re PR rtl-optimization/80357 (ICE in model_update_limit_points_in_group, at haifa...
[gcc.git] / gcc / haifa-sched.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
124 \f
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "memmodel.h"
134 #include "tm_p.h"
135 #include "insn-config.h"
136 #include "regs.h"
137 #include "ira.h"
138 #include "recog.h"
139 #include "insn-attr.h"
140 #include "cfgrtl.h"
141 #include "cfgbuild.h"
142 #include "sched-int.h"
143 #include "common/common-target.h"
144 #include "params.h"
145 #include "dbgcnt.h"
146 #include "cfgloop.h"
147 #include "dumpfile.h"
148 #include "print-rtl.h"
149
150 #ifdef INSN_SCHEDULING
151
152 /* True if we do register pressure relief through live-range
153 shrinkage. */
154 static bool live_range_shrinkage_p;
155
156 /* Switch on live range shrinkage. */
157 void
158 initialize_live_range_shrinkage (void)
159 {
160 live_range_shrinkage_p = true;
161 }
162
163 /* Switch off live range shrinkage. */
164 void
165 finish_live_range_shrinkage (void)
166 {
167 live_range_shrinkage_p = false;
168 }
169
170 /* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
173
174 int issue_rate;
175
176 /* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178 bool sched_no_dce;
179
180 /* The current initiation interval used when modulo scheduling. */
181 static int modulo_ii;
182
183 /* The maximum number of stages we are prepared to handle. */
184 static int modulo_max_stages;
185
186 /* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188 static int modulo_n_insns;
189
190 /* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192 static int modulo_insns_scheduled;
193
194 /* The maximum uid of insns from the first iteration of the loop. */
195 static int modulo_iter0_max_uid;
196
197 /* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199 static int modulo_backtracks_left;
200
201 /* The stage in which the last insn from the original loop was
202 scheduled. */
203 static int modulo_last_stage;
204
205 /* sched-verbose controls the amount of debugging output the
206 scheduler prints. It is controlled by -fsched-verbose=N:
207 N=0: no debugging output.
208 N=1: default value.
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
211 N=5: dependences info. */
212 int sched_verbose = 0;
213
214 /* Debugging file. All printouts are sent to dump. */
215 FILE *sched_dump = 0;
216
217 /* This is a placeholder for the scheduler parameters common
218 to all schedulers. */
219 struct common_sched_info_def *common_sched_info;
220
221 #define INSN_TICK(INSN) (HID (INSN)->tick)
222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
228 /* Cached cost of the instruction. Use insn_cost to get cost of the
229 insn. -1 here means that the field is not initialized. */
230 #define INSN_COST(INSN) (HID (INSN)->cost)
231
232 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234 #define INVALID_TICK (-(max_insn_queue_index + 1))
235 /* The minimal value of the INSN_TICK of an instruction. */
236 #define MIN_TICK (-max_insn_queue_index)
237
238 /* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
241
242 /* The deciding reason for INSN's place in the ready list. */
243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
244
245 /* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
247 rtx_insn *note_list;
248
249 static struct spec_info_def spec_info_var;
250 /* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
252 spec_info_t spec_info = NULL;
253
254 /* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
256 static bool haifa_recovery_bb_recently_added_p;
257
258 /* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261 bool haifa_recovery_bb_ever_added_p;
262
263 /* Counters of different types of speculative instructions. */
264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
265
266 /* Array used in {unlink, restore}_bb_notes. */
267 static rtx_insn **bb_header = 0;
268
269 /* Basic block after which recovery blocks will be created. */
270 static basic_block before_recovery;
271
272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274 basic_block after_recovery;
275
276 /* FALSE if we add bb to another region, so we don't need to initialize it. */
277 bool adding_bb_to_current_region_p = true;
278
279 /* Queues, etc. */
280
281 /* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
285
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
292
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
295
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
301 insns move from the "Queued" set to the "Ready" list.
302
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
309
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
316
317 /* Implement a circular buffer to delay instructions until sufficient
318 time has passed. For the new pipeline description interface,
319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
320 than maximal time of instruction execution computed by genattr.c on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
323
324 static rtx_insn_list **insn_queue;
325 static int q_ptr = 0;
326 static int q_size = 0;
327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
329
330 #define QUEUE_SCHEDULED (-3)
331 #define QUEUE_NOWHERE (-2)
332 #define QUEUE_READY (-1)
333 /* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
338
339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
340
341 /* The following variable value refers for all current and future
342 reservations of the processor units. */
343 state_t curr_state;
344
345 /* The following variable value is size of memory representing all
346 current and future reservations of the processor units. */
347 size_t dfa_state_size;
348
349 /* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
351 signed char *ready_try = NULL;
352
353 /* The ready list. */
354 struct ready_list ready = {NULL, 0, 0, 0, 0};
355
356 /* The pointer to the ready list (to be removed). */
357 static struct ready_list *readyp = &ready;
358
359 /* Scheduling clock. */
360 static int clock_var;
361
362 /* Clock at which the previous instruction was issued. */
363 static int last_clock_var;
364
365 /* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367 static bool must_backtrack;
368
369 /* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372 int cycle_issued_insns;
373
374 /* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
376 static vec<rtx_insn *> scheduled_insns;
377
378 static int may_trap_exp (const_rtx, int);
379
380 /* Nonzero iff the address is comprised from at most 1 register. */
381 #define CONST_BASED_ADDRESS_P(x) \
382 (REG_P (x) \
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
387
388 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
390
391 \f
392 static int haifa_luid_for_non_insn (rtx x);
393
394 /* Haifa version of sched_info hooks common to all headers. */
395 const struct common_sched_info_def haifa_common_sched_info =
396 {
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
402 };
403
404 /* Mapping from instruction UID to its Logical UID. */
405 vec<int> sched_luids;
406
407 /* Next LUID to assign to an instruction. */
408 int sched_max_luid = 1;
409
410 /* Haifa Instruction Data. */
411 vec<haifa_insn_data_def> h_i_d;
412
413 void (* sched_init_only_bb) (basic_block, basic_block);
414
415 /* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417 basic_block (* sched_split_block) (basic_block, rtx);
418
419 /* Create empty basic block after the specified block. */
420 basic_block (* sched_create_empty_bb) (basic_block);
421
422 /* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424 static int
425 insn_delay (rtx_insn *insn)
426 {
427 return MAX (INSN_TICK (insn) - clock_var, 0);
428 }
429
430 static int
431 may_trap_exp (const_rtx x, int is_store)
432 {
433 enum rtx_code code;
434
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
439 {
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
444 }
445 if (code == MEM)
446 {
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
458 }
459 else
460 {
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
463
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
470 {
471 if (fmt[i] == 'e')
472 {
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
475 }
476 else if (fmt[i] == 'E')
477 {
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 {
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
485 }
486 }
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
489 }
490 return insn_class;
491 }
492 }
493
494 /* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
499 IFREE: load from a globally safe location.
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
503
504 static int
505 haifa_classify_rtx (const_rtx x)
506 {
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
510
511 if (GET_CODE (x) == PARALLEL)
512 {
513 int i, len = XVECLEN (x, 0);
514
515 for (i = len - 1; i >= 0; i--)
516 {
517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
521 }
522 }
523 else
524 {
525 code = GET_CODE (x);
526 switch (code)
527 {
528 case CLOBBER:
529 /* Test if it is a 'store'. */
530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
531 break;
532 case SET:
533 /* Test if it is a store. */
534 tmp_class = may_trap_exp (SET_DEST (x), 1);
535 if (tmp_class == TRAP_RISKY)
536 break;
537 /* Test if it is a load. */
538 tmp_class =
539 WORST_CLASS (tmp_class,
540 may_trap_exp (SET_SRC (x), 0));
541 break;
542 case COND_EXEC:
543 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
544 if (tmp_class == TRAP_RISKY)
545 break;
546 tmp_class = WORST_CLASS (tmp_class,
547 may_trap_exp (COND_EXEC_TEST (x), 0));
548 break;
549 case TRAP_IF:
550 tmp_class = TRAP_RISKY;
551 break;
552 default:;
553 }
554 insn_class = tmp_class;
555 }
556
557 return insn_class;
558 }
559
560 int
561 haifa_classify_insn (const_rtx insn)
562 {
563 return haifa_classify_rtx (PATTERN (insn));
564 }
565 \f
566 /* After the scheduler initialization function has been called, this function
567 can be called to enable modulo scheduling. II is the initiation interval
568 we should use, it affects the delays for delay_pairs that were recorded as
569 separated by a given number of stages.
570
571 MAX_STAGES provides us with a limit
572 after which we give up scheduling; the caller must have unrolled at least
573 as many copies of the loop body and recorded delay_pairs for them.
574
575 INSNS is the number of real (non-debug) insns in one iteration of
576 the loop. MAX_UID can be used to test whether an insn belongs to
577 the first iteration of the loop; all of them have a uid lower than
578 MAX_UID. */
579 void
580 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
581 {
582 modulo_ii = ii;
583 modulo_max_stages = max_stages;
584 modulo_n_insns = insns;
585 modulo_iter0_max_uid = max_uid;
586 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
587 }
588
589 /* A structure to record a pair of insns where the first one is a real
590 insn that has delay slots, and the second is its delayed shadow.
591 I1 is scheduled normally and will emit an assembly instruction,
592 while I2 describes the side effect that takes place at the
593 transition between cycles CYCLES and (CYCLES + 1) after I1. */
594 struct delay_pair
595 {
596 struct delay_pair *next_same_i1;
597 rtx_insn *i1, *i2;
598 int cycles;
599 /* When doing modulo scheduling, we a delay_pair can also be used to
600 show that I1 and I2 are the same insn in a different stage. If that
601 is the case, STAGES will be nonzero. */
602 int stages;
603 };
604
605 /* Helpers for delay hashing. */
606
607 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
608 {
609 typedef void *compare_type;
610 static inline hashval_t hash (const delay_pair *);
611 static inline bool equal (const delay_pair *, const void *);
612 };
613
614 /* Returns a hash value for X, based on hashing just I1. */
615
616 inline hashval_t
617 delay_i1_hasher::hash (const delay_pair *x)
618 {
619 return htab_hash_pointer (x->i1);
620 }
621
622 /* Return true if I1 of pair X is the same as that of pair Y. */
623
624 inline bool
625 delay_i1_hasher::equal (const delay_pair *x, const void *y)
626 {
627 return x->i1 == y;
628 }
629
630 struct delay_i2_hasher : free_ptr_hash <delay_pair>
631 {
632 typedef void *compare_type;
633 static inline hashval_t hash (const delay_pair *);
634 static inline bool equal (const delay_pair *, const void *);
635 };
636
637 /* Returns a hash value for X, based on hashing just I2. */
638
639 inline hashval_t
640 delay_i2_hasher::hash (const delay_pair *x)
641 {
642 return htab_hash_pointer (x->i2);
643 }
644
645 /* Return true if I2 of pair X is the same as that of pair Y. */
646
647 inline bool
648 delay_i2_hasher::equal (const delay_pair *x, const void *y)
649 {
650 return x->i2 == y;
651 }
652
653 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
654 indexed by I2. */
655 static hash_table<delay_i1_hasher> *delay_htab;
656 static hash_table<delay_i2_hasher> *delay_htab_i2;
657
658 /* Called through htab_traverse. Walk the hashtable using I2 as
659 index, and delete all elements involving an UID higher than
660 that pointed to by *DATA. */
661 int
662 haifa_htab_i2_traverse (delay_pair **slot, int *data)
663 {
664 int maxuid = *data;
665 struct delay_pair *p = *slot;
666 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
667 {
668 delay_htab_i2->clear_slot (slot);
669 }
670 return 1;
671 }
672
673 /* Called through htab_traverse. Walk the hashtable using I2 as
674 index, and delete all elements involving an UID higher than
675 that pointed to by *DATA. */
676 int
677 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
678 {
679 int maxuid = *data;
680 struct delay_pair *p, *first, **pprev;
681
682 if (INSN_UID ((*pslot)->i1) >= maxuid)
683 {
684 delay_htab->clear_slot (pslot);
685 return 1;
686 }
687 pprev = &first;
688 for (p = *pslot; p; p = p->next_same_i1)
689 {
690 if (INSN_UID (p->i2) < maxuid)
691 {
692 *pprev = p;
693 pprev = &p->next_same_i1;
694 }
695 }
696 *pprev = NULL;
697 if (first == NULL)
698 delay_htab->clear_slot (pslot);
699 else
700 *pslot = first;
701 return 1;
702 }
703
704 /* Discard all delay pairs which involve an insn with an UID higher
705 than MAX_UID. */
706 void
707 discard_delay_pairs_above (int max_uid)
708 {
709 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
710 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
711 }
712
713 /* This function can be called by a port just before it starts the final
714 scheduling pass. It records the fact that an instruction with delay
715 slots has been split into two insns, I1 and I2. The first one will be
716 scheduled normally and initiates the operation. The second one is a
717 shadow which must follow a specific number of cycles after I1; its only
718 purpose is to show the side effect that occurs at that cycle in the RTL.
719 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
720 while I2 retains the original insn type.
721
722 There are two ways in which the number of cycles can be specified,
723 involving the CYCLES and STAGES arguments to this function. If STAGES
724 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
725 which is multiplied by MODULO_II to give the number of cycles. This is
726 only useful if the caller also calls set_modulo_params to enable modulo
727 scheduling. */
728
729 void
730 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
731 {
732 struct delay_pair *p = XNEW (struct delay_pair);
733 struct delay_pair **slot;
734
735 p->i1 = i1;
736 p->i2 = i2;
737 p->cycles = cycles;
738 p->stages = stages;
739
740 if (!delay_htab)
741 {
742 delay_htab = new hash_table<delay_i1_hasher> (10);
743 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
744 }
745 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
746 p->next_same_i1 = *slot;
747 *slot = p;
748 slot = delay_htab_i2->find_slot (p, INSERT);
749 *slot = p;
750 }
751
752 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
753 and return the other insn if so. Return NULL otherwise. */
754 rtx_insn *
755 real_insn_for_shadow (rtx_insn *insn)
756 {
757 struct delay_pair *pair;
758
759 if (!delay_htab)
760 return NULL;
761
762 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
763 if (!pair || pair->stages > 0)
764 return NULL;
765 return pair->i1;
766 }
767
768 /* For a pair P of insns, return the fixed distance in cycles from the first
769 insn after which the second must be scheduled. */
770 static int
771 pair_delay (struct delay_pair *p)
772 {
773 if (p->stages == 0)
774 return p->cycles;
775 else
776 return p->stages * modulo_ii;
777 }
778
779 /* Given an insn INSN, add a dependence on its delayed shadow if it
780 has one. Also try to find situations where shadows depend on each other
781 and add dependencies to the real insns to limit the amount of backtracking
782 needed. */
783 void
784 add_delay_dependencies (rtx_insn *insn)
785 {
786 struct delay_pair *pair;
787 sd_iterator_def sd_it;
788 dep_t dep;
789
790 if (!delay_htab)
791 return;
792
793 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
794 if (!pair)
795 return;
796 add_dependence (insn, pair->i1, REG_DEP_ANTI);
797 if (pair->stages)
798 return;
799
800 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
801 {
802 rtx_insn *pro = DEP_PRO (dep);
803 struct delay_pair *other_pair
804 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
805 if (!other_pair || other_pair->stages)
806 continue;
807 if (pair_delay (other_pair) >= pair_delay (pair))
808 {
809 if (sched_verbose >= 4)
810 {
811 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
812 INSN_UID (other_pair->i1),
813 INSN_UID (pair->i1));
814 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
815 INSN_UID (pair->i1),
816 INSN_UID (pair->i2),
817 pair_delay (pair));
818 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
819 INSN_UID (other_pair->i1),
820 INSN_UID (other_pair->i2),
821 pair_delay (other_pair));
822 }
823 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
824 }
825 }
826 }
827 \f
828 /* Forward declarations. */
829
830 static int priority (rtx_insn *);
831 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
832 static int rank_for_schedule (const void *, const void *);
833 static void swap_sort (rtx_insn **, int);
834 static void queue_insn (rtx_insn *, int, const char *);
835 static int schedule_insn (rtx_insn *);
836 static void adjust_priority (rtx_insn *);
837 static void advance_one_cycle (void);
838 static void extend_h_i_d (void);
839
840
841 /* Notes handling mechanism:
842 =========================
843 Generally, NOTES are saved before scheduling and restored after scheduling.
844 The scheduler distinguishes between two types of notes:
845
846 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
847 Before scheduling a region, a pointer to the note is added to the insn
848 that follows or precedes it. (This happens as part of the data dependence
849 computation). After scheduling an insn, the pointer contained in it is
850 used for regenerating the corresponding note (in reemit_notes).
