1585 return sd_lists_size (insn, list);
1586
1587 FOR_EACH_DEP (insn, list, sd_it, dep)
1588 {
1589 if (DEBUG_INSN_P (DEP_CON (dep)))
1590 dbgcount++;
1591 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1592 nodbgcount++;
1593 }
1594
1595 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1596
1597 return nodbgcount;
1598 }
1599
1600 /* Compute the priority number for INSN. */
1601 static int
1602 priority (rtx_insn *insn)
1603 {
1604 if (! INSN_P (insn))
1605 return 0;
1606
1607 /* We should not be interested in priority of an already scheduled insn. */
1608 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1609
1610 if (!INSN_PRIORITY_KNOWN (insn))
1611 {
1612 int this_priority = -1;
1613
1614 if (dep_list_size (insn, SD_LIST_FORW) == 0)
1615 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1616 some forward deps but all of them are ignored by
1617 contributes_to_priority hook. At the moment we set priority of
1618 such insn to 0. */
1619 this_priority = insn_cost (insn);
1620 else
1621 {
1622 rtx_insn *prev_first, *twin;
1623 basic_block rec;
1624
1625 /* For recovery check instructions we calculate priority slightly
1626 different than that of normal instructions. Instead of walking
1627 through INSN_FORW_DEPS (check) list, we walk through
1628 INSN_FORW_DEPS list of each instruction in the corresponding
1629 recovery block. */
1630
1631 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1632 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1633 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1634 {
1635 prev_first = PREV_INSN (insn);
1636 twin = insn;
1637 }
1638 else
1639 {
1640 prev_first = NEXT_INSN (BB_HEAD (rec));
1641 twin = PREV_INSN (BB_END (rec));
1642 }
1643
1644 do
1645 {
1646 sd_iterator_def sd_it;
1647 dep_t dep;
1648
1649 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1650 {
1651 rtx_insn *next;
1652 int next_priority;
1653
1654 next = DEP_CON (dep);
1655
1656 if (BLOCK_FOR_INSN (next) != rec)
1657 {
1658 int cost;
1659
1660 if (!contributes_to_priority_p (dep))
1661 continue;
1662
1663 if (twin == insn)
1664 cost = dep_cost (dep);
1665 else
1666 {
1667 struct _dep _dep1, *dep1 = &_dep1;
1668
1669 init_dep (dep1, insn, next, REG_DEP_ANTI);
1670
1671 cost = dep_cost (dep1);
1672 }
1673
1674 next_priority = cost + priority (next);
1675
1676 if (next_priority > this_priority)
1677 this_priority = next_priority;
1678 }
1679 }
1680
1681 twin = PREV_INSN (twin);
1682 }
1683 while (twin != prev_first);
1684 }
1685
1686 if (this_priority < 0)
1687 {
1688 gcc_assert (this_priority == -1);
1689
1690 this_priority = insn_cost (insn);
1691 }
1692
1693 INSN_PRIORITY (insn) = this_priority;
1694 INSN_PRIORITY_STATUS (insn) = 1;
1695 }
1696
1697 return INSN_PRIORITY (insn);
1698 }
1699 \f
1700 /* Macros and functions for keeping the priority queue sorted, and
1701 dealing with queuing and dequeuing of instructions. */
1702
1703 /* For each pressure class CL, set DEATH[CL] to the number of registers
1704 in that class that die in INSN. */
1705
1706 static void
1707 calculate_reg_deaths (rtx_insn *insn, int *death)
1708 {
1709 int i;
1710 struct reg_use_data *use;
1711
1712 for (i = 0; i < ira_pressure_classes_num; i++)
1713 death[ira_pressure_classes[i]] = 0;
1714 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1715 if (dying_use_p (use))
1716 mark_regno_birth_or_death (0, death, use->regno, true);
1717 }
1718
1719 /* Setup info about the current register pressure impact of scheduling
1720 INSN at the current scheduling point. */
1721 static void
1722 setup_insn_reg_pressure_info (rtx_insn *insn)
1723 {
1724 int i, change, before, after, hard_regno;
1725 int excess_cost_change;
1726 enum machine_mode mode;
1727 enum reg_class cl;
1728 struct reg_pressure_data *pressure_info;
1729 int *max_reg_pressure;
1730 static int death[N_REG_CLASSES];
1731
1732 gcc_checking_assert (!DEBUG_INSN_P (insn));
1733
1734 excess_cost_change = 0;
1735 calculate_reg_deaths (insn, death);
1736 pressure_info = INSN_REG_PRESSURE (insn);
1737 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1738 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1739 for (i = 0; i < ira_pressure_classes_num; i++)
1740 {
1741 cl = ira_pressure_classes[i];
1742 gcc_assert (curr_reg_pressure[cl] >= 0);
1743 change = (int) pressure_info[i].set_increase - death[cl];
1744 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1745 after = MAX (0, max_reg_pressure[i] + change
1746 - sched_class_regs_num[cl]);
1747 hard_regno = ira_class_hard_regs[cl][0];
1748 gcc_assert (hard_regno >= 0);
1749 mode = reg_raw_mode[hard_regno];
1750 excess_cost_change += ((after - before)
1751 * (ira_memory_move_cost[mode][cl][0]
1752 + ira_memory_move_cost[mode][cl][1]));
1753 }
1754 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1755 }
1756 \f
1757 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1758 It tries to make the scheduler take register pressure into account
1759 without introducing too many unnecessary stalls. It hooks into the
1760 main scheduling algorithm at several points:
1761
1762 - Before scheduling starts, model_start_schedule constructs a
1763 "model schedule" for the current block. This model schedule is
1764 chosen solely to keep register pressure down. It does not take the
1765 target's pipeline or the original instruction order into account,
1766 except as a tie-breaker. It also doesn't work to a particular
1767 pressure limit.
1768
1769 This model schedule gives us an idea of what pressure can be
1770 achieved for the block and gives us an example of a schedule that
1771 keeps to that pressure. It also makes the final schedule less
1772 dependent on the original instruction order. This is important
1773 because the original order can either be "wide" (many values live
1774 at once, such as in user-scheduled code) or "narrow" (few values
1775 live at once, such as after loop unrolling, where several
1776 iterations are executed sequentially).
1777
1778 We do not apply this model schedule to the rtx stream. We simply
1779 record it in model_schedule. We also compute the maximum pressure,
1780 MP, that was seen during this schedule.
1781
1782 - Instructions are added to the ready queue even if they require
1783 a stall. The length of the stall is instead computed as:
1784
1785 MAX (INSN_TICK (INSN) - clock_var, 0)
1786
1787 (= insn_delay). This allows rank_for_schedule to choose between
1788 introducing a deliberate stall or increasing pressure.
1789
1790 - Before sorting the ready queue, model_set_excess_costs assigns
1791 a pressure-based cost to each ready instruction in the queue.
1792 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1793 (ECC for short) and is effectively measured in cycles.
1794
1795 - rank_for_schedule ranks instructions based on:
1796
1797 ECC (insn) + insn_delay (insn)
1798
1799 then as:
1800
1801 insn_delay (insn)
1802
1803 So, for example, an instruction X1 with an ECC of 1 that can issue
1804 now will win over an instruction X0 with an ECC of zero that would
1805 introduce a stall of one cycle. However, an instruction X2 with an
1806 ECC of 2 that can issue now will lose to both X0 and X1.
1807
1808 - When an instruction is scheduled, model_recompute updates the model
1809 schedule with the new pressures (some of which might now exceed the
1810 original maximum pressure MP). model_update_limit_points then searches
1811 for the new point of maximum pressure, if not already known. */
1812
1813 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1814 from surrounding debug information. */
1815 #define MODEL_BAR \
1816 ";;\t\t+------------------------------------------------------\n"
1817
1818 /* Information about the pressure on a particular register class at a
1819 particular point of the model schedule. */
1820 struct model_pressure_data {
1821 /* The pressure at this point of the model schedule, or -1 if the
1822 point is associated with an instruction that has already been
1823 scheduled. */
1824 int ref_pressure;
1825
1826 /* The maximum pressure during or after this point of the model schedule. */
1827 int max_pressure;
1828 };
1829
1830 /* Per-instruction information that is used while building the model
1831 schedule. Here, "schedule" refers to the model schedule rather
1832 than the main schedule. */
1833 struct model_insn_info {
1834 /* The instruction itself. */
1835 rtx_insn *insn;
1836
1837 /* If this instruction is in model_worklist, these fields link to the
1838 previous (higher-priority) and next (lower-priority) instructions
1839 in the list. */
1840 struct model_insn_info *prev;
1841 struct model_insn_info *next;
1842
1843 /* While constructing the schedule, QUEUE_INDEX describes whether an
1844 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1845 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1846 old_queue records the value that QUEUE_INDEX had before scheduling
1847 started, so that we can restore it once the schedule is complete. */
1848 int old_queue;
1849
1850 /* The relative importance of an unscheduled instruction. Higher
1851 values indicate greater importance. */
1852 unsigned int model_priority;
1853
1854 /* The length of the longest path of satisfied true dependencies
1855 that leads to this instruction. */
1856 unsigned int depth;
1857
1858 /* The length of the longest path of dependencies of any kind
1859 that leads from this instruction. */
1860 unsigned int alap;
1861
1862 /* The number of predecessor nodes that must still be scheduled. */
1863 int unscheduled_preds;
1864 };
1865
1866 /* Information about the pressure limit for a particular register class.
1867 This structure is used when applying a model schedule to the main
1868 schedule. */
1869 struct model_pressure_limit {
1870 /* The maximum register pressure seen in the original model schedule. */
1871 int orig_pressure;
1872
1873 /* The maximum register pressure seen in the current model schedule
1874 (which excludes instructions that have already been scheduled). */
1875 int pressure;
1876
1877 /* The point of the current model schedule at which PRESSURE is first
1878 reached. It is set to -1 if the value needs to be recomputed. */
1879 int point;
1880 };
1881
1882 /* Describes a particular way of measuring register pressure. */
1883 struct model_pressure_group {
1884 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1885 struct model_pressure_limit limits[N_REG_CLASSES];
1886
1887 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1888 on register class ira_pressure_classes[PCI] at point POINT of the
1889 current model schedule. A POINT of model_num_insns describes the
1890 pressure at the end of the schedule. */
1891 struct model_pressure_data *model;
1892 };
1893
1894 /* Index POINT gives the instruction at point POINT of the model schedule.
1895 This array doesn't change during main scheduling. */
1896 static vec<rtx_insn *> model_schedule;
1897
1898 /* The list of instructions in the model worklist, sorted in order of
1899 decreasing priority. */
1900 static struct model_insn_info *model_worklist;
1901
1902 /* Index I describes the instruction with INSN_LUID I. */
1903 static struct model_insn_info *model_insns;
1904
1905 /* The number of instructions in the model schedule. */
1906 static int model_num_insns;
1907
1908 /* The index of the first instruction in model_schedule that hasn't yet been
1909 added to the main schedule, or model_num_insns if all of them have. */
1910 static int model_curr_point;
1911
1912 /* Describes the pressure before each instruction in the model schedule. */
1913 static struct model_pressure_group model_before_pressure;
1914
1915 /* The first unused model_priority value (as used in model_insn_info). */
1916 static unsigned int model_next_priority;
1917
1918
1919 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1920 at point POINT of the model schedule. */
1921 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1922 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1923
1924 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1925 after point POINT of the model schedule. */
1926 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1927 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1928
1929 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1930 of the model schedule. */
1931 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1932 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1933
1934 /* Information about INSN that is used when creating the model schedule. */
1935 #define MODEL_INSN_INFO(INSN) \
1936 (&model_insns[INSN_LUID (INSN)])
1937
1938 /* The instruction at point POINT of the model schedule. */
1939 #define MODEL_INSN(POINT) \
1940 (model_schedule[POINT])
1941
1942
1943 /* Return INSN's index in the model schedule, or model_num_insns if it
1944 doesn't belong to that schedule. */
1945
1946 static int
1947 model_index (rtx_insn *insn)
1948 {
1949 if (INSN_MODEL_INDEX (insn) == 0)
1950 return model_num_insns;
1951 return INSN_MODEL_INDEX (insn) - 1;
1952 }
1953
1954 /* Make sure that GROUP->limits is up-to-date for the current point
1955 of the model schedule. */
1956
1957 static void
1958 model_update_limit_points_in_group (struct model_pressure_group *group)
1959 {
1960 int pci, max_pressure, point;
1961
1962 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1963 {
1964 /* We may have passed the final point at which the pressure in
1965 group->limits[pci].pressure was reached. Update the limit if so. */
1966 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1967 group->limits[pci].pressure = max_pressure;
1968
1969 /* Find the point at which MAX_PRESSURE is first reached. We need
1970 to search in three cases:
1971
1972 - We've already moved past the previous pressure point.
1973 In this case we search forward from model_curr_point.
1974
1975 - We scheduled the previous point of maximum pressure ahead of
1976 its position in the model schedule, but doing so didn't bring
1977 the pressure point earlier. In this case we search forward
1978 from that previous pressure point.
1979
1980 - Scheduling an instruction early caused the maximum pressure
1981 to decrease. In this case we will have set the pressure
1982 point to -1, and we search forward from model_curr_point. */
1983 point = MAX (group->limits[pci].point, model_curr_point);
1984 while (point < model_num_insns
1985 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1986 point++;
1987 group->limits[pci].point = point;
1988
1989 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1990 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1991 }
1992 }
1993
1994 /* Make sure that all register-pressure limits are up-to-date for the
1995 current position in the model schedule. */
1996
1997 static void
1998 model_update_limit_points (void)
1999 {
2000 model_update_limit_points_in_group (&model_before_pressure);
2001 }
2002
2003 /* Return the model_index of the last unscheduled use in chain USE
2004 outside of USE's instruction. Return -1 if there are no other uses,
2005 or model_num_insns if the register is live at the end of the block. */
2006
2007 static int
2008 model_last_use_except (struct reg_use_data *use)
2009 {
2010 struct reg_use_data *next;
2011 int last, index;
2012
2013 last = -1;
2014 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2015 if (NONDEBUG_INSN_P (next->insn)
2016 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2017 {
2018 index = model_index (next->insn);
2019 if (index == model_num_insns)
2020 return model_num_insns;
2021 if (last < index)
2022 last = index;
2023 }
2024 return last;
2025 }
2026
2027 /* An instruction with model_index POINT has just been scheduled, and it
2028 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2029 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2030 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2031
2032 static void
2033 model_start_update_pressure (struct model_pressure_group *group,
2034 int point, int pci, int delta)
2035 {
2036 int next_max_pressure;
2037
2038 if (point == model_num_insns)
2039 {
2040 /* The instruction wasn't part of the model schedule; it was moved
2041 from a different block. Update the pressure for the end of
2042 the model schedule. */
2043 MODEL_REF_PRESSURE (group, point, pci) += delta;
2044 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2045 }
2046 else
2047 {
2048 /* Record that this instruction has been scheduled. Nothing now
2049 changes between POINT and POINT + 1, so get the maximum pressure
2050 from the latter. If the maximum pressure decreases, the new
2051 pressure point may be before POINT. */
2052 MODEL_REF_PRESSURE (group, point, pci) = -1;
2053 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2054 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2055 {
2056 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2057 if (group->limits[pci].point == point)
2058 group->limits[pci].point = -1;
2059 }
2060 }
2061 }
2062
2063 /* Record that scheduling a later instruction has changed the pressure
2064 at point POINT of the model schedule by DELTA (which might be 0).
2065 Update GROUP accordingly. Return nonzero if these changes might
2066 trigger changes to previous points as well. */
2067
2068 static int
2069 model_update_pressure (struct model_pressure_group *group,
2070 int point, int pci, int delta)
2071 {
2072 int ref_pressure, max_pressure, next_max_pressure;
2073
2074 /* If POINT hasn't yet been scheduled, update its pressure. */
2075 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2076 if (ref_pressure >= 0 && delta != 0)
2077 {
2078 ref_pressure += delta;
2079 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2080
2081 /* Check whether the maximum pressure in the overall schedule
2082 has increased. (This means that the MODEL_MAX_PRESSURE of
2083 every point <= POINT will need to increase too; see below.) */
2084 if (group->limits[pci].pressure < ref_pressure)
2085 group->limits[pci].pressure = ref_pressure;
2086
2087 /* If we are at maximum pressure, and the maximum pressure
2088 point was previously unknown or later than POINT,
2089 bring it forward. */
2090 if (group->limits[pci].pressure == ref_pressure
2091 && !IN_RANGE (group->limits[pci].point, 0, point))
2092 group->limits[pci].point = point;
2093
2094 /* If POINT used to be the point of maximum pressure, but isn't
2095 any longer, we need to recalculate it using a forward walk. */
2096 if (group->limits[pci].pressure > ref_pressure
2097 && group->limits[pci].point == point)
2098 group->limits[pci].point = -1;
2099 }
2100
2101 /* Update the maximum pressure at POINT. Changes here might also
2102 affect the maximum pressure at POINT - 1. */
2103 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2104 max_pressure = MAX (ref_pressure, next_max_pressure);
2105 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2106 {
2107 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2108 return 1;
2109 }
2110 return 0;
2111 }
2112
2113 /* INSN has just been scheduled. Update the model schedule accordingly. */
2114
2115 static void
2116 model_recompute (rtx_insn *insn)
2117 {
2118 struct {
2119 int last_use;
2120 int regno;
2121 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2122 struct reg_use_data *use;
2123 struct reg_pressure_data *reg_pressure;
2124 int delta[N_REG_CLASSES];
2125 int pci, point, mix, new_last, cl, ref_pressure, queue;
2126 unsigned int i, num_uses, num_pending_births;
2127 bool print_p;
2128
2129 /* The destinations of INSN were previously live from POINT onwards, but are
2130 now live from model_curr_point onwards. Set up DELTA accordingly. */
2131 point = model_index (insn);
2132 reg_pressure = INSN_REG_PRESSURE (insn);
2133 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2134 {
2135 cl = ira_pressure_classes[pci];
2136 delta[cl] = reg_pressure[pci].set_increase;
2137 }
2138
2139 /* Record which registers previously died at POINT, but which now die
2140 before POINT. Adjust DELTA so that it represents the effect of
2141 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2142 registers that will be born in the range [model_curr_point, POINT). */
2143 num_uses = 0;
2144 num_pending_births = 0;
2145 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2146 {
2147 new_last = model_last_use_except (use);
2148 if (new_last < point)
2149 {
2150 gcc_assert (num_uses < ARRAY_SIZE (uses));
2151 uses[num_uses].last_use = new_last;
2152 uses[num_uses].regno = use->regno;
2153 /* This register is no longer live after POINT - 1. */
2154 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2155 num_uses++;
2156 if (new_last >= 0)
2157 num_pending_births++;
2158 }
2159 }
2160
2161 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2162 Also set each group pressure limit for POINT. */
2163 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2164 {
2165 cl = ira_pressure_classes[pci];
2166 model_start_update_pressure (&model_before_pressure,
2167 point, pci, delta[cl]);
2168 }
2169
2170 /* Walk the model schedule backwards, starting immediately before POINT. */
2171 print_p = false;
2172 if (point != model_curr_point)
2173 do
2174 {
2175 point--;
2176 insn = MODEL_INSN (point);
2177 queue = QUEUE_INDEX (insn);
2178
2179 if (queue != QUEUE_SCHEDULED)
2180 {
2181 /* DELTA describes the effect of the move on the register pressure
2182 after POINT. Make it describe the effect on the pressure
2183 before POINT. */
2184 i = 0;
2185 while (i < num_uses)
2186 {
2187 if (uses[i].last_use == point)
2188 {
2189 /* This register is now live again. */
2190 mark_regno_birth_or_death (NULL, delta,
2191 uses[i].regno, true);
2192
2193 /* Remove this use from the array. */
2194 uses[i] = uses[num_uses - 1];
2195 num_uses--;
2196 num_pending_births--;
2197 }
2198 else
2199 i++;
2200 }
2201
2202 if (sched_verbose >= 5)
2203 {
2204 if (!print_p)
2205 {
2206 fprintf (sched_dump, MODEL_BAR);
2207 fprintf (sched_dump, ";;\t\t| New pressure for model"
2208 " schedule\n");
2209 fprintf (sched_dump, MODEL_BAR);
2210 print_p = true;
2211 }
2212
2213 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2214 point, INSN_UID (insn),
2215 str_pattern_slim (PATTERN (insn)));
2216 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2217 {
2218 cl = ira_pressure_classes[pci];
2219 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2220 point, pci);
2221 fprintf (sched_dump, " %s:[%d->%d]",
2222 reg_class_names[ira_pressure_classes[pci]],
2223 ref_pressure, ref_pressure + delta[cl]);
2224 }
2225 fprintf (sched_dump, "\n");
2226 }
2227 }
2228
2229 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2230 might have changed as well. */
2231 mix = num_pending_births;
2232 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2233 {
2234 cl = ira_pressure_classes[pci];
2235 mix |= delta[cl];
2236 mix |= model_update_pressure (&model_before_pressure,
2237 point, pci, delta[cl]);
2238 }
2239 }
2240 while (mix && point > model_curr_point);
2241
2242 if (print_p)
2243 fprintf (sched_dump, MODEL_BAR);
2244 }
2245
2246 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2247 check whether the insn's pattern needs restoring. */
2248 static bool
2249 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2250 {
2251 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2252 return false;
2253
2254 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2255 {
2256 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2257 gcc_assert (next == DEP_CON (dep));
2258 }
2259 else
2260 {
2261 struct dep_replacement *desc = DEP_REPLACE (dep);
2262 if (desc->insn != next)
2263 {
2264 gcc_assert (*desc->loc == desc->orig);
2265 return false;
2266 }
2267 }
2268 return true;
2269 }
2270 \f
2271 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2272 pressure on CL from P to P'. We use this to calculate a "base ECC",
2273 baseECC (CL, X), for each pressure class CL and each instruction X.
2274 Supposing X changes the pressure on CL from P to P', and that the
2275 maximum pressure on CL in the current model schedule is MP', then:
2276
2277 * if X occurs before or at the next point of maximum pressure in
2278 the model schedule and P' > MP', then:
2279
2280 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2281
2282 The idea is that the pressure after scheduling a fixed set of
2283 instructions -- in this case, the set up to and including the
2284 next maximum pressure point -- is going to be the same regardless
2285 of the order; we simply want to keep the intermediate pressure
2286 under control. Thus X has a cost of zero unless scheduling it
2287 now would exceed MP'.
2288
2289 If all increases in the set are by the same amount, no zero-cost
2290 instruction will ever cause the pressure to exceed MP'. However,
2291 if X is instead moved past an instruction X' with pressure in the
2292 range (MP' - (P' - P), MP'), the pressure at X' will increase
2293 beyond MP'. Since baseECC is very much a heuristic anyway,
2294 it doesn't seem worth the overhead of tracking cases like these.
2295
2296 The cost of exceeding MP' is always based on the original maximum
2297 pressure MP. This is so that going 2 registers over the original
2298 limit has the same cost regardless of whether it comes from two
2299 separate +1 deltas or from a single +2 delta.
2300
2301 * if X occurs after the next point of maximum pressure in the model
2302 schedule and P' > P, then:
2303
2304 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2305
2306 That is, if we move X forward across a point of maximum pressure,
2307 and if X increases the pressure by P' - P, then we conservatively
2308 assume that scheduling X next would increase the maximum pressure
2309 by P' - P. Again, the cost of doing this is based on the original
2310 maximum pressure MP, for the same reason as above.
2311
2312 * if P' < P, P > MP, and X occurs at or after the next point of
2313 maximum pressure, then:
2314
2315 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2316
2317 That is, if we have already exceeded the original maximum pressure MP,
2318 and if X might reduce the maximum pressure again -- or at least push
2319 it further back, and thus allow more scheduling freedom -- it is given
2320 a negative cost to reflect the improvement.
2321
2322 * otherwise,
2323
2324 baseECC (CL, X) = 0
2325
2326 In this case, X is not expected to affect the maximum pressure MP',
2327 so it has zero cost.
2328
2329 We then create a combined value baseECC (X) that is the sum of
2330 baseECC (CL, X) for each pressure class CL.
2331
2332 baseECC (X) could itself be used as the ECC value described above.
2333 However, this is often too conservative, in the sense that it
2334 tends to make high-priority instructions that increase pressure
2335 wait too long in cases where introducing a spill would be better.
2336 For this reason the final ECC is a priority-adjusted form of
2337 baseECC (X). Specifically, we calculate:
2338
2339 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2340 baseP = MAX { P (X) | baseECC (X) <= 0 }
2341
2342 Then:
2343
2344 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2345
2346 Thus an instruction's effect on pressure is ignored if it has a high
2347 enough priority relative to the ones that don't increase pressure.
2348 Negative values of baseECC (X) do not increase the priority of X
2349 itself, but they do make it harder for other instructions to
2350 increase the pressure further.
2351
2352 This pressure cost is deliberately timid. The intention has been
2353 to choose a heuristic that rarely interferes with the normal list
2354 scheduler in cases where that scheduler would produce good code.
2355 We simply want to curb some of its worst excesses. */
2356
2357 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2358
2359 Here we use the very simplistic cost model that every register above
2360 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2361 measures instead, such as one based on MEMORY_MOVE_COST. However:
2362
2363 (1) In order for an instruction to be scheduled, the higher cost
2364 would need to be justified in a single saving of that many stalls.
2365 This is overly pessimistic, because the benefit of spilling is
2366 often to avoid a sequence of several short stalls rather than
2367 a single long one.
2368
2369 (2) The cost is still arbitrary. Because we are not allocating
2370 registers during scheduling, we have no way of knowing for
2371 sure how many memory accesses will be required by each spill,
2372 where the spills will be placed within the block, or even
2373 which block(s) will contain the spills.
2374
2375 So a higher cost than 1 is often too conservative in practice,
2376 forcing blocks to contain unnecessary stalls instead of spill code.
