Schedule by INSN_COST in case of tie
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "memmodel.h"
134 #include "tm_p.h"
135 #include "insn-config.h"
136 #include "regs.h"
137 #include "ira.h"
138 #include "recog.h"
139 #include "insn-attr.h"
140 #include "cfgrtl.h"
141 #include "cfgbuild.h"
142 #include "sched-int.h"
143 #include "common/common-target.h"
144 #include "params.h"
145 #include "dbgcnt.h"
146 #include "cfgloop.h"
147 #include "dumpfile.h"
148 #include "print-rtl.h"
149
150 #ifdef INSN_SCHEDULING
151
152 /* True if we do register pressure relief through live-range
153 shrinkage. */
154 static bool live_range_shrinkage_p;
155
156 /* Switch on live range shrinkage. */
157 void
158 initialize_live_range_shrinkage (void)
159 {
160 live_range_shrinkage_p = true;
161 }
162
163 /* Switch off live range shrinkage. */
164 void
165 finish_live_range_shrinkage (void)
166 {
167 live_range_shrinkage_p = false;
168 }
169
170 /* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
173
174 int issue_rate;
175
176 /* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178 bool sched_no_dce;
179
180 /* The current initiation interval used when modulo scheduling. */
181 static int modulo_ii;
182
183 /* The maximum number of stages we are prepared to handle. */
184 static int modulo_max_stages;
185
186 /* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188 static int modulo_n_insns;
189
190 /* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192 static int modulo_insns_scheduled;
193
194 /* The maximum uid of insns from the first iteration of the loop. */
195 static int modulo_iter0_max_uid;
196
197 /* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199 static int modulo_backtracks_left;
200
201 /* The stage in which the last insn from the original loop was
202 scheduled. */
203 static int modulo_last_stage;
204
205 /* sched-verbose controls the amount of debugging output the
206 scheduler prints. It is controlled by -fsched-verbose=N:
207 N=0: no debugging output.
208 N=1: default value.
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
211 N=5: dependences info. */
212 int sched_verbose = 0;
213
214 /* Debugging file. All printouts are sent to dump. */
215 FILE *sched_dump = 0;
216
217 /* This is a placeholder for the scheduler parameters common
218 to all schedulers. */
219 struct common_sched_info_def *common_sched_info;
220
221 #define INSN_TICK(INSN) (HID (INSN)->tick)
222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
228 /* Cached cost of the instruction. Use insn_sched_cost to get cost of the
229 insn. -1 here means that the field is not initialized. */
230 #define INSN_COST(INSN) (HID (INSN)->cost)
231
232 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234 #define INVALID_TICK (-(max_insn_queue_index + 1))
235 /* The minimal value of the INSN_TICK of an instruction. */
236 #define MIN_TICK (-max_insn_queue_index)
237
238 /* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
241
242 /* The deciding reason for INSN's place in the ready list. */
243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
244
245 /* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
247 rtx_insn *note_list;
248
249 static struct spec_info_def spec_info_var;
250 /* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
252 spec_info_t spec_info = NULL;
253
254 /* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
256 static bool haifa_recovery_bb_recently_added_p;
257
258 /* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261 bool haifa_recovery_bb_ever_added_p;
262
263 /* Counters of different types of speculative instructions. */
264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
265
266 /* Array used in {unlink, restore}_bb_notes. */
267 static rtx_insn **bb_header = 0;
268
269 /* Basic block after which recovery blocks will be created. */
270 static basic_block before_recovery;
271
272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274 basic_block after_recovery;
275
276 /* FALSE if we add bb to another region, so we don't need to initialize it. */
277 bool adding_bb_to_current_region_p = true;
278
279 /* Queues, etc. */
280
281 /* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
285
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
292
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
295
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
301 insns move from the "Queued" set to the "Ready" list.
302
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
309
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
316
317 /* Implement a circular buffer to delay instructions until sufficient
318 time has passed. For the new pipeline description interface,
319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
320 than maximal time of instruction execution computed by genattr.c on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
323
324 static rtx_insn_list **insn_queue;
325 static int q_ptr = 0;
326 static int q_size = 0;
327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
329
330 #define QUEUE_SCHEDULED (-3)
331 #define QUEUE_NOWHERE (-2)
332 #define QUEUE_READY (-1)
333 /* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
338
339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
340
341 /* The following variable value refers for all current and future
342 reservations of the processor units. */
343 state_t curr_state;
344
345 /* The following variable value is size of memory representing all
346 current and future reservations of the processor units. */
347 size_t dfa_state_size;
348
349 /* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
351 signed char *ready_try = NULL;
352
353 /* The ready list. */
354 struct ready_list ready = {NULL, 0, 0, 0, 0};
355
356 /* The pointer to the ready list (to be removed). */
357 static struct ready_list *readyp = &ready;
358
359 /* Scheduling clock. */
360 static int clock_var;
361
362 /* Clock at which the previous instruction was issued. */
363 static int last_clock_var;
364
365 /* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367 static bool must_backtrack;
368
369 /* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372 int cycle_issued_insns;
373
374 /* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
376 static vec<rtx_insn *> scheduled_insns;
377
378 static int may_trap_exp (const_rtx, int);
379
380 /* Nonzero iff the address is comprised from at most 1 register. */
381 #define CONST_BASED_ADDRESS_P(x) \
382 (REG_P (x) \
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
387
388 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
390
391 \f
392 static int haifa_luid_for_non_insn (rtx x);
393
394 /* Haifa version of sched_info hooks common to all headers. */
395 const struct common_sched_info_def haifa_common_sched_info =
396 {
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
402 };
403
404 /* Mapping from instruction UID to its Logical UID. */
405 vec<int> sched_luids;
406
407 /* Next LUID to assign to an instruction. */
408 int sched_max_luid = 1;
409
410 /* Haifa Instruction Data. */
411 vec<haifa_insn_data_def> h_i_d;
412
413 void (* sched_init_only_bb) (basic_block, basic_block);
414
415 /* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417 basic_block (* sched_split_block) (basic_block, rtx);
418
419 /* Create empty basic block after the specified block. */
420 basic_block (* sched_create_empty_bb) (basic_block);
421
422 /* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424 static int
425 insn_delay (rtx_insn *insn)
426 {
427 return MAX (INSN_TICK (insn) - clock_var, 0);
428 }
429
430 static int
431 may_trap_exp (const_rtx x, int is_store)
432 {
433 enum rtx_code code;
434
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
439 {
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
444 }
445 if (code == MEM)
446 {
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
458 }
459 else
460 {
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
463
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
470 {
471 if (fmt[i] == 'e')
472 {
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
475 }
476 else if (fmt[i] == 'E')
477 {
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 {
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
485 }
486 }
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
489 }
490 return insn_class;
491 }
492 }
493
494 /* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
499 IFREE: load from a globally safe location.
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
503
504 static int
505 haifa_classify_rtx (const_rtx x)
506 {
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
510
511 if (GET_CODE (x) == PARALLEL)
512 {
513 int i, len = XVECLEN (x, 0);
514
515 for (i = len - 1; i >= 0; i--)
516 {
517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
521 }
522 }
523 else
524 {
525 code = GET_CODE (x);
526 switch (code)
527 {
528 case CLOBBER:
529 /* Test if it is a 'store'. */
530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
531 break;
532 case CLOBBER_HIGH:
533 gcc_assert (REG_P (XEXP (x, 0)));
534 break;
535 case SET:
536 /* Test if it is a store. */
537 tmp_class = may_trap_exp (SET_DEST (x), 1);
538 if (tmp_class == TRAP_RISKY)
539 break;
540 /* Test if it is a load. */
541 tmp_class =
542 WORST_CLASS (tmp_class,
543 may_trap_exp (SET_SRC (x), 0));
544 break;
545 case COND_EXEC:
546 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
547 if (tmp_class == TRAP_RISKY)
548 break;
549 tmp_class = WORST_CLASS (tmp_class,
550 may_trap_exp (COND_EXEC_TEST (x), 0));
551 break;
552 case TRAP_IF:
553 tmp_class = TRAP_RISKY;
554 break;
555 default:;
556 }
557 insn_class = tmp_class;
558 }
559
560 return insn_class;
561 }
562
563 int
564 haifa_classify_insn (const_rtx insn)
565 {
566 return haifa_classify_rtx (PATTERN (insn));
567 }
568 \f
569 /* After the scheduler initialization function has been called, this function
570 can be called to enable modulo scheduling. II is the initiation interval
571 we should use, it affects the delays for delay_pairs that were recorded as
572 separated by a given number of stages.
573
574 MAX_STAGES provides us with a limit
575 after which we give up scheduling; the caller must have unrolled at least
576 as many copies of the loop body and recorded delay_pairs for them.
577
578 INSNS is the number of real (non-debug) insns in one iteration of
579 the loop. MAX_UID can be used to test whether an insn belongs to
580 the first iteration of the loop; all of them have a uid lower than
581 MAX_UID. */
582 void
583 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
584 {
585 modulo_ii = ii;
586 modulo_max_stages = max_stages;
587 modulo_n_insns = insns;
588 modulo_iter0_max_uid = max_uid;
589 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
590 }
591
592 /* A structure to record a pair of insns where the first one is a real
593 insn that has delay slots, and the second is its delayed shadow.
594 I1 is scheduled normally and will emit an assembly instruction,
595 while I2 describes the side effect that takes place at the
596 transition between cycles CYCLES and (CYCLES + 1) after I1. */
597 struct delay_pair
598 {
599 struct delay_pair *next_same_i1;
600 rtx_insn *i1, *i2;
601 int cycles;
602 /* When doing modulo scheduling, we a delay_pair can also be used to
603 show that I1 and I2 are the same insn in a different stage. If that
604 is the case, STAGES will be nonzero. */
605 int stages;
606 };
607
608 /* Helpers for delay hashing. */
609
610 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
611 {
612 typedef void *compare_type;
613 static inline hashval_t hash (const delay_pair *);
614 static inline bool equal (const delay_pair *, const void *);
615 };
616
617 /* Returns a hash value for X, based on hashing just I1. */
618
619 inline hashval_t
620 delay_i1_hasher::hash (const delay_pair *x)
621 {
622 return htab_hash_pointer (x->i1);
623 }
624
625 /* Return true if I1 of pair X is the same as that of pair Y. */
626
627 inline bool
628 delay_i1_hasher::equal (const delay_pair *x, const void *y)
629 {
630 return x->i1 == y;
631 }
632
633 struct delay_i2_hasher : free_ptr_hash <delay_pair>
634 {
635 typedef void *compare_type;
636 static inline hashval_t hash (const delay_pair *);
637 static inline bool equal (const delay_pair *, const void *);
638 };
639
640 /* Returns a hash value for X, based on hashing just I2. */
641
642 inline hashval_t
643 delay_i2_hasher::hash (const delay_pair *x)
644 {
645 return htab_hash_pointer (x->i2);
646 }
647
648 /* Return true if I2 of pair X is the same as that of pair Y. */
649
650 inline bool
651 delay_i2_hasher::equal (const delay_pair *x, const void *y)
652 {
653 return x->i2 == y;
654 }
655
656 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
657 indexed by I2. */
658 static hash_table<delay_i1_hasher> *delay_htab;
659 static hash_table<delay_i2_hasher> *delay_htab_i2;
660
661 /* Called through htab_traverse. Walk the hashtable using I2 as
662 index, and delete all elements involving an UID higher than
663 that pointed to by *DATA. */
664 int
665 haifa_htab_i2_traverse (delay_pair **slot, int *data)
666 {
667 int maxuid = *data;
668 struct delay_pair *p = *slot;
669 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
670 {
671 delay_htab_i2->clear_slot (slot);
672 }
673 return 1;
674 }
675
676 /* Called through htab_traverse. Walk the hashtable using I2 as
677 index, and delete all elements involving an UID higher than
678 that pointed to by *DATA. */
679 int
680 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
681 {
682 int maxuid = *data;
683 struct delay_pair *p, *first, **pprev;
684
685 if (INSN_UID ((*pslot)->i1) >= maxuid)
686 {
687 delay_htab->clear_slot (pslot);
688 return 1;
689 }
690 pprev = &first;
691 for (p = *pslot; p; p = p->next_same_i1)
692 {
693 if (INSN_UID (p->i2) < maxuid)
694 {
695 *pprev = p;
696 pprev = &p->next_same_i1;
697 }
698 }
699 *pprev = NULL;
700 if (first == NULL)
701 delay_htab->clear_slot (pslot);
702 else
703 *pslot = first;
704 return 1;
705 }
706
707 /* Discard all delay pairs which involve an insn with an UID higher
708 than MAX_UID. */
709 void
710 discard_delay_pairs_above (int max_uid)
711 {
712 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
713 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
714 }
715
716 /* This function can be called by a port just before it starts the final
717 scheduling pass. It records the fact that an instruction with delay
718 slots has been split into two insns, I1 and I2. The first one will be
719 scheduled normally and initiates the operation. The second one is a
720 shadow which must follow a specific number of cycles after I1; its only
721 purpose is to show the side effect that occurs at that cycle in the RTL.
722 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
723 while I2 retains the original insn type.
724
725 There are two ways in which the number of cycles can be specified,
726 involving the CYCLES and STAGES arguments to this function. If STAGES
727 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
728 which is multiplied by MODULO_II to give the number of cycles. This is
729 only useful if the caller also calls set_modulo_params to enable modulo
730 scheduling. */
731
732 void
733 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
734 {
735 struct delay_pair *p = XNEW (struct delay_pair);
736 struct delay_pair **slot;
737
738 p->i1 = i1;
739 p->i2 = i2;
740 p->cycles = cycles;
741 p->stages = stages;
742
743 if (!delay_htab)
744 {
745 delay_htab = new hash_table<delay_i1_hasher> (10);
746 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
747 }
748 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
749 p->next_same_i1 = *slot;
750 *slot = p;
751 slot = delay_htab_i2->find_slot (p, INSERT);
752 *slot = p;
753 }
754
755 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
756 and return the other insn if so. Return NULL otherwise. */
757 rtx_insn *
758 real_insn_for_shadow (rtx_insn *insn)
759 {
760 struct delay_pair *pair;
761
762 if (!delay_htab)
763 return NULL;
764
765 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
766 if (!pair || pair->stages > 0)
767 return NULL;
768 return pair->i1;
769 }
770
771 /* For a pair P of insns, return the fixed distance in cycles from the first
772 insn after which the second must be scheduled. */
773 static int
774 pair_delay (struct delay_pair *p)
775 {
776 if (p->stages == 0)
777 return p->cycles;
778 else
779 return p->stages * modulo_ii;
780 }
781
782 /* Given an insn INSN, add a dependence on its delayed shadow if it
783 has one. Also try to find situations where shadows depend on each other
784 and add dependencies to the real insns to limit the amount of backtracking
785 needed. */
786 void
787 add_delay_dependencies (rtx_insn *insn)
788 {
789 struct delay_pair *pair;
790 sd_iterator_def sd_it;
791 dep_t dep;
792
793 if (!delay_htab)
794 return;
795
796 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
797 if (!pair)
798 return;
799 add_dependence (insn, pair->i1, REG_DEP_ANTI);
800 if (pair->stages)
801 return;
802
803 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
804 {
805 rtx_insn *pro = DEP_PRO (dep);
806 struct delay_pair *other_pair
807 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
808 if (!other_pair || other_pair->stages)
809 continue;
810 if (pair_delay (other_pair) >= pair_delay (pair))
811 {
812 if (sched_verbose >= 4)
813 {
814 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
815 INSN_UID (other_pair->i1),
816 INSN_UID (pair->i1));
817 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
818 INSN_UID (pair->i1),
819 INSN_UID (pair->i2),
820 pair_delay (pair));
821 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
822 INSN_UID (other_pair->i1),
823 INSN_UID (other_pair->i2),
824 pair_delay (other_pair));
825 }
826 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
827 }
828 }
829 }
830 \f
831 /* Forward declarations. */
832
833 static int priority (rtx_insn *);
834 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
835 static int rank_for_schedule (const void *, const void *);
836 static void swap_sort (rtx_insn **, int);
837 static void queue_insn (rtx_insn *, int, const char *);
838 static int schedule_insn (rtx_insn *);
839 static void adjust_priority (rtx_insn *);
840 static void advance_one_cycle (void);
841 static void extend_h_i_d (void);
842
843
844 /* Notes handling mechanism:
845 =========================
846 Generally, NOTES are saved before scheduling and restored after scheduling.
847 The scheduler distinguishes between two types of notes:
848
849 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
850 Before scheduling a region, a pointer to the note is added to the insn
851 that follows or precedes it. (This happens as part of the data dependence
852 computation). After scheduling an insn, the pointer contained in it is
853 used for regenerating the corresponding note (in reemit_notes).
854
855 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
856 these notes are put in a list (in rm_other_notes() and
857 unlink_other_notes ()). After scheduling the block, these notes are
858 inserted at the beginning of the block (in schedule_block()). */
859
860 static void ready_add (struct ready_list *, rtx_insn *, bool);
861 static rtx_insn *ready_remove_first (struct ready_list *);
862 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
863
864 static void queue_to_ready (struct ready_list *);
865 static int early_queue_to_ready (state_t, struct ready_list *);
866
867 /* The following functions are used to implement multi-pass scheduling
868 on the first cycle. */
869 static rtx_insn *ready_remove (struct ready_list *, int);
870 static void ready_remove_insn (rtx_insn *);
871
872 static void fix_inter_tick (rtx_insn *, rtx_insn *);
873 static int fix_tick_ready (rtx_insn *);
874 static void change_queue_index (rtx_insn *, int);
875
876 /* The following functions are used to implement scheduling of data/control
877 speculative instructions. */
878
879 static void extend_h_i_d (void);
880 static void init_h_i_d (rtx_insn *);
881 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
882 static void generate_recovery_code (rtx_insn *);
883 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
884 static void begin_speculative_block (rtx_insn *);
885 static void add_to_speculative_block (rtx_insn *);
886 static void init_before_recovery (basic_block *);
887 static void create_check_block_twin (rtx_insn *, bool);
888 static void fix_recovery_deps (basic_block);
889 static bool haifa_change_pattern (rtx_insn *, rtx);
890 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
891 static void restore_bb_notes (basic_block);
892 static void fix_jump_move (rtx_insn *);
893 static void move_block_after_check (rtx_insn *);
894 static void move_succs (vec<edge, va_gc> **, basic_block);
895 static void sched_remove_insn (rtx_insn *);
896 static void clear_priorities (rtx_insn *, rtx_vec_t *);
897 static void calc_priorities (rtx_vec_t);
898 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
899
900 #endif /* INSN_SCHEDULING */
901 \f
902 /* Point to state used for the current scheduling pass. */
903 struct haifa_sched_info *current_sched_info;
904 \f
905 #ifndef INSN_SCHEDULING
906 void
907 schedule_insns (void)
908 {
909 }
910 #else
911
912 /* Do register pressure sensitive insn scheduling if the flag is set
913 up. */
914 enum sched_pressure_algorithm sched_pressure;
915
916 /* Map regno -> its pressure class. The map defined only when
917 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
918 enum reg_class *sched_regno_pressure_class;
919
920 /* The current register pressure. Only elements corresponding pressure
921 classes are defined. */
922 static int curr_reg_pressure[N_REG_CLASSES];
923
924 /* Saved value of the previous array. */
925 static int saved_reg_pressure[N_REG_CLASSES];
926
927 /* Register living at given scheduling point. */
928 static bitmap curr_reg_live;
929
930 /* Saved value of the previous array. */
931 static bitmap saved_reg_live;
932
933 /* Registers mentioned in the current region. */
934 static bitmap region_ref_regs;
935
936 /* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
937 static bitmap tmp_bitmap;
938
939 /* Effective number of available registers of a given class (see comment
940 in sched_pressure_start_bb). */
941 static int sched_class_regs_num[N_REG_CLASSES];
942 /* Number of call_saved_regs and fixed_regs. Helpers for calculating of
943 sched_class_regs_num. */
944 static int call_saved_regs_num[N_REG_CLASSES];
945 static int fixed_regs_num[N_REG_CLASSES];
946
947 /* Initiate register pressure relative info for scheduling the current
948 region. Currently it is only clearing register mentioned in the
949 current region. */
950 void
951 sched_init_region_reg_pressure_info (void)
952 {
953 bitmap_clear (region_ref_regs);
954 }
955
956 /* PRESSURE[CL] describes the pressure on register class CL. Update it
957 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
958 LIVE tracks the set of live registers; if it is null, assume that
959 every birth or death is genuine. */
960 static inline void
961 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
962 {
963 enum reg_class pressure_class;
964
965 pressure_class = sched_regno_pressure_class[regno];
966 if (regno >= FIRST_PSEUDO_REGISTER)
967 {
968 if (pressure_class != NO_REGS)
969 {
970 if (birth_p)
971 {
972 if (!live || bitmap_set_bit (live, regno))
973 pressure[pressure_class]
974 += (ira_reg_class_max_nregs
975 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
976 }
977 else
978 {
979 if (!live || bitmap_clear_bit (live, regno))
980 pressure[pressure_class]
981 -= (ira_reg_class_max_nregs
982 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
983 }
984 }
985 }
986 else if (pressure_class != NO_REGS
987 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
988 {
989 if (birth_p)
990 {
991 if (!live || bitmap_set_bit (live, regno))
992 pressure[pressure_class]++;
993 }
994 else
995 {
996 if (!live || bitmap_clear_bit (live, regno))
997 pressure[pressure_class]--;
998 }
999 }
1000 }
1001
1002 /* Initiate current register pressure related info from living
1003 registers given by LIVE. */
1004 static void
1005 initiate_reg_pressure_info (bitmap live)
1006 {
1007 int i;
1008 unsigned int j;
1009 bitmap_iterator bi;
1010
1011 for (i = 0; i < ira_pressure_classes_num; i++)
1012 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1013 bitmap_clear (curr_reg_live);
1014 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1015 if (sched_pressure == SCHED_PRESSURE_MODEL
1016 || current_nr_blocks == 1
1017 || bitmap_bit_p (region_ref_regs, j))
1018 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1019 }
1020
1021 /* Mark registers in X as mentioned in the current region. */
1022 static void
1023 setup_ref_regs (rtx x)
1024 {
1025 int i, j;
1026 const RTX_CODE code = GET_CODE (x);
1027 const char *fmt;
1028
1029 if (REG_P (x))
1030 {
1031 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1032 return;
1033 }
1034 fmt = GET_RTX_FORMAT (code);
1035 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1036 if (fmt[i] == 'e')
1037 setup_ref_regs (XEXP (x, i));
1038 else if (fmt[i] == 'E')
1039 {
1040 for (j = 0; j < XVECLEN (x, i); j++)
1041 setup_ref_regs (XVECEXP (x, i, j));
1042 }
1043 }
1044
1045 /* Initiate current register pressure related info at the start of
1046 basic block BB. */
1047 static void
1048 initiate_bb_reg_pressure_info (basic_block bb)
1049 {
1050 unsigned int i ATTRIBUTE_UNUSED;
1051 rtx_insn *insn;
1052
1053 if (current_nr_blocks > 1)
1054 FOR_BB_INSNS (bb, insn)
1055 if (NONDEBUG_INSN_P (insn))
1056 setup_ref_regs (PATTERN (insn));
1057 initiate_reg_pressure_info (df_get_live_in (bb));
1058 if (bb_has_eh_pred (bb))
1059 for (i = 0; ; ++i)
1060 {
1061 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1062
1063 if (regno == INVALID_REGNUM)
1064 break;
1065 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1066 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1067 regno, true);
1068 }
1069 }
1070
1071 /* Save current register pressure related info. */
1072 static void
1073 save_reg_pressure (void)
1074 {
1075 int i;
1076
1077 for (i = 0; i < ira_pressure_classes_num; i++)
1078 saved_reg_pressure[ira_pressure_classes[i]]
1079 = curr_reg_pressure[ira_pressure_classes[i]];
1080 bitmap_copy (saved_reg_live, curr_reg_live);
1081 }
1082
1083 /* Restore saved register pressure related info. */
1084 static void
1085 restore_reg_pressure (void)
1086 {
1087 int i;
1088
1089 for (i = 0; i < ira_pressure_classes_num; i++)
1090 curr_reg_pressure[ira_pressure_classes[i]]
1091 = saved_reg_pressure[ira_pressure_classes[i]];
1092 bitmap_copy (curr_reg_live, saved_reg_live);
1093 }
1094
1095 /* Return TRUE if the register is dying after its USE. */
1096 static bool
1097 dying_use_p (struct reg_use_data *use)
1098 {
1099 struct reg_use_data *next;
1100
1101 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1102 if (NONDEBUG_INSN_P (next->insn)
1103 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1104 return false;
1105 return true;
1106 }
1107
1108 /* Print info about the current register pressure and its excess for
1109 each pressure class. */
1110 static void
1111 print_curr_reg_pressure (void)
1112 {
1113 int i;
1114 enum reg_class cl;
1115
1116 fprintf (sched_dump, ";;\t");
1117 for (i = 0; i < ira_pressure_classes_num; i++)
1118 {
1119 cl = ira_pressure_classes[i];
1120 gcc_assert (curr_reg_pressure[cl] >= 0);
1121 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1122 curr_reg_pressure[cl],
1123 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1124 }
1125 fprintf (sched_dump, "\n");
1126 }
1127 \f
1128 /* Determine if INSN has a condition that is clobbered if a register
1129 in SET_REGS is modified. */
1130 static bool
1131 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1132 {
1133 rtx pat = PATTERN (insn);
1134 gcc_assert (GET_CODE (pat) == COND_EXEC);
1135 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1136 {
1137 sd_iterator_def sd_it;
1138 dep_t dep;
1139 haifa_change_pattern (insn, ORIG_PAT (insn));
1140 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1141 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1142 TODO_SPEC (insn) = HARD_DEP;
1143 if (sched_verbose >= 2)
1144 fprintf (sched_dump,
1145 ";;\t\tdequeue insn %s because of clobbered condition\n",
1146 (*current_sched_info->print_insn) (insn, 0));
1147 return true;
1148 }
1149
1150 return false;
1151 }
1152
1153 /* This function should be called after modifying the pattern of INSN,
1154 to update scheduler data structures as needed. */
1155 static void
1156 update_insn_after_change (rtx_insn *insn)
1157 {
1158 sd_iterator_def sd_it;
1159 dep_t dep;
1160
1161 dfa_clear_single_insn_cache (insn);
1162
1163 sd_it = sd_iterator_start (insn,
1164 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1165 while (sd_iterator_cond (&sd_it, &dep))
1166 {
1167 DEP_COST (dep) = UNKNOWN_DEP_COST;
1168 sd_iterator_next (&sd_it);
1169 }
1170
1171 /* Invalidate INSN_COST, so it'll be recalculated. */
1172 INSN_COST (insn) = -1;
1173 /* Invalidate INSN_TICK, so it'll be recalculated. */
1174 INSN_TICK (insn) = INVALID_TICK;
1175
1176 /* Invalidate autoprefetch data entry. */
1177 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1178 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1179 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1180 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1181 }
1182
1183
1184 /* Two VECs, one to hold dependencies for which pattern replacements
1185 need to be applied or restored at the start of the next cycle, and
1186 another to hold an integer that is either one, to apply the
1187 corresponding replacement, or zero to restore it. */
1188 static vec<dep_t> next_cycle_replace_deps;
1189 static vec<int> next_cycle_apply;
1190
1191 static void apply_replacement (dep_t, bool);
1192 static void restore_pattern (dep_t, bool);
1193
1194 /* Look at the remaining dependencies for insn NEXT, and compute and return
1195 the TODO_SPEC value we should use for it. This is called after one of
1196 NEXT's dependencies has been resolved.
1197 We also perform pattern replacements for predication, and for broken
1198 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1199 false. */
1200
1201 static ds_t
1202 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1203 {
1204 ds_t new_ds;
1205 sd_iterator_def sd_it;
1206 dep_t dep, modify_dep = NULL;
1207 int n_spec = 0;
1208 int n_control = 0;
1209 int n_replace = 0;
1210 bool first_p = true;
1211
1212 if (sd_lists_empty_p (next, SD_LIST_BACK))
1213 /* NEXT has all its dependencies resolved. */
1214 return 0;
1215
1216 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1217 return HARD_DEP;
1218
1219 /* If NEXT is intended to sit adjacent to this instruction, we don't
1220 want to try to break any dependencies. Treat it as a HARD_DEP. */
1221 if (SCHED_GROUP_P (next))
1222 return HARD_DEP;
1223
1224 /* Now we've got NEXT with speculative deps only.
1225 1. Look at the deps to see what we have to do.
1226 2. Check if we can do 'todo'. */
1227 new_ds = 0;
1228
1229 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1230 {
1231 rtx_insn *pro = DEP_PRO (dep);
1232 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1233
1234 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1235 continue;
1236
1237 if (ds)
1238 {
1239 n_spec++;
1240 if (first_p)
1241 {
1242 first_p = false;
1243
1244 new_ds = ds;
1245 }
1246 else
1247 new_ds = ds_merge (new_ds, ds);
1248 }
1249 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1250 {
1251 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1252 {
1253 n_control++;
1254 modify_dep = dep;
1255 }
1256 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1257 }
1258 else if (DEP_REPLACE (dep) != NULL)
1259 {
1260 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1261 {
1262 n_replace++;
1263 modify_dep = dep;
1264 }
1265 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1266 }
1267 }
1268
1269 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1270 {
1271 if (!dbg_cnt (sched_breakdep))
1272 return HARD_DEP;
1273 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1274 {
1275 struct dep_replacement *desc = DEP_REPLACE (dep);
1276 if (desc != NULL)
1277 {
1278 if (desc->insn == next && !for_backtrack)
1279 {
1280 gcc_assert (n_replace == 1);
1281 apply_replacement (dep, true);
1282 }
1283 DEP_STATUS (dep) |= DEP_CANCELLED;
1284 }
1285 }
1286 return 0;
1287 }
1288
1289 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1290 {
1291 rtx_insn *pro, *other;
1292 rtx new_pat;
1293 rtx cond = NULL_RTX;
1294 bool success;
1295 rtx_insn *prev = NULL;
1296 int i;
1297 unsigned regno;
1298
1299 if ((current_sched_info->flags & DO_PREDICATION) == 0
1300 || (ORIG_PAT (next) != NULL_RTX
1301 && PREDICATED_PAT (next) == NULL_RTX))
1302 return HARD_DEP;
1303
1304 pro = DEP_PRO (modify_dep);
1305 other = real_insn_for_shadow (pro);
1306 if (other != NULL_RTX)
1307 pro = other;
1308
1309 cond = sched_get_reverse_condition_uncached (pro);
1310 regno = REGNO (XEXP (cond, 0));
1311
1312 /* Find the last scheduled insn that modifies the condition register.
1313 We can stop looking once we find the insn we depend on through the
1314 REG_DEP_CONTROL; if the condition register isn't modified after it,
1315 we know that it still has the right value. */
1316 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1317 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1318 {
1319 HARD_REG_SET t;
1320
1321 find_all_hard_reg_sets (prev, &t, true);
1322 if (TEST_HARD_REG_BIT (t, regno))
1323 return HARD_DEP;
1324 if (prev == pro)
1325 break;
1326 }
1327 if (ORIG_PAT (next) == NULL_RTX)
1328 {
1329 ORIG_PAT (next) = PATTERN (next);
1330
1331 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1332 success = haifa_change_pattern (next, new_pat);
1333 if (!success)
1334 return HARD_DEP;
1335 PREDICATED_PAT (next) = new_pat;
1336 }
1337 else if (PATTERN (next) != PREDICATED_PAT (next))
1338 {
1339 bool success = haifa_change_pattern (next,
1340 PREDICATED_PAT (next));
1341 gcc_assert (success);
1342 }
1343 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1344 return DEP_CONTROL;
1345 }
1346
1347 if (PREDICATED_PAT (next) != NULL_RTX)
1348 {
1349 int tick = INSN_TICK (next);
1350 bool success = haifa_change_pattern (next,
1351 ORIG_PAT (next));
1352 INSN_TICK (next) = tick;
1353 gcc_assert (success);
1354 }
1355
1356 /* We can't handle the case where there are both speculative and control
1357 dependencies, so we return HARD_DEP in such a case. Also fail if
1358 we have speculative dependencies with not enough points, or more than
1359 one control dependency. */
1360 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1361 || (n_spec > 0
1362 /* Too few points? */
1363 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1364 || n_control > 0
1365 || n_replace > 0)
1366 return HARD_DEP;
1367
1368 return new_ds;
1369 }
1370 \f
1371 /* Pointer to the last instruction scheduled. */
1372 static rtx_insn *last_scheduled_insn;
1373
1374 /* Pointer to the last nondebug instruction scheduled within the
1375 block, or the prev_head of the scheduling block. Used by
1376 rank_for_schedule, so that insns independent of the last scheduled
1377 insn will be preferred over dependent instructions. */
1378 static rtx_insn *last_nondebug_scheduled_insn;
1379
1380 /* Pointer that iterates through the list of unscheduled insns if we
1381 have a dbg_cnt enabled. It always points at an insn prior to the
1382 first unscheduled one. */
1383 static rtx_insn *nonscheduled_insns_begin;
1384
1385 /* Compute cost of executing INSN.