851
852 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
853 these notes are put in a list (in rm_other_notes() and
854 unlink_other_notes ()). After scheduling the block, these notes are
855 inserted at the beginning of the block (in schedule_block()). */
856
857 static void ready_add (struct ready_list *, rtx_insn *, bool);
858 static rtx_insn *ready_remove_first (struct ready_list *);
859 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
860
861 static void queue_to_ready (struct ready_list *);
862 static int early_queue_to_ready (state_t, struct ready_list *);
863
864 /* The following functions are used to implement multi-pass scheduling
865 on the first cycle. */
866 static rtx_insn *ready_remove (struct ready_list *, int);
867 static void ready_remove_insn (rtx_insn *);
868
869 static void fix_inter_tick (rtx_insn *, rtx_insn *);
870 static int fix_tick_ready (rtx_insn *);
871 static void change_queue_index (rtx_insn *, int);
872
873 /* The following functions are used to implement scheduling of data/control
874 speculative instructions. */
875
876 static void extend_h_i_d (void);
877 static void init_h_i_d (rtx_insn *);
878 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
879 static void generate_recovery_code (rtx_insn *);
880 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
881 static void begin_speculative_block (rtx_insn *);
882 static void add_to_speculative_block (rtx_insn *);
883 static void init_before_recovery (basic_block *);
884 static void create_check_block_twin (rtx_insn *, bool);
885 static void fix_recovery_deps (basic_block);
886 static bool haifa_change_pattern (rtx_insn *, rtx);
887 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
888 static void restore_bb_notes (basic_block);
889 static void fix_jump_move (rtx_insn *);
890 static void move_block_after_check (rtx_insn *);
891 static void move_succs (vec<edge, va_gc> **, basic_block);
892 static void sched_remove_insn (rtx_insn *);
893 static void clear_priorities (rtx_insn *, rtx_vec_t *);
894 static void calc_priorities (rtx_vec_t);
895 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
896
897 #endif /* INSN_SCHEDULING */
898 \f
899 /* Point to state used for the current scheduling pass. */
900 struct haifa_sched_info *current_sched_info;
901 \f
902 #ifndef INSN_SCHEDULING
903 void
904 schedule_insns (void)
905 {
906 }
907 #else
908
909 /* Do register pressure sensitive insn scheduling if the flag is set
910 up. */
911 enum sched_pressure_algorithm sched_pressure;
912
913 /* Map regno -> its pressure class. The map defined only when
914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
915 enum reg_class *sched_regno_pressure_class;
916
917 /* The current register pressure. Only elements corresponding pressure
918 classes are defined. */
919 static int curr_reg_pressure[N_REG_CLASSES];
920
921 /* Saved value of the previous array. */
922 static int saved_reg_pressure[N_REG_CLASSES];
923
924 /* Register living at given scheduling point. */
925 static bitmap curr_reg_live;
926
927 /* Saved value of the previous array. */
928 static bitmap saved_reg_live;
929
930 /* Registers mentioned in the current region. */
931 static bitmap region_ref_regs;
932
933 /* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
934 static bitmap tmp_bitmap;
935
936 /* Effective number of available registers of a given class (see comment
937 in sched_pressure_start_bb). */
938 static int sched_class_regs_num[N_REG_CLASSES];
939 /* Number of call_saved_regs and fixed_regs. Helpers for calculating of
940 sched_class_regs_num. */
941 static int call_saved_regs_num[N_REG_CLASSES];
942 static int fixed_regs_num[N_REG_CLASSES];
943
944 /* Initiate register pressure relative info for scheduling the current
945 region. Currently it is only clearing register mentioned in the
946 current region. */
947 void
948 sched_init_region_reg_pressure_info (void)
949 {
950 bitmap_clear (region_ref_regs);
951 }
952
953 /* PRESSURE[CL] describes the pressure on register class CL. Update it
954 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
955 LIVE tracks the set of live registers; if it is null, assume that
956 every birth or death is genuine. */
957 static inline void
958 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
959 {
960 enum reg_class pressure_class;
961
962 pressure_class = sched_regno_pressure_class[regno];
963 if (regno >= FIRST_PSEUDO_REGISTER)
964 {
965 if (pressure_class != NO_REGS)
966 {
967 if (birth_p)
968 {
969 if (!live || bitmap_set_bit (live, regno))
970 pressure[pressure_class]
971 += (ira_reg_class_max_nregs
972 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
973 }
974 else
975 {
976 if (!live || bitmap_clear_bit (live, regno))
977 pressure[pressure_class]
978 -= (ira_reg_class_max_nregs
979 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
980 }
981 }
982 }
983 else if (pressure_class != NO_REGS
984 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
985 {
986 if (birth_p)
987 {
988 if (!live || bitmap_set_bit (live, regno))
989 pressure[pressure_class]++;
990 }
991 else
992 {
993 if (!live || bitmap_clear_bit (live, regno))
994 pressure[pressure_class]--;
995 }
996 }
997 }
998
999 /* Initiate current register pressure related info from living
1000 registers given by LIVE. */
1001 static void
1002 initiate_reg_pressure_info (bitmap live)
1003 {
1004 int i;
1005 unsigned int j;
1006 bitmap_iterator bi;
1007
1008 for (i = 0; i < ira_pressure_classes_num; i++)
1009 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1010 bitmap_clear (curr_reg_live);
1011 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1012 if (sched_pressure == SCHED_PRESSURE_MODEL
1013 || current_nr_blocks == 1
1014 || bitmap_bit_p (region_ref_regs, j))
1015 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1016 }
1017
1018 /* Mark registers in X as mentioned in the current region. */
1019 static void
1020 setup_ref_regs (rtx x)
1021 {
1022 int i, j;
1023 const RTX_CODE code = GET_CODE (x);
1024 const char *fmt;
1025
1026 if (REG_P (x))
1027 {
1028 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1029 return;
1030 }
1031 fmt = GET_RTX_FORMAT (code);
1032 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1033 if (fmt[i] == 'e')
1034 setup_ref_regs (XEXP (x, i));
1035 else if (fmt[i] == 'E')
1036 {
1037 for (j = 0; j < XVECLEN (x, i); j++)
1038 setup_ref_regs (XVECEXP (x, i, j));
1039 }
1040 }
1041
1042 /* Initiate current register pressure related info at the start of
1043 basic block BB. */
1044 static void
1045 initiate_bb_reg_pressure_info (basic_block bb)
1046 {
1047 unsigned int i ATTRIBUTE_UNUSED;
1048 rtx_insn *insn;
1049
1050 if (current_nr_blocks > 1)
1051 FOR_BB_INSNS (bb, insn)
1052 if (NONDEBUG_INSN_P (insn))
1053 setup_ref_regs (PATTERN (insn));
1054 initiate_reg_pressure_info (df_get_live_in (bb));
1055 if (bb_has_eh_pred (bb))
1056 for (i = 0; ; ++i)
1057 {
1058 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1059
1060 if (regno == INVALID_REGNUM)
1061 break;
1062 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1063 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1064 regno, true);
1065 }
1066 }
1067
1068 /* Save current register pressure related info. */
1069 static void
1070 save_reg_pressure (void)
1071 {
1072 int i;
1073
1074 for (i = 0; i < ira_pressure_classes_num; i++)
1075 saved_reg_pressure[ira_pressure_classes[i]]
1076 = curr_reg_pressure[ira_pressure_classes[i]];
1077 bitmap_copy (saved_reg_live, curr_reg_live);
1078 }
1079
1080 /* Restore saved register pressure related info. */
1081 static void
1082 restore_reg_pressure (void)
1083 {
1084 int i;
1085
1086 for (i = 0; i < ira_pressure_classes_num; i++)
1087 curr_reg_pressure[ira_pressure_classes[i]]
1088 = saved_reg_pressure[ira_pressure_classes[i]];
1089 bitmap_copy (curr_reg_live, saved_reg_live);
1090 }
1091
1092 /* Return TRUE if the register is dying after its USE. */
1093 static bool
1094 dying_use_p (struct reg_use_data *use)
1095 {
1096 struct reg_use_data *next;
1097
1098 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1099 if (NONDEBUG_INSN_P (next->insn)
1100 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1101 return false;
1102 return true;
1103 }
1104
1105 /* Print info about the current register pressure and its excess for
1106 each pressure class. */
1107 static void
1108 print_curr_reg_pressure (void)
1109 {
1110 int i;
1111 enum reg_class cl;
1112
1113 fprintf (sched_dump, ";;\t");
1114 for (i = 0; i < ira_pressure_classes_num; i++)
1115 {
1116 cl = ira_pressure_classes[i];
1117 gcc_assert (curr_reg_pressure[cl] >= 0);
1118 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1119 curr_reg_pressure[cl],
1120 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1121 }
1122 fprintf (sched_dump, "\n");
1123 }
1124 \f
1125 /* Determine if INSN has a condition that is clobbered if a register
1126 in SET_REGS is modified. */
1127 static bool
1128 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1129 {
1130 rtx pat = PATTERN (insn);
1131 gcc_assert (GET_CODE (pat) == COND_EXEC);
1132 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1133 {
1134 sd_iterator_def sd_it;
1135 dep_t dep;
1136 haifa_change_pattern (insn, ORIG_PAT (insn));
1137 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1138 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1139 TODO_SPEC (insn) = HARD_DEP;
1140 if (sched_verbose >= 2)
1141 fprintf (sched_dump,
1142 ";;\t\tdequeue insn %s because of clobbered condition\n",
1143 (*current_sched_info->print_insn) (insn, 0));
1144 return true;
1145 }
1146
1147 return false;
1148 }
1149
1150 /* This function should be called after modifying the pattern of INSN,
1151 to update scheduler data structures as needed. */
1152 static void
1153 update_insn_after_change (rtx_insn *insn)
1154 {
1155 sd_iterator_def sd_it;
1156 dep_t dep;
1157
1158 dfa_clear_single_insn_cache (insn);
1159
1160 sd_it = sd_iterator_start (insn,
1161 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1162 while (sd_iterator_cond (&sd_it, &dep))
1163 {
1164 DEP_COST (dep) = UNKNOWN_DEP_COST;
1165 sd_iterator_next (&sd_it);
1166 }
1167
1168 /* Invalidate INSN_COST, so it'll be recalculated. */
1169 INSN_COST (insn) = -1;
1170 /* Invalidate INSN_TICK, so it'll be recalculated. */
1171 INSN_TICK (insn) = INVALID_TICK;
1172
1173 /* Invalidate autoprefetch data entry. */
1174 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1175 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1176 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1177 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1178 }
1179
1180
1181 /* Two VECs, one to hold dependencies for which pattern replacements
1182 need to be applied or restored at the start of the next cycle, and
1183 another to hold an integer that is either one, to apply the
1184 corresponding replacement, or zero to restore it. */
1185 static vec<dep_t> next_cycle_replace_deps;
1186 static vec<int> next_cycle_apply;
1187
1188 static void apply_replacement (dep_t, bool);
1189 static void restore_pattern (dep_t, bool);
1190
1191 /* Look at the remaining dependencies for insn NEXT, and compute and return
1192 the TODO_SPEC value we should use for it. This is called after one of
1193 NEXT's dependencies has been resolved.
1194 We also perform pattern replacements for predication, and for broken
1195 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1196 false. */
1197
1198 static ds_t
1199 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1200 {
1201 ds_t new_ds;
1202 sd_iterator_def sd_it;
1203 dep_t dep, modify_dep = NULL;
1204 int n_spec = 0;
1205 int n_control = 0;
1206 int n_replace = 0;
1207 bool first_p = true;
1208
1209 if (sd_lists_empty_p (next, SD_LIST_BACK))
1210 /* NEXT has all its dependencies resolved. */
1211 return 0;
1212
1213 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1214 return HARD_DEP;
1215
1216 /* If NEXT is intended to sit adjacent to this instruction, we don't
1217 want to try to break any dependencies. Treat it as a HARD_DEP. */
1218 if (SCHED_GROUP_P (next))
1219 return HARD_DEP;
1220
1221 /* Now we've got NEXT with speculative deps only.
1222 1. Look at the deps to see what we have to do.
1223 2. Check if we can do 'todo'. */
1224 new_ds = 0;
1225
1226 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1227 {
1228 rtx_insn *pro = DEP_PRO (dep);
1229 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1230
1231 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1232 continue;
1233
1234 if (ds)
1235 {
1236 n_spec++;
1237 if (first_p)
1238 {
1239 first_p = false;
1240
1241 new_ds = ds;
1242 }
1243 else
1244 new_ds = ds_merge (new_ds, ds);
1245 }
1246 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1247 {
1248 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1249 {
1250 n_control++;
1251 modify_dep = dep;
1252 }
1253 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1254 }
1255 else if (DEP_REPLACE (dep) != NULL)
1256 {
1257 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1258 {
1259 n_replace++;
1260 modify_dep = dep;
1261 }
1262 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1263 }
1264 }
1265
1266 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1267 {
1268 if (!dbg_cnt (sched_breakdep))
1269 return HARD_DEP;
1270 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1271 {
1272 struct dep_replacement *desc = DEP_REPLACE (dep);
1273 if (desc != NULL)
1274 {
1275 if (desc->insn == next && !for_backtrack)
1276 {
1277 gcc_assert (n_replace == 1);
1278 apply_replacement (dep, true);
1279 }
1280 DEP_STATUS (dep) |= DEP_CANCELLED;
1281 }
1282 }
1283 return 0;
1284 }
1285
1286 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1287 {
1288 rtx_insn *pro, *other;
1289 rtx new_pat;
1290 rtx cond = NULL_RTX;
1291 bool success;
1292 rtx_insn *prev = NULL;
1293 int i;
1294 unsigned regno;
1295
1296 if ((current_sched_info->flags & DO_PREDICATION) == 0
1297 || (ORIG_PAT (next) != NULL_RTX
1298 && PREDICATED_PAT (next) == NULL_RTX))
1299 return HARD_DEP;
1300
1301 pro = DEP_PRO (modify_dep);
1302 other = real_insn_for_shadow (pro);
1303 if (other != NULL_RTX)
1304 pro = other;
1305
1306 cond = sched_get_reverse_condition_uncached (pro);
1307 regno = REGNO (XEXP (cond, 0));
1308
1309 /* Find the last scheduled insn that modifies the condition register.
1310 We can stop looking once we find the insn we depend on through the
1311 REG_DEP_CONTROL; if the condition register isn't modified after it,
1312 we know that it still has the right value. */
1313 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1314 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1315 {
1316 HARD_REG_SET t;
1317
1318 find_all_hard_reg_sets (prev, &t, true);
1319 if (TEST_HARD_REG_BIT (t, regno))
1320 return HARD_DEP;
1321 if (prev == pro)
1322 break;
1323 }
1324 if (ORIG_PAT (next) == NULL_RTX)
1325 {
1326 ORIG_PAT (next) = PATTERN (next);
1327
1328 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1329 success = haifa_change_pattern (next, new_pat);
1330 if (!success)
1331 return HARD_DEP;
1332 PREDICATED_PAT (next) = new_pat;
1333 }
1334 else if (PATTERN (next) != PREDICATED_PAT (next))
1335 {
1336 bool success = haifa_change_pattern (next,
1337 PREDICATED_PAT (next));
1338 gcc_assert (success);
1339 }
1340 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1341 return DEP_CONTROL;
1342 }
1343
1344 if (PREDICATED_PAT (next) != NULL_RTX)
1345 {
1346 int tick = INSN_TICK (next);
1347 bool success = haifa_change_pattern (next,
1348 ORIG_PAT (next));
1349 INSN_TICK (next) = tick;
1350 gcc_assert (success);
1351 }
1352
1353 /* We can't handle the case where there are both speculative and control
1354 dependencies, so we return HARD_DEP in such a case. Also fail if
1355 we have speculative dependencies with not enough points, or more than
1356 one control dependency. */
1357 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1358 || (n_spec > 0
1359 /* Too few points? */
1360 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1361 || n_control > 0
1362 || n_replace > 0)
1363 return HARD_DEP;
1364
1365 return new_ds;
1366 }
1367 \f
1368 /* Pointer to the last instruction scheduled. */
1369 static rtx_insn *last_scheduled_insn;
1370
1371 /* Pointer to the last nondebug instruction scheduled within the
1372 block, or the prev_head of the scheduling block. Used by
1373 rank_for_schedule, so that insns independent of the last scheduled
1374 insn will be preferred over dependent instructions. */
1375 static rtx_insn *last_nondebug_scheduled_insn;
1376
1377 /* Pointer that iterates through the list of unscheduled insns if we
1378 have a dbg_cnt enabled. It always points at an insn prior to the
1379 first unscheduled one. */
1380 static rtx_insn *nonscheduled_insns_begin;
1381
1382 /* Compute cost of executing INSN.
1383 This is the number of cycles between instruction issue and
1384 instruction results. */
1385 int
1386 insn_cost (rtx_insn *insn)
1387 {
1388 int cost;
1389
1390 if (sched_fusion)
1391 return 0;
1392
1393 if (sel_sched_p ())
1394 {
1395 if (recog_memoized (insn) < 0)
1396 return 0;
1397
1398 cost = insn_default_latency (insn);
1399 if (cost < 0)
1400 cost = 0;
1401
1402 return cost;
1403 }
1404
1405 cost = INSN_COST (insn);
1406
1407 if (cost < 0)
1408 {
1409 /* A USE insn, or something else we don't need to
1410 understand. We can't pass these directly to
1411 result_ready_cost or insn_default_latency because it will
1412 trigger a fatal error for unrecognizable insns. */
1413 if (recog_memoized (insn) < 0)
1414 {
1415 INSN_COST (insn) = 0;
1416 return 0;
1417 }
1418 else
1419 {
1420 cost = insn_default_latency (insn);
1421 if (cost < 0)
1422 cost = 0;
1423
1424 INSN_COST (insn) = cost;
1425 }
1426 }
1427
1428 return cost;
1429 }
1430
1431 /* Compute cost of dependence LINK.
1432 This is the number of cycles between instruction issue and
1433 instruction results.
1434 ??? We also use this function to call recog_memoized on all insns. */
1435 int
1436 dep_cost_1 (dep_t link, dw_t dw)
1437 {
1438 rtx_insn *insn = DEP_PRO (link);
1439 rtx_insn *used = DEP_CON (link);
1440 int cost;
1441
1442 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1443 return DEP_COST (link);
1444
1445 if (delay_htab)
1446 {
1447 struct delay_pair *delay_entry;
1448 delay_entry
1449 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1450 if (delay_entry)
1451 {
1452 if (delay_entry->i1 == insn)
1453 {
1454 DEP_COST (link) = pair_delay (delay_entry);
1455 return DEP_COST (link);
1456 }
1457 }
1458 }
1459
1460 /* A USE insn should never require the value used to be computed.
1461 This allows the computation of a function's result and parameter
1462 values to overlap the return and call. We don't care about the
1463 dependence cost when only decreasing register pressure. */
1464 if (recog_memoized (used) < 0)
1465 {
1466 cost = 0;
1467 recog_memoized (insn);
1468 }
1469 else
1470 {
1471 enum reg_note dep_type = DEP_TYPE (link);
1472
1473 cost = insn_cost (insn);
1474
1475 if (INSN_CODE (insn) >= 0)
1476 {
1477 if (dep_type == REG_DEP_ANTI)
1478 cost = 0;
1479 else if (dep_type == REG_DEP_OUTPUT)
1480 {
1481 cost = (insn_default_latency (insn)
1482 - insn_default_latency (used));
1483 if (cost <= 0)
1484 cost = 1;
1485 }
1486 else if (bypass_p (insn))
1487 cost = insn_latency (insn, used);
1488 }
1489
1490
1491 if (targetm.sched.adjust_cost)
1492 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1493 dw);
1494
1495 if (cost < 0)
1496 cost = 0;
1497 }
1498
1499 DEP_COST (link) = cost;
1500 return cost;
1501 }
1502
1503 /* Compute cost of dependence LINK.