2377 The simple cost below seems to be the best compromise. It reduces
2378 the interference with the normal list scheduler, which helps make
2379 it more suitable for a default-on option. */
2380
2381 static int
2382 model_spill_cost (int cl, int from, int to)
2383 {
2384 from = MAX (from, sched_class_regs_num[cl]);
2385 return MAX (to, from) - from;
2386 }
2387
2388 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2389 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2390 P' = P + DELTA. */
2391
2392 static int
2393 model_excess_group_cost (struct model_pressure_group *group,
2394 int point, int pci, int delta)
2395 {
2396 int pressure, cl;
2397
2398 cl = ira_pressure_classes[pci];
2399 if (delta < 0 && point >= group->limits[pci].point)
2400 {
2401 pressure = MAX (group->limits[pci].orig_pressure,
2402 curr_reg_pressure[cl] + delta);
2403 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2404 }
2405
2406 if (delta > 0)
2407 {
2408 if (point > group->limits[pci].point)
2409 pressure = group->limits[pci].pressure + delta;
2410 else
2411 pressure = curr_reg_pressure[cl] + delta;
2412
2413 if (pressure > group->limits[pci].pressure)
2414 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2415 pressure);
2416 }
2417
2418 return 0;
2419 }
2420
2421 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2422 if PRINT_P. */
2423
2424 static int
2425 model_excess_cost (rtx_insn *insn, bool print_p)
2426 {
2427 int point, pci, cl, cost, this_cost, delta;
2428 struct reg_pressure_data *insn_reg_pressure;
2429 int insn_death[N_REG_CLASSES];
2430
2431 calculate_reg_deaths (insn, insn_death);
2432 point = model_index (insn);
2433 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2434 cost = 0;
2435
2436 if (print_p)
2437 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2438 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2439
2440 /* Sum up the individual costs for each register class. */
2441 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2442 {
2443 cl = ira_pressure_classes[pci];
2444 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2445 this_cost = model_excess_group_cost (&model_before_pressure,
2446 point, pci, delta);
2447 cost += this_cost;
2448 if (print_p)
2449 fprintf (sched_dump, " %s:[%d base cost %d]",
2450 reg_class_names[cl], delta, this_cost);
2451 }
2452
2453 if (print_p)
2454 fprintf (sched_dump, "\n");
2455
2456 return cost;
2457 }
2458
2459 /* Dump the next points of maximum pressure for GROUP. */
2460
2461 static void
2462 model_dump_pressure_points (struct model_pressure_group *group)
2463 {
2464 int pci, cl;
2465
2466 fprintf (sched_dump, ";;\t\t| pressure points");
2467 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2468 {
2469 cl = ira_pressure_classes[pci];
2470 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2471 curr_reg_pressure[cl], group->limits[pci].pressure);
2472 if (group->limits[pci].point < model_num_insns)
2473 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2474 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2475 else
2476 fprintf (sched_dump, "end]");
2477 }
2478 fprintf (sched_dump, "\n");
2479 }
2480
2481 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2482
2483 static void
2484 model_set_excess_costs (rtx_insn **insns, int count)
2485 {
2486 int i, cost, priority_base, priority;
2487 bool print_p;
2488
2489 /* Record the baseECC value for each instruction in the model schedule,
2490 except that negative costs are converted to zero ones now rather than
2491 later. Do not assign a cost to debug instructions, since they must
2492 not change code-generation decisions. Experiments suggest we also
2493 get better results by not assigning a cost to instructions from
2494 a different block.
2495
2496 Set PRIORITY_BASE to baseP in the block comment above. This is the
2497 maximum priority of the "cheap" instructions, which should always
2498 include the next model instruction. */
2499 priority_base = 0;
2500 print_p = false;
2501 for (i = 0; i < count; i++)
2502 if (INSN_MODEL_INDEX (insns[i]))
2503 {
2504 if (sched_verbose >= 6 && !print_p)
2505 {
2506 fprintf (sched_dump, MODEL_BAR);
2507 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2508 model_dump_pressure_points (&model_before_pressure);
2509 fprintf (sched_dump, MODEL_BAR);
2510 print_p = true;
2511 }
2512 cost = model_excess_cost (insns[i], print_p);
2513 if (cost <= 0)
2514 {
2515 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2516 priority_base = MAX (priority_base, priority);
2517 cost = 0;
2518 }
2519 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2520 }
2521 if (print_p)
2522 fprintf (sched_dump, MODEL_BAR);
2523
2524 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2525 instruction. */
2526 for (i = 0; i < count; i++)
2527 {
2528 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2529 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2530 if (cost > 0 && priority > priority_base)
2531 {
2532 cost += priority_base - priority;
2533 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2534 }
2535 }
2536 }
2537 \f
2538
2539 /* Enum of rank_for_schedule heuristic decisions. */
2540 enum rfs_decision {
2541 RFS_DEBUG, RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2542 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2543 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2544 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2545 RFS_DEP_COUNT, RFS_TIE, RFS_N };
2546
2547 /* Corresponding strings for print outs. */
2548 static const char *rfs_str[RFS_N] = {
2549 "RFS_DEBUG", "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2550 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2551 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2552 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2553 "RFS_DEP_COUNT", "RFS_TIE" };
2554
2555 /* Statistical breakdown of rank_for_schedule decisions. */
2556 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2557 static rank_for_schedule_stats_t rank_for_schedule_stats;
2558
2559 /* Return the result of comparing insns TMP and TMP2 and update
2560 Rank_For_Schedule statistics. */
2561 static int
2562 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2563 {
2564 ++rank_for_schedule_stats.stats[decision];
2565 if (result < 0)
2566 INSN_LAST_RFS_WIN (tmp) = decision;
2567 else if (result > 0)
2568 INSN_LAST_RFS_WIN (tmp2) = decision;
2569 else
2570 gcc_unreachable ();
2571 return result;
2572 }
2573
2574 /* Returns a positive value if x is preferred; returns a negative value if
2575 y is preferred. Should never return 0, since that will make the sort
2576 unstable. */
2577
2578 static int
2579 rank_for_schedule (const void *x, const void *y)
2580 {
2581 rtx_insn *tmp = *(rtx_insn * const *) y;
2582 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2583 int tmp_class, tmp2_class;
2584 int val, priority_val, info_val, diff;
2585
2586 if (MAY_HAVE_DEBUG_INSNS)
2587 {
2588 /* Schedule debug insns as early as possible. */
2589 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2590 return rfs_result (RFS_DEBUG, -1, tmp, tmp2);
2591 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2592 return rfs_result (RFS_DEBUG, 1, tmp, tmp2);
2593 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2594 return rfs_result (RFS_DEBUG, INSN_LUID (tmp) - INSN_LUID (tmp2),
2595 tmp, tmp2);
2596 }
2597
2598 if (live_range_shrinkage_p)
2599 {
2600 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2601 code. */
2602 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2603 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2604 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2605 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2606 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2607 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2608 /* Sort by INSN_LUID (original insn order), so that we make the
2609 sort stable. This minimizes instruction movement, thus
2610 minimizing sched's effect on debugging and cross-jumping. */
2611 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2612 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2613 }
2614
2615 /* The insn in a schedule group should be issued the first. */
2616 if (flag_sched_group_heuristic &&
2617 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2618 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2619 tmp, tmp2);
2620
2621 /* Make sure that priority of TMP and TMP2 are initialized. */
2622 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2623
2624 if (sched_pressure != SCHED_PRESSURE_NONE)
2625 {
2626 /* Prefer insn whose scheduling results in the smallest register
2627 pressure excess. */
2628 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2629 + insn_delay (tmp)
2630 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2631 - insn_delay (tmp2))))
2632 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2633 }
2634
2635 if (sched_pressure != SCHED_PRESSURE_NONE
2636 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2637 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2638 {
2639 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2640 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2641 }
2642
2643 /* If we are doing backtracking in this schedule, prefer insns that
2644 have forward dependencies with negative cost against an insn that
2645 was already scheduled. */
2646 if (current_sched_info->flags & DO_BACKTRACKING)
2647 {
2648 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2649 if (priority_val)
2650 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2651 }
2652
2653 /* Prefer insn with higher priority. */
2654 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2655
2656 if (flag_sched_critical_path_heuristic && priority_val)
2657 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2658
2659 /* Prefer speculative insn with greater dependencies weakness. */
2660 if (flag_sched_spec_insn_heuristic && spec_info)
2661 {
2662 ds_t ds1, ds2;
2663 dw_t dw1, dw2;
2664 int dw;
2665
2666 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2667 if (ds1)
2668 dw1 = ds_weak (ds1);
2669 else
2670 dw1 = NO_DEP_WEAK;
2671
2672 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2673 if (ds2)
2674 dw2 = ds_weak (ds2);
2675 else
2676 dw2 = NO_DEP_WEAK;
2677
2678 dw = dw2 - dw1;
2679 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2680 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2681 }
2682
2683 info_val = (*current_sched_info->rank) (tmp, tmp2);
2684 if (flag_sched_rank_heuristic && info_val)
2685 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2686
2687 /* Compare insns based on their relation to the last scheduled
2688 non-debug insn. */
2689 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2690 {
2691 dep_t dep1;
2692 dep_t dep2;
2693 rtx last = last_nondebug_scheduled_insn;
2694
2695 /* Classify the instructions into three classes:
2696 1) Data dependent on last schedule insn.
2697 2) Anti/Output dependent on last scheduled insn.
2698 3) Independent of last scheduled insn, or has latency of one.
2699 Choose the insn from the highest numbered class if different. */
2700 dep1 = sd_find_dep_between (last, tmp, true);
2701
2702 if (dep1 == NULL || dep_cost (dep1) == 1)
2703 tmp_class = 3;
2704 else if (/* Data dependence. */
2705 DEP_TYPE (dep1) == REG_DEP_TRUE)
2706 tmp_class = 1;
2707 else
2708 tmp_class = 2;
2709
2710 dep2 = sd_find_dep_between (last, tmp2, true);
2711
2712 if (dep2 == NULL || dep_cost (dep2) == 1)
2713 tmp2_class = 3;
2714 else if (/* Data dependence. */
2715 DEP_TYPE (dep2) == REG_DEP_TRUE)
2716 tmp2_class = 1;
2717 else
2718 tmp2_class = 2;
2719
2720 if ((val = tmp2_class - tmp_class))
2721 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2722 }
2723
2724 /* Prefer instructions that occur earlier in the model schedule. */
2725 if (sched_pressure == SCHED_PRESSURE_MODEL
2726 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2727 {
2728 diff = model_index (tmp) - model_index (tmp2);
2729 gcc_assert (diff != 0);
2730 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2731 }
2732
2733 /* Prefer the insn which has more later insns that depend on it.
2734 This gives the scheduler more freedom when scheduling later
2735 instructions at the expense of added register pressure. */
2736
2737 val = (dep_list_size (tmp2, SD_LIST_FORW)
2738 - dep_list_size (tmp, SD_LIST_FORW));
2739
2740 if (flag_sched_dep_count_heuristic && val != 0)
2741 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2742
2743 /* If insns are equally good, sort by INSN_LUID (original insn order),
2744 so that we make the sort stable. This minimizes instruction movement,
2745 thus minimizing sched's effect on debugging and cross-jumping. */
2746 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2747 }
2748
2749 /* Resort the array A in which only element at index N may be out of order. */
2750
2751 HAIFA_INLINE static void
2752 swap_sort (rtx_insn **a, int n)
2753 {
2754 rtx_insn *insn = a[n - 1];
2755 int i = n - 2;
2756
2757 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2758 {
2759 a[i + 1] = a[i];
2760 i -= 1;
2761 }
2762 a[i + 1] = insn;
2763 }
2764
2765 /* Add INSN to the insn queue so that it can be executed at least
2766 N_CYCLES after the currently executing insn. Preserve insns
2767 chain for debugging purposes. REASON will be printed in debugging
2768 output. */
2769
2770 HAIFA_INLINE static void
2771 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2772 {
2773 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2774 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2775 int new_tick;
2776
2777 gcc_assert (n_cycles <= max_insn_queue_index);
2778 gcc_assert (!DEBUG_INSN_P (insn));
2779
2780 insn_queue[next_q] = link;
2781 q_size += 1;
2782
2783 if (sched_verbose >= 2)
2784 {
2785 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2786 (*current_sched_info->print_insn) (insn, 0));
2787
2788 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2789 }
2790
2791 QUEUE_INDEX (insn) = next_q;
2792
2793 if (current_sched_info->flags & DO_BACKTRACKING)
2794 {
2795 new_tick = clock_var + n_cycles;
2796 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2797 INSN_TICK (insn) = new_tick;
2798
2799 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2800 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2801 {
2802 must_backtrack = true;
2803 if (sched_verbose >= 2)
2804 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2805 }
2806 }
2807 }
2808
2809 /* Remove INSN from queue. */
2810 static void
2811 queue_remove (rtx_insn *insn)
2812 {
2813 gcc_assert (QUEUE_INDEX (insn) >= 0);
2814 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2815 q_size--;
2816 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2817 }
2818
2819 /* Return a pointer to the bottom of the ready list, i.e. the insn
2820 with the lowest priority. */
2821
2822 rtx_insn **
2823 ready_lastpos (struct ready_list *ready)
2824 {
2825 gcc_assert (ready->n_ready >= 1);
2826 return ready->vec + ready->first - ready->n_ready + 1;
2827 }
2828
2829 /* Add an element INSN to the ready list so that it ends up with the
2830 lowest/highest priority depending on FIRST_P. */
2831
2832 HAIFA_INLINE static void
2833 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2834 {
2835 if (!first_p)
2836 {
2837 if (ready->first == ready->n_ready)
2838 {
2839 memmove (ready->vec + ready->veclen - ready->n_ready,
2840 ready_lastpos (ready),
2841 ready->n_ready * sizeof (rtx));
2842 ready->first = ready->veclen - 1;
2843 }
2844 ready->vec[ready->first - ready->n_ready] = insn;
2845 }
2846 else
2847 {
2848 if (ready->first == ready->veclen - 1)
2849 {
2850 if (ready->n_ready)
2851 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2852 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2853 ready_lastpos (ready),
2854 ready->n_ready * sizeof (rtx));
2855 ready->first = ready->veclen - 2;
2856 }
2857 ready->vec[++(ready->first)] = insn;
2858 }
2859
2860 ready->n_ready++;
2861 if (DEBUG_INSN_P (insn))
2862 ready->n_debug++;
2863
2864 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2865 QUEUE_INDEX (insn) = QUEUE_READY;
2866
2867 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2868 && INSN_EXACT_TICK (insn) < clock_var)
2869 {
2870 must_backtrack = true;
2871 }
2872 }
2873
2874 /* Remove the element with the highest priority from the ready list and
2875 return it. */
2876
2877 HAIFA_INLINE static rtx_insn *
2878 ready_remove_first (struct ready_list *ready)
2879 {
2880 rtx_insn *t;
2881
2882 gcc_assert (ready->n_ready);
2883 t = ready->vec[ready->first--];
2884 ready->n_ready--;
2885 if (DEBUG_INSN_P (t))
2886 ready->n_debug--;
2887 /* If the queue becomes empty, reset it. */
2888 if (ready->n_ready == 0)
2889 ready->first = ready->veclen - 1;
2890
2891 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2892 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2893
2894 return t;
2895 }
2896
2897 /* The following code implements multi-pass scheduling for the first
2898 cycle. In other words, we will try to choose ready insn which
2899 permits to start maximum number of insns on the same cycle. */
2900
2901 /* Return a pointer to the element INDEX from the ready. INDEX for
2902 insn with the highest priority is 0, and the lowest priority has
2903 N_READY - 1. */
2904
2905 rtx_insn *
2906 ready_element (struct ready_list *ready, int index)
2907 {
2908 gcc_assert (ready->n_ready && index < ready->n_ready);
2909
2910 return ready->vec[ready->first - index];
2911 }
2912
2913 /* Remove the element INDEX from the ready list and return it. INDEX
2914 for insn with the highest priority is 0, and the lowest priority
2915 has N_READY - 1. */
2916
2917 HAIFA_INLINE static rtx_insn *
2918 ready_remove (struct ready_list *ready, int index)
2919 {
2920 rtx_insn *t;
2921 int i;
2922
2923 if (index == 0)
2924 return ready_remove_first (ready);
2925 gcc_assert (ready->n_ready && index < ready->n_ready);
2926 t = ready->vec[ready->first - index];
2927 ready->n_ready--;
2928 if (DEBUG_INSN_P (t))
2929 ready->n_debug--;
2930 for (i = index; i < ready->n_ready; i++)
2931 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2932 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2933 return t;
2934 }
2935
2936 /* Remove INSN from the ready list. */
2937 static void
2938 ready_remove_insn (rtx insn)
2939 {
2940 int i;
2941
2942 for (i = 0; i < readyp->n_ready; i++)
2943 if (ready_element (readyp, i) == insn)
2944 {
2945 ready_remove (readyp, i);
2946 return;
2947 }
2948 gcc_unreachable ();
2949 }
2950
2951 /* Calculate difference of two statistics set WAS and NOW.
2952 Result returned in WAS. */
2953 static void
2954 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
2955 const rank_for_schedule_stats_t *now)
2956 {
2957 for (int i = 0; i < RFS_N; ++i)
2958 was->stats[i] = now->stats[i] - was->stats[i];
2959 }
2960
2961 /* Print rank_for_schedule statistics. */
2962 static void
2963 print_rank_for_schedule_stats (const char *prefix,
2964 const rank_for_schedule_stats_t *stats,
2965 struct ready_list *ready)
2966 {
2967 for (int i = 0; i < RFS_N; ++i)
2968 if (stats->stats[i])
2969 {
2970 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
2971
2972 if (ready != NULL)
2973 /* Print out insns that won due to RFS_<I>. */
2974 {
2975 rtx_insn **p = ready_lastpos (ready);
2976
2977 fprintf (sched_dump, ":");
2978 /* Start with 1 since least-priority insn didn't have any wins. */
2979 for (int j = 1; j < ready->n_ready; ++j)
2980 if (INSN_LAST_RFS_WIN (p[j]) == i)
2981 fprintf (sched_dump, " %s",
2982 (*current_sched_info->print_insn) (p[j], 0));
2983 }
2984 fprintf (sched_dump, "\n");
2985 }
2986 }
2987
2988 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
2989 macro. */
2990
2991 void
2992 ready_sort (struct ready_list *ready)
2993 {
2994 int i;
2995 rtx_insn **first = ready_lastpos (ready);
2996
2997 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2998 {
2999 for (i = 0; i < ready->n_ready; i++)
3000 if (!DEBUG_INSN_P (first[i]))
3001 setup_insn_reg_pressure_info (first[i]);
3002 }
3003 if (sched_pressure == SCHED_PRESSURE_MODEL
3004 && model_curr_point < model_num_insns)
3005 model_set_excess_costs (first, ready->n_ready);
3006
3007 rank_for_schedule_stats_t stats1;
3008 if (sched_verbose >= 4)
3009 stats1 = rank_for_schedule_stats;
3010
3011 if (ready->n_ready == 2)
3012 swap_sort (first, ready->n_ready);
3013 else if (ready->n_ready > 2)
3014 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule);
3015
3016 if (sched_verbose >= 4)
3017 {
3018 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3019 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3020 }
3021 }
3022
3023 /* PREV is an insn that is ready to execute. Adjust its priority if that
3024 will help shorten or lengthen register lifetimes as appropriate. Also
3025 provide a hook for the target to tweak itself. */
3026
3027 HAIFA_INLINE static void
3028 adjust_priority (rtx_insn *prev)
3029 {
3030 /* ??? There used to be code here to try and estimate how an insn
3031 affected register lifetimes, but it did it by looking at REG_DEAD
3032 notes, which we removed in schedule_region. Nor did it try to
3033 take into account register pressure or anything useful like that.
3034
3035 Revisit when we have a machine model to work with and not before. */
3036
3037 if (targetm.sched.adjust_priority)
3038 INSN_PRIORITY (prev) =
3039 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3040 }
3041
3042 /* Advance DFA state STATE on one cycle. */
3043 void
3044 advance_state (state_t state)
3045 {
3046 if (targetm.sched.dfa_pre_advance_cycle)
3047 targetm.sched.dfa_pre_advance_cycle ();
3048
3049 if (targetm.sched.dfa_pre_cycle_insn)
3050 state_transition (state,
3051 targetm.sched.dfa_pre_cycle_insn ());
3052
3053 state_transition (state, NULL);
3054
3055 if (targetm.sched.dfa_post_cycle_insn)
3056 state_transition (state,
3057 targetm.sched.dfa_post_cycle_insn ());
3058
3059 if (targetm.sched.dfa_post_advance_cycle)
3060 targetm.sched.dfa_post_advance_cycle ();
3061 }
3062
3063 /* Advance time on one cycle. */
3064 HAIFA_INLINE static void
3065 advance_one_cycle (void)
3066 {
3067 advance_state (curr_state);
3068 if (sched_verbose >= 4)
3069 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3070 }
3071
3072 /* Update register pressure after scheduling INSN. */
3073 static void
3074 update_register_pressure (rtx_insn *insn)
3075 {
3076 struct reg_use_data *use;
3077 struct reg_set_data *set;
3078
3079 gcc_checking_assert (!DEBUG_INSN_P (insn));
3080
3081 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3082 if (dying_use_p (use))
3083 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3084 use->regno, false);
3085 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3086 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3087 set->regno, true);
3088 }
3089
3090 /* Set up or update (if UPDATE_P) max register pressure (see its
3091 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3092 after insn AFTER. */
3093 static void
3094 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3095 {
3096 int i, p;
3097 bool eq_p;
3098 rtx_insn *insn;
3099 static int max_reg_pressure[N_REG_CLASSES];
3100
3101 save_reg_pressure ();
3102 for (i = 0; i < ira_pressure_classes_num; i++)
3103 max_reg_pressure[ira_pressure_classes[i]]
3104 = curr_reg_pressure[ira_pressure_classes[i]];
3105 for (insn = NEXT_INSN (after);
3106 insn != NULL_RTX && ! BARRIER_P (insn)
3107 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3108 insn = NEXT_INSN (insn))
3109 if (NONDEBUG_INSN_P (insn))
3110 {
3111 eq_p = true;
3112 for (i = 0; i < ira_pressure_classes_num; i++)
3113 {
3114 p = max_reg_pressure[ira_pressure_classes[i]];
3115 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3116 {
3117 eq_p = false;
3118 INSN_MAX_REG_PRESSURE (insn)[i]
3119 = max_reg_pressure[ira_pressure_classes[i]];
3120 }
3121 }
3122 if (update_p && eq_p)
3123 break;
3124 update_register_pressure (insn);
3125 for (i = 0; i < ira_pressure_classes_num; i++)
3126 if (max_reg_pressure[ira_pressure_classes[i]]
3127 < curr_reg_pressure[ira_pressure_classes[i]])
3128 max_reg_pressure[ira_pressure_classes[i]]
3129 = curr_reg_pressure[ira_pressure_classes[i]];
3130 }
3131 restore_reg_pressure ();
3132 }
3133
3134 /* Update the current register pressure after scheduling INSN. Update
3135 also max register pressure for unscheduled insns of the current
3136 BB. */
3137 static void
3138 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3139 {
3140 int i;
3141 int before[N_REG_CLASSES];
3142
3143 for (i = 0; i < ira_pressure_classes_num; i++)
3144 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3145 update_register_pressure (insn);
3146 for (i = 0; i < ira_pressure_classes_num; i++)
3147 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3148 break;
3149 if (i < ira_pressure_classes_num)
3150 setup_insn_max_reg_pressure (insn, true);
3151 }
3152
3153 /* Set up register pressure at the beginning of basic block BB whose
3154 insns starting after insn AFTER. Set up also max register pressure
3155 for all insns of the basic block. */
3156 void
3157 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3158 {
3159 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3160 initiate_bb_reg_pressure_info (bb);
3161 setup_insn_max_reg_pressure (after, false);
3162 }
3163 \f
3164 /* If doing predication while scheduling, verify whether INSN, which
3165 has just been scheduled, clobbers the conditions of any
3166 instructions that must be predicated in order to break their
3167 dependencies. If so, remove them from the queues so that they will
3168 only be scheduled once their control dependency is resolved. */
3169
3170 static void
3171 check_clobbered_conditions (rtx insn)
3172 {
3173 HARD_REG_SET t;
3174 int i;
3175
3176 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3177 return;
3178
3179 find_all_hard_reg_sets (insn, &t, true);
3180
3181 restart:
3182 for (i = 0; i < ready.n_ready; i++)
3183 {
3184 rtx_insn *x = ready_element (&ready, i);
3185 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3186 {
3187 ready_remove_insn (x);
3188 goto restart;
3189 }
3190 }
3191 for (i = 0; i <= max_insn_queue_index; i++)
3192 {
3193 rtx_insn_list *link;
3194 int q = NEXT_Q_AFTER (q_ptr, i);
3195
3196 restart_queue:
3197 for (link = insn_queue[q]; link; link = link->next ())
3198 {
3199 rtx_insn *x = link->insn ();
3200 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3201 {
3202 queue_remove (x);
3203 goto restart_queue;
3204 }
3205 }
3206 }
3207 }
3208 \f
3209 /* Return (in order):
3210
3211 - positive if INSN adversely affects the pressure on one
3212 register class
3213
3214 - negative if INSN reduces the pressure on one register class
3215
3216 - 0 if INSN doesn't affect the pressure on any register class. */
3217
3218 static int
3219 model_classify_pressure (struct model_insn_info *insn)
3220 {
3221 struct reg_pressure_data *reg_pressure;
3222 int death[N_REG_CLASSES];
3223 int pci, cl, sum;
3224
3225 calculate_reg_deaths (insn->insn, death);
3226 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3227 sum = 0;
3228 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3229 {
3230 cl = ira_pressure_classes[pci];
3231 if (death[cl] < reg_pressure[pci].set_increase)
3232 return 1;
3233 sum += reg_pressure[pci].set_increase - death[cl];
3234 }
3235 return sum;
3236 }
3237
3238 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3239
3240 static int
3241 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3242 {
3243 unsigned int height1, height2;
3244 unsigned int priority1, priority2;
3245
3246 /* Prefer instructions with a higher model priority. */
3247 if (insn1->model_priority != insn2->model_priority)
3248 return insn1->model_priority > insn2->model_priority;
3249
3250 /* Combine the length of the longest path of satisfied true dependencies
3251 that leads to each instruction (depth) with the length of the longest
3252 path of any dependencies that leads from the instruction (alap).
3253 Prefer instructions with the greatest combined length. If the combined
3254 lengths are equal, prefer instructions with the greatest depth.
3255
3256 The idea is that, if we have a set S of "equal" instructions that each
3257 have ALAP value X, and we pick one such instruction I, any true-dependent
3258 successors of I that have ALAP value X - 1 should be preferred over S.