1386 This is the number of cycles between instruction issue and
1387 instruction results. */
1388 int
1389 insn_sched_cost (rtx_insn *insn)
1390 {
1391 int cost;
1392
1393 if (sched_fusion)
1394 return 0;
1395
1396 if (sel_sched_p ())
1397 {
1398 if (recog_memoized (insn) < 0)
1399 return 0;
1400
1401 cost = insn_default_latency (insn);
1402 if (cost < 0)
1403 cost = 0;
1404
1405 return cost;
1406 }
1407
1408 cost = INSN_COST (insn);
1409
1410 if (cost < 0)
1411 {
1412 /* A USE insn, or something else we don't need to
1413 understand. We can't pass these directly to
1414 result_ready_cost or insn_default_latency because it will
1415 trigger a fatal error for unrecognizable insns. */
1416 if (recog_memoized (insn) < 0)
1417 {
1418 INSN_COST (insn) = 0;
1419 return 0;
1420 }
1421 else
1422 {
1423 cost = insn_default_latency (insn);
1424 if (cost < 0)
1425 cost = 0;
1426
1427 INSN_COST (insn) = cost;
1428 }
1429 }
1430
1431 return cost;
1432 }
1433
1434 /* Compute cost of dependence LINK.
1435 This is the number of cycles between instruction issue and
1436 instruction results.
1437 ??? We also use this function to call recog_memoized on all insns. */
1438 int
1439 dep_cost_1 (dep_t link, dw_t dw)
1440 {
1441 rtx_insn *insn = DEP_PRO (link);
1442 rtx_insn *used = DEP_CON (link);
1443 int cost;
1444
1445 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1446 return DEP_COST (link);
1447
1448 if (delay_htab)
1449 {
1450 struct delay_pair *delay_entry;
1451 delay_entry
1452 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1453 if (delay_entry)
1454 {
1455 if (delay_entry->i1 == insn)
1456 {
1457 DEP_COST (link) = pair_delay (delay_entry);
1458 return DEP_COST (link);
1459 }
1460 }
1461 }
1462
1463 /* A USE insn should never require the value used to be computed.
1464 This allows the computation of a function's result and parameter
1465 values to overlap the return and call. We don't care about the
1466 dependence cost when only decreasing register pressure. */
1467 if (recog_memoized (used) < 0)
1468 {
1469 cost = 0;
1470 recog_memoized (insn);
1471 }
1472 else
1473 {
1474 enum reg_note dep_type = DEP_TYPE (link);
1475
1476 cost = insn_sched_cost (insn);
1477
1478 if (INSN_CODE (insn) >= 0)
1479 {
1480 if (dep_type == REG_DEP_ANTI)
1481 cost = 0;
1482 else if (dep_type == REG_DEP_OUTPUT)
1483 {
1484 cost = (insn_default_latency (insn)
1485 - insn_default_latency (used));
1486 if (cost <= 0)
1487 cost = 1;
1488 }
1489 else if (bypass_p (insn))
1490 cost = insn_latency (insn, used);
1491 }
1492
1493
1494 if (targetm.sched.adjust_cost)
1495 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1496 dw);
1497
1498 if (cost < 0)
1499 cost = 0;
1500 }
1501
1502 DEP_COST (link) = cost;
1503 return cost;
1504 }
1505
1506 /* Compute cost of dependence LINK.
1507 This is the number of cycles between instruction issue and
1508 instruction results. */
1509 int
1510 dep_cost (dep_t link)
1511 {
1512 return dep_cost_1 (link, 0);
1513 }
1514
1515 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1516 INSN_PRIORITY explicitly. */
1517 void
1518 increase_insn_priority (rtx_insn *insn, int amount)
1519 {
1520 if (!sel_sched_p ())
1521 {
1522 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1523 if (INSN_PRIORITY_KNOWN (insn))
1524 INSN_PRIORITY (insn) += amount;
1525 }
1526 else
1527 {
1528 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1529 Use EXPR_PRIORITY instead. */
1530 sel_add_to_insn_priority (insn, amount);
1531 }
1532 }
1533
1534 /* Return 'true' if DEP should be included in priority calculations. */
1535 static bool
1536 contributes_to_priority_p (dep_t dep)
1537 {
1538 if (DEBUG_INSN_P (DEP_CON (dep))
1539 || DEBUG_INSN_P (DEP_PRO (dep)))
1540 return false;
1541
1542 /* Critical path is meaningful in block boundaries only. */
1543 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1544 DEP_PRO (dep)))
1545 return false;
1546
1547 if (DEP_REPLACE (dep) != NULL)
1548 return false;
1549
1550 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1551 then speculative instructions will less likely be
1552 scheduled. That is because the priority of
1553 their producers will increase, and, thus, the
1554 producers will more likely be scheduled, thus,
1555 resolving the dependence. */
1556 if (sched_deps_info->generate_spec_deps
1557 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1558 && (DEP_STATUS (dep) & SPECULATIVE))
1559 return false;
1560
1561 return true;
1562 }
1563
1564 /* Compute the number of nondebug deps in list LIST for INSN. */
1565
1566 static int
1567 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1568 {
1569 sd_iterator_def sd_it;
1570 dep_t dep;
1571 int dbgcount = 0, nodbgcount = 0;
1572
1573 if (!MAY_HAVE_DEBUG_INSNS)
1574 return sd_lists_size (insn, list);
1575
1576 FOR_EACH_DEP (insn, list, sd_it, dep)
1577 {
1578 if (DEBUG_INSN_P (DEP_CON (dep)))
1579 dbgcount++;
1580 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1581 nodbgcount++;
1582 }
1583
1584 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1585
1586 return nodbgcount;
1587 }
1588
1589 bool sched_fusion;
1590
1591 /* Compute the priority number for INSN. */
1592 static int
1593 priority (rtx_insn *insn)
1594 {
1595 if (! INSN_P (insn))
1596 return 0;
1597
1598 /* We should not be interested in priority of an already scheduled insn. */
1599 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1600
1601 if (!INSN_PRIORITY_KNOWN (insn))
1602 {
1603 int this_priority = -1;
1604
1605 if (sched_fusion)
1606 {
1607 int this_fusion_priority;
1608
1609 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1610 &this_fusion_priority, &this_priority);
1611 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1612 }
1613 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1614 /* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
1615 has some forward deps but all of them are ignored by
1616 contributes_to_priority hook. At the moment we set priority of
1617 such insn to 0. */
1618 this_priority = insn_sched_cost (insn);
1619 else
1620 {
1621 rtx_insn *prev_first, *twin;
1622 basic_block rec;
1623
1624 /* For recovery check instructions we calculate priority slightly
1625 different than that of normal instructions. Instead of walking
1626 through INSN_FORW_DEPS (check) list, we walk through
1627 INSN_FORW_DEPS list of each instruction in the corresponding
1628 recovery block. */
1629
1630 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1631 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1632 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1633 {
1634 prev_first = PREV_INSN (insn);
1635 twin = insn;
1636 }
1637 else
1638 {
1639 prev_first = NEXT_INSN (BB_HEAD (rec));
1640 twin = PREV_INSN (BB_END (rec));
1641 }
1642
1643 do
1644 {
1645 sd_iterator_def sd_it;
1646 dep_t dep;
1647
1648 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1649 {
1650 rtx_insn *next;
1651 int next_priority;
1652
1653 next = DEP_CON (dep);
1654
1655 if (BLOCK_FOR_INSN (next) != rec)
1656 {
1657 int cost;
1658
1659 if (!contributes_to_priority_p (dep))
1660 continue;
1661
1662 if (twin == insn)
1663 cost = dep_cost (dep);
1664 else
1665 {
1666 struct _dep _dep1, *dep1 = &_dep1;
1667
1668 init_dep (dep1, insn, next, REG_DEP_ANTI);
1669
1670 cost = dep_cost (dep1);
1671 }
1672
1673 next_priority = cost + priority (next);
1674
1675 if (next_priority > this_priority)
1676 this_priority = next_priority;
1677 }
1678 }
1679
1680 twin = PREV_INSN (twin);
1681 }
1682 while (twin != prev_first);
1683 }
1684
1685 if (this_priority < 0)
1686 {
1687 gcc_assert (this_priority == -1);
1688
1689 this_priority = insn_sched_cost (insn);
1690 }
1691
1692 INSN_PRIORITY (insn) = this_priority;
1693 INSN_PRIORITY_STATUS (insn) = 1;
1694 }
1695
1696 return INSN_PRIORITY (insn);
1697 }
1698 \f
1699 /* Macros and functions for keeping the priority queue sorted, and
1700 dealing with queuing and dequeuing of instructions. */
1701
1702 /* For each pressure class CL, set DEATH[CL] to the number of registers
1703 in that class that die in INSN. */
1704
1705 static void
1706 calculate_reg_deaths (rtx_insn *insn, int *death)
1707 {
1708 int i;
1709 struct reg_use_data *use;
1710
1711 for (i = 0; i < ira_pressure_classes_num; i++)
1712 death[ira_pressure_classes[i]] = 0;
1713 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1714 if (dying_use_p (use))
1715 mark_regno_birth_or_death (0, death, use->regno, true);
1716 }
1717
1718 /* Setup info about the current register pressure impact of scheduling
1719 INSN at the current scheduling point. */
1720 static void
1721 setup_insn_reg_pressure_info (rtx_insn *insn)
1722 {
1723 int i, change, before, after, hard_regno;
1724 int excess_cost_change;
1725 machine_mode mode;
1726 enum reg_class cl;
1727 struct reg_pressure_data *pressure_info;
1728 int *max_reg_pressure;
1729 static int death[N_REG_CLASSES];
1730
1731 gcc_checking_assert (!DEBUG_INSN_P (insn));
1732
1733 excess_cost_change = 0;
1734 calculate_reg_deaths (insn, death);
1735 pressure_info = INSN_REG_PRESSURE (insn);
1736 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1737 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1738 for (i = 0; i < ira_pressure_classes_num; i++)
1739 {
1740 cl = ira_pressure_classes[i];
1741 gcc_assert (curr_reg_pressure[cl] >= 0);
1742 change = (int) pressure_info[i].set_increase - death[cl];
1743 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1744 after = MAX (0, max_reg_pressure[i] + change
1745 - sched_class_regs_num[cl]);
1746 hard_regno = ira_class_hard_regs[cl][0];
1747 gcc_assert (hard_regno >= 0);
1748 mode = reg_raw_mode[hard_regno];
1749 excess_cost_change += ((after - before)
1750 * (ira_memory_move_cost[mode][cl][0]
1751 + ira_memory_move_cost[mode][cl][1]));
1752 }
1753 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1754 }
1755 \f
1756 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1757 It tries to make the scheduler take register pressure into account
1758 without introducing too many unnecessary stalls. It hooks into the
1759 main scheduling algorithm at several points:
1760
1761 - Before scheduling starts, model_start_schedule constructs a
1762 "model schedule" for the current block. This model schedule is
1763 chosen solely to keep register pressure down. It does not take the
1764 target's pipeline or the original instruction order into account,
1765 except as a tie-breaker. It also doesn't work to a particular
1766 pressure limit.
1767
1768 This model schedule gives us an idea of what pressure can be
1769 achieved for the block and gives us an example of a schedule that
1770 keeps to that pressure. It also makes the final schedule less
1771 dependent on the original instruction order. This is important
1772 because the original order can either be "wide" (many values live
1773 at once, such as in user-scheduled code) or "narrow" (few values
1774 live at once, such as after loop unrolling, where several
1775 iterations are executed sequentially).
1776
1777 We do not apply this model schedule to the rtx stream. We simply
1778 record it in model_schedule. We also compute the maximum pressure,
1779 MP, that was seen during this schedule.
1780
1781 - Instructions are added to the ready queue even if they require
1782 a stall. The length of the stall is instead computed as:
1783
1784 MAX (INSN_TICK (INSN) - clock_var, 0)
1785
1786 (= insn_delay). This allows rank_for_schedule to choose between
1787 introducing a deliberate stall or increasing pressure.
1788
1789 - Before sorting the ready queue, model_set_excess_costs assigns
1790 a pressure-based cost to each ready instruction in the queue.
1791 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1792 (ECC for short) and is effectively measured in cycles.
1793
1794 - rank_for_schedule ranks instructions based on:
1795
1796 ECC (insn) + insn_delay (insn)
1797
1798 then as:
1799
1800 insn_delay (insn)
1801
1802 So, for example, an instruction X1 with an ECC of 1 that can issue
1803 now will win over an instruction X0 with an ECC of zero that would
1804 introduce a stall of one cycle. However, an instruction X2 with an
1805 ECC of 2 that can issue now will lose to both X0 and X1.
1806
1807 - When an instruction is scheduled, model_recompute updates the model
1808 schedule with the new pressures (some of which might now exceed the
1809 original maximum pressure MP). model_update_limit_points then searches
1810 for the new point of maximum pressure, if not already known. */
1811
1812 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1813 from surrounding debug information. */
1814 #define MODEL_BAR \
1815 ";;\t\t+------------------------------------------------------\n"
1816
1817 /* Information about the pressure on a particular register class at a
1818 particular point of the model schedule. */
1819 struct model_pressure_data {
1820 /* The pressure at this point of the model schedule, or -1 if the
1821 point is associated with an instruction that has already been
1822 scheduled. */
1823 int ref_pressure;
1824
1825 /* The maximum pressure during or after this point of the model schedule. */
1826 int max_pressure;
1827 };
1828
1829 /* Per-instruction information that is used while building the model
1830 schedule. Here, "schedule" refers to the model schedule rather
1831 than the main schedule. */
1832 struct model_insn_info {
1833 /* The instruction itself. */
1834 rtx_insn *insn;
1835
1836 /* If this instruction is in model_worklist, these fields link to the
1837 previous (higher-priority) and next (lower-priority) instructions
1838 in the list. */
1839 struct model_insn_info *prev;
1840 struct model_insn_info *next;
1841
1842 /* While constructing the schedule, QUEUE_INDEX describes whether an
1843 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1844 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1845 old_queue records the value that QUEUE_INDEX had before scheduling
1846 started, so that we can restore it once the schedule is complete. */
1847 int old_queue;
1848
1849 /* The relative importance of an unscheduled instruction. Higher
1850 values indicate greater importance. */
1851 unsigned int model_priority;
1852
1853 /* The length of the longest path of satisfied true dependencies
1854 that leads to this instruction. */
1855 unsigned int depth;
1856
1857 /* The length of the longest path of dependencies of any kind
1858 that leads from this instruction. */
1859 unsigned int alap;
1860
1861 /* The number of predecessor nodes that must still be scheduled. */
1862 int unscheduled_preds;
1863 };
1864
1865 /* Information about the pressure limit for a particular register class.
1866 This structure is used when applying a model schedule to the main
1867 schedule. */
1868 struct model_pressure_limit {
1869 /* The maximum register pressure seen in the original model schedule. */
1870 int orig_pressure;
1871
1872 /* The maximum register pressure seen in the current model schedule
1873 (which excludes instructions that have already been scheduled). */
1874 int pressure;
1875
1876 /* The point of the current model schedule at which PRESSURE is first
1877 reached. It is set to -1 if the value needs to be recomputed. */
1878 int point;
1879 };
1880
1881 /* Describes a particular way of measuring register pressure. */
1882 struct model_pressure_group {
1883 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1884 struct model_pressure_limit limits[N_REG_CLASSES];
1885
1886 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1887 on register class ira_pressure_classes[PCI] at point POINT of the
1888 current model schedule. A POINT of model_num_insns describes the
1889 pressure at the end of the schedule. */
1890 struct model_pressure_data *model;
1891 };
1892
1893 /* Index POINT gives the instruction at point POINT of the model schedule.
1894 This array doesn't change during main scheduling. */
1895 static vec<rtx_insn *> model_schedule;
1896
1897 /* The list of instructions in the model worklist, sorted in order of
1898 decreasing priority. */
1899 static struct model_insn_info *model_worklist;
1900
1901 /* Index I describes the instruction with INSN_LUID I. */
1902 static struct model_insn_info *model_insns;
1903
1904 /* The number of instructions in the model schedule. */
1905 static int model_num_insns;
1906
1907 /* The index of the first instruction in model_schedule that hasn't yet been
1908 added to the main schedule, or model_num_insns if all of them have. */
1909 static int model_curr_point;
1910
1911 /* Describes the pressure before each instruction in the model schedule. */
1912 static struct model_pressure_group model_before_pressure;
1913
1914 /* The first unused model_priority value (as used in model_insn_info). */
1915 static unsigned int model_next_priority;
1916
1917
1918 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1919 at point POINT of the model schedule. */
1920 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1921 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1922
1923 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1924 after point POINT of the model schedule. */
1925 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1926 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1927
1928 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1929 of the model schedule. */
1930 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1931 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1932
1933 /* Information about INSN that is used when creating the model schedule. */
1934 #define MODEL_INSN_INFO(INSN) \
1935 (&model_insns[INSN_LUID (INSN)])
1936
1937 /* The instruction at point POINT of the model schedule. */
1938 #define MODEL_INSN(POINT) \
1939 (model_schedule[POINT])
1940
1941
1942 /* Return INSN's index in the model schedule, or model_num_insns if it
1943 doesn't belong to that schedule. */
1944
1945 static int
1946 model_index (rtx_insn *insn)
1947 {
1948 if (INSN_MODEL_INDEX (insn) == 0)
1949 return model_num_insns;
1950 return INSN_MODEL_INDEX (insn) - 1;
1951 }
1952
1953 /* Make sure that GROUP->limits is up-to-date for the current point
1954 of the model schedule. */
1955
1956 static void
1957 model_update_limit_points_in_group (struct model_pressure_group *group)
1958 {
1959 int pci, max_pressure, point;
1960
1961 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1962 {
1963 /* We may have passed the final point at which the pressure in
1964 group->limits[pci].pressure was reached. Update the limit if so. */
1965 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1966 group->limits[pci].pressure = max_pressure;
1967
1968 /* Find the point at which MAX_PRESSURE is first reached. We need
1969 to search in three cases:
1970
1971 - We've already moved past the previous pressure point.
1972 In this case we search forward from model_curr_point.
1973
1974 - We scheduled the previous point of maximum pressure ahead of
1975 its position in the model schedule, but doing so didn't bring
1976 the pressure point earlier. In this case we search forward
1977 from that previous pressure point.
1978
1979 - Scheduling an instruction early caused the maximum pressure
1980 to decrease. In this case we will have set the pressure
1981 point to -1, and we search forward from model_curr_point. */
1982 point = MAX (group->limits[pci].point, model_curr_point);
1983 while (point < model_num_insns
1984 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1985 point++;
1986 group->limits[pci].point = point;
1987
1988 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1989 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1990 }
1991 }
1992
1993 /* Make sure that all register-pressure limits are up-to-date for the
1994 current position in the model schedule. */
1995
1996 static void
1997 model_update_limit_points (void)
1998 {
1999 model_update_limit_points_in_group (&model_before_pressure);
2000 }
2001
2002 /* Return the model_index of the last unscheduled use in chain USE
2003 outside of USE's instruction. Return -1 if there are no other uses,
2004 or model_num_insns if the register is live at the end of the block. */
2005
2006 static int
2007 model_last_use_except (struct reg_use_data *use)
2008 {
2009 struct reg_use_data *next;
2010 int last, index;
2011
2012 last = -1;
2013 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2014 if (NONDEBUG_INSN_P (next->insn)
2015 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2016 {
2017 index = model_index (next->insn);
2018 if (index == model_num_insns)
2019 return model_num_insns;
2020 if (last < index)
2021 last = index;
2022 }
2023 return last;
2024 }
2025
2026 /* An instruction with model_index POINT has just been scheduled, and it
2027 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2028 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2029 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2030
2031 static void
2032 model_start_update_pressure (struct model_pressure_group *group,
2033 int point, int pci, int delta)
2034 {
2035 int next_max_pressure;
2036
2037 if (point == model_num_insns)
2038 {
2039 /* The instruction wasn't part of the model schedule; it was moved
2040 from a different block. Update the pressure for the end of
2041 the model schedule. */
2042 MODEL_REF_PRESSURE (group, point, pci) += delta;
2043 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2044 }
2045 else
2046 {
2047 /* Record that this instruction has been scheduled. Nothing now
2048 changes between POINT and POINT + 1, so get the maximum pressure
2049 from the latter. If the maximum pressure decreases, the new
2050 pressure point may be before POINT. */
2051 MODEL_REF_PRESSURE (group, point, pci) = -1;
2052 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2053 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2054 {
2055 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2056 if (group->limits[pci].point == point)
2057 group->limits[pci].point = -1;
2058 }
2059 }
2060 }
2061
2062 /* Record that scheduling a later instruction has changed the pressure
2063 at point POINT of the model schedule by DELTA (which might be 0).
2064 Update GROUP accordingly. Return nonzero if these changes might
2065 trigger changes to previous points as well. */
2066
2067 static int
2068 model_update_pressure (struct model_pressure_group *group,
2069 int point, int pci, int delta)
2070 {
2071 int ref_pressure, max_pressure, next_max_pressure;
2072
2073 /* If POINT hasn't yet been scheduled, update its pressure. */
2074 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2075 if (ref_pressure >= 0 && delta != 0)
2076 {
2077 ref_pressure += delta;
2078 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2079
2080 /* Check whether the maximum pressure in the overall schedule
2081 has increased. (This means that the MODEL_MAX_PRESSURE of
2082 every point <= POINT will need to increase too; see below.) */
2083 if (group->limits[pci].pressure < ref_pressure)
2084 group->limits[pci].pressure = ref_pressure;
2085
2086 /* If we are at maximum pressure, and the maximum pressure
2087 point was previously unknown or later than POINT,
2088 bring it forward. */
2089 if (group->limits[pci].pressure == ref_pressure
2090 && !IN_RANGE (group->limits[pci].point, 0, point))
2091 group->limits[pci].point = point;
2092
2093 /* If POINT used to be the point of maximum pressure, but isn't
2094 any longer, we need to recalculate it using a forward walk. */
2095 if (group->limits[pci].pressure > ref_pressure
2096 && group->limits[pci].point == point)
2097 group->limits[pci].point = -1;
2098 }
2099
2100 /* Update the maximum pressure at POINT. Changes here might also
2101 affect the maximum pressure at POINT - 1. */
2102 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2103 max_pressure = MAX (ref_pressure, next_max_pressure);
2104 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2105 {
2106 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2107 return 1;
2108 }
2109 return 0;
2110 }
2111
2112 /* INSN has just been scheduled. Update the model schedule accordingly. */
2113
2114 static void
2115 model_recompute (rtx_insn *insn)
2116 {
2117 struct {
2118 int last_use;
2119 int regno;
2120 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2121 struct reg_use_data *use;
2122 struct reg_pressure_data *reg_pressure;
2123 int delta[N_REG_CLASSES];
2124 int pci, point, mix, new_last, cl, ref_pressure, queue;
2125 unsigned int i, num_uses, num_pending_births;
2126 bool print_p;
2127
2128 /* The destinations of INSN were previously live from POINT onwards, but are
2129 now live from model_curr_point onwards. Set up DELTA accordingly. */
2130 point = model_index (insn);
2131 reg_pressure = INSN_REG_PRESSURE (insn);
2132 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2133 {
2134 cl = ira_pressure_classes[pci];
2135 delta[cl] = reg_pressure[pci].set_increase;
2136 }
2137
2138 /* Record which registers previously died at POINT, but which now die
2139 before POINT. Adjust DELTA so that it represents the effect of
2140 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2141 registers that will be born in the range [model_curr_point, POINT). */
2142 num_uses = 0;
2143 num_pending_births = 0;
2144 bitmap_clear (tmp_bitmap);
2145 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2146 {
2147 new_last = model_last_use_except (use);
2148 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
2149 {
2150 gcc_assert (num_uses < ARRAY_SIZE (uses));
2151 uses[num_uses].last_use = new_last;
2152 uses[num_uses].regno = use->regno;
2153 /* This register is no longer live after POINT - 1. */
2154 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2155 num_uses++;
2156 if (new_last >= 0)
2157 num_pending_births++;
2158 }
2159 }
2160
2161 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2162 Also set each group pressure limit for POINT. */
2163 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2164 {
2165 cl = ira_pressure_classes[pci];
2166 model_start_update_pressure (&model_before_pressure,
2167 point, pci, delta[cl]);
2168 }
2169
2170 /* Walk the model schedule backwards, starting immediately before POINT. */
2171 print_p = false;
2172 if (point != model_curr_point)
2173 do
2174 {
2175 point--;
2176 insn = MODEL_INSN (point);
2177 queue = QUEUE_INDEX (insn);
2178
2179 if (queue != QUEUE_SCHEDULED)
2180 {
2181 /* DELTA describes the effect of the move on the register pressure
2182 after POINT. Make it describe the effect on the pressure
2183 before POINT. */
2184 i = 0;
2185 while (i < num_uses)
2186 {
2187 if (uses[i].last_use == point)
2188 {
2189 /* This register is now live again. */
2190 mark_regno_birth_or_death (NULL, delta,
2191 uses[i].regno, true);
2192
2193 /* Remove this use from the array. */
2194 uses[i] = uses[num_uses - 1];
2195 num_uses--;
2196 num_pending_births--;
2197 }
2198 else
2199 i++;
2200 }
2201
2202 if (sched_verbose >= 5)
2203 {
2204 if (!print_p)
2205 {
2206 fprintf (sched_dump, MODEL_BAR);
2207 fprintf (sched_dump, ";;\t\t| New pressure for model"
2208 " schedule\n");
2209 fprintf (sched_dump, MODEL_BAR);
2210 print_p = true;
2211 }
2212
2213 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2214 point, INSN_UID (insn),
2215 str_pattern_slim (PATTERN (insn)));
2216 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2217 {
2218 cl = ira_pressure_classes[pci];
2219 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2220 point, pci);
2221 fprintf (sched_dump, " %s:[%d->%d]",
2222 reg_class_names[ira_pressure_classes[pci]],
2223 ref_pressure, ref_pressure + delta[cl]);
2224 }
2225 fprintf (sched_dump, "\n");
2226 }
2227 }
2228
2229 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2230 might have changed as well. */
2231 mix = num_pending_births;
2232 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2233 {
2234 cl = ira_pressure_classes[pci];
2235 mix |= delta[cl];
2236 mix |= model_update_pressure (&model_before_pressure,
2237 point, pci, delta[cl]);
2238 }
2239 }
2240 while (mix && point > model_curr_point);
2241
2242 if (print_p)
2243 fprintf (sched_dump, MODEL_BAR);
2244 }
2245
2246 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2247 check whether the insn's pattern needs restoring. */
2248 static bool
2249 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2250 {
2251 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2252 return false;
2253
2254 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2255 {
2256 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2257 gcc_assert (next == DEP_CON (dep));
2258 }
2259 else
2260 {
2261 struct dep_replacement *desc = DEP_REPLACE (dep);
2262 if (desc->insn != next)
2263 {
2264 gcc_assert (*desc->loc == desc->orig);
2265 return false;
2266 }
2267 }
2268 return true;
2269 }
2270 \f
2271 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2272 pressure on CL from P to P'. We use this to calculate a "base ECC",
2273 baseECC (CL, X), for each pressure class CL and each instruction X.
2274 Supposing X changes the pressure on CL from P to P', and that the
2275 maximum pressure on CL in the current model schedule is MP', then:
2276
2277 * if X occurs before or at the next point of maximum pressure in
2278 the model schedule and P' > MP', then:
2279
2280 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2281
2282 The idea is that the pressure after scheduling a fixed set of
2283 instructions -- in this case, the set up to and including the
2284 next maximum pressure point -- is going to be the same regardless
2285 of the order; we simply want to keep the intermediate pressure
2286 under control. Thus X has a cost of zero unless scheduling it
2287 now would exceed MP'.
2288
2289 If all increases in the set are by the same amount, no zero-cost
2290 instruction will ever cause the pressure to exceed MP'. However,
2291 if X is instead moved past an instruction X' with pressure in the
2292 range (MP' - (P' - P), MP'), the pressure at X' will increase
2293 beyond MP'. Since baseECC is very much a heuristic anyway,
2294 it doesn't seem worth the overhead of tracking cases like these.
2295
2296 The cost of exceeding MP' is always based on the original maximum
2297 pressure MP. This is so that going 2 registers over the original
2298 limit has the same cost regardless of whether it comes from two
2299 separate +1 deltas or from a single +2 delta.
2300
2301 * if X occurs after the next point of maximum pressure in the model
2302 schedule and P' > P, then:
2303
2304 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2305
2306 That is, if we move X forward across a point of maximum pressure,
2307 and if X increases the pressure by P' - P, then we conservatively
2308 assume that scheduling X next would increase the maximum pressure
2309 by P' - P. Again, the cost of doing this is based on the original
2310 maximum pressure MP, for the same reason as above.
2311
2312 * if P' < P, P > MP, and X occurs at or after the next point of
2313 maximum pressure, then:
2314
2315 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2316
2317 That is, if we have already exceeded the original maximum pressure MP,
2318 and if X might reduce the maximum pressure again -- or at least push
2319 it further back, and thus allow more scheduling freedom -- it is given
2320 a negative cost to reflect the improvement.
2321
2322 * otherwise,
2323
2324 baseECC (CL, X) = 0
2325
2326 In this case, X is not expected to affect the maximum pressure MP',
2327 so it has zero cost.
2328
2329 We then create a combined value baseECC (X) that is the sum of
2330 baseECC (CL, X) for each pressure class CL.
2331
2332 baseECC (X) could itself be used as the ECC value described above.
2333 However, this is often too conservative, in the sense that it
2334 tends to make high-priority instructions that increase pressure
2335 wait too long in cases where introducing a spill would be better.
2336 For this reason the final ECC is a priority-adjusted form of
2337 baseECC (X). Specifically, we calculate:
2338
2339 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2340 baseP = MAX { P (X) | baseECC (X) <= 0 }
2341
2342 Then:
2343
2344 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2345
2346 Thus an instruction's effect on pressure is ignored if it has a high
2347 enough priority relative to the ones that don't increase pressure.
2348 Negative values of baseECC (X) do not increase the priority of X
2349 itself, but they do make it harder for other instructions to
2350 increase the pressure further.
2351
2352 This pressure cost is deliberately timid. The intention has been
2353 to choose a heuristic that rarely interferes with the normal list
2354 scheduler in cases where that scheduler would produce good code.
2355 We simply want to curb some of its worst excesses. */
2356
2357 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2358
2359 Here we use the very simplistic cost model that every register above
2360 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2361 measures instead, such as one based on MEMORY_MOVE_COST. However:
2362
2363 (1) In order for an instruction to be scheduled, the higher cost
2364 would need to be justified in a single saving of that many stalls.
2365 This is overly pessimistic, because the benefit of spilling is
2366 often to avoid a sequence of several short stalls rather than
2367 a single long one.
2368
2369 (2) The cost is still arbitrary. Because we are not allocating
2370 registers during scheduling, we have no way of knowing for
2371 sure how many memory accesses will be required by each spill,
2372 where the spills will be placed within the block, or even
2373 which block(s) will contain the spills.
2374
2375 So a higher cost than 1 is often too conservative in practice,
2376 forcing blocks to contain unnecessary stalls instead of spill code.
2377 The simple cost below seems to be the best compromise. It reduces
2378 the interference with the normal list scheduler, which helps make
2379 it more suitable for a default-on option. */
2380
2381 static int
2382 model_spill_cost (int cl, int from, int to)
2383 {
2384 from = MAX (from, sched_class_regs_num[cl]);
2385 return MAX (to, from) - from;
2386 }
2387
2388 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2389 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2390 P' = P + DELTA. */
2391
2392 static int
2393 model_excess_group_cost (struct model_pressure_group *group,
2394 int point, int pci, int delta)
2395 {
2396 int pressure, cl;
2397
2398 cl = ira_pressure_classes[pci];
2399 if (delta < 0 && point >= group->limits[pci].point)
2400 {
2401 pressure = MAX (group->limits[pci].orig_pressure,
2402 curr_reg_pressure[cl] + delta);
2403 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2404 }
2405
2406 if (delta > 0)
2407 {
2408 if (point > group->limits[pci].point)
2409 pressure = group->limits[pci].pressure + delta;
2410 else
2411 pressure = curr_reg_pressure[cl] + delta;
2412
2413 if (pressure > group->limits[pci].pressure)
2414 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2415 pressure);
2416 }
2417
2418 return 0;
2419 }
2420
2421 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2422 if PRINT_P. */
2423
2424 static int
2425 model_excess_cost (rtx_insn *insn, bool print_p)
2426 {
2427 int point, pci, cl, cost, this_cost, delta;
2428 struct reg_pressure_data *insn_reg_pressure;
2429 int insn_death[N_REG_CLASSES];
2430
2431 calculate_reg_deaths (insn, insn_death);
2432 point = model_index (insn);
2433 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2434 cost = 0;
2435
2436 if (print_p)
2437 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2438 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2439
2440 /* Sum up the individual costs for each register class. */
2441 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2442 {
2443 cl = ira_pressure_classes[pci];
2444 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2445 this_cost = model_excess_group_cost (&model_before_pressure,
2446 point, pci, delta);
2447 cost += this_cost;
2448 if (print_p)
2449 fprintf (sched_dump, " %s:[%d base cost %d]",
2450 reg_class_names[cl], delta, this_cost);
2451 }
2452
2453 if (print_p)
2454 fprintf (sched_dump, "\n");
2455
2456 return cost;
2457 }
2458
2459 /* Dump the next points of maximum pressure for GROUP. */
2460
2461 static void
2462 model_dump_pressure_points (struct model_pressure_group *group)
2463 {
2464 int pci, cl;
2465
2466 fprintf (sched_dump, ";;\t\t| pressure points");
2467 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2468 {
2469 cl = ira_pressure_classes[pci];
2470 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2471 curr_reg_pressure[cl], group->limits[pci].pressure);
2472 if (group->limits[pci].point < model_num_insns)
2473 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2474 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2475 else
2476 fprintf (sched_dump, "end]");
2477 }
2478 fprintf (sched_dump, "\n");
2479 }
2480
2481 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2482
2483 static void
2484 model_set_excess_costs (rtx_insn **insns, int count)
2485 {
2486 int i, cost, priority_base, priority;
2487 bool print_p;
2488
2489 /* Record the baseECC value for each instruction in the model schedule,
2490 except that negative costs are converted to zero ones now rather than
2491 later. Do not assign a cost to debug instructions, since they must
2492 not change code-generation decisions. Experiments suggest we also
2493 get better results by not assigning a cost to instructions from
2494 a different block.