1504 This is the number of cycles between instruction issue and
1505 instruction results. */
1506 int
1507 dep_cost (dep_t link)
1508 {
1509 return dep_cost_1 (link, 0);
1510 }
1511
1512 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1513 INSN_PRIORITY explicitly. */
1514 void
1515 increase_insn_priority (rtx_insn *insn, int amount)
1516 {
1517 if (!sel_sched_p ())
1518 {
1519 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1520 if (INSN_PRIORITY_KNOWN (insn))
1521 INSN_PRIORITY (insn) += amount;
1522 }
1523 else
1524 {
1525 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1526 Use EXPR_PRIORITY instead. */
1527 sel_add_to_insn_priority (insn, amount);
1528 }
1529 }
1530
1531 /* Return 'true' if DEP should be included in priority calculations. */
1532 static bool
1533 contributes_to_priority_p (dep_t dep)
1534 {
1535 if (DEBUG_INSN_P (DEP_CON (dep))
1536 || DEBUG_INSN_P (DEP_PRO (dep)))
1537 return false;
1538
1539 /* Critical path is meaningful in block boundaries only. */
1540 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1541 DEP_PRO (dep)))
1542 return false;
1543
1544 if (DEP_REPLACE (dep) != NULL)
1545 return false;
1546
1547 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1548 then speculative instructions will less likely be
1549 scheduled. That is because the priority of
1550 their producers will increase, and, thus, the
1551 producers will more likely be scheduled, thus,
1552 resolving the dependence. */
1553 if (sched_deps_info->generate_spec_deps
1554 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1555 && (DEP_STATUS (dep) & SPECULATIVE))
1556 return false;
1557
1558 return true;
1559 }
1560
1561 /* Compute the number of nondebug deps in list LIST for INSN. */
1562
1563 static int
1564 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1565 {
1566 sd_iterator_def sd_it;
1567 dep_t dep;
1568 int dbgcount = 0, nodbgcount = 0;
1569
1570 if (!MAY_HAVE_DEBUG_INSNS)
1571 return sd_lists_size (insn, list);
1572
1573 FOR_EACH_DEP (insn, list, sd_it, dep)
1574 {
1575 if (DEBUG_INSN_P (DEP_CON (dep)))
1576 dbgcount++;
1577 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1578 nodbgcount++;
1579 }
1580
1581 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1582
1583 return nodbgcount;
1584 }
1585
1586 bool sched_fusion;
1587
1588 /* Compute the priority number for INSN. */
1589 static int
1590 priority (rtx_insn *insn)
1591 {
1592 if (! INSN_P (insn))
1593 return 0;
1594
1595 /* We should not be interested in priority of an already scheduled insn. */
1596 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1597
1598 if (!INSN_PRIORITY_KNOWN (insn))
1599 {
1600 int this_priority = -1;
1601
1602 if (sched_fusion)
1603 {
1604 int this_fusion_priority;
1605
1606 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1607 &this_fusion_priority, &this_priority);
1608 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1609 }
1610 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1611 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1612 some forward deps but all of them are ignored by
1613 contributes_to_priority hook. At the moment we set priority of
1614 such insn to 0. */
1615 this_priority = insn_cost (insn);
1616 else
1617 {
1618 rtx_insn *prev_first, *twin;
1619 basic_block rec;
1620
1621 /* For recovery check instructions we calculate priority slightly
1622 different than that of normal instructions. Instead of walking
1623 through INSN_FORW_DEPS (check) list, we walk through
1624 INSN_FORW_DEPS list of each instruction in the corresponding
1625 recovery block. */
1626
1627 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1628 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1629 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1630 {
1631 prev_first = PREV_INSN (insn);
1632 twin = insn;
1633 }
1634 else
1635 {
1636 prev_first = NEXT_INSN (BB_HEAD (rec));
1637 twin = PREV_INSN (BB_END (rec));
1638 }
1639
1640 do
1641 {
1642 sd_iterator_def sd_it;
1643 dep_t dep;
1644
1645 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1646 {
1647 rtx_insn *next;
1648 int next_priority;
1649
1650 next = DEP_CON (dep);
1651
1652 if (BLOCK_FOR_INSN (next) != rec)
1653 {
1654 int cost;
1655
1656 if (!contributes_to_priority_p (dep))
1657 continue;
1658
1659 if (twin == insn)
1660 cost = dep_cost (dep);
1661 else
1662 {
1663 struct _dep _dep1, *dep1 = &_dep1;
1664
1665 init_dep (dep1, insn, next, REG_DEP_ANTI);
1666
1667 cost = dep_cost (dep1);
1668 }
1669
1670 next_priority = cost + priority (next);
1671
1672 if (next_priority > this_priority)
1673 this_priority = next_priority;
1674 }
1675 }
1676
1677 twin = PREV_INSN (twin);
1678 }
1679 while (twin != prev_first);
1680 }
1681
1682 if (this_priority < 0)
1683 {
1684 gcc_assert (this_priority == -1);
1685
1686 this_priority = insn_cost (insn);
1687 }
1688
1689 INSN_PRIORITY (insn) = this_priority;
1690 INSN_PRIORITY_STATUS (insn) = 1;
1691 }
1692
1693 return INSN_PRIORITY (insn);
1694 }
1695 \f
1696 /* Macros and functions for keeping the priority queue sorted, and
1697 dealing with queuing and dequeuing of instructions. */
1698
1699 /* For each pressure class CL, set DEATH[CL] to the number of registers
1700 in that class that die in INSN. */
1701
1702 static void
1703 calculate_reg_deaths (rtx_insn *insn, int *death)
1704 {
1705 int i;
1706 struct reg_use_data *use;
1707
1708 for (i = 0; i < ira_pressure_classes_num; i++)
1709 death[ira_pressure_classes[i]] = 0;
1710 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1711 if (dying_use_p (use))
1712 mark_regno_birth_or_death (0, death, use->regno, true);
1713 }
1714
1715 /* Setup info about the current register pressure impact of scheduling
1716 INSN at the current scheduling point. */
1717 static void
1718 setup_insn_reg_pressure_info (rtx_insn *insn)
1719 {
1720 int i, change, before, after, hard_regno;
1721 int excess_cost_change;
1722 machine_mode mode;
1723 enum reg_class cl;
1724 struct reg_pressure_data *pressure_info;
1725 int *max_reg_pressure;
1726 static int death[N_REG_CLASSES];
1727
1728 gcc_checking_assert (!DEBUG_INSN_P (insn));
1729
1730 excess_cost_change = 0;
1731 calculate_reg_deaths (insn, death);
1732 pressure_info = INSN_REG_PRESSURE (insn);
1733 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1734 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1735 for (i = 0; i < ira_pressure_classes_num; i++)
1736 {
1737 cl = ira_pressure_classes[i];
1738 gcc_assert (curr_reg_pressure[cl] >= 0);
1739 change = (int) pressure_info[i].set_increase - death[cl];
1740 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1741 after = MAX (0, max_reg_pressure[i] + change
1742 - sched_class_regs_num[cl]);
1743 hard_regno = ira_class_hard_regs[cl][0];
1744 gcc_assert (hard_regno >= 0);
1745 mode = reg_raw_mode[hard_regno];
1746 excess_cost_change += ((after - before)
1747 * (ira_memory_move_cost[mode][cl][0]
1748 + ira_memory_move_cost[mode][cl][1]));
1749 }
1750 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1751 }
1752 \f
1753 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1754 It tries to make the scheduler take register pressure into account
1755 without introducing too many unnecessary stalls. It hooks into the
1756 main scheduling algorithm at several points:
1757
1758 - Before scheduling starts, model_start_schedule constructs a
1759 "model schedule" for the current block. This model schedule is
1760 chosen solely to keep register pressure down. It does not take the
1761 target's pipeline or the original instruction order into account,
1762 except as a tie-breaker. It also doesn't work to a particular
1763 pressure limit.
1764
1765 This model schedule gives us an idea of what pressure can be
1766 achieved for the block and gives us an example of a schedule that
1767 keeps to that pressure. It also makes the final schedule less
1768 dependent on the original instruction order. This is important
1769 because the original order can either be "wide" (many values live
1770 at once, such as in user-scheduled code) or "narrow" (few values
1771 live at once, such as after loop unrolling, where several
1772 iterations are executed sequentially).
1773
1774 We do not apply this model schedule to the rtx stream. We simply
1775 record it in model_schedule. We also compute the maximum pressure,
1776 MP, that was seen during this schedule.
1777
1778 - Instructions are added to the ready queue even if they require
1779 a stall. The length of the stall is instead computed as:
1780
1781 MAX (INSN_TICK (INSN) - clock_var, 0)
1782
1783 (= insn_delay). This allows rank_for_schedule to choose between
1784 introducing a deliberate stall or increasing pressure.
1785
1786 - Before sorting the ready queue, model_set_excess_costs assigns
1787 a pressure-based cost to each ready instruction in the queue.
1788 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1789 (ECC for short) and is effectively measured in cycles.
1790
1791 - rank_for_schedule ranks instructions based on:
1792
1793 ECC (insn) + insn_delay (insn)
1794
1795 then as:
1796
1797 insn_delay (insn)
1798
1799 So, for example, an instruction X1 with an ECC of 1 that can issue
1800 now will win over an instruction X0 with an ECC of zero that would
1801 introduce a stall of one cycle. However, an instruction X2 with an
1802 ECC of 2 that can issue now will lose to both X0 and X1.
1803
1804 - When an instruction is scheduled, model_recompute updates the model
1805 schedule with the new pressures (some of which might now exceed the
1806 original maximum pressure MP). model_update_limit_points then searches
1807 for the new point of maximum pressure, if not already known. */
1808
1809 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1810 from surrounding debug information. */
1811 #define MODEL_BAR \
1812 ";;\t\t+------------------------------------------------------\n"
1813
1814 /* Information about the pressure on a particular register class at a
1815 particular point of the model schedule. */
1816 struct model_pressure_data {
1817 /* The pressure at this point of the model schedule, or -1 if the
1818 point is associated with an instruction that has already been
1819 scheduled. */
1820 int ref_pressure;
1821
1822 /* The maximum pressure during or after this point of the model schedule. */
1823 int max_pressure;
1824 };
1825
1826 /* Per-instruction information that is used while building the model
1827 schedule. Here, "schedule" refers to the model schedule rather
1828 than the main schedule. */
1829 struct model_insn_info {
1830 /* The instruction itself. */
1831 rtx_insn *insn;
1832
1833 /* If this instruction is in model_worklist, these fields link to the
1834 previous (higher-priority) and next (lower-priority) instructions
1835 in the list. */
1836 struct model_insn_info *prev;
1837 struct model_insn_info *next;
1838
1839 /* While constructing the schedule, QUEUE_INDEX describes whether an
1840 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1841 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1842 old_queue records the value that QUEUE_INDEX had before scheduling
1843 started, so that we can restore it once the schedule is complete. */
1844 int old_queue;
1845
1846 /* The relative importance of an unscheduled instruction. Higher
1847 values indicate greater importance. */
1848 unsigned int model_priority;
1849
1850 /* The length of the longest path of satisfied true dependencies
1851 that leads to this instruction. */
1852 unsigned int depth;
1853
1854 /* The length of the longest path of dependencies of any kind
1855 that leads from this instruction. */
1856 unsigned int alap;
1857
1858 /* The number of predecessor nodes that must still be scheduled. */
1859 int unscheduled_preds;
1860 };
1861
1862 /* Information about the pressure limit for a particular register class.
1863 This structure is used when applying a model schedule to the main
1864 schedule. */
1865 struct model_pressure_limit {
1866 /* The maximum register pressure seen in the original model schedule. */
1867 int orig_pressure;
1868
1869 /* The maximum register pressure seen in the current model schedule
1870 (which excludes instructions that have already been scheduled). */
1871 int pressure;
1872
1873 /* The point of the current model schedule at which PRESSURE is first
1874 reached. It is set to -1 if the value needs to be recomputed. */
1875 int point;
1876 };
1877
1878 /* Describes a particular way of measuring register pressure. */
1879 struct model_pressure_group {
1880 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1881 struct model_pressure_limit limits[N_REG_CLASSES];
1882
1883 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1884 on register class ira_pressure_classes[PCI] at point POINT of the
1885 current model schedule. A POINT of model_num_insns describes the
1886 pressure at the end of the schedule. */
1887 struct model_pressure_data *model;
1888 };
1889
1890 /* Index POINT gives the instruction at point POINT of the model schedule.
1891 This array doesn't change during main scheduling. */
1892 static vec<rtx_insn *> model_schedule;
1893
1894 /* The list of instructions in the model worklist, sorted in order of
1895 decreasing priority. */
1896 static struct model_insn_info *model_worklist;
1897
1898 /* Index I describes the instruction with INSN_LUID I. */
1899 static struct model_insn_info *model_insns;
1900
1901 /* The number of instructions in the model schedule. */
1902 static int model_num_insns;
1903
1904 /* The index of the first instruction in model_schedule that hasn't yet been
1905 added to the main schedule, or model_num_insns if all of them have. */
1906 static int model_curr_point;
1907
1908 /* Describes the pressure before each instruction in the model schedule. */
1909 static struct model_pressure_group model_before_pressure;
1910
1911 /* The first unused model_priority value (as used in model_insn_info). */
1912 static unsigned int model_next_priority;
1913
1914
1915 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1916 at point POINT of the model schedule. */
1917 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1918 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1919
1920 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1921 after point POINT of the model schedule. */
1922 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1923 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1924
1925 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1926 of the model schedule. */
1927 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1928 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1929
1930 /* Information about INSN that is used when creating the model schedule. */
1931 #define MODEL_INSN_INFO(INSN) \
1932 (&model_insns[INSN_LUID (INSN)])
1933
1934 /* The instruction at point POINT of the model schedule. */
1935 #define MODEL_INSN(POINT) \
1936 (model_schedule[POINT])
1937
1938
1939 /* Return INSN's index in the model schedule, or model_num_insns if it
1940 doesn't belong to that schedule. */
1941
1942 static int
1943 model_index (rtx_insn *insn)
1944 {
1945 if (INSN_MODEL_INDEX (insn) == 0)
1946 return model_num_insns;
1947 return INSN_MODEL_INDEX (insn) - 1;
1948 }
1949
1950 /* Make sure that GROUP->limits is up-to-date for the current point
1951 of the model schedule. */
1952
1953 static void
1954 model_update_limit_points_in_group (struct model_pressure_group *group)
1955 {
1956 int pci, max_pressure, point;
1957
1958 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1959 {
1960 /* We may have passed the final point at which the pressure in
1961 group->limits[pci].pressure was reached. Update the limit if so. */
1962 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1963 group->limits[pci].pressure = max_pressure;
1964
1965 /* Find the point at which MAX_PRESSURE is first reached. We need
1966 to search in three cases:
1967
1968 - We've already moved past the previous pressure point.
1969 In this case we search forward from model_curr_point.
1970
1971 - We scheduled the previous point of maximum pressure ahead of
1972 its position in the model schedule, but doing so didn't bring
1973 the pressure point earlier. In this case we search forward
1974 from that previous pressure point.
1975
1976 - Scheduling an instruction early caused the maximum pressure
1977 to decrease. In this case we will have set the pressure
1978 point to -1, and we search forward from model_curr_point. */
1979 point = MAX (group->limits[pci].point, model_curr_point);
1980 while (point < model_num_insns
1981 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1982 point++;
1983 group->limits[pci].point = point;
1984
1985 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1986 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1987 }
1988 }
1989
1990 /* Make sure that all register-pressure limits are up-to-date for the
1991 current position in the model schedule. */
1992
1993 static void
1994 model_update_limit_points (void)
1995 {
1996 model_update_limit_points_in_group (&model_before_pressure);
1997 }
1998
1999 /* Return the model_index of the last unscheduled use in chain USE
2000 outside of USE's instruction. Return -1 if there are no other uses,
2001 or model_num_insns if the register is live at the end of the block. */
2002
2003 static int
2004 model_last_use_except (struct reg_use_data *use)
2005 {
2006 struct reg_use_data *next;
2007 int last, index;
2008
2009 last = -1;
2010 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2011 if (NONDEBUG_INSN_P (next->insn)
2012 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2013 {
2014 index = model_index (next->insn);
2015 if (index == model_num_insns)
2016 return model_num_insns;
2017 if (last < index)
2018 last = index;
2019 }
2020 return last;
2021 }
2022
2023 /* An instruction with model_index POINT has just been scheduled, and it
2024 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2025 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2026 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2027
2028 static void
2029 model_start_update_pressure (struct model_pressure_group *group,
2030 int point, int pci, int delta)
2031 {
2032 int next_max_pressure;
2033
2034 if (point == model_num_insns)
2035 {
2036 /* The instruction wasn't part of the model schedule; it was moved
2037 from a different block. Update the pressure for the end of
2038 the model schedule. */
2039 MODEL_REF_PRESSURE (group, point, pci) += delta;
2040 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2041 }
2042 else
2043 {
2044 /* Record that this instruction has been scheduled. Nothing now
2045 changes between POINT and POINT + 1, so get the maximum pressure
2046 from the latter. If the maximum pressure decreases, the new
2047 pressure point may be before POINT. */
2048 MODEL_REF_PRESSURE (group, point, pci) = -1;
2049 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2050 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2051 {
2052 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2053 if (group->limits[pci].point == point)
2054 group->limits[pci].point = -1;
2055 }
2056 }
2057 }
2058
2059 /* Record that scheduling a later instruction has changed the pressure
2060 at point POINT of the model schedule by DELTA (which might be 0).