3259 This encourages the schedule to be "narrow" rather than "wide".
3260 However, if I is a low-priority instruction that we decided to
3261 schedule because of its model_classify_pressure, and if there
3262 is a set of higher-priority instructions T, the aforementioned
3263 successors of I should not have the edge over T. */
3264 height1 = insn1->depth + insn1->alap;
3265 height2 = insn2->depth + insn2->alap;
3266 if (height1 != height2)
3267 return height1 > height2;
3268 if (insn1->depth != insn2->depth)
3269 return insn1->depth > insn2->depth;
3270
3271 /* We have no real preference between INSN1 an INSN2 as far as attempts
3272 to reduce pressure go. Prefer instructions with higher priorities. */
3273 priority1 = INSN_PRIORITY (insn1->insn);
3274 priority2 = INSN_PRIORITY (insn2->insn);
3275 if (priority1 != priority2)
3276 return priority1 > priority2;
3277
3278 /* Use the original rtl sequence as a tie-breaker. */
3279 return insn1 < insn2;
3280 }
3281
3282 /* Add INSN to the model worklist immediately after PREV. Add it to the
3283 beginning of the list if PREV is null. */
3284
3285 static void
3286 model_add_to_worklist_at (struct model_insn_info *insn,
3287 struct model_insn_info *prev)
3288 {
3289 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3290 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3291
3292 insn->prev = prev;
3293 if (prev)
3294 {
3295 insn->next = prev->next;
3296 prev->next = insn;
3297 }
3298 else
3299 {
3300 insn->next = model_worklist;
3301 model_worklist = insn;
3302 }
3303 if (insn->next)
3304 insn->next->prev = insn;
3305 }
3306
3307 /* Remove INSN from the model worklist. */
3308
3309 static void
3310 model_remove_from_worklist (struct model_insn_info *insn)
3311 {
3312 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3313 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3314
3315 if (insn->prev)
3316 insn->prev->next = insn->next;
3317 else
3318 model_worklist = insn->next;
3319 if (insn->next)
3320 insn->next->prev = insn->prev;
3321 }
3322
3323 /* Add INSN to the model worklist. Start looking for a suitable position
3324 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3325 insns either side. A null PREV indicates the beginning of the list and
3326 a null NEXT indicates the end. */
3327
3328 static void
3329 model_add_to_worklist (struct model_insn_info *insn,
3330 struct model_insn_info *prev,
3331 struct model_insn_info *next)
3332 {
3333 int count;
3334
3335 count = MAX_SCHED_READY_INSNS;
3336 if (count > 0 && prev && model_order_p (insn, prev))
3337 do
3338 {
3339 count--;
3340 prev = prev->prev;
3341 }
3342 while (count > 0 && prev && model_order_p (insn, prev));
3343 else
3344 while (count > 0 && next && model_order_p (next, insn))
3345 {
3346 count--;
3347 prev = next;
3348 next = next->next;
3349 }
3350 model_add_to_worklist_at (insn, prev);
3351 }
3352
3353 /* INSN may now have a higher priority (in the model_order_p sense)
3354 than before. Move it up the worklist if necessary. */
3355
3356 static void
3357 model_promote_insn (struct model_insn_info *insn)
3358 {
3359 struct model_insn_info *prev;
3360 int count;
3361
3362 prev = insn->prev;
3363 count = MAX_SCHED_READY_INSNS;
3364 while (count > 0 && prev && model_order_p (insn, prev))
3365 {
3366 count--;
3367 prev = prev->prev;
3368 }
3369 if (prev != insn->prev)
3370 {
3371 model_remove_from_worklist (insn);
3372 model_add_to_worklist_at (insn, prev);
3373 }
3374 }
3375
3376 /* Add INSN to the end of the model schedule. */
3377
3378 static void
3379 model_add_to_schedule (rtx_insn *insn)
3380 {
3381 unsigned int point;
3382
3383 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3384 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3385
3386 point = model_schedule.length ();
3387 model_schedule.quick_push (insn);
3388 INSN_MODEL_INDEX (insn) = point + 1;
3389 }
3390
3391 /* Analyze the instructions that are to be scheduled, setting up
3392 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3393 instructions to model_worklist. */
3394
3395 static void
3396 model_analyze_insns (void)
3397 {
3398 rtx_insn *start, *end, *iter;
3399 sd_iterator_def sd_it;
3400 dep_t dep;
3401 struct model_insn_info *insn, *con;
3402
3403 model_num_insns = 0;
3404 start = PREV_INSN (current_sched_info->next_tail);
3405 end = current_sched_info->prev_head;
3406 for (iter = start; iter != end; iter = PREV_INSN (iter))
3407 if (NONDEBUG_INSN_P (iter))
3408 {
3409 insn = MODEL_INSN_INFO (iter);
3410 insn->insn = iter;
3411 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3412 {
3413 con = MODEL_INSN_INFO (DEP_CON (dep));
3414 if (con->insn && insn->alap < con->alap + 1)
3415 insn->alap = con->alap + 1;
3416 }
3417
3418 insn->old_queue = QUEUE_INDEX (iter);
3419 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3420
3421 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3422 if (insn->unscheduled_preds == 0)
3423 model_add_to_worklist (insn, NULL, model_worklist);
3424
3425 model_num_insns++;
3426 }
3427 }
3428
3429 /* The global state describes the register pressure at the start of the
3430 model schedule. Initialize GROUP accordingly. */
3431
3432 static void
3433 model_init_pressure_group (struct model_pressure_group *group)
3434 {
3435 int pci, cl;
3436
3437 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3438 {
3439 cl = ira_pressure_classes[pci];
3440 group->limits[pci].pressure = curr_reg_pressure[cl];
3441 group->limits[pci].point = 0;
3442 }
3443 /* Use index model_num_insns to record the state after the last
3444 instruction in the model schedule. */
3445 group->model = XNEWVEC (struct model_pressure_data,
3446 (model_num_insns + 1) * ira_pressure_classes_num);
3447 }
3448
3449 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3450 Update the maximum pressure for the whole schedule. */
3451
3452 static void
3453 model_record_pressure (struct model_pressure_group *group,
3454 int point, int pci, int pressure)
3455 {
3456 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3457 if (group->limits[pci].pressure < pressure)
3458 {
3459 group->limits[pci].pressure = pressure;
3460 group->limits[pci].point = point;
3461 }
3462 }
3463
3464 /* INSN has just been added to the end of the model schedule. Record its
3465 register-pressure information. */
3466
3467 static void
3468 model_record_pressures (struct model_insn_info *insn)
3469 {
3470 struct reg_pressure_data *reg_pressure;
3471 int point, pci, cl, delta;
3472 int death[N_REG_CLASSES];
3473
3474 point = model_index (insn->insn);
3475 if (sched_verbose >= 2)
3476 {
3477 if (point == 0)
3478 {
3479 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3480 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3481 }
3482 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3483 point, INSN_UID (insn->insn), insn->model_priority,
3484 insn->depth + insn->alap, insn->depth,
3485 INSN_PRIORITY (insn->insn),
3486 str_pattern_slim (PATTERN (insn->insn)));
3487 }
3488 calculate_reg_deaths (insn->insn, death);
3489 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3490 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3491 {
3492 cl = ira_pressure_classes[pci];
3493 delta = reg_pressure[pci].set_increase - death[cl];
3494 if (sched_verbose >= 2)
3495 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3496 curr_reg_pressure[cl], delta);
3497 model_record_pressure (&model_before_pressure, point, pci,
3498 curr_reg_pressure[cl]);
3499 }
3500 if (sched_verbose >= 2)
3501 fprintf (sched_dump, "\n");
3502 }
3503
3504 /* All instructions have been added to the model schedule. Record the
3505 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3506
3507 static void
3508 model_record_final_pressures (struct model_pressure_group *group)
3509 {
3510 int point, pci, max_pressure, ref_pressure, cl;
3511
3512 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3513 {
3514 /* Record the final pressure for this class. */
3515 cl = ira_pressure_classes[pci];
3516 point = model_num_insns;
3517 ref_pressure = curr_reg_pressure[cl];
3518 model_record_pressure (group, point, pci, ref_pressure);
3519
3520 /* Record the original maximum pressure. */
3521 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3522
3523 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3524 max_pressure = ref_pressure;
3525 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3526 while (point > 0)
3527 {
3528 point--;
3529 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3530 max_pressure = MAX (max_pressure, ref_pressure);
3531 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3532 }
3533 }
3534 }
3535
3536 /* Update all successors of INSN, given that INSN has just been scheduled. */
3537
3538 static void
3539 model_add_successors_to_worklist (struct model_insn_info *insn)
3540 {
3541 sd_iterator_def sd_it;
3542 struct model_insn_info *con;
3543 dep_t dep;
3544
3545 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3546 {
3547 con = MODEL_INSN_INFO (DEP_CON (dep));
3548 /* Ignore debug instructions, and instructions from other blocks. */
3549 if (con->insn)
3550 {
3551 con->unscheduled_preds--;
3552
3553 /* Update the depth field of each true-dependent successor.
3554 Increasing the depth gives them a higher priority than
3555 before. */
3556 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3557 {
3558 con->depth = insn->depth + 1;
3559 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3560 model_promote_insn (con);
3561 }
3562
3563 /* If this is a true dependency, or if there are no remaining
3564 dependencies for CON (meaning that CON only had non-true
3565 dependencies), make sure that CON is on the worklist.
3566 We don't bother otherwise because it would tend to fill the
3567 worklist with a lot of low-priority instructions that are not
3568 yet ready to issue. */
3569 if ((con->depth > 0 || con->unscheduled_preds == 0)
3570 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3571 model_add_to_worklist (con, insn, insn->next);
3572 }
3573 }
3574 }
3575
3576 /* Give INSN a higher priority than any current instruction, then give
3577 unscheduled predecessors of INSN a higher priority still. If any of
3578 those predecessors are not on the model worklist, do the same for its
3579 predecessors, and so on. */
3580
3581 static void
3582 model_promote_predecessors (struct model_insn_info *insn)
3583 {
3584 struct model_insn_info *pro, *first;
3585 sd_iterator_def sd_it;
3586 dep_t dep;
3587
3588 if (sched_verbose >= 7)
3589 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3590 INSN_UID (insn->insn), model_next_priority);
3591 insn->model_priority = model_next_priority++;
3592 model_remove_from_worklist (insn);
3593 model_add_to_worklist_at (insn, NULL);
3594
3595 first = NULL;
3596 for (;;)
3597 {
3598 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3599 {
3600 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3601 /* The first test is to ignore debug instructions, and instructions
3602 from other blocks. */
3603 if (pro->insn
3604 && pro->model_priority != model_next_priority
3605 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3606 {
3607 pro->model_priority = model_next_priority;
3608 if (sched_verbose >= 7)
3609 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3610 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3611 {
3612 /* PRO is already in the worklist, but it now has
3613 a higher priority than before. Move it at the
3614 appropriate place. */
3615 model_remove_from_worklist (pro);
3616 model_add_to_worklist (pro, NULL, model_worklist);
3617 }
3618 else
3619 {
3620 /* PRO isn't in the worklist. Recursively process
3621 its predecessors until we find one that is. */
3622 pro->next = first;
3623 first = pro;
3624 }
3625 }
3626 }
3627 if (!first)
3628 break;
3629 insn = first;
3630 first = insn->next;
3631 }
3632 if (sched_verbose >= 7)
3633 fprintf (sched_dump, " = %d\n", model_next_priority);
3634 model_next_priority++;
3635 }
3636
3637 /* Pick one instruction from model_worklist and process it. */
3638
3639 static void
3640 model_choose_insn (void)
3641 {
3642 struct model_insn_info *insn, *fallback;
3643 int count;
3644
3645 if (sched_verbose >= 7)
3646 {
3647 fprintf (sched_dump, ";;\t+--- worklist:\n");
3648 insn = model_worklist;
3649 count = MAX_SCHED_READY_INSNS;
3650 while (count > 0 && insn)
3651 {
3652 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3653 INSN_UID (insn->insn), insn->model_priority,
3654 insn->depth + insn->alap, insn->depth,
3655 INSN_PRIORITY (insn->insn));
3656 count--;
3657 insn = insn->next;
3658 }
3659 }
3660
3661 /* Look for a ready instruction whose model_classify_priority is zero
3662 or negative, picking the highest-priority one. Adding such an
3663 instruction to the schedule now should do no harm, and may actually
3664 do some good.
3665
3666 Failing that, see whether there is an instruction with the highest
3667 extant model_priority that is not yet ready, but which would reduce
3668 pressure if it became ready. This is designed to catch cases like:
3669
3670 (set (mem (reg R1)) (reg R2))
3671
3672 where the instruction is the last remaining use of R1 and where the
3673 value of R2 is not yet available (or vice versa). The death of R1
3674 means that this instruction already reduces pressure. It is of
3675 course possible that the computation of R2 involves other registers
3676 that are hard to kill, but such cases are rare enough for this
3677 heuristic to be a win in general.
3678
3679 Failing that, just pick the highest-priority instruction in the
3680 worklist. */
3681 count = MAX_SCHED_READY_INSNS;
3682 insn = model_worklist;
3683 fallback = 0;
3684 for (;;)
3685 {
3686 if (count == 0 || !insn)
3687 {
3688 insn = fallback ? fallback : model_worklist;
3689 break;
3690 }
3691 if (insn->unscheduled_preds)
3692 {
3693 if (model_worklist->model_priority == insn->model_priority
3694 && !fallback
3695 && model_classify_pressure (insn) < 0)
3696 fallback = insn;
3697 }
3698 else
3699 {
3700 if (model_classify_pressure (insn) <= 0)
3701 break;
3702 }
3703 count--;
3704 insn = insn->next;
3705 }
3706
3707 if (sched_verbose >= 7 && insn != model_worklist)
3708 {
3709 if (insn->unscheduled_preds)
3710 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3711 INSN_UID (insn->insn));
3712 else
3713 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3714 INSN_UID (insn->insn));
3715 }
3716 if (insn->unscheduled_preds)
3717 /* INSN isn't yet ready to issue. Give all its predecessors the
3718 highest priority. */
3719 model_promote_predecessors (insn);
3720 else
3721 {
3722 /* INSN is ready. Add it to the end of model_schedule and
3723 process its successors. */
3724 model_add_successors_to_worklist (insn);
3725 model_remove_from_worklist (insn);
3726 model_add_to_schedule (insn->insn);
3727 model_record_pressures (insn);
3728 update_register_pressure (insn->insn);
3729 }
3730 }
3731
3732 /* Restore all QUEUE_INDEXs to the values that they had before
3733 model_start_schedule was called. */
3734
3735 static void
3736 model_reset_queue_indices (void)
3737 {
3738 unsigned int i;
3739 rtx_insn *insn;
3740
3741 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3742 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3743 }
3744
3745 /* We have calculated the model schedule and spill costs. Print a summary
3746 to sched_dump. */
3747
3748 static void
3749 model_dump_pressure_summary (void)
3750 {
3751 int pci, cl;
3752
3753 fprintf (sched_dump, ";; Pressure summary:");
3754 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3755 {
3756 cl = ira_pressure_classes[pci];
3757 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3758 model_before_pressure.limits[pci].pressure);
3759 }
3760 fprintf (sched_dump, "\n\n");
3761 }
3762
3763 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3764 scheduling region. */
3765
3766 static void
3767 model_start_schedule (basic_block bb)
3768 {
3769 model_next_priority = 1;
3770 model_schedule.create (sched_max_luid);
3771 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3772
3773 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3774 initiate_reg_pressure_info (df_get_live_in (bb));
3775
3776 model_analyze_insns ();
3777 model_init_pressure_group (&model_before_pressure);
3778 while (model_worklist)
3779 model_choose_insn ();
3780 gcc_assert (model_num_insns == (int) model_schedule.length ());
3781 if (sched_verbose >= 2)
3782 fprintf (sched_dump, "\n");
3783
3784 model_record_final_pressures (&model_before_pressure);
3785 model_reset_queue_indices ();
3786
3787 XDELETEVEC (model_insns);
3788
3789 model_curr_point = 0;
3790 initiate_reg_pressure_info (df_get_live_in (bb));
3791 if (sched_verbose >= 1)
3792 model_dump_pressure_summary ();
3793 }
3794
3795 /* Free the information associated with GROUP. */
3796
3797 static void
3798 model_finalize_pressure_group (struct model_pressure_group *group)
3799 {
3800 XDELETEVEC (group->model);
3801 }
3802
3803 /* Free the information created by model_start_schedule. */
3804
3805 static void
3806 model_end_schedule (void)
3807 {
3808 model_finalize_pressure_group (&model_before_pressure);
3809 model_schedule.release ();
3810 }
3811
3812 /* Prepare reg pressure scheduling for basic block BB. */
3813 static void
3814 sched_pressure_start_bb (basic_block bb)
3815 {
3816 /* Set the number of available registers for each class taking into account
3817 relative probability of current basic block versus function prologue and
3818 epilogue.
3819 * If the basic block executes much more often than the prologue/epilogue
3820 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3821 nil, so the effective number of available registers is
3822 (ira_class_hard_regs_num[cl] - 0).
3823 * If the basic block executes as often as the prologue/epilogue,
3824 then spill in the block is as costly as in the prologue, so the effective
3825 number of available registers is
3826 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3827 Note that all-else-equal, we prefer to spill in the prologue, since that
3828 allows "extra" registers for other basic blocks of the function.
3829 * If the basic block is on the cold path of the function and executes
3830 rarely, then we should always prefer to spill in the block, rather than
3831 in the prologue/epilogue. The effective number of available register is
3832 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3833 {
3834 int i;
3835 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3836 int bb_freq = bb->frequency;
3837
3838 if (bb_freq == 0)
3839 {
3840 if (entry_freq == 0)
3841 entry_freq = bb_freq = 1;
3842 }
3843 if (bb_freq < entry_freq)
3844 bb_freq = entry_freq;
3845
3846 for (i = 0; i < ira_pressure_classes_num; ++i)
3847 {
3848 enum reg_class cl = ira_pressure_classes[i];
3849 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3850 sched_class_regs_num[cl]
3851 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3852 }
3853 }
3854
3855 if (sched_pressure == SCHED_PRESSURE_MODEL)
3856 model_start_schedule (bb);
3857 }
3858 \f
3859 /* A structure that holds local state for the loop in schedule_block. */
3860 struct sched_block_state
3861 {
3862 /* True if no real insns have been scheduled in the current cycle. */
3863 bool first_cycle_insn_p;
3864 /* True if a shadow insn has been scheduled in the current cycle, which
3865 means that no more normal insns can be issued. */
3866 bool shadows_only_p;
3867 /* True if we're winding down a modulo schedule, which means that we only
3868 issue insns with INSN_EXACT_TICK set. */
3869 bool modulo_epilogue;
3870 /* Initialized with the machine's issue rate every cycle, and updated
3871 by calls to the variable_issue hook. */
3872 int can_issue_more;
3873 };
3874
3875 /* INSN is the "currently executing insn". Launch each insn which was
3876 waiting on INSN. READY is the ready list which contains the insns
3877 that are ready to fire. CLOCK is the current cycle. The function
3878 returns necessary cycle advance after issuing the insn (it is not
3879 zero for insns in a schedule group). */
3880
3881 static int
3882 schedule_insn (rtx_insn *insn)
3883 {
3884 sd_iterator_def sd_it;
3885 dep_t dep;
3886 int i;
3887 int advance = 0;
3888
3889 if (sched_verbose >= 1)
3890 {
3891 struct reg_pressure_data *pressure_info;
3892 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3893 clock_var, (*current_sched_info->print_insn) (insn, 1),
3894 str_pattern_slim (PATTERN (insn)));
3895
3896 if (recog_memoized (insn) < 0)
3897 fprintf (sched_dump, "nothing");
3898 else
3899 print_reservation (sched_dump, insn);
3900 pressure_info = INSN_REG_PRESSURE (insn);
3901 if (pressure_info != NULL)
3902 {
3903 fputc (':', sched_dump);
3904 for (i = 0; i < ira_pressure_classes_num; i++)
3905 fprintf (sched_dump, "%s%s%+d(%d)",
3906 scheduled_insns.length () > 1
3907 && INSN_LUID (insn)
3908 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3909 reg_class_names[ira_pressure_classes[i]],
3910 pressure_info[i].set_increase, pressure_info[i].change);
3911 }
3912 if (sched_pressure == SCHED_PRESSURE_MODEL
3913 && model_curr_point < model_num_insns
3914 && model_index (insn) == model_curr_point)
3915 fprintf (sched_dump, ":model %d", model_curr_point);
3916 fputc ('\n', sched_dump);
3917 }
3918
3919 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
3920 update_reg_and_insn_max_reg_pressure (insn);
3921
3922 /* Scheduling instruction should have all its dependencies resolved and
3923 should have been removed from the ready list. */
3924 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
3925
3926 /* Reset debug insns invalidated by moving this insn. */
3927 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
3928 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
3929 sd_iterator_cond (&sd_it, &dep);)
3930 {
3931 rtx_insn *dbg = DEP_PRO (dep);
3932 struct reg_use_data *use, *next;
3933
3934 if (DEP_STATUS (dep) & DEP_CANCELLED)
3935 {
3936 sd_iterator_next (&sd_it);
3937 continue;
3938 }
3939
3940 gcc_assert (DEBUG_INSN_P (dbg));
3941
3942 if (sched_verbose >= 6)
3943 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
3944 INSN_UID (dbg));
3945
3946 /* ??? Rather than resetting the debug insn, we might be able
3947 to emit a debug temp before the just-scheduled insn, but
3948 this would involve checking that the expression at the
3949 point of the debug insn is equivalent to the expression
3950 before the just-scheduled insn. They might not be: the
3951 expression in the debug insn may depend on other insns not
3952 yet scheduled that set MEMs, REGs or even other debug
3953 insns. It's not clear that attempting to preserve debug
3954 information in these cases is worth the effort, given how
3955 uncommon these resets are and the likelihood that the debug
3956 temps introduced won't survive the schedule change. */
3957 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
3958 df_insn_rescan (dbg);
3959
3960 /* Unknown location doesn't use any registers. */
3961 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
3962 {
3963 struct reg_use_data *prev = use;
3964
3965 /* Remove use from the cyclic next_regno_use chain first. */
3966 while (prev->next_regno_use != use)
3967 prev = prev->next_regno_use;
3968 prev->next_regno_use = use->next_regno_use;
3969 next = use->next_insn_use;
3970 free (use);
3971 }
3972 INSN_REG_USE_LIST (dbg) = NULL;
3973
3974 /* We delete rather than resolve these deps, otherwise we
3975 crash in sched_free_deps(), because forward deps are
3976 expected to be released before backward deps. */
3977 sd_delete_dep (sd_it);
3978 }
3979
3980 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3981 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3982
3983 if (sched_pressure == SCHED_PRESSURE_MODEL
3984 && model_curr_point < model_num_insns
3985 && NONDEBUG_INSN_P (insn))
3986 {
3987 if (model_index (insn) == model_curr_point)
3988 do
3989 model_curr_point++;
3990 while (model_curr_point < model_num_insns
3991 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
3992 == QUEUE_SCHEDULED));
3993 else
3994 model_recompute (insn);
3995 model_update_limit_points ();
3996 update_register_pressure (insn);
3997 if (sched_verbose >= 2)
3998 print_curr_reg_pressure ();
3999 }
4000
4001 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4002 if (INSN_TICK (insn) > clock_var)
4003 /* INSN has been prematurely moved from the queue to the ready list.
4004 This is possible only if following flag is set. */
4005 gcc_assert (flag_sched_stalled_insns);
4006
4007 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4008 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4009 INSN_TICK (insn) = clock_var;
4010
4011 check_clobbered_conditions (insn);
4012
4013 /* Update dependent instructions. First, see if by scheduling this insn
4014 now we broke a dependence in a way that requires us to change another
4015 insn. */
4016 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4017 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4018 {
4019 struct dep_replacement *desc = DEP_REPLACE (dep);
4020 rtx_insn *pro = DEP_PRO (dep);
4021 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4022 && desc != NULL && desc->insn == pro)
4023 apply_replacement (dep, false);
4024 }
4025
4026 /* Go through and resolve forward dependencies. */
4027 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4028 sd_iterator_cond (&sd_it, &dep);)
4029 {
4030 rtx_insn *next = DEP_CON (dep);
4031 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4032
4033 /* Resolve the dependence between INSN and NEXT.
4034 sd_resolve_dep () moves current dep to another list thus
4035 advancing the iterator. */
4036 sd_resolve_dep (sd_it);
4037
4038 if (cancelled)
4039 {
4040 if (must_restore_pattern_p (next, dep))
4041 restore_pattern (dep, false);
4042 continue;
4043 }
4044
4045 /* Don't bother trying to mark next as ready if insn is a debug
4046 insn. If insn is the last hard dependency, it will have
4047 already been discounted. */
4048 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4049 continue;
4050
4051 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4052 {
4053 int effective_cost;
4054
4055 effective_cost = try_ready (next);
4056
4057 if (effective_cost >= 0
4058 && SCHED_GROUP_P (next)
4059 && advance < effective_cost)
4060 advance = effective_cost;
4061 }
4062 else
4063 /* Check always has only one forward dependence (to the first insn in
4064 the recovery block), therefore, this will be executed only once. */
4065 {
4066 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4067 fix_recovery_deps (RECOVERY_BLOCK (insn));
4068 }
4069 }
4070
4071 /* Annotate the instruction with issue information -- TImode
4072 indicates that the instruction is expected not to be able
4073 to issue on the same cycle as the previous insn. A machine
4074 may use this information to decide how the instruction should
4075 be aligned. */
4076 if (issue_rate > 1
4077 && GET_CODE (PATTERN (insn)) != USE
4078 && GET_CODE (PATTERN (insn)) != CLOBBER
4079 && !DEBUG_INSN_P (insn))
4080 {
4081 if (reload_completed)
4082 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4083 last_clock_var = clock_var;
4084 }
4085
4086 if (nonscheduled_insns_begin != NULL_RTX)
4087 /* Indicate to debug counters that INSN is scheduled. */
4088 nonscheduled_insns_begin = insn;
4089
4090 return advance;
4091 }
4092
4093 /* Functions for handling of notes. */
4094
4095 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4096 void
4097 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4098 {
4099 rtx_insn *from_start;
4100
4101 /* It's easy when have nothing to concat. */
4102 if (from_end == NULL)
4103 return;
4104
4105 /* It's also easy when destination is empty. */
4106 if (*to_endp == NULL)
4107 {
4108 *to_endp = from_end;
4109 return;
4110 }
4111
4112 from_start = from_end;
4113 while (PREV_INSN (from_start) != NULL)
4114 from_start = PREV_INSN (from_start);
4115
4116 SET_PREV_INSN (from_start) = *to_endp;
4117 SET_NEXT_INSN (*to_endp) = from_start;
4118 *to_endp = from_end;
4119 }
4120
4121 /* Delete notes between HEAD and TAIL and put them in the chain
4122 of notes ended by NOTE_LIST. */
4123 void
4124 remove_notes (rtx_insn *head, rtx_insn *tail)
4125 {
4126 rtx_insn *next_tail, *insn, *next;
4127
4128 note_list = 0;
4129 if (head == tail && !INSN_P (head))
4130 return;
4131
4132 next_tail = NEXT_INSN (tail);
4133 for (insn = head; insn != next_tail; insn = next)
4134 {
4135 next = NEXT_INSN (insn);
4136 if (!NOTE_P (insn))
4137 continue;
4138
4139 switch (NOTE_KIND (insn))
4140 {
4141 case NOTE_INSN_BASIC_BLOCK:
4142 continue;
4143
4144 case NOTE_INSN_EPILOGUE_BEG:
4145 if (insn != tail)
4146 {
4147 remove_insn (insn);
4148 add_reg_note (next, REG_SAVE_NOTE,
4149 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4150 break;
4151 }
4152 /* FALLTHRU */
4153
4154 default:
4155 remove_insn (insn);
4156
4157 /* Add the note to list that ends at NOTE_LIST. */
4158 SET_PREV_INSN (insn) = note_list;
4159 SET_NEXT_INSN (insn) = NULL_RTX;
4160 if (note_list)
4161 SET_NEXT_INSN (note_list) = insn;
4162 note_list = insn;
4163 break;
4164 }
4165
4166 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4167 }
4168 }
4169
4170 /* A structure to record enough data to allow us to backtrack the scheduler to
4171 a previous state. */
4172 struct haifa_saved_data
4173 {
4174 /* Next entry on the list. */
4175 struct haifa_saved_data *next;
4176
4177 /* Backtracking is associated with scheduling insns that have delay slots.