2495
2496 Set PRIORITY_BASE to baseP in the block comment above. This is the
2497 maximum priority of the "cheap" instructions, which should always
2498 include the next model instruction. */
2499 priority_base = 0;
2500 print_p = false;
2501 for (i = 0; i < count; i++)
2502 if (INSN_MODEL_INDEX (insns[i]))
2503 {
2504 if (sched_verbose >= 6 && !print_p)
2505 {
2506 fprintf (sched_dump, MODEL_BAR);
2507 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2508 model_dump_pressure_points (&model_before_pressure);
2509 fprintf (sched_dump, MODEL_BAR);
2510 print_p = true;
2511 }
2512 cost = model_excess_cost (insns[i], print_p);
2513 if (cost <= 0)
2514 {
2515 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2516 priority_base = MAX (priority_base, priority);
2517 cost = 0;
2518 }
2519 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2520 }
2521 if (print_p)
2522 fprintf (sched_dump, MODEL_BAR);
2523
2524 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2525 instruction. */
2526 for (i = 0; i < count; i++)
2527 {
2528 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2529 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2530 if (cost > 0 && priority > priority_base)
2531 {
2532 cost += priority_base - priority;
2533 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2534 }
2535 }
2536 }
2537 \f
2538
2539 /* Enum of rank_for_schedule heuristic decisions. */
2540 enum rfs_decision {
2541 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2542 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2543 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2544 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2545 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_COST, RFS_N };
2546
2547 /* Corresponding strings for print outs. */
2548 static const char *rfs_str[RFS_N] = {
2549 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2550 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2551 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2552 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2553 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION", "RFS_COST" };
2554
2555 /* Statistical breakdown of rank_for_schedule decisions. */
2556 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2557 static rank_for_schedule_stats_t rank_for_schedule_stats;
2558
2559 /* Return the result of comparing insns TMP and TMP2 and update
2560 Rank_For_Schedule statistics. */
2561 static int
2562 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2563 {
2564 ++rank_for_schedule_stats.stats[decision];
2565 if (result < 0)
2566 INSN_LAST_RFS_WIN (tmp) = decision;
2567 else if (result > 0)
2568 INSN_LAST_RFS_WIN (tmp2) = decision;
2569 else
2570 gcc_unreachable ();
2571 return result;
2572 }
2573
2574 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2575 keeping normal insns in original order. */
2576
2577 static int
2578 rank_for_schedule_debug (const void *x, const void *y)
2579 {
2580 rtx_insn *tmp = *(rtx_insn * const *) y;
2581 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2582
2583 /* Schedule debug insns as early as possible. */
2584 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2585 return -1;
2586 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2587 return 1;
2588 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2589 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2590 else
2591 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2592 }
2593
2594 /* Returns a positive value if x is preferred; returns a negative value if
2595 y is preferred. Should never return 0, since that will make the sort
2596 unstable. */
2597
2598 static int
2599 rank_for_schedule (const void *x, const void *y)
2600 {
2601 rtx_insn *tmp = *(rtx_insn * const *) y;
2602 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2603 int tmp_class, tmp2_class;
2604 int val, priority_val, info_val, diff;
2605
2606 if (live_range_shrinkage_p)
2607 {
2608 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2609 code. */
2610 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2611 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2612 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2613 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2614 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2615 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2616 /* Sort by INSN_LUID (original insn order), so that we make the
2617 sort stable. This minimizes instruction movement, thus
2618 minimizing sched's effect on debugging and cross-jumping. */
2619 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2620 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2621 }
2622
2623 /* The insn in a schedule group should be issued the first. */
2624 if (flag_sched_group_heuristic &&
2625 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2626 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2627 tmp, tmp2);
2628
2629 /* Make sure that priority of TMP and TMP2 are initialized. */
2630 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2631
2632 if (sched_fusion)
2633 {
2634 /* The instruction that has the same fusion priority as the last
2635 instruction is the instruction we picked next. If that is not
2636 the case, we sort ready list firstly by fusion priority, then
2637 by priority, and at last by INSN_LUID. */
2638 int a = INSN_FUSION_PRIORITY (tmp);
2639 int b = INSN_FUSION_PRIORITY (tmp2);
2640 int last = -1;
2641
2642 if (last_nondebug_scheduled_insn
2643 && !NOTE_P (last_nondebug_scheduled_insn)
2644 && BLOCK_FOR_INSN (tmp)
2645 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2646 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2647
2648 if (a != last && b != last)
2649 {
2650 if (a == b)
2651 {
2652 a = INSN_PRIORITY (tmp);
2653 b = INSN_PRIORITY (tmp2);
2654 }
2655 if (a != b)
2656 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2657 else
2658 return rfs_result (RFS_FUSION,
2659 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2660 }
2661 else if (a == b)
2662 {
2663 gcc_assert (last_nondebug_scheduled_insn
2664 && !NOTE_P (last_nondebug_scheduled_insn));
2665 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2666
2667 a = abs (INSN_PRIORITY (tmp) - last);
2668 b = abs (INSN_PRIORITY (tmp2) - last);
2669 if (a != b)
2670 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2671 else
2672 return rfs_result (RFS_FUSION,
2673 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2674 }
2675 else if (a == last)
2676 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2677 else
2678 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2679 }
2680
2681 if (sched_pressure != SCHED_PRESSURE_NONE)
2682 {
2683 /* Prefer insn whose scheduling results in the smallest register
2684 pressure excess. */
2685 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2686 + insn_delay (tmp)
2687 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2688 - insn_delay (tmp2))))
2689 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2690 }
2691
2692 if (sched_pressure != SCHED_PRESSURE_NONE
2693 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2694 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2695 {
2696 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2697 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2698 }
2699
2700 /* If we are doing backtracking in this schedule, prefer insns that
2701 have forward dependencies with negative cost against an insn that
2702 was already scheduled. */
2703 if (current_sched_info->flags & DO_BACKTRACKING)
2704 {
2705 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2706 if (priority_val)
2707 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2708 }
2709
2710 /* Prefer insn with higher priority. */
2711 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2712
2713 if (flag_sched_critical_path_heuristic && priority_val)
2714 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2715
2716 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2717 {
2718 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2719 if (autopref != 0)
2720 return autopref;
2721 }
2722
2723 /* Prefer speculative insn with greater dependencies weakness. */
2724 if (flag_sched_spec_insn_heuristic && spec_info)
2725 {
2726 ds_t ds1, ds2;
2727 dw_t dw1, dw2;
2728 int dw;
2729
2730 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2731 if (ds1)
2732 dw1 = ds_weak (ds1);
2733 else
2734 dw1 = NO_DEP_WEAK;
2735
2736 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2737 if (ds2)
2738 dw2 = ds_weak (ds2);
2739 else
2740 dw2 = NO_DEP_WEAK;
2741
2742 dw = dw2 - dw1;
2743 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2744 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2745 }
2746
2747 info_val = (*current_sched_info->rank) (tmp, tmp2);
2748 if (flag_sched_rank_heuristic && info_val)
2749 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2750
2751 /* Compare insns based on their relation to the last scheduled
2752 non-debug insn. */
2753 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2754 {
2755 dep_t dep1;
2756 dep_t dep2;
2757 rtx_insn *last = last_nondebug_scheduled_insn;
2758
2759 /* Classify the instructions into three classes:
2760 1) Data dependent on last schedule insn.
2761 2) Anti/Output dependent on last scheduled insn.
2762 3) Independent of last scheduled insn, or has latency of one.
2763 Choose the insn from the highest numbered class if different. */
2764 dep1 = sd_find_dep_between (last, tmp, true);
2765
2766 if (dep1 == NULL || dep_cost (dep1) == 1)
2767 tmp_class = 3;
2768 else if (/* Data dependence. */
2769 DEP_TYPE (dep1) == REG_DEP_TRUE)
2770 tmp_class = 1;
2771 else
2772 tmp_class = 2;
2773
2774 dep2 = sd_find_dep_between (last, tmp2, true);
2775
2776 if (dep2 == NULL || dep_cost (dep2) == 1)
2777 tmp2_class = 3;
2778 else if (/* Data dependence. */
2779 DEP_TYPE (dep2) == REG_DEP_TRUE)
2780 tmp2_class = 1;
2781 else
2782 tmp2_class = 2;
2783
2784 if ((val = tmp2_class - tmp_class))
2785 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2786 }
2787
2788 /* Prefer instructions that occur earlier in the model schedule. */
2789 if (sched_pressure == SCHED_PRESSURE_MODEL)
2790 {
2791 diff = model_index (tmp) - model_index (tmp2);
2792 if (diff != 0)
2793 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2794 }
2795
2796 /* Prefer the insn which has more later insns that depend on it.
2797 This gives the scheduler more freedom when scheduling later
2798 instructions at the expense of added register pressure. */
2799
2800 val = (dep_list_size (tmp2, SD_LIST_FORW)
2801 - dep_list_size (tmp, SD_LIST_FORW));
2802
2803 if (flag_sched_dep_count_heuristic && val != 0)
2804 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2805
2806 /* Sort by INSN_COST rather than INSN_LUID. This means that instructions
2807 which take longer to execute are prioritised and it leads to more
2808 dual-issue opportunities on in-order cores which have this feature. */
2809
2810 if (INSN_COST (tmp) != INSN_COST (tmp2))
2811 return rfs_result (RFS_COST, INSN_COST (tmp2) - INSN_COST (tmp),
2812 tmp, tmp2);
2813
2814 /* If insns are equally good, sort by INSN_LUID (original insn order),
2815 so that we make the sort stable. This minimizes instruction movement,
2816 thus minimizing sched's effect on debugging and cross-jumping. */
2817 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2818 }
2819
2820 /* Resort the array A in which only element at index N may be out of order. */
2821
2822 HAIFA_INLINE static void
2823 swap_sort (rtx_insn **a, int n)
2824 {
2825 rtx_insn *insn = a[n - 1];
2826 int i = n - 2;
2827
2828 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2829 {
2830 a[i + 1] = a[i];
2831 i -= 1;
2832 }
2833 a[i + 1] = insn;
2834 }
2835
2836 /* Add INSN to the insn queue so that it can be executed at least
2837 N_CYCLES after the currently executing insn. Preserve insns
2838 chain for debugging purposes. REASON will be printed in debugging
2839 output. */
2840
2841 HAIFA_INLINE static void
2842 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2843 {
2844 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2845 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2846 int new_tick;
2847
2848 gcc_assert (n_cycles <= max_insn_queue_index);
2849 gcc_assert (!DEBUG_INSN_P (insn));
2850
2851 insn_queue[next_q] = link;
2852 q_size += 1;
2853
2854 if (sched_verbose >= 2)
2855 {
2856 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2857 (*current_sched_info->print_insn) (insn, 0));
2858
2859 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2860 }
2861
2862 QUEUE_INDEX (insn) = next_q;
2863
2864 if (current_sched_info->flags & DO_BACKTRACKING)
2865 {
2866 new_tick = clock_var + n_cycles;
2867 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2868 INSN_TICK (insn) = new_tick;
2869
2870 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2871 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2872 {
2873 must_backtrack = true;
2874 if (sched_verbose >= 2)
2875 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2876 }
2877 }
2878 }
2879
2880 /* Remove INSN from queue. */
2881 static void
2882 queue_remove (rtx_insn *insn)
2883 {
2884 gcc_assert (QUEUE_INDEX (insn) >= 0);
2885 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2886 q_size--;
2887 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2888 }
2889
2890 /* Return a pointer to the bottom of the ready list, i.e. the insn
2891 with the lowest priority. */
2892
2893 rtx_insn **
2894 ready_lastpos (struct ready_list *ready)
2895 {
2896 gcc_assert (ready->n_ready >= 1);
2897 return ready->vec + ready->first - ready->n_ready + 1;
2898 }
2899
2900 /* Add an element INSN to the ready list so that it ends up with the
2901 lowest/highest priority depending on FIRST_P. */
2902
2903 HAIFA_INLINE static void
2904 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2905 {
2906 if (!first_p)
2907 {
2908 if (ready->first == ready->n_ready)
2909 {
2910 memmove (ready->vec + ready->veclen - ready->n_ready,
2911 ready_lastpos (ready),
2912 ready->n_ready * sizeof (rtx));
2913 ready->first = ready->veclen - 1;
2914 }
2915 ready->vec[ready->first - ready->n_ready] = insn;
2916 }
2917 else
2918 {
2919 if (ready->first == ready->veclen - 1)
2920 {
2921 if (ready->n_ready)
2922 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2923 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2924 ready_lastpos (ready),
2925 ready->n_ready * sizeof (rtx));
2926 ready->first = ready->veclen - 2;
2927 }
2928 ready->vec[++(ready->first)] = insn;
2929 }
2930
2931 ready->n_ready++;
2932 if (DEBUG_INSN_P (insn))
2933 ready->n_debug++;
2934
2935 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2936 QUEUE_INDEX (insn) = QUEUE_READY;
2937
2938 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2939 && INSN_EXACT_TICK (insn) < clock_var)
2940 {
2941 must_backtrack = true;
2942 }
2943 }
2944
2945 /* Remove the element with the highest priority from the ready list and
2946 return it. */
2947
2948 HAIFA_INLINE static rtx_insn *
2949 ready_remove_first (struct ready_list *ready)
2950 {
2951 rtx_insn *t;
2952
2953 gcc_assert (ready->n_ready);
2954 t = ready->vec[ready->first--];
2955 ready->n_ready--;
2956 if (DEBUG_INSN_P (t))
2957 ready->n_debug--;
2958 /* If the queue becomes empty, reset it. */
2959 if (ready->n_ready == 0)
2960 ready->first = ready->veclen - 1;
2961
2962 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2963 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2964
2965 return t;
2966 }
2967
2968 /* The following code implements multi-pass scheduling for the first
2969 cycle. In other words, we will try to choose ready insn which
2970 permits to start maximum number of insns on the same cycle. */
2971
2972 /* Return a pointer to the element INDEX from the ready. INDEX for
2973 insn with the highest priority is 0, and the lowest priority has
2974 N_READY - 1. */
2975
2976 rtx_insn *
2977 ready_element (struct ready_list *ready, int index)
2978 {
2979 gcc_assert (ready->n_ready && index < ready->n_ready);
2980
2981 return ready->vec[ready->first - index];
2982 }
2983
2984 /* Remove the element INDEX from the ready list and return it. INDEX
2985 for insn with the highest priority is 0, and the lowest priority
2986 has N_READY - 1. */
2987
2988 HAIFA_INLINE static rtx_insn *
2989 ready_remove (struct ready_list *ready, int index)
2990 {
2991 rtx_insn *t;
2992 int i;
2993
2994 if (index == 0)
2995 return ready_remove_first (ready);
2996 gcc_assert (ready->n_ready && index < ready->n_ready);
2997 t = ready->vec[ready->first - index];
2998 ready->n_ready--;
2999 if (DEBUG_INSN_P (t))
3000 ready->n_debug--;
3001 for (i = index; i < ready->n_ready; i++)
3002 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3003 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3004 return t;
3005 }
3006
3007 /* Remove INSN from the ready list. */
3008 static void
3009 ready_remove_insn (rtx_insn *insn)
3010 {
3011 int i;
3012
3013 for (i = 0; i < readyp->n_ready; i++)
3014 if (ready_element (readyp, i) == insn)
3015 {
3016 ready_remove (readyp, i);
3017 return;
3018 }
3019 gcc_unreachable ();
3020 }
3021
3022 /* Calculate difference of two statistics set WAS and NOW.
3023 Result returned in WAS. */
3024 static void
3025 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3026 const rank_for_schedule_stats_t *now)
3027 {
3028 for (int i = 0; i < RFS_N; ++i)
3029 was->stats[i] = now->stats[i] - was->stats[i];
3030 }
3031
3032 /* Print rank_for_schedule statistics. */
3033 static void
3034 print_rank_for_schedule_stats (const char *prefix,
3035 const rank_for_schedule_stats_t *stats,
3036 struct ready_list *ready)
3037 {
3038 for (int i = 0; i < RFS_N; ++i)
3039 if (stats->stats[i])
3040 {
3041 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3042
3043 if (ready != NULL)
3044 /* Print out insns that won due to RFS_<I>. */
3045 {
3046 rtx_insn **p = ready_lastpos (ready);
3047
3048 fprintf (sched_dump, ":");
3049 /* Start with 1 since least-priority insn didn't have any wins. */
3050 for (int j = 1; j < ready->n_ready; ++j)
3051 if (INSN_LAST_RFS_WIN (p[j]) == i)
3052 fprintf (sched_dump, " %s",
3053 (*current_sched_info->print_insn) (p[j], 0));
3054 }
3055 fprintf (sched_dump, "\n");
3056 }
3057 }
3058
3059 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3060 of array. */
3061 static void
3062 ready_sort_debug (struct ready_list *ready)
3063 {
3064 int i;
3065 rtx_insn **first = ready_lastpos (ready);
3066
3067 for (i = 0; i < ready->n_ready; ++i)
3068 if (!DEBUG_INSN_P (first[i]))
3069 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3070
3071 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3072 }
3073
3074 /* Sort non-debug insns in the ready list READY by ascending priority.
3075 Assumes that all debug insns are separated from the real insns. */
3076 static void
3077 ready_sort_real (struct ready_list *ready)
3078 {
3079 int i;
3080 rtx_insn **first = ready_lastpos (ready);
3081 int n_ready_real = ready->n_ready - ready->n_debug;
3082
3083 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3084 for (i = 0; i < n_ready_real; ++i)
3085 setup_insn_reg_pressure_info (first[i]);
3086 else if (sched_pressure == SCHED_PRESSURE_MODEL
3087 && model_curr_point < model_num_insns)
3088 model_set_excess_costs (first, n_ready_real);
3089
3090 rank_for_schedule_stats_t stats1;
3091 if (sched_verbose >= 4)
3092 stats1 = rank_for_schedule_stats;
3093
3094 if (n_ready_real == 2)
3095 swap_sort (first, n_ready_real);
3096 else if (n_ready_real > 2)
3097 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3098
3099 if (sched_verbose >= 4)
3100 {
3101 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3102 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3103 }
3104 }
3105
3106 /* Sort the ready list READY by ascending priority. */
3107 static void
3108 ready_sort (struct ready_list *ready)
3109 {
3110 if (ready->n_debug > 0)
3111 ready_sort_debug (ready);
3112 else
3113 ready_sort_real (ready);
3114 }
3115
3116 /* PREV is an insn that is ready to execute. Adjust its priority if that
3117 will help shorten or lengthen register lifetimes as appropriate. Also
3118 provide a hook for the target to tweak itself. */
3119
3120 HAIFA_INLINE static void
3121 adjust_priority (rtx_insn *prev)
3122 {
3123 /* ??? There used to be code here to try and estimate how an insn
3124 affected register lifetimes, but it did it by looking at REG_DEAD
3125 notes, which we removed in schedule_region. Nor did it try to
3126 take into account register pressure or anything useful like that.
3127
3128 Revisit when we have a machine model to work with and not before. */
3129
3130 if (targetm.sched.adjust_priority)
3131 INSN_PRIORITY (prev) =
3132 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3133 }
3134
3135 /* Advance DFA state STATE on one cycle. */
3136 void
3137 advance_state (state_t state)
3138 {
3139 if (targetm.sched.dfa_pre_advance_cycle)
3140 targetm.sched.dfa_pre_advance_cycle ();
3141
3142 if (targetm.sched.dfa_pre_cycle_insn)
3143 state_transition (state,
3144 targetm.sched.dfa_pre_cycle_insn ());
3145
3146 state_transition (state, NULL);
3147
3148 if (targetm.sched.dfa_post_cycle_insn)
3149 state_transition (state,
3150 targetm.sched.dfa_post_cycle_insn ());
3151
3152 if (targetm.sched.dfa_post_advance_cycle)
3153 targetm.sched.dfa_post_advance_cycle ();
3154 }
3155
3156 /* Advance time on one cycle. */
3157 HAIFA_INLINE static void
3158 advance_one_cycle (void)
3159 {
3160 advance_state (curr_state);
3161 if (sched_verbose >= 4)
3162 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3163 }
3164
3165 /* Update register pressure after scheduling INSN. */
3166 static void
3167 update_register_pressure (rtx_insn *insn)
3168 {
3169 struct reg_use_data *use;
3170 struct reg_set_data *set;
3171
3172 gcc_checking_assert (!DEBUG_INSN_P (insn));
3173
3174 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3175 if (dying_use_p (use))
3176 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3177 use->regno, false);
3178 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3179 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3180 set->regno, true);
3181 }
3182
3183 /* Set up or update (if UPDATE_P) max register pressure (see its
3184 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3185 after insn AFTER. */
3186 static void
3187 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3188 {
3189 int i, p;
3190 bool eq_p;
3191 rtx_insn *insn;
3192 static int max_reg_pressure[N_REG_CLASSES];
3193
3194 save_reg_pressure ();
3195 for (i = 0; i < ira_pressure_classes_num; i++)
3196 max_reg_pressure[ira_pressure_classes[i]]
3197 = curr_reg_pressure[ira_pressure_classes[i]];
3198 for (insn = NEXT_INSN (after);
3199 insn != NULL_RTX && ! BARRIER_P (insn)
3200 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3201 insn = NEXT_INSN (insn))
3202 if (NONDEBUG_INSN_P (insn))
3203 {
3204 eq_p = true;
3205 for (i = 0; i < ira_pressure_classes_num; i++)
3206 {
3207 p = max_reg_pressure[ira_pressure_classes[i]];
3208 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3209 {
3210 eq_p = false;
3211 INSN_MAX_REG_PRESSURE (insn)[i]
3212 = max_reg_pressure[ira_pressure_classes[i]];
3213 }
3214 }
3215 if (update_p && eq_p)
3216 break;
3217 update_register_pressure (insn);
3218 for (i = 0; i < ira_pressure_classes_num; i++)
3219 if (max_reg_pressure[ira_pressure_classes[i]]
3220 < curr_reg_pressure[ira_pressure_classes[i]])
3221 max_reg_pressure[ira_pressure_classes[i]]
3222 = curr_reg_pressure[ira_pressure_classes[i]];
3223 }
3224 restore_reg_pressure ();
3225 }
3226
3227 /* Update the current register pressure after scheduling INSN. Update
3228 also max register pressure for unscheduled insns of the current
3229 BB. */
3230 static void
3231 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3232 {
3233 int i;
3234 int before[N_REG_CLASSES];
3235
3236 for (i = 0; i < ira_pressure_classes_num; i++)
3237 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3238 update_register_pressure (insn);
3239 for (i = 0; i < ira_pressure_classes_num; i++)
3240 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3241 break;
3242 if (i < ira_pressure_classes_num)
3243 setup_insn_max_reg_pressure (insn, true);
3244 }
3245
3246 /* Set up register pressure at the beginning of basic block BB whose
3247 insns starting after insn AFTER. Set up also max register pressure
3248 for all insns of the basic block. */
3249 void
3250 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3251 {
3252 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3253 initiate_bb_reg_pressure_info (bb);
3254 setup_insn_max_reg_pressure (after, false);
3255 }
3256 \f
3257 /* If doing predication while scheduling, verify whether INSN, which
3258 has just been scheduled, clobbers the conditions of any
3259 instructions that must be predicated in order to break their
3260 dependencies. If so, remove them from the queues so that they will
3261 only be scheduled once their control dependency is resolved. */
3262
3263 static void
3264 check_clobbered_conditions (rtx_insn *insn)
3265 {
3266 HARD_REG_SET t;
3267 int i;
3268
3269 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3270 return;
3271
3272 find_all_hard_reg_sets (insn, &t, true);
3273
3274 restart:
3275 for (i = 0; i < ready.n_ready; i++)
3276 {
3277 rtx_insn *x = ready_element (&ready, i);
3278 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3279 {
3280 ready_remove_insn (x);
3281 goto restart;
3282 }
3283 }
3284 for (i = 0; i <= max_insn_queue_index; i++)
3285 {
3286 rtx_insn_list *link;
3287 int q = NEXT_Q_AFTER (q_ptr, i);
3288
3289 restart_queue:
3290 for (link = insn_queue[q]; link; link = link->next ())
3291 {
3292 rtx_insn *x = link->insn ();
3293 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3294 {
3295 queue_remove (x);
3296 goto restart_queue;
3297 }
3298 }
3299 }
3300 }
3301 \f
3302 /* Return (in order):
3303
3304 - positive if INSN adversely affects the pressure on one
3305 register class
3306
3307 - negative if INSN reduces the pressure on one register class
3308
3309 - 0 if INSN doesn't affect the pressure on any register class. */
3310
3311 static int
3312 model_classify_pressure (struct model_insn_info *insn)
3313 {
3314 struct reg_pressure_data *reg_pressure;
3315 int death[N_REG_CLASSES];
3316 int pci, cl, sum;
3317
3318 calculate_reg_deaths (insn->insn, death);
3319 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3320 sum = 0;
3321 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3322 {
3323 cl = ira_pressure_classes[pci];
3324 if (death[cl] < reg_pressure[pci].set_increase)
3325 return 1;
3326 sum += reg_pressure[pci].set_increase - death[cl];
3327 }
3328 return sum;
3329 }
3330
3331 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3332
3333 static int
3334 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3335 {
3336 unsigned int height1, height2;
3337 unsigned int priority1, priority2;
3338
3339 /* Prefer instructions with a higher model priority. */
3340 if (insn1->model_priority != insn2->model_priority)
3341 return insn1->model_priority > insn2->model_priority;
3342
3343 /* Combine the length of the longest path of satisfied true dependencies
3344 that leads to each instruction (depth) with the length of the longest
3345 path of any dependencies that leads from the instruction (alap).
3346 Prefer instructions with the greatest combined length. If the combined
3347 lengths are equal, prefer instructions with the greatest depth.
3348
3349 The idea is that, if we have a set S of "equal" instructions that each
3350 have ALAP value X, and we pick one such instruction I, any true-dependent
3351 successors of I that have ALAP value X - 1 should be preferred over S.
3352 This encourages the schedule to be "narrow" rather than "wide".
3353 However, if I is a low-priority instruction that we decided to
3354 schedule because of its model_classify_pressure, and if there
3355 is a set of higher-priority instructions T, the aforementioned
3356 successors of I should not have the edge over T. */
3357 height1 = insn1->depth + insn1->alap;
3358 height2 = insn2->depth + insn2->alap;
3359 if (height1 != height2)
3360 return height1 > height2;
3361 if (insn1->depth != insn2->depth)
3362 return insn1->depth > insn2->depth;
3363
3364 /* We have no real preference between INSN1 an INSN2 as far as attempts
3365 to reduce pressure go. Prefer instructions with higher priorities. */
3366 priority1 = INSN_PRIORITY (insn1->insn);
3367 priority2 = INSN_PRIORITY (insn2->insn);
3368 if (priority1 != priority2)
3369 return priority1 > priority2;
3370
3371 /* Use the original rtl sequence as a tie-breaker. */
3372 return insn1 < insn2;
3373 }
3374
3375 /* Add INSN to the model worklist immediately after PREV. Add it to the
3376 beginning of the list if PREV is null. */
3377
3378 static void
3379 model_add_to_worklist_at (struct model_insn_info *insn,
3380 struct model_insn_info *prev)
3381 {
3382 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3383 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3384
3385 insn->prev = prev;
3386 if (prev)
3387 {
3388 insn->next = prev->next;
3389 prev->next = insn;
3390 }
3391 else
3392 {
3393 insn->next = model_worklist;
3394 model_worklist = insn;
3395 }
3396 if (insn->next)
3397 insn->next->prev = insn;
3398 }
3399
3400 /* Remove INSN from the model worklist. */
3401
3402 static void
3403 model_remove_from_worklist (struct model_insn_info *insn)
3404 {
3405 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3406 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3407
3408 if (insn->prev)
3409 insn->prev->next = insn->next;
3410 else
3411 model_worklist = insn->next;
3412 if (insn->next)
3413 insn->next->prev = insn->prev;
3414 }
3415
3416 /* Add INSN to the model worklist. Start looking for a suitable position
3417 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3418 insns either side. A null PREV indicates the beginning of the list and
3419 a null NEXT indicates the end. */
3420
3421 static void
3422 model_add_to_worklist (struct model_insn_info *insn,
3423 struct model_insn_info *prev,
3424 struct model_insn_info *next)
3425 {
3426 int count;
3427
3428 count = MAX_SCHED_READY_INSNS;
3429 if (count > 0 && prev && model_order_p (insn, prev))
3430 do
3431 {
3432 count--;
3433 prev = prev->prev;
3434 }
3435 while (count > 0 && prev && model_order_p (insn, prev));
3436 else
3437 while (count > 0 && next && model_order_p (next, insn))
3438 {
3439 count--;
3440 prev = next;
3441 next = next->next;
3442 }
3443 model_add_to_worklist_at (insn, prev);
3444 }
3445
3446 /* INSN may now have a higher priority (in the model_order_p sense)
3447 than before. Move it up the worklist if necessary. */
3448
3449 static void
3450 model_promote_insn (struct model_insn_info *insn)
3451 {
3452 struct model_insn_info *prev;
3453 int count;
3454
3455 prev = insn->prev;
3456 count = MAX_SCHED_READY_INSNS;
3457 while (count > 0 && prev && model_order_p (insn, prev))
3458 {
3459 count--;
3460 prev = prev->prev;
3461 }
3462 if (prev != insn->prev)
3463 {
3464 model_remove_from_worklist (insn);
3465 model_add_to_worklist_at (insn, prev);
3466 }
3467 }
3468
3469 /* Add INSN to the end of the model schedule. */
3470
3471 static void
3472 model_add_to_schedule (rtx_insn *insn)
3473 {
3474 unsigned int point;
3475
3476 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3477 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3478
3479 point = model_schedule.length ();
3480 model_schedule.quick_push (insn);
3481 INSN_MODEL_INDEX (insn) = point + 1;
3482 }
3483
3484 /* Analyze the instructions that are to be scheduled, setting up
3485 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3486 instructions to model_worklist. */
3487
3488 static void
3489 model_analyze_insns (void)
3490 {
3491 rtx_insn *start, *end, *iter;
3492 sd_iterator_def sd_it;
3493 dep_t dep;
3494 struct model_insn_info *insn, *con;
3495
3496 model_num_insns = 0;
3497 start = PREV_INSN (current_sched_info->next_tail);
3498 end = current_sched_info->prev_head;
3499 for (iter = start; iter != end; iter = PREV_INSN (iter))
3500 if (NONDEBUG_INSN_P (iter))
3501 {
3502 insn = MODEL_INSN_INFO (iter);
3503 insn->insn = iter;
3504 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3505 {
3506 con = MODEL_INSN_INFO (DEP_CON (dep));
3507 if (con->insn && insn->alap < con->alap + 1)
3508 insn->alap = con->alap + 1;
3509 }
3510
3511 insn->old_queue = QUEUE_INDEX (iter);
3512 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3513
3514 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3515 if (insn->unscheduled_preds == 0)
3516 model_add_to_worklist (insn, NULL, model_worklist);
3517
3518 model_num_insns++;
3519 }
3520 }
3521
3522 /* The global state describes the register pressure at the start of the
3523 model schedule. Initialize GROUP accordingly. */
3524
3525 static void
3526 model_init_pressure_group (struct model_pressure_group *group)
3527 {
3528 int pci, cl;
3529
3530 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3531 {
3532 cl = ira_pressure_classes[pci];
3533 group->limits[pci].pressure = curr_reg_pressure[cl];
3534 group->limits[pci].point = 0;
3535 }
3536 /* Use index model_num_insns to record the state after the last
3537 instruction in the model schedule. */
3538 group->model = XNEWVEC (struct model_pressure_data,
3539 (model_num_insns + 1) * ira_pressure_classes_num);
3540 }
3541
3542 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3543 Update the maximum pressure for the whole schedule. */
3544
3545 static void
3546 model_record_pressure (struct model_pressure_group *group,
3547 int point, int pci, int pressure)
3548 {
3549 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3550 if (group->limits[pci].pressure < pressure)
3551 {
3552 group->limits[pci].pressure = pressure;
3553 group->limits[pci].point = point;
3554 }
3555 }
3556
3557 /* INSN has just been added to the end of the model schedule. Record its
3558 register-pressure information. */
3559
3560 static void
3561 model_record_pressures (struct model_insn_info *insn)
3562 {
3563 struct reg_pressure_data *reg_pressure;
3564 int point, pci, cl, delta;
3565 int death[N_REG_CLASSES];
3566
3567 point = model_index (insn->insn);
3568 if (sched_verbose >= 2)
3569 {
3570 if (point == 0)
3571 {
3572 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3573 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3574 }
3575 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3576 point, INSN_UID (insn->insn), insn->model_priority,
3577 insn->depth + insn->alap, insn->depth,
3578 INSN_PRIORITY (insn->insn),
3579 str_pattern_slim (PATTERN (insn->insn)));
3580 }
3581 calculate_reg_deaths (insn->insn, death);
3582 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3583 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3584 {
3585 cl = ira_pressure_classes[pci];
3586 delta = reg_pressure[pci].set_increase - death[cl];
3587 if (sched_verbose >= 2)
3588 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3589 curr_reg_pressure[cl], delta);
3590 model_record_pressure (&model_before_pressure, point, pci,
3591 curr_reg_pressure[cl]);
3592 }
3593 if (sched_verbose >= 2)
3594 fprintf (sched_dump, "\n");
3595 }
3596
3597 /* All instructions have been added to the model schedule. Record the
3598 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3599
3600 static void
3601 model_record_final_pressures (struct model_pressure_group *group)
3602 {
3603 int point, pci, max_pressure, ref_pressure, cl;
3604
3605 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3606 {
3607 /* Record the final pressure for this class. */
3608 cl = ira_pressure_classes[pci];
3609 point = model_num_insns;
3610 ref_pressure = curr_reg_pressure[cl];
3611 model_record_pressure (group, point, pci, ref_pressure);
3612
3613 /* Record the original maximum pressure. */
3614 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3615
3616 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3617 max_pressure = ref_pressure;
3618 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3619 while (point > 0)
3620 {
3621 point--;
3622 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3623 max_pressure = MAX (max_pressure, ref_pressure);
3624 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3625 }
3626 }
3627 }
3628
3629 /* Update all successors of INSN, given that INSN has just been scheduled. */
3630
3631 static void
3632 model_add_successors_to_worklist (struct model_insn_info *insn)
3633 {
3634 sd_iterator_def sd_it;
3635 struct model_insn_info *con;
3636 dep_t dep;
3637
3638 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3639 {
3640 con = MODEL_INSN_INFO (DEP_CON (dep));
3641 /* Ignore debug instructions, and instructions from other blocks. */
3642 if (con->insn)
3643 {
3644 con->unscheduled_preds--;
3645
3646 /* Update the depth field of each true-dependent successor.