2061 Update GROUP accordingly. Return nonzero if these changes might
2062 trigger changes to previous points as well. */
2063
2064 static int
2065 model_update_pressure (struct model_pressure_group *group,
2066 int point, int pci, int delta)
2067 {
2068 int ref_pressure, max_pressure, next_max_pressure;
2069
2070 /* If POINT hasn't yet been scheduled, update its pressure. */
2071 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2072 if (ref_pressure >= 0 && delta != 0)
2073 {
2074 ref_pressure += delta;
2075 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2076
2077 /* Check whether the maximum pressure in the overall schedule
2078 has increased. (This means that the MODEL_MAX_PRESSURE of
2079 every point <= POINT will need to increase too; see below.) */
2080 if (group->limits[pci].pressure < ref_pressure)
2081 group->limits[pci].pressure = ref_pressure;
2082
2083 /* If we are at maximum pressure, and the maximum pressure
2084 point was previously unknown or later than POINT,
2085 bring it forward. */
2086 if (group->limits[pci].pressure == ref_pressure
2087 && !IN_RANGE (group->limits[pci].point, 0, point))
2088 group->limits[pci].point = point;
2089
2090 /* If POINT used to be the point of maximum pressure, but isn't
2091 any longer, we need to recalculate it using a forward walk. */
2092 if (group->limits[pci].pressure > ref_pressure
2093 && group->limits[pci].point == point)
2094 group->limits[pci].point = -1;
2095 }
2096
2097 /* Update the maximum pressure at POINT. Changes here might also
2098 affect the maximum pressure at POINT - 1. */
2099 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2100 max_pressure = MAX (ref_pressure, next_max_pressure);
2101 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2102 {
2103 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2104 return 1;
2105 }
2106 return 0;
2107 }
2108
2109 /* INSN has just been scheduled. Update the model schedule accordingly. */
2110
2111 static void
2112 model_recompute (rtx_insn *insn)
2113 {
2114 struct {
2115 int last_use;
2116 int regno;
2117 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2118 struct reg_use_data *use;
2119 struct reg_pressure_data *reg_pressure;
2120 int delta[N_REG_CLASSES];
2121 int pci, point, mix, new_last, cl, ref_pressure, queue;
2122 unsigned int i, num_uses, num_pending_births;
2123 bool print_p;
2124
2125 /* The destinations of INSN were previously live from POINT onwards, but are
2126 now live from model_curr_point onwards. Set up DELTA accordingly. */
2127 point = model_index (insn);
2128 reg_pressure = INSN_REG_PRESSURE (insn);
2129 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2130 {
2131 cl = ira_pressure_classes[pci];
2132 delta[cl] = reg_pressure[pci].set_increase;
2133 }
2134
2135 /* Record which registers previously died at POINT, but which now die
2136 before POINT. Adjust DELTA so that it represents the effect of
2137 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2138 registers that will be born in the range [model_curr_point, POINT). */
2139 num_uses = 0;
2140 num_pending_births = 0;
2141 bitmap_clear (tmp_bitmap);
2142 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2143 {
2144 new_last = model_last_use_except (use);
2145 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
2146 {
2147 gcc_assert (num_uses < ARRAY_SIZE (uses));
2148 uses[num_uses].last_use = new_last;
2149 uses[num_uses].regno = use->regno;
2150 /* This register is no longer live after POINT - 1. */
2151 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2152 num_uses++;
2153 if (new_last >= 0)
2154 num_pending_births++;
2155 }
2156 }
2157
2158 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2159 Also set each group pressure limit for POINT. */
2160 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2161 {
2162 cl = ira_pressure_classes[pci];
2163 model_start_update_pressure (&model_before_pressure,
2164 point, pci, delta[cl]);
2165 }
2166
2167 /* Walk the model schedule backwards, starting immediately before POINT. */
2168 print_p = false;
2169 if (point != model_curr_point)
2170 do
2171 {
2172 point--;
2173 insn = MODEL_INSN (point);
2174 queue = QUEUE_INDEX (insn);
2175
2176 if (queue != QUEUE_SCHEDULED)
2177 {
2178 /* DELTA describes the effect of the move on the register pressure
2179 after POINT. Make it describe the effect on the pressure
2180 before POINT. */
2181 i = 0;
2182 while (i < num_uses)
2183 {
2184 if (uses[i].last_use == point)
2185 {
2186 /* This register is now live again. */
2187 mark_regno_birth_or_death (NULL, delta,
2188 uses[i].regno, true);
2189
2190 /* Remove this use from the array. */
2191 uses[i] = uses[num_uses - 1];
2192 num_uses--;
2193 num_pending_births--;
2194 }
2195 else
2196 i++;
2197 }
2198
2199 if (sched_verbose >= 5)
2200 {
2201 if (!print_p)
2202 {
2203 fprintf (sched_dump, MODEL_BAR);
2204 fprintf (sched_dump, ";;\t\t| New pressure for model"
2205 " schedule\n");
2206 fprintf (sched_dump, MODEL_BAR);
2207 print_p = true;
2208 }
2209
2210 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2211 point, INSN_UID (insn),
2212 str_pattern_slim (PATTERN (insn)));
2213 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2214 {
2215 cl = ira_pressure_classes[pci];
2216 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2217 point, pci);
2218 fprintf (sched_dump, " %s:[%d->%d]",
2219 reg_class_names[ira_pressure_classes[pci]],
2220 ref_pressure, ref_pressure + delta[cl]);
2221 }
2222 fprintf (sched_dump, "\n");
2223 }
2224 }
2225
2226 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2227 might have changed as well. */
2228 mix = num_pending_births;
2229 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2230 {
2231 cl = ira_pressure_classes[pci];
2232 mix |= delta[cl];
2233 mix |= model_update_pressure (&model_before_pressure,
2234 point, pci, delta[cl]);
2235 }
2236 }
2237 while (mix && point > model_curr_point);
2238
2239 if (print_p)
2240 fprintf (sched_dump, MODEL_BAR);
2241 }
2242
2243 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2244 check whether the insn's pattern needs restoring. */
2245 static bool
2246 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2247 {
2248 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2249 return false;
2250
2251 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2252 {
2253 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2254 gcc_assert (next == DEP_CON (dep));
2255 }
2256 else
2257 {
2258 struct dep_replacement *desc = DEP_REPLACE (dep);
2259 if (desc->insn != next)
2260 {
2261 gcc_assert (*desc->loc == desc->orig);
2262 return false;
2263 }
2264 }
2265 return true;
2266 }
2267 \f
2268 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2269 pressure on CL from P to P'. We use this to calculate a "base ECC",
2270 baseECC (CL, X), for each pressure class CL and each instruction X.
2271 Supposing X changes the pressure on CL from P to P', and that the
2272 maximum pressure on CL in the current model schedule is MP', then:
2273
2274 * if X occurs before or at the next point of maximum pressure in
2275 the model schedule and P' > MP', then:
2276
2277 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2278
2279 The idea is that the pressure after scheduling a fixed set of
2280 instructions -- in this case, the set up to and including the
2281 next maximum pressure point -- is going to be the same regardless
2282 of the order; we simply want to keep the intermediate pressure
2283 under control. Thus X has a cost of zero unless scheduling it
2284 now would exceed MP'.
2285
2286 If all increases in the set are by the same amount, no zero-cost
2287 instruction will ever cause the pressure to exceed MP'. However,
2288 if X is instead moved past an instruction X' with pressure in the
2289 range (MP' - (P' - P), MP'), the pressure at X' will increase
2290 beyond MP'. Since baseECC is very much a heuristic anyway,
2291 it doesn't seem worth the overhead of tracking cases like these.
2292
2293 The cost of exceeding MP' is always based on the original maximum
2294 pressure MP. This is so that going 2 registers over the original
2295 limit has the same cost regardless of whether it comes from two
2296 separate +1 deltas or from a single +2 delta.
2297
2298 * if X occurs after the next point of maximum pressure in the model
2299 schedule and P' > P, then:
2300
2301 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2302
2303 That is, if we move X forward across a point of maximum pressure,
2304 and if X increases the pressure by P' - P, then we conservatively
2305 assume that scheduling X next would increase the maximum pressure
2306 by P' - P. Again, the cost of doing this is based on the original
2307 maximum pressure MP, for the same reason as above.
2308
2309 * if P' < P, P > MP, and X occurs at or after the next point of
2310 maximum pressure, then:
2311
2312 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2313
2314 That is, if we have already exceeded the original maximum pressure MP,
2315 and if X might reduce the maximum pressure again -- or at least push
2316 it further back, and thus allow more scheduling freedom -- it is given
2317 a negative cost to reflect the improvement.
2318
2319 * otherwise,
2320
2321 baseECC (CL, X) = 0
2322
2323 In this case, X is not expected to affect the maximum pressure MP',
2324 so it has zero cost.
2325
2326 We then create a combined value baseECC (X) that is the sum of
2327 baseECC (CL, X) for each pressure class CL.
2328
2329 baseECC (X) could itself be used as the ECC value described above.
2330 However, this is often too conservative, in the sense that it
2331 tends to make high-priority instructions that increase pressure
2332 wait too long in cases where introducing a spill would be better.
2333 For this reason the final ECC is a priority-adjusted form of
2334 baseECC (X). Specifically, we calculate:
2335
2336 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2337 baseP = MAX { P (X) | baseECC (X) <= 0 }
2338
2339 Then:
2340
2341 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2342
2343 Thus an instruction's effect on pressure is ignored if it has a high
2344 enough priority relative to the ones that don't increase pressure.
2345 Negative values of baseECC (X) do not increase the priority of X
2346 itself, but they do make it harder for other instructions to
2347 increase the pressure further.
2348
2349 This pressure cost is deliberately timid. The intention has been
2350 to choose a heuristic that rarely interferes with the normal list
2351 scheduler in cases where that scheduler would produce good code.
2352 We simply want to curb some of its worst excesses. */
2353
2354 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2355
2356 Here we use the very simplistic cost model that every register above
2357 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2358 measures instead, such as one based on MEMORY_MOVE_COST. However:
2359
2360 (1) In order for an instruction to be scheduled, the higher cost
2361 would need to be justified in a single saving of that many stalls.
2362 This is overly pessimistic, because the benefit of spilling is
2363 often to avoid a sequence of several short stalls rather than
2364 a single long one.
2365
2366 (2) The cost is still arbitrary. Because we are not allocating
2367 registers during scheduling, we have no way of knowing for
2368 sure how many memory accesses will be required by each spill,
2369 where the spills will be placed within the block, or even
2370 which block(s) will contain the spills.
2371
2372 So a higher cost than 1 is often too conservative in practice,
2373 forcing blocks to contain unnecessary stalls instead of spill code.
2374 The simple cost below seems to be the best compromise. It reduces
2375 the interference with the normal list scheduler, which helps make
2376 it more suitable for a default-on option. */
2377
2378 static int
2379 model_spill_cost (int cl, int from, int to)
2380 {
2381 from = MAX (from, sched_class_regs_num[cl]);
2382 return MAX (to, from) - from;
2383 }
2384
2385 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2386 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2387 P' = P + DELTA. */
2388
2389 static int
2390 model_excess_group_cost (struct model_pressure_group *group,
2391 int point, int pci, int delta)
2392 {
2393 int pressure, cl;
2394
2395 cl = ira_pressure_classes[pci];
2396 if (delta < 0 && point >= group->limits[pci].point)
2397 {
2398 pressure = MAX (group->limits[pci].orig_pressure,
2399 curr_reg_pressure[cl] + delta);
2400 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2401 }
2402
2403 if (delta > 0)
2404 {
2405 if (point > group->limits[pci].point)
2406 pressure = group->limits[pci].pressure + delta;
2407 else
2408 pressure = curr_reg_pressure[cl] + delta;
2409
2410 if (pressure > group->limits[pci].pressure)
2411 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2412 pressure);
2413 }
2414
2415 return 0;
2416 }
2417
2418 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2419 if PRINT_P. */
2420
2421 static int
2422 model_excess_cost (rtx_insn *insn, bool print_p)
2423 {
2424 int point, pci, cl, cost, this_cost, delta;
2425 struct reg_pressure_data *insn_reg_pressure;
2426 int insn_death[N_REG_CLASSES];
2427
2428 calculate_reg_deaths (insn, insn_death);
2429 point = model_index (insn);
2430 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2431 cost = 0;
2432
2433 if (print_p)
2434 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2435 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2436
2437 /* Sum up the individual costs for each register class. */
2438 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2439 {
2440 cl = ira_pressure_classes[pci];
2441 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2442 this_cost = model_excess_group_cost (&model_before_pressure,
2443 point, pci, delta);
2444 cost += this_cost;
2445 if (print_p)
2446 fprintf (sched_dump, " %s:[%d base cost %d]",
2447 reg_class_names[cl], delta, this_cost);
2448 }
2449
2450 if (print_p)
2451 fprintf (sched_dump, "\n");
2452
2453 return cost;
2454 }
2455
2456 /* Dump the next points of maximum pressure for GROUP. */
2457
2458 static void
2459 model_dump_pressure_points (struct model_pressure_group *group)
2460 {
2461 int pci, cl;
2462
2463 fprintf (sched_dump, ";;\t\t| pressure points");
2464 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2465 {
2466 cl = ira_pressure_classes[pci];
2467 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2468 curr_reg_pressure[cl], group->limits[pci].pressure);
2469 if (group->limits[pci].point < model_num_insns)
2470 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2471 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2472 else
2473 fprintf (sched_dump, "end]");
2474 }
2475 fprintf (sched_dump, "\n");
2476 }
2477
2478 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2479
2480 static void
2481 model_set_excess_costs (rtx_insn **insns, int count)
2482 {
2483 int i, cost, priority_base, priority;
2484 bool print_p;
2485
2486 /* Record the baseECC value for each instruction in the model schedule,
2487 except that negative costs are converted to zero ones now rather than
2488 later. Do not assign a cost to debug instructions, since they must
2489 not change code-generation decisions. Experiments suggest we also
2490 get better results by not assigning a cost to instructions from
2491 a different block.
2492
2493 Set PRIORITY_BASE to baseP in the block comment above. This is the
2494 maximum priority of the "cheap" instructions, which should always
2495 include the next model instruction. */
2496 priority_base = 0;
2497 print_p = false;
2498 for (i = 0; i < count; i++)
2499 if (INSN_MODEL_INDEX (insns[i]))
2500 {
2501 if (sched_verbose >= 6 && !print_p)
2502 {
2503 fprintf (sched_dump, MODEL_BAR);
2504 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2505 model_dump_pressure_points (&model_before_pressure);
2506 fprintf (sched_dump, MODEL_BAR);
2507 print_p = true;
2508 }
2509 cost = model_excess_cost (insns[i], print_p);
2510 if (cost <= 0)
2511 {
2512 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2513 priority_base = MAX (priority_base, priority);
2514 cost = 0;
2515 }
2516 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2517 }
2518 if (print_p)
2519 fprintf (sched_dump, MODEL_BAR);
2520
2521 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2522 instruction. */
2523 for (i = 0; i < count; i++)
2524 {
2525 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2526 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2527 if (cost > 0 && priority > priority_base)
2528 {
2529 cost += priority_base - priority;
2530 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2531 }
2532 }
2533 }
2534 \f
2535
2536 /* Enum of rank_for_schedule heuristic decisions. */
2537 enum rfs_decision {
2538 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2539 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2540 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2541 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2542 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2543
2544 /* Corresponding strings for print outs. */
2545 static const char *rfs_str[RFS_N] = {
2546 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2547 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2548 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2549 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2550 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2551
2552 /* Statistical breakdown of rank_for_schedule decisions. */
2553 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2554 static rank_for_schedule_stats_t rank_for_schedule_stats;
2555
2556 /* Return the result of comparing insns TMP and TMP2 and update
2557 Rank_For_Schedule statistics. */
2558 static int
2559 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2560 {
2561 ++rank_for_schedule_stats.stats[decision];
2562 if (result < 0)
2563 INSN_LAST_RFS_WIN (tmp) = decision;
2564 else if (result > 0)
2565 INSN_LAST_RFS_WIN (tmp2) = decision;
2566 else
2567 gcc_unreachable ();
2568 return result;
2569 }
2570
2571 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2572 keeping normal insns in original order. */
2573
2574 static int
2575 rank_for_schedule_debug (const void *x, const void *y)
2576 {
2577 rtx_insn *tmp = *(rtx_insn * const *) y;
2578 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2579
2580 /* Schedule debug insns as early as possible. */
2581 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2582 return -1;
2583 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2584 return 1;
2585 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2586 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2587 else
2588 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2589 }
2590
2591 /* Returns a positive value if x is preferred; returns a negative value if
2592 y is preferred. Should never return 0, since that will make the sort
2593 unstable. */
2594
2595 static int
2596 rank_for_schedule (const void *x, const void *y)
2597 {
2598 rtx_insn *tmp = *(rtx_insn * const *) y;
2599 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2600 int tmp_class, tmp2_class;
2601 int val, priority_val, info_val, diff;
2602
2603 if (live_range_shrinkage_p)
2604 {
2605 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2606 code. */
2607 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2608 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2609 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2610 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2611 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2612 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2613 /* Sort by INSN_LUID (original insn order), so that we make the
2614 sort stable. This minimizes instruction movement, thus
2615 minimizing sched's effect on debugging and cross-jumping. */
2616 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2617 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2618 }
2619
2620 /* The insn in a schedule group should be issued the first. */
2621 if (flag_sched_group_heuristic &&
2622 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2623 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2624 tmp, tmp2);
2625
2626 /* Make sure that priority of TMP and TMP2 are initialized. */
2627 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2628
2629 if (sched_fusion)
2630 {
2631 /* The instruction that has the same fusion priority as the last
2632 instruction is the instruction we picked next. If that is not
2633 the case, we sort ready list firstly by fusion priority, then
2634 by priority, and at last by INSN_LUID. */
2635 int a = INSN_FUSION_PRIORITY (tmp);
2636 int b = INSN_FUSION_PRIORITY (tmp2);
2637 int last = -1;
2638
2639 if (last_nondebug_scheduled_insn
2640 && !NOTE_P (last_nondebug_scheduled_insn)
2641 && BLOCK_FOR_INSN (tmp)
2642 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2643 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2644
2645 if (a != last && b != last)
2646 {
2647 if (a == b)
2648 {
2649 a = INSN_PRIORITY (tmp);
2650 b = INSN_PRIORITY (tmp2);
2651 }
2652 if (a != b)
2653 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2654 else
2655 return rfs_result (RFS_FUSION,
2656 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2657 }
2658 else if (a == b)
2659 {
2660 gcc_assert (last_nondebug_scheduled_insn
2661 && !NOTE_P (last_nondebug_scheduled_insn));
2662 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2663
2664 a = abs (INSN_PRIORITY (tmp) - last);
2665 b = abs (INSN_PRIORITY (tmp2) - last);
2666 if (a != b)
2667 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2668 else
2669 return rfs_result (RFS_FUSION,
2670 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2671 }
2672 else if (a == last)
2673 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2674 else
2675 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2676 }
2677
2678 if (sched_pressure != SCHED_PRESSURE_NONE)
2679 {
2680 /* Prefer insn whose scheduling results in the smallest register
2681 pressure excess. */
2682 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2683 + insn_delay (tmp)
2684 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2685 - insn_delay (tmp2))))
2686 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2687 }
2688
2689 if (sched_pressure != SCHED_PRESSURE_NONE
2690 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2691 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2692 {
2693 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2694 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2695 }
2696
2697 /* If we are doing backtracking in this schedule, prefer insns that
2698 have forward dependencies with negative cost against an insn that
2699 was already scheduled. */
2700 if (current_sched_info->flags & DO_BACKTRACKING)
2701 {
2702 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2703 if (priority_val)
2704 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2705 }
2706
2707 /* Prefer insn with higher priority. */
2708 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2709
2710 if (flag_sched_critical_path_heuristic && priority_val)
2711 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2712
2713 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2714 {
2715 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2716 if (autopref != 0)
2717 return autopref;
2718 }
2719
2720 /* Prefer speculative insn with greater dependencies weakness. */
2721 if (flag_sched_spec_insn_heuristic && spec_info)
2722 {
2723 ds_t ds1, ds2;
2724 dw_t dw1, dw2;
2725 int dw;
2726
2727 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2728 if (ds1)
2729 dw1 = ds_weak (ds1);
2730 else
2731 dw1 = NO_DEP_WEAK;
2732
2733 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2734 if (ds2)
2735 dw2 = ds_weak (ds2);
2736 else
2737 dw2 = NO_DEP_WEAK;
2738
2739 dw = dw2 - dw1;
2740 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2741 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2742 }
2743
2744 info_val = (*current_sched_info->rank) (tmp, tmp2);
2745 if (flag_sched_rank_heuristic && info_val)
2746 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2747
2748 /* Compare insns based on their relation to the last scheduled
2749 non-debug insn. */
2750 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2751 {
2752 dep_t dep1;
2753 dep_t dep2;
2754 rtx_insn *last = last_nondebug_scheduled_insn;
2755
2756 /* Classify the instructions into three classes:
2757 1) Data dependent on last schedule insn.
2758 2) Anti/Output dependent on last scheduled insn.
2759 3) Independent of last scheduled insn, or has latency of one.