4178 DELAY_PAIR points to the structure that contains the insns involved, and
4179 the number of cycles between them. */
4180 struct delay_pair *delay_pair;
4181
4182 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4183 void *fe_saved_data;
4184 /* Data used by the backend. */
4185 void *be_saved_data;
4186
4187 /* Copies of global state. */
4188 int clock_var, last_clock_var;
4189 struct ready_list ready;
4190 state_t curr_state;
4191
4192 rtx_insn *last_scheduled_insn;
4193 rtx last_nondebug_scheduled_insn;
4194 rtx_insn *nonscheduled_insns_begin;
4195 int cycle_issued_insns;
4196
4197 /* Copies of state used in the inner loop of schedule_block. */
4198 struct sched_block_state sched_block;
4199
4200 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4201 to 0 when restoring. */
4202 int q_size;
4203 rtx_insn_list **insn_queue;
4204
4205 /* Describe pattern replacements that occurred since this backtrack point
4206 was queued. */
4207 vec<dep_t> replacement_deps;
4208 vec<int> replace_apply;
4209
4210 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4211 point. */
4212 vec<dep_t> next_cycle_deps;
4213 vec<int> next_cycle_apply;
4214 };
4215
4216 /* A record, in reverse order, of all scheduled insns which have delay slots
4217 and may require backtracking. */
4218 static struct haifa_saved_data *backtrack_queue;
4219
4220 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4221 to SET_P. */
4222 static void
4223 mark_backtrack_feeds (rtx insn, int set_p)
4224 {
4225 sd_iterator_def sd_it;
4226 dep_t dep;
4227 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4228 {
4229 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4230 }
4231 }
4232
4233 /* Save the current scheduler state so that we can backtrack to it
4234 later if necessary. PAIR gives the insns that make it necessary to
4235 save this point. SCHED_BLOCK is the local state of schedule_block
4236 that need to be saved. */
4237 static void
4238 save_backtrack_point (struct delay_pair *pair,
4239 struct sched_block_state sched_block)
4240 {
4241 int i;
4242 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4243
4244 save->curr_state = xmalloc (dfa_state_size);
4245 memcpy (save->curr_state, curr_state, dfa_state_size);
4246
4247 save->ready.first = ready.first;
4248 save->ready.n_ready = ready.n_ready;
4249 save->ready.n_debug = ready.n_debug;
4250 save->ready.veclen = ready.veclen;
4251 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4252 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4253
4254 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4255 save->q_size = q_size;
4256 for (i = 0; i <= max_insn_queue_index; i++)
4257 {
4258 int q = NEXT_Q_AFTER (q_ptr, i);
4259 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4260 }
4261
4262 save->clock_var = clock_var;
4263 save->last_clock_var = last_clock_var;
4264 save->cycle_issued_insns = cycle_issued_insns;
4265 save->last_scheduled_insn = last_scheduled_insn;
4266 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4267 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4268
4269 save->sched_block = sched_block;
4270
4271 save->replacement_deps.create (0);
4272 save->replace_apply.create (0);
4273 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4274 save->next_cycle_apply = next_cycle_apply.copy ();
4275
4276 if (current_sched_info->save_state)
4277 save->fe_saved_data = (*current_sched_info->save_state) ();
4278
4279 if (targetm.sched.alloc_sched_context)
4280 {
4281 save->be_saved_data = targetm.sched.alloc_sched_context ();
4282 targetm.sched.init_sched_context (save->be_saved_data, false);
4283 }
4284 else
4285 save->be_saved_data = NULL;
4286
4287 save->delay_pair = pair;
4288
4289 save->next = backtrack_queue;
4290 backtrack_queue = save;
4291
4292 while (pair)
4293 {
4294 mark_backtrack_feeds (pair->i2, 1);
4295 INSN_TICK (pair->i2) = INVALID_TICK;
4296 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4297 SHADOW_P (pair->i2) = pair->stages == 0;
4298 pair = pair->next_same_i1;
4299 }
4300 }
4301
4302 /* Walk the ready list and all queues. If any insns have unresolved backwards
4303 dependencies, these must be cancelled deps, broken by predication. Set or
4304 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4305
4306 static void
4307 toggle_cancelled_flags (bool set)
4308 {
4309 int i;
4310 sd_iterator_def sd_it;
4311 dep_t dep;
4312
4313 if (ready.n_ready > 0)
4314 {
4315 rtx_insn **first = ready_lastpos (&ready);
4316 for (i = 0; i < ready.n_ready; i++)
4317 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4318 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4319 {
4320 if (set)
4321 DEP_STATUS (dep) |= DEP_CANCELLED;
4322 else
4323 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4324 }
4325 }
4326 for (i = 0; i <= max_insn_queue_index; i++)
4327 {
4328 int q = NEXT_Q_AFTER (q_ptr, i);
4329 rtx_insn_list *link;
4330 for (link = insn_queue[q]; link; link = link->next ())
4331 {
4332 rtx_insn *insn = link->insn ();
4333 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4334 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4335 {
4336 if (set)
4337 DEP_STATUS (dep) |= DEP_CANCELLED;
4338 else
4339 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4340 }
4341 }
4342 }
4343 }
4344
4345 /* Undo the replacements that have occurred after backtrack point SAVE
4346 was placed. */
4347 static void
4348 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4349 {
4350 while (!save->replacement_deps.is_empty ())
4351 {
4352 dep_t dep = save->replacement_deps.pop ();
4353 int apply_p = save->replace_apply.pop ();
4354
4355 if (apply_p)
4356 restore_pattern (dep, true);
4357 else
4358 apply_replacement (dep, true);
4359 }
4360 save->replacement_deps.release ();
4361 save->replace_apply.release ();
4362 }
4363
4364 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4365 Restore their dependencies to an unresolved state, and mark them as
4366 queued nowhere. */
4367
4368 static void
4369 unschedule_insns_until (rtx insn)
4370 {
4371 auto_vec<rtx_insn *> recompute_vec;
4372
4373 /* Make two passes over the insns to be unscheduled. First, we clear out
4374 dependencies and other trivial bookkeeping. */
4375 for (;;)
4376 {
4377 rtx_insn *last;
4378 sd_iterator_def sd_it;
4379 dep_t dep;
4380
4381 last = scheduled_insns.pop ();
4382
4383 /* This will be changed by restore_backtrack_point if the insn is in
4384 any queue. */
4385 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4386 if (last != insn)
4387 INSN_TICK (last) = INVALID_TICK;
4388
4389 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4390 modulo_insns_scheduled--;
4391
4392 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4393 sd_iterator_cond (&sd_it, &dep);)
4394 {
4395 rtx_insn *con = DEP_CON (dep);
4396 sd_unresolve_dep (sd_it);
4397 if (!MUST_RECOMPUTE_SPEC_P (con))
4398 {
4399 MUST_RECOMPUTE_SPEC_P (con) = 1;
4400 recompute_vec.safe_push (con);
4401 }
4402 }
4403
4404 if (last == insn)
4405 break;
4406 }
4407
4408 /* A second pass, to update ready and speculation status for insns
4409 depending on the unscheduled ones. The first pass must have
4410 popped the scheduled_insns vector up to the point where we
4411 restart scheduling, as recompute_todo_spec requires it to be
4412 up-to-date. */
4413 while (!recompute_vec.is_empty ())
4414 {
4415 rtx_insn *con;
4416
4417 con = recompute_vec.pop ();
4418 MUST_RECOMPUTE_SPEC_P (con) = 0;
4419 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4420 {
4421 TODO_SPEC (con) = HARD_DEP;
4422 INSN_TICK (con) = INVALID_TICK;
4423 if (PREDICATED_PAT (con) != NULL_RTX)
4424 haifa_change_pattern (con, ORIG_PAT (con));
4425 }
4426 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4427 TODO_SPEC (con) = recompute_todo_spec (con, true);
4428 }
4429 }
4430
4431 /* Restore scheduler state from the topmost entry on the backtracking queue.
4432 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4433 overwrite with the saved data.
4434 The caller must already have called unschedule_insns_until. */
4435
4436 static void
4437 restore_last_backtrack_point (struct sched_block_state *psched_block)
4438 {
4439 int i;
4440 struct haifa_saved_data *save = backtrack_queue;
4441
4442 backtrack_queue = save->next;
4443
4444 if (current_sched_info->restore_state)
4445 (*current_sched_info->restore_state) (save->fe_saved_data);
4446
4447 if (targetm.sched.alloc_sched_context)
4448 {
4449 targetm.sched.set_sched_context (save->be_saved_data);
4450 targetm.sched.free_sched_context (save->be_saved_data);
4451 }
4452
4453 /* Do this first since it clobbers INSN_TICK of the involved
4454 instructions. */
4455 undo_replacements_for_backtrack (save);
4456
4457 /* Clear the QUEUE_INDEX of everything in the ready list or one
4458 of the queues. */
4459 if (ready.n_ready > 0)
4460 {
4461 rtx_insn **first = ready_lastpos (&ready);
4462 for (i = 0; i < ready.n_ready; i++)
4463 {
4464 rtx_insn *insn = first[i];
4465 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4466 INSN_TICK (insn) = INVALID_TICK;
4467 }
4468 }
4469 for (i = 0; i <= max_insn_queue_index; i++)
4470 {
4471 int q = NEXT_Q_AFTER (q_ptr, i);
4472
4473 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4474 {
4475 rtx_insn *x = link->insn ();
4476 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4477 INSN_TICK (x) = INVALID_TICK;
4478 }
4479 free_INSN_LIST_list (&insn_queue[q]);
4480 }
4481
4482 free (ready.vec);
4483 ready = save->ready;
4484
4485 if (ready.n_ready > 0)
4486 {
4487 rtx_insn **first = ready_lastpos (&ready);
4488 for (i = 0; i < ready.n_ready; i++)
4489 {
4490 rtx_insn *insn = first[i];
4491 QUEUE_INDEX (insn) = QUEUE_READY;
4492 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4493 INSN_TICK (insn) = save->clock_var;
4494 }
4495 }
4496
4497 q_ptr = 0;
4498 q_size = save->q_size;
4499 for (i = 0; i <= max_insn_queue_index; i++)
4500 {
4501 int q = NEXT_Q_AFTER (q_ptr, i);
4502
4503 insn_queue[q] = save->insn_queue[q];
4504
4505 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4506 {
4507 rtx_insn *x = link->insn ();
4508 QUEUE_INDEX (x) = i;
4509 TODO_SPEC (x) = recompute_todo_spec (x, true);
4510 INSN_TICK (x) = save->clock_var + i;
4511 }
4512 }
4513 free (save->insn_queue);
4514
4515 toggle_cancelled_flags (true);
4516
4517 clock_var = save->clock_var;
4518 last_clock_var = save->last_clock_var;
4519 cycle_issued_insns = save->cycle_issued_insns;
4520 last_scheduled_insn = save->last_scheduled_insn;
4521 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4522 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4523
4524 *psched_block = save->sched_block;
4525
4526 memcpy (curr_state, save->curr_state, dfa_state_size);
4527 free (save->curr_state);
4528
4529 mark_backtrack_feeds (save->delay_pair->i2, 0);
4530
4531 gcc_assert (next_cycle_replace_deps.is_empty ());
4532 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4533 next_cycle_apply = save->next_cycle_apply.copy ();
4534
4535 free (save);
4536
4537 for (save = backtrack_queue; save; save = save->next)
4538 {
4539 mark_backtrack_feeds (save->delay_pair->i2, 1);
4540 }
4541 }
4542
4543 /* Discard all data associated with the topmost entry in the backtrack
4544 queue. If RESET_TICK is false, we just want to free the data. If true,
4545 we are doing this because we discovered a reason to backtrack. In the
4546 latter case, also reset the INSN_TICK for the shadow insn. */
4547 static void
4548 free_topmost_backtrack_point (bool reset_tick)
4549 {
4550 struct haifa_saved_data *save = backtrack_queue;
4551 int i;
4552
4553 backtrack_queue = save->next;
4554
4555 if (reset_tick)
4556 {
4557 struct delay_pair *pair = save->delay_pair;
4558 while (pair)
4559 {
4560 INSN_TICK (pair->i2) = INVALID_TICK;
4561 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4562 pair = pair->next_same_i1;
4563 }
4564 undo_replacements_for_backtrack (save);
4565 }
4566 else
4567 {
4568 save->replacement_deps.release ();
4569 save->replace_apply.release ();
4570 }
4571
4572 if (targetm.sched.free_sched_context)
4573 targetm.sched.free_sched_context (save->be_saved_data);
4574 if (current_sched_info->restore_state)
4575 free (save->fe_saved_data);
4576 for (i = 0; i <= max_insn_queue_index; i++)
4577 free_INSN_LIST_list (&save->insn_queue[i]);
4578 free (save->insn_queue);
4579 free (save->curr_state);
4580 free (save->ready.vec);
4581 free (save);
4582 }
4583
4584 /* Free the entire backtrack queue. */
4585 static void
4586 free_backtrack_queue (void)
4587 {
4588 while (backtrack_queue)
4589 free_topmost_backtrack_point (false);
4590 }
4591
4592 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4593 may have to postpone the replacement until the start of the next cycle,
4594 at which point we will be called again with IMMEDIATELY true. This is
4595 only done for machines which have instruction packets with explicit
4596 parallelism however. */
4597 static void
4598 apply_replacement (dep_t dep, bool immediately)
4599 {
4600 struct dep_replacement *desc = DEP_REPLACE (dep);
4601 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4602 {
4603 next_cycle_replace_deps.safe_push (dep);
4604 next_cycle_apply.safe_push (1);
4605 }
4606 else
4607 {
4608 bool success;
4609
4610 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4611 return;
4612
4613 if (sched_verbose >= 5)
4614 fprintf (sched_dump, "applying replacement for insn %d\n",
4615 INSN_UID (desc->insn));
4616
4617 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4618 gcc_assert (success);
4619
4620 update_insn_after_change (desc->insn);
4621 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4622 fix_tick_ready (desc->insn);
4623
4624 if (backtrack_queue != NULL)
4625 {
4626 backtrack_queue->replacement_deps.safe_push (dep);
4627 backtrack_queue->replace_apply.safe_push (1);
4628 }
4629 }
4630 }
4631
4632 /* We have determined that a pattern involved in DEP must be restored.
4633 If IMMEDIATELY is false, we may have to postpone the replacement
4634 until the start of the next cycle, at which point we will be called
4635 again with IMMEDIATELY true. */
4636 static void
4637 restore_pattern (dep_t dep, bool immediately)
4638 {
4639 rtx_insn *next = DEP_CON (dep);
4640 int tick = INSN_TICK (next);
4641
4642 /* If we already scheduled the insn, the modified version is
4643 correct. */
4644 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4645 return;
4646
4647 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4648 {
4649 next_cycle_replace_deps.safe_push (dep);
4650 next_cycle_apply.safe_push (0);
4651 return;
4652 }
4653
4654
4655 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4656 {
4657 if (sched_verbose >= 5)
4658 fprintf (sched_dump, "restoring pattern for insn %d\n",
4659 INSN_UID (next));
4660 haifa_change_pattern (next, ORIG_PAT (next));
4661 }
4662 else
4663 {
4664 struct dep_replacement *desc = DEP_REPLACE (dep);
4665 bool success;
4666
4667 if (sched_verbose >= 5)
4668 fprintf (sched_dump, "restoring pattern for insn %d\n",
4669 INSN_UID (desc->insn));
4670 tick = INSN_TICK (desc->insn);
4671
4672 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4673 gcc_assert (success);
4674 update_insn_after_change (desc->insn);
4675 if (backtrack_queue != NULL)
4676 {
4677 backtrack_queue->replacement_deps.safe_push (dep);
4678 backtrack_queue->replace_apply.safe_push (0);
4679 }
4680 }
4681 INSN_TICK (next) = tick;
4682 if (TODO_SPEC (next) == DEP_POSTPONED)
4683 return;
4684
4685 if (sd_lists_empty_p (next, SD_LIST_BACK))
4686 TODO_SPEC (next) = 0;
4687 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4688 TODO_SPEC (next) = HARD_DEP;
4689 }
4690
4691 /* Perform pattern replacements that were queued up until the next
4692 cycle. */
4693 static void
4694 perform_replacements_new_cycle (void)
4695 {
4696 int i;
4697 dep_t dep;
4698 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4699 {
4700 int apply_p = next_cycle_apply[i];
4701 if (apply_p)
4702 apply_replacement (dep, true);
4703 else
4704 restore_pattern (dep, true);
4705 }
4706 next_cycle_replace_deps.truncate (0);
4707 next_cycle_apply.truncate (0);
4708 }
4709
4710 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4711 instructions we've previously encountered, a set bit prevents
4712 recursion. BUDGET is a limit on how far ahead we look, it is
4713 reduced on recursive calls. Return true if we produced a good
4714 estimate, or false if we exceeded the budget. */
4715 static bool
4716 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4717 {
4718 sd_iterator_def sd_it;
4719 dep_t dep;
4720 int earliest = INSN_TICK (insn);
4721
4722 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4723 {
4724 rtx_insn *pro = DEP_PRO (dep);
4725 int t;
4726
4727 if (DEP_STATUS (dep) & DEP_CANCELLED)
4728 continue;
4729
4730 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4731 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4732 else
4733 {
4734 int cost = dep_cost (dep);
4735 if (cost >= budget)
4736 return false;
4737 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4738 {
4739 if (!estimate_insn_tick (processed, pro, budget - cost))
4740 return false;
4741 }
4742 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4743 t = INSN_TICK_ESTIMATE (pro) + cost;
4744 if (earliest == INVALID_TICK || t > earliest)
4745 earliest = t;
4746 }
4747 }
4748 bitmap_set_bit (processed, INSN_LUID (insn));
4749 INSN_TICK_ESTIMATE (insn) = earliest;
4750 return true;
4751 }
4752
4753 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4754 infinite resources) the cycle in which the delayed shadow can be issued.
4755 Return the number of cycles that must pass before the real insn can be
4756 issued in order to meet this constraint. */
4757 static int
4758 estimate_shadow_tick (struct delay_pair *p)
4759 {
4760 bitmap_head processed;
4761 int t;
4762 bool cutoff;
4763 bitmap_initialize (&processed, 0);
4764
4765 cutoff = !estimate_insn_tick (&processed, p->i2,
4766 max_insn_queue_index + pair_delay (p));
4767 bitmap_clear (&processed);
4768 if (cutoff)
4769 return max_insn_queue_index;
4770 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4771 if (t > 0)
4772 return t;
4773 return 0;
4774 }
4775
4776 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4777 recursively resolve all its forward dependencies. */
4778 static void
4779 resolve_dependencies (rtx_insn *insn)
4780 {
4781 sd_iterator_def sd_it;
4782 dep_t dep;
4783
4784 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4785 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4786 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4787 return;
4788
4789 if (sched_verbose >= 4)
4790 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4791
4792 if (QUEUE_INDEX (insn) >= 0)
4793 queue_remove (insn);
4794
4795 scheduled_insns.safe_push (insn);
4796
4797 /* Update dependent instructions. */
4798 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4799 sd_iterator_cond (&sd_it, &dep);)
4800 {
4801 rtx_insn *next = DEP_CON (dep);
4802
4803 if (sched_verbose >= 4)
4804 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4805 INSN_UID (next));
4806
4807 /* Resolve the dependence between INSN and NEXT.
4808 sd_resolve_dep () moves current dep to another list thus
4809 advancing the iterator. */
4810 sd_resolve_dep (sd_it);
4811
4812 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4813 {
4814 resolve_dependencies (next);
4815 }
4816 else
4817 /* Check always has only one forward dependence (to the first insn in
4818 the recovery block), therefore, this will be executed only once. */
4819 {
4820 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4821 }
4822 }
4823 }
4824
4825
4826 /* Return the head and tail pointers of ebb starting at BEG and ending
4827 at END. */
4828 void
4829 get_ebb_head_tail (basic_block beg, basic_block end,
4830 rtx_insn **headp, rtx_insn **tailp)
4831 {
4832 rtx_insn *beg_head = BB_HEAD (beg);
4833 rtx_insn * beg_tail = BB_END (beg);
4834 rtx_insn * end_head = BB_HEAD (end);
4835 rtx_insn * end_tail = BB_END (end);
4836
4837 /* Don't include any notes or labels at the beginning of the BEG
4838 basic block, or notes at the end of the END basic blocks. */
4839
4840 if (LABEL_P (beg_head))
4841 beg_head = NEXT_INSN (beg_head);
4842
4843 while (beg_head != beg_tail)
4844 if (NOTE_P (beg_head))
4845 beg_head = NEXT_INSN (beg_head);
4846 else if (DEBUG_INSN_P (beg_head))
4847 {
4848 rtx_insn * note, *next;
4849
4850 for (note = NEXT_INSN (beg_head);
4851 note != beg_tail;
4852 note = next)
4853 {
4854 next = NEXT_INSN (note);
4855 if (NOTE_P (note))
4856 {
4857 if (sched_verbose >= 9)
4858 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4859
4860 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4861
4862 if (BLOCK_FOR_INSN (note) != beg)
4863 df_insn_change_bb (note, beg);
4864 }
4865 else if (!DEBUG_INSN_P (note))
4866 break;
4867 }
4868
4869 break;
4870 }
4871 else
4872 break;
4873
4874 *headp = beg_head;
4875
4876 if (beg == end)
4877 end_head = beg_head;
4878 else if (LABEL_P (end_head))
4879 end_head = NEXT_INSN (end_head);
4880
4881 while (end_head != end_tail)
4882 if (NOTE_P (end_tail))
4883 end_tail = PREV_INSN (end_tail);
4884 else if (DEBUG_INSN_P (end_tail))
4885 {
4886 rtx_insn * note, *prev;
4887
4888 for (note = PREV_INSN (end_tail);
4889 note != end_head;
4890 note = prev)
4891 {
4892 prev = PREV_INSN (note);
4893 if (NOTE_P (note))
4894 {
4895 if (sched_verbose >= 9)
4896 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4897
4898 reorder_insns_nobb (note, note, end_tail);
4899
4900 if (end_tail == BB_END (end))
4901 BB_END (end) = note;
4902
4903 if (BLOCK_FOR_INSN (note) != end)
4904 df_insn_change_bb (note, end);
4905 }
4906 else if (!DEBUG_INSN_P (note))
4907 break;
4908 }
4909
4910 break;
4911 }
4912 else
4913 break;
4914
4915 *tailp = end_tail;
4916 }
4917
4918 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
4919
4920 int
4921 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
4922 {
4923 while (head != NEXT_INSN (tail))
4924 {
4925 if (!NOTE_P (head) && !LABEL_P (head))
4926 return 0;
4927 head = NEXT_INSN (head);
4928 }
4929 return 1;
4930 }
4931
4932 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
4933 previously found among the insns. Insert them just before HEAD. */
4934 rtx_insn *
4935 restore_other_notes (rtx_insn *head, basic_block head_bb)
4936 {
4937 if (note_list != 0)
4938 {
4939 rtx_insn *note_head = note_list;
4940
4941 if (head)
4942 head_bb = BLOCK_FOR_INSN (head);
4943 else
4944 head = NEXT_INSN (bb_note (head_bb));
4945
4946 while (PREV_INSN (note_head))
4947 {
4948 set_block_for_insn (note_head, head_bb);
4949 note_head = PREV_INSN (note_head);
4950 }
4951 /* In the above cycle we've missed this note. */
4952 set_block_for_insn (note_head, head_bb);
4953
4954 SET_PREV_INSN (note_head) = PREV_INSN (head);
4955 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
4956 SET_PREV_INSN (head) = note_list;
4957 SET_NEXT_INSN (note_list) = head;
4958
4959 if (BLOCK_FOR_INSN (head) != head_bb)
4960 BB_END (head_bb) = note_list;
4961
4962 head = note_head;
4963 }
4964
4965 return head;
4966 }
4967
4968 /* When we know we are going to discard the schedule due to a failed attempt
4969 at modulo scheduling, undo all replacements. */
4970 static void
4971 undo_all_replacements (void)
4972 {
4973 rtx_insn *insn;
4974 int i;
4975
4976 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
4977 {
4978 sd_iterator_def sd_it;
4979 dep_t dep;
4980
4981 /* See if we must undo a replacement. */
4982 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
4983 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4984 {
4985 struct dep_replacement *desc = DEP_REPLACE (dep);
4986 if (desc != NULL)
4987 validate_change (desc->insn, desc->loc, desc->orig, 0);
4988 }
4989 }
4990 }
4991
4992 /* Return first non-scheduled insn in the current scheduling block.
4993 This is mostly used for debug-counter purposes. */
4994 static rtx_insn *
4995 first_nonscheduled_insn (void)
4996 {
4997 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
4998 ? nonscheduled_insns_begin
4999 : current_sched_info->prev_head);
5000
5001 do
5002 {
5003 insn = next_nonnote_nondebug_insn (insn);
5004 }
5005 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5006
5007 return insn;
5008 }
5009
5010 /* Move insns that became ready to fire from queue to ready list. */
5011
5012 static void
5013 queue_to_ready (struct ready_list *ready)
5014 {
5015 rtx_insn *insn;
5016 rtx_insn_list *link;
5017 rtx skip_insn;
5018
5019 q_ptr = NEXT_Q (q_ptr);
5020
5021 if (dbg_cnt (sched_insn) == false)
5022 /* If debug counter is activated do not requeue the first
5023 nonscheduled insn. */
5024 skip_insn = first_nonscheduled_insn ();
5025 else
5026 skip_insn = NULL_RTX;
5027
5028 /* Add all pending insns that can be scheduled without stalls to the
5029 ready list. */
5030 for (link = insn_queue[q_ptr]; link; link = link->next ())
5031 {
5032 insn = link->insn ();
5033 q_size -= 1;
5034
5035 if (sched_verbose >= 2)
5036 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5037 (*current_sched_info->print_insn) (insn, 0));
5038
5039 /* If the ready list is full, delay the insn for 1 cycle.
5040 See the comment in schedule_block for the rationale. */
5041 if (!reload_completed
5042 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5043 || (sched_pressure == SCHED_PRESSURE_MODEL
5044 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5045 instructions too. */
5046 && model_index (insn) > (model_curr_point
5047 + MAX_SCHED_READY_INSNS)))
5048 && !(sched_pressure == SCHED_PRESSURE_MODEL
5049 && model_curr_point < model_num_insns
5050 /* Always allow the next model instruction to issue. */
5051 && model_index (insn) == model_curr_point)
5052 && !SCHED_GROUP_P (insn)
5053 && insn != skip_insn)
5054 {
5055 if (sched_verbose >= 2)
5056 fprintf (sched_dump, "keeping in queue, ready full\n");
5057 queue_insn (insn, 1, "ready full");
5058 }
5059 else
5060 {
5061 ready_add (ready, insn, false);
5062 if (sched_verbose >= 2)
5063 fprintf (sched_dump, "moving to ready without stalls\n");
5064 }
5065 }
5066 free_INSN_LIST_list (&insn_queue[q_ptr]);
5067
5068 /* If there are no ready insns, stall until one is ready and add all
5069 of the pending insns at that point to the ready list. */
5070 if (ready->n_ready == 0)
5071 {
5072 int stalls;
5073
5074 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5075 {
5076 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5077 {
5078 for (; link; link = link->next ())
5079 {
5080 insn = link->insn ();
5081 q_size -= 1;
5082
5083 if (sched_verbose >= 2)
5084 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5085 (*current_sched_info->print_insn) (insn, 0));
5086
5087 ready_add (ready, insn, false);
5088 if (sched_verbose >= 2)
5089 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5090 }
5091 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5092
5093 advance_one_cycle ();
5094
5095 break;
5096 }
5097
5098 advance_one_cycle ();
5099 }
5100
5101 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5102 clock_var += stalls;
5103 if (sched_verbose >= 2)
5104 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5105 stalls, clock_var);
5106 }
5107 }
5108
5109 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5110 prematurely move INSN from the queue to the ready list. Currently,
5111 if a target defines the hook 'is_costly_dependence', this function
5112 uses the hook to check whether there exist any dependences which are
5113 considered costly by the target, between INSN and other insns that
5114 have already been scheduled. Dependences are checked up to Y cycles
5115 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5116 controlling this value.