3647 Increasing the depth gives them a higher priority than
3648 before. */
3649 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3650 {
3651 con->depth = insn->depth + 1;
3652 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3653 model_promote_insn (con);
3654 }
3655
3656 /* If this is a true dependency, or if there are no remaining
3657 dependencies for CON (meaning that CON only had non-true
3658 dependencies), make sure that CON is on the worklist.
3659 We don't bother otherwise because it would tend to fill the
3660 worklist with a lot of low-priority instructions that are not
3661 yet ready to issue. */
3662 if ((con->depth > 0 || con->unscheduled_preds == 0)
3663 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3664 model_add_to_worklist (con, insn, insn->next);
3665 }
3666 }
3667 }
3668
3669 /* Give INSN a higher priority than any current instruction, then give
3670 unscheduled predecessors of INSN a higher priority still. If any of
3671 those predecessors are not on the model worklist, do the same for its
3672 predecessors, and so on. */
3673
3674 static void
3675 model_promote_predecessors (struct model_insn_info *insn)
3676 {
3677 struct model_insn_info *pro, *first;
3678 sd_iterator_def sd_it;
3679 dep_t dep;
3680
3681 if (sched_verbose >= 7)
3682 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3683 INSN_UID (insn->insn), model_next_priority);
3684 insn->model_priority = model_next_priority++;
3685 model_remove_from_worklist (insn);
3686 model_add_to_worklist_at (insn, NULL);
3687
3688 first = NULL;
3689 for (;;)
3690 {
3691 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3692 {
3693 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3694 /* The first test is to ignore debug instructions, and instructions
3695 from other blocks. */
3696 if (pro->insn
3697 && pro->model_priority != model_next_priority
3698 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3699 {
3700 pro->model_priority = model_next_priority;
3701 if (sched_verbose >= 7)
3702 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3703 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3704 {
3705 /* PRO is already in the worklist, but it now has
3706 a higher priority than before. Move it at the
3707 appropriate place. */
3708 model_remove_from_worklist (pro);
3709 model_add_to_worklist (pro, NULL, model_worklist);
3710 }
3711 else
3712 {
3713 /* PRO isn't in the worklist. Recursively process
3714 its predecessors until we find one that is. */
3715 pro->next = first;
3716 first = pro;
3717 }
3718 }
3719 }
3720 if (!first)
3721 break;
3722 insn = first;
3723 first = insn->next;
3724 }
3725 if (sched_verbose >= 7)
3726 fprintf (sched_dump, " = %d\n", model_next_priority);
3727 model_next_priority++;
3728 }
3729
3730 /* Pick one instruction from model_worklist and process it. */
3731
3732 static void
3733 model_choose_insn (void)
3734 {
3735 struct model_insn_info *insn, *fallback;
3736 int count;
3737
3738 if (sched_verbose >= 7)
3739 {
3740 fprintf (sched_dump, ";;\t+--- worklist:\n");
3741 insn = model_worklist;
3742 count = MAX_SCHED_READY_INSNS;
3743 while (count > 0 && insn)
3744 {
3745 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3746 INSN_UID (insn->insn), insn->model_priority,
3747 insn->depth + insn->alap, insn->depth,
3748 INSN_PRIORITY (insn->insn));
3749 count--;
3750 insn = insn->next;
3751 }
3752 }
3753
3754 /* Look for a ready instruction whose model_classify_priority is zero
3755 or negative, picking the highest-priority one. Adding such an
3756 instruction to the schedule now should do no harm, and may actually
3757 do some good.
3758
3759 Failing that, see whether there is an instruction with the highest
3760 extant model_priority that is not yet ready, but which would reduce
3761 pressure if it became ready. This is designed to catch cases like:
3762
3763 (set (mem (reg R1)) (reg R2))
3764
3765 where the instruction is the last remaining use of R1 and where the
3766 value of R2 is not yet available (or vice versa). The death of R1
3767 means that this instruction already reduces pressure. It is of
3768 course possible that the computation of R2 involves other registers
3769 that are hard to kill, but such cases are rare enough for this
3770 heuristic to be a win in general.
3771
3772 Failing that, just pick the highest-priority instruction in the
3773 worklist. */
3774 count = MAX_SCHED_READY_INSNS;
3775 insn = model_worklist;
3776 fallback = 0;
3777 for (;;)
3778 {
3779 if (count == 0 || !insn)
3780 {
3781 insn = fallback ? fallback : model_worklist;
3782 break;
3783 }
3784 if (insn->unscheduled_preds)
3785 {
3786 if (model_worklist->model_priority == insn->model_priority
3787 && !fallback
3788 && model_classify_pressure (insn) < 0)
3789 fallback = insn;
3790 }
3791 else
3792 {
3793 if (model_classify_pressure (insn) <= 0)
3794 break;
3795 }
3796 count--;
3797 insn = insn->next;
3798 }
3799
3800 if (sched_verbose >= 7 && insn != model_worklist)
3801 {
3802 if (insn->unscheduled_preds)
3803 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3804 INSN_UID (insn->insn));
3805 else
3806 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3807 INSN_UID (insn->insn));
3808 }
3809 if (insn->unscheduled_preds)
3810 /* INSN isn't yet ready to issue. Give all its predecessors the
3811 highest priority. */
3812 model_promote_predecessors (insn);
3813 else
3814 {
3815 /* INSN is ready. Add it to the end of model_schedule and
3816 process its successors. */
3817 model_add_successors_to_worklist (insn);
3818 model_remove_from_worklist (insn);
3819 model_add_to_schedule (insn->insn);
3820 model_record_pressures (insn);
3821 update_register_pressure (insn->insn);
3822 }
3823 }
3824
3825 /* Restore all QUEUE_INDEXs to the values that they had before
3826 model_start_schedule was called. */
3827
3828 static void
3829 model_reset_queue_indices (void)
3830 {
3831 unsigned int i;
3832 rtx_insn *insn;
3833
3834 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3835 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3836 }
3837
3838 /* We have calculated the model schedule and spill costs. Print a summary
3839 to sched_dump. */
3840
3841 static void
3842 model_dump_pressure_summary (void)
3843 {
3844 int pci, cl;
3845
3846 fprintf (sched_dump, ";; Pressure summary:");
3847 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3848 {
3849 cl = ira_pressure_classes[pci];
3850 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3851 model_before_pressure.limits[pci].pressure);
3852 }
3853 fprintf (sched_dump, "\n\n");
3854 }
3855
3856 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3857 scheduling region. */
3858
3859 static void
3860 model_start_schedule (basic_block bb)
3861 {
3862 model_next_priority = 1;
3863 model_schedule.create (sched_max_luid);
3864 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3865
3866 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3867 initiate_reg_pressure_info (df_get_live_in (bb));
3868
3869 model_analyze_insns ();
3870 model_init_pressure_group (&model_before_pressure);
3871 while (model_worklist)
3872 model_choose_insn ();
3873 gcc_assert (model_num_insns == (int) model_schedule.length ());
3874 if (sched_verbose >= 2)
3875 fprintf (sched_dump, "\n");
3876
3877 model_record_final_pressures (&model_before_pressure);
3878 model_reset_queue_indices ();
3879
3880 XDELETEVEC (model_insns);
3881
3882 model_curr_point = 0;
3883 initiate_reg_pressure_info (df_get_live_in (bb));
3884 if (sched_verbose >= 1)
3885 model_dump_pressure_summary ();
3886 }
3887
3888 /* Free the information associated with GROUP. */
3889
3890 static void
3891 model_finalize_pressure_group (struct model_pressure_group *group)
3892 {
3893 XDELETEVEC (group->model);
3894 }
3895
3896 /* Free the information created by model_start_schedule. */
3897
3898 static void
3899 model_end_schedule (void)
3900 {
3901 model_finalize_pressure_group (&model_before_pressure);
3902 model_schedule.release ();
3903 }
3904
3905 /* Prepare reg pressure scheduling for basic block BB. */
3906 static void
3907 sched_pressure_start_bb (basic_block bb)
3908 {
3909 /* Set the number of available registers for each class taking into account
3910 relative probability of current basic block versus function prologue and
3911 epilogue.
3912 * If the basic block executes much more often than the prologue/epilogue
3913 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3914 nil, so the effective number of available registers is
3915 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
3916 * If the basic block executes as often as the prologue/epilogue,
3917 then spill in the block is as costly as in the prologue, so the effective
3918 number of available registers is
3919 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3920 - call_saved_regs_num[cl]).
3921 Note that all-else-equal, we prefer to spill in the prologue, since that
3922 allows "extra" registers for other basic blocks of the function.
3923 * If the basic block is on the cold path of the function and executes
3924 rarely, then we should always prefer to spill in the block, rather than
3925 in the prologue/epilogue. The effective number of available register is
3926 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3927 - call_saved_regs_num[cl]). */
3928 {
3929 int i;
3930 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun);
3931 int bb_freq = bb->count.to_frequency (cfun);
3932
3933 if (bb_freq == 0)
3934 {
3935 if (entry_freq == 0)
3936 entry_freq = bb_freq = 1;
3937 }
3938 if (bb_freq < entry_freq)
3939 bb_freq = entry_freq;
3940
3941 for (i = 0; i < ira_pressure_classes_num; ++i)
3942 {
3943 enum reg_class cl = ira_pressure_classes[i];
3944 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3945 - fixed_regs_num[cl];
3946 sched_class_regs_num[cl]
3947 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
3948 }
3949 }
3950
3951 if (sched_pressure == SCHED_PRESSURE_MODEL)
3952 model_start_schedule (bb);
3953 }
3954 \f
3955 /* A structure that holds local state for the loop in schedule_block. */
3956 struct sched_block_state
3957 {
3958 /* True if no real insns have been scheduled in the current cycle. */
3959 bool first_cycle_insn_p;
3960 /* True if a shadow insn has been scheduled in the current cycle, which
3961 means that no more normal insns can be issued. */
3962 bool shadows_only_p;
3963 /* True if we're winding down a modulo schedule, which means that we only
3964 issue insns with INSN_EXACT_TICK set. */
3965 bool modulo_epilogue;
3966 /* Initialized with the machine's issue rate every cycle, and updated
3967 by calls to the variable_issue hook. */
3968 int can_issue_more;
3969 };
3970
3971 /* INSN is the "currently executing insn". Launch each insn which was
3972 waiting on INSN. READY is the ready list which contains the insns
3973 that are ready to fire. CLOCK is the current cycle. The function
3974 returns necessary cycle advance after issuing the insn (it is not
3975 zero for insns in a schedule group). */
3976
3977 static int
3978 schedule_insn (rtx_insn *insn)
3979 {
3980 sd_iterator_def sd_it;
3981 dep_t dep;
3982 int i;
3983 int advance = 0;
3984
3985 if (sched_verbose >= 1)
3986 {
3987 struct reg_pressure_data *pressure_info;
3988 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3989 clock_var, (*current_sched_info->print_insn) (insn, 1),
3990 str_pattern_slim (PATTERN (insn)));
3991
3992 if (recog_memoized (insn) < 0)
3993 fprintf (sched_dump, "nothing");
3994 else
3995 print_reservation (sched_dump, insn);
3996 pressure_info = INSN_REG_PRESSURE (insn);
3997 if (pressure_info != NULL)
3998 {
3999 fputc (':', sched_dump);
4000 for (i = 0; i < ira_pressure_classes_num; i++)
4001 fprintf (sched_dump, "%s%s%+d(%d)",
4002 scheduled_insns.length () > 1
4003 && INSN_LUID (insn)
4004 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4005 reg_class_names[ira_pressure_classes[i]],
4006 pressure_info[i].set_increase, pressure_info[i].change);
4007 }
4008 if (sched_pressure == SCHED_PRESSURE_MODEL
4009 && model_curr_point < model_num_insns
4010 && model_index (insn) == model_curr_point)
4011 fprintf (sched_dump, ":model %d", model_curr_point);
4012 fputc ('\n', sched_dump);
4013 }
4014
4015 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4016 update_reg_and_insn_max_reg_pressure (insn);
4017
4018 /* Scheduling instruction should have all its dependencies resolved and
4019 should have been removed from the ready list. */
4020 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4021
4022 /* Reset debug insns invalidated by moving this insn. */
4023 if (MAY_HAVE_DEBUG_BIND_INSNS && !DEBUG_INSN_P (insn))
4024 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4025 sd_iterator_cond (&sd_it, &dep);)
4026 {
4027 rtx_insn *dbg = DEP_PRO (dep);
4028 struct reg_use_data *use, *next;
4029
4030 if (DEP_STATUS (dep) & DEP_CANCELLED)
4031 {
4032 sd_iterator_next (&sd_it);
4033 continue;
4034 }
4035
4036 gcc_assert (DEBUG_BIND_INSN_P (dbg));
4037
4038 if (sched_verbose >= 6)
4039 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4040 INSN_UID (dbg));
4041
4042 /* ??? Rather than resetting the debug insn, we might be able
4043 to emit a debug temp before the just-scheduled insn, but
4044 this would involve checking that the expression at the
4045 point of the debug insn is equivalent to the expression
4046 before the just-scheduled insn. They might not be: the
4047 expression in the debug insn may depend on other insns not
4048 yet scheduled that set MEMs, REGs or even other debug
4049 insns. It's not clear that attempting to preserve debug
4050 information in these cases is worth the effort, given how
4051 uncommon these resets are and the likelihood that the debug
4052 temps introduced won't survive the schedule change. */
4053 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4054 df_insn_rescan (dbg);
4055
4056 /* Unknown location doesn't use any registers. */
4057 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4058 {
4059 struct reg_use_data *prev = use;
4060
4061 /* Remove use from the cyclic next_regno_use chain first. */
4062 while (prev->next_regno_use != use)
4063 prev = prev->next_regno_use;
4064 prev->next_regno_use = use->next_regno_use;
4065 next = use->next_insn_use;
4066 free (use);
4067 }
4068 INSN_REG_USE_LIST (dbg) = NULL;
4069
4070 /* We delete rather than resolve these deps, otherwise we
4071 crash in sched_free_deps(), because forward deps are
4072 expected to be released before backward deps. */
4073 sd_delete_dep (sd_it);
4074 }
4075
4076 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4077 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4078
4079 if (sched_pressure == SCHED_PRESSURE_MODEL
4080 && model_curr_point < model_num_insns
4081 && NONDEBUG_INSN_P (insn))
4082 {
4083 if (model_index (insn) == model_curr_point)
4084 do
4085 model_curr_point++;
4086 while (model_curr_point < model_num_insns
4087 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4088 == QUEUE_SCHEDULED));
4089 else
4090 model_recompute (insn);
4091 model_update_limit_points ();
4092 update_register_pressure (insn);
4093 if (sched_verbose >= 2)
4094 print_curr_reg_pressure ();
4095 }
4096
4097 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4098 if (INSN_TICK (insn) > clock_var)
4099 /* INSN has been prematurely moved from the queue to the ready list.
4100 This is possible only if following flags are set. */
4101 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4102
4103 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4104 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4105 INSN_TICK (insn) = clock_var;
4106
4107 check_clobbered_conditions (insn);
4108
4109 /* Update dependent instructions. First, see if by scheduling this insn
4110 now we broke a dependence in a way that requires us to change another
4111 insn. */
4112 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4113 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4114 {
4115 struct dep_replacement *desc = DEP_REPLACE (dep);
4116 rtx_insn *pro = DEP_PRO (dep);
4117 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4118 && desc != NULL && desc->insn == pro)
4119 apply_replacement (dep, false);
4120 }
4121
4122 /* Go through and resolve forward dependencies. */
4123 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4124 sd_iterator_cond (&sd_it, &dep);)
4125 {
4126 rtx_insn *next = DEP_CON (dep);
4127 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4128
4129 /* Resolve the dependence between INSN and NEXT.
4130 sd_resolve_dep () moves current dep to another list thus
4131 advancing the iterator. */
4132 sd_resolve_dep (sd_it);
4133
4134 if (cancelled)
4135 {
4136 if (must_restore_pattern_p (next, dep))
4137 restore_pattern (dep, false);
4138 continue;
4139 }
4140
4141 /* Don't bother trying to mark next as ready if insn is a debug
4142 insn. If insn is the last hard dependency, it will have
4143 already been discounted. */
4144 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4145 continue;
4146
4147 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4148 {
4149 int effective_cost;
4150
4151 effective_cost = try_ready (next);
4152
4153 if (effective_cost >= 0
4154 && SCHED_GROUP_P (next)
4155 && advance < effective_cost)
4156 advance = effective_cost;
4157 }
4158 else
4159 /* Check always has only one forward dependence (to the first insn in
4160 the recovery block), therefore, this will be executed only once. */
4161 {
4162 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4163 fix_recovery_deps (RECOVERY_BLOCK (insn));
4164 }
4165 }
4166
4167 /* Annotate the instruction with issue information -- TImode
4168 indicates that the instruction is expected not to be able
4169 to issue on the same cycle as the previous insn. A machine
4170 may use this information to decide how the instruction should
4171 be aligned. */
4172 if (issue_rate > 1
4173 && GET_CODE (PATTERN (insn)) != USE
4174 && GET_CODE (PATTERN (insn)) != CLOBBER
4175 && !DEBUG_INSN_P (insn))
4176 {
4177 if (reload_completed)
4178 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4179 last_clock_var = clock_var;
4180 }
4181
4182 if (nonscheduled_insns_begin != NULL_RTX)
4183 /* Indicate to debug counters that INSN is scheduled. */
4184 nonscheduled_insns_begin = insn;
4185
4186 return advance;
4187 }
4188
4189 /* Functions for handling of notes. */
4190
4191 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4192 void
4193 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4194 {
4195 rtx_insn *from_start;
4196
4197 /* It's easy when have nothing to concat. */
4198 if (from_end == NULL)
4199 return;
4200
4201 /* It's also easy when destination is empty. */
4202 if (*to_endp == NULL)
4203 {
4204 *to_endp = from_end;
4205 return;
4206 }
4207
4208 from_start = from_end;
4209 while (PREV_INSN (from_start) != NULL)
4210 from_start = PREV_INSN (from_start);
4211
4212 SET_PREV_INSN (from_start) = *to_endp;
4213 SET_NEXT_INSN (*to_endp) = from_start;
4214 *to_endp = from_end;
4215 }
4216
4217 /* Delete notes between HEAD and TAIL and put them in the chain
4218 of notes ended by NOTE_LIST. */
4219 void
4220 remove_notes (rtx_insn *head, rtx_insn *tail)
4221 {
4222 rtx_insn *next_tail, *insn, *next;
4223
4224 note_list = 0;
4225 if (head == tail && !INSN_P (head))
4226 return;
4227
4228 next_tail = NEXT_INSN (tail);
4229 for (insn = head; insn != next_tail; insn = next)
4230 {
4231 next = NEXT_INSN (insn);
4232 if (!NOTE_P (insn))
4233 continue;
4234
4235 switch (NOTE_KIND (insn))
4236 {
4237 case NOTE_INSN_BASIC_BLOCK:
4238 continue;
4239
4240 case NOTE_INSN_EPILOGUE_BEG:
4241 if (insn != tail)
4242 {
4243 remove_insn (insn);
4244 add_reg_note (next, REG_SAVE_NOTE,
4245 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4246 break;
4247 }
4248 /* FALLTHRU */
4249
4250 default:
4251 remove_insn (insn);
4252
4253 /* Add the note to list that ends at NOTE_LIST. */
4254 SET_PREV_INSN (insn) = note_list;
4255 SET_NEXT_INSN (insn) = NULL_RTX;
4256 if (note_list)
4257 SET_NEXT_INSN (note_list) = insn;
4258 note_list = insn;
4259 break;
4260 }
4261
4262 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4263 }
4264 }
4265
4266 /* A structure to record enough data to allow us to backtrack the scheduler to
4267 a previous state. */
4268 struct haifa_saved_data
4269 {
4270 /* Next entry on the list. */
4271 struct haifa_saved_data *next;
4272
4273 /* Backtracking is associated with scheduling insns that have delay slots.
4274 DELAY_PAIR points to the structure that contains the insns involved, and
4275 the number of cycles between them. */
4276 struct delay_pair *delay_pair;
4277
4278 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4279 void *fe_saved_data;
4280 /* Data used by the backend. */
4281 void *be_saved_data;
4282
4283 /* Copies of global state. */
4284 int clock_var, last_clock_var;
4285 struct ready_list ready;
4286 state_t curr_state;
4287
4288 rtx_insn *last_scheduled_insn;
4289 rtx_insn *last_nondebug_scheduled_insn;
4290 rtx_insn *nonscheduled_insns_begin;
4291 int cycle_issued_insns;
4292
4293 /* Copies of state used in the inner loop of schedule_block. */
4294 struct sched_block_state sched_block;
4295
4296 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4297 to 0 when restoring. */
4298 int q_size;
4299 rtx_insn_list **insn_queue;
4300
4301 /* Describe pattern replacements that occurred since this backtrack point
4302 was queued. */
4303 vec<dep_t> replacement_deps;
4304 vec<int> replace_apply;
4305
4306 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4307 point. */
4308 vec<dep_t> next_cycle_deps;
4309 vec<int> next_cycle_apply;
4310 };
4311
4312 /* A record, in reverse order, of all scheduled insns which have delay slots
4313 and may require backtracking. */
4314 static struct haifa_saved_data *backtrack_queue;
4315
4316 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4317 to SET_P. */
4318 static void
4319 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4320 {
4321 sd_iterator_def sd_it;
4322 dep_t dep;
4323 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4324 {
4325 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4326 }
4327 }
4328
4329 /* Save the current scheduler state so that we can backtrack to it
4330 later if necessary. PAIR gives the insns that make it necessary to
4331 save this point. SCHED_BLOCK is the local state of schedule_block
4332 that need to be saved. */
4333 static void
4334 save_backtrack_point (struct delay_pair *pair,
4335 struct sched_block_state sched_block)
4336 {
4337 int i;
4338 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4339
4340 save->curr_state = xmalloc (dfa_state_size);
4341 memcpy (save->curr_state, curr_state, dfa_state_size);
4342
4343 save->ready.first = ready.first;
4344 save->ready.n_ready = ready.n_ready;
4345 save->ready.n_debug = ready.n_debug;
4346 save->ready.veclen = ready.veclen;
4347 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4348 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4349
4350 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4351 save->q_size = q_size;
4352 for (i = 0; i <= max_insn_queue_index; i++)
4353 {
4354 int q = NEXT_Q_AFTER (q_ptr, i);
4355 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4356 }
4357
4358 save->clock_var = clock_var;
4359 save->last_clock_var = last_clock_var;
4360 save->cycle_issued_insns = cycle_issued_insns;
4361 save->last_scheduled_insn = last_scheduled_insn;
4362 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4363 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4364
4365 save->sched_block = sched_block;
4366
4367 save->replacement_deps.create (0);
4368 save->replace_apply.create (0);
4369 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4370 save->next_cycle_apply = next_cycle_apply.copy ();
4371
4372 if (current_sched_info->save_state)
4373 save->fe_saved_data = (*current_sched_info->save_state) ();
4374
4375 if (targetm.sched.alloc_sched_context)
4376 {
4377 save->be_saved_data = targetm.sched.alloc_sched_context ();
4378 targetm.sched.init_sched_context (save->be_saved_data, false);
4379 }
4380 else
4381 save->be_saved_data = NULL;
4382
4383 save->delay_pair = pair;
4384
4385 save->next = backtrack_queue;
4386 backtrack_queue = save;
4387
4388 while (pair)
4389 {
4390 mark_backtrack_feeds (pair->i2, 1);
4391 INSN_TICK (pair->i2) = INVALID_TICK;
4392 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4393 SHADOW_P (pair->i2) = pair->stages == 0;
4394 pair = pair->next_same_i1;
4395 }
4396 }
4397
4398 /* Walk the ready list and all queues. If any insns have unresolved backwards
4399 dependencies, these must be cancelled deps, broken by predication. Set or
4400 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4401
4402 static void
4403 toggle_cancelled_flags (bool set)
4404 {
4405 int i;
4406 sd_iterator_def sd_it;
4407 dep_t dep;
4408
4409 if (ready.n_ready > 0)
4410 {
4411 rtx_insn **first = ready_lastpos (&ready);
4412 for (i = 0; i < ready.n_ready; i++)
4413 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4414 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4415 {
4416 if (set)
4417 DEP_STATUS (dep) |= DEP_CANCELLED;
4418 else
4419 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4420 }
4421 }
4422 for (i = 0; i <= max_insn_queue_index; i++)
4423 {
4424 int q = NEXT_Q_AFTER (q_ptr, i);
4425 rtx_insn_list *link;
4426 for (link = insn_queue[q]; link; link = link->next ())
4427 {
4428 rtx_insn *insn = link->insn ();
4429 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4430 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4431 {
4432 if (set)
4433 DEP_STATUS (dep) |= DEP_CANCELLED;
4434 else
4435 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4436 }
4437 }
4438 }
4439 }
4440
4441 /* Undo the replacements that have occurred after backtrack point SAVE
4442 was placed. */
4443 static void
4444 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4445 {
4446 while (!save->replacement_deps.is_empty ())
4447 {
4448 dep_t dep = save->replacement_deps.pop ();
4449 int apply_p = save->replace_apply.pop ();
4450
4451 if (apply_p)
4452 restore_pattern (dep, true);
4453 else
4454 apply_replacement (dep, true);
4455 }
4456 save->replacement_deps.release ();
4457 save->replace_apply.release ();
4458 }
4459
4460 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4461 Restore their dependencies to an unresolved state, and mark them as
4462 queued nowhere. */
4463
4464 static void
4465 unschedule_insns_until (rtx_insn *insn)
4466 {
4467 auto_vec<rtx_insn *> recompute_vec;
4468
4469 /* Make two passes over the insns to be unscheduled. First, we clear out
4470 dependencies and other trivial bookkeeping. */
4471 for (;;)
4472 {
4473 rtx_insn *last;
4474 sd_iterator_def sd_it;
4475 dep_t dep;
4476
4477 last = scheduled_insns.pop ();
4478
4479 /* This will be changed by restore_backtrack_point if the insn is in
4480 any queue. */
4481 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4482 if (last != insn)
4483 INSN_TICK (last) = INVALID_TICK;
4484
4485 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4486 modulo_insns_scheduled--;
4487
4488 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4489 sd_iterator_cond (&sd_it, &dep);)
4490 {
4491 rtx_insn *con = DEP_CON (dep);
4492 sd_unresolve_dep (sd_it);
4493 if (!MUST_RECOMPUTE_SPEC_P (con))
4494 {
4495 MUST_RECOMPUTE_SPEC_P (con) = 1;
4496 recompute_vec.safe_push (con);
4497 }
4498 }
4499
4500 if (last == insn)
4501 break;
4502 }
4503
4504 /* A second pass, to update ready and speculation status for insns
4505 depending on the unscheduled ones. The first pass must have
4506 popped the scheduled_insns vector up to the point where we
4507 restart scheduling, as recompute_todo_spec requires it to be
4508 up-to-date. */
4509 while (!recompute_vec.is_empty ())
4510 {
4511 rtx_insn *con;
4512
4513 con = recompute_vec.pop ();
4514 MUST_RECOMPUTE_SPEC_P (con) = 0;
4515 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4516 {
4517 TODO_SPEC (con) = HARD_DEP;
4518 INSN_TICK (con) = INVALID_TICK;
4519 if (PREDICATED_PAT (con) != NULL_RTX)
4520 haifa_change_pattern (con, ORIG_PAT (con));
4521 }
4522 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4523 TODO_SPEC (con) = recompute_todo_spec (con, true);
4524 }
4525 }
4526
4527 /* Restore scheduler state from the topmost entry on the backtracking queue.
4528 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4529 overwrite with the saved data.
4530 The caller must already have called unschedule_insns_until. */
4531
4532 static void
4533 restore_last_backtrack_point (struct sched_block_state *psched_block)
4534 {
4535 int i;
4536 struct haifa_saved_data *save = backtrack_queue;
4537
4538 backtrack_queue = save->next;
4539
4540 if (current_sched_info->restore_state)
4541 (*current_sched_info->restore_state) (save->fe_saved_data);
4542
4543 if (targetm.sched.alloc_sched_context)
4544 {
4545 targetm.sched.set_sched_context (save->be_saved_data);
4546 targetm.sched.free_sched_context (save->be_saved_data);
4547 }
4548
4549 /* Do this first since it clobbers INSN_TICK of the involved
4550 instructions. */
4551 undo_replacements_for_backtrack (save);
4552
4553 /* Clear the QUEUE_INDEX of everything in the ready list or one
4554 of the queues. */
4555 if (ready.n_ready > 0)
4556 {
4557 rtx_insn **first = ready_lastpos (&ready);
4558 for (i = 0; i < ready.n_ready; i++)
4559 {
4560 rtx_insn *insn = first[i];
4561 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4562 INSN_TICK (insn) = INVALID_TICK;
4563 }
4564 }
4565 for (i = 0; i <= max_insn_queue_index; i++)
4566 {
4567 int q = NEXT_Q_AFTER (q_ptr, i);
4568
4569 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4570 {
4571 rtx_insn *x = link->insn ();
4572 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4573 INSN_TICK (x) = INVALID_TICK;
4574 }
4575 free_INSN_LIST_list (&insn_queue[q]);
4576 }
4577
4578 free (ready.vec);
4579 ready = save->ready;
4580
4581 if (ready.n_ready > 0)
4582 {
4583 rtx_insn **first = ready_lastpos (&ready);
4584 for (i = 0; i < ready.n_ready; i++)
4585 {
4586 rtx_insn *insn = first[i];
4587 QUEUE_INDEX (insn) = QUEUE_READY;
4588 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4589 INSN_TICK (insn) = save->clock_var;
4590 }
4591 }
4592
4593 q_ptr = 0;
4594 q_size = save->q_size;
4595 for (i = 0; i <= max_insn_queue_index; i++)
4596 {
4597 int q = NEXT_Q_AFTER (q_ptr, i);
4598
4599 insn_queue[q] = save->insn_queue[q];
4600
4601 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4602 {
4603 rtx_insn *x = link->insn ();
4604 QUEUE_INDEX (x) = i;
4605 TODO_SPEC (x) = recompute_todo_spec (x, true);
4606 INSN_TICK (x) = save->clock_var + i;
4607 }
4608 }
4609 free (save->insn_queue);
4610
4611 toggle_cancelled_flags (true);
4612
4613 clock_var = save->clock_var;
4614 last_clock_var = save->last_clock_var;
4615 cycle_issued_insns = save->cycle_issued_insns;
4616 last_scheduled_insn = save->last_scheduled_insn;
4617 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4618 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4619
4620 *psched_block = save->sched_block;
4621
4622 memcpy (curr_state, save->curr_state, dfa_state_size);
4623 free (save->curr_state);
4624
4625 mark_backtrack_feeds (save->delay_pair->i2, 0);
4626
4627 gcc_assert (next_cycle_replace_deps.is_empty ());
4628 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4629 next_cycle_apply = save->next_cycle_apply.copy ();
4630
4631 free (save);
4632
4633 for (save = backtrack_queue; save; save = save->next)
4634 {
4635 mark_backtrack_feeds (save->delay_pair->i2, 1);
4636 }
4637 }
4638
4639 /* Discard all data associated with the topmost entry in the backtrack
4640 queue. If RESET_TICK is false, we just want to free the data. If true,
4641 we are doing this because we discovered a reason to backtrack. In the
4642 latter case, also reset the INSN_TICK for the shadow insn. */
4643 static void
4644 free_topmost_backtrack_point (bool reset_tick)
4645 {
4646 struct haifa_saved_data *save = backtrack_queue;
4647 int i;
4648
4649 backtrack_queue = save->next;
4650
4651 if (reset_tick)
4652 {
4653 struct delay_pair *pair = save->delay_pair;
4654 while (pair)
4655 {
4656 INSN_TICK (pair->i2) = INVALID_TICK;
4657 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4658 pair = pair->next_same_i1;
4659 }
4660 undo_replacements_for_backtrack (save);
4661 }
4662 else
4663 {
4664 save->replacement_deps.release ();
4665 save->replace_apply.release ();
4666 }
4667
4668 if (targetm.sched.free_sched_context)
4669 targetm.sched.free_sched_context (save->be_saved_data);
4670 if (current_sched_info->restore_state)
4671 free (save->fe_saved_data);
4672 for (i = 0; i <= max_insn_queue_index; i++)
4673 free_INSN_LIST_list (&save->insn_queue[i]);
4674 free (save->insn_queue);
4675 free (save->curr_state);
4676 free (save->ready.vec);
4677 free (save);
4678 }
4679
4680 /* Free the entire backtrack queue. */
4681 static void
4682 free_backtrack_queue (void)
4683 {
4684 while (backtrack_queue)
4685 free_topmost_backtrack_point (false);
4686 }
4687
4688 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4689 may have to postpone the replacement until the start of the next cycle,
4690 at which point we will be called again with IMMEDIATELY true. This is
4691 only done for machines which have instruction packets with explicit
4692 parallelism however. */
4693 static void
4694 apply_replacement (dep_t dep, bool immediately)
4695 {
4696 struct dep_replacement *desc = DEP_REPLACE (dep);
4697 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4698 {
4699 next_cycle_replace_deps.safe_push (dep);
4700 next_cycle_apply.safe_push (1);
4701 }
4702 else
4703 {
4704 bool success;
4705
4706 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4707 return;
4708
4709 if (sched_verbose >= 5)
4710 fprintf (sched_dump, "applying replacement for insn %d\n",
4711 INSN_UID (desc->insn));
4712
4713 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4714 gcc_assert (success);
4715
4716 update_insn_after_change (desc->insn);
4717 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4718 fix_tick_ready (desc->insn);
4719
4720 if (backtrack_queue != NULL)
4721 {
4722 backtrack_queue->replacement_deps.safe_push (dep);
4723 backtrack_queue->replace_apply.safe_push (1);
4724 }
4725 }
4726 }
4727
4728 /* We have determined that a pattern involved in DEP must be restored.