2760 Choose the insn from the highest numbered class if different. */
2761 dep1 = sd_find_dep_between (last, tmp, true);
2762
2763 if (dep1 == NULL || dep_cost (dep1) == 1)
2764 tmp_class = 3;
2765 else if (/* Data dependence. */
2766 DEP_TYPE (dep1) == REG_DEP_TRUE)
2767 tmp_class = 1;
2768 else
2769 tmp_class = 2;
2770
2771 dep2 = sd_find_dep_between (last, tmp2, true);
2772
2773 if (dep2 == NULL || dep_cost (dep2) == 1)
2774 tmp2_class = 3;
2775 else if (/* Data dependence. */
2776 DEP_TYPE (dep2) == REG_DEP_TRUE)
2777 tmp2_class = 1;
2778 else
2779 tmp2_class = 2;
2780
2781 if ((val = tmp2_class - tmp_class))
2782 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2783 }
2784
2785 /* Prefer instructions that occur earlier in the model schedule. */
2786 if (sched_pressure == SCHED_PRESSURE_MODEL
2787 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2788 {
2789 diff = model_index (tmp) - model_index (tmp2);
2790 gcc_assert (diff != 0);
2791 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2792 }
2793
2794 /* Prefer the insn which has more later insns that depend on it.
2795 This gives the scheduler more freedom when scheduling later
2796 instructions at the expense of added register pressure. */
2797
2798 val = (dep_list_size (tmp2, SD_LIST_FORW)
2799 - dep_list_size (tmp, SD_LIST_FORW));
2800
2801 if (flag_sched_dep_count_heuristic && val != 0)
2802 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2803
2804 /* If insns are equally good, sort by INSN_LUID (original insn order),
2805 so that we make the sort stable. This minimizes instruction movement,
2806 thus minimizing sched's effect on debugging and cross-jumping. */
2807 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2808 }
2809
2810 /* Resort the array A in which only element at index N may be out of order. */
2811
2812 HAIFA_INLINE static void
2813 swap_sort (rtx_insn **a, int n)
2814 {
2815 rtx_insn *insn = a[n - 1];
2816 int i = n - 2;
2817
2818 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2819 {
2820 a[i + 1] = a[i];
2821 i -= 1;
2822 }
2823 a[i + 1] = insn;
2824 }
2825
2826 /* Add INSN to the insn queue so that it can be executed at least
2827 N_CYCLES after the currently executing insn. Preserve insns
2828 chain for debugging purposes. REASON will be printed in debugging
2829 output. */
2830
2831 HAIFA_INLINE static void
2832 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2833 {
2834 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2835 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2836 int new_tick;
2837
2838 gcc_assert (n_cycles <= max_insn_queue_index);
2839 gcc_assert (!DEBUG_INSN_P (insn));
2840
2841 insn_queue[next_q] = link;
2842 q_size += 1;
2843
2844 if (sched_verbose >= 2)
2845 {
2846 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2847 (*current_sched_info->print_insn) (insn, 0));
2848
2849 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2850 }
2851
2852 QUEUE_INDEX (insn) = next_q;
2853
2854 if (current_sched_info->flags & DO_BACKTRACKING)
2855 {
2856 new_tick = clock_var + n_cycles;
2857 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2858 INSN_TICK (insn) = new_tick;
2859
2860 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2861 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2862 {
2863 must_backtrack = true;
2864 if (sched_verbose >= 2)
2865 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2866 }
2867 }
2868 }
2869
2870 /* Remove INSN from queue. */
2871 static void
2872 queue_remove (rtx_insn *insn)
2873 {
2874 gcc_assert (QUEUE_INDEX (insn) >= 0);
2875 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2876 q_size--;
2877 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2878 }
2879
2880 /* Return a pointer to the bottom of the ready list, i.e. the insn
2881 with the lowest priority. */
2882
2883 rtx_insn **
2884 ready_lastpos (struct ready_list *ready)
2885 {
2886 gcc_assert (ready->n_ready >= 1);
2887 return ready->vec + ready->first - ready->n_ready + 1;
2888 }
2889
2890 /* Add an element INSN to the ready list so that it ends up with the
2891 lowest/highest priority depending on FIRST_P. */
2892
2893 HAIFA_INLINE static void
2894 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2895 {
2896 if (!first_p)
2897 {
2898 if (ready->first == ready->n_ready)
2899 {
2900 memmove (ready->vec + ready->veclen - ready->n_ready,
2901 ready_lastpos (ready),
2902 ready->n_ready * sizeof (rtx));
2903 ready->first = ready->veclen - 1;
2904 }
2905 ready->vec[ready->first - ready->n_ready] = insn;
2906 }
2907 else
2908 {
2909 if (ready->first == ready->veclen - 1)
2910 {
2911 if (ready->n_ready)
2912 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2913 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2914 ready_lastpos (ready),
2915 ready->n_ready * sizeof (rtx));
2916 ready->first = ready->veclen - 2;
2917 }
2918 ready->vec[++(ready->first)] = insn;
2919 }
2920
2921 ready->n_ready++;
2922 if (DEBUG_INSN_P (insn))
2923 ready->n_debug++;
2924
2925 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2926 QUEUE_INDEX (insn) = QUEUE_READY;
2927
2928 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2929 && INSN_EXACT_TICK (insn) < clock_var)
2930 {
2931 must_backtrack = true;
2932 }
2933 }
2934
2935 /* Remove the element with the highest priority from the ready list and
2936 return it. */
2937
2938 HAIFA_INLINE static rtx_insn *
2939 ready_remove_first (struct ready_list *ready)
2940 {
2941 rtx_insn *t;
2942
2943 gcc_assert (ready->n_ready);
2944 t = ready->vec[ready->first--];
2945 ready->n_ready--;
2946 if (DEBUG_INSN_P (t))
2947 ready->n_debug--;
2948 /* If the queue becomes empty, reset it. */
2949 if (ready->n_ready == 0)
2950 ready->first = ready->veclen - 1;
2951
2952 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2953 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2954
2955 return t;
2956 }
2957
2958 /* The following code implements multi-pass scheduling for the first
2959 cycle. In other words, we will try to choose ready insn which
2960 permits to start maximum number of insns on the same cycle. */
2961
2962 /* Return a pointer to the element INDEX from the ready. INDEX for
2963 insn with the highest priority is 0, and the lowest priority has
2964 N_READY - 1. */
2965
2966 rtx_insn *
2967 ready_element (struct ready_list *ready, int index)
2968 {
2969 gcc_assert (ready->n_ready && index < ready->n_ready);
2970
2971 return ready->vec[ready->first - index];
2972 }
2973
2974 /* Remove the element INDEX from the ready list and return it. INDEX
2975 for insn with the highest priority is 0, and the lowest priority
2976 has N_READY - 1. */
2977
2978 HAIFA_INLINE static rtx_insn *
2979 ready_remove (struct ready_list *ready, int index)
2980 {
2981 rtx_insn *t;
2982 int i;
2983
2984 if (index == 0)
2985 return ready_remove_first (ready);
2986 gcc_assert (ready->n_ready && index < ready->n_ready);
2987 t = ready->vec[ready->first - index];
2988 ready->n_ready--;
2989 if (DEBUG_INSN_P (t))
2990 ready->n_debug--;
2991 for (i = index; i < ready->n_ready; i++)
2992 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2993 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2994 return t;
2995 }
2996
2997 /* Remove INSN from the ready list. */
2998 static void
2999 ready_remove_insn (rtx_insn *insn)
3000 {
3001 int i;
3002
3003 for (i = 0; i < readyp->n_ready; i++)
3004 if (ready_element (readyp, i) == insn)
3005 {
3006 ready_remove (readyp, i);
3007 return;
3008 }
3009 gcc_unreachable ();
3010 }
3011
3012 /* Calculate difference of two statistics set WAS and NOW.
3013 Result returned in WAS. */
3014 static void
3015 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3016 const rank_for_schedule_stats_t *now)
3017 {
3018 for (int i = 0; i < RFS_N; ++i)
3019 was->stats[i] = now->stats[i] - was->stats[i];
3020 }
3021
3022 /* Print rank_for_schedule statistics. */
3023 static void
3024 print_rank_for_schedule_stats (const char *prefix,
3025 const rank_for_schedule_stats_t *stats,
3026 struct ready_list *ready)
3027 {
3028 for (int i = 0; i < RFS_N; ++i)
3029 if (stats->stats[i])
3030 {
3031 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3032
3033 if (ready != NULL)
3034 /* Print out insns that won due to RFS_<I>. */
3035 {
3036 rtx_insn **p = ready_lastpos (ready);
3037
3038 fprintf (sched_dump, ":");
3039 /* Start with 1 since least-priority insn didn't have any wins. */
3040 for (int j = 1; j < ready->n_ready; ++j)
3041 if (INSN_LAST_RFS_WIN (p[j]) == i)
3042 fprintf (sched_dump, " %s",
3043 (*current_sched_info->print_insn) (p[j], 0));
3044 }
3045 fprintf (sched_dump, "\n");
3046 }
3047 }
3048
3049 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3050 of array. */
3051 static void
3052 ready_sort_debug (struct ready_list *ready)
3053 {
3054 int i;
3055 rtx_insn **first = ready_lastpos (ready);
3056
3057 for (i = 0; i < ready->n_ready; ++i)
3058 if (!DEBUG_INSN_P (first[i]))
3059 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3060
3061 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3062 }
3063
3064 /* Sort non-debug insns in the ready list READY by ascending priority.
3065 Assumes that all debug insns are separated from the real insns. */
3066 static void
3067 ready_sort_real (struct ready_list *ready)
3068 {
3069 int i;
3070 rtx_insn **first = ready_lastpos (ready);
3071 int n_ready_real = ready->n_ready - ready->n_debug;
3072
3073 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3074 for (i = 0; i < n_ready_real; ++i)
3075 setup_insn_reg_pressure_info (first[i]);
3076 else if (sched_pressure == SCHED_PRESSURE_MODEL
3077 && model_curr_point < model_num_insns)
3078 model_set_excess_costs (first, n_ready_real);
3079
3080 rank_for_schedule_stats_t stats1;
3081 if (sched_verbose >= 4)
3082 stats1 = rank_for_schedule_stats;
3083
3084 if (n_ready_real == 2)
3085 swap_sort (first, n_ready_real);
3086 else if (n_ready_real > 2)
3087 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3088
3089 if (sched_verbose >= 4)
3090 {
3091 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3092 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3093 }
3094 }
3095
3096 /* Sort the ready list READY by ascending priority. */
3097 static void
3098 ready_sort (struct ready_list *ready)
3099 {
3100 if (ready->n_debug > 0)
3101 ready_sort_debug (ready);
3102 else
3103 ready_sort_real (ready);
3104 }
3105
3106 /* PREV is an insn that is ready to execute. Adjust its priority if that
3107 will help shorten or lengthen register lifetimes as appropriate. Also
3108 provide a hook for the target to tweak itself. */
3109
3110 HAIFA_INLINE static void
3111 adjust_priority (rtx_insn *prev)
3112 {
3113 /* ??? There used to be code here to try and estimate how an insn
3114 affected register lifetimes, but it did it by looking at REG_DEAD
3115 notes, which we removed in schedule_region. Nor did it try to
3116 take into account register pressure or anything useful like that.
3117
3118 Revisit when we have a machine model to work with and not before. */
3119
3120 if (targetm.sched.adjust_priority)
3121 INSN_PRIORITY (prev) =
3122 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3123 }
3124
3125 /* Advance DFA state STATE on one cycle. */
3126 void
3127 advance_state (state_t state)
3128 {
3129 if (targetm.sched.dfa_pre_advance_cycle)
3130 targetm.sched.dfa_pre_advance_cycle ();
3131
3132 if (targetm.sched.dfa_pre_cycle_insn)
3133 state_transition (state,
3134 targetm.sched.dfa_pre_cycle_insn ());
3135
3136 state_transition (state, NULL);
3137
3138 if (targetm.sched.dfa_post_cycle_insn)
3139 state_transition (state,
3140 targetm.sched.dfa_post_cycle_insn ());
3141
3142 if (targetm.sched.dfa_post_advance_cycle)
3143 targetm.sched.dfa_post_advance_cycle ();
3144 }
3145
3146 /* Advance time on one cycle. */
3147 HAIFA_INLINE static void
3148 advance_one_cycle (void)
3149 {
3150 advance_state (curr_state);
3151 if (sched_verbose >= 4)
3152 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3153 }
3154
3155 /* Update register pressure after scheduling INSN. */
3156 static void
3157 update_register_pressure (rtx_insn *insn)
3158 {
3159 struct reg_use_data *use;
3160 struct reg_set_data *set;
3161
3162 gcc_checking_assert (!DEBUG_INSN_P (insn));
3163
3164 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3165 if (dying_use_p (use))
3166 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3167 use->regno, false);
3168 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3169 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3170 set->regno, true);
3171 }
3172
3173 /* Set up or update (if UPDATE_P) max register pressure (see its
3174 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3175 after insn AFTER. */
3176 static void
3177 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3178 {
3179 int i, p;
3180 bool eq_p;
3181 rtx_insn *insn;
3182 static int max_reg_pressure[N_REG_CLASSES];
3183
3184 save_reg_pressure ();
3185 for (i = 0; i < ira_pressure_classes_num; i++)
3186 max_reg_pressure[ira_pressure_classes[i]]
3187 = curr_reg_pressure[ira_pressure_classes[i]];
3188 for (insn = NEXT_INSN (after);
3189 insn != NULL_RTX && ! BARRIER_P (insn)
3190 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3191 insn = NEXT_INSN (insn))
3192 if (NONDEBUG_INSN_P (insn))
3193 {
3194 eq_p = true;
3195 for (i = 0; i < ira_pressure_classes_num; i++)
3196 {
3197 p = max_reg_pressure[ira_pressure_classes[i]];
3198 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3199 {
3200 eq_p = false;
3201 INSN_MAX_REG_PRESSURE (insn)[i]
3202 = max_reg_pressure[ira_pressure_classes[i]];
3203 }
3204 }
3205 if (update_p && eq_p)
3206 break;
3207 update_register_pressure (insn);
3208 for (i = 0; i < ira_pressure_classes_num; i++)
3209 if (max_reg_pressure[ira_pressure_classes[i]]
3210 < curr_reg_pressure[ira_pressure_classes[i]])
3211 max_reg_pressure[ira_pressure_classes[i]]
3212 = curr_reg_pressure[ira_pressure_classes[i]];
3213 }
3214 restore_reg_pressure ();
3215 }
3216
3217 /* Update the current register pressure after scheduling INSN. Update
3218 also max register pressure for unscheduled insns of the current
3219 BB. */
3220 static void
3221 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3222 {
3223 int i;
3224 int before[N_REG_CLASSES];
3225
3226 for (i = 0; i < ira_pressure_classes_num; i++)
3227 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3228 update_register_pressure (insn);
3229 for (i = 0; i < ira_pressure_classes_num; i++)
3230 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3231 break;
3232 if (i < ira_pressure_classes_num)
3233 setup_insn_max_reg_pressure (insn, true);
3234 }
3235
3236 /* Set up register pressure at the beginning of basic block BB whose
3237 insns starting after insn AFTER. Set up also max register pressure
3238 for all insns of the basic block. */
3239 void
3240 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3241 {
3242 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3243 initiate_bb_reg_pressure_info (bb);
3244 setup_insn_max_reg_pressure (after, false);
3245 }
3246 \f
3247 /* If doing predication while scheduling, verify whether INSN, which
3248 has just been scheduled, clobbers the conditions of any
3249 instructions that must be predicated in order to break their
3250 dependencies. If so, remove them from the queues so that they will
3251 only be scheduled once their control dependency is resolved. */
3252
3253 static void
3254 check_clobbered_conditions (rtx_insn *insn)
3255 {
3256 HARD_REG_SET t;
3257 int i;
3258
3259 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3260 return;
3261
3262 find_all_hard_reg_sets (insn, &t, true);
3263
3264 restart:
3265 for (i = 0; i < ready.n_ready; i++)
3266 {
3267 rtx_insn *x = ready_element (&ready, i);
3268 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3269 {
3270 ready_remove_insn (x);
3271 goto restart;
3272 }
3273 }
3274 for (i = 0; i <= max_insn_queue_index; i++)
3275 {
3276 rtx_insn_list *link;
3277 int q = NEXT_Q_AFTER (q_ptr, i);
3278
3279 restart_queue:
3280 for (link = insn_queue[q]; link; link = link->next ())
3281 {
3282 rtx_insn *x = link->insn ();
3283 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3284 {
3285 queue_remove (x);
3286 goto restart_queue;
3287 }
3288 }
3289 }
3290 }
3291 \f
3292 /* Return (in order):
3293
3294 - positive if INSN adversely affects the pressure on one
3295 register class
3296
3297 - negative if INSN reduces the pressure on one register class
3298
3299 - 0 if INSN doesn't affect the pressure on any register class. */
3300
3301 static int
3302 model_classify_pressure (struct model_insn_info *insn)
3303 {
3304 struct reg_pressure_data *reg_pressure;
3305 int death[N_REG_CLASSES];
3306 int pci, cl, sum;
3307
3308 calculate_reg_deaths (insn->insn, death);
3309 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3310 sum = 0;
3311 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3312 {
3313 cl = ira_pressure_classes[pci];
3314 if (death[cl] < reg_pressure[pci].set_increase)
3315 return 1;
3316 sum += reg_pressure[pci].set_increase - death[cl];
3317 }
3318 return sum;
3319 }
3320
3321 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3322
3323 static int
3324 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3325 {
3326 unsigned int height1, height2;
3327 unsigned int priority1, priority2;
3328
3329 /* Prefer instructions with a higher model priority. */
3330 if (insn1->model_priority != insn2->model_priority)
3331 return insn1->model_priority > insn2->model_priority;
3332
3333 /* Combine the length of the longest path of satisfied true dependencies
3334 that leads to each instruction (depth) with the length of the longest
3335 path of any dependencies that leads from the instruction (alap).
3336 Prefer instructions with the greatest combined length. If the combined
3337 lengths are equal, prefer instructions with the greatest depth.
3338
3339 The idea is that, if we have a set S of "equal" instructions that each
3340 have ALAP value X, and we pick one such instruction I, any true-dependent
3341 successors of I that have ALAP value X - 1 should be preferred over S.