5117 (Other considerations could be taken into account instead (or in
5118 addition) depending on user flags and target hooks. */
5119
5120 static bool
5121 ok_for_early_queue_removal (rtx insn)
5122 {
5123 if (targetm.sched.is_costly_dependence)
5124 {
5125 rtx prev_insn;
5126 int n_cycles;
5127 int i = scheduled_insns.length ();
5128 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5129 {
5130 while (i-- > 0)
5131 {
5132 int cost;
5133
5134 prev_insn = scheduled_insns[i];
5135
5136 if (!NOTE_P (prev_insn))
5137 {
5138 dep_t dep;
5139
5140 dep = sd_find_dep_between (prev_insn, insn, true);
5141
5142 if (dep != NULL)
5143 {
5144 cost = dep_cost (dep);
5145
5146 if (targetm.sched.is_costly_dependence (dep, cost,
5147 flag_sched_stalled_insns_dep - n_cycles))
5148 return false;
5149 }
5150 }
5151
5152 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5153 break;
5154 }
5155
5156 if (i == 0)
5157 break;
5158 }
5159 }
5160
5161 return true;
5162 }
5163
5164
5165 /* Remove insns from the queue, before they become "ready" with respect
5166 to FU latency considerations. */
5167
5168 static int
5169 early_queue_to_ready (state_t state, struct ready_list *ready)
5170 {
5171 rtx_insn *insn;
5172 rtx_insn_list *link;
5173 rtx_insn_list *next_link;
5174 rtx_insn_list *prev_link;
5175 bool move_to_ready;
5176 int cost;
5177 state_t temp_state = alloca (dfa_state_size);
5178 int stalls;
5179 int insns_removed = 0;
5180
5181 /*
5182 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5183 function:
5184
5185 X == 0: There is no limit on how many queued insns can be removed
5186 prematurely. (flag_sched_stalled_insns = -1).
5187
5188 X >= 1: Only X queued insns can be removed prematurely in each
5189 invocation. (flag_sched_stalled_insns = X).
5190
5191 Otherwise: Early queue removal is disabled.
5192 (flag_sched_stalled_insns = 0)
5193 */
5194
5195 if (! flag_sched_stalled_insns)
5196 return 0;
5197
5198 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5199 {
5200 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5201 {
5202 if (sched_verbose > 6)
5203 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5204
5205 prev_link = 0;
5206 while (link)
5207 {
5208 next_link = link->next ();
5209 insn = link->insn ();
5210 if (insn && sched_verbose > 6)
5211 print_rtl_single (sched_dump, insn);
5212
5213 memcpy (temp_state, state, dfa_state_size);
5214 if (recog_memoized (insn) < 0)
5215 /* non-negative to indicate that it's not ready
5216 to avoid infinite Q->R->Q->R... */
5217 cost = 0;
5218 else
5219 cost = state_transition (temp_state, insn);
5220
5221 if (sched_verbose >= 6)
5222 fprintf (sched_dump, "transition cost = %d\n", cost);
5223
5224 move_to_ready = false;
5225 if (cost < 0)
5226 {
5227 move_to_ready = ok_for_early_queue_removal (insn);
5228 if (move_to_ready == true)
5229 {
5230 /* move from Q to R */
5231 q_size -= 1;
5232 ready_add (ready, insn, false);
5233
5234 if (prev_link)
5235 XEXP (prev_link, 1) = next_link;
5236 else
5237 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5238
5239 free_INSN_LIST_node (link);
5240
5241 if (sched_verbose >= 2)
5242 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5243 (*current_sched_info->print_insn) (insn, 0));
5244
5245 insns_removed++;
5246 if (insns_removed == flag_sched_stalled_insns)
5247 /* Remove no more than flag_sched_stalled_insns insns
5248 from Q at a time. */
5249 return insns_removed;
5250 }
5251 }
5252
5253 if (move_to_ready == false)
5254 prev_link = link;
5255
5256 link = next_link;
5257 } /* while link */
5258 } /* if link */
5259
5260 } /* for stalls.. */
5261
5262 return insns_removed;
5263 }
5264
5265
5266 /* Print the ready list for debugging purposes.
5267 If READY_TRY is non-zero then only print insns that max_issue
5268 will consider. */
5269 static void
5270 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5271 {
5272 rtx_insn **p;
5273 int i;
5274
5275 if (ready->n_ready == 0)
5276 {
5277 fprintf (sched_dump, "\n");
5278 return;
5279 }
5280
5281 p = ready_lastpos (ready);
5282 for (i = 0; i < ready->n_ready; i++)
5283 {
5284 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5285 continue;
5286
5287 fprintf (sched_dump, " %s:%d",
5288 (*current_sched_info->print_insn) (p[i], 0),
5289 INSN_LUID (p[i]));
5290 if (sched_pressure != SCHED_PRESSURE_NONE)
5291 fprintf (sched_dump, "(cost=%d",
5292 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5293 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5294 if (INSN_TICK (p[i]) > clock_var)
5295 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5296 if (sched_pressure == SCHED_PRESSURE_MODEL)
5297 fprintf (sched_dump, ":idx=%d",
5298 model_index (p[i]));
5299 if (sched_pressure != SCHED_PRESSURE_NONE)
5300 fprintf (sched_dump, ")");
5301 }
5302 fprintf (sched_dump, "\n");
5303 }
5304
5305 /* Print the ready list. Callable from debugger. */
5306 static void
5307 debug_ready_list (struct ready_list *ready)
5308 {
5309 debug_ready_list_1 (ready, NULL);
5310 }
5311
5312 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5313 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5314 replaces the epilogue note in the correct basic block. */
5315 void
5316 reemit_notes (rtx_insn *insn)
5317 {
5318 rtx note;
5319 rtx_insn *last = insn;
5320
5321 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5322 {
5323 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5324 {
5325 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5326
5327 last = emit_note_before (note_type, last);
5328 remove_note (insn, note);
5329 }
5330 }
5331 }
5332
5333 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5334 static void
5335 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5336 {
5337 if (PREV_INSN (insn) != last)
5338 {
5339 basic_block bb;
5340 rtx_insn *note;
5341 int jump_p = 0;
5342
5343 bb = BLOCK_FOR_INSN (insn);
5344
5345 /* BB_HEAD is either LABEL or NOTE. */
5346 gcc_assert (BB_HEAD (bb) != insn);
5347
5348 if (BB_END (bb) == insn)
5349 /* If this is last instruction in BB, move end marker one
5350 instruction up. */
5351 {
5352 /* Jumps are always placed at the end of basic block. */
5353 jump_p = control_flow_insn_p (insn);
5354
5355 gcc_assert (!jump_p
5356 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5357 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5358 || (common_sched_info->sched_pass_id
5359 == SCHED_EBB_PASS));
5360
5361 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5362
5363 BB_END (bb) = PREV_INSN (insn);
5364 }
5365
5366 gcc_assert (BB_END (bb) != last);
5367
5368 if (jump_p)
5369 /* We move the block note along with jump. */
5370 {
5371 gcc_assert (nt);
5372
5373 note = NEXT_INSN (insn);
5374 while (NOTE_NOT_BB_P (note) && note != nt)
5375 note = NEXT_INSN (note);
5376
5377 if (note != nt
5378 && (LABEL_P (note)
5379 || BARRIER_P (note)))
5380 note = NEXT_INSN (note);
5381
5382 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5383 }
5384 else
5385 note = insn;
5386
5387 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5388 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5389
5390 SET_NEXT_INSN (note) = NEXT_INSN (last);
5391 SET_PREV_INSN (NEXT_INSN (last)) = note;
5392
5393 SET_NEXT_INSN (last) = insn;
5394 SET_PREV_INSN (insn) = last;
5395
5396 bb = BLOCK_FOR_INSN (last);
5397
5398 if (jump_p)
5399 {
5400 fix_jump_move (insn);
5401
5402 if (BLOCK_FOR_INSN (insn) != bb)
5403 move_block_after_check (insn);
5404
5405 gcc_assert (BB_END (bb) == last);
5406 }
5407
5408 df_insn_change_bb (insn, bb);
5409
5410 /* Update BB_END, if needed. */
5411 if (BB_END (bb) == last)
5412 BB_END (bb) = insn;
5413 }
5414
5415 SCHED_GROUP_P (insn) = 0;
5416 }
5417
5418 /* Return true if scheduling INSN will finish current clock cycle. */
5419 static bool
5420 insn_finishes_cycle_p (rtx_insn *insn)
5421 {
5422 if (SCHED_GROUP_P (insn))
5423 /* After issuing INSN, rest of the sched_group will be forced to issue
5424 in order. Don't make any plans for the rest of cycle. */
5425 return true;
5426
5427 /* Finishing the block will, apparently, finish the cycle. */
5428 if (current_sched_info->insn_finishes_block_p
5429 && current_sched_info->insn_finishes_block_p (insn))
5430 return true;
5431
5432 return false;
5433 }
5434
5435 /* Define type for target data used in multipass scheduling. */
5436 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5437 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5438 #endif
5439 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5440
5441 /* The following structure describe an entry of the stack of choices. */
5442 struct choice_entry
5443 {
5444 /* Ordinal number of the issued insn in the ready queue. */
5445 int index;
5446 /* The number of the rest insns whose issues we should try. */
5447 int rest;
5448 /* The number of issued essential insns. */
5449 int n;
5450 /* State after issuing the insn. */
5451 state_t state;
5452 /* Target-specific data. */
5453 first_cycle_multipass_data_t target_data;
5454 };
5455
5456 /* The following array is used to implement a stack of choices used in
5457 function max_issue. */
5458 static struct choice_entry *choice_stack;
5459
5460 /* This holds the value of the target dfa_lookahead hook. */
5461 int dfa_lookahead;
5462
5463 /* The following variable value is maximal number of tries of issuing
5464 insns for the first cycle multipass insn scheduling. We define
5465 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5466 need this constraint if all real insns (with non-negative codes)
5467 had reservations because in this case the algorithm complexity is
5468 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5469 might be incomplete and such insn might occur. For such
5470 descriptions, the complexity of algorithm (without the constraint)
5471 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5472 static int max_lookahead_tries;
5473
5474 /* The following function returns maximal (or close to maximal) number
5475 of insns which can be issued on the same cycle and one of which
5476 insns is insns with the best rank (the first insn in READY). To
5477 make this function tries different samples of ready insns. READY
5478 is current queue `ready'. Global array READY_TRY reflects what
5479 insns are already issued in this try. The function stops immediately,
5480 if it reached the such a solution, that all instruction can be issued.
5481 INDEX will contain index of the best insn in READY. The following
5482 function is used only for first cycle multipass scheduling.
5483
5484 PRIVILEGED_N >= 0
5485
5486 This function expects recognized insns only. All USEs,
5487 CLOBBERs, etc must be filtered elsewhere. */
5488 int
5489 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5490 bool first_cycle_insn_p, int *index)
5491 {
5492 int n, i, all, n_ready, best, delay, tries_num;
5493 int more_issue;
5494 struct choice_entry *top;
5495 rtx_insn *insn;
5496
5497 n_ready = ready->n_ready;
5498 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5499 && privileged_n <= n_ready);
5500
5501 /* Init MAX_LOOKAHEAD_TRIES. */
5502 if (max_lookahead_tries == 0)
5503 {
5504 max_lookahead_tries = 100;
5505 for (i = 0; i < issue_rate; i++)
5506 max_lookahead_tries *= dfa_lookahead;
5507 }
5508
5509 /* Init max_points. */
5510 more_issue = issue_rate - cycle_issued_insns;
5511 gcc_assert (more_issue >= 0);
5512
5513 /* The number of the issued insns in the best solution. */
5514 best = 0;
5515
5516 top = choice_stack;
5517
5518 /* Set initial state of the search. */
5519 memcpy (top->state, state, dfa_state_size);
5520 top->rest = dfa_lookahead;
5521 top->n = 0;
5522 if (targetm.sched.first_cycle_multipass_begin)
5523 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5524 ready_try, n_ready,
5525 first_cycle_insn_p);
5526
5527 /* Count the number of the insns to search among. */
5528 for (all = i = 0; i < n_ready; i++)
5529 if (!ready_try [i])
5530 all++;
5531
5532 if (sched_verbose >= 2)
5533 {
5534 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5535 debug_ready_list_1 (ready, ready_try);
5536 }
5537
5538 /* I is the index of the insn to try next. */
5539 i = 0;
5540 tries_num = 0;
5541 for (;;)
5542 {
5543 if (/* If we've reached a dead end or searched enough of what we have
5544 been asked... */
5545 top->rest == 0
5546 /* or have nothing else to try... */
5547 || i >= n_ready
5548 /* or should not issue more. */
5549 || top->n >= more_issue)
5550 {
5551 /* ??? (... || i == n_ready). */
5552 gcc_assert (i <= n_ready);
5553
5554 /* We should not issue more than issue_rate instructions. */
5555 gcc_assert (top->n <= more_issue);
5556
5557 if (top == choice_stack)
5558 break;
5559
5560 if (best < top - choice_stack)
5561 {
5562 if (privileged_n)
5563 {
5564 n = privileged_n;
5565 /* Try to find issued privileged insn. */
5566 while (n && !ready_try[--n])
5567 ;
5568 }
5569
5570 if (/* If all insns are equally good... */
5571 privileged_n == 0
5572 /* Or a privileged insn will be issued. */
5573 || ready_try[n])
5574 /* Then we have a solution. */
5575 {
5576 best = top - choice_stack;
5577 /* This is the index of the insn issued first in this
5578 solution. */
5579 *index = choice_stack [1].index;
5580 if (top->n == more_issue || best == all)
5581 break;
5582 }
5583 }
5584
5585 /* Set ready-list index to point to the last insn
5586 ('i++' below will advance it to the next insn). */
5587 i = top->index;
5588
5589 /* Backtrack. */
5590 ready_try [i] = 0;
5591
5592 if (targetm.sched.first_cycle_multipass_backtrack)
5593 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5594 ready_try, n_ready);
5595
5596 top--;
5597 memcpy (state, top->state, dfa_state_size);
5598 }
5599 else if (!ready_try [i])
5600 {
5601 tries_num++;
5602 if (tries_num > max_lookahead_tries)
5603 break;
5604 insn = ready_element (ready, i);
5605 delay = state_transition (state, insn);
5606 if (delay < 0)
5607 {
5608 if (state_dead_lock_p (state)
5609 || insn_finishes_cycle_p (insn))
5610 /* We won't issue any more instructions in the next
5611 choice_state. */
5612 top->rest = 0;
5613 else
5614 top->rest--;
5615
5616 n = top->n;
5617 if (memcmp (top->state, state, dfa_state_size) != 0)
5618 n++;
5619
5620 /* Advance to the next choice_entry. */
5621 top++;
5622 /* Initialize it. */
5623 top->rest = dfa_lookahead;
5624 top->index = i;
5625 top->n = n;
5626 memcpy (top->state, state, dfa_state_size);
5627 ready_try [i] = 1;
5628
5629 if (targetm.sched.first_cycle_multipass_issue)
5630 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5631 ready_try, n_ready,
5632 insn,
5633 &((top - 1)
5634 ->target_data));
5635
5636 i = -1;
5637 }
5638 }
5639
5640 /* Increase ready-list index. */
5641 i++;
5642 }
5643
5644 if (targetm.sched.first_cycle_multipass_end)
5645 targetm.sched.first_cycle_multipass_end (best != 0
5646 ? &choice_stack[1].target_data
5647 : NULL);
5648
5649 /* Restore the original state of the DFA. */
5650 memcpy (state, choice_stack->state, dfa_state_size);
5651
5652 return best;
5653 }
5654
5655 /* The following function chooses insn from READY and modifies
5656 READY. The following function is used only for first
5657 cycle multipass scheduling.
5658 Return:
5659 -1 if cycle should be advanced,
5660 0 if INSN_PTR is set to point to the desirable insn,
5661 1 if choose_ready () should be restarted without advancing the cycle. */
5662 static int
5663 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
5664 rtx_insn **insn_ptr)
5665 {
5666 if (dbg_cnt (sched_insn) == false)
5667 {
5668 if (nonscheduled_insns_begin == NULL_RTX)
5669 nonscheduled_insns_begin = current_sched_info->prev_head;
5670
5671 rtx_insn *insn = first_nonscheduled_insn ();
5672
5673 if (QUEUE_INDEX (insn) == QUEUE_READY)
5674 /* INSN is in the ready_list. */
5675 {
5676 ready_remove_insn (insn);
5677 *insn_ptr = insn;
5678 return 0;
5679 }
5680
5681 /* INSN is in the queue. Advance cycle to move it to the ready list. */
5682 gcc_assert (QUEUE_INDEX (insn) >= 0);
5683 return -1;
5684 }
5685
5686 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
5687 || DEBUG_INSN_P (ready_element (ready, 0)))
5688 {
5689 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
5690 *insn_ptr = ready_remove_first_dispatch (ready);
5691 else
5692 *insn_ptr = ready_remove_first (ready);
5693
5694 return 0;
5695 }
5696 else
5697 {
5698 /* Try to choose the best insn. */
5699 int index = 0, i;
5700 rtx_insn *insn;
5701
5702 insn = ready_element (ready, 0);
5703 if (INSN_CODE (insn) < 0)
5704 {
5705 *insn_ptr = ready_remove_first (ready);
5706 return 0;
5707 }
5708
5709 /* Filter the search space. */
5710 for (i = 0; i < ready->n_ready; i++)
5711 {
5712 ready_try[i] = 0;
5713
5714 insn = ready_element (ready, i);
5715
5716 /* If this insn is recognizable we should have already
5717 recognized it earlier.
5718 ??? Not very clear where this is supposed to be done.
5719 See dep_cost_1. */
5720 gcc_checking_assert (INSN_CODE (insn) >= 0
5721 || recog_memoized (insn) < 0);
5722 if (INSN_CODE (insn) < 0)
5723 {
5724 /* Non-recognized insns at position 0 are handled above. */
5725 gcc_assert (i > 0);
5726 ready_try[i] = 1;
5727 continue;
5728 }
5729
5730 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
5731 {
5732 ready_try[i]
5733 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5734 (insn, i));
5735
5736 if (ready_try[i] < 0)
5737 /* Queue instruction for several cycles.
5738 We need to restart choose_ready as we have changed
5739 the ready list. */
5740 {
5741 change_queue_index (insn, -ready_try[i]);
5742 return 1;
5743 }
5744
5745 /* Make sure that we didn't end up with 0'th insn filtered out.
5746 Don't be tempted to make life easier for backends and just
5747 requeue 0'th insn if (ready_try[0] == 0) and restart
5748 choose_ready. Backends should be very considerate about
5749 requeueing instructions -- especially the highest priority
5750 one at position 0. */
5751 gcc_assert (ready_try[i] == 0 || i > 0);
5752 if (ready_try[i])
5753 continue;
5754 }
5755
5756 gcc_assert (ready_try[i] == 0);
5757 /* INSN made it through the scrutiny of filters! */
5758 }
5759
5760 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
5761 {
5762 *insn_ptr = ready_remove_first (ready);
5763 if (sched_verbose >= 4)
5764 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
5765 (*current_sched_info->print_insn) (*insn_ptr, 0));
5766 return 0;
5767 }
5768 else
5769 {
5770 if (sched_verbose >= 4)
5771 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
5772 (*current_sched_info->print_insn)
5773 (ready_element (ready, index), 0));
5774
5775 *insn_ptr = ready_remove (ready, index);
5776 return 0;
5777 }
5778 }
5779 }
5780
5781 /* This function is called when we have successfully scheduled a
5782 block. It uses the schedule stored in the scheduled_insns vector
5783 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
5784 append the scheduled insns; TAIL is the insn after the scheduled
5785 block. TARGET_BB is the argument passed to schedule_block. */
5786
5787 static void
5788 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
5789 {
5790 unsigned int i;
5791 rtx_insn *insn;
5792
5793 last_scheduled_insn = prev_head;
5794 for (i = 0;
5795 scheduled_insns.iterate (i, &insn);
5796 i++)
5797 {
5798 if (control_flow_insn_p (last_scheduled_insn)
5799 || current_sched_info->advance_target_bb (*target_bb, insn))
5800 {
5801 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
5802
5803 if (sched_verbose)
5804 {
5805 rtx_insn *x;
5806
5807 x = next_real_insn (last_scheduled_insn);
5808 gcc_assert (x);
5809 dump_new_block_header (1, *target_bb, x, tail);
5810 }
5811
5812 last_scheduled_insn = bb_note (*target_bb);
5813 }
5814
5815 if (current_sched_info->begin_move_insn)
5816 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
5817 move_insn (insn, last_scheduled_insn,
5818 current_sched_info->next_tail);
5819 if (!DEBUG_INSN_P (insn))
5820 reemit_notes (insn);
5821 last_scheduled_insn = insn;
5822 }
5823
5824 scheduled_insns.truncate (0);
5825 }
5826
5827 /* Examine all insns on the ready list and queue those which can't be
5828 issued in this cycle. TEMP_STATE is temporary scheduler state we
5829 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
5830 have been issued for the current cycle, which means it is valid to
5831 issue an asm statement.
5832
5833 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
5834 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
5835 we only leave insns which have an INSN_EXACT_TICK. */
5836
5837 static void
5838 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
5839 bool shadows_only_p, bool modulo_epilogue_p)
5840 {
5841 int i, pass;
5842 bool sched_group_found = false;
5843 int min_cost_group = 1;
5844
5845 for (i = 0; i < ready.n_ready; i++)
5846 {
5847 rtx_insn *insn = ready_element (&ready, i);
5848 if (SCHED_GROUP_P (insn))
5849 {
5850 sched_group_found = true;
5851 break;
5852 }
5853 }
5854
5855 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
5856 such an insn first and note its cost, then schedule all other insns
5857 for one cycle later. */
5858 for (pass = sched_group_found ? 0 : 1; pass < 2; )
5859 {
5860 int n = ready.n_ready;
5861 for (i = 0; i < n; i++)
5862 {
5863 rtx_insn *insn = ready_element (&ready, i);
5864 int cost = 0;
5865 const char *reason = "resource conflict";
5866
5867 if (DEBUG_INSN_P (insn))
5868 continue;
5869
5870 if (sched_group_found && !SCHED_GROUP_P (insn))
5871 {
5872 if (pass == 0)
5873 continue;
5874 cost = min_cost_group;
5875 reason = "not in sched group";
5876 }
5877 else if (modulo_epilogue_p
5878 && INSN_EXACT_TICK (insn) == INVALID_TICK)
5879 {
5880 cost = max_insn_queue_index;
5881 reason = "not an epilogue insn";
5882 }
5883 else if (shadows_only_p && !SHADOW_P (insn))
5884 {
5885 cost = 1;
5886 reason = "not a shadow";
5887 }
5888 else if (recog_memoized (insn) < 0)
5889 {
5890 if (!first_cycle_insn_p
5891 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
5892 || asm_noperands (PATTERN (insn)) >= 0))
5893 cost = 1;
5894 reason = "asm";
5895 }
5896 else if (sched_pressure != SCHED_PRESSURE_NONE)
5897 {
5898 if (sched_pressure == SCHED_PRESSURE_MODEL
5899 && INSN_TICK (insn) <= clock_var)
5900 {
5901 memcpy (temp_state, curr_state, dfa_state_size);
5902 if (state_transition (temp_state, insn) >= 0)
5903 INSN_TICK (insn) = clock_var + 1;
5904 }
5905 cost = 0;
5906 }
5907 else
5908 {
5909 int delay_cost = 0;
5910
5911 if (delay_htab)
5912 {
5913 struct delay_pair *delay_entry;
5914 delay_entry
5915 = delay_htab->find_with_hash (insn,
5916 htab_hash_pointer (insn));
5917 while (delay_entry && delay_cost == 0)
5918 {
5919 delay_cost = estimate_shadow_tick (delay_entry);
5920 if (delay_cost > max_insn_queue_index)
5921 delay_cost = max_insn_queue_index;
5922 delay_entry = delay_entry->next_same_i1;
5923 }
5924 }
5925
5926 memcpy (temp_state, curr_state, dfa_state_size);
5927 cost = state_transition (temp_state, insn);
5928 if (cost < 0)
5929 cost = 0;
5930 else if (cost == 0)
5931 cost = 1;
5932 if (cost < delay_cost)
5933 {
5934 cost = delay_cost;
5935 reason = "shadow tick";
5936 }
5937 }
5938 if (cost >= 1)
5939 {
5940 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
5941 min_cost_group = cost;
5942 ready_remove (&ready, i);
5943 queue_insn (insn, cost, reason);
5944 if (i + 1 < n)
5945 break;
5946 }
5947 }
5948 if (i == n)
5949 pass++;
5950 }
5951 }
5952
5953 /* Called when we detect that the schedule is impossible. We examine the
5954 backtrack queue to find the earliest insn that caused this condition. */
5955
5956 static struct haifa_saved_data *
5957 verify_shadows (void)
5958 {
5959 struct haifa_saved_data *save, *earliest_fail = NULL;
5960 for (save = backtrack_queue; save; save = save->next)
5961 {
5962 int t;
5963 struct delay_pair *pair = save->delay_pair;
5964 rtx_insn *i1 = pair->i1;
5965
5966 for (; pair; pair = pair->next_same_i1)
5967 {
5968 rtx_insn *i2 = pair->i2;
5969
5970 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
5971 continue;
5972
5973 t = INSN_TICK (i1) + pair_delay (pair);
5974 if (t < clock_var)
5975 {
5976 if (sched_verbose >= 2)
5977 fprintf (sched_dump,
5978 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
5979 ", not ready\n",
5980 INSN_UID (pair->i1), INSN_UID (pair->i2),
5981 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5982 earliest_fail = save;
5983 break;
5984 }
5985 if (QUEUE_INDEX (i2) >= 0)
5986 {
5987 int queued_for = INSN_TICK (i2);
5988
5989 if (t < queued_for)
5990 {
5991 if (sched_verbose >= 2)
5992 fprintf (sched_dump,
5993 ";;\t\tfailed delay requirements for %d/%d"
5994 " (%d->%d), queued too late\n",
5995 INSN_UID (pair->i1), INSN_UID (pair->i2),
5996 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5997 earliest_fail = save;
5998 break;
5999 }
6000 }
6001 }
6002 }
6003
6004 return earliest_fail;
6005 }
6006
6007 /* Print instructions together with useful scheduling information between
6008 HEAD and TAIL (inclusive). */
6009 static void
6010 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6011 {
6012 fprintf (sched_dump, ";;\t| insn | prio |\n");
6013
6014 rtx_insn *next_tail = NEXT_INSN (tail);
6015 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6016 {
6017 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6018 const char *pattern = (NOTE_P (insn)
6019 ? "note"
6020 : str_pattern_slim (PATTERN (insn)));
6021
6022 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6023 INSN_UID (insn), priority, pattern);
6024
6025 if (sched_verbose >= 4)
6026 {
6027 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6028 fprintf (sched_dump, "nothing");
6029 else
6030 print_reservation (sched_dump, insn);
6031 }
6032 fprintf (sched_dump, "\n");
6033 }
6034 }
6035
6036 /* Use forward list scheduling to rearrange insns of block pointed to by
6037 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6038 region. */
6039
6040 bool
6041 schedule_block (basic_block *target_bb, state_t init_state)
6042 {
6043 int i;
6044 bool success = modulo_ii == 0;
6045 struct sched_block_state ls;
6046 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6047 int sort_p, advance, start_clock_var;
6048
6049 /* Head/tail info for this block. */
6050 rtx_insn *prev_head = current_sched_info->prev_head;
6051 rtx_insn *next_tail = current_sched_info->next_tail;
6052 rtx_insn *head = NEXT_INSN (prev_head);
6053 rtx_insn *tail = PREV_INSN (next_tail);
6054
6055 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6056 && sched_pressure != SCHED_PRESSURE_MODEL)
6057 find_modifiable_mems (head, tail);
6058
6059 /* We used to have code to avoid getting parameters moved from hard
6060 argument registers into pseudos.