4729 If IMMEDIATELY is false, we may have to postpone the replacement
4730 until the start of the next cycle, at which point we will be called
4731 again with IMMEDIATELY true. */
4732 static void
4733 restore_pattern (dep_t dep, bool immediately)
4734 {
4735 rtx_insn *next = DEP_CON (dep);
4736 int tick = INSN_TICK (next);
4737
4738 /* If we already scheduled the insn, the modified version is
4739 correct. */
4740 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4741 return;
4742
4743 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4744 {
4745 next_cycle_replace_deps.safe_push (dep);
4746 next_cycle_apply.safe_push (0);
4747 return;
4748 }
4749
4750
4751 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4752 {
4753 if (sched_verbose >= 5)
4754 fprintf (sched_dump, "restoring pattern for insn %d\n",
4755 INSN_UID (next));
4756 haifa_change_pattern (next, ORIG_PAT (next));
4757 }
4758 else
4759 {
4760 struct dep_replacement *desc = DEP_REPLACE (dep);
4761 bool success;
4762
4763 if (sched_verbose >= 5)
4764 fprintf (sched_dump, "restoring pattern for insn %d\n",
4765 INSN_UID (desc->insn));
4766 tick = INSN_TICK (desc->insn);
4767
4768 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4769 gcc_assert (success);
4770 update_insn_after_change (desc->insn);
4771 if (backtrack_queue != NULL)
4772 {
4773 backtrack_queue->replacement_deps.safe_push (dep);
4774 backtrack_queue->replace_apply.safe_push (0);
4775 }
4776 }
4777 INSN_TICK (next) = tick;
4778 if (TODO_SPEC (next) == DEP_POSTPONED)
4779 return;
4780
4781 if (sd_lists_empty_p (next, SD_LIST_BACK))
4782 TODO_SPEC (next) = 0;
4783 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4784 TODO_SPEC (next) = HARD_DEP;
4785 }
4786
4787 /* Perform pattern replacements that were queued up until the next
4788 cycle. */
4789 static void
4790 perform_replacements_new_cycle (void)
4791 {
4792 int i;
4793 dep_t dep;
4794 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4795 {
4796 int apply_p = next_cycle_apply[i];
4797 if (apply_p)
4798 apply_replacement (dep, true);
4799 else
4800 restore_pattern (dep, true);
4801 }
4802 next_cycle_replace_deps.truncate (0);
4803 next_cycle_apply.truncate (0);
4804 }
4805
4806 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4807 instructions we've previously encountered, a set bit prevents
4808 recursion. BUDGET is a limit on how far ahead we look, it is
4809 reduced on recursive calls. Return true if we produced a good
4810 estimate, or false if we exceeded the budget. */
4811 static bool
4812 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4813 {
4814 sd_iterator_def sd_it;
4815 dep_t dep;
4816 int earliest = INSN_TICK (insn);
4817
4818 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4819 {
4820 rtx_insn *pro = DEP_PRO (dep);
4821 int t;
4822
4823 if (DEP_STATUS (dep) & DEP_CANCELLED)
4824 continue;
4825
4826 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4827 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4828 else
4829 {
4830 int cost = dep_cost (dep);
4831 if (cost >= budget)
4832 return false;
4833 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4834 {
4835 if (!estimate_insn_tick (processed, pro, budget - cost))
4836 return false;
4837 }
4838 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4839 t = INSN_TICK_ESTIMATE (pro) + cost;
4840 if (earliest == INVALID_TICK || t > earliest)
4841 earliest = t;
4842 }
4843 }
4844 bitmap_set_bit (processed, INSN_LUID (insn));
4845 INSN_TICK_ESTIMATE (insn) = earliest;
4846 return true;
4847 }
4848
4849 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4850 infinite resources) the cycle in which the delayed shadow can be issued.
4851 Return the number of cycles that must pass before the real insn can be
4852 issued in order to meet this constraint. */
4853 static int
4854 estimate_shadow_tick (struct delay_pair *p)
4855 {
4856 auto_bitmap processed;
4857 int t;
4858 bool cutoff;
4859
4860 cutoff = !estimate_insn_tick (processed, p->i2,
4861 max_insn_queue_index + pair_delay (p));
4862 if (cutoff)
4863 return max_insn_queue_index;
4864 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4865 if (t > 0)
4866 return t;
4867 return 0;
4868 }
4869
4870 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4871 recursively resolve all its forward dependencies. */
4872 static void
4873 resolve_dependencies (rtx_insn *insn)
4874 {
4875 sd_iterator_def sd_it;
4876 dep_t dep;
4877
4878 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4879 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4880 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4881 return;
4882
4883 if (sched_verbose >= 4)
4884 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4885
4886 if (QUEUE_INDEX (insn) >= 0)
4887 queue_remove (insn);
4888
4889 scheduled_insns.safe_push (insn);
4890
4891 /* Update dependent instructions. */
4892 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4893 sd_iterator_cond (&sd_it, &dep);)
4894 {
4895 rtx_insn *next = DEP_CON (dep);
4896
4897 if (sched_verbose >= 4)
4898 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4899 INSN_UID (next));
4900
4901 /* Resolve the dependence between INSN and NEXT.
4902 sd_resolve_dep () moves current dep to another list thus
4903 advancing the iterator. */
4904 sd_resolve_dep (sd_it);
4905
4906 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4907 {
4908 resolve_dependencies (next);
4909 }
4910 else
4911 /* Check always has only one forward dependence (to the first insn in
4912 the recovery block), therefore, this will be executed only once. */
4913 {
4914 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4915 }
4916 }
4917 }
4918
4919
4920 /* Return the head and tail pointers of ebb starting at BEG and ending
4921 at END. */
4922 void
4923 get_ebb_head_tail (basic_block beg, basic_block end,
4924 rtx_insn **headp, rtx_insn **tailp)
4925 {
4926 rtx_insn *beg_head = BB_HEAD (beg);
4927 rtx_insn * beg_tail = BB_END (beg);
4928 rtx_insn * end_head = BB_HEAD (end);
4929 rtx_insn * end_tail = BB_END (end);
4930
4931 /* Don't include any notes or labels at the beginning of the BEG
4932 basic block, or notes at the end of the END basic blocks. */
4933
4934 if (LABEL_P (beg_head))
4935 beg_head = NEXT_INSN (beg_head);
4936
4937 while (beg_head != beg_tail)
4938 if (NOTE_P (beg_head))
4939 beg_head = NEXT_INSN (beg_head);
4940 else if (DEBUG_INSN_P (beg_head))
4941 {
4942 rtx_insn * note, *next;
4943
4944 for (note = NEXT_INSN (beg_head);
4945 note != beg_tail;
4946 note = next)
4947 {
4948 next = NEXT_INSN (note);
4949 if (NOTE_P (note))
4950 {
4951 if (sched_verbose >= 9)
4952 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4953
4954 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4955
4956 if (BLOCK_FOR_INSN (note) != beg)
4957 df_insn_change_bb (note, beg);
4958 }
4959 else if (!DEBUG_INSN_P (note))
4960 break;
4961 }
4962
4963 break;
4964 }
4965 else
4966 break;
4967
4968 *headp = beg_head;
4969
4970 if (beg == end)
4971 end_head = beg_head;
4972 else if (LABEL_P (end_head))
4973 end_head = NEXT_INSN (end_head);
4974
4975 while (end_head != end_tail)
4976 if (NOTE_P (end_tail))
4977 end_tail = PREV_INSN (end_tail);
4978 else if (DEBUG_INSN_P (end_tail))
4979 {
4980 rtx_insn * note, *prev;
4981
4982 for (note = PREV_INSN (end_tail);
4983 note != end_head;
4984 note = prev)
4985 {
4986 prev = PREV_INSN (note);
4987 if (NOTE_P (note))
4988 {
4989 if (sched_verbose >= 9)
4990 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4991
4992 reorder_insns_nobb (note, note, end_tail);
4993
4994 if (end_tail == BB_END (end))
4995 BB_END (end) = note;
4996
4997 if (BLOCK_FOR_INSN (note) != end)
4998 df_insn_change_bb (note, end);
4999 }
5000 else if (!DEBUG_INSN_P (note))
5001 break;
5002 }
5003
5004 break;
5005 }
5006 else
5007 break;
5008
5009 *tailp = end_tail;
5010 }
5011
5012 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5013
5014 int
5015 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5016 {
5017 while (head != NEXT_INSN (tail))
5018 {
5019 if (!NOTE_P (head) && !LABEL_P (head))
5020 return 0;
5021 head = NEXT_INSN (head);
5022 }
5023 return 1;
5024 }
5025
5026 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5027 previously found among the insns. Insert them just before HEAD. */
5028 rtx_insn *
5029 restore_other_notes (rtx_insn *head, basic_block head_bb)
5030 {
5031 if (note_list != 0)
5032 {
5033 rtx_insn *note_head = note_list;
5034
5035 if (head)
5036 head_bb = BLOCK_FOR_INSN (head);
5037 else
5038 head = NEXT_INSN (bb_note (head_bb));
5039
5040 while (PREV_INSN (note_head))
5041 {
5042 set_block_for_insn (note_head, head_bb);
5043 note_head = PREV_INSN (note_head);
5044 }
5045 /* In the above cycle we've missed this note. */
5046 set_block_for_insn (note_head, head_bb);
5047
5048 SET_PREV_INSN (note_head) = PREV_INSN (head);
5049 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5050 SET_PREV_INSN (head) = note_list;
5051 SET_NEXT_INSN (note_list) = head;
5052
5053 if (BLOCK_FOR_INSN (head) != head_bb)
5054 BB_END (head_bb) = note_list;
5055
5056 head = note_head;
5057 }
5058
5059 return head;
5060 }
5061
5062 /* When we know we are going to discard the schedule due to a failed attempt
5063 at modulo scheduling, undo all replacements. */
5064 static void
5065 undo_all_replacements (void)
5066 {
5067 rtx_insn *insn;
5068 int i;
5069
5070 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5071 {
5072 sd_iterator_def sd_it;
5073 dep_t dep;
5074
5075 /* See if we must undo a replacement. */
5076 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5077 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5078 {
5079 struct dep_replacement *desc = DEP_REPLACE (dep);
5080 if (desc != NULL)
5081 validate_change (desc->insn, desc->loc, desc->orig, 0);
5082 }
5083 }
5084 }
5085
5086 /* Return first non-scheduled insn in the current scheduling block.
5087 This is mostly used for debug-counter purposes. */
5088 static rtx_insn *
5089 first_nonscheduled_insn (void)
5090 {
5091 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5092 ? nonscheduled_insns_begin
5093 : current_sched_info->prev_head);
5094
5095 do
5096 {
5097 insn = next_nonnote_nondebug_insn (insn);
5098 }
5099 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5100
5101 return insn;
5102 }
5103
5104 /* Move insns that became ready to fire from queue to ready list. */
5105
5106 static void
5107 queue_to_ready (struct ready_list *ready)
5108 {
5109 rtx_insn *insn;
5110 rtx_insn_list *link;
5111 rtx_insn *skip_insn;
5112
5113 q_ptr = NEXT_Q (q_ptr);
5114
5115 if (dbg_cnt (sched_insn) == false)
5116 /* If debug counter is activated do not requeue the first
5117 nonscheduled insn. */
5118 skip_insn = first_nonscheduled_insn ();
5119 else
5120 skip_insn = NULL;
5121
5122 /* Add all pending insns that can be scheduled without stalls to the
5123 ready list. */
5124 for (link = insn_queue[q_ptr]; link; link = link->next ())
5125 {
5126 insn = link->insn ();
5127 q_size -= 1;
5128
5129 if (sched_verbose >= 2)
5130 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5131 (*current_sched_info->print_insn) (insn, 0));
5132
5133 /* If the ready list is full, delay the insn for 1 cycle.
5134 See the comment in schedule_block for the rationale. */
5135 if (!reload_completed
5136 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5137 || (sched_pressure == SCHED_PRESSURE_MODEL
5138 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5139 instructions too. */
5140 && model_index (insn) > (model_curr_point
5141 + MAX_SCHED_READY_INSNS)))
5142 && !(sched_pressure == SCHED_PRESSURE_MODEL
5143 && model_curr_point < model_num_insns
5144 /* Always allow the next model instruction to issue. */
5145 && model_index (insn) == model_curr_point)
5146 && !SCHED_GROUP_P (insn)
5147 && insn != skip_insn)
5148 {
5149 if (sched_verbose >= 2)
5150 fprintf (sched_dump, "keeping in queue, ready full\n");
5151 queue_insn (insn, 1, "ready full");
5152 }
5153 else
5154 {
5155 ready_add (ready, insn, false);
5156 if (sched_verbose >= 2)
5157 fprintf (sched_dump, "moving to ready without stalls\n");
5158 }
5159 }
5160 free_INSN_LIST_list (&insn_queue[q_ptr]);
5161
5162 /* If there are no ready insns, stall until one is ready and add all
5163 of the pending insns at that point to the ready list. */
5164 if (ready->n_ready == 0)
5165 {
5166 int stalls;
5167
5168 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5169 {
5170 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5171 {
5172 for (; link; link = link->next ())
5173 {
5174 insn = link->insn ();
5175 q_size -= 1;
5176
5177 if (sched_verbose >= 2)
5178 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5179 (*current_sched_info->print_insn) (insn, 0));
5180
5181 ready_add (ready, insn, false);
5182 if (sched_verbose >= 2)
5183 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5184 }
5185 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5186
5187 advance_one_cycle ();
5188
5189 break;
5190 }
5191
5192 advance_one_cycle ();
5193 }
5194
5195 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5196 clock_var += stalls;
5197 if (sched_verbose >= 2)
5198 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5199 stalls, clock_var);
5200 }
5201 }
5202
5203 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5204 prematurely move INSN from the queue to the ready list. Currently,
5205 if a target defines the hook 'is_costly_dependence', this function
5206 uses the hook to check whether there exist any dependences which are
5207 considered costly by the target, between INSN and other insns that
5208 have already been scheduled. Dependences are checked up to Y cycles
5209 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5210 controlling this value.
5211 (Other considerations could be taken into account instead (or in
5212 addition) depending on user flags and target hooks. */
5213
5214 static bool
5215 ok_for_early_queue_removal (rtx_insn *insn)
5216 {
5217 if (targetm.sched.is_costly_dependence)
5218 {
5219 int n_cycles;
5220 int i = scheduled_insns.length ();
5221 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5222 {
5223 while (i-- > 0)
5224 {
5225 int cost;
5226
5227 rtx_insn *prev_insn = scheduled_insns[i];
5228
5229 if (!NOTE_P (prev_insn))
5230 {
5231 dep_t dep;
5232
5233 dep = sd_find_dep_between (prev_insn, insn, true);
5234
5235 if (dep != NULL)
5236 {
5237 cost = dep_cost (dep);
5238
5239 if (targetm.sched.is_costly_dependence (dep, cost,
5240 flag_sched_stalled_insns_dep - n_cycles))
5241 return false;
5242 }
5243 }
5244
5245 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5246 break;
5247 }
5248
5249 if (i == 0)
5250 break;
5251 }
5252 }
5253
5254 return true;
5255 }
5256
5257
5258 /* Remove insns from the queue, before they become "ready" with respect
5259 to FU latency considerations. */
5260
5261 static int
5262 early_queue_to_ready (state_t state, struct ready_list *ready)
5263 {
5264 rtx_insn *insn;
5265 rtx_insn_list *link;
5266 rtx_insn_list *next_link;
5267 rtx_insn_list *prev_link;
5268 bool move_to_ready;
5269 int cost;
5270 state_t temp_state = alloca (dfa_state_size);
5271 int stalls;
5272 int insns_removed = 0;
5273
5274 /*
5275 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5276 function:
5277
5278 X == 0: There is no limit on how many queued insns can be removed
5279 prematurely. (flag_sched_stalled_insns = -1).
5280
5281 X >= 1: Only X queued insns can be removed prematurely in each
5282 invocation. (flag_sched_stalled_insns = X).
5283
5284 Otherwise: Early queue removal is disabled.
5285 (flag_sched_stalled_insns = 0)
5286 */
5287
5288 if (! flag_sched_stalled_insns)
5289 return 0;
5290
5291 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5292 {
5293 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5294 {
5295 if (sched_verbose > 6)
5296 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5297
5298 prev_link = 0;
5299 while (link)
5300 {
5301 next_link = link->next ();
5302 insn = link->insn ();
5303 if (insn && sched_verbose > 6)
5304 print_rtl_single (sched_dump, insn);
5305
5306 memcpy (temp_state, state, dfa_state_size);
5307 if (recog_memoized (insn) < 0)
5308 /* non-negative to indicate that it's not ready
5309 to avoid infinite Q->R->Q->R... */
5310 cost = 0;
5311 else
5312 cost = state_transition (temp_state, insn);
5313
5314 if (sched_verbose >= 6)
5315 fprintf (sched_dump, "transition cost = %d\n", cost);
5316
5317 move_to_ready = false;
5318 if (cost < 0)
5319 {
5320 move_to_ready = ok_for_early_queue_removal (insn);
5321 if (move_to_ready == true)
5322 {
5323 /* move from Q to R */
5324 q_size -= 1;
5325 ready_add (ready, insn, false);
5326
5327 if (prev_link)
5328 XEXP (prev_link, 1) = next_link;
5329 else
5330 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5331
5332 free_INSN_LIST_node (link);
5333
5334 if (sched_verbose >= 2)
5335 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5336 (*current_sched_info->print_insn) (insn, 0));
5337
5338 insns_removed++;
5339 if (insns_removed == flag_sched_stalled_insns)
5340 /* Remove no more than flag_sched_stalled_insns insns
5341 from Q at a time. */
5342 return insns_removed;
5343 }
5344 }
5345
5346 if (move_to_ready == false)
5347 prev_link = link;
5348
5349 link = next_link;
5350 } /* while link */
5351 } /* if link */
5352
5353 } /* for stalls.. */
5354
5355 return insns_removed;
5356 }
5357
5358
5359 /* Print the ready list for debugging purposes.
5360 If READY_TRY is non-zero then only print insns that max_issue
5361 will consider. */
5362 static void
5363 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5364 {
5365 rtx_insn **p;
5366 int i;
5367
5368 if (ready->n_ready == 0)
5369 {
5370 fprintf (sched_dump, "\n");
5371 return;
5372 }
5373
5374 p = ready_lastpos (ready);
5375 for (i = 0; i < ready->n_ready; i++)
5376 {
5377 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5378 continue;
5379
5380 fprintf (sched_dump, " %s:%d",
5381 (*current_sched_info->print_insn) (p[i], 0),
5382 INSN_LUID (p[i]));
5383 if (sched_pressure != SCHED_PRESSURE_NONE)
5384 fprintf (sched_dump, "(cost=%d",
5385 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5386 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5387 if (INSN_TICK (p[i]) > clock_var)
5388 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5389 if (sched_pressure == SCHED_PRESSURE_MODEL)
5390 fprintf (sched_dump, ":idx=%d",
5391 model_index (p[i]));
5392 if (sched_pressure != SCHED_PRESSURE_NONE)
5393 fprintf (sched_dump, ")");
5394 }
5395 fprintf (sched_dump, "\n");
5396 }
5397
5398 /* Print the ready list. Callable from debugger. */
5399 static void
5400 debug_ready_list (struct ready_list *ready)
5401 {
5402 debug_ready_list_1 (ready, NULL);
5403 }
5404
5405 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5406 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5407 replaces the epilogue note in the correct basic block. */
5408 void
5409 reemit_notes (rtx_insn *insn)
5410 {
5411 rtx note;
5412 rtx_insn *last = insn;
5413
5414 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5415 {
5416 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5417 {
5418 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5419
5420 last = emit_note_before (note_type, last);
5421 remove_note (insn, note);
5422 }
5423 }
5424 }
5425
5426 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5427 static void
5428 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5429 {
5430 if (PREV_INSN (insn) != last)
5431 {
5432 basic_block bb;
5433 rtx_insn *note;
5434 int jump_p = 0;
5435
5436 bb = BLOCK_FOR_INSN (insn);
5437
5438 /* BB_HEAD is either LABEL or NOTE. */
5439 gcc_assert (BB_HEAD (bb) != insn);
5440
5441 if (BB_END (bb) == insn)
5442 /* If this is last instruction in BB, move end marker one
5443 instruction up. */
5444 {
5445 /* Jumps are always placed at the end of basic block. */
5446 jump_p = control_flow_insn_p (insn);
5447
5448 gcc_assert (!jump_p
5449 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5450 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5451 || (common_sched_info->sched_pass_id
5452 == SCHED_EBB_PASS));
5453
5454 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5455
5456 BB_END (bb) = PREV_INSN (insn);
5457 }
5458
5459 gcc_assert (BB_END (bb) != last);
5460
5461 if (jump_p)
5462 /* We move the block note along with jump. */
5463 {
5464 gcc_assert (nt);
5465
5466 note = NEXT_INSN (insn);
5467 while (NOTE_NOT_BB_P (note) && note != nt)
5468 note = NEXT_INSN (note);
5469
5470 if (note != nt
5471 && (LABEL_P (note)
5472 || BARRIER_P (note)))
5473 note = NEXT_INSN (note);
5474
5475 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5476 }
5477 else
5478 note = insn;
5479
5480 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5481 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5482
5483 SET_NEXT_INSN (note) = NEXT_INSN (last);
5484 SET_PREV_INSN (NEXT_INSN (last)) = note;
5485
5486 SET_NEXT_INSN (last) = insn;
5487 SET_PREV_INSN (insn) = last;
5488
5489 bb = BLOCK_FOR_INSN (last);
5490
5491 if (jump_p)
5492 {
5493 fix_jump_move (insn);
5494
5495 if (BLOCK_FOR_INSN (insn) != bb)
5496 move_block_after_check (insn);
5497
5498 gcc_assert (BB_END (bb) == last);
5499 }
5500
5501 df_insn_change_bb (insn, bb);
5502
5503 /* Update BB_END, if needed. */
5504 if (BB_END (bb) == last)
5505 BB_END (bb) = insn;
5506 }
5507
5508 SCHED_GROUP_P (insn) = 0;
5509 }
5510
5511 /* Return true if scheduling INSN will finish current clock cycle. */
5512 static bool
5513 insn_finishes_cycle_p (rtx_insn *insn)
5514 {
5515 if (SCHED_GROUP_P (insn))
5516 /* After issuing INSN, rest of the sched_group will be forced to issue
5517 in order. Don't make any plans for the rest of cycle. */
5518 return true;
5519
5520 /* Finishing the block will, apparently, finish the cycle. */
5521 if (current_sched_info->insn_finishes_block_p
5522 && current_sched_info->insn_finishes_block_p (insn))
5523 return true;
5524
5525 return false;
5526 }
5527
5528 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5529 we're expecting a memory WRITE or not, check that the insn is relevant to
5530 the autoprefetcher modelling code. Return true iff that is the case.
5531 If it is relevant, record the base register of the memory op in BASE and
5532 the offset in OFFSET. */
5533
5534 static bool
5535 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5536 {
5537 if (GET_CODE (pat) != SET)
5538 return false;
5539
5540 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5541 if (!MEM_P (mem))
5542 return false;
5543
5544 struct address_info info;
5545 decompose_mem_address (&info, mem);
5546
5547 /* TODO: Currently only (base+const) addressing is supported. */
5548 if (info.base == NULL || !REG_P (*info.base)
5549 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5550 return false;
5551
5552 *base = *info.base;
5553 *offset = info.disp ? INTVAL (*info.disp) : 0;
5554 return true;
5555 }
5556
5557 /* Functions to model cache auto-prefetcher.
5558
5559 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5560 memory prefetches if it sees instructions with consequitive memory accesses
5561 in the instruction stream. Details of such hardware units are not published,
5562 so we can only guess what exactly is going on there.
5563 In the scheduler, we model abstract auto-prefetcher. If there are memory
5564 insns in the ready list (or the queue) that have same memory base, but
5565 different offsets, then we delay the insns with larger offsets until insns
5566 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5567 is "1", then we look at the ready list; if it is N>1, then we also look
5568 through N-1 queue entries.
5569 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5570 among its heuristics.
5571 Param value of "-1" disables modelling of the auto-prefetcher. */
5572
5573 /* Initialize autoprefetcher model data for INSN. */
5574 static void
5575 autopref_multipass_init (const rtx_insn *insn, int write)
5576 {
5577 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5578
5579 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5580 data->base = NULL_RTX;
5581 data->offset = 0;
5582 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5583 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5584
5585 rtx pat = PATTERN (insn);
5586
5587 /* We have a multi-set insn like a load-multiple or store-multiple.
5588 We care about these as long as all the memory ops inside the PARALLEL
5589 have the same base register. We care about the minimum and maximum
5590 offsets from that base but don't check for the order of those offsets
5591 within the PARALLEL insn itself. */
5592 if (GET_CODE (pat) == PARALLEL)
5593 {
5594 int n_elems = XVECLEN (pat, 0);
5595
5596 int i, offset;
5597 rtx base, prev_base = NULL_RTX;
5598 int min_offset = INT_MAX;
5599
5600 for (i = 0; i < n_elems; i++)
5601 {
5602 rtx set = XVECEXP (pat, 0, i);
5603 if (GET_CODE (set) != SET)
5604 return;
5605
5606 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5607 return;
5608
5609 /* Ensure that all memory operations in the PARALLEL use the same
5610 base register. */
5611 if (i > 0 && REGNO (base) != REGNO (prev_base))
5612 return;
5613 prev_base = base;
5614 min_offset = MIN (min_offset, offset);
5615 }
5616
5617 /* If we reached here then we have a valid PARALLEL of multiple memory ops
5618 with prev_base as the base and min_offset containing the offset. */
5619 gcc_assert (prev_base);
5620 data->base = prev_base;
5621 data->offset = min_offset;
5622 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5623 return;
5624 }
5625
5626 /* Otherwise this is a single set memory operation. */
5627 rtx set = single_set (insn);
5628 if (set == NULL_RTX)
5629 return;
5630
5631 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5632 &data->offset))
5633 return;
5634
5635 /* This insn is relevant for the auto-prefetcher.
5636 The base and offset fields will have been filled in the
5637 analyze_set_insn_for_autopref call above. */
5638 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5639 }
5640
5641 /* Helper function for rank_for_schedule sorting. */
5642 static int
5643 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5644 {
5645 int r = 0;
5646 for (int write = 0; write < 2 && !r; ++write)
5647 {
5648 autopref_multipass_data_t data1
5649 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5650 autopref_multipass_data_t data2
5651 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5652
5653 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5654 autopref_multipass_init (insn1, write);
5655
5656 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5657 autopref_multipass_init (insn2, write);
5658
5659 int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5660 int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5661
5662 if (!irrel1 && !irrel2)
5663 r = data1->offset - data2->offset;
5664 else
5665 r = irrel2 - irrel1;
5666 }
5667
5668 return r;
5669 }
5670
5671 /* True if header of debug dump was printed. */
5672 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5673
5674 /* Helper for autopref_multipass_dfa_lookahead_guard.
5675 Return "1" if INSN1 should be delayed in favor of INSN2. */
5676 static int
5677 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5678 const rtx_insn *insn2, int write)
5679 {
5680 autopref_multipass_data_t data1
5681 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5682 autopref_multipass_data_t data2
5683 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5684
5685 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5686 autopref_multipass_init (insn2, write);
5687 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5688 return 0;
5689
5690 if (rtx_equal_p (data1->base, data2->base)
5691 && data1->offset > data2->offset)
5692 {
5693 if (sched_verbose >= 2)
5694 {
5695 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5696 {
5697 fprintf (sched_dump,
5698 ";;\t\tnot trying in max_issue due to autoprefetch "
5699 "model: ");
5700 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5701 }
5702
5703 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5704 }
5705
5706 return 1;
5707 }
5708
5709 return 0;
5710 }
5711
5712 /* General note:
5713
5714 We could have also hooked autoprefetcher model into
5715 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5716 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5717 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5718 unblocked). We don't bother about this yet because target of interest
5719 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5720
5721 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5722 Return "1" if INSN1 should not be considered in max_issue due to
5723 auto-prefetcher considerations. */
5724 int
5725 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5726 {
5727 int r = 0;
5728
5729 /* Exit early if the param forbids this or if we're not entering here through
5730 normal haifa scheduling. This can happen if selective scheduling is
5731 explicitly enabled. */
5732 if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5733 return 0;
5734
5735 if (sched_verbose >= 2 && ready_index == 0)
5736 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5737
5738 for (int write = 0; write < 2; ++write)
5739 {
5740 autopref_multipass_data_t data1
5741 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5742
5743 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5744 autopref_multipass_init (insn1, write);
5745 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5746 continue;
5747
5748 if (ready_index == 0
5749 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5750 /* We allow only a single delay on priviledged instructions.
5751 Doing otherwise would cause infinite loop. */
5752 {
5753 if (sched_verbose >= 2)
5754 {
5755 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5756 {
5757 fprintf (sched_dump,
5758 ";;\t\tnot trying in max_issue due to autoprefetch "
5759 "model: ");
5760 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5761 }
5762
5763 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5764 }
5765 continue;
5766 }
5767
5768 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5769 {
5770 rtx_insn *insn2 = get_ready_element (i2);
5771 if (insn1 == insn2)
5772 continue;
5773 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5774 if (r)
5775 {
5776 if (ready_index == 0)
5777 {
5778 r = -1;
5779 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5780 }
5781 goto finish;
5782 }
5783 }
5784
5785 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5786 continue;
5787
5788 /* Everything from the current queue slot should have been moved to
5789 the ready list. */
5790 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5791
5792 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5793 if (n_stalls > max_insn_queue_index)
5794 n_stalls = max_insn_queue_index;
5795
5796 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5797 {
5798 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5799 link != NULL_RTX;
5800 link = link->next ())
5801 {
5802 rtx_insn *insn2 = link->insn ();
5803 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5804 write);
5805 if (r)
5806 {
5807 /* Queue INSN1 until INSN2 can issue. */
5808 r = -stalls;
5809 if (ready_index == 0)
5810 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5811 goto finish;
5812 }
5813 }
5814 }
5815 }
5816
5817 finish:
5818 if (sched_verbose >= 2
5819 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5820 && (ready_index == ready.n_ready - 1 || r < 0))
5821 /* This does not /always/ trigger. We don't output EOL if the last
5822 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5823 called. We can live with this. */
5824 fprintf (sched_dump, "\n");
5825
5826 return r;
5827 }
5828
5829 /* Define type for target data used in multipass scheduling. */
5830 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5831 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5832 #endif
5833 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5834
5835 /* The following structure describe an entry of the stack of choices. */
5836 struct choice_entry
5837 {
5838 /* Ordinal number of the issued insn in the ready queue. */
5839 int index;
5840 /* The number of the rest insns whose issues we should try. */
5841 int rest;
5842 /* The number of issued essential insns. */
5843 int n;
5844 /* State after issuing the insn. */
5845 state_t state;
5846 /* Target-specific data. */
5847 first_cycle_multipass_data_t target_data;
5848 };
5849
5850 /* The following array is used to implement a stack of choices used in
5851 function max_issue. */
5852 static struct choice_entry *choice_stack;
5853
5854 /* This holds the value of the target dfa_lookahead hook. */
5855 int dfa_lookahead;
5856
5857 /* The following variable value is maximal number of tries of issuing
5858 insns for the first cycle multipass insn scheduling. We define
5859 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5860 need this constraint if all real insns (with non-negative codes)
5861 had reservations because in this case the algorithm complexity is
5862 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5863 might be incomplete and such insn might occur. For such
5864 descriptions, the complexity of algorithm (without the constraint)
5865 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5866 static int max_lookahead_tries;
5867
5868 /* The following function returns maximal (or close to maximal) number
5869 of insns which can be issued on the same cycle and one of which
5870 insns is insns with the best rank (the first insn in READY). To
5871 make this function tries different samples of ready insns. READY
5872 is current queue `ready'. Global array READY_TRY reflects what
5873 insns are already issued in this try. The function stops immediately,
5874 if it reached the such a solution, that all instruction can be issued.