3342 This encourages the schedule to be "narrow" rather than "wide".
3343 However, if I is a low-priority instruction that we decided to
3344 schedule because of its model_classify_pressure, and if there
3345 is a set of higher-priority instructions T, the aforementioned
3346 successors of I should not have the edge over T. */
3347 height1 = insn1->depth + insn1->alap;
3348 height2 = insn2->depth + insn2->alap;
3349 if (height1 != height2)
3350 return height1 > height2;
3351 if (insn1->depth != insn2->depth)
3352 return insn1->depth > insn2->depth;
3353
3354 /* We have no real preference between INSN1 an INSN2 as far as attempts
3355 to reduce pressure go. Prefer instructions with higher priorities. */
3356 priority1 = INSN_PRIORITY (insn1->insn);
3357 priority2 = INSN_PRIORITY (insn2->insn);
3358 if (priority1 != priority2)
3359 return priority1 > priority2;
3360
3361 /* Use the original rtl sequence as a tie-breaker. */
3362 return insn1 < insn2;
3363 }
3364
3365 /* Add INSN to the model worklist immediately after PREV. Add it to the
3366 beginning of the list if PREV is null. */
3367
3368 static void
3369 model_add_to_worklist_at (struct model_insn_info *insn,
3370 struct model_insn_info *prev)
3371 {
3372 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3373 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3374
3375 insn->prev = prev;
3376 if (prev)
3377 {
3378 insn->next = prev->next;
3379 prev->next = insn;
3380 }
3381 else
3382 {
3383 insn->next = model_worklist;
3384 model_worklist = insn;
3385 }
3386 if (insn->next)
3387 insn->next->prev = insn;
3388 }
3389
3390 /* Remove INSN from the model worklist. */
3391
3392 static void
3393 model_remove_from_worklist (struct model_insn_info *insn)
3394 {
3395 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3396 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3397
3398 if (insn->prev)
3399 insn->prev->next = insn->next;
3400 else
3401 model_worklist = insn->next;
3402 if (insn->next)
3403 insn->next->prev = insn->prev;
3404 }
3405
3406 /* Add INSN to the model worklist. Start looking for a suitable position
3407 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3408 insns either side. A null PREV indicates the beginning of the list and
3409 a null NEXT indicates the end. */
3410
3411 static void
3412 model_add_to_worklist (struct model_insn_info *insn,
3413 struct model_insn_info *prev,
3414 struct model_insn_info *next)
3415 {
3416 int count;
3417
3418 count = MAX_SCHED_READY_INSNS;
3419 if (count > 0 && prev && model_order_p (insn, prev))
3420 do
3421 {
3422 count--;
3423 prev = prev->prev;
3424 }
3425 while (count > 0 && prev && model_order_p (insn, prev));
3426 else
3427 while (count > 0 && next && model_order_p (next, insn))
3428 {
3429 count--;
3430 prev = next;
3431 next = next->next;
3432 }
3433 model_add_to_worklist_at (insn, prev);
3434 }
3435
3436 /* INSN may now have a higher priority (in the model_order_p sense)
3437 than before. Move it up the worklist if necessary. */
3438
3439 static void
3440 model_promote_insn (struct model_insn_info *insn)
3441 {
3442 struct model_insn_info *prev;
3443 int count;
3444
3445 prev = insn->prev;
3446 count = MAX_SCHED_READY_INSNS;
3447 while (count > 0 && prev && model_order_p (insn, prev))
3448 {
3449 count--;
3450 prev = prev->prev;
3451 }
3452 if (prev != insn->prev)
3453 {
3454 model_remove_from_worklist (insn);
3455 model_add_to_worklist_at (insn, prev);
3456 }
3457 }
3458
3459 /* Add INSN to the end of the model schedule. */
3460
3461 static void
3462 model_add_to_schedule (rtx_insn *insn)
3463 {
3464 unsigned int point;
3465
3466 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3467 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3468
3469 point = model_schedule.length ();
3470 model_schedule.quick_push (insn);
3471 INSN_MODEL_INDEX (insn) = point + 1;
3472 }
3473
3474 /* Analyze the instructions that are to be scheduled, setting up
3475 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3476 instructions to model_worklist. */
3477
3478 static void
3479 model_analyze_insns (void)
3480 {
3481 rtx_insn *start, *end, *iter;
3482 sd_iterator_def sd_it;
3483 dep_t dep;
3484 struct model_insn_info *insn, *con;
3485
3486 model_num_insns = 0;
3487 start = PREV_INSN (current_sched_info->next_tail);
3488 end = current_sched_info->prev_head;
3489 for (iter = start; iter != end; iter = PREV_INSN (iter))
3490 if (NONDEBUG_INSN_P (iter))
3491 {
3492 insn = MODEL_INSN_INFO (iter);
3493 insn->insn = iter;
3494 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3495 {
3496 con = MODEL_INSN_INFO (DEP_CON (dep));
3497 if (con->insn && insn->alap < con->alap + 1)
3498 insn->alap = con->alap + 1;
3499 }
3500
3501 insn->old_queue = QUEUE_INDEX (iter);
3502 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3503
3504 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3505 if (insn->unscheduled_preds == 0)
3506 model_add_to_worklist (insn, NULL, model_worklist);
3507
3508 model_num_insns++;
3509 }
3510 }
3511
3512 /* The global state describes the register pressure at the start of the
3513 model schedule. Initialize GROUP accordingly. */
3514
3515 static void
3516 model_init_pressure_group (struct model_pressure_group *group)
3517 {
3518 int pci, cl;
3519
3520 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3521 {
3522 cl = ira_pressure_classes[pci];
3523 group->limits[pci].pressure = curr_reg_pressure[cl];
3524 group->limits[pci].point = 0;
3525 }
3526 /* Use index model_num_insns to record the state after the last
3527 instruction in the model schedule. */
3528 group->model = XNEWVEC (struct model_pressure_data,
3529 (model_num_insns + 1) * ira_pressure_classes_num);
3530 }
3531
3532 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3533 Update the maximum pressure for the whole schedule. */
3534
3535 static void
3536 model_record_pressure (struct model_pressure_group *group,
3537 int point, int pci, int pressure)
3538 {
3539 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3540 if (group->limits[pci].pressure < pressure)
3541 {
3542 group->limits[pci].pressure = pressure;
3543 group->limits[pci].point = point;
3544 }
3545 }
3546
3547 /* INSN has just been added to the end of the model schedule. Record its
3548 register-pressure information. */
3549
3550 static void
3551 model_record_pressures (struct model_insn_info *insn)
3552 {
3553 struct reg_pressure_data *reg_pressure;
3554 int point, pci, cl, delta;
3555 int death[N_REG_CLASSES];
3556
3557 point = model_index (insn->insn);
3558 if (sched_verbose >= 2)
3559 {
3560 if (point == 0)
3561 {
3562 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3563 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3564 }
3565 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3566 point, INSN_UID (insn->insn), insn->model_priority,
3567 insn->depth + insn->alap, insn->depth,
3568 INSN_PRIORITY (insn->insn),
3569 str_pattern_slim (PATTERN (insn->insn)));
3570 }
3571 calculate_reg_deaths (insn->insn, death);
3572 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3573 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3574 {
3575 cl = ira_pressure_classes[pci];
3576 delta = reg_pressure[pci].set_increase - death[cl];
3577 if (sched_verbose >= 2)
3578 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3579 curr_reg_pressure[cl], delta);
3580 model_record_pressure (&model_before_pressure, point, pci,
3581 curr_reg_pressure[cl]);
3582 }
3583 if (sched_verbose >= 2)
3584 fprintf (sched_dump, "\n");
3585 }
3586
3587 /* All instructions have been added to the model schedule. Record the
3588 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3589
3590 static void
3591 model_record_final_pressures (struct model_pressure_group *group)
3592 {
3593 int point, pci, max_pressure, ref_pressure, cl;
3594
3595 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3596 {
3597 /* Record the final pressure for this class. */
3598 cl = ira_pressure_classes[pci];
3599 point = model_num_insns;
3600 ref_pressure = curr_reg_pressure[cl];
3601 model_record_pressure (group, point, pci, ref_pressure);
3602
3603 /* Record the original maximum pressure. */
3604 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3605
3606 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3607 max_pressure = ref_pressure;
3608 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3609 while (point > 0)
3610 {
3611 point--;
3612 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3613 max_pressure = MAX (max_pressure, ref_pressure);
3614 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3615 }
3616 }
3617 }
3618
3619 /* Update all successors of INSN, given that INSN has just been scheduled. */
3620
3621 static void
3622 model_add_successors_to_worklist (struct model_insn_info *insn)
3623 {
3624 sd_iterator_def sd_it;
3625 struct model_insn_info *con;
3626 dep_t dep;
3627
3628 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3629 {
3630 con = MODEL_INSN_INFO (DEP_CON (dep));
3631 /* Ignore debug instructions, and instructions from other blocks. */
3632 if (con->insn)
3633 {
3634 con->unscheduled_preds--;
3635
3636 /* Update the depth field of each true-dependent successor.
3637 Increasing the depth gives them a higher priority than
3638 before. */
3639 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3640 {
3641 con->depth = insn->depth + 1;
3642 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3643 model_promote_insn (con);
3644 }
3645
3646 /* If this is a true dependency, or if there are no remaining
3647 dependencies for CON (meaning that CON only had non-true
3648 dependencies), make sure that CON is on the worklist.
3649 We don't bother otherwise because it would tend to fill the
3650 worklist with a lot of low-priority instructions that are not
3651 yet ready to issue. */
3652 if ((con->depth > 0 || con->unscheduled_preds == 0)
3653 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3654 model_add_to_worklist (con, insn, insn->next);
3655 }
3656 }
3657 }
3658
3659 /* Give INSN a higher priority than any current instruction, then give
3660 unscheduled predecessors of INSN a higher priority still. If any of
3661 those predecessors are not on the model worklist, do the same for its
3662 predecessors, and so on. */
3663
3664 static void
3665 model_promote_predecessors (struct model_insn_info *insn)
3666 {
3667 struct model_insn_info *pro, *first;
3668 sd_iterator_def sd_it;
3669 dep_t dep;
3670
3671 if (sched_verbose >= 7)
3672 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3673 INSN_UID (insn->insn), model_next_priority);
3674 insn->model_priority = model_next_priority++;
3675 model_remove_from_worklist (insn);
3676 model_add_to_worklist_at (insn, NULL);
3677
3678 first = NULL;
3679 for (;;)
3680 {
3681 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3682 {
3683 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3684 /* The first test is to ignore debug instructions, and instructions
3685 from other blocks. */
3686 if (pro->insn
3687 && pro->model_priority != model_next_priority
3688 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3689 {
3690 pro->model_priority = model_next_priority;
3691 if (sched_verbose >= 7)
3692 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3693 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3694 {
3695 /* PRO is already in the worklist, but it now has
3696 a higher priority than before. Move it at the
3697 appropriate place. */
3698 model_remove_from_worklist (pro);
3699 model_add_to_worklist (pro, NULL, model_worklist);
3700 }
3701 else
3702 {
3703 /* PRO isn't in the worklist. Recursively process
3704 its predecessors until we find one that is. */
3705 pro->next = first;
3706 first = pro;
3707 }
3708 }
3709 }
3710 if (!first)
3711 break;
3712 insn = first;
3713 first = insn->next;
3714 }
3715 if (sched_verbose >= 7)
3716 fprintf (sched_dump, " = %d\n", model_next_priority);
3717 model_next_priority++;
3718 }
3719
3720 /* Pick one instruction from model_worklist and process it. */
3721
3722 static void
3723 model_choose_insn (void)
3724 {
3725 struct model_insn_info *insn, *fallback;
3726 int count;
3727
3728 if (sched_verbose >= 7)
3729 {
3730 fprintf (sched_dump, ";;\t+--- worklist:\n");
3731 insn = model_worklist;
3732 count = MAX_SCHED_READY_INSNS;
3733 while (count > 0 && insn)
3734 {
3735 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3736 INSN_UID (insn->insn), insn->model_priority,
3737 insn->depth + insn->alap, insn->depth,
3738 INSN_PRIORITY (insn->insn));
3739 count--;
3740 insn = insn->next;
3741 }
3742 }
3743
3744 /* Look for a ready instruction whose model_classify_priority is zero
3745 or negative, picking the highest-priority one. Adding such an
3746 instruction to the schedule now should do no harm, and may actually
3747 do some good.
3748
3749 Failing that, see whether there is an instruction with the highest
3750 extant model_priority that is not yet ready, but which would reduce
3751 pressure if it became ready. This is designed to catch cases like:
3752
3753 (set (mem (reg R1)) (reg R2))
3754
3755 where the instruction is the last remaining use of R1 and where the
3756 value of R2 is not yet available (or vice versa). The death of R1
3757 means that this instruction already reduces pressure. It is of
3758 course possible that the computation of R2 involves other registers
3759 that are hard to kill, but such cases are rare enough for this
3760 heuristic to be a win in general.
3761
3762 Failing that, just pick the highest-priority instruction in the
3763 worklist. */
3764 count = MAX_SCHED_READY_INSNS;
3765 insn = model_worklist;
3766 fallback = 0;
3767 for (;;)
3768 {
3769 if (count == 0 || !insn)
3770 {
3771 insn = fallback ? fallback : model_worklist;
3772 break;
3773 }
3774 if (insn->unscheduled_preds)
3775 {
3776 if (model_worklist->model_priority == insn->model_priority
3777 && !fallback
3778 && model_classify_pressure (insn) < 0)
3779 fallback = insn;
3780 }
3781 else
3782 {
3783 if (model_classify_pressure (insn) <= 0)
3784 break;
3785 }
3786 count--;
3787 insn = insn->next;
3788 }
3789
3790 if (sched_verbose >= 7 && insn != model_worklist)
3791 {
3792 if (insn->unscheduled_preds)
3793 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3794 INSN_UID (insn->insn));
3795 else
3796 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3797 INSN_UID (insn->insn));
3798 }
3799 if (insn->unscheduled_preds)
3800 /* INSN isn't yet ready to issue. Give all its predecessors the
3801 highest priority. */
3802 model_promote_predecessors (insn);
3803 else
3804 {
3805 /* INSN is ready. Add it to the end of model_schedule and
3806 process its successors. */
3807 model_add_successors_to_worklist (insn);
3808 model_remove_from_worklist (insn);
3809 model_add_to_schedule (insn->insn);
3810 model_record_pressures (insn);
3811 update_register_pressure (insn->insn);
3812 }
3813 }
3814
3815 /* Restore all QUEUE_INDEXs to the values that they had before
3816 model_start_schedule was called. */
3817
3818 static void
3819 model_reset_queue_indices (void)
3820 {
3821 unsigned int i;
3822 rtx_insn *insn;
3823
3824 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3825 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3826 }
3827
3828 /* We have calculated the model schedule and spill costs. Print a summary
3829 to sched_dump. */
3830
3831 static void
3832 model_dump_pressure_summary (void)
3833 {
3834 int pci, cl;
3835
3836 fprintf (sched_dump, ";; Pressure summary:");
3837 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3838 {
3839 cl = ira_pressure_classes[pci];
3840 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3841 model_before_pressure.limits[pci].pressure);
3842 }
3843 fprintf (sched_dump, "\n\n");
3844 }
3845
3846 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3847 scheduling region. */
3848
3849 static void
3850 model_start_schedule (basic_block bb)
3851 {
3852 model_next_priority = 1;
3853 model_schedule.create (sched_max_luid);
3854 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3855
3856 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3857 initiate_reg_pressure_info (df_get_live_in (bb));
3858
3859 model_analyze_insns ();
3860 model_init_pressure_group (&model_before_pressure);
3861 while (model_worklist)
3862 model_choose_insn ();
3863 gcc_assert (model_num_insns == (int) model_schedule.length ());
3864 if (sched_verbose >= 2)
3865 fprintf (sched_dump, "\n");
3866
3867 model_record_final_pressures (&model_before_pressure);
3868 model_reset_queue_indices ();
3869
3870 XDELETEVEC (model_insns);
3871
3872 model_curr_point = 0;
3873 initiate_reg_pressure_info (df_get_live_in (bb));
3874 if (sched_verbose >= 1)
3875 model_dump_pressure_summary ();
3876 }
3877
3878 /* Free the information associated with GROUP. */
3879
3880 static void
3881 model_finalize_pressure_group (struct model_pressure_group *group)
3882 {
3883 XDELETEVEC (group->model);
3884 }
3885
3886 /* Free the information created by model_start_schedule. */
3887
3888 static void
3889 model_end_schedule (void)
3890 {
3891 model_finalize_pressure_group (&model_before_pressure);
3892 model_schedule.release ();
3893 }
3894
3895 /* Prepare reg pressure scheduling for basic block BB. */
3896 static void
3897 sched_pressure_start_bb (basic_block bb)
3898 {
3899 /* Set the number of available registers for each class taking into account
3900 relative probability of current basic block versus function prologue and
3901 epilogue.
3902 * If the basic block executes much more often than the prologue/epilogue
3903 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3904 nil, so the effective number of available registers is
3905 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
3906 * If the basic block executes as often as the prologue/epilogue,
3907 then spill in the block is as costly as in the prologue, so the effective
3908 number of available registers is
3909 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3910 - call_saved_regs_num[cl]).
3911 Note that all-else-equal, we prefer to spill in the prologue, since that
3912 allows "extra" registers for other basic blocks of the function.