6061
6062 However, it was removed when it proved to be of marginal benefit
6063 and caused problems because schedule_block and compute_forward_dependences
6064 had different notions of what the "head" insn was. */
6065
6066 gcc_assert (head != tail || INSN_P (head));
6067
6068 haifa_recovery_bb_recently_added_p = false;
6069
6070 backtrack_queue = NULL;
6071
6072 /* Debug info. */
6073 if (sched_verbose)
6074 {
6075 dump_new_block_header (0, *target_bb, head, tail);
6076
6077 if (sched_verbose >= 2)
6078 {
6079 dump_insn_stream (head, tail);
6080 memset (&rank_for_schedule_stats, 0,
6081 sizeof (rank_for_schedule_stats));
6082 }
6083 }
6084
6085 if (init_state == NULL)
6086 state_reset (curr_state);
6087 else
6088 memcpy (curr_state, init_state, dfa_state_size);
6089
6090 /* Clear the ready list. */
6091 ready.first = ready.veclen - 1;
6092 ready.n_ready = 0;
6093 ready.n_debug = 0;
6094
6095 /* It is used for first cycle multipass scheduling. */
6096 temp_state = alloca (dfa_state_size);
6097
6098 if (targetm.sched.init)
6099 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6100
6101 /* We start inserting insns after PREV_HEAD. */
6102 last_scheduled_insn = prev_head;
6103 last_nondebug_scheduled_insn = NULL_RTX;
6104 nonscheduled_insns_begin = NULL;
6105
6106 gcc_assert ((NOTE_P (last_scheduled_insn)
6107 || DEBUG_INSN_P (last_scheduled_insn))
6108 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6109
6110 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6111 queue. */
6112 q_ptr = 0;
6113 q_size = 0;
6114
6115 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6116 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6117
6118 /* Start just before the beginning of time. */
6119 clock_var = -1;
6120
6121 /* We need queue and ready lists and clock_var be initialized
6122 in try_ready () (which is called through init_ready_list ()). */
6123 (*current_sched_info->init_ready_list) ();
6124
6125 if (sched_pressure)
6126 sched_pressure_start_bb (*target_bb);
6127
6128 /* The algorithm is O(n^2) in the number of ready insns at any given
6129 time in the worst case. Before reload we are more likely to have
6130 big lists so truncate them to a reasonable size. */
6131 if (!reload_completed
6132 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6133 {
6134 ready_sort (&ready);
6135
6136 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6137 If there are debug insns, we know they're first. */
6138 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6139 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6140 break;
6141
6142 if (sched_verbose >= 2)
6143 {
6144 fprintf (sched_dump,
6145 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
6146 fprintf (sched_dump,
6147 ";;\t\t before reload => truncated to %d insns\n", i);
6148 }
6149
6150 /* Delay all insns past it for 1 cycle. If debug counter is
6151 activated make an exception for the insn right after
6152 nonscheduled_insns_begin. */
6153 {
6154 rtx_insn *skip_insn;
6155
6156 if (dbg_cnt (sched_insn) == false)
6157 skip_insn = first_nonscheduled_insn ();
6158 else
6159 skip_insn = NULL;
6160
6161 while (i < ready.n_ready)
6162 {
6163 rtx_insn *insn;
6164
6165 insn = ready_remove (&ready, i);
6166
6167 if (insn != skip_insn)
6168 queue_insn (insn, 1, "list truncated");
6169 }
6170 if (skip_insn)
6171 ready_add (&ready, skip_insn, true);
6172 }
6173 }
6174
6175 /* Now we can restore basic block notes and maintain precise cfg. */
6176 restore_bb_notes (*target_bb);
6177
6178 last_clock_var = -1;
6179
6180 advance = 0;
6181
6182 gcc_assert (scheduled_insns.length () == 0);
6183 sort_p = TRUE;
6184 must_backtrack = false;
6185 modulo_insns_scheduled = 0;
6186
6187 ls.modulo_epilogue = false;
6188 ls.first_cycle_insn_p = true;
6189
6190 /* Loop until all the insns in BB are scheduled. */
6191 while ((*current_sched_info->schedule_more_p) ())
6192 {
6193 perform_replacements_new_cycle ();
6194 do
6195 {
6196 start_clock_var = clock_var;
6197
6198 clock_var++;
6199
6200 advance_one_cycle ();
6201
6202 /* Add to the ready list all pending insns that can be issued now.
6203 If there are no ready insns, increment clock until one
6204 is ready and add all pending insns at that point to the ready
6205 list. */
6206 queue_to_ready (&ready);
6207
6208 gcc_assert (ready.n_ready);
6209
6210 if (sched_verbose >= 2)
6211 {
6212 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6213 debug_ready_list (&ready);
6214 }
6215 advance -= clock_var - start_clock_var;
6216 }
6217 while (advance > 0);
6218
6219 if (ls.modulo_epilogue)
6220 {
6221 int stage = clock_var / modulo_ii;
6222 if (stage > modulo_last_stage * 2 + 2)
6223 {
6224 if (sched_verbose >= 2)
6225 fprintf (sched_dump,
6226 ";;\t\tmodulo scheduled succeeded at II %d\n",
6227 modulo_ii);
6228 success = true;
6229 goto end_schedule;
6230 }
6231 }
6232 else if (modulo_ii > 0)
6233 {
6234 int stage = clock_var / modulo_ii;
6235 if (stage > modulo_max_stages)
6236 {
6237 if (sched_verbose >= 2)
6238 fprintf (sched_dump,
6239 ";;\t\tfailing schedule due to excessive stages\n");
6240 goto end_schedule;
6241 }
6242 if (modulo_n_insns == modulo_insns_scheduled
6243 && stage > modulo_last_stage)
6244 {
6245 if (sched_verbose >= 2)
6246 fprintf (sched_dump,
6247 ";;\t\tfound kernel after %d stages, II %d\n",
6248 stage, modulo_ii);
6249 ls.modulo_epilogue = true;
6250 }
6251 }
6252
6253 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6254 if (ready.n_ready == 0)
6255 continue;
6256 if (must_backtrack)
6257 goto do_backtrack;
6258
6259 ls.shadows_only_p = false;
6260 cycle_issued_insns = 0;
6261 ls.can_issue_more = issue_rate;
6262 for (;;)
6263 {
6264 rtx_insn *insn;
6265 int cost;
6266 bool asm_p;
6267
6268 if (sort_p && ready.n_ready > 0)
6269 {
6270 /* Sort the ready list based on priority. This must be
6271 done every iteration through the loop, as schedule_insn
6272 may have readied additional insns that will not be
6273 sorted correctly. */
6274 ready_sort (&ready);
6275
6276 if (sched_verbose >= 2)
6277 {
6278 fprintf (sched_dump,
6279 ";;\t\tReady list after ready_sort: ");
6280 debug_ready_list (&ready);
6281 }
6282 }
6283
6284 /* We don't want md sched reorder to even see debug isns, so put
6285 them out right away. */
6286 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6287 && (*current_sched_info->schedule_more_p) ())
6288 {
6289 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6290 {
6291 rtx_insn *insn = ready_remove_first (&ready);
6292 gcc_assert (DEBUG_INSN_P (insn));
6293 (*current_sched_info->begin_schedule_ready) (insn);
6294 scheduled_insns.safe_push (insn);
6295 last_scheduled_insn = insn;
6296 advance = schedule_insn (insn);
6297 gcc_assert (advance == 0);
6298 if (ready.n_ready > 0)
6299 ready_sort (&ready);
6300 }
6301 }
6302
6303 if (ls.first_cycle_insn_p && !ready.n_ready)
6304 break;
6305
6306 resume_after_backtrack:
6307 /* Allow the target to reorder the list, typically for
6308 better instruction bundling. */
6309 if (sort_p
6310 && (ready.n_ready == 0
6311 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6312 {
6313 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6314 ls.can_issue_more
6315 = targetm.sched.reorder (sched_dump, sched_verbose,
6316 ready_lastpos (&ready),
6317 &ready.n_ready, clock_var);
6318 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6319 ls.can_issue_more
6320 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6321 ready.n_ready
6322 ? ready_lastpos (&ready) : NULL,
6323 &ready.n_ready, clock_var);
6324 }
6325
6326 restart_choose_ready:
6327 if (sched_verbose >= 2)
6328 {
6329 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6330 clock_var);
6331 debug_ready_list (&ready);
6332 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6333 print_curr_reg_pressure ();
6334 }
6335
6336 if (ready.n_ready == 0
6337 && ls.can_issue_more
6338 && reload_completed)
6339 {
6340 /* Allow scheduling insns directly from the queue in case
6341 there's nothing better to do (ready list is empty) but
6342 there are still vacant dispatch slots in the current cycle. */
6343 if (sched_verbose >= 6)
6344 fprintf (sched_dump,";;\t\tSecond chance\n");
6345 memcpy (temp_state, curr_state, dfa_state_size);
6346 if (early_queue_to_ready (temp_state, &ready))
6347 ready_sort (&ready);
6348 }
6349
6350 if (ready.n_ready == 0
6351 || !ls.can_issue_more
6352 || state_dead_lock_p (curr_state)
6353 || !(*current_sched_info->schedule_more_p) ())
6354 break;
6355
6356 /* Select and remove the insn from the ready list. */
6357 if (sort_p)
6358 {
6359 int res;
6360
6361 insn = NULL;
6362 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6363
6364 if (res < 0)
6365 /* Finish cycle. */
6366 break;
6367 if (res > 0)
6368 goto restart_choose_ready;
6369
6370 gcc_assert (insn != NULL_RTX);
6371 }
6372 else
6373 insn = ready_remove_first (&ready);
6374
6375 if (sched_pressure != SCHED_PRESSURE_NONE
6376 && INSN_TICK (insn) > clock_var)
6377 {
6378 ready_add (&ready, insn, true);
6379 advance = 1;
6380 break;
6381 }
6382
6383 if (targetm.sched.dfa_new_cycle
6384 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6385 insn, last_clock_var,
6386 clock_var, &sort_p))
6387 /* SORT_P is used by the target to override sorting
6388 of the ready list. This is needed when the target
6389 has modified its internal structures expecting that
6390 the insn will be issued next. As we need the insn
6391 to have the highest priority (so it will be returned by
6392 the ready_remove_first call above), we invoke
6393 ready_add (&ready, insn, true).
6394 But, still, there is one issue: INSN can be later
6395 discarded by scheduler's front end through
6396 current_sched_info->can_schedule_ready_p, hence, won't
6397 be issued next. */
6398 {
6399 ready_add (&ready, insn, true);
6400 break;
6401 }
6402
6403 sort_p = TRUE;
6404
6405 if (current_sched_info->can_schedule_ready_p
6406 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6407 /* We normally get here only if we don't want to move
6408 insn from the split block. */
6409 {
6410 TODO_SPEC (insn) = DEP_POSTPONED;
6411 goto restart_choose_ready;
6412 }
6413
6414 if (delay_htab)
6415 {
6416 /* If this insn is the first part of a delay-slot pair, record a
6417 backtrack point. */
6418 struct delay_pair *delay_entry;
6419 delay_entry
6420 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6421 if (delay_entry)
6422 {
6423 save_backtrack_point (delay_entry, ls);
6424 if (sched_verbose >= 2)
6425 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6426 }
6427 }
6428
6429 /* DECISION is made. */
6430
6431 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6432 {
6433 modulo_insns_scheduled++;
6434 modulo_last_stage = clock_var / modulo_ii;
6435 }
6436 if (TODO_SPEC (insn) & SPECULATIVE)
6437 generate_recovery_code (insn);
6438
6439 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6440 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6441
6442 /* Update counters, etc in the scheduler's front end. */
6443 (*current_sched_info->begin_schedule_ready) (insn);
6444 scheduled_insns.safe_push (insn);
6445 gcc_assert (NONDEBUG_INSN_P (insn));
6446 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6447
6448 if (recog_memoized (insn) >= 0)
6449 {
6450 memcpy (temp_state, curr_state, dfa_state_size);
6451 cost = state_transition (curr_state, insn);
6452 if (sched_pressure != SCHED_PRESSURE_WEIGHTED)
6453 gcc_assert (cost < 0);
6454 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6455 cycle_issued_insns++;
6456 asm_p = false;
6457 }
6458 else
6459 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6460 || asm_noperands (PATTERN (insn)) >= 0);
6461
6462 if (targetm.sched.variable_issue)
6463 ls.can_issue_more =
6464 targetm.sched.variable_issue (sched_dump, sched_verbose,
6465 insn, ls.can_issue_more);
6466 /* A naked CLOBBER or USE generates no instruction, so do
6467 not count them against the issue rate. */
6468 else if (GET_CODE (PATTERN (insn)) != USE
6469 && GET_CODE (PATTERN (insn)) != CLOBBER)
6470 ls.can_issue_more--;
6471 advance = schedule_insn (insn);
6472
6473 if (SHADOW_P (insn))
6474 ls.shadows_only_p = true;
6475
6476 /* After issuing an asm insn we should start a new cycle. */
6477 if (advance == 0 && asm_p)
6478 advance = 1;
6479
6480 if (must_backtrack)
6481 break;
6482
6483 if (advance != 0)
6484 break;
6485
6486 ls.first_cycle_insn_p = false;
6487 if (ready.n_ready > 0)
6488 prune_ready_list (temp_state, false, ls.shadows_only_p,
6489 ls.modulo_epilogue);
6490 }
6491
6492 do_backtrack:
6493 if (!must_backtrack)
6494 for (i = 0; i < ready.n_ready; i++)
6495 {
6496 rtx_insn *insn = ready_element (&ready, i);
6497 if (INSN_EXACT_TICK (insn) == clock_var)
6498 {
6499 must_backtrack = true;
6500 clock_var++;
6501 break;
6502 }
6503 }
6504 if (must_backtrack && modulo_ii > 0)
6505 {
6506 if (modulo_backtracks_left == 0)
6507 goto end_schedule;
6508 modulo_backtracks_left--;
6509 }
6510 while (must_backtrack)
6511 {
6512 struct haifa_saved_data *failed;
6513 rtx_insn *failed_insn;
6514
6515 must_backtrack = false;
6516 failed = verify_shadows ();
6517 gcc_assert (failed);
6518
6519 failed_insn = failed->delay_pair->i1;
6520 /* Clear these queues. */
6521 perform_replacements_new_cycle ();
6522 toggle_cancelled_flags (false);
6523 unschedule_insns_until (failed_insn);
6524 while (failed != backtrack_queue)
6525 free_topmost_backtrack_point (true);
6526 restore_last_backtrack_point (&ls);
6527 if (sched_verbose >= 2)
6528 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6529 /* Delay by at least a cycle. This could cause additional
6530 backtracking. */
6531 queue_insn (failed_insn, 1, "backtracked");
6532 advance = 0;
6533 if (must_backtrack)
6534 continue;
6535 if (ready.n_ready > 0)
6536 goto resume_after_backtrack;
6537 else
6538 {
6539 if (clock_var == 0 && ls.first_cycle_insn_p)
6540 goto end_schedule;
6541 advance = 1;
6542 break;
6543 }
6544 }
6545 ls.first_cycle_insn_p = true;
6546 }
6547 if (ls.modulo_epilogue)
6548 success = true;
6549 end_schedule:
6550 if (!ls.first_cycle_insn_p || advance)
6551 advance_one_cycle ();
6552 perform_replacements_new_cycle ();
6553 if (modulo_ii > 0)
6554 {
6555 /* Once again, debug insn suckiness: they can be on the ready list
6556 even if they have unresolved dependencies. To make our view
6557 of the world consistent, remove such "ready" insns. */
6558 restart_debug_insn_loop:
6559 for (i = ready.n_ready - 1; i >= 0; i--)
6560 {
6561 rtx_insn *x;
6562
6563 x = ready_element (&ready, i);
6564 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6565 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6566 {
6567 ready_remove (&ready, i);
6568 goto restart_debug_insn_loop;
6569 }
6570 }
6571 for (i = ready.n_ready - 1; i >= 0; i--)
6572 {
6573 rtx_insn *x;
6574
6575 x = ready_element (&ready, i);
6576 resolve_dependencies (x);
6577 }
6578 for (i = 0; i <= max_insn_queue_index; i++)
6579 {
6580 rtx_insn_list *link;
6581 while ((link = insn_queue[i]) != NULL)
6582 {
6583 rtx_insn *x = link->insn ();
6584 insn_queue[i] = link->next ();
6585 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6586 free_INSN_LIST_node (link);
6587 resolve_dependencies (x);
6588 }
6589 }
6590 }
6591
6592 if (!success)
6593 undo_all_replacements ();
6594
6595 /* Debug info. */
6596 if (sched_verbose)
6597 {
6598 fprintf (sched_dump, ";;\tReady list (final): ");
6599 debug_ready_list (&ready);
6600 }
6601
6602 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6603 /* Sanity check -- queue must be empty now. Meaningless if region has
6604 multiple bbs. */
6605 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6606 else if (modulo_ii == 0)
6607 {
6608 /* We must maintain QUEUE_INDEX between blocks in region. */
6609 for (i = ready.n_ready - 1; i >= 0; i--)
6610 {
6611 rtx_insn *x;
6612
6613 x = ready_element (&ready, i);
6614 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6615 TODO_SPEC (x) = HARD_DEP;
6616 }
6617
6618 if (q_size)
6619 for (i = 0; i <= max_insn_queue_index; i++)
6620 {
6621 rtx_insn_list *link;
6622 for (link = insn_queue[i]; link; link = link->next ())
6623 {
6624 rtx_insn *x;
6625
6626 x = link->insn ();
6627 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6628 TODO_SPEC (x) = HARD_DEP;
6629 }
6630 free_INSN_LIST_list (&insn_queue[i]);
6631 }
6632 }
6633
6634 if (sched_pressure == SCHED_PRESSURE_MODEL)
6635 model_end_schedule ();
6636
6637 if (success)
6638 {
6639 commit_schedule (prev_head, tail, target_bb);
6640 if (sched_verbose)
6641 fprintf (sched_dump, ";; total time = %d\n", clock_var);
6642 }
6643 else
6644 last_scheduled_insn = tail;
6645
6646 scheduled_insns.truncate (0);
6647
6648 if (!current_sched_info->queue_must_finish_empty
6649 || haifa_recovery_bb_recently_added_p)
6650 {
6651 /* INSN_TICK (minimum clock tick at which the insn becomes
6652 ready) may be not correct for the insn in the subsequent
6653 blocks of the region. We should use a correct value of
6654 `clock_var' or modify INSN_TICK. It is better to keep
6655 clock_var value equal to 0 at the start of a basic block.
6656 Therefore we modify INSN_TICK here. */
6657 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
6658 }
6659
6660 if (targetm.sched.finish)
6661 {
6662 targetm.sched.finish (sched_dump, sched_verbose);
6663 /* Target might have added some instructions to the scheduled block
6664 in its md_finish () hook. These new insns don't have any data
6665 initialized and to identify them we extend h_i_d so that they'll
6666 get zero luids. */
6667 sched_extend_luids ();
6668 }
6669
6670 /* Update head/tail boundaries. */
6671 head = NEXT_INSN (prev_head);
6672 tail = last_scheduled_insn;
6673
6674 if (sched_verbose)
6675 {
6676 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
6677 INSN_UID (head), INSN_UID (tail));
6678
6679 if (sched_verbose >= 2)
6680 {
6681 dump_insn_stream (head, tail);
6682 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
6683 NULL);
6684 }
6685
6686 fprintf (sched_dump, "\n");
6687 }
6688
6689 head = restore_other_notes (head, NULL);
6690
6691 current_sched_info->head = head;
6692 current_sched_info->tail = tail;
6693
6694 free_backtrack_queue ();
6695
6696 return success;
6697 }
6698 \f
6699 /* Set_priorities: compute priority of each insn in the block. */
6700
6701 int
6702 set_priorities (rtx_insn *head, rtx_insn *tail)
6703 {
6704 rtx_insn *insn;
6705 int n_insn;
6706 int sched_max_insns_priority =
6707 current_sched_info->sched_max_insns_priority;
6708 rtx_insn *prev_head;
6709
6710 if (head == tail && ! INSN_P (head))
6711 gcc_unreachable ();
6712
6713 n_insn = 0;
6714
6715 prev_head = PREV_INSN (head);
6716 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
6717 {
6718 if (!INSN_P (insn))
6719 continue;
6720
6721 n_insn++;
6722 (void) priority (insn);
6723
6724 gcc_assert (INSN_PRIORITY_KNOWN (insn));
6725
6726 sched_max_insns_priority = MAX (sched_max_insns_priority,
6727 INSN_PRIORITY (insn));
6728 }
6729
6730 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
6731
6732 return n_insn;
6733 }
6734
6735 /* Set dump and sched_verbose for the desired debugging output. If no
6736 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
6737 For -fsched-verbose=N, N>=10, print everything to stderr. */
6738 void
6739 setup_sched_dump (void)
6740 {
6741 sched_verbose = sched_verbose_param;
6742 if (sched_verbose_param == 0 && dump_file)
6743 sched_verbose = 1;
6744 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
6745 ? stderr : dump_file);
6746 }
6747
6748 /* Allocate data for register pressure sensitive scheduling. */
6749 static void
6750 alloc_global_sched_pressure_data (void)
6751 {
6752 if (sched_pressure != SCHED_PRESSURE_NONE)
6753 {
6754 int i, max_regno = max_reg_num ();
6755
6756 if (sched_dump != NULL)
6757 /* We need info about pseudos for rtl dumps about pseudo
6758 classes and costs. */
6759 regstat_init_n_sets_and_refs ();
6760 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
6761 sched_regno_pressure_class
6762 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
6763 for (i = 0; i < max_regno; i++)
6764 sched_regno_pressure_class[i]
6765 = (i < FIRST_PSEUDO_REGISTER
6766 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
6767 : ira_pressure_class_translate[reg_allocno_class (i)]);
6768 curr_reg_live = BITMAP_ALLOC (NULL);
6769 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6770 {
6771 saved_reg_live = BITMAP_ALLOC (NULL);
6772 region_ref_regs = BITMAP_ALLOC (NULL);
6773 }
6774
6775 /* Calculate number of CALL_USED_REGS in register classes that
6776 we calculate register pressure for. */
6777 for (int c = 0; c < ira_pressure_classes_num; ++c)
6778 {
6779 enum reg_class cl = ira_pressure_classes[c];
6780
6781 call_used_regs_num[cl] = 0;
6782
6783 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
6784 if (call_used_regs[ira_class_hard_regs[cl][i]])
6785 ++call_used_regs_num[cl];
6786 }
6787 }
6788 }
6789
6790 /* Free data for register pressure sensitive scheduling. Also called
6791 from schedule_region when stopping sched-pressure early. */
6792 void
6793 free_global_sched_pressure_data (void)
6794 {
6795 if (sched_pressure != SCHED_PRESSURE_NONE)
6796 {
6797 if (regstat_n_sets_and_refs != NULL)
6798 regstat_free_n_sets_and_refs ();
6799 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6800 {
6801 BITMAP_FREE (region_ref_regs);
6802 BITMAP_FREE (saved_reg_live);
6803 }
6804 BITMAP_FREE (curr_reg_live);
6805 free (sched_regno_pressure_class);
6806 }
6807 }
6808
6809 /* Initialize some global state for the scheduler. This function works
6810 with the common data shared between all the schedulers. It is called
6811 from the scheduler specific initialization routine. */
6812
6813 void
6814 sched_init (void)
6815 {
6816 /* Disable speculative loads in their presence if cc0 defined. */
6817 #ifdef HAVE_cc0
6818 flag_schedule_speculative_load = 0;
6819 #endif
6820
6821 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6822 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
6823
6824 if (live_range_shrinkage_p)
6825 sched_pressure = SCHED_PRESSURE_WEIGHTED;
6826 else if (flag_sched_pressure
6827 && !reload_completed
6828 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
6829 sched_pressure = ((enum sched_pressure_algorithm)
6830 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
6831 else
6832 sched_pressure = SCHED_PRESSURE_NONE;
6833
6834 if (sched_pressure != SCHED_PRESSURE_NONE)
6835 ira_setup_eliminable_regset ();
6836
6837 /* Initialize SPEC_INFO. */
6838 if (targetm.sched.set_sched_flags)
6839 {
6840 spec_info = &spec_info_var;
6841 targetm.sched.set_sched_flags (spec_info);
6842
6843 if (spec_info->mask != 0)
6844 {
6845 spec_info->data_weakness_cutoff =
6846 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
6847 spec_info->control_weakness_cutoff =
6848 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
6849 * REG_BR_PROB_BASE) / 100;
6850 }
6851 else
6852 /* So we won't read anything accidentally. */
6853 spec_info = NULL;
6854
6855 }
6856 else
6857 /* So we won't read anything accidentally. */
6858 spec_info = 0;
6859
6860 /* Initialize issue_rate. */
6861 if (targetm.sched.issue_rate)
6862 issue_rate = targetm.sched.issue_rate ();
6863 else
6864 issue_rate = 1;
6865
6866 if (targetm.sched.first_cycle_multipass_dfa_lookahead
6867 /* Don't use max_issue with reg_pressure scheduling. Multipass
6868 scheduling and reg_pressure scheduling undo each other's decisions. */
6869 && sched_pressure == SCHED_PRESSURE_NONE)
6870 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
6871 else
6872 dfa_lookahead = 0;
6873
6874 /* Set to "0" so that we recalculate. */
6875 max_lookahead_tries = 0;
6876
6877 if (targetm.sched.init_dfa_pre_cycle_insn)
6878 targetm.sched.init_dfa_pre_cycle_insn ();
6879
6880 if (targetm.sched.init_dfa_post_cycle_insn)
6881 targetm.sched.init_dfa_post_cycle_insn ();
6882
6883 dfa_start ();
6884 dfa_state_size = state_size ();
6885
6886 init_alias_analysis ();
6887
6888 if (!sched_no_dce)
6889 df_set_flags (DF_LR_RUN_DCE);
6890 df_note_add_problem ();
6891
6892 /* More problems needed for interloop dep calculation in SMS. */
6893 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
6894 {
6895 df_rd_add_problem ();
6896 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
6897 }
6898
6899 df_analyze ();
6900
6901 /* Do not run DCE after reload, as this can kill nops inserted
6902 by bundling. */
6903 if (reload_completed)
6904 df_clear_flags (DF_LR_RUN_DCE);
6905
6906 regstat_compute_calls_crossed ();
6907
6908 if (targetm.sched.init_global)
6909 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
6910
6911 alloc_global_sched_pressure_data ();
6912
6913 curr_state = xmalloc (dfa_state_size);
6914 }
6915
6916 static void haifa_init_only_bb (basic_block, basic_block);
6917
6918 /* Initialize data structures specific to the Haifa scheduler. */
6919 void
6920 haifa_sched_init (void)
6921 {
6922 setup_sched_dump ();
6923 sched_init ();
6924
6925 scheduled_insns.create (0);
6926
6927 if (spec_info != NULL)
6928 {
6929 sched_deps_info->use_deps_list = 1;
6930 sched_deps_info->generate_spec_deps = 1;
6931 }
6932
6933 /* Initialize luids, dependency caches, target and h_i_d for the
6934 whole function. */
6935 {
6936 bb_vec_t bbs;
6937 bbs.create (n_basic_blocks_for_fn (cfun));
6938 basic_block bb;
6939
6940 sched_init_bbs ();
6941
6942 FOR_EACH_BB_FN (bb, cfun)
6943 bbs.quick_push (bb);
6944 sched_init_luids (bbs);
6945 sched_deps_init (true);
6946 sched_extend_target ();
6947 haifa_init_h_i_d (bbs);
6948
6949 bbs.release ();
6950 }
6951
6952 sched_init_only_bb = haifa_init_only_bb;
6953 sched_split_block = sched_split_block_1;
6954 sched_create_empty_bb = sched_create_empty_bb_1;
6955 haifa_recovery_bb_ever_added_p = false;
6956
6957 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
6958 before_recovery = 0;
6959 after_recovery = 0;
6960
6961 modulo_ii = 0;
6962 }
6963
6964 /* Finish work with the data specific to the Haifa scheduler. */
6965 void
6966 haifa_sched_finish (void)
6967 {
6968 sched_create_empty_bb = NULL;
6969 sched_split_block = NULL;
6970 sched_init_only_bb = NULL;
6971
6972 if (spec_info && spec_info->dump)
6973 {
6974 char c = reload_completed ? 'a' : 'b';
6975
6976 fprintf (spec_info->dump,
6977 ";; %s:\n", current_function_name ());
6978
6979 fprintf (spec_info->dump,
6980 ";; Procedure %cr-begin-data-spec motions == %d\n",
6981 c, nr_begin_data);
6982 fprintf (spec_info->dump,
6983 ";; Procedure %cr-be-in-data-spec motions == %d\n",
6984 c, nr_be_in_data);
6985 fprintf (spec_info->dump,
6986 ";; Procedure %cr-begin-control-spec motions == %d\n",
6987 c, nr_begin_control);
6988 fprintf (spec_info->dump,
6989 ";; Procedure %cr-be-in-control-spec motions == %d\n",
6990 c, nr_be_in_control);
6991 }
6992
6993 scheduled_insns.release ();
6994
6995 /* Finalize h_i_d, dependency caches, and luids for the whole
6996 function. Target will be finalized in md_global_finish (). */
6997 sched_deps_finish ();
6998 sched_finish_luids ();
6999 current_sched_info = NULL;
7000 sched_finish ();
7001 }
7002
7003 /* Free global data used during insn scheduling. This function works with
7004 the common data shared between the schedulers. */
7005
7006 void
7007 sched_finish (void)
7008 {
7009 haifa_finish_h_i_d ();
7010 free_global_sched_pressure_data ();
7011 free (curr_state);
7012
7013 if (targetm.sched.finish_global)
7014 targetm.sched.finish_global (sched_dump, sched_verbose);
7015
7016 end_alias_analysis ();
7017
7018 regstat_free_calls_crossed ();
7019
7020 dfa_finish ();
7021 }
7022
7023 /* Free all delay_pair structures that were recorded. */
7024 void
7025 free_delay_pairs (void)
7026 {
7027 if (delay_htab)
7028 {
7029 delay_htab->empty ();
7030 delay_htab_i2->empty ();