5875 INDEX will contain index of the best insn in READY. The following
5876 function is used only for first cycle multipass scheduling.
5877
5878 PRIVILEGED_N >= 0
5879
5880 This function expects recognized insns only. All USEs,
5881 CLOBBERs, etc must be filtered elsewhere. */
5882 int
5883 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5884 bool first_cycle_insn_p, int *index)
5885 {
5886 int n, i, all, n_ready, best, delay, tries_num;
5887 int more_issue;
5888 struct choice_entry *top;
5889 rtx_insn *insn;
5890
5891 if (sched_fusion)
5892 return 0;
5893
5894 n_ready = ready->n_ready;
5895 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5896 && privileged_n <= n_ready);
5897
5898 /* Init MAX_LOOKAHEAD_TRIES. */
5899 if (max_lookahead_tries == 0)
5900 {
5901 max_lookahead_tries = 100;
5902 for (i = 0; i < issue_rate; i++)
5903 max_lookahead_tries *= dfa_lookahead;
5904 }
5905
5906 /* Init max_points. */
5907 more_issue = issue_rate - cycle_issued_insns;
5908 gcc_assert (more_issue >= 0);
5909
5910 /* The number of the issued insns in the best solution. */
5911 best = 0;
5912
5913 top = choice_stack;
5914
5915 /* Set initial state of the search. */
5916 memcpy (top->state, state, dfa_state_size);
5917 top->rest = dfa_lookahead;
5918 top->n = 0;
5919 if (targetm.sched.first_cycle_multipass_begin)
5920 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5921 ready_try, n_ready,
5922 first_cycle_insn_p);
5923
5924 /* Count the number of the insns to search among. */
5925 for (all = i = 0; i < n_ready; i++)
5926 if (!ready_try [i])
5927 all++;
5928
5929 if (sched_verbose >= 2)
5930 {
5931 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5932 debug_ready_list_1 (ready, ready_try);
5933 }
5934
5935 /* I is the index of the insn to try next. */
5936 i = 0;
5937 tries_num = 0;
5938 for (;;)
5939 {
5940 if (/* If we've reached a dead end or searched enough of what we have
5941 been asked... */
5942 top->rest == 0
5943 /* or have nothing else to try... */
5944 || i >= n_ready
5945 /* or should not issue more. */
5946 || top->n >= more_issue)
5947 {
5948 /* ??? (... || i == n_ready). */
5949 gcc_assert (i <= n_ready);
5950
5951 /* We should not issue more than issue_rate instructions. */
5952 gcc_assert (top->n <= more_issue);
5953
5954 if (top == choice_stack)
5955 break;
5956
5957 if (best < top - choice_stack)
5958 {
5959 if (privileged_n)
5960 {
5961 n = privileged_n;
5962 /* Try to find issued privileged insn. */
5963 while (n && !ready_try[--n])
5964 ;
5965 }
5966
5967 if (/* If all insns are equally good... */
5968 privileged_n == 0
5969 /* Or a privileged insn will be issued. */
5970 || ready_try[n])
5971 /* Then we have a solution. */
5972 {
5973 best = top - choice_stack;
5974 /* This is the index of the insn issued first in this
5975 solution. */
5976 *index = choice_stack [1].index;
5977 if (top->n == more_issue || best == all)
5978 break;
5979 }
5980 }
5981
5982 /* Set ready-list index to point to the last insn
5983 ('i++' below will advance it to the next insn). */
5984 i = top->index;
5985
5986 /* Backtrack. */
5987 ready_try [i] = 0;
5988
5989 if (targetm.sched.first_cycle_multipass_backtrack)
5990 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5991 ready_try, n_ready);
5992
5993 top--;
5994 memcpy (state, top->state, dfa_state_size);
5995 }
5996 else if (!ready_try [i])
5997 {
5998 tries_num++;
5999 if (tries_num > max_lookahead_tries)
6000 break;
6001 insn = ready_element (ready, i);
6002 delay = state_transition (state, insn);
6003 if (delay < 0)
6004 {
6005 if (state_dead_lock_p (state)
6006 || insn_finishes_cycle_p (insn))
6007 /* We won't issue any more instructions in the next
6008 choice_state. */
6009 top->rest = 0;
6010 else
6011 top->rest--;
6012
6013 n = top->n;
6014 if (memcmp (top->state, state, dfa_state_size) != 0)
6015 n++;
6016
6017 /* Advance to the next choice_entry. */
6018 top++;
6019 /* Initialize it. */
6020 top->rest = dfa_lookahead;
6021 top->index = i;
6022 top->n = n;
6023 memcpy (top->state, state, dfa_state_size);
6024 ready_try [i] = 1;
6025
6026 if (targetm.sched.first_cycle_multipass_issue)
6027 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6028 ready_try, n_ready,
6029 insn,
6030 &((top - 1)
6031 ->target_data));
6032
6033 i = -1;
6034 }
6035 }
6036
6037 /* Increase ready-list index. */
6038 i++;
6039 }
6040
6041 if (targetm.sched.first_cycle_multipass_end)
6042 targetm.sched.first_cycle_multipass_end (best != 0
6043 ? &choice_stack[1].target_data
6044 : NULL);
6045
6046 /* Restore the original state of the DFA. */
6047 memcpy (state, choice_stack->state, dfa_state_size);
6048
6049 return best;
6050 }
6051
6052 /* The following function chooses insn from READY and modifies
6053 READY. The following function is used only for first
6054 cycle multipass scheduling.
6055 Return:
6056 -1 if cycle should be advanced,
6057 0 if INSN_PTR is set to point to the desirable insn,
6058 1 if choose_ready () should be restarted without advancing the cycle. */
6059 static int
6060 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6061 rtx_insn **insn_ptr)
6062 {
6063 if (dbg_cnt (sched_insn) == false)
6064 {
6065 if (nonscheduled_insns_begin == NULL_RTX)
6066 nonscheduled_insns_begin = current_sched_info->prev_head;
6067
6068 rtx_insn *insn = first_nonscheduled_insn ();
6069
6070 if (QUEUE_INDEX (insn) == QUEUE_READY)
6071 /* INSN is in the ready_list. */
6072 {
6073 ready_remove_insn (insn);
6074 *insn_ptr = insn;
6075 return 0;
6076 }
6077
6078 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6079 gcc_assert (QUEUE_INDEX (insn) >= 0);
6080 return -1;
6081 }
6082
6083 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6084 || DEBUG_INSN_P (ready_element (ready, 0)))
6085 {
6086 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6087 *insn_ptr = ready_remove_first_dispatch (ready);
6088 else
6089 *insn_ptr = ready_remove_first (ready);
6090
6091 return 0;
6092 }
6093 else
6094 {
6095 /* Try to choose the best insn. */
6096 int index = 0, i;
6097 rtx_insn *insn;
6098
6099 insn = ready_element (ready, 0);
6100 if (INSN_CODE (insn) < 0)
6101 {
6102 *insn_ptr = ready_remove_first (ready);
6103 return 0;
6104 }
6105
6106 /* Filter the search space. */
6107 for (i = 0; i < ready->n_ready; i++)
6108 {
6109 ready_try[i] = 0;
6110
6111 insn = ready_element (ready, i);
6112
6113 /* If this insn is recognizable we should have already
6114 recognized it earlier.
6115 ??? Not very clear where this is supposed to be done.
6116 See dep_cost_1. */
6117 gcc_checking_assert (INSN_CODE (insn) >= 0
6118 || recog_memoized (insn) < 0);
6119 if (INSN_CODE (insn) < 0)
6120 {
6121 /* Non-recognized insns at position 0 are handled above. */
6122 gcc_assert (i > 0);
6123 ready_try[i] = 1;
6124 continue;
6125 }
6126
6127 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6128 {
6129 ready_try[i]
6130 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6131 (insn, i));
6132
6133 if (ready_try[i] < 0)
6134 /* Queue instruction for several cycles.
6135 We need to restart choose_ready as we have changed
6136 the ready list. */
6137 {
6138 change_queue_index (insn, -ready_try[i]);
6139 return 1;
6140 }
6141
6142 /* Make sure that we didn't end up with 0'th insn filtered out.
6143 Don't be tempted to make life easier for backends and just
6144 requeue 0'th insn if (ready_try[0] == 0) and restart
6145 choose_ready. Backends should be very considerate about
6146 requeueing instructions -- especially the highest priority
6147 one at position 0. */
6148 gcc_assert (ready_try[i] == 0 || i > 0);
6149 if (ready_try[i])
6150 continue;
6151 }
6152
6153 gcc_assert (ready_try[i] == 0);
6154 /* INSN made it through the scrutiny of filters! */
6155 }
6156
6157 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6158 {
6159 *insn_ptr = ready_remove_first (ready);
6160 if (sched_verbose >= 4)
6161 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6162 (*current_sched_info->print_insn) (*insn_ptr, 0));
6163 return 0;
6164 }
6165 else
6166 {
6167 if (sched_verbose >= 4)
6168 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6169 (*current_sched_info->print_insn)
6170 (ready_element (ready, index), 0));
6171
6172 *insn_ptr = ready_remove (ready, index);
6173 return 0;
6174 }
6175 }
6176 }
6177
6178 /* This function is called when we have successfully scheduled a
6179 block. It uses the schedule stored in the scheduled_insns vector
6180 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6181 append the scheduled insns; TAIL is the insn after the scheduled
6182 block. TARGET_BB is the argument passed to schedule_block. */
6183
6184 static void
6185 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6186 {
6187 unsigned int i;
6188 rtx_insn *insn;
6189
6190 last_scheduled_insn = prev_head;
6191 for (i = 0;
6192 scheduled_insns.iterate (i, &insn);
6193 i++)
6194 {
6195 if (control_flow_insn_p (last_scheduled_insn)
6196 || current_sched_info->advance_target_bb (*target_bb, insn))
6197 {
6198 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6199
6200 if (sched_verbose)
6201 {
6202 rtx_insn *x;
6203
6204 x = next_real_insn (last_scheduled_insn);
6205 gcc_assert (x);
6206 dump_new_block_header (1, *target_bb, x, tail);
6207 }
6208
6209 last_scheduled_insn = bb_note (*target_bb);
6210 }
6211
6212 if (current_sched_info->begin_move_insn)
6213 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6214 move_insn (insn, last_scheduled_insn,
6215 current_sched_info->next_tail);
6216 if (!DEBUG_INSN_P (insn))
6217 reemit_notes (insn);
6218 last_scheduled_insn = insn;
6219 }
6220
6221 scheduled_insns.truncate (0);
6222 }
6223
6224 /* Examine all insns on the ready list and queue those which can't be
6225 issued in this cycle. TEMP_STATE is temporary scheduler state we
6226 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6227 have been issued for the current cycle, which means it is valid to
6228 issue an asm statement.
6229
6230 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6231 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6232 we only leave insns which have an INSN_EXACT_TICK. */
6233
6234 static void
6235 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6236 bool shadows_only_p, bool modulo_epilogue_p)
6237 {
6238 int i, pass;
6239 bool sched_group_found = false;
6240 int min_cost_group = 0;
6241
6242 if (sched_fusion)
6243 return;
6244
6245 for (i = 0; i < ready.n_ready; i++)
6246 {
6247 rtx_insn *insn = ready_element (&ready, i);
6248 if (SCHED_GROUP_P (insn))
6249 {
6250 sched_group_found = true;
6251 break;
6252 }
6253 }
6254
6255 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6256 such an insn first and note its cost. If at least one SCHED_GROUP_P insn
6257 gets queued, then all other insns get queued for one cycle later. */
6258 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6259 {
6260 int n = ready.n_ready;
6261 for (i = 0; i < n; i++)
6262 {
6263 rtx_insn *insn = ready_element (&ready, i);
6264 int cost = 0;
6265 const char *reason = "resource conflict";
6266
6267 if (DEBUG_INSN_P (insn))
6268 continue;
6269
6270 if (sched_group_found && !SCHED_GROUP_P (insn)
6271 && ((pass == 0) || (min_cost_group >= 1)))
6272 {
6273 if (pass == 0)
6274 continue;
6275 cost = min_cost_group;
6276 reason = "not in sched group";
6277 }
6278 else if (modulo_epilogue_p
6279 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6280 {
6281 cost = max_insn_queue_index;
6282 reason = "not an epilogue insn";
6283 }
6284 else if (shadows_only_p && !SHADOW_P (insn))
6285 {
6286 cost = 1;
6287 reason = "not a shadow";
6288 }
6289 else if (recog_memoized (insn) < 0)
6290 {
6291 if (!first_cycle_insn_p
6292 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6293 || asm_noperands (PATTERN (insn)) >= 0))
6294 cost = 1;
6295 reason = "asm";
6296 }
6297 else if (sched_pressure != SCHED_PRESSURE_NONE)
6298 {
6299 if (sched_pressure == SCHED_PRESSURE_MODEL
6300 && INSN_TICK (insn) <= clock_var)
6301 {
6302 memcpy (temp_state, curr_state, dfa_state_size);
6303 if (state_transition (temp_state, insn) >= 0)
6304 INSN_TICK (insn) = clock_var + 1;
6305 }
6306 cost = 0;
6307 }
6308 else
6309 {
6310 int delay_cost = 0;
6311
6312 if (delay_htab)
6313 {
6314 struct delay_pair *delay_entry;
6315 delay_entry
6316 = delay_htab->find_with_hash (insn,
6317 htab_hash_pointer (insn));
6318 while (delay_entry && delay_cost == 0)
6319 {
6320 delay_cost = estimate_shadow_tick (delay_entry);
6321 if (delay_cost > max_insn_queue_index)
6322 delay_cost = max_insn_queue_index;
6323 delay_entry = delay_entry->next_same_i1;
6324 }
6325 }
6326
6327 memcpy (temp_state, curr_state, dfa_state_size);
6328 cost = state_transition (temp_state, insn);
6329 if (cost < 0)
6330 cost = 0;
6331 else if (cost == 0)
6332 cost = 1;
6333 if (cost < delay_cost)
6334 {
6335 cost = delay_cost;
6336 reason = "shadow tick";
6337 }
6338 }
6339 if (cost >= 1)
6340 {
6341 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6342 min_cost_group = cost;
6343 ready_remove (&ready, i);
6344 /* Normally we'd want to queue INSN for COST cycles. However,
6345 if SCHED_GROUP_P is set, then we must ensure that nothing
6346 else comes between INSN and its predecessor. If there is
6347 some other insn ready to fire on the next cycle, then that
6348 invariant would be broken.
6349
6350 So when SCHED_GROUP_P is set, just queue this insn for a
6351 single cycle. */
6352 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6353 if (i + 1 < n)
6354 break;
6355 }
6356 }
6357 if (i == n)
6358 pass++;
6359 }
6360 }
6361
6362 /* Called when we detect that the schedule is impossible. We examine the
6363 backtrack queue to find the earliest insn that caused this condition. */
6364
6365 static struct haifa_saved_data *
6366 verify_shadows (void)
6367 {
6368 struct haifa_saved_data *save, *earliest_fail = NULL;
6369 for (save = backtrack_queue; save; save = save->next)
6370 {
6371 int t;
6372 struct delay_pair *pair = save->delay_pair;
6373 rtx_insn *i1 = pair->i1;
6374
6375 for (; pair; pair = pair->next_same_i1)
6376 {
6377 rtx_insn *i2 = pair->i2;
6378
6379 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6380 continue;
6381
6382 t = INSN_TICK (i1) + pair_delay (pair);
6383 if (t < clock_var)
6384 {
6385 if (sched_verbose >= 2)
6386 fprintf (sched_dump,
6387 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6388 ", not ready\n",
6389 INSN_UID (pair->i1), INSN_UID (pair->i2),
6390 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6391 earliest_fail = save;
6392 break;
6393 }
6394 if (QUEUE_INDEX (i2) >= 0)
6395 {
6396 int queued_for = INSN_TICK (i2);
6397
6398 if (t < queued_for)
6399 {
6400 if (sched_verbose >= 2)
6401 fprintf (sched_dump,
6402 ";;\t\tfailed delay requirements for %d/%d"
6403 " (%d->%d), queued too late\n",
6404 INSN_UID (pair->i1), INSN_UID (pair->i2),
6405 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6406 earliest_fail = save;
6407 break;
6408 }
6409 }
6410 }
6411 }
6412
6413 return earliest_fail;
6414 }
6415
6416 /* Print instructions together with useful scheduling information between
6417 HEAD and TAIL (inclusive). */
6418 static void
6419 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6420 {
6421 fprintf (sched_dump, ";;\t| insn | prio |\n");
6422
6423 rtx_insn *next_tail = NEXT_INSN (tail);
6424 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6425 {
6426 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6427 const char *pattern = (NOTE_P (insn)
6428 ? "note"
6429 : str_pattern_slim (PATTERN (insn)));
6430
6431 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6432 INSN_UID (insn), priority, pattern);
6433
6434 if (sched_verbose >= 4)
6435 {
6436 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
6437 fprintf (sched_dump, "nothing");
6438 else
6439 print_reservation (sched_dump, insn);
6440 }
6441 fprintf (sched_dump, "\n");
6442 }
6443 }
6444
6445 /* Use forward list scheduling to rearrange insns of block pointed to by
6446 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6447 region. */
6448
6449 bool
6450 schedule_block (basic_block *target_bb, state_t init_state)
6451 {
6452 int i;
6453 bool success = modulo_ii == 0;
6454 struct sched_block_state ls;
6455 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6456 int sort_p, advance, start_clock_var;
6457
6458 /* Head/tail info for this block. */
6459 rtx_insn *prev_head = current_sched_info->prev_head;
6460 rtx_insn *next_tail = current_sched_info->next_tail;
6461 rtx_insn *head = NEXT_INSN (prev_head);
6462 rtx_insn *tail = PREV_INSN (next_tail);
6463
6464 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6465 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6466 find_modifiable_mems (head, tail);
6467
6468 /* We used to have code to avoid getting parameters moved from hard
6469 argument registers into pseudos.
6470
6471 However, it was removed when it proved to be of marginal benefit
6472 and caused problems because schedule_block and compute_forward_dependences
6473 had different notions of what the "head" insn was. */
6474
6475 gcc_assert (head != tail || INSN_P (head));
6476
6477 haifa_recovery_bb_recently_added_p = false;
6478
6479 backtrack_queue = NULL;
6480
6481 /* Debug info. */
6482 if (sched_verbose)
6483 {
6484 dump_new_block_header (0, *target_bb, head, tail);
6485
6486 if (sched_verbose >= 2)
6487 {
6488 dump_insn_stream (head, tail);
6489 memset (&rank_for_schedule_stats, 0,
6490 sizeof (rank_for_schedule_stats));
6491 }
6492 }
6493
6494 if (init_state == NULL)
6495 state_reset (curr_state);
6496 else
6497 memcpy (curr_state, init_state, dfa_state_size);
6498
6499 /* Clear the ready list. */
6500 ready.first = ready.veclen - 1;
6501 ready.n_ready = 0;
6502 ready.n_debug = 0;
6503
6504 /* It is used for first cycle multipass scheduling. */
6505 temp_state = alloca (dfa_state_size);
6506
6507 if (targetm.sched.init)
6508 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6509
6510 /* We start inserting insns after PREV_HEAD. */
6511 last_scheduled_insn = prev_head;
6512 last_nondebug_scheduled_insn = NULL;
6513 nonscheduled_insns_begin = NULL;
6514
6515 gcc_assert ((NOTE_P (last_scheduled_insn)
6516 || DEBUG_INSN_P (last_scheduled_insn))
6517 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6518
6519 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6520 queue. */
6521 q_ptr = 0;
6522 q_size = 0;
6523
6524 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6525 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6526
6527 /* Start just before the beginning of time. */
6528 clock_var = -1;
6529
6530 /* We need queue and ready lists and clock_var be initialized
6531 in try_ready () (which is called through init_ready_list ()). */
6532 (*current_sched_info->init_ready_list) ();
6533
6534 if (sched_pressure)
6535 sched_pressure_start_bb (*target_bb);
6536
6537 /* The algorithm is O(n^2) in the number of ready insns at any given
6538 time in the worst case. Before reload we are more likely to have
6539 big lists so truncate them to a reasonable size. */
6540 if (!reload_completed
6541 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6542 {
6543 ready_sort_debug (&ready);
6544 ready_sort_real (&ready);
6545
6546 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6547 If there are debug insns, we know they're first. */
6548 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6549 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6550 break;
6551
6552 if (sched_verbose >= 2)
6553 {
6554 fprintf (sched_dump,
6555 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6556 debug_ready_list (&ready);
6557 fprintf (sched_dump,
6558 ";;\t\t before reload => truncated to %d insns\n", i);
6559 }
6560
6561 /* Delay all insns past it for 1 cycle. If debug counter is
6562 activated make an exception for the insn right after
6563 nonscheduled_insns_begin. */
6564 {
6565 rtx_insn *skip_insn;
6566
6567 if (dbg_cnt (sched_insn) == false)
6568 skip_insn = first_nonscheduled_insn ();
6569 else
6570 skip_insn = NULL;
6571
6572 while (i < ready.n_ready)
6573 {
6574 rtx_insn *insn;
6575
6576 insn = ready_remove (&ready, i);
6577
6578 if (insn != skip_insn)
6579 queue_insn (insn, 1, "list truncated");
6580 }
6581 if (skip_insn)
6582 ready_add (&ready, skip_insn, true);
6583 }
6584 }
6585
6586 /* Now we can restore basic block notes and maintain precise cfg. */
6587 restore_bb_notes (*target_bb);
6588
6589 last_clock_var = -1;
6590
6591 advance = 0;
6592
6593 gcc_assert (scheduled_insns.length () == 0);
6594 sort_p = TRUE;
6595 must_backtrack = false;
6596 modulo_insns_scheduled = 0;
6597
6598 ls.modulo_epilogue = false;
6599 ls.first_cycle_insn_p = true;
6600
6601 /* Loop until all the insns in BB are scheduled. */
6602 while ((*current_sched_info->schedule_more_p) ())
6603 {
6604 perform_replacements_new_cycle ();
6605 do
6606 {
6607 start_clock_var = clock_var;
6608
6609 clock_var++;
6610
6611 advance_one_cycle ();
6612
6613 /* Add to the ready list all pending insns that can be issued now.
6614 If there are no ready insns, increment clock until one
6615 is ready and add all pending insns at that point to the ready
6616 list. */
6617 queue_to_ready (&ready);
6618
6619 gcc_assert (ready.n_ready);
6620
6621 if (sched_verbose >= 2)
6622 {
6623 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6624 debug_ready_list (&ready);
6625 }
6626 advance -= clock_var - start_clock_var;
6627 }
6628 while (advance > 0);
6629
6630 if (ls.modulo_epilogue)
6631 {
6632 int stage = clock_var / modulo_ii;
6633 if (stage > modulo_last_stage * 2 + 2)
6634 {
6635 if (sched_verbose >= 2)
6636 fprintf (sched_dump,
6637 ";;\t\tmodulo scheduled succeeded at II %d\n",
6638 modulo_ii);
6639 success = true;
6640 goto end_schedule;
6641 }
6642 }
6643 else if (modulo_ii > 0)
6644 {
6645 int stage = clock_var / modulo_ii;
6646 if (stage > modulo_max_stages)
6647 {
6648 if (sched_verbose >= 2)
6649 fprintf (sched_dump,
6650 ";;\t\tfailing schedule due to excessive stages\n");
6651 goto end_schedule;
6652 }
6653 if (modulo_n_insns == modulo_insns_scheduled
6654 && stage > modulo_last_stage)
6655 {
6656 if (sched_verbose >= 2)
6657 fprintf (sched_dump,
6658 ";;\t\tfound kernel after %d stages, II %d\n",
6659 stage, modulo_ii);
6660 ls.modulo_epilogue = true;
6661 }
6662 }
6663
6664 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6665 if (ready.n_ready == 0)
6666 continue;
6667 if (must_backtrack)
6668 goto do_backtrack;
6669
6670 ls.shadows_only_p = false;
6671 cycle_issued_insns = 0;
6672 ls.can_issue_more = issue_rate;
6673 for (;;)
6674 {
6675 rtx_insn *insn;
6676 int cost;
6677 bool asm_p;
6678
6679 if (sort_p && ready.n_ready > 0)
6680 {
6681 /* Sort the ready list based on priority. This must be
6682 done every iteration through the loop, as schedule_insn
6683 may have readied additional insns that will not be
6684 sorted correctly. */
6685 ready_sort (&ready);
6686
6687 if (sched_verbose >= 2)
6688 {
6689 fprintf (sched_dump,
6690 ";;\t\tReady list after ready_sort: ");
6691 debug_ready_list (&ready);
6692 }
6693 }
6694
6695 /* We don't want md sched reorder to even see debug isns, so put
6696 them out right away. */
6697 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6698 && (*current_sched_info->schedule_more_p) ())
6699 {
6700 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6701 {
6702 rtx_insn *insn = ready_remove_first (&ready);
6703 gcc_assert (DEBUG_INSN_P (insn));
6704 (*current_sched_info->begin_schedule_ready) (insn);
6705 scheduled_insns.safe_push (insn);
6706 last_scheduled_insn = insn;
6707 advance = schedule_insn (insn);
6708 gcc_assert (advance == 0);
6709 if (ready.n_ready > 0)
6710 ready_sort (&ready);
6711 }
6712 }
6713
6714 if (ls.first_cycle_insn_p && !ready.n_ready)
6715 break;
6716
6717 resume_after_backtrack:
6718 /* Allow the target to reorder the list, typically for
6719 better instruction bundling. */
6720 if (sort_p
6721 && (ready.n_ready == 0
6722 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6723 {
6724 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6725 ls.can_issue_more
6726 = targetm.sched.reorder (sched_dump, sched_verbose,
6727 ready_lastpos (&ready),
6728 &ready.n_ready, clock_var);
6729 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6730 ls.can_issue_more
6731 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6732 ready.n_ready
6733 ? ready_lastpos (&ready) : NULL,
6734 &ready.n_ready, clock_var);
6735 }
6736
6737 restart_choose_ready:
6738 if (sched_verbose >= 2)
6739 {
6740 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6741 clock_var);
6742 debug_ready_list (&ready);
6743 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6744 print_curr_reg_pressure ();
6745 }
6746
6747 if (ready.n_ready == 0
6748 && ls.can_issue_more
6749 && reload_completed)
6750 {
6751 /* Allow scheduling insns directly from the queue in case
6752 there's nothing better to do (ready list is empty) but
6753 there are still vacant dispatch slots in the current cycle. */
6754 if (sched_verbose >= 6)
6755 fprintf (sched_dump,";;\t\tSecond chance\n");
6756 memcpy (temp_state, curr_state, dfa_state_size);
6757 if (early_queue_to_ready (temp_state, &ready))
6758 ready_sort (&ready);
6759 }
6760
6761 if (ready.n_ready == 0
6762 || !ls.can_issue_more
6763 || state_dead_lock_p (curr_state)
6764 || !(*current_sched_info->schedule_more_p) ())
6765 break;
6766
6767 /* Select and remove the insn from the ready list. */
6768 if (sort_p)
6769 {
6770 int res;
6771
6772 insn = NULL;
6773 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6774
6775 if (res < 0)
6776 /* Finish cycle. */
6777 break;
6778 if (res > 0)
6779 goto restart_choose_ready;
6780
6781 gcc_assert (insn != NULL_RTX);
6782 }
6783 else
6784 insn = ready_remove_first (&ready);
6785
6786 if (sched_pressure != SCHED_PRESSURE_NONE
6787 && INSN_TICK (insn) > clock_var)
6788 {
6789 ready_add (&ready, insn, true);
6790 advance = 1;
6791 break;
6792 }
6793
6794 if (targetm.sched.dfa_new_cycle
6795 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6796 insn, last_clock_var,
6797 clock_var, &sort_p))
6798 /* SORT_P is used by the target to override sorting
6799 of the ready list. This is needed when the target
6800 has modified its internal structures expecting that
6801 the insn will be issued next. As we need the insn
6802 to have the highest priority (so it will be returned by
6803 the ready_remove_first call above), we invoke
6804 ready_add (&ready, insn, true).