3913 * If the basic block is on the cold path of the function and executes
3914 rarely, then we should always prefer to spill in the block, rather than
3915 in the prologue/epilogue. The effective number of available register is
3916 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3917 - call_saved_regs_num[cl]). */
3918 {
3919 int i;
3920 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3921 int bb_freq = bb->frequency;
3922
3923 if (bb_freq == 0)
3924 {
3925 if (entry_freq == 0)
3926 entry_freq = bb_freq = 1;
3927 }
3928 if (bb_freq < entry_freq)
3929 bb_freq = entry_freq;
3930
3931 for (i = 0; i < ira_pressure_classes_num; ++i)
3932 {
3933 enum reg_class cl = ira_pressure_classes[i];
3934 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3935 - fixed_regs_num[cl];
3936 sched_class_regs_num[cl]
3937 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
3938 }
3939 }
3940
3941 if (sched_pressure == SCHED_PRESSURE_MODEL)
3942 model_start_schedule (bb);
3943 }
3944 \f
3945 /* A structure that holds local state for the loop in schedule_block. */
3946 struct sched_block_state
3947 {
3948 /* True if no real insns have been scheduled in the current cycle. */
3949 bool first_cycle_insn_p;
3950 /* True if a shadow insn has been scheduled in the current cycle, which
3951 means that no more normal insns can be issued. */
3952 bool shadows_only_p;
3953 /* True if we're winding down a modulo schedule, which means that we only
3954 issue insns with INSN_EXACT_TICK set. */
3955 bool modulo_epilogue;
3956 /* Initialized with the machine's issue rate every cycle, and updated
3957 by calls to the variable_issue hook. */
3958 int can_issue_more;
3959 };
3960
3961 /* INSN is the "currently executing insn". Launch each insn which was
3962 waiting on INSN. READY is the ready list which contains the insns
3963 that are ready to fire. CLOCK is the current cycle. The function
3964 returns necessary cycle advance after issuing the insn (it is not
3965 zero for insns in a schedule group). */
3966
3967 static int
3968 schedule_insn (rtx_insn *insn)
3969 {
3970 sd_iterator_def sd_it;
3971 dep_t dep;
3972 int i;
3973 int advance = 0;
3974
3975 if (sched_verbose >= 1)
3976 {
3977 struct reg_pressure_data *pressure_info;
3978 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3979 clock_var, (*current_sched_info->print_insn) (insn, 1),
3980 str_pattern_slim (PATTERN (insn)));
3981
3982 if (recog_memoized (insn) < 0)
3983 fprintf (sched_dump, "nothing");
3984 else
3985 print_reservation (sched_dump, insn);
3986 pressure_info = INSN_REG_PRESSURE (insn);
3987 if (pressure_info != NULL)
3988 {
3989 fputc (':', sched_dump);
3990 for (i = 0; i < ira_pressure_classes_num; i++)
3991 fprintf (sched_dump, "%s%s%+d(%d)",
3992 scheduled_insns.length () > 1
3993 && INSN_LUID (insn)
3994 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3995 reg_class_names[ira_pressure_classes[i]],
3996 pressure_info[i].set_increase, pressure_info[i].change);
3997 }
3998 if (sched_pressure == SCHED_PRESSURE_MODEL
3999 && model_curr_point < model_num_insns
4000 && model_index (insn) == model_curr_point)
4001 fprintf (sched_dump, ":model %d", model_curr_point);
4002 fputc ('\n', sched_dump);
4003 }
4004
4005 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4006 update_reg_and_insn_max_reg_pressure (insn);
4007
4008 /* Scheduling instruction should have all its dependencies resolved and
4009 should have been removed from the ready list. */
4010 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4011
4012 /* Reset debug insns invalidated by moving this insn. */
4013 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4014 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4015 sd_iterator_cond (&sd_it, &dep);)
4016 {
4017 rtx_insn *dbg = DEP_PRO (dep);
4018 struct reg_use_data *use, *next;
4019
4020 if (DEP_STATUS (dep) & DEP_CANCELLED)
4021 {
4022 sd_iterator_next (&sd_it);
4023 continue;
4024 }
4025
4026 gcc_assert (DEBUG_INSN_P (dbg));
4027
4028 if (sched_verbose >= 6)
4029 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4030 INSN_UID (dbg));
4031
4032 /* ??? Rather than resetting the debug insn, we might be able
4033 to emit a debug temp before the just-scheduled insn, but
4034 this would involve checking that the expression at the
4035 point of the debug insn is equivalent to the expression
4036 before the just-scheduled insn. They might not be: the
4037 expression in the debug insn may depend on other insns not
4038 yet scheduled that set MEMs, REGs or even other debug
4039 insns. It's not clear that attempting to preserve debug
4040 information in these cases is worth the effort, given how
4041 uncommon these resets are and the likelihood that the debug
4042 temps introduced won't survive the schedule change. */
4043 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4044 df_insn_rescan (dbg);
4045
4046 /* Unknown location doesn't use any registers. */
4047 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4048 {
4049 struct reg_use_data *prev = use;
4050
4051 /* Remove use from the cyclic next_regno_use chain first. */
4052 while (prev->next_regno_use != use)
4053 prev = prev->next_regno_use;
4054 prev->next_regno_use = use->next_regno_use;
4055 next = use->next_insn_use;
4056 free (use);
4057 }
4058 INSN_REG_USE_LIST (dbg) = NULL;
4059
4060 /* We delete rather than resolve these deps, otherwise we
4061 crash in sched_free_deps(), because forward deps are
4062 expected to be released before backward deps. */
4063 sd_delete_dep (sd_it);
4064 }
4065
4066 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4067 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4068
4069 if (sched_pressure == SCHED_PRESSURE_MODEL
4070 && model_curr_point < model_num_insns
4071 && NONDEBUG_INSN_P (insn))
4072 {
4073 if (model_index (insn) == model_curr_point)
4074 do
4075 model_curr_point++;
4076 while (model_curr_point < model_num_insns
4077 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4078 == QUEUE_SCHEDULED));
4079 else
4080 model_recompute (insn);
4081 model_update_limit_points ();
4082 update_register_pressure (insn);
4083 if (sched_verbose >= 2)
4084 print_curr_reg_pressure ();
4085 }
4086
4087 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4088 if (INSN_TICK (insn) > clock_var)
4089 /* INSN has been prematurely moved from the queue to the ready list.
4090 This is possible only if following flags are set. */
4091 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4092
4093 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4094 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4095 INSN_TICK (insn) = clock_var;
4096
4097 check_clobbered_conditions (insn);
4098
4099 /* Update dependent instructions. First, see if by scheduling this insn
4100 now we broke a dependence in a way that requires us to change another
4101 insn. */
4102 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4103 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4104 {
4105 struct dep_replacement *desc = DEP_REPLACE (dep);
4106 rtx_insn *pro = DEP_PRO (dep);
4107 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4108 && desc != NULL && desc->insn == pro)
4109 apply_replacement (dep, false);
4110 }
4111
4112 /* Go through and resolve forward dependencies. */
4113 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4114 sd_iterator_cond (&sd_it, &dep);)
4115 {
4116 rtx_insn *next = DEP_CON (dep);
4117 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4118
4119 /* Resolve the dependence between INSN and NEXT.
4120 sd_resolve_dep () moves current dep to another list thus
4121 advancing the iterator. */
4122 sd_resolve_dep (sd_it);
4123
4124 if (cancelled)
4125 {
4126 if (must_restore_pattern_p (next, dep))
4127 restore_pattern (dep, false);
4128 continue;
4129 }
4130
4131 /* Don't bother trying to mark next as ready if insn is a debug
4132 insn. If insn is the last hard dependency, it will have
4133 already been discounted. */
4134 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4135 continue;
4136
4137 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4138 {
4139 int effective_cost;
4140
4141 effective_cost = try_ready (next);
4142
4143 if (effective_cost >= 0
4144 && SCHED_GROUP_P (next)
4145 && advance < effective_cost)
4146 advance = effective_cost;
4147 }
4148 else
4149 /* Check always has only one forward dependence (to the first insn in
4150 the recovery block), therefore, this will be executed only once. */
4151 {
4152 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4153 fix_recovery_deps (RECOVERY_BLOCK (insn));
4154 }
4155 }
4156
4157 /* Annotate the instruction with issue information -- TImode
4158 indicates that the instruction is expected not to be able
4159 to issue on the same cycle as the previous insn. A machine
4160 may use this information to decide how the instruction should
4161 be aligned. */
4162 if (issue_rate > 1
4163 && GET_CODE (PATTERN (insn)) != USE
4164 && GET_CODE (PATTERN (insn)) != CLOBBER
4165 && !DEBUG_INSN_P (insn))
4166 {
4167 if (reload_completed)
4168 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4169 last_clock_var = clock_var;
4170 }
4171
4172 if (nonscheduled_insns_begin != NULL_RTX)
4173 /* Indicate to debug counters that INSN is scheduled. */
4174 nonscheduled_insns_begin = insn;
4175
4176 return advance;
4177 }
4178
4179 /* Functions for handling of notes. */
4180
4181 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4182 void
4183 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4184 {
4185 rtx_insn *from_start;
4186
4187 /* It's easy when have nothing to concat. */
4188 if (from_end == NULL)
4189 return;
4190
4191 /* It's also easy when destination is empty. */
4192 if (*to_endp == NULL)
4193 {
4194 *to_endp = from_end;
4195 return;
4196 }
4197
4198 from_start = from_end;
4199 while (PREV_INSN (from_start) != NULL)
4200 from_start = PREV_INSN (from_start);
4201
4202 SET_PREV_INSN (from_start) = *to_endp;
4203 SET_NEXT_INSN (*to_endp) = from_start;
4204 *to_endp = from_end;
4205 }
4206
4207 /* Delete notes between HEAD and TAIL and put them in the chain
4208 of notes ended by NOTE_LIST. */
4209 void
4210 remove_notes (rtx_insn *head, rtx_insn *tail)
4211 {
4212 rtx_insn *next_tail, *insn, *next;
4213
4214 note_list = 0;
4215 if (head == tail && !INSN_P (head))
4216 return;
4217
4218 next_tail = NEXT_INSN (tail);
4219 for (insn = head; insn != next_tail; insn = next)
4220 {
4221 next = NEXT_INSN (insn);
4222 if (!NOTE_P (insn))
4223 continue;
4224
4225 switch (NOTE_KIND (insn))
4226 {
4227 case NOTE_INSN_BASIC_BLOCK:
4228 continue;
4229
4230 case NOTE_INSN_EPILOGUE_BEG:
4231 if (insn != tail)
4232 {
4233 remove_insn (insn);
4234 add_reg_note (next, REG_SAVE_NOTE,
4235 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4236 break;
4237 }
4238 /* FALLTHRU */
4239
4240 default:
4241 remove_insn (insn);
4242
4243 /* Add the note to list that ends at NOTE_LIST. */
4244 SET_PREV_INSN (insn) = note_list;
4245 SET_NEXT_INSN (insn) = NULL_RTX;
4246 if (note_list)
4247 SET_NEXT_INSN (note_list) = insn;
4248 note_list = insn;
4249 break;
4250 }
4251
4252 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4253 }
4254 }
4255
4256 /* A structure to record enough data to allow us to backtrack the scheduler to
4257 a previous state. */
4258 struct haifa_saved_data
4259 {
4260 /* Next entry on the list. */
4261 struct haifa_saved_data *next;
4262
4263 /* Backtracking is associated with scheduling insns that have delay slots.
4264 DELAY_PAIR points to the structure that contains the insns involved, and
4265 the number of cycles between them. */
4266 struct delay_pair *delay_pair;
4267
4268 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4269 void *fe_saved_data;
4270 /* Data used by the backend. */
4271 void *be_saved_data;
4272
4273 /* Copies of global state. */
4274 int clock_var, last_clock_var;
4275 struct ready_list ready;
4276 state_t curr_state;
4277
4278 rtx_insn *last_scheduled_insn;
4279 rtx_insn *last_nondebug_scheduled_insn;
4280 rtx_insn *nonscheduled_insns_begin;
4281 int cycle_issued_insns;
4282
4283 /* Copies of state used in the inner loop of schedule_block. */
4284 struct sched_block_state sched_block;
4285
4286 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4287 to 0 when restoring. */
4288 int q_size;
4289 rtx_insn_list **insn_queue;
4290
4291 /* Describe pattern replacements that occurred since this backtrack point
4292 was queued. */
4293 vec<dep_t> replacement_deps;
4294 vec<int> replace_apply;
4295
4296 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4297 point. */
4298 vec<dep_t> next_cycle_deps;
4299 vec<int> next_cycle_apply;
4300 };
4301
4302 /* A record, in reverse order, of all scheduled insns which have delay slots
4303 and may require backtracking. */
4304 static struct haifa_saved_data *backtrack_queue;
4305
4306 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4307 to SET_P. */
4308 static void
4309 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4310 {
4311 sd_iterator_def sd_it;
4312 dep_t dep;
4313 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4314 {
4315 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4316 }
4317 }
4318
4319 /* Save the current scheduler state so that we can backtrack to it
4320 later if necessary. PAIR gives the insns that make it necessary to
4321 save this point. SCHED_BLOCK is the local state of schedule_block
4322 that need to be saved. */
4323 static void
4324 save_backtrack_point (struct delay_pair *pair,
4325 struct sched_block_state sched_block)
4326 {
4327 int i;
4328 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4329
4330 save->curr_state = xmalloc (dfa_state_size);
4331 memcpy (save->curr_state, curr_state, dfa_state_size);
4332
4333 save->ready.first = ready.first;
4334 save->ready.n_ready = ready.n_ready;
4335 save->ready.n_debug = ready.n_debug;
4336 save->ready.veclen = ready.veclen;
4337 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4338 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4339
4340 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4341 save->q_size = q_size;
4342 for (i = 0; i <= max_insn_queue_index; i++)
4343 {
4344 int q = NEXT_Q_AFTER (q_ptr, i);
4345 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4346 }
4347
4348 save->clock_var = clock_var;
4349 save->last_clock_var = last_clock_var;
4350 save->cycle_issued_insns = cycle_issued_insns;
4351 save->last_scheduled_insn = last_scheduled_insn;
4352 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4353 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4354
4355 save->sched_block = sched_block;
4356
4357 save->replacement_deps.create (0);
4358 save->replace_apply.create (0);
4359 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4360 save->next_cycle_apply = next_cycle_apply.copy ();
4361
4362 if (current_sched_info->save_state)
4363 save->fe_saved_data = (*current_sched_info->save_state) ();
4364
4365 if (targetm.sched.alloc_sched_context)
4366 {
4367 save->be_saved_data = targetm.sched.alloc_sched_context ();
4368 targetm.sched.init_sched_context (save->be_saved_data, false);
4369 }
4370 else
4371 save->be_saved_data = NULL;
4372
4373 save->delay_pair = pair;
4374
4375 save->next = backtrack_queue;
4376 backtrack_queue = save;
4377
4378 while (pair)
4379 {
4380 mark_backtrack_feeds (pair->i2, 1);
4381 INSN_TICK (pair->i2) = INVALID_TICK;
4382 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4383 SHADOW_P (pair->i2) = pair->stages == 0;
4384 pair = pair->next_same_i1;
4385 }
4386 }
4387
4388 /* Walk the ready list and all queues. If any insns have unresolved backwards
4389 dependencies, these must be cancelled deps, broken by predication. Set or
4390 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4391
4392 static void
4393 toggle_cancelled_flags (bool set)
4394 {
4395 int i;
4396 sd_iterator_def sd_it;
4397 dep_t dep;
4398
4399 if (ready.n_ready > 0)
4400 {
4401 rtx_insn **first = ready_lastpos (&ready);
4402 for (i = 0; i < ready.n_ready; i++)
4403 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4404 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4405 {
4406 if (set)
4407 DEP_STATUS (dep) |= DEP_CANCELLED;
4408 else
4409 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4410 }
4411 }
4412 for (i = 0; i <= max_insn_queue_index; i++)
4413 {
4414 int q = NEXT_Q_AFTER (q_ptr, i);
4415 rtx_insn_list *link;
4416 for (link = insn_queue[q]; link; link = link->next ())
4417 {
4418 rtx_insn *insn = link->insn ();
4419 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4420 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4421 {
4422 if (set)
4423 DEP_STATUS (dep) |= DEP_CANCELLED;
4424 else
4425 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4426 }
4427 }
4428 }
4429 }
4430
4431 /* Undo the replacements that have occurred after backtrack point SAVE
4432 was placed. */
4433 static void
4434 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4435 {
4436 while (!save->replacement_deps.is_empty ())
4437 {
4438 dep_t dep = save->replacement_deps.pop ();
4439 int apply_p = save->replace_apply.pop ();
4440
4441 if (apply_p)
4442 restore_pattern (dep, true);
4443 else
4444 apply_replacement (dep, true);
4445 }
4446 save->replacement_deps.release ();
4447 save->replace_apply.release ();
4448 }
4449
4450 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4451 Restore their dependencies to an unresolved state, and mark them as
4452 queued nowhere. */
4453
4454 static void
4455 unschedule_insns_until (rtx_insn *insn)
4456 {
4457 auto_vec<rtx_insn *> recompute_vec;
4458
4459 /* Make two passes over the insns to be unscheduled. First, we clear out
4460 dependencies and other trivial bookkeeping. */
4461 for (;;)
4462 {
4463 rtx_insn *last;
4464 sd_iterator_def sd_it;
4465 dep_t dep;
4466
4467 last = scheduled_insns.pop ();
4468
4469 /* This will be changed by restore_backtrack_point if the insn is in
4470 any queue. */
4471 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4472 if (last != insn)
4473 INSN_TICK (last) = INVALID_TICK;
4474
4475 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4476 modulo_insns_scheduled--;
4477
4478 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4479 sd_iterator_cond (&sd_it, &dep);)
4480 {
4481 rtx_insn *con = DEP_CON (dep);
4482 sd_unresolve_dep (sd_it);
4483 if (!MUST_RECOMPUTE_SPEC_P (con))
4484 {
4485 MUST_RECOMPUTE_SPEC_P (con) = 1;
4486 recompute_vec.safe_push (con);
4487 }
4488 }
4489
4490 if (last == insn)
4491 break;
4492 }
4493
4494 /* A second pass, to update ready and speculation status for insns
4495 depending on the unscheduled ones. The first pass must have
4496 popped the scheduled_insns vector up to the point where we
4497 restart scheduling, as recompute_todo_spec requires it to be
4498 up-to-date. */
4499 while (!recompute_vec.is_empty ())
4500 {
4501 rtx_insn *con;
4502
4503 con = recompute_vec.pop ();
4504 MUST_RECOMPUTE_SPEC_P (con) = 0;
4505 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4506 {
4507 TODO_SPEC (con) = HARD_DEP;
4508 INSN_TICK (con) = INVALID_TICK;
4509 if (PREDICATED_PAT (con) != NULL_RTX)
4510 haifa_change_pattern (con, ORIG_PAT (con));
4511 }
4512 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4513 TODO_SPEC (con) = recompute_todo_spec (con, true);
4514 }
4515 }
4516
4517 /* Restore scheduler state from the topmost entry on the backtracking queue.
4518 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4519 overwrite with the saved data.