7031 }
7032 }
7033
7034 /* Fix INSN_TICKs of the instructions in the current block as well as
7035 INSN_TICKs of their dependents.
7036 HEAD and TAIL are the begin and the end of the current scheduled block. */
7037 static void
7038 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7039 {
7040 /* Set of instructions with corrected INSN_TICK. */
7041 bitmap_head processed;
7042 /* ??? It is doubtful if we should assume that cycle advance happens on
7043 basic block boundaries. Basically insns that are unconditionally ready
7044 on the start of the block are more preferable then those which have
7045 a one cycle dependency over insn from the previous block. */
7046 int next_clock = clock_var + 1;
7047
7048 bitmap_initialize (&processed, 0);
7049
7050 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7051 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7052 across different blocks. */
7053 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7054 {
7055 if (INSN_P (head))
7056 {
7057 int tick;
7058 sd_iterator_def sd_it;
7059 dep_t dep;
7060
7061 tick = INSN_TICK (head);
7062 gcc_assert (tick >= MIN_TICK);
7063
7064 /* Fix INSN_TICK of instruction from just scheduled block. */
7065 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7066 {
7067 tick -= next_clock;
7068
7069 if (tick < MIN_TICK)
7070 tick = MIN_TICK;
7071
7072 INSN_TICK (head) = tick;
7073 }
7074
7075 if (DEBUG_INSN_P (head))
7076 continue;
7077
7078 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7079 {
7080 rtx_insn *next;
7081
7082 next = DEP_CON (dep);
7083 tick = INSN_TICK (next);
7084
7085 if (tick != INVALID_TICK
7086 /* If NEXT has its INSN_TICK calculated, fix it.
7087 If not - it will be properly calculated from
7088 scratch later in fix_tick_ready. */
7089 && bitmap_set_bit (&processed, INSN_LUID (next)))
7090 {
7091 tick -= next_clock;
7092
7093 if (tick < MIN_TICK)
7094 tick = MIN_TICK;
7095
7096 if (tick > INTER_TICK (next))
7097 INTER_TICK (next) = tick;
7098 else
7099 tick = INTER_TICK (next);
7100
7101 INSN_TICK (next) = tick;
7102 }
7103 }
7104 }
7105 }
7106 bitmap_clear (&processed);
7107 }
7108
7109 /* Check if NEXT is ready to be added to the ready or queue list.
7110 If "yes", add it to the proper list.
7111 Returns:
7112 -1 - is not ready yet,
7113 0 - added to the ready list,
7114 0 < N - queued for N cycles. */
7115 int
7116 try_ready (rtx_insn *next)
7117 {
7118 ds_t old_ts, new_ts;
7119
7120 old_ts = TODO_SPEC (next);
7121
7122 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7123 && (old_ts == HARD_DEP
7124 || old_ts == DEP_POSTPONED
7125 || (old_ts & SPECULATIVE)
7126 || old_ts == DEP_CONTROL));
7127
7128 new_ts = recompute_todo_spec (next, false);
7129
7130 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7131 gcc_assert (new_ts == old_ts
7132 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7133 else if (current_sched_info->new_ready)
7134 new_ts = current_sched_info->new_ready (next, new_ts);
7135
7136 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7137 have its original pattern or changed (speculative) one. This is due
7138 to changing ebb in region scheduling.
7139 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7140 has speculative pattern.
7141
7142 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7143 control-speculative NEXT could have been discarded by sched-rgn.c
7144 (the same case as when discarded by can_schedule_ready_p ()). */
7145
7146 if ((new_ts & SPECULATIVE)
7147 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7148 need to change anything. */
7149 && new_ts != old_ts)
7150 {
7151 int res;
7152 rtx new_pat;
7153
7154 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7155
7156 res = haifa_speculate_insn (next, new_ts, &new_pat);
7157
7158 switch (res)
7159 {
7160 case -1:
7161 /* It would be nice to change DEP_STATUS of all dependences,
7162 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7163 so we won't reanalyze anything. */
7164 new_ts = HARD_DEP;
7165 break;
7166
7167 case 0:
7168 /* We follow the rule, that every speculative insn
7169 has non-null ORIG_PAT. */
7170 if (!ORIG_PAT (next))
7171 ORIG_PAT (next) = PATTERN (next);
7172 break;
7173
7174 case 1:
7175 if (!ORIG_PAT (next))
7176 /* If we gonna to overwrite the original pattern of insn,
7177 save it. */
7178 ORIG_PAT (next) = PATTERN (next);
7179
7180 res = haifa_change_pattern (next, new_pat);
7181 gcc_assert (res);
7182 break;
7183
7184 default:
7185 gcc_unreachable ();
7186 }
7187 }
7188
7189 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7190 either correct (new_ts & SPECULATIVE),
7191 or we simply don't care (new_ts & HARD_DEP). */
7192
7193 gcc_assert (!ORIG_PAT (next)
7194 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7195
7196 TODO_SPEC (next) = new_ts;
7197
7198 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7199 {
7200 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7201 control-speculative NEXT could have been discarded by sched-rgn.c
7202 (the same case as when discarded by can_schedule_ready_p ()). */
7203 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7204
7205 change_queue_index (next, QUEUE_NOWHERE);
7206
7207 return -1;
7208 }
7209 else if (!(new_ts & BEGIN_SPEC)
7210 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7211 && !IS_SPECULATION_CHECK_P (next))
7212 /* We should change pattern of every previously speculative
7213 instruction - and we determine if NEXT was speculative by using
7214 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7215 pat too, so skip them. */
7216 {
7217 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7218 gcc_assert (success);
7219 ORIG_PAT (next) = 0;
7220 }
7221
7222 if (sched_verbose >= 2)
7223 {
7224 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7225 (*current_sched_info->print_insn) (next, 0));
7226
7227 if (spec_info && spec_info->dump)
7228 {
7229 if (new_ts & BEGIN_DATA)
7230 fprintf (spec_info->dump, "; data-spec;");
7231 if (new_ts & BEGIN_CONTROL)
7232 fprintf (spec_info->dump, "; control-spec;");
7233 if (new_ts & BE_IN_CONTROL)
7234 fprintf (spec_info->dump, "; in-control-spec;");
7235 }
7236 if (TODO_SPEC (next) & DEP_CONTROL)
7237 fprintf (sched_dump, " predicated");
7238 fprintf (sched_dump, "\n");
7239 }
7240
7241 adjust_priority (next);
7242
7243 return fix_tick_ready (next);
7244 }
7245
7246 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7247 static int
7248 fix_tick_ready (rtx_insn *next)
7249 {
7250 int tick, delay;
7251
7252 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7253 {
7254 int full_p;
7255 sd_iterator_def sd_it;
7256 dep_t dep;
7257
7258 tick = INSN_TICK (next);
7259 /* if tick is not equal to INVALID_TICK, then update
7260 INSN_TICK of NEXT with the most recent resolved dependence
7261 cost. Otherwise, recalculate from scratch. */
7262 full_p = (tick == INVALID_TICK);
7263
7264 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7265 {
7266 rtx_insn *pro = DEP_PRO (dep);
7267 int tick1;
7268
7269 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7270
7271 tick1 = INSN_TICK (pro) + dep_cost (dep);
7272 if (tick1 > tick)
7273 tick = tick1;
7274
7275 if (!full_p)
7276 break;
7277 }
7278 }
7279 else
7280 tick = -1;
7281
7282 INSN_TICK (next) = tick;
7283
7284 delay = tick - clock_var;
7285 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE)
7286 delay = QUEUE_READY;
7287
7288 change_queue_index (next, delay);
7289
7290 return delay;
7291 }
7292
7293 /* Move NEXT to the proper queue list with (DELAY >= 1),
7294 or add it to the ready list (DELAY == QUEUE_READY),
7295 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7296 static void
7297 change_queue_index (rtx_insn *next, int delay)
7298 {
7299 int i = QUEUE_INDEX (next);
7300
7301 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7302 && delay != 0);
7303 gcc_assert (i != QUEUE_SCHEDULED);
7304
7305 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7306 || (delay < 0 && delay == i))
7307 /* We have nothing to do. */
7308 return;
7309
7310 /* Remove NEXT from wherever it is now. */
7311 if (i == QUEUE_READY)
7312 ready_remove_insn (next);
7313 else if (i >= 0)
7314 queue_remove (next);
7315
7316 /* Add it to the proper place. */
7317 if (delay == QUEUE_READY)
7318 ready_add (readyp, next, false);
7319 else if (delay >= 1)
7320 queue_insn (next, delay, "change queue index");
7321
7322 if (sched_verbose >= 2)
7323 {
7324 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7325 (*current_sched_info->print_insn) (next, 0));
7326
7327 if (delay == QUEUE_READY)
7328 fprintf (sched_dump, " into ready\n");
7329 else if (delay >= 1)
7330 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7331 else
7332 fprintf (sched_dump, " removed from ready or queue lists\n");
7333 }
7334 }
7335
7336 static int sched_ready_n_insns = -1;
7337
7338 /* Initialize per region data structures. */
7339 void
7340 sched_extend_ready_list (int new_sched_ready_n_insns)
7341 {
7342 int i;
7343
7344 if (sched_ready_n_insns == -1)
7345 /* At the first call we need to initialize one more choice_stack
7346 entry. */
7347 {
7348 i = 0;
7349 sched_ready_n_insns = 0;
7350 scheduled_insns.reserve (new_sched_ready_n_insns);
7351 }
7352 else
7353 i = sched_ready_n_insns + 1;
7354
7355 ready.veclen = new_sched_ready_n_insns + issue_rate;
7356 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7357
7358 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7359
7360 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7361 sched_ready_n_insns,
7362 sizeof (*ready_try));
7363
7364 /* We allocate +1 element to save initial state in the choice_stack[0]
7365 entry. */
7366 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7367 new_sched_ready_n_insns + 1);
7368
7369 for (; i <= new_sched_ready_n_insns; i++)
7370 {
7371 choice_stack[i].state = xmalloc (dfa_state_size);
7372
7373 if (targetm.sched.first_cycle_multipass_init)
7374 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7375 .target_data));
7376 }
7377
7378 sched_ready_n_insns = new_sched_ready_n_insns;
7379 }
7380
7381 /* Free per region data structures. */
7382 void
7383 sched_finish_ready_list (void)
7384 {
7385 int i;
7386
7387 free (ready.vec);
7388 ready.vec = NULL;
7389 ready.veclen = 0;
7390
7391 free (ready_try);
7392 ready_try = NULL;
7393
7394 for (i = 0; i <= sched_ready_n_insns; i++)
7395 {
7396 if (targetm.sched.first_cycle_multipass_fini)
7397 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7398 .target_data));
7399
7400 free (choice_stack [i].state);
7401 }
7402 free (choice_stack);
7403 choice_stack = NULL;
7404
7405 sched_ready_n_insns = -1;
7406 }
7407
7408 static int
7409 haifa_luid_for_non_insn (rtx x)
7410 {
7411 gcc_assert (NOTE_P (x) || LABEL_P (x));
7412
7413 return 0;
7414 }
7415
7416 /* Generates recovery code for INSN. */
7417 static void
7418 generate_recovery_code (rtx_insn *insn)
7419 {
7420 if (TODO_SPEC (insn) & BEGIN_SPEC)
7421 begin_speculative_block (insn);
7422
7423 /* Here we have insn with no dependencies to
7424 instructions other then CHECK_SPEC ones. */
7425
7426 if (TODO_SPEC (insn) & BE_IN_SPEC)
7427 add_to_speculative_block (insn);
7428 }
7429
7430 /* Helper function.
7431 Tries to add speculative dependencies of type FS between instructions
7432 in deps_list L and TWIN. */
7433 static void
7434 process_insn_forw_deps_be_in_spec (rtx insn, rtx_insn *twin, ds_t fs)
7435 {
7436 sd_iterator_def sd_it;
7437 dep_t dep;
7438
7439 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7440 {
7441 ds_t ds;
7442 rtx_insn *consumer;
7443
7444 consumer = DEP_CON (dep);
7445
7446 ds = DEP_STATUS (dep);
7447
7448 if (/* If we want to create speculative dep. */
7449 fs
7450 /* And we can do that because this is a true dep. */
7451 && (ds & DEP_TYPES) == DEP_TRUE)
7452 {
7453 gcc_assert (!(ds & BE_IN_SPEC));
7454
7455 if (/* If this dep can be overcome with 'begin speculation'. */
7456 ds & BEGIN_SPEC)
7457 /* Then we have a choice: keep the dep 'begin speculative'
7458 or transform it into 'be in speculative'. */
7459 {
7460 if (/* In try_ready we assert that if insn once became ready
7461 it can be removed from the ready (or queue) list only
7462 due to backend decision. Hence we can't let the
7463 probability of the speculative dep to decrease. */
7464 ds_weak (ds) <= ds_weak (fs))
7465 {
7466 ds_t new_ds;
7467
7468 new_ds = (ds & ~BEGIN_SPEC) | fs;
7469
7470 if (/* consumer can 'be in speculative'. */
7471 sched_insn_is_legitimate_for_speculation_p (consumer,
7472 new_ds))
7473 /* Transform it to be in speculative. */
7474 ds = new_ds;
7475 }
7476 }
7477 else
7478 /* Mark the dep as 'be in speculative'. */
7479 ds |= fs;
7480 }
7481
7482 {
7483 dep_def _new_dep, *new_dep = &_new_dep;
7484
7485 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7486 sd_add_dep (new_dep, false);
7487 }
7488 }
7489 }
7490
7491 /* Generates recovery code for BEGIN speculative INSN. */
7492 static void
7493 begin_speculative_block (rtx_insn *insn)
7494 {
7495 if (TODO_SPEC (insn) & BEGIN_DATA)
7496 nr_begin_data++;
7497 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7498 nr_begin_control++;
7499
7500 create_check_block_twin (insn, false);
7501
7502 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7503 }
7504
7505 static void haifa_init_insn (rtx_insn *);
7506
7507 /* Generates recovery code for BE_IN speculative INSN. */
7508 static void
7509 add_to_speculative_block (rtx_insn *insn)
7510 {
7511 ds_t ts;
7512 sd_iterator_def sd_it;
7513 dep_t dep;
7514 rtx_insn_list *twins = NULL;
7515 rtx_vec_t priorities_roots;
7516
7517 ts = TODO_SPEC (insn);
7518 gcc_assert (!(ts & ~BE_IN_SPEC));
7519
7520 if (ts & BE_IN_DATA)
7521 nr_be_in_data++;
7522 if (ts & BE_IN_CONTROL)
7523 nr_be_in_control++;
7524
7525 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7526 gcc_assert (!TODO_SPEC (insn));
7527
7528 DONE_SPEC (insn) |= ts;
7529
7530 /* First we convert all simple checks to branchy. */
7531 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7532 sd_iterator_cond (&sd_it, &dep);)
7533 {
7534 rtx_insn *check = DEP_PRO (dep);
7535
7536 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7537 {
7538 create_check_block_twin (check, true);
7539
7540 /* Restart search. */
7541 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7542 }
7543 else
7544 /* Continue search. */
7545 sd_iterator_next (&sd_it);
7546 }
7547
7548 priorities_roots.create (0);
7549 clear_priorities (insn, &priorities_roots);
7550
7551 while (1)
7552 {
7553 rtx_insn *check, *twin;
7554 basic_block rec;
7555
7556 /* Get the first backward dependency of INSN. */
7557 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7558 if (!sd_iterator_cond (&sd_it, &dep))
7559 /* INSN has no backward dependencies left. */
7560 break;
7561
7562 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7563 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7564 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7565
7566 check = DEP_PRO (dep);
7567
7568 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7569 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7570
7571 rec = BLOCK_FOR_INSN (check);
7572
7573 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7574 haifa_init_insn (twin);
7575
7576 sd_copy_back_deps (twin, insn, true);
7577
7578 if (sched_verbose && spec_info->dump)
7579 /* INSN_BB (insn) isn't determined for twin insns yet.
7580 So we can't use current_sched_info->print_insn. */
7581 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7582 INSN_UID (twin), rec->index);
7583
7584 twins = alloc_INSN_LIST (twin, twins);
7585
7586 /* Add dependences between TWIN and all appropriate
7587 instructions from REC. */
7588 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7589 {
7590 rtx_insn *pro = DEP_PRO (dep);
7591
7592 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7593
7594 /* INSN might have dependencies from the instructions from
7595 several recovery blocks. At this iteration we process those
7596 producers that reside in REC. */
7597 if (BLOCK_FOR_INSN (pro) == rec)
7598 {
7599 dep_def _new_dep, *new_dep = &_new_dep;
7600
7601 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7602 sd_add_dep (new_dep, false);
7603 }
7604 }
7605
7606 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7607
7608 /* Remove all dependencies between INSN and insns in REC. */
7609 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7610 sd_iterator_cond (&sd_it, &dep);)
7611 {
7612 rtx_insn *pro = DEP_PRO (dep);
7613
7614 if (BLOCK_FOR_INSN (pro) == rec)
7615 sd_delete_dep (sd_it);
7616 else
7617 sd_iterator_next (&sd_it);
7618 }
7619 }
7620
7621 /* We couldn't have added the dependencies between INSN and TWINS earlier
7622 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7623 while (twins)
7624 {
7625 rtx_insn *twin;
7626 rtx_insn_list *next_node;
7627
7628 twin = twins->insn ();
7629
7630 {
7631 dep_def _new_dep, *new_dep = &_new_dep;
7632
7633 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7634 sd_add_dep (new_dep, false);
7635 }
7636
7637 next_node = twins->next ();
7638 free_INSN_LIST_node (twins);
7639 twins = next_node;
7640 }
7641
7642 calc_priorities (priorities_roots);
7643 priorities_roots.release ();
7644 }
7645
7646 /* Extends and fills with zeros (only the new part) array pointed to by P. */
7647 void *
7648 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
7649 {
7650 gcc_assert (new_nmemb >= old_nmemb);
7651 p = XRESIZEVAR (void, p, new_nmemb * size);
7652 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
7653 return p;
7654 }
7655
7656 /* Helper function.
7657 Find fallthru edge from PRED. */
7658 edge
7659 find_fallthru_edge_from (basic_block pred)
7660 {
7661 edge e;
7662 basic_block succ;
7663
7664 succ = pred->next_bb;
7665 gcc_assert (succ->prev_bb == pred);
7666
7667 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
7668 {
7669 e = find_fallthru_edge (pred->succs);
7670
7671 if (e)
7672 {
7673 gcc_assert (e->dest == succ);
7674 return e;
7675 }
7676 }
7677 else
7678 {
7679 e = find_fallthru_edge (succ->preds);
7680
7681 if (e)
7682 {
7683 gcc_assert (e->src == pred);
7684 return e;
7685 }
7686 }
7687
7688 return NULL;
7689 }
7690
7691 /* Extend per basic block data structures. */
7692 static void
7693 sched_extend_bb (void)
7694 {
7695 /* The following is done to keep current_sched_info->next_tail non null. */
7696 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
7697 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
7698 if (NEXT_INSN (end) == 0
7699 || (!NOTE_P (insn)
7700 && !LABEL_P (insn)
7701 /* Don't emit a NOTE if it would end up before a BARRIER. */
7702 && !BARRIER_P (NEXT_INSN (end))))
7703 {
7704 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
7705 /* Make note appear outside BB. */
7706 set_block_for_insn (note, NULL);
7707 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
7708 }
7709 }
7710
7711 /* Init per basic block data structures. */
7712 void
7713 sched_init_bbs (void)
7714 {
7715 sched_extend_bb ();
7716 }
7717
7718 /* Initialize BEFORE_RECOVERY variable. */
7719 static void
7720 init_before_recovery (basic_block *before_recovery_ptr)
7721 {
7722 basic_block last;
7723 edge e;
7724
7725 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7726 e = find_fallthru_edge_from (last);
7727
7728 if (e)
7729 {
7730 /* We create two basic blocks:
7731 1. Single instruction block is inserted right after E->SRC
7732 and has jump to
7733 2. Empty block right before EXIT_BLOCK.
7734 Between these two blocks recovery blocks will be emitted. */
7735
7736 basic_block single, empty;
7737 rtx_insn *x;
7738 rtx label;
7739
7740 /* If the fallthrough edge to exit we've found is from the block we've
7741 created before, don't do anything more. */
7742 if (last == after_recovery)
7743 return;
7744
7745 adding_bb_to_current_region_p = false;
7746
7747 single = sched_create_empty_bb (last);
7748 empty = sched_create_empty_bb (single);
7749
7750 /* Add new blocks to the root loop. */
7751 if (current_loops != NULL)
7752 {
7753 add_bb_to_loop (single, (*current_loops->larray)[0]);
7754 add_bb_to_loop (empty, (*current_loops->larray)[0]);
7755 }
7756
7757 single->count = last->count;
7758 empty->count = last->count;
7759 single->frequency = last->frequency;
7760 empty->frequency = last->frequency;
7761 BB_COPY_PARTITION (single, last);
7762 BB_COPY_PARTITION (empty, last);
7763
7764 redirect_edge_succ (e, single);
7765 make_single_succ_edge (single, empty, 0);
7766 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
7767 EDGE_FALLTHRU);
7768
7769 label = block_label (empty);
7770 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
7771 JUMP_LABEL (x) = label;
7772 LABEL_NUSES (label)++;
7773 haifa_init_insn (x);
7774
7775 emit_barrier_after (x);
7776
7777 sched_init_only_bb (empty, NULL);
7778 sched_init_only_bb (single, NULL);
7779 sched_extend_bb ();
7780
7781 adding_bb_to_current_region_p = true;
7782 before_recovery = single;
7783 after_recovery = empty;
7784
7785 if (before_recovery_ptr)
7786 *before_recovery_ptr = before_recovery;
7787
7788 if (sched_verbose >= 2 && spec_info->dump)
7789 fprintf (spec_info->dump,
7790 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
7791 last->index, single->index, empty->index);
7792 }
7793 else
7794 before_recovery = last;
7795 }
7796
7797 /* Returns new recovery block. */
7798 basic_block
7799 sched_create_recovery_block (basic_block *before_recovery_ptr)
7800 {
7801 rtx label;
7802 rtx_insn *barrier;
7803 basic_block rec;
7804
7805 haifa_recovery_bb_recently_added_p = true;
7806 haifa_recovery_bb_ever_added_p = true;
7807
7808 init_before_recovery (before_recovery_ptr);
7809
7810 barrier = get_last_bb_insn (before_recovery);
7811 gcc_assert (BARRIER_P (barrier));
7812
7813 label = emit_label_after (gen_label_rtx (), barrier);
7814
7815 rec = create_basic_block (label, label, before_recovery);
7816
7817 /* A recovery block always ends with an unconditional jump. */
7818 emit_barrier_after (BB_END (rec));
7819
7820 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
7821 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
7822
7823 if (sched_verbose && spec_info->dump)
7824 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
7825 rec->index);
7826
7827 return rec;
7828 }
7829
7830 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
7831 and emit necessary jumps. */
7832 void
7833 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
7834 basic_block second_bb)
7835 {
7836 rtx label;
7837 rtx jump;
7838 int edge_flags;
7839
7840 /* This is fixing of incoming edge. */
7841 /* ??? Which other flags should be specified? */
7842 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
7843 /* Partition type is the same, if it is "unpartitioned". */
7844 edge_flags = EDGE_CROSSING;
7845 else
7846 edge_flags = 0;
7847
7848 make_edge (first_bb, rec, edge_flags);
7849 label = block_label (second_bb);
7850 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
7851 JUMP_LABEL (jump) = label;
7852 LABEL_NUSES (label)++;
7853
7854 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
7855 /* Partition type is the same, if it is "unpartitioned". */
7856 {
7857 /* Rewritten from cfgrtl.c. */
7858 if (flag_reorder_blocks_and_partition
7859 && targetm_common.have_named_sections)
7860 {
7861 /* We don't need the same note for the check because
7862 any_condjump_p (check) == true. */
7863 CROSSING_JUMP_P (jump) = 1;
7864 }
7865 edge_flags = EDGE_CROSSING;
7866 }
7867 else
7868 edge_flags = 0;
7869
7870 make_single_succ_edge (rec, second_bb, edge_flags);
7871 if (dom_info_available_p (CDI_DOMINATORS))
7872 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
7873 }
7874
7875 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
7876 INSN is a simple check, that should be converted to branchy one. */
7877 static void
7878 create_check_block_twin (rtx_insn *insn, bool mutate_p)
7879 {
7880 basic_block rec;
7881 rtx_insn *label, *check, *twin;
7882 rtx check_pat;
7883 ds_t fs;
7884 sd_iterator_def sd_it;
7885 dep_t dep;
7886 dep_def _new_dep, *new_dep = &_new_dep;
7887 ds_t todo_spec;
7888
7889 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
7890
7891 if (!mutate_p)
7892 todo_spec = TODO_SPEC (insn);
7893 else
7894 {
7895 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
7896 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
7897
7898 todo_spec = CHECK_SPEC (insn);
7899 }
7900
7901 todo_spec &= SPECULATIVE;
7902
7903 /* Create recovery block. */
7904 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
7905 {
7906 rec = sched_create_recovery_block (NULL);
7907 label = BB_HEAD (rec);
7908 }
7909 else
7910 {
7911 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
7912 label = NULL;
7913 }
7914
7915 /* Emit CHECK. */
7916 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
7917
7918 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7919 {
7920 /* To have mem_reg alive at the beginning of second_bb,
7921 we emit check BEFORE insn, so insn after splitting
7922 insn will be at the beginning of second_bb, which will
7923 provide us with the correct life information. */
7924 check = emit_jump_insn_before (check_pat, insn);
7925 JUMP_LABEL (check) = label;
7926 LABEL_NUSES (label)++;
7927 }
7928 else
7929 check = emit_insn_before (check_pat, insn);
7930
7931 /* Extend data structures. */
7932 haifa_init_insn (check);
7933
7934 /* CHECK is being added to current region. Extend ready list. */
7935 gcc_assert (sched_ready_n_insns != -1);
7936 sched_extend_ready_list (sched_ready_n_insns + 1);
7937
7938 if (current_sched_info->add_remove_insn)
7939 current_sched_info->add_remove_insn (insn, 0);
7940
7941 RECOVERY_BLOCK (check) = rec;
7942
7943 if (sched_verbose && spec_info->dump)
7944 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
7945 (*current_sched_info->print_insn) (check, 0));
7946
7947 gcc_assert (ORIG_PAT (insn));
7948
7949 /* Initialize TWIN (twin is a duplicate of original instruction
7950 in the recovery block). */
7951 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7952 {
7953 sd_iterator_def sd_it;
7954 dep_t dep;
7955
7956 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
7957 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
7958 {
7959 struct _dep _dep2, *dep2 = &_dep2;
7960
7961 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
7962
7963 sd_add_dep (dep2, true);
7964 }
7965
7966 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
7967 haifa_init_insn (twin);
7968
7969 if (sched_verbose && spec_info->dump)
7970 /* INSN_BB (insn) isn't determined for twin insns yet.