6805 But, still, there is one issue: INSN can be later
6806 discarded by scheduler's front end through
6807 current_sched_info->can_schedule_ready_p, hence, won't
6808 be issued next. */
6809 {
6810 ready_add (&ready, insn, true);
6811 break;
6812 }
6813
6814 sort_p = TRUE;
6815
6816 if (current_sched_info->can_schedule_ready_p
6817 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6818 /* We normally get here only if we don't want to move
6819 insn from the split block. */
6820 {
6821 TODO_SPEC (insn) = DEP_POSTPONED;
6822 goto restart_choose_ready;
6823 }
6824
6825 if (delay_htab)
6826 {
6827 /* If this insn is the first part of a delay-slot pair, record a
6828 backtrack point. */
6829 struct delay_pair *delay_entry;
6830 delay_entry
6831 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6832 if (delay_entry)
6833 {
6834 save_backtrack_point (delay_entry, ls);
6835 if (sched_verbose >= 2)
6836 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6837 }
6838 }
6839
6840 /* DECISION is made. */
6841
6842 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6843 {
6844 modulo_insns_scheduled++;
6845 modulo_last_stage = clock_var / modulo_ii;
6846 }
6847 if (TODO_SPEC (insn) & SPECULATIVE)
6848 generate_recovery_code (insn);
6849
6850 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6851 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6852
6853 /* Update counters, etc in the scheduler's front end. */
6854 (*current_sched_info->begin_schedule_ready) (insn);
6855 scheduled_insns.safe_push (insn);
6856 gcc_assert (NONDEBUG_INSN_P (insn));
6857 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6858
6859 if (recog_memoized (insn) >= 0)
6860 {
6861 memcpy (temp_state, curr_state, dfa_state_size);
6862 cost = state_transition (curr_state, insn);
6863 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6864 gcc_assert (cost < 0);
6865 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6866 cycle_issued_insns++;
6867 asm_p = false;
6868 }
6869 else
6870 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6871 || asm_noperands (PATTERN (insn)) >= 0);
6872
6873 if (targetm.sched.variable_issue)
6874 ls.can_issue_more =
6875 targetm.sched.variable_issue (sched_dump, sched_verbose,
6876 insn, ls.can_issue_more);
6877 /* A naked CLOBBER or USE generates no instruction, so do
6878 not count them against the issue rate. */
6879 else if (GET_CODE (PATTERN (insn)) != USE
6880 && GET_CODE (PATTERN (insn)) != CLOBBER)
6881 ls.can_issue_more--;
6882 advance = schedule_insn (insn);
6883
6884 if (SHADOW_P (insn))
6885 ls.shadows_only_p = true;
6886
6887 /* After issuing an asm insn we should start a new cycle. */
6888 if (advance == 0 && asm_p)
6889 advance = 1;
6890
6891 if (must_backtrack)
6892 break;
6893
6894 if (advance != 0)
6895 break;
6896
6897 ls.first_cycle_insn_p = false;
6898 if (ready.n_ready > 0)
6899 prune_ready_list (temp_state, false, ls.shadows_only_p,
6900 ls.modulo_epilogue);
6901 }
6902
6903 do_backtrack:
6904 if (!must_backtrack)
6905 for (i = 0; i < ready.n_ready; i++)
6906 {
6907 rtx_insn *insn = ready_element (&ready, i);
6908 if (INSN_EXACT_TICK (insn) == clock_var)
6909 {
6910 must_backtrack = true;
6911 clock_var++;
6912 break;
6913 }
6914 }
6915 if (must_backtrack && modulo_ii > 0)
6916 {
6917 if (modulo_backtracks_left == 0)
6918 goto end_schedule;
6919 modulo_backtracks_left--;
6920 }
6921 while (must_backtrack)
6922 {
6923 struct haifa_saved_data *failed;
6924 rtx_insn *failed_insn;
6925
6926 must_backtrack = false;
6927 failed = verify_shadows ();
6928 gcc_assert (failed);
6929
6930 failed_insn = failed->delay_pair->i1;
6931 /* Clear these queues. */
6932 perform_replacements_new_cycle ();
6933 toggle_cancelled_flags (false);
6934 unschedule_insns_until (failed_insn);
6935 while (failed != backtrack_queue)
6936 free_topmost_backtrack_point (true);
6937 restore_last_backtrack_point (&ls);
6938 if (sched_verbose >= 2)
6939 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6940 /* Delay by at least a cycle. This could cause additional
6941 backtracking. */
6942 queue_insn (failed_insn, 1, "backtracked");
6943 advance = 0;
6944 if (must_backtrack)
6945 continue;
6946 if (ready.n_ready > 0)
6947 goto resume_after_backtrack;
6948 else
6949 {
6950 if (clock_var == 0 && ls.first_cycle_insn_p)
6951 goto end_schedule;
6952 advance = 1;
6953 break;
6954 }
6955 }
6956 ls.first_cycle_insn_p = true;
6957 }
6958 if (ls.modulo_epilogue)
6959 success = true;
6960 end_schedule:
6961 if (!ls.first_cycle_insn_p || advance)
6962 advance_one_cycle ();
6963 perform_replacements_new_cycle ();
6964 if (modulo_ii > 0)
6965 {
6966 /* Once again, debug insn suckiness: they can be on the ready list
6967 even if they have unresolved dependencies. To make our view
6968 of the world consistent, remove such "ready" insns. */
6969 restart_debug_insn_loop:
6970 for (i = ready.n_ready - 1; i >= 0; i--)
6971 {
6972 rtx_insn *x;
6973
6974 x = ready_element (&ready, i);
6975 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6976 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6977 {
6978 ready_remove (&ready, i);
6979 goto restart_debug_insn_loop;
6980 }
6981 }
6982 for (i = ready.n_ready - 1; i >= 0; i--)
6983 {
6984 rtx_insn *x;
6985
6986 x = ready_element (&ready, i);
6987 resolve_dependencies (x);
6988 }
6989 for (i = 0; i <= max_insn_queue_index; i++)
6990 {
6991 rtx_insn_list *link;
6992 while ((link = insn_queue[i]) != NULL)
6993 {
6994 rtx_insn *x = link->insn ();
6995 insn_queue[i] = link->next ();
6996 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6997 free_INSN_LIST_node (link);
6998 resolve_dependencies (x);
6999 }
7000 }
7001 }
7002
7003 if (!success)
7004 undo_all_replacements ();
7005
7006 /* Debug info. */
7007 if (sched_verbose)
7008 {
7009 fprintf (sched_dump, ";;\tReady list (final): ");
7010 debug_ready_list (&ready);
7011 }
7012
7013 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7014 /* Sanity check -- queue must be empty now. Meaningless if region has
7015 multiple bbs. */
7016 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7017 else if (modulo_ii == 0)
7018 {
7019 /* We must maintain QUEUE_INDEX between blocks in region. */
7020 for (i = ready.n_ready - 1; i >= 0; i--)
7021 {
7022 rtx_insn *x;
7023
7024 x = ready_element (&ready, i);
7025 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7026 TODO_SPEC (x) = HARD_DEP;
7027 }
7028
7029 if (q_size)
7030 for (i = 0; i <= max_insn_queue_index; i++)
7031 {
7032 rtx_insn_list *link;
7033 for (link = insn_queue[i]; link; link = link->next ())
7034 {
7035 rtx_insn *x;
7036
7037 x = link->insn ();
7038 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7039 TODO_SPEC (x) = HARD_DEP;
7040 }
7041 free_INSN_LIST_list (&insn_queue[i]);
7042 }
7043 }
7044
7045 if (sched_pressure == SCHED_PRESSURE_MODEL)
7046 model_end_schedule ();
7047
7048 if (success)
7049 {
7050 commit_schedule (prev_head, tail, target_bb);
7051 if (sched_verbose)
7052 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7053 }
7054 else
7055 last_scheduled_insn = tail;
7056
7057 scheduled_insns.truncate (0);
7058
7059 if (!current_sched_info->queue_must_finish_empty
7060 || haifa_recovery_bb_recently_added_p)
7061 {
7062 /* INSN_TICK (minimum clock tick at which the insn becomes
7063 ready) may be not correct for the insn in the subsequent
7064 blocks of the region. We should use a correct value of
7065 `clock_var' or modify INSN_TICK. It is better to keep
7066 clock_var value equal to 0 at the start of a basic block.
7067 Therefore we modify INSN_TICK here. */
7068 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7069 }
7070
7071 if (targetm.sched.finish)
7072 {
7073 targetm.sched.finish (sched_dump, sched_verbose);
7074 /* Target might have added some instructions to the scheduled block
7075 in its md_finish () hook. These new insns don't have any data
7076 initialized and to identify them we extend h_i_d so that they'll
7077 get zero luids. */
7078 sched_extend_luids ();
7079 }
7080
7081 /* Update head/tail boundaries. */
7082 head = NEXT_INSN (prev_head);
7083 tail = last_scheduled_insn;
7084
7085 if (sched_verbose)
7086 {
7087 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7088 INSN_UID (head), INSN_UID (tail));
7089
7090 if (sched_verbose >= 2)
7091 {
7092 dump_insn_stream (head, tail);
7093 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7094 NULL);
7095 }
7096
7097 fprintf (sched_dump, "\n");
7098 }
7099
7100 head = restore_other_notes (head, NULL);
7101
7102 current_sched_info->head = head;
7103 current_sched_info->tail = tail;
7104
7105 free_backtrack_queue ();
7106
7107 return success;
7108 }
7109 \f
7110 /* Set_priorities: compute priority of each insn in the block. */
7111
7112 int
7113 set_priorities (rtx_insn *head, rtx_insn *tail)
7114 {
7115 rtx_insn *insn;
7116 int n_insn;
7117 int sched_max_insns_priority =
7118 current_sched_info->sched_max_insns_priority;
7119 rtx_insn *prev_head;
7120
7121 if (head == tail && ! INSN_P (head))
7122 gcc_unreachable ();
7123
7124 n_insn = 0;
7125
7126 prev_head = PREV_INSN (head);
7127 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7128 {
7129 if (!INSN_P (insn))
7130 continue;
7131
7132 n_insn++;
7133 (void) priority (insn);
7134
7135 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7136
7137 sched_max_insns_priority = MAX (sched_max_insns_priority,
7138 INSN_PRIORITY (insn));
7139 }
7140
7141 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7142
7143 return n_insn;
7144 }
7145
7146 /* Set sched_dump and sched_verbose for the desired debugging output. */
7147 void
7148 setup_sched_dump (void)
7149 {
7150 sched_verbose = sched_verbose_param;
7151 sched_dump = dump_file;
7152 if (!dump_file)
7153 sched_verbose = 0;
7154 }
7155
7156 /* Allocate data for register pressure sensitive scheduling. */
7157 static void
7158 alloc_global_sched_pressure_data (void)
7159 {
7160 if (sched_pressure != SCHED_PRESSURE_NONE)
7161 {
7162 int i, max_regno = max_reg_num ();
7163
7164 if (sched_dump != NULL)
7165 /* We need info about pseudos for rtl dumps about pseudo
7166 classes and costs. */
7167 regstat_init_n_sets_and_refs ();
7168 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7169 sched_regno_pressure_class
7170 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7171 for (i = 0; i < max_regno; i++)
7172 sched_regno_pressure_class[i]
7173 = (i < FIRST_PSEUDO_REGISTER
7174 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7175 : ira_pressure_class_translate[reg_allocno_class (i)]);
7176 curr_reg_live = BITMAP_ALLOC (NULL);
7177 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7178 {
7179 saved_reg_live = BITMAP_ALLOC (NULL);
7180 region_ref_regs = BITMAP_ALLOC (NULL);
7181 }
7182 if (sched_pressure == SCHED_PRESSURE_MODEL)
7183 tmp_bitmap = BITMAP_ALLOC (NULL);
7184
7185 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7186 that we calculate register pressure for. */
7187 for (int c = 0; c < ira_pressure_classes_num; ++c)
7188 {
7189 enum reg_class cl = ira_pressure_classes[c];
7190
7191 call_saved_regs_num[cl] = 0;
7192 fixed_regs_num[cl] = 0;
7193
7194 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7195 if (!call_used_regs[ira_class_hard_regs[cl][i]])
7196 ++call_saved_regs_num[cl];
7197 else if (fixed_regs[ira_class_hard_regs[cl][i]])
7198 ++fixed_regs_num[cl];
7199 }
7200 }
7201 }
7202
7203 /* Free data for register pressure sensitive scheduling. Also called
7204 from schedule_region when stopping sched-pressure early. */
7205 void
7206 free_global_sched_pressure_data (void)
7207 {
7208 if (sched_pressure != SCHED_PRESSURE_NONE)
7209 {
7210 if (regstat_n_sets_and_refs != NULL)
7211 regstat_free_n_sets_and_refs ();
7212 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7213 {
7214 BITMAP_FREE (region_ref_regs);
7215 BITMAP_FREE (saved_reg_live);
7216 }
7217 if (sched_pressure == SCHED_PRESSURE_MODEL)
7218 BITMAP_FREE (tmp_bitmap);
7219 BITMAP_FREE (curr_reg_live);
7220 free (sched_regno_pressure_class);
7221 }
7222 }
7223
7224 /* Initialize some global state for the scheduler. This function works
7225 with the common data shared between all the schedulers. It is called
7226 from the scheduler specific initialization routine. */
7227
7228 void
7229 sched_init (void)
7230 {
7231 /* Disable speculative loads in their presence if cc0 defined. */
7232 if (HAVE_cc0)
7233 flag_schedule_speculative_load = 0;
7234
7235 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7236 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7237
7238 if (live_range_shrinkage_p)
7239 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7240 else if (flag_sched_pressure
7241 && !reload_completed
7242 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7243 sched_pressure = ((enum sched_pressure_algorithm)
7244 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7245 else
7246 sched_pressure = SCHED_PRESSURE_NONE;
7247
7248 if (sched_pressure != SCHED_PRESSURE_NONE)
7249 ira_setup_eliminable_regset ();
7250
7251 /* Initialize SPEC_INFO. */
7252 if (targetm.sched.set_sched_flags)
7253 {
7254 spec_info = &spec_info_var;
7255 targetm.sched.set_sched_flags (spec_info);
7256
7257 if (spec_info->mask != 0)
7258 {
7259 spec_info->data_weakness_cutoff =
7260 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7261 spec_info->control_weakness_cutoff =
7262 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7263 * REG_BR_PROB_BASE) / 100;
7264 }
7265 else
7266 /* So we won't read anything accidentally. */
7267 spec_info = NULL;
7268
7269 }
7270 else
7271 /* So we won't read anything accidentally. */
7272 spec_info = 0;
7273
7274 /* Initialize issue_rate. */
7275 if (targetm.sched.issue_rate)
7276 issue_rate = targetm.sched.issue_rate ();
7277 else
7278 issue_rate = 1;
7279
7280 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7281 /* Don't use max_issue with reg_pressure scheduling. Multipass
7282 scheduling and reg_pressure scheduling undo each other's decisions. */
7283 && sched_pressure == SCHED_PRESSURE_NONE)
7284 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7285 else
7286 dfa_lookahead = 0;
7287
7288 /* Set to "0" so that we recalculate. */
7289 max_lookahead_tries = 0;
7290
7291 if (targetm.sched.init_dfa_pre_cycle_insn)
7292 targetm.sched.init_dfa_pre_cycle_insn ();
7293
7294 if (targetm.sched.init_dfa_post_cycle_insn)
7295 targetm.sched.init_dfa_post_cycle_insn ();
7296
7297 dfa_start ();
7298 dfa_state_size = state_size ();
7299
7300 init_alias_analysis ();
7301
7302 if (!sched_no_dce)
7303 df_set_flags (DF_LR_RUN_DCE);
7304 df_note_add_problem ();
7305
7306 /* More problems needed for interloop dep calculation in SMS. */
7307 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7308 {
7309 df_rd_add_problem ();
7310 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7311 }
7312
7313 df_analyze ();
7314
7315 /* Do not run DCE after reload, as this can kill nops inserted
7316 by bundling. */
7317 if (reload_completed)
7318 df_clear_flags (DF_LR_RUN_DCE);
7319
7320 regstat_compute_calls_crossed ();
7321
7322 if (targetm.sched.init_global)
7323 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7324
7325 alloc_global_sched_pressure_data ();
7326
7327 curr_state = xmalloc (dfa_state_size);
7328 }
7329
7330 static void haifa_init_only_bb (basic_block, basic_block);
7331
7332 /* Initialize data structures specific to the Haifa scheduler. */
7333 void
7334 haifa_sched_init (void)
7335 {
7336 setup_sched_dump ();
7337 sched_init ();
7338
7339 scheduled_insns.create (0);
7340
7341 if (spec_info != NULL)
7342 {
7343 sched_deps_info->use_deps_list = 1;
7344 sched_deps_info->generate_spec_deps = 1;
7345 }
7346
7347 /* Initialize luids, dependency caches, target and h_i_d for the
7348 whole function. */
7349 {
7350 sched_init_bbs ();
7351
7352 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7353 basic_block bb;
7354 FOR_EACH_BB_FN (bb, cfun)
7355 bbs.quick_push (bb);
7356 sched_init_luids (bbs);
7357 sched_deps_init (true);
7358 sched_extend_target ();
7359 haifa_init_h_i_d (bbs);
7360 }
7361
7362 sched_init_only_bb = haifa_init_only_bb;
7363 sched_split_block = sched_split_block_1;
7364 sched_create_empty_bb = sched_create_empty_bb_1;
7365 haifa_recovery_bb_ever_added_p = false;
7366
7367 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7368 before_recovery = 0;
7369 after_recovery = 0;
7370
7371 modulo_ii = 0;
7372 }
7373
7374 /* Finish work with the data specific to the Haifa scheduler. */
7375 void
7376 haifa_sched_finish (void)
7377 {
7378 sched_create_empty_bb = NULL;
7379 sched_split_block = NULL;
7380 sched_init_only_bb = NULL;
7381
7382 if (spec_info && spec_info->dump)
7383 {
7384 char c = reload_completed ? 'a' : 'b';
7385
7386 fprintf (spec_info->dump,
7387 ";; %s:\n", current_function_name ());
7388
7389 fprintf (spec_info->dump,
7390 ";; Procedure %cr-begin-data-spec motions == %d\n",
7391 c, nr_begin_data);
7392 fprintf (spec_info->dump,
7393 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7394 c, nr_be_in_data);
7395 fprintf (spec_info->dump,
7396 ";; Procedure %cr-begin-control-spec motions == %d\n",
7397 c, nr_begin_control);
7398 fprintf (spec_info->dump,
7399 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7400 c, nr_be_in_control);
7401 }
7402
7403 scheduled_insns.release ();
7404
7405 /* Finalize h_i_d, dependency caches, and luids for the whole
7406 function. Target will be finalized in md_global_finish (). */
7407 sched_deps_finish ();
7408 sched_finish_luids ();
7409 current_sched_info = NULL;
7410 insn_queue = NULL;
7411 sched_finish ();
7412 }
7413
7414 /* Free global data used during insn scheduling. This function works with
7415 the common data shared between the schedulers. */
7416
7417 void
7418 sched_finish (void)
7419 {
7420 haifa_finish_h_i_d ();
7421 free_global_sched_pressure_data ();
7422 free (curr_state);
7423
7424 if (targetm.sched.finish_global)
7425 targetm.sched.finish_global (sched_dump, sched_verbose);
7426
7427 end_alias_analysis ();
7428
7429 regstat_free_calls_crossed ();
7430
7431 dfa_finish ();
7432 }
7433
7434 /* Free all delay_pair structures that were recorded. */
7435 void
7436 free_delay_pairs (void)
7437 {
7438 if (delay_htab)
7439 {
7440 delay_htab->empty ();
7441 delay_htab_i2->empty ();
7442 }
7443 }
7444
7445 /* Fix INSN_TICKs of the instructions in the current block as well as
7446 INSN_TICKs of their dependents.
7447 HEAD and TAIL are the begin and the end of the current scheduled block. */
7448 static void
7449 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7450 {
7451 /* Set of instructions with corrected INSN_TICK. */
7452 auto_bitmap processed;
7453 /* ??? It is doubtful if we should assume that cycle advance happens on
7454 basic block boundaries. Basically insns that are unconditionally ready
7455 on the start of the block are more preferable then those which have
7456 a one cycle dependency over insn from the previous block. */
7457 int next_clock = clock_var + 1;
7458
7459 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7460 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7461 across different blocks. */
7462 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7463 {
7464 if (INSN_P (head))
7465 {
7466 int tick;
7467 sd_iterator_def sd_it;
7468 dep_t dep;
7469
7470 tick = INSN_TICK (head);
7471 gcc_assert (tick >= MIN_TICK);
7472
7473 /* Fix INSN_TICK of instruction from just scheduled block. */
7474 if (bitmap_set_bit (processed, INSN_LUID (head)))
7475 {
7476 tick -= next_clock;
7477
7478 if (tick < MIN_TICK)
7479 tick = MIN_TICK;
7480
7481 INSN_TICK (head) = tick;
7482 }
7483
7484 if (DEBUG_INSN_P (head))
7485 continue;
7486
7487 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7488 {
7489 rtx_insn *next;
7490
7491 next = DEP_CON (dep);
7492 tick = INSN_TICK (next);
7493
7494 if (tick != INVALID_TICK
7495 /* If NEXT has its INSN_TICK calculated, fix it.
7496 If not - it will be properly calculated from
7497 scratch later in fix_tick_ready. */
7498 && bitmap_set_bit (processed, INSN_LUID (next)))
7499 {
7500 tick -= next_clock;
7501
7502 if (tick < MIN_TICK)
7503 tick = MIN_TICK;
7504
7505 if (tick > INTER_TICK (next))
7506 INTER_TICK (next) = tick;
7507 else
7508 tick = INTER_TICK (next);
7509
7510 INSN_TICK (next) = tick;
7511 }
7512 }
7513 }
7514 }
7515 }
7516
7517 /* Check if NEXT is ready to be added to the ready or queue list.
7518 If "yes", add it to the proper list.
7519 Returns:
7520 -1 - is not ready yet,
7521 0 - added to the ready list,
7522 0 < N - queued for N cycles. */
7523 int
7524 try_ready (rtx_insn *next)
7525 {
7526 ds_t old_ts, new_ts;
7527
7528 old_ts = TODO_SPEC (next);
7529
7530 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7531 && (old_ts == HARD_DEP
7532 || old_ts == DEP_POSTPONED
7533 || (old_ts & SPECULATIVE)
7534 || old_ts == DEP_CONTROL));
7535
7536 new_ts = recompute_todo_spec (next, false);
7537
7538 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7539 gcc_assert (new_ts == old_ts
7540 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7541 else if (current_sched_info->new_ready)
7542 new_ts = current_sched_info->new_ready (next, new_ts);
7543
7544 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7545 have its original pattern or changed (speculative) one. This is due
7546 to changing ebb in region scheduling.
7547 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7548 has speculative pattern.
7549
7550 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7551 control-speculative NEXT could have been discarded by sched-rgn.c
7552 (the same case as when discarded by can_schedule_ready_p ()). */
7553
7554 if ((new_ts & SPECULATIVE)
7555 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7556 need to change anything. */
7557 && new_ts != old_ts)
7558 {
7559 int res;
7560 rtx new_pat;
7561
7562 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7563
7564 res = haifa_speculate_insn (next, new_ts, &new_pat);
7565
7566 switch (res)
7567 {
7568 case -1:
7569 /* It would be nice to change DEP_STATUS of all dependences,
7570 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7571 so we won't reanalyze anything. */
7572 new_ts = HARD_DEP;
7573 break;
7574
7575 case 0:
7576 /* We follow the rule, that every speculative insn
7577 has non-null ORIG_PAT. */
7578 if (!ORIG_PAT (next))
7579 ORIG_PAT (next) = PATTERN (next);
7580 break;
7581
7582 case 1:
7583 if (!ORIG_PAT (next))
7584 /* If we gonna to overwrite the original pattern of insn,
7585 save it. */
7586 ORIG_PAT (next) = PATTERN (next);
7587
7588 res = haifa_change_pattern (next, new_pat);
7589 gcc_assert (res);
7590 break;
7591
7592 default:
7593 gcc_unreachable ();
7594 }
7595 }
7596
7597 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7598 either correct (new_ts & SPECULATIVE),
7599 or we simply don't care (new_ts & HARD_DEP). */
7600
7601 gcc_assert (!ORIG_PAT (next)
7602 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7603
7604 TODO_SPEC (next) = new_ts;
7605
7606 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7607 {
7608 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7609 control-speculative NEXT could have been discarded by sched-rgn.c
7610 (the same case as when discarded by can_schedule_ready_p ()). */
7611 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7612
7613 change_queue_index (next, QUEUE_NOWHERE);
7614
7615 return -1;
7616 }
7617 else if (!(new_ts & BEGIN_SPEC)
7618 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7619 && !IS_SPECULATION_CHECK_P (next))
7620 /* We should change pattern of every previously speculative
7621 instruction - and we determine if NEXT was speculative by using
7622 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7623 pat too, so skip them. */
7624 {
7625 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7626 gcc_assert (success);
7627 ORIG_PAT (next) = 0;
7628 }
7629
7630 if (sched_verbose >= 2)
7631 {
7632 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7633 (*current_sched_info->print_insn) (next, 0));
7634
7635 if (spec_info && spec_info->dump)
7636 {
7637 if (new_ts & BEGIN_DATA)
7638 fprintf (spec_info->dump, "; data-spec;");
7639 if (new_ts & BEGIN_CONTROL)
7640 fprintf (spec_info->dump, "; control-spec;");
7641 if (new_ts & BE_IN_CONTROL)
7642 fprintf (spec_info->dump, "; in-control-spec;");
7643 }
7644 if (TODO_SPEC (next) & DEP_CONTROL)
7645 fprintf (sched_dump, " predicated");
7646 fprintf (sched_dump, "\n");
7647 }
7648
7649 adjust_priority (next);
7650
7651 return fix_tick_ready (next);
7652 }
7653
7654 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7655 static int
7656 fix_tick_ready (rtx_insn *next)
7657 {
7658 int tick, delay;
7659
7660 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7661 {
7662 int full_p;
7663 sd_iterator_def sd_it;
7664 dep_t dep;
7665
7666 tick = INSN_TICK (next);
7667 /* if tick is not equal to INVALID_TICK, then update
7668 INSN_TICK of NEXT with the most recent resolved dependence
7669 cost. Otherwise, recalculate from scratch. */
7670 full_p = (tick == INVALID_TICK);
7671
7672 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7673 {
7674 rtx_insn *pro = DEP_PRO (dep);
7675 int tick1;
7676
7677 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7678
7679 tick1 = INSN_TICK (pro) + dep_cost (dep);
7680 if (tick1 > tick)
7681 tick = tick1;
7682
7683 if (!full_p)
7684 break;
7685 }
7686 }
7687 else
7688 tick = -1;
7689
7690 INSN_TICK (next) = tick;
7691
7692 delay = tick - clock_var;
7693 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7694 delay = QUEUE_READY;
7695
7696 change_queue_index (next, delay);
7697
7698 return delay;
7699 }
7700
7701 /* Move NEXT to the proper queue list with (DELAY >= 1),
7702 or add it to the ready list (DELAY == QUEUE_READY),
7703 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7704 static void
7705 change_queue_index (rtx_insn *next, int delay)
7706 {
7707 int i = QUEUE_INDEX (next);
7708
7709 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7710 && delay != 0);
7711 gcc_assert (i != QUEUE_SCHEDULED);
7712
7713 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7714 || (delay < 0 && delay == i))
7715 /* We have nothing to do. */
7716 return;
7717
7718 /* Remove NEXT from wherever it is now. */
7719 if (i == QUEUE_READY)
7720 ready_remove_insn (next);
7721 else if (i >= 0)
7722 queue_remove (next);
7723
7724 /* Add it to the proper place. */
7725 if (delay == QUEUE_READY)
7726 ready_add (readyp, next, false);
7727 else if (delay >= 1)
7728 queue_insn (next, delay, "change queue index");
7729
7730 if (sched_verbose >= 2)
7731 {
7732 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7733 (*current_sched_info->print_insn) (next, 0));
7734
7735 if (delay == QUEUE_READY)
7736 fprintf (sched_dump, " into ready\n");
7737 else if (delay >= 1)
7738 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7739 else
7740 fprintf (sched_dump, " removed from ready or queue lists\n");
7741 }
7742 }
7743
7744 static int sched_ready_n_insns = -1;
7745
7746 /* Initialize per region data structures. */
7747 void
7748 sched_extend_ready_list (int new_sched_ready_n_insns)
7749 {
7750 int i;
7751
7752 if (sched_ready_n_insns == -1)
7753 /* At the first call we need to initialize one more choice_stack
7754 entry. */
7755 {
7756 i = 0;
7757 sched_ready_n_insns = 0;
7758 scheduled_insns.reserve (new_sched_ready_n_insns);
7759 }
7760 else
7761 i = sched_ready_n_insns + 1;
7762
7763 ready.veclen = new_sched_ready_n_insns + issue_rate;
7764 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7765
7766 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7767
7768 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7769 sched_ready_n_insns,
7770 sizeof (*ready_try));
7771
7772 /* We allocate +1 element to save initial state in the choice_stack[0]
7773 entry. */
7774 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7775 new_sched_ready_n_insns + 1);
7776
7777 for (; i <= new_sched_ready_n_insns; i++)
7778 {
7779 choice_stack[i].state = xmalloc (dfa_state_size);
7780
7781 if (targetm.sched.first_cycle_multipass_init)
7782 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7783 .target_data));
7784 }
7785
7786 sched_ready_n_insns = new_sched_ready_n_insns;
7787 }
7788
7789 /* Free per region data structures. */
7790 void
7791 sched_finish_ready_list (void)
7792 {
7793 int i;
7794
7795 free (ready.vec);
7796 ready.vec = NULL;
7797 ready.veclen = 0;
7798
7799 free (ready_try);
7800 ready_try = NULL;
7801
7802 for (i = 0; i <= sched_ready_n_insns; i++)
7803 {
7804 if (targetm.sched.first_cycle_multipass_fini)
7805 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7806 .target_data));
7807
7808 free (choice_stack [i].state);
7809 }
7810 free (choice_stack);
7811 choice_stack = NULL;
7812
7813 sched_ready_n_insns = -1;
7814 }
7815
7816 static int
7817 haifa_luid_for_non_insn (rtx x)
7818 {
7819 gcc_assert (NOTE_P (x) || LABEL_P (x));
7820
7821 return 0;
7822 }
7823
7824 /* Generates recovery code for INSN. */
7825 static void
7826 generate_recovery_code (rtx_insn *insn)
7827 {
7828 if (TODO_SPEC (insn) & BEGIN_SPEC)
7829 begin_speculative_block (insn);
7830
7831 /* Here we have insn with no dependencies to
7832 instructions other then CHECK_SPEC ones. */
7833
7834 if (TODO_SPEC (insn) & BE_IN_SPEC)
7835 add_to_speculative_block (insn);
7836 }
7837
7838 /* Helper function.
7839 Tries to add speculative dependencies of type FS between instructions
7840 in deps_list L and TWIN. */
7841 static void
7842 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7843 {
7844 sd_iterator_def sd_it;
7845 dep_t dep;
7846
7847 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7848 {
7849 ds_t ds;
7850 rtx_insn *consumer;
7851
7852 consumer = DEP_CON (dep);
7853
7854 ds = DEP_STATUS (dep);
7855
7856 if (/* If we want to create speculative dep. */
7857 fs
7858 /* And we can do that because this is a true dep. */
7859 && (ds & DEP_TYPES) == DEP_TRUE)
7860 {
7861 gcc_assert (!(ds & BE_IN_SPEC));
7862
7863 if (/* If this dep can be overcome with 'begin speculation'. */
7864 ds & BEGIN_SPEC)
7865 /* Then we have a choice: keep the dep 'begin speculative'
7866 or transform it into 'be in speculative'. */
7867 {
7868 if (/* In try_ready we assert that if insn once became ready
7869 it can be removed from the ready (or queue) list only
7870 due to backend decision. Hence we can't let the
7871 probability of the speculative dep to decrease. */
7872 ds_weak (ds) <= ds_weak (fs))
7873 {
7874 ds_t new_ds;
7875
7876 new_ds = (ds & ~BEGIN_SPEC) | fs;
7877
7878 if (/* consumer can 'be in speculative'. */
7879 sched_insn_is_legitimate_for_speculation_p (consumer,
7880 new_ds))
7881 /* Transform it to be in speculative. */
7882 ds = new_ds;
7883 }
7884 }
7885 else
7886 /* Mark the dep as 'be in speculative'. */
7887 ds |= fs;
7888 }
7889
7890 {
7891 dep_def _new_dep, *new_dep = &_new_dep;
7892
7893 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7894 sd_add_dep (new_dep, false);
7895 }
7896 }
7897 }
7898
7899 /* Generates recovery code for BEGIN speculative INSN. */
7900 static void
7901 begin_speculative_block (rtx_insn *insn)
7902 {
7903 if (TODO_SPEC (insn) & BEGIN_DATA)
7904 nr_begin_data++;
7905 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7906 nr_begin_control++;
7907
7908 create_check_block_twin (insn, false);
7909
7910 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7911 }
7912
7913 static void haifa_init_insn (rtx_insn *);
7914
7915 /* Generates recovery code for BE_IN speculative INSN. */
7916 static void
7917 add_to_speculative_block (rtx_insn *insn)
7918 {
7919 ds_t ts;
7920 sd_iterator_def sd_it;
7921 dep_t dep;
7922 auto_vec<rtx_insn *, 10> twins;
7923
7924 ts = TODO_SPEC (insn);
7925 gcc_assert (!(ts & ~BE_IN_SPEC));
7926
7927 if (ts & BE_IN_DATA)
7928 nr_be_in_data++;
7929 if (ts & BE_IN_CONTROL)
7930 nr_be_in_control++;
7931
7932 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7933 gcc_assert (!TODO_SPEC (insn));
7934
7935 DONE_SPEC (insn) |= ts;
7936
7937 /* First we convert all simple checks to branchy. */
7938 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7939 sd_iterator_cond (&sd_it, &dep);)
7940 {
7941 rtx_insn *check = DEP_PRO (dep);
7942
7943 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7944 {
7945 create_check_block_twin (check, true);
7946
7947 /* Restart search. */
7948 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7949 }
7950 else
7951 /* Continue search. */
7952 sd_iterator_next (&sd_it);
7953 }
7954
7955 auto_vec<rtx_insn *> priorities_roots;
7956 clear_priorities (insn, &priorities_roots);
7957
7958 while (1)
7959 {
7960 rtx_insn *check, *twin;
7961 basic_block rec;
7962
7963 /* Get the first backward dependency of INSN. */
7964 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7965 if (!sd_iterator_cond (&sd_it, &dep))
7966 /* INSN has no backward dependencies left. */
7967 break;
7968
7969 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7970 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7971 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7972
7973 check = DEP_PRO (dep);
7974
7975 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7976 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7977
7978 rec = BLOCK_FOR_INSN (check);
7979
7980 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7981 haifa_init_insn (twin);
7982
7983 sd_copy_back_deps (twin, insn, true);
7984
7985 if (sched_verbose && spec_info->dump)
7986 /* INSN_BB (insn) isn't determined for twin insns yet.
7987 So we can't use current_sched_info->print_insn. */
7988 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7989 INSN_UID (twin), rec->index);
7990
7991 twins.safe_push (twin);
7992
7993 /* Add dependences between TWIN and all appropriate
7994 instructions from REC. */
7995 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7996 {
7997 rtx_insn *pro = DEP_PRO (dep);
7998
7999 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8000
8001 /* INSN might have dependencies from the instructions from
8002 several recovery blocks. At this iteration we process those
8003 producers that reside in REC. */
8004 if (BLOCK_FOR_INSN (pro) == rec)
8005 {
8006 dep_def _new_dep, *new_dep = &_new_dep;
8007
8008 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8009 sd_add_dep (new_dep, false);
8010 }
8011 }
8012
8013 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8014
8015 /* Remove all dependencies between INSN and insns in REC. */
8016 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8017 sd_iterator_cond (&sd_it, &dep);)
8018 {
8019 rtx_insn *pro = DEP_PRO (dep);
8020
8021 if (BLOCK_FOR_INSN (pro) == rec)
8022 sd_delete_dep (sd_it);
8023 else
8024 sd_iterator_next (&sd_it);
8025 }
8026 }
8027
8028 /* We couldn't have added the dependencies between INSN and TWINS earlier
8029 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8030 unsigned int i;
8031 rtx_insn *twin;
8032 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8033 {
8034 dep_def _new_dep, *new_dep = &_new_dep;
8035
8036 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8037 sd_add_dep (new_dep, false);
8038 }
8039
8040 calc_priorities (priorities_roots);
8041 }
8042
8043 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8044 void *
8045 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8046 {
8047 gcc_assert (new_nmemb >= old_nmemb);
8048 p = XRESIZEVAR (void, p, new_nmemb * size);
8049 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8050 return p;
8051 }
8052
8053 /* Helper function.
8054 Find fallthru edge from PRED. */
8055 edge
8056 find_fallthru_edge_from (basic_block pred)
8057 {
8058 edge e;
8059 basic_block succ;
8060
8061 succ = pred->next_bb;
8062 gcc_assert (succ->prev_bb == pred);
8063
8064 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8065 {
8066 e = find_fallthru_edge (pred->succs);
8067
8068 if (e)
8069 {
8070 gcc_assert (e->dest == succ);
8071 return e;
8072 }
8073 }
8074 else
8075 {
8076 e = find_fallthru_edge (succ->preds);
8077
8078 if (e)
8079 {
8080 gcc_assert (e->src == pred);
8081 return e;
8082 }
8083 }
8084
8085 return NULL;
8086 }
8087
8088 /* Extend per basic block data structures. */
8089 static void
8090 sched_extend_bb (void)
8091 {
8092 /* The following is done to keep current_sched_info->next_tail non null. */
8093 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8094 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8095 if (NEXT_INSN (end) == 0
8096 || (!NOTE_P (insn)
8097 && !LABEL_P (insn)
8098 /* Don't emit a NOTE if it would end up before a BARRIER. */
8099 && !BARRIER_P (next_nondebug_insn (end))))
8100 {
8101 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8102 /* Make note appear outside BB. */
8103 set_block_for_insn (note, NULL);
8104 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8105 }
8106 }
8107
8108 /* Init per basic block data structures. */
8109 void
8110 sched_init_bbs (void)
8111 {
8112 sched_extend_bb ();
8113 }
8114
8115 /* Initialize BEFORE_RECOVERY variable. */
8116 static void
8117 init_before_recovery (basic_block *before_recovery_ptr)
8118 {
8119 basic_block last;
8120 edge e;
8121
8122 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8123 e = find_fallthru_edge_from (last);
8124
8125 if (e)
8126 {
8127 /* We create two basic blocks:
8128 1. Single instruction block is inserted right after E->SRC
8129 and has jump to
8130 2. Empty block right before EXIT_BLOCK.
8131 Between these two blocks recovery blocks will be emitted. */
8132
8133 basic_block single, empty;
8134
8135 /* If the fallthrough edge to exit we've found is from the block we've
8136 created before, don't do anything more. */
8137 if (last == after_recovery)
8138 return;
8139
8140 adding_bb_to_current_region_p = false;
8141
8142 single = sched_create_empty_bb (last);
8143 empty = sched_create_empty_bb (single);
8144
8145 /* Add new blocks to the root loop. */
8146 if (current_loops != NULL)
8147 {
8148 add_bb_to_loop (single, (*current_loops->larray)[0]);
8149 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8150 }
8151
8152 single->count = last->count;
8153 empty->count = last->count;
8154 BB_COPY_PARTITION (single, last);
8155 BB_COPY_PARTITION (empty, last);
8156
8157 redirect_edge_succ (e, single);
8158 make_single_succ_edge (single, empty, 0);
8159 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8160 EDGE_FALLTHRU);
8161
8162 rtx_code_label *label = block_label (empty);
8163 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8164 BB_END (single));
8165 JUMP_LABEL (x) = label;
8166 LABEL_NUSES (label)++;
8167 haifa_init_insn (x);
8168
8169 emit_barrier_after (x);
8170
8171 sched_init_only_bb (empty, NULL);
8172 sched_init_only_bb (single, NULL);
8173 sched_extend_bb ();
8174
8175 adding_bb_to_current_region_p = true;
8176 before_recovery = single;
8177 after_recovery = empty;
8178
8179 if (before_recovery_ptr)
8180 *before_recovery_ptr = before_recovery;
8181
8182 if (sched_verbose >= 2 && spec_info->dump)
8183 fprintf (spec_info->dump,
8184 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8185 last->index, single->index, empty->index);
8186 }
8187 else
8188 before_recovery = last;
8189 }
8190
8191 /* Returns new recovery block. */
8192 basic_block
8193 sched_create_recovery_block (basic_block *before_recovery_ptr)
8194 {
8195 rtx_insn *barrier;
8196 basic_block rec;
8197
8198 haifa_recovery_bb_recently_added_p = true;
8199 haifa_recovery_bb_ever_added_p = true;
8200
8201 init_before_recovery (before_recovery_ptr);
8202
8203 barrier = get_last_bb_insn (before_recovery);
8204 gcc_assert (BARRIER_P (barrier));
8205
8206 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8207
8208 rec = create_basic_block (label, label, before_recovery);
8209
8210 /* A recovery block always ends with an unconditional jump. */
8211 emit_barrier_after (BB_END (rec));
8212
8213 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8214 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8215
8216 if (sched_verbose && spec_info->dump)
8217 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8218 rec->index);
8219
8220 return rec;
8221 }
8222
8223 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8224 and emit necessary jumps. */
8225 void
8226 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8227 basic_block second_bb)
8228 {
8229 int edge_flags;
8230
8231 /* This is fixing of incoming edge. */
8232 /* ??? Which other flags should be specified? */
8233 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8234 /* Partition type is the same, if it is "unpartitioned". */
8235 edge_flags = EDGE_CROSSING;
8236 else
8237 edge_flags = 0;
8238
8239 edge e2 = single_succ_edge (first_bb);
8240 edge e = make_edge (first_bb, rec, edge_flags);
8241
8242 /* TODO: The actual probability can be determined and is computed as
8243 'todo_spec' variable in create_check_block_twin and
8244 in sel-sched.c `check_ds' in create_speculation_check. */
8245 e->probability = profile_probability::very_unlikely ();
8246 rec->count = e->count ();
8247 e2->probability = e->probability.invert ();
8248
8249 rtx_code_label *label = block_label (second_bb);
8250 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8251 BB_END (rec));
8252 JUMP_LABEL (jump) = label;
8253 LABEL_NUSES (label)++;
8254
8255 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8256 /* Partition type is the same, if it is "unpartitioned". */
8257 {
8258 /* Rewritten from cfgrtl.c. */
8259 if (crtl->has_bb_partition && targetm_common.have_named_sections)
8260 {
8261 /* We don't need the same note for the check because
8262 any_condjump_p (check) == true. */
8263 CROSSING_JUMP_P (jump) = 1;
8264 }
8265 edge_flags = EDGE_CROSSING;
8266 }
8267 else
8268 edge_flags = 0;
8269
8270 make_single_succ_edge (rec, second_bb, edge_flags);
8271 if (dom_info_available_p (CDI_DOMINATORS))
8272 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8273 }
8274
8275 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8276 INSN is a simple check, that should be converted to branchy one. */
8277 static void
8278 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8279 {
8280 basic_block rec;
8281 rtx_insn *label, *check, *twin;
8282 rtx check_pat;
8283 ds_t fs;
8284 sd_iterator_def sd_it;
8285 dep_t dep;
8286 dep_def _new_dep, *new_dep = &_new_dep;
8287 ds_t todo_spec;
8288
8289 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8290
8291 if (!mutate_p)
8292 todo_spec = TODO_SPEC (insn);
8293 else
8294 {
8295 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8296 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8297
8298 todo_spec = CHECK_SPEC (insn);
8299 }
8300
8301 todo_spec &= SPECULATIVE;
8302
8303 /* Create recovery block. */
8304 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8305 {
8306 rec = sched_create_recovery_block (NULL);
8307 label = BB_HEAD (rec);
8308 }
8309 else
8310 {
8311 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8312 label = NULL;
8313 }
8314
8315 /* Emit CHECK. */
8316 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8317
8318 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8319 {
8320 /* To have mem_reg alive at the beginning of second_bb,
8321 we emit check BEFORE insn, so insn after splitting
8322 insn will be at the beginning of second_bb, which will
8323 provide us with the correct life information. */
8324 check = emit_jump_insn_before (check_pat, insn);
8325 JUMP_LABEL (check) = label;
8326 LABEL_NUSES (label)++;
8327 }
8328 else
8329 check = emit_insn_before (check_pat, insn);
8330
8331 /* Extend data structures. */
8332 haifa_init_insn (check);
8333
8334 /* CHECK is being added to current region. Extend ready list. */
8335 gcc_assert (sched_ready_n_insns != -1);
8336 sched_extend_ready_list (sched_ready_n_insns + 1);
8337
8338 if (current_sched_info->add_remove_insn)
8339 current_sched_info->add_remove_insn (insn, 0);
8340
8341 RECOVERY_BLOCK (check) = rec;
8342
8343 if (sched_verbose && spec_info->dump)
8344 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8345 (*current_sched_info->print_insn) (check, 0));
8346
8347 gcc_assert (ORIG_PAT (insn));
8348
8349 /* Initialize TWIN (twin is a duplicate of original instruction
8350 in the recovery block). */
8351 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8352 {
8353 sd_iterator_def sd_it;
8354 dep_t dep;
8355
8356 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8357 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8358 {
8359 struct _dep _dep2, *dep2 = &_dep2;
8360
8361 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8362
8363 sd_add_dep (dep2, true);
8364 }
8365
8366 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8367 haifa_init_insn (twin);
8368
8369 if (sched_verbose && spec_info->dump)
8370 /* INSN_BB (insn) isn't determined for twin insns yet.
8371 So we can't use current_sched_info->print_insn. */
8372 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8373 INSN_UID (twin), rec->index);
8374 }
8375 else
8376 {
8377 ORIG_PAT (check) = ORIG_PAT (insn);
8378 HAS_INTERNAL_DEP (check) = 1;
8379 twin = check;
8380 /* ??? We probably should change all OUTPUT dependencies to
8381 (TRUE | OUTPUT). */
8382 }
8383
8384 /* Copy all resolved back dependencies of INSN to TWIN. This will
8385 provide correct value for INSN_TICK (TWIN). */
8386 sd_copy_back_deps (twin, insn, true);
8387
8388 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8389 /* In case of branchy check, fix CFG. */
8390 {
8391 basic_block first_bb, second_bb;
8392 rtx_insn *jump;
8393
8394 first_bb = BLOCK_FOR_INSN (check);
8395 second_bb = sched_split_block (first_bb, check);
8396
8397 sched_create_recovery_edges (first_bb, rec, second_bb);
8398
8399 sched_init_only_bb (second_bb, first_bb);
8400 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8401
8402 jump = BB_END (rec);
8403 haifa_init_insn (jump);
8404 }
8405
8406 /* Move backward dependences from INSN to CHECK and
8407 move forward dependences from INSN to TWIN. */
8408
8409 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8410 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8411 {
8412 rtx_insn *pro = DEP_PRO (dep);
8413 ds_t ds;
8414
8415 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8416 check --TRUE--> producer ??? or ANTI ???
8417 twin --TRUE--> producer
8418 twin --ANTI--> check
8419
8420 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8421 check --ANTI--> producer
8422 twin --ANTI--> producer
8423 twin --ANTI--> check
8424
8425 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8426 check ~~TRUE~~> producer
8427 twin ~~TRUE~~> producer
8428 twin --ANTI--> check */
8429
8430 ds = DEP_STATUS (dep);
8431
8432 if (ds & BEGIN_SPEC)
8433 {
8434 gcc_assert (!mutate_p);
8435 ds &= ~BEGIN_SPEC;
8436 }
8437
8438 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8439 sd_add_dep (new_dep, false);
8440
8441 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8442 {
8443 DEP_CON (new_dep) = twin;
8444 sd_add_dep (new_dep, false);
8445 }
8446 }
8447
8448 /* Second, remove backward dependencies of INSN. */
8449 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8450 sd_iterator_cond (&sd_it, &dep);)
8451 {
8452 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8453 || mutate_p)
8454 /* We can delete this dep because we overcome it with
8455 BEGIN_SPECULATION. */
8456 sd_delete_dep (sd_it);
8457 else
8458 sd_iterator_next (&sd_it);
8459 }
8460
8461 /* Future Speculations. Determine what BE_IN speculations will be like. */
8462 fs = 0;
8463
8464 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8465 here. */
8466
8467 gcc_assert (!DONE_SPEC (insn));
8468
8469 if (!mutate_p)
8470 {
8471 ds_t ts = TODO_SPEC (insn);
8472
8473 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8474 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8475
8476 /* Luckiness of future speculations solely depends upon initial
8477 BEGIN speculation. */
8478 if (ts & BEGIN_DATA)
8479 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8480 if (ts & BEGIN_CONTROL)
8481 fs = set_dep_weak (fs, BE_IN_CONTROL,
8482 get_dep_weak (ts, BEGIN_CONTROL));
8483 }
8484 else
8485 CHECK_SPEC (check) = CHECK_SPEC (insn);
8486
8487 /* Future speculations: call the helper. */
8488 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8489
8490 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8491 {
8492 /* Which types of dependencies should we use here is,
8493 generally, machine-dependent question... But, for now,
8494 it is not. */
8495
8496 if (!mutate_p)
8497 {
8498 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8499 sd_add_dep (new_dep, false);
8500
8501 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8502 sd_add_dep (new_dep, false);
8503 }
8504 else
8505 {
8506 if (spec_info->dump)
8507 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8508 (*current_sched_info->print_insn) (insn, 0));
8509
8510 /* Remove all dependencies of the INSN. */
8511 {
8512 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8513 | SD_LIST_BACK
8514 | SD_LIST_RES_BACK));
8515 while (sd_iterator_cond (&sd_it, &dep))
8516 sd_delete_dep (sd_it);
8517 }
8518
8519 /* If former check (INSN) already was moved to the ready (or queue)
8520 list, add new check (CHECK) there too. */
8521 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8522 try_ready (check);
8523
8524 /* Remove old check from instruction stream and free its
8525 data. */
8526 sched_remove_insn (insn);
8527 }
8528
8529 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8530 sd_add_dep (new_dep, false);
8531 }
8532 else
8533 {
8534 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8535 sd_add_dep (new_dep, false);
8536 }
8537
8538 if (!mutate_p)
8539 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8540 because it'll be done later in add_to_speculative_block. */
8541 {
8542 auto_vec<rtx_insn *> priorities_roots;
8543
8544 clear_priorities (twin, &priorities_roots);
8545 calc_priorities (priorities_roots);
8546 }
8547 }
8548
8549 /* Removes dependency between instructions in the recovery block REC
8550 and usual region instructions. It keeps inner dependences so it
8551 won't be necessary to recompute them. */
8552 static void
8553 fix_recovery_deps (basic_block rec)
8554 {
8555 rtx_insn *note, *insn, *jump;
8556 auto_vec<rtx_insn *, 10> ready_list;
8557 auto_bitmap in_ready;
8558
8559 /* NOTE - a basic block note. */
8560 note = NEXT_INSN (BB_HEAD (rec));
8561 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8562 insn = BB_END (rec);
8563 gcc_assert (JUMP_P (insn));
8564 insn = PREV_INSN (insn);
8565
8566 do
8567 {
8568 sd_iterator_def sd_it;
8569 dep_t dep;
8570
8571 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8572 sd_iterator_cond (&sd_it, &dep);)
8573 {
8574 rtx_insn *consumer = DEP_CON (dep);
8575
8576 if (BLOCK_FOR_INSN (consumer) != rec)
8577 {
8578 sd_delete_dep (sd_it);
8579
8580 if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
8581 ready_list.safe_push (consumer);
8582 }
8583 else
8584 {
8585 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8586
8587 sd_iterator_next (&sd_it);
8588 }
8589 }
8590
8591 insn = PREV_INSN (insn);
8592 }
8593 while (insn != note);
8594
8595 /* Try to add instructions to the ready or queue list. */
8596 unsigned int i;
8597 rtx_insn *temp;
8598 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8599 try_ready (temp);
8600
8601 /* Fixing jump's dependences. */
8602 insn = BB_HEAD (rec);
8603 jump = BB_END (rec);
8604
8605 gcc_assert (LABEL_P (insn));
8606 insn = NEXT_INSN (insn);
8607
8608 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8609 add_jump_dependencies (insn, jump);
8610 }
8611
8612 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8613 instruction data. */
8614 static bool
8615 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8616 {
8617 int t;
8618
8619 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8620 if (!t)
8621 return false;
8622
8623 update_insn_after_change (insn);
8624 return true;
8625 }
8626
8627 /* -1 - can't speculate,
8628 0 - for speculation with REQUEST mode it is OK to use
8629 current instruction pattern,
8630 1 - need to change pattern for *NEW_PAT to be speculative. */
8631 int
8632 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8633 {
8634 gcc_assert (current_sched_info->flags & DO_SPECULATION
8635 && (request & SPECULATIVE)
8636 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8637
8638 if ((request & spec_info->mask) != request)
8639 return -1;
8640
8641 if (request & BE_IN_SPEC
8642 && !(request & BEGIN_SPEC))
8643 return 0;
8644
8645 return targetm.sched.speculate_insn (insn, request, new_pat);
8646 }
8647
8648 static int
8649 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8650 {
8651 gcc_assert (sched_deps_info->generate_spec_deps
8652 && !IS_SPECULATION_CHECK_P (insn));
8653
8654 if (HAS_INTERNAL_DEP (insn)
8655 || SCHED_GROUP_P (insn))
8656 return -1;
8657
8658 return sched_speculate_insn (insn, request, new_pat);
8659 }
8660
8661 /* Print some information about block BB, which starts with HEAD and
8662 ends with TAIL, before scheduling it.
8663 I is zero, if scheduler is about to start with the fresh ebb. */
8664 static void
8665 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8666 {
8667 if (!i)
8668 fprintf (sched_dump,
8669 ";; ======================================================\n");
8670 else
8671 fprintf (sched_dump,
8672 ";; =====================ADVANCING TO=====================\n");
8673 fprintf (sched_dump,
8674 ";; -- basic block %d from %d to %d -- %s reload\n",
8675 bb->index, INSN_UID (head), INSN_UID (tail),
8676 (reload_completed ? "after" : "before"));
8677 fprintf (sched_dump,
8678 ";; ======================================================\n");
8679 fprintf (sched_dump, "\n");
8680 }
8681
8682 /* Unlink basic block notes and labels and saves them, so they
8683 can be easily restored. We unlink basic block notes in EBB to
8684 provide back-compatibility with the previous code, as target backends
8685 assume, that there'll be only instructions between
8686 current_sched_info->{head and tail}. We restore these notes as soon
8687 as we can.
8688 FIRST (LAST) is the first (last) basic block in the ebb.
8689 NB: In usual case (FIRST == LAST) nothing is really done. */
8690 void
8691 unlink_bb_notes (basic_block first, basic_block last)
8692 {
8693 /* We DON'T unlink basic block notes of the first block in the ebb. */
8694 if (first == last)
8695 return;
8696
8697 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8698
8699 /* Make a sentinel. */
8700 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8701 bb_header[last->next_bb->index] = 0;
8702
8703 first = first->next_bb;
8704 do
8705 {
8706 rtx_insn *prev, *label, *note, *next;
8707
8708 label = BB_HEAD (last);
8709 if (LABEL_P (label))
8710 note = NEXT_INSN (label);
8711 else
8712 note = label;
8713 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8714
8715 prev = PREV_INSN (label);
8716 next = NEXT_INSN (note);
8717 gcc_assert (prev && next);
8718
8719 SET_NEXT_INSN (prev) = next;
8720 SET_PREV_INSN (next) = prev;
8721
8722 bb_header[last->index] = label;
8723
8724 if (last == first)
8725 break;
8726
8727 last = last->prev_bb;
8728 }
8729 while (1);
8730 }
8731
8732 /* Restore basic block notes.
8733 FIRST is the first basic block in the ebb. */
8734 static void
8735 restore_bb_notes (basic_block first)
8736 {
8737 if (!bb_header)
8738 return;
8739
8740 /* We DON'T unlink basic block notes of the first block in the ebb. */
8741 first = first->next_bb;
8742 /* Remember: FIRST is actually a second basic block in the ebb. */
8743
8744 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8745 && bb_header[first->index])
8746 {
8747 rtx_insn *prev, *label, *note, *next;
8748
8749 label = bb_header[first->index];
8750 prev = PREV_INSN (label);
8751 next = NEXT_INSN (prev);
8752
8753 if (LABEL_P (label))
8754 note = NEXT_INSN (label);
8755 else
8756 note = label;
8757 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8758
8759 bb_header[first->index] = 0;
8760
8761 SET_NEXT_INSN (prev) = label;
8762 SET_NEXT_INSN (note) = next;
8763 SET_PREV_INSN (next) = note;
8764
8765 first = first->next_bb;
8766 }
8767
8768 free (bb_header);
8769 bb_header = 0;
8770 }
8771
8772 /* Helper function.
8773 Fix CFG after both in- and inter-block movement of
8774 control_flow_insn_p JUMP. */
8775 static void
8776 fix_jump_move (rtx_insn *jump)
8777 {
8778 basic_block bb, jump_bb, jump_bb_next;
8779
8780 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8781 jump_bb = BLOCK_FOR_INSN (jump);
8782 jump_bb_next = jump_bb->next_bb;
8783
8784 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8785 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8786
8787 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8788 /* if jump_bb_next is not empty. */
8789 BB_END (jump_bb) = BB_END (jump_bb_next);
8790
8791 if (BB_END (bb) != PREV_INSN (jump))
8792 /* Then there are instruction after jump that should be placed
8793 to jump_bb_next. */
8794 BB_END (jump_bb_next) = BB_END (bb);
8795 else
8796 /* Otherwise jump_bb_next is empty. */
8797 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8798
8799 /* To make assertion in move_insn happy. */
8800 BB_END (bb) = PREV_INSN (jump);
8801
8802 update_bb_for_insn (jump_bb_next);
8803 }
8804
8805 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8806 static void
8807 move_block_after_check (rtx_insn *jump)
8808 {
8809 basic_block bb, jump_bb, jump_bb_next;
8810 vec<edge, va_gc> *t;
8811
8812 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8813 jump_bb = BLOCK_FOR_INSN (jump);
8814 jump_bb_next = jump_bb->next_bb;
8815
8816 update_bb_for_insn (jump_bb);
8817
8818 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8819 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8820
8821 unlink_block (jump_bb_next);
8822 link_block (jump_bb_next, bb);
8823
8824 t = bb->succs;
8825 bb->succs = 0;
8826 move_succs (&(jump_bb->succs), bb);
8827 move_succs (&(jump_bb_next->succs), jump_bb);
8828 move_succs (&t, jump_bb_next);
8829
8830 df_mark_solutions_dirty ();
8831
8832 common_sched_info->fix_recovery_cfg
8833 (bb->index, jump_bb->index, jump_bb_next->index);
8834 }
8835
8836 /* Helper function for move_block_after_check.
8837 This functions attaches edge vector pointed to by SUCCSP to
8838 block TO. */
8839 static void
8840 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8841 {
8842 edge e;
8843 edge_iterator ei;
8844
8845 gcc_assert (to->succs == 0);
8846
8847 to->succs = *succsp;
8848
8849 FOR_EACH_EDGE (e, ei, to->succs)
8850 e->src = to;
8851
8852 *succsp = 0;
8853 }
8854
8855 /* Remove INSN from the instruction stream.
8856 INSN should have any dependencies. */
8857 static void
8858 sched_remove_insn (rtx_insn *insn)
8859 {
8860 sd_finish_insn (insn);
8861
8862 change_queue_index (insn, QUEUE_NOWHERE);
8863 current_sched_info->add_remove_insn (insn, 1);
8864 delete_insn (insn);
8865 }
8866
8867 /* Clear priorities of all instructions, that are forward dependent on INSN.
8868 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8869 be invoked to initialize all cleared priorities. */
8870 static void
8871 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8872 {
8873 sd_iterator_def sd_it;
8874 dep_t dep;
8875 bool insn_is_root_p = true;
8876
8877 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8878
8879 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8880 {
8881 rtx_insn *pro = DEP_PRO (dep);
8882
8883 if (INSN_PRIORITY_STATUS (pro) >= 0
8884 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8885 {
8886 /* If DEP doesn't contribute to priority then INSN itself should
8887 be added to priority roots. */
8888 if (contributes_to_priority_p (dep))
8889 insn_is_root_p = false;
8890
8891 INSN_PRIORITY_STATUS (pro) = -1;
8892 clear_priorities (pro, roots_ptr);
8893 }
8894 }
8895
8896 if (insn_is_root_p)
8897 roots_ptr->safe_push (insn);
8898 }
8899
8900 /* Recompute priorities of instructions, whose priorities might have been
8901 changed. ROOTS is a vector of instructions whose priority computation will
8902 trigger initialization of all cleared priorities. */
8903 static void
8904 calc_priorities (rtx_vec_t roots)
8905 {
8906 int i;
8907 rtx_insn *insn;
8908
8909 FOR_EACH_VEC_ELT (roots, i, insn)
8910 priority (insn);
8911 }
8912
8913
8914 /* Add dependences between JUMP and other instructions in the recovery
8915 block. INSN is the first insn the recovery block. */
8916 static void
8917 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8918 {
8919 do
8920 {
8921 insn = NEXT_INSN (insn);
8922 if (insn == jump)
8923 break;
8924
8925 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8926 {
8927 dep_def _new_dep, *new_dep = &_new_dep;
8928
8929 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8930 sd_add_dep (new_dep, false);
8931 }
8932 }
8933 while (1);
8934
8935 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8936 }
8937
8938 /* Extend data structures for logical insn UID. */
8939 void
8940 sched_extend_luids (void)
8941 {
8942 int new_luids_max_uid = get_max_uid () + 1;
8943
8944 sched_luids.safe_grow_cleared (new_luids_max_uid);
8945 }
8946
8947 /* Initialize LUID for INSN. */
8948 void
8949 sched_init_insn_luid (rtx_insn *insn)
8950 {
8951 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8952 int luid;
8953
8954 if (i >= 0)
8955 {
8956 luid = sched_max_luid;
8957 sched_max_luid += i;
8958 }
8959 else
8960 luid = -1;
8961
8962 SET_INSN_LUID (insn, luid);
8963 }
8964
8965 /* Initialize luids for BBS.
8966 The hook common_sched_info->luid_for_non_insn () is used to determine
8967 if notes, labels, etc. need luids. */
8968 void
8969 sched_init_luids (bb_vec_t bbs)
8970 {
8971 int i;
8972 basic_block bb;
8973
8974 sched_extend_luids ();
8975 FOR_EACH_VEC_ELT (bbs, i, bb)
8976 {
8977 rtx_insn *insn;
8978
8979 FOR_BB_INSNS (bb, insn)
8980 sched_init_insn_luid (insn);
8981 }
8982 }
8983
8984 /* Free LUIDs. */
8985 void
8986 sched_finish_luids (void)
8987 {
8988 sched_luids.release ();
8989 sched_max_luid = 1;
8990 }
8991
8992 /* Return logical uid of INSN. Helpful while debugging. */
8993 int
8994 insn_luid (rtx_insn *insn)
8995 {
8996 return INSN_LUID (insn);
8997 }
8998
8999 /* Extend per insn data in the target. */
9000 void
9001 sched_extend_target (void)
9002 {
9003 if (targetm.sched.h_i_d_extended)
9004 targetm.sched.h_i_d_extended ();
9005 }
9006
9007 /* Extend global scheduler structures (those, that live across calls to
9008 schedule_block) to include information about just emitted INSN. */
9009 static void
9010 extend_h_i_d (void)
9011 {
9012 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9013 if (reserve > 0
9014 && ! h_i_d.space (reserve))
9015 {
9016 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9017 sched_extend_target ();
9018 }
9019 }
9020
9021 /* Initialize h_i_d entry of the INSN with default values.
9022 Values, that are not explicitly initialized here, hold zero. */
9023 static void
9024 init_h_i_d (rtx_insn *insn)
9025 {
9026 if (INSN_LUID (insn) > 0)
9027 {
9028 INSN_COST (insn) = -1;
9029 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9030 INSN_TICK (insn) = INVALID_TICK;
9031 INSN_EXACT_TICK (insn) = INVALID_TICK;
9032 INTER_TICK (insn) = INVALID_TICK;
9033 TODO_SPEC (insn) = HARD_DEP;
9034 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9035 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9036 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9037 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9038 }
9039 }
9040
9041 /* Initialize haifa_insn_data for BBS. */
9042 void
9043 haifa_init_h_i_d (bb_vec_t bbs)
9044 {
9045 int i;
9046 basic_block bb;
9047
9048 extend_h_i_d ();
9049 FOR_EACH_VEC_ELT (bbs, i, bb)
9050 {
9051 rtx_insn *insn;
9052
9053 FOR_BB_INSNS (bb, insn)
9054 init_h_i_d (insn);
9055 }
9056 }
9057
9058 /* Finalize haifa_insn_data. */
9059 void
9060 haifa_finish_h_i_d (void)
9061 {
9062 int i;
9063 haifa_insn_data_t data;
9064 reg_use_data *use, *next_use;
9065 reg_set_data *set, *next_set;
9066
9067 FOR_EACH_VEC_ELT (h_i_d, i, data)
9068 {
9069 free (data->max_reg_pressure);
9070 free (data->reg_pressure);
9071 for (use = data->reg_use_list; use != NULL; use = next_use)
9072 {
9073 next_use = use->next_insn_use;
9074 free (use);
9075 }
9076 for (set = data->reg_set_list; set != NULL; set = next_set)
9077 {
9078 next_set = set->next_insn_set;
9079 free (set);
9080 }
9081
9082 }
9083 h_i_d.release ();
9084 }
9085
9086 /* Init data for the new insn INSN. */
9087 static void
9088 haifa_init_insn (rtx_insn *insn)
9089 {
9090 gcc_assert (insn != NULL);
9091
9092 sched_extend_luids ();
9093 sched_init_insn_luid (insn);
9094 sched_extend_target ();
9095 sched_deps_init (false);
9096 extend_h_i_d ();
9097 init_h_i_d (insn);
9098
9099 if (adding_bb_to_current_region_p)
9100 {
9101 sd_init_insn (insn);
9102
9103 /* Extend dependency caches by one element. */
9104 extend_dependency_caches (1, false);
9105 }
9106 if (sched_pressure != SCHED_PRESSURE_NONE)
9107 init_insn_reg_pressure_info (insn);
9108 }
9109
9110 /* Init data for the new basic block BB which comes after AFTER. */
9111 static void
9112 haifa_init_only_bb (basic_block bb, basic_block after)
9113 {
9114 gcc_assert (bb != NULL);
9115
9116 sched_init_bbs ();
9117
9118 if (common_sched_info->add_block)
9119 /* This changes only data structures of the front-end. */
9120 common_sched_info->add_block (bb, after);
9121 }
9122
9123 /* A generic version of sched_split_block (). */
9124 basic_block
9125 sched_split_block_1 (basic_block first_bb, rtx after)
9126 {
9127 edge e;
9128
9129 e = split_block (first_bb, after);
9130 gcc_assert (e->src == first_bb);
9131
9132 /* sched_split_block emits note if *check == BB_END. Probably it
9133 is better to rip that note off. */
9134
9135 return e->dest;
9136 }
9137
9138 /* A generic version of sched_create_empty_bb (). */
9139 basic_block
9140 sched_create_empty_bb_1 (basic_block after)
9141 {
9142 return create_empty_bb (after);
9143 }
9144
9145 /* Insert PAT as an INSN into the schedule and update the necessary data
9146 structures to account for it. */
9147 rtx_insn *
9148 sched_emit_insn (rtx pat)
9149 {
9150 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9151 haifa_init_insn (insn);
9152
9153 if (current_sched_info->add_remove_insn)
9154 current_sched_info->add_remove_insn (insn, 0);
9155
9156 (*current_sched_info->begin_schedule_ready) (insn);
9157 scheduled_insns.safe_push (insn);
9158
9159 last_scheduled_insn = insn;
9160 return insn;
9161 }
9162
9163 /* This function returns a candidate satisfying dispatch constraints from
9164 the ready list. */
9165
9166 static rtx_insn *
9167 ready_remove_first_dispatch (struct ready_list *ready)
9168 {
9169 int i;
9170 rtx_insn *insn = ready_element (ready, 0);
9171
9172 if (ready->n_ready == 1
9173 || !INSN_P (insn)
9174 || INSN_CODE (insn) < 0
9175 || !active_insn_p (insn)
9176 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9177 return ready_remove_first (ready);
9178
9179 for (i = 1; i < ready->n_ready; i++)
9180 {
9181 insn = ready_element (ready, i);
9182
9183 if (!INSN_P (insn)
9184 || INSN_CODE (insn) < 0
9185 || !active_insn_p (insn))
9186 continue;
9187
9188 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9189 {
9190 /* Return ith element of ready. */
9191 insn = ready_remove (ready, i);
9192 return insn;
9193 }
9194 }
9195
9196 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9197 return ready_remove_first (ready);
9198
9199 for (i = 1; i < ready->n_ready; i++)
9200 {
9201 insn = ready_element (ready, i);
9202
9203 if (!INSN_P (insn)
9204 || INSN_CODE (insn) < 0
9205 || !active_insn_p (insn))
9206 continue;
9207
9208 /* Return i-th element of ready. */
9209 if (targetm.sched.dispatch (insn, IS_CMP))
9210 return ready_remove (ready, i);
9211 }
9212
9213 return ready_remove_first (ready);
9214 }
9215
9216 /* Get number of ready insn in the ready list. */
9217
9218 int
9219 number_in_ready (void)
9220 {
9221 return ready.n_ready;
9222 }
9223
9224 /* Get number of ready's in the ready list. */
9225
9226 rtx_insn *
9227 get_ready_element (int i)
9228 {
9229 return ready_element (&ready, i);
9230 }
9231
9232 #endif /* INSN_SCHEDULING */