7971 So we can't use current_sched_info->print_insn. */
7972 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7973 INSN_UID (twin), rec->index);
7974 }
7975 else
7976 {
7977 ORIG_PAT (check) = ORIG_PAT (insn);
7978 HAS_INTERNAL_DEP (check) = 1;
7979 twin = check;
7980 /* ??? We probably should change all OUTPUT dependencies to
7981 (TRUE | OUTPUT). */
7982 }
7983
7984 /* Copy all resolved back dependencies of INSN to TWIN. This will
7985 provide correct value for INSN_TICK (TWIN). */
7986 sd_copy_back_deps (twin, insn, true);
7987
7988 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7989 /* In case of branchy check, fix CFG. */
7990 {
7991 basic_block first_bb, second_bb;
7992 rtx_insn *jump;
7993
7994 first_bb = BLOCK_FOR_INSN (check);
7995 second_bb = sched_split_block (first_bb, check);
7996
7997 sched_create_recovery_edges (first_bb, rec, second_bb);
7998
7999 sched_init_only_bb (second_bb, first_bb);
8000 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8001
8002 jump = BB_END (rec);
8003 haifa_init_insn (jump);
8004 }
8005
8006 /* Move backward dependences from INSN to CHECK and
8007 move forward dependences from INSN to TWIN. */
8008
8009 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8010 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8011 {
8012 rtx_insn *pro = DEP_PRO (dep);
8013 ds_t ds;
8014
8015 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8016 check --TRUE--> producer ??? or ANTI ???
8017 twin --TRUE--> producer
8018 twin --ANTI--> check
8019
8020 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8021 check --ANTI--> producer
8022 twin --ANTI--> producer
8023 twin --ANTI--> check
8024
8025 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8026 check ~~TRUE~~> producer
8027 twin ~~TRUE~~> producer
8028 twin --ANTI--> check */
8029
8030 ds = DEP_STATUS (dep);
8031
8032 if (ds & BEGIN_SPEC)
8033 {
8034 gcc_assert (!mutate_p);
8035 ds &= ~BEGIN_SPEC;
8036 }
8037
8038 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8039 sd_add_dep (new_dep, false);
8040
8041 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8042 {
8043 DEP_CON (new_dep) = twin;
8044 sd_add_dep (new_dep, false);
8045 }
8046 }
8047
8048 /* Second, remove backward dependencies of INSN. */
8049 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8050 sd_iterator_cond (&sd_it, &dep);)
8051 {
8052 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8053 || mutate_p)
8054 /* We can delete this dep because we overcome it with
8055 BEGIN_SPECULATION. */
8056 sd_delete_dep (sd_it);
8057 else
8058 sd_iterator_next (&sd_it);
8059 }
8060
8061 /* Future Speculations. Determine what BE_IN speculations will be like. */
8062 fs = 0;
8063
8064 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8065 here. */
8066
8067 gcc_assert (!DONE_SPEC (insn));
8068
8069 if (!mutate_p)
8070 {
8071 ds_t ts = TODO_SPEC (insn);
8072
8073 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8074 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8075
8076 /* Luckiness of future speculations solely depends upon initial
8077 BEGIN speculation. */
8078 if (ts & BEGIN_DATA)
8079 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8080 if (ts & BEGIN_CONTROL)
8081 fs = set_dep_weak (fs, BE_IN_CONTROL,
8082 get_dep_weak (ts, BEGIN_CONTROL));
8083 }
8084 else
8085 CHECK_SPEC (check) = CHECK_SPEC (insn);
8086
8087 /* Future speculations: call the helper. */
8088 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8089
8090 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8091 {
8092 /* Which types of dependencies should we use here is,
8093 generally, machine-dependent question... But, for now,
8094 it is not. */
8095
8096 if (!mutate_p)
8097 {
8098 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8099 sd_add_dep (new_dep, false);
8100
8101 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8102 sd_add_dep (new_dep, false);
8103 }
8104 else
8105 {
8106 if (spec_info->dump)
8107 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8108 (*current_sched_info->print_insn) (insn, 0));
8109
8110 /* Remove all dependencies of the INSN. */
8111 {
8112 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8113 | SD_LIST_BACK
8114 | SD_LIST_RES_BACK));
8115 while (sd_iterator_cond (&sd_it, &dep))
8116 sd_delete_dep (sd_it);
8117 }
8118
8119 /* If former check (INSN) already was moved to the ready (or queue)
8120 list, add new check (CHECK) there too. */
8121 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8122 try_ready (check);
8123
8124 /* Remove old check from instruction stream and free its
8125 data. */
8126 sched_remove_insn (insn);
8127 }
8128
8129 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8130 sd_add_dep (new_dep, false);
8131 }
8132 else
8133 {
8134 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8135 sd_add_dep (new_dep, false);
8136 }
8137
8138 if (!mutate_p)
8139 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8140 because it'll be done later in add_to_speculative_block. */
8141 {
8142 rtx_vec_t priorities_roots = rtx_vec_t ();
8143
8144 clear_priorities (twin, &priorities_roots);
8145 calc_priorities (priorities_roots);
8146 priorities_roots.release ();
8147 }
8148 }
8149
8150 /* Removes dependency between instructions in the recovery block REC
8151 and usual region instructions. It keeps inner dependences so it
8152 won't be necessary to recompute them. */
8153 static void
8154 fix_recovery_deps (basic_block rec)
8155 {
8156 rtx_insn *note, *insn, *jump;
8157 rtx_insn_list *ready_list = 0;
8158 bitmap_head in_ready;
8159 rtx_insn_list *link;
8160
8161 bitmap_initialize (&in_ready, 0);
8162
8163 /* NOTE - a basic block note. */
8164 note = NEXT_INSN (BB_HEAD (rec));
8165 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8166 insn = BB_END (rec);
8167 gcc_assert (JUMP_P (insn));
8168 insn = PREV_INSN (insn);
8169
8170 do
8171 {
8172 sd_iterator_def sd_it;
8173 dep_t dep;
8174
8175 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8176 sd_iterator_cond (&sd_it, &dep);)
8177 {
8178 rtx_insn *consumer = DEP_CON (dep);
8179
8180 if (BLOCK_FOR_INSN (consumer) != rec)
8181 {
8182 sd_delete_dep (sd_it);
8183
8184 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8185 ready_list = alloc_INSN_LIST (consumer, ready_list);
8186 }
8187 else
8188 {
8189 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8190
8191 sd_iterator_next (&sd_it);
8192 }
8193 }
8194
8195 insn = PREV_INSN (insn);
8196 }
8197 while (insn != note);
8198
8199 bitmap_clear (&in_ready);
8200
8201 /* Try to add instructions to the ready or queue list. */
8202 for (link = ready_list; link; link = link->next ())
8203 try_ready (link->insn ());
8204 free_INSN_LIST_list (&ready_list);
8205
8206 /* Fixing jump's dependences. */
8207 insn = BB_HEAD (rec);
8208 jump = BB_END (rec);
8209
8210 gcc_assert (LABEL_P (insn));
8211 insn = NEXT_INSN (insn);
8212
8213 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8214 add_jump_dependencies (insn, jump);
8215 }
8216
8217 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8218 instruction data. */
8219 static bool
8220 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8221 {
8222 int t;
8223
8224 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8225 if (!t)
8226 return false;
8227
8228 update_insn_after_change (insn);
8229 return true;
8230 }
8231
8232 /* -1 - can't speculate,
8233 0 - for speculation with REQUEST mode it is OK to use
8234 current instruction pattern,
8235 1 - need to change pattern for *NEW_PAT to be speculative. */
8236 int
8237 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8238 {
8239 gcc_assert (current_sched_info->flags & DO_SPECULATION
8240 && (request & SPECULATIVE)
8241 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8242
8243 if ((request & spec_info->mask) != request)
8244 return -1;
8245
8246 if (request & BE_IN_SPEC
8247 && !(request & BEGIN_SPEC))
8248 return 0;
8249
8250 return targetm.sched.speculate_insn (insn, request, new_pat);
8251 }
8252
8253 static int
8254 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8255 {
8256 gcc_assert (sched_deps_info->generate_spec_deps
8257 && !IS_SPECULATION_CHECK_P (insn));
8258
8259 if (HAS_INTERNAL_DEP (insn)
8260 || SCHED_GROUP_P (insn))
8261 return -1;
8262
8263 return sched_speculate_insn (insn, request, new_pat);
8264 }
8265
8266 /* Print some information about block BB, which starts with HEAD and
8267 ends with TAIL, before scheduling it.
8268 I is zero, if scheduler is about to start with the fresh ebb. */
8269 static void
8270 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8271 {
8272 if (!i)
8273 fprintf (sched_dump,
8274 ";; ======================================================\n");
8275 else
8276 fprintf (sched_dump,
8277 ";; =====================ADVANCING TO=====================\n");
8278 fprintf (sched_dump,
8279 ";; -- basic block %d from %d to %d -- %s reload\n",
8280 bb->index, INSN_UID (head), INSN_UID (tail),
8281 (reload_completed ? "after" : "before"));
8282 fprintf (sched_dump,
8283 ";; ======================================================\n");
8284 fprintf (sched_dump, "\n");
8285 }
8286
8287 /* Unlink basic block notes and labels and saves them, so they
8288 can be easily restored. We unlink basic block notes in EBB to
8289 provide back-compatibility with the previous code, as target backends
8290 assume, that there'll be only instructions between
8291 current_sched_info->{head and tail}. We restore these notes as soon
8292 as we can.
8293 FIRST (LAST) is the first (last) basic block in the ebb.
8294 NB: In usual case (FIRST == LAST) nothing is really done. */
8295 void
8296 unlink_bb_notes (basic_block first, basic_block last)
8297 {
8298 /* We DON'T unlink basic block notes of the first block in the ebb. */
8299 if (first == last)
8300 return;
8301
8302 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8303
8304 /* Make a sentinel. */
8305 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8306 bb_header[last->next_bb->index] = 0;
8307
8308 first = first->next_bb;
8309 do
8310 {
8311 rtx_insn *prev, *label, *note, *next;
8312
8313 label = BB_HEAD (last);
8314 if (LABEL_P (label))
8315 note = NEXT_INSN (label);
8316 else
8317 note = label;
8318 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8319
8320 prev = PREV_INSN (label);
8321 next = NEXT_INSN (note);
8322 gcc_assert (prev && next);
8323
8324 SET_NEXT_INSN (prev) = next;
8325 SET_PREV_INSN (next) = prev;
8326
8327 bb_header[last->index] = label;
8328
8329 if (last == first)
8330 break;
8331
8332 last = last->prev_bb;
8333 }
8334 while (1);
8335 }
8336
8337 /* Restore basic block notes.
8338 FIRST is the first basic block in the ebb. */
8339 static void
8340 restore_bb_notes (basic_block first)
8341 {
8342 if (!bb_header)
8343 return;
8344
8345 /* We DON'T unlink basic block notes of the first block in the ebb. */
8346 first = first->next_bb;
8347 /* Remember: FIRST is actually a second basic block in the ebb. */
8348
8349 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8350 && bb_header[first->index])
8351 {
8352 rtx_insn *prev, *label, *note, *next;
8353
8354 label = bb_header[first->index];
8355 prev = PREV_INSN (label);
8356 next = NEXT_INSN (prev);
8357
8358 if (LABEL_P (label))
8359 note = NEXT_INSN (label);
8360 else
8361 note = label;
8362 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8363
8364 bb_header[first->index] = 0;
8365
8366 SET_NEXT_INSN (prev) = label;
8367 SET_NEXT_INSN (note) = next;
8368 SET_PREV_INSN (next) = note;
8369
8370 first = first->next_bb;
8371 }
8372
8373 free (bb_header);
8374 bb_header = 0;
8375 }
8376
8377 /* Helper function.
8378 Fix CFG after both in- and inter-block movement of
8379 control_flow_insn_p JUMP. */
8380 static void
8381 fix_jump_move (rtx_insn *jump)
8382 {
8383 basic_block bb, jump_bb, jump_bb_next;
8384
8385 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8386 jump_bb = BLOCK_FOR_INSN (jump);
8387 jump_bb_next = jump_bb->next_bb;
8388
8389 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8390 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8391
8392 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8393 /* if jump_bb_next is not empty. */
8394 BB_END (jump_bb) = BB_END (jump_bb_next);
8395
8396 if (BB_END (bb) != PREV_INSN (jump))
8397 /* Then there are instruction after jump that should be placed
8398 to jump_bb_next. */
8399 BB_END (jump_bb_next) = BB_END (bb);
8400 else
8401 /* Otherwise jump_bb_next is empty. */
8402 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8403
8404 /* To make assertion in move_insn happy. */
8405 BB_END (bb) = PREV_INSN (jump);
8406
8407 update_bb_for_insn (jump_bb_next);
8408 }
8409
8410 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8411 static void
8412 move_block_after_check (rtx_insn *jump)
8413 {
8414 basic_block bb, jump_bb, jump_bb_next;
8415 vec<edge, va_gc> *t;
8416
8417 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8418 jump_bb = BLOCK_FOR_INSN (jump);
8419 jump_bb_next = jump_bb->next_bb;
8420
8421 update_bb_for_insn (jump_bb);
8422
8423 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8424 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8425
8426 unlink_block (jump_bb_next);
8427 link_block (jump_bb_next, bb);
8428
8429 t = bb->succs;
8430 bb->succs = 0;
8431 move_succs (&(jump_bb->succs), bb);
8432 move_succs (&(jump_bb_next->succs), jump_bb);
8433 move_succs (&t, jump_bb_next);
8434
8435 df_mark_solutions_dirty ();
8436
8437 common_sched_info->fix_recovery_cfg
8438 (bb->index, jump_bb->index, jump_bb_next->index);
8439 }
8440
8441 /* Helper function for move_block_after_check.
8442 This functions attaches edge vector pointed to by SUCCSP to
8443 block TO. */
8444 static void
8445 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8446 {
8447 edge e;
8448 edge_iterator ei;
8449
8450 gcc_assert (to->succs == 0);
8451
8452 to->succs = *succsp;
8453
8454 FOR_EACH_EDGE (e, ei, to->succs)
8455 e->src = to;
8456
8457 *succsp = 0;
8458 }
8459
8460 /* Remove INSN from the instruction stream.
8461 INSN should have any dependencies. */
8462 static void
8463 sched_remove_insn (rtx_insn *insn)
8464 {
8465 sd_finish_insn (insn);
8466
8467 change_queue_index (insn, QUEUE_NOWHERE);
8468 current_sched_info->add_remove_insn (insn, 1);
8469 delete_insn (insn);
8470 }
8471
8472 /* Clear priorities of all instructions, that are forward dependent on INSN.
8473 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8474 be invoked to initialize all cleared priorities. */
8475 static void
8476 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8477 {
8478 sd_iterator_def sd_it;
8479 dep_t dep;
8480 bool insn_is_root_p = true;
8481
8482 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8483
8484 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8485 {
8486 rtx_insn *pro = DEP_PRO (dep);
8487
8488 if (INSN_PRIORITY_STATUS (pro) >= 0
8489 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8490 {
8491 /* If DEP doesn't contribute to priority then INSN itself should
8492 be added to priority roots. */
8493 if (contributes_to_priority_p (dep))
8494 insn_is_root_p = false;
8495
8496 INSN_PRIORITY_STATUS (pro) = -1;
8497 clear_priorities (pro, roots_ptr);
8498 }
8499 }
8500
8501 if (insn_is_root_p)
8502 roots_ptr->safe_push (insn);
8503 }
8504
8505 /* Recompute priorities of instructions, whose priorities might have been
8506 changed. ROOTS is a vector of instructions whose priority computation will
8507 trigger initialization of all cleared priorities. */
8508 static void
8509 calc_priorities (rtx_vec_t roots)
8510 {
8511 int i;
8512 rtx_insn *insn;
8513
8514 FOR_EACH_VEC_ELT (roots, i, insn)
8515 priority (insn);
8516 }
8517
8518
8519 /* Add dependences between JUMP and other instructions in the recovery
8520 block. INSN is the first insn the recovery block. */
8521 static void
8522 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8523 {
8524 do
8525 {
8526 insn = NEXT_INSN (insn);
8527 if (insn == jump)
8528 break;
8529
8530 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8531 {
8532 dep_def _new_dep, *new_dep = &_new_dep;
8533
8534 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8535 sd_add_dep (new_dep, false);
8536 }
8537 }
8538 while (1);
8539
8540 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8541 }
8542
8543 /* Extend data structures for logical insn UID. */
8544 void
8545 sched_extend_luids (void)
8546 {
8547 int new_luids_max_uid = get_max_uid () + 1;
8548
8549 sched_luids.safe_grow_cleared (new_luids_max_uid);
8550 }
8551
8552 /* Initialize LUID for INSN. */
8553 void
8554 sched_init_insn_luid (rtx_insn *insn)
8555 {
8556 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8557 int luid;
8558
8559 if (i >= 0)
8560 {
8561 luid = sched_max_luid;
8562 sched_max_luid += i;
8563 }
8564 else
8565 luid = -1;
8566
8567 SET_INSN_LUID (insn, luid);
8568 }
8569
8570 /* Initialize luids for BBS.
8571 The hook common_sched_info->luid_for_non_insn () is used to determine
8572 if notes, labels, etc. need luids. */
8573 void
8574 sched_init_luids (bb_vec_t bbs)
8575 {
8576 int i;
8577 basic_block bb;
8578
8579 sched_extend_luids ();
8580 FOR_EACH_VEC_ELT (bbs, i, bb)
8581 {
8582 rtx_insn *insn;
8583
8584 FOR_BB_INSNS (bb, insn)
8585 sched_init_insn_luid (insn);
8586 }
8587 }
8588
8589 /* Free LUIDs. */
8590 void
8591 sched_finish_luids (void)
8592 {
8593 sched_luids.release ();
8594 sched_max_luid = 1;
8595 }
8596
8597 /* Return logical uid of INSN. Helpful while debugging. */
8598 int
8599 insn_luid (rtx_insn *insn)
8600 {
8601 return INSN_LUID (insn);
8602 }
8603
8604 /* Extend per insn data in the target. */
8605 void
8606 sched_extend_target (void)
8607 {
8608 if (targetm.sched.h_i_d_extended)
8609 targetm.sched.h_i_d_extended ();
8610 }
8611
8612 /* Extend global scheduler structures (those, that live across calls to
8613 schedule_block) to include information about just emitted INSN. */
8614 static void
8615 extend_h_i_d (void)
8616 {
8617 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8618 if (reserve > 0
8619 && ! h_i_d.space (reserve))
8620 {
8621 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8622 sched_extend_target ();
8623 }
8624 }
8625
8626 /* Initialize h_i_d entry of the INSN with default values.
8627 Values, that are not explicitly initialized here, hold zero. */
8628 static void
8629 init_h_i_d (rtx_insn *insn)
8630 {
8631 if (INSN_LUID (insn) > 0)
8632 {
8633 INSN_COST (insn) = -1;
8634 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8635 INSN_TICK (insn) = INVALID_TICK;
8636 INSN_EXACT_TICK (insn) = INVALID_TICK;
8637 INTER_TICK (insn) = INVALID_TICK;
8638 TODO_SPEC (insn) = HARD_DEP;
8639 }
8640 }
8641
8642 /* Initialize haifa_insn_data for BBS. */
8643 void
8644 haifa_init_h_i_d (bb_vec_t bbs)
8645 {
8646 int i;
8647 basic_block bb;
8648
8649 extend_h_i_d ();
8650 FOR_EACH_VEC_ELT (bbs, i, bb)
8651 {
8652 rtx_insn *insn;
8653
8654 FOR_BB_INSNS (bb, insn)
8655 init_h_i_d (insn);
8656 }
8657 }
8658
8659 /* Finalize haifa_insn_data. */
8660 void
8661 haifa_finish_h_i_d (void)
8662 {
8663 int i;
8664 haifa_insn_data_t data;
8665 struct reg_use_data *use, *next;
8666
8667 FOR_EACH_VEC_ELT (h_i_d, i, data)
8668 {
8669 free (data->max_reg_pressure);
8670 free (data->reg_pressure);
8671 for (use = data->reg_use_list; use != NULL; use = next)
8672 {
8673 next = use->next_insn_use;
8674 free (use);
8675 }
8676 }
8677 h_i_d.release ();
8678 }
8679
8680 /* Init data for the new insn INSN. */
8681 static void
8682 haifa_init_insn (rtx_insn *insn)
8683 {
8684 gcc_assert (insn != NULL);
8685
8686 sched_extend_luids ();
8687 sched_init_insn_luid (insn);
8688 sched_extend_target ();
8689 sched_deps_init (false);
8690 extend_h_i_d ();
8691 init_h_i_d (insn);
8692
8693 if (adding_bb_to_current_region_p)
8694 {
8695 sd_init_insn (insn);
8696
8697 /* Extend dependency caches by one element. */
8698 extend_dependency_caches (1, false);
8699 }
8700 if (sched_pressure != SCHED_PRESSURE_NONE)
8701 init_insn_reg_pressure_info (insn);
8702 }
8703
8704 /* Init data for the new basic block BB which comes after AFTER. */
8705 static void
8706 haifa_init_only_bb (basic_block bb, basic_block after)
8707 {
8708 gcc_assert (bb != NULL);
8709
8710 sched_init_bbs ();
8711
8712 if (common_sched_info->add_block)
8713 /* This changes only data structures of the front-end. */
8714 common_sched_info->add_block (bb, after);
8715 }
8716
8717 /* A generic version of sched_split_block (). */
8718 basic_block
8719 sched_split_block_1 (basic_block first_bb, rtx after)
8720 {
8721 edge e;
8722
8723 e = split_block (first_bb, after);
8724 gcc_assert (e->src == first_bb);
8725
8726 /* sched_split_block emits note if *check == BB_END. Probably it
8727 is better to rip that note off. */
8728
8729 return e->dest;
8730 }
8731
8732 /* A generic version of sched_create_empty_bb (). */
8733 basic_block
8734 sched_create_empty_bb_1 (basic_block after)
8735 {
8736 return create_empty_bb (after);
8737 }
8738
8739 /* Insert PAT as an INSN into the schedule and update the necessary data
8740 structures to account for it. */
8741 rtx_insn *
8742 sched_emit_insn (rtx pat)
8743 {
8744 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
8745 haifa_init_insn (insn);
8746
8747 if (current_sched_info->add_remove_insn)
8748 current_sched_info->add_remove_insn (insn, 0);
8749
8750 (*current_sched_info->begin_schedule_ready) (insn);
8751 scheduled_insns.safe_push (insn);
8752
8753 last_scheduled_insn = insn;
8754 return insn;
8755 }
8756
8757 /* This function returns a candidate satisfying dispatch constraints from
8758 the ready list. */
8759
8760 static rtx_insn *
8761 ready_remove_first_dispatch (struct ready_list *ready)
8762 {
8763 int i;
8764 rtx_insn *insn = ready_element (ready, 0);
8765
8766 if (ready->n_ready == 1
8767 || !INSN_P (insn)
8768 || INSN_CODE (insn) < 0
8769 || !active_insn_p (insn)
8770 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8771 return ready_remove_first (ready);
8772
8773 for (i = 1; i < ready->n_ready; i++)
8774 {
8775 insn = ready_element (ready, i);
8776
8777 if (!INSN_P (insn)
8778 || INSN_CODE (insn) < 0
8779 || !active_insn_p (insn))
8780 continue;
8781
8782 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8783 {
8784 /* Return ith element of ready. */
8785 insn = ready_remove (ready, i);
8786 return insn;
8787 }
8788 }
8789
8790 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
8791 return ready_remove_first (ready);
8792
8793 for (i = 1; i < ready->n_ready; i++)
8794 {
8795 insn = ready_element (ready, i);
8796
8797 if (!INSN_P (insn)
8798 || INSN_CODE (insn) < 0
8799 || !active_insn_p (insn))
8800 continue;
8801
8802 /* Return i-th element of ready. */
8803 if (targetm.sched.dispatch (insn, IS_CMP))
8804 return ready_remove (ready, i);
8805 }
8806
8807 return ready_remove_first (ready);
8808 }
8809
8810 /* Get number of ready insn in the ready list. */
8811
8812 int
8813 number_in_ready (void)
8814 {
8815 return ready.n_ready;
8816 }
8817
8818 /* Get number of ready's in the ready list. */
8819
8820 rtx_insn *
8821 get_ready_element (int i)
8822 {
8823 return ready_element (&ready, i);
8824 }
8825
8826 #endif /* INSN_SCHEDULING */