4520 The caller must already have called unschedule_insns_until. */
4521
4522 static void
4523 restore_last_backtrack_point (struct sched_block_state *psched_block)
4524 {
4525 int i;
4526 struct haifa_saved_data *save = backtrack_queue;
4527
4528 backtrack_queue = save->next;
4529
4530 if (current_sched_info->restore_state)
4531 (*current_sched_info->restore_state) (save->fe_saved_data);
4532
4533 if (targetm.sched.alloc_sched_context)
4534 {
4535 targetm.sched.set_sched_context (save->be_saved_data);
4536 targetm.sched.free_sched_context (save->be_saved_data);
4537 }
4538
4539 /* Do this first since it clobbers INSN_TICK of the involved
4540 instructions. */
4541 undo_replacements_for_backtrack (save);
4542
4543 /* Clear the QUEUE_INDEX of everything in the ready list or one
4544 of the queues. */
4545 if (ready.n_ready > 0)
4546 {
4547 rtx_insn **first = ready_lastpos (&ready);
4548 for (i = 0; i < ready.n_ready; i++)
4549 {
4550 rtx_insn *insn = first[i];
4551 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4552 INSN_TICK (insn) = INVALID_TICK;
4553 }
4554 }
4555 for (i = 0; i <= max_insn_queue_index; i++)
4556 {
4557 int q = NEXT_Q_AFTER (q_ptr, i);
4558
4559 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4560 {
4561 rtx_insn *x = link->insn ();
4562 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4563 INSN_TICK (x) = INVALID_TICK;
4564 }
4565 free_INSN_LIST_list (&insn_queue[q]);
4566 }
4567
4568 free (ready.vec);
4569 ready = save->ready;
4570
4571 if (ready.n_ready > 0)
4572 {
4573 rtx_insn **first = ready_lastpos (&ready);
4574 for (i = 0; i < ready.n_ready; i++)
4575 {
4576 rtx_insn *insn = first[i];
4577 QUEUE_INDEX (insn) = QUEUE_READY;
4578 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4579 INSN_TICK (insn) = save->clock_var;
4580 }
4581 }
4582
4583 q_ptr = 0;
4584 q_size = save->q_size;
4585 for (i = 0; i <= max_insn_queue_index; i++)
4586 {
4587 int q = NEXT_Q_AFTER (q_ptr, i);
4588
4589 insn_queue[q] = save->insn_queue[q];
4590
4591 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4592 {
4593 rtx_insn *x = link->insn ();
4594 QUEUE_INDEX (x) = i;
4595 TODO_SPEC (x) = recompute_todo_spec (x, true);
4596 INSN_TICK (x) = save->clock_var + i;
4597 }
4598 }
4599 free (save->insn_queue);
4600
4601 toggle_cancelled_flags (true);
4602
4603 clock_var = save->clock_var;
4604 last_clock_var = save->last_clock_var;
4605 cycle_issued_insns = save->cycle_issued_insns;
4606 last_scheduled_insn = save->last_scheduled_insn;
4607 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4608 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4609
4610 *psched_block = save->sched_block;
4611
4612 memcpy (curr_state, save->curr_state, dfa_state_size);
4613 free (save->curr_state);
4614
4615 mark_backtrack_feeds (save->delay_pair->i2, 0);
4616
4617 gcc_assert (next_cycle_replace_deps.is_empty ());
4618 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4619 next_cycle_apply = save->next_cycle_apply.copy ();
4620
4621 free (save);
4622
4623 for (save = backtrack_queue; save; save = save->next)
4624 {
4625 mark_backtrack_feeds (save->delay_pair->i2, 1);
4626 }
4627 }
4628
4629 /* Discard all data associated with the topmost entry in the backtrack
4630 queue. If RESET_TICK is false, we just want to free the data. If true,
4631 we are doing this because we discovered a reason to backtrack. In the
4632 latter case, also reset the INSN_TICK for the shadow insn. */
4633 static void
4634 free_topmost_backtrack_point (bool reset_tick)
4635 {
4636 struct haifa_saved_data *save = backtrack_queue;
4637 int i;
4638
4639 backtrack_queue = save->next;
4640
4641 if (reset_tick)
4642 {
4643 struct delay_pair *pair = save->delay_pair;
4644 while (pair)
4645 {
4646 INSN_TICK (pair->i2) = INVALID_TICK;
4647 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4648 pair = pair->next_same_i1;
4649 }
4650 undo_replacements_for_backtrack (save);
4651 }
4652 else
4653 {
4654 save->replacement_deps.release ();
4655 save->replace_apply.release ();
4656 }
4657
4658 if (targetm.sched.free_sched_context)
4659 targetm.sched.free_sched_context (save->be_saved_data);
4660 if (current_sched_info->restore_state)
4661 free (save->fe_saved_data);
4662 for (i = 0; i <= max_insn_queue_index; i++)
4663 free_INSN_LIST_list (&save->insn_queue[i]);
4664 free (save->insn_queue);
4665 free (save->curr_state);
4666 free (save->ready.vec);
4667 free (save);
4668 }
4669
4670 /* Free the entire backtrack queue. */
4671 static void
4672 free_backtrack_queue (void)
4673 {
4674 while (backtrack_queue)
4675 free_topmost_backtrack_point (false);
4676 }
4677
4678 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4679 may have to postpone the replacement until the start of the next cycle,
4680 at which point we will be called again with IMMEDIATELY true. This is
4681 only done for machines which have instruction packets with explicit
4682 parallelism however. */
4683 static void
4684 apply_replacement (dep_t dep, bool immediately)
4685 {
4686 struct dep_replacement *desc = DEP_REPLACE (dep);
4687 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4688 {
4689 next_cycle_replace_deps.safe_push (dep);
4690 next_cycle_apply.safe_push (1);
4691 }
4692 else
4693 {
4694 bool success;
4695
4696 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4697 return;
4698
4699 if (sched_verbose >= 5)
4700 fprintf (sched_dump, "applying replacement for insn %d\n",
4701 INSN_UID (desc->insn));
4702
4703 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4704 gcc_assert (success);
4705
4706 update_insn_after_change (desc->insn);
4707 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4708 fix_tick_ready (desc->insn);
4709
4710 if (backtrack_queue != NULL)
4711 {
4712 backtrack_queue->replacement_deps.safe_push (dep);
4713 backtrack_queue->replace_apply.safe_push (1);
4714 }
4715 }
4716 }
4717
4718 /* We have determined that a pattern involved in DEP must be restored.
4719 If IMMEDIATELY is false, we may have to postpone the replacement
4720 until the start of the next cycle, at which point we will be called
4721 again with IMMEDIATELY true. */
4722 static void
4723 restore_pattern (dep_t dep, bool immediately)
4724 {
4725 rtx_insn *next = DEP_CON (dep);
4726 int tick = INSN_TICK (next);
4727
4728 /* If we already scheduled the insn, the modified version is
4729 correct. */
4730 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4731 return;
4732
4733 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4734 {
4735 next_cycle_replace_deps.safe_push (dep);
4736 next_cycle_apply.safe_push (0);
4737 return;
4738 }
4739
4740
4741 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4742 {
4743 if (sched_verbose >= 5)
4744 fprintf (sched_dump, "restoring pattern for insn %d\n",
4745 INSN_UID (next));
4746 haifa_change_pattern (next, ORIG_PAT (next));
4747 }
4748 else
4749 {
4750 struct dep_replacement *desc = DEP_REPLACE (dep);
4751 bool success;
4752
4753 if (sched_verbose >= 5)
4754 fprintf (sched_dump, "restoring pattern for insn %d\n",
4755 INSN_UID (desc->insn));
4756 tick = INSN_TICK (desc->insn);
4757
4758 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4759 gcc_assert (success);
4760 update_insn_after_change (desc->insn);
4761 if (backtrack_queue != NULL)
4762 {
4763 backtrack_queue->replacement_deps.safe_push (dep);
4764 backtrack_queue->replace_apply.safe_push (0);
4765 }
4766 }
4767 INSN_TICK (next) = tick;
4768 if (TODO_SPEC (next) == DEP_POSTPONED)
4769 return;
4770
4771 if (sd_lists_empty_p (next, SD_LIST_BACK))
4772 TODO_SPEC (next) = 0;
4773 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4774 TODO_SPEC (next) = HARD_DEP;
4775 }
4776
4777 /* Perform pattern replacements that were queued up until the next
4778 cycle. */
4779 static void
4780 perform_replacements_new_cycle (void)
4781 {
4782 int i;
4783 dep_t dep;
4784 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4785 {
4786 int apply_p = next_cycle_apply[i];
4787 if (apply_p)
4788 apply_replacement (dep, true);
4789 else
4790 restore_pattern (dep, true);
4791 }
4792 next_cycle_replace_deps.truncate (0);
4793 next_cycle_apply.truncate (0);
4794 }
4795
4796 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4797 instructions we've previously encountered, a set bit prevents
4798 recursion. BUDGET is a limit on how far ahead we look, it is
4799 reduced on recursive calls. Return true if we produced a good
4800 estimate, or false if we exceeded the budget. */
4801 static bool
4802 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4803 {
4804 sd_iterator_def sd_it;
4805 dep_t dep;
4806 int earliest = INSN_TICK (insn);
4807
4808 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4809 {
4810 rtx_insn *pro = DEP_PRO (dep);
4811 int t;
4812
4813 if (DEP_STATUS (dep) & DEP_CANCELLED)
4814 continue;
4815
4816 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4817 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4818 else
4819 {
4820 int cost = dep_cost (dep);
4821 if (cost >= budget)
4822 return false;
4823 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4824 {
4825 if (!estimate_insn_tick (processed, pro, budget - cost))
4826 return false;
4827 }
4828 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4829 t = INSN_TICK_ESTIMATE (pro) + cost;
4830 if (earliest == INVALID_TICK || t > earliest)
4831 earliest = t;
4832 }
4833 }
4834 bitmap_set_bit (processed, INSN_LUID (insn));
4835 INSN_TICK_ESTIMATE (insn) = earliest;
4836 return true;
4837 }
4838
4839 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4840 infinite resources) the cycle in which the delayed shadow can be issued.
4841 Return the number of cycles that must pass before the real insn can be
4842 issued in order to meet this constraint. */
4843 static int
4844 estimate_shadow_tick (struct delay_pair *p)
4845 {
4846 bitmap_head processed;
4847 int t;
4848 bool cutoff;
4849 bitmap_initialize (&processed, 0);
4850
4851 cutoff = !estimate_insn_tick (&processed, p->i2,
4852 max_insn_queue_index + pair_delay (p));
4853 bitmap_clear (&processed);
4854 if (cutoff)
4855 return max_insn_queue_index;
4856 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4857 if (t > 0)
4858 return t;
4859 return 0;
4860 }
4861
4862 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4863 recursively resolve all its forward dependencies. */
4864 static void
4865 resolve_dependencies (rtx_insn *insn)
4866 {
4867 sd_iterator_def sd_it;
4868 dep_t dep;
4869
4870 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4871 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4872 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4873 return;
4874
4875 if (sched_verbose >= 4)
4876 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4877
4878 if (QUEUE_INDEX (insn) >= 0)
4879 queue_remove (insn);
4880
4881 scheduled_insns.safe_push (insn);
4882
4883 /* Update dependent instructions. */
4884 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4885 sd_iterator_cond (&sd_it, &dep);)
4886 {
4887 rtx_insn *next = DEP_CON (dep);
4888
4889 if (sched_verbose >= 4)
4890 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4891 INSN_UID (next));
4892
4893 /* Resolve the dependence between INSN and NEXT.
4894 sd_resolve_dep () moves current dep to another list thus
4895 advancing the iterator. */
4896 sd_resolve_dep (sd_it);
4897
4898 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4899 {
4900 resolve_dependencies (next);
4901 }
4902 else
4903 /* Check always has only one forward dependence (to the first insn in
4904 the recovery block), therefore, this will be executed only once. */
4905 {
4906 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4907 }
4908 }
4909 }
4910
4911
4912 /* Return the head and tail pointers of ebb starting at BEG and ending
4913 at END. */
4914 void
4915 get_ebb_head_tail (basic_block beg, basic_block end,
4916 rtx_insn **headp, rtx_insn **tailp)
4917 {
4918 rtx_insn *beg_head = BB_HEAD (beg);
4919 rtx_insn * beg_tail = BB_END (beg);
4920 rtx_insn * end_head = BB_HEAD (end);
4921 rtx_insn * end_tail = BB_END (end);
4922
4923 /* Don't include any notes or labels at the beginning of the BEG
4924 basic block, or notes at the end of the END basic blocks. */
4925
4926 if (LABEL_P (beg_head))
4927 beg_head = NEXT_INSN (beg_head);
4928
4929 while (beg_head != beg_tail)
4930 if (NOTE_P (beg_head))
4931 beg_head = NEXT_INSN (beg_head);
4932 else if (DEBUG_INSN_P (beg_head))
4933 {
4934 rtx_insn * note, *next;
4935
4936 for (note = NEXT_INSN (beg_head);
4937 note != beg_tail;
4938 note = next)
4939 {
4940 next = NEXT_INSN (note);
4941 if (NOTE_P (note))
4942 {
4943 if (sched_verbose >= 9)
4944 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4945
4946 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4947
4948 if (BLOCK_FOR_INSN (note) != beg)
4949 df_insn_change_bb (note, beg);
4950 }
4951 else if (!DEBUG_INSN_P (note))
4952 break;
4953 }
4954
4955 break;
4956 }
4957 else
4958 break;
4959
4960 *headp = beg_head;
4961
4962 if (beg == end)
4963 end_head = beg_head;
4964 else if (LABEL_P (end_head))
4965 end_head = NEXT_INSN (end_head);
4966
4967 while (end_head != end_tail)
4968 if (NOTE_P (end_tail))
4969 end_tail = PREV_INSN (end_tail);
4970 else if (DEBUG_INSN_P (end_tail))
4971 {
4972 rtx_insn * note, *prev;
4973
4974 for (note = PREV_INSN (end_tail);
4975 note != end_head;
4976 note = prev)
4977 {
4978 prev = PREV_INSN (note);
4979 if (NOTE_P (note))
4980 {
4981 if (sched_verbose >= 9)
4982 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4983
4984 reorder_insns_nobb (note, note, end_tail);
4985
4986 if (end_tail == BB_END (end))
4987 BB_END (end) = note;
4988
4989 if (BLOCK_FOR_INSN (note) != end)
4990 df_insn_change_bb (note, end);
4991 }
4992 else if (!DEBUG_INSN_P (note))
4993 break;
4994 }
4995
4996 break;
4997 }
4998 else
4999 break;
5000
5001 *tailp = end_tail;
5002 }
5003
5004 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5005
5006 int
5007 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5008 {
5009 while (head != NEXT_INSN (tail))
5010 {
5011 if (!NOTE_P (head) && !LABEL_P (head))
5012 return 0;
5013 head = NEXT_INSN (head);
5014 }
5015 return 1;
5016 }
5017
5018 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5019 previously found among the insns. Insert them just before HEAD. */
5020 rtx_insn *
5021 restore_other_notes (rtx_insn *head, basic_block head_bb)
5022 {
5023 if (note_list != 0)
5024 {
5025 rtx_insn *note_head = note_list;
5026
5027 if (head)
5028 head_bb = BLOCK_FOR_INSN (head);
5029 else
5030 head = NEXT_INSN (bb_note (head_bb));
5031
5032 while (PREV_INSN (note_head))
5033 {
5034 set_block_for_insn (note_head, head_bb);
5035 note_head = PREV_INSN (note_head);
5036 }
5037 /* In the above cycle we've missed this note. */
5038 set_block_for_insn (note_head, head_bb);
5039
5040 SET_PREV_INSN (note_head) = PREV_INSN (head);
5041 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5042 SET_PREV_INSN (head) = note_list;
5043 SET_NEXT_INSN (note_list) = head;
5044
5045 if (BLOCK_FOR_INSN (head) != head_bb)
5046 BB_END (head_bb) = note_list;
5047
5048 head = note_head;
5049 }
5050
5051 return head;
5052 }
5053
5054 /* When we know we are going to discard the schedule due to a failed attempt
5055 at modulo scheduling, undo all replacements. */
5056 static void
5057 undo_all_replacements (void)
5058 {
5059 rtx_insn *insn;
5060 int i;
5061
5062 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5063 {
5064 sd_iterator_def sd_it;
5065 dep_t dep;
5066
5067 /* See if we must undo a replacement. */
5068 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5069 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5070 {
5071 struct dep_replacement *desc = DEP_REPLACE (dep);
5072 if (desc != NULL)
5073 validate_change (desc->insn, desc->loc, desc->orig, 0);
5074 }
5075 }
5076 }
5077
5078 /* Return first non-scheduled insn in the current scheduling block.
5079 This is mostly used for debug-counter purposes. */
5080 static rtx_insn *
5081 first_nonscheduled_insn (void)
5082 {
5083 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5084 ? nonscheduled_insns_begin
5085 : current_sched_info->prev_head);
5086
5087 do
5088 {
5089 insn = next_nonnote_nondebug_insn (insn);
5090 }
5091 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5092
5093 return insn;
5094 }
5095
5096 /* Move insns that became ready to fire from queue to ready list. */
5097
5098 static void
5099 queue_to_ready (struct ready_list *ready)
5100 {
5101 rtx_insn *insn;
5102 rtx_insn_list *link;
5103 rtx_insn *skip_insn;
5104
5105 q_ptr = NEXT_Q (q_ptr);
5106
5107 if (dbg_cnt (sched_insn) == false)
5108 /* If debug counter is activated do not requeue the first
5109 nonscheduled insn. */
5110 skip_insn = first_nonscheduled_insn ();
5111 else
5112 skip_insn = NULL;
5113
5114 /* Add all pending insns that can be scheduled without stalls to the
5115 ready list. */
5116 for (link = insn_queue[q_ptr]; link; link = link->next ())
5117 {
5118 insn = link->insn ();
5119 q_size -= 1;
5120
5121 if (sched_verbose >= 2)
5122 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5123 (*current_sched_info->print_insn) (insn, 0));
5124
5125 /* If the ready list is full, delay the insn for 1 cycle.
5126 See the comment in schedule_block for the rationale. */
5127 if (!reload_completed
5128 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5129 || (sched_pressure == SCHED_PRESSURE_MODEL
5130 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5131 instructions too. */
5132 && model_index (insn) > (model_curr_point
5133 + MAX_SCHED_READY_INSNS)))
5134 && !(sched_pressure == SCHED_PRESSURE_MODEL
5135 && model_curr_point < model_num_insns
5136 /* Always allow the next model instruction to issue. */
5137 && model_index (insn) == model_curr_point)
5138 && !SCHED_GROUP_P (insn)
5139 && insn != skip_insn)
5140 {
5141 if (sched_verbose >= 2)
5142 fprintf (sched_dump, "keeping in queue, ready full\n");
5143 queue_insn (insn, 1, "ready full");
5144 }
5145 else
5146 {
5147 ready_add (ready, insn, false);
5148 if (sched_verbose >= 2)
5149 fprintf (sched_dump, "moving to ready without stalls\n");
5150 }
5151 }
5152 free_INSN_LIST_list (&insn_queue[q_ptr]);
5153
5154 /* If there are no ready insns, stall until one is ready and add all
5155 of the pending insns at that point to the ready list. */
5156 if (ready->n_ready == 0)
5157 {
5158 int stalls;
5159
5160 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5161 {
5162 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5163 {
5164 for (; link; link = link->next ())
5165 {
5166 insn = link->insn ();
5167 q_size -= 1;
5168
5169 if (sched_verbose >= 2)
5170 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5171 (*current_sched_info->print_insn) (insn, 0));
5172
5173 ready_add (ready, insn, false);
5174 if (sched_verbose >= 2)
5175 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5176 }
5177 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5178
5179 advance_one_cycle ();
5180
5181 break;
5182 }
5183
5184 advance_one_cycle ();
5185 }
5186
5187 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5188 clock_var += stalls;
5189 if (sched_verbose >= 2)
5190 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5191 stalls, clock_var);
5192 }
5193 }
5194
5195 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5196 prematurely move INSN from the queue to the ready list. Currently,
5197 if a target defines the hook 'is_costly_dependence', this function
5198 uses the hook to check whether there exist any dependences which are
5199 considered costly by the target, between INSN and other insns that
5200 have already been scheduled. Dependences are checked up to Y cycles
5201 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5202 controlling this value.
5203 (Other considerations could be taken into account instead (or in
5204 addition) depending on user flags and target hooks. */
5205
5206 static bool
5207 ok_for_early_queue_removal (rtx_insn *insn)
5208 {
5209 if (targetm.sched.is_costly_dependence)
5210 {
5211 int n_cycles;
5212 int i = scheduled_insns.length ();
5213 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5214 {
5215 while (i-- > 0)
5216 {
5217 int cost;
5218
5219 rtx_insn *prev_insn = scheduled_insns[i];
5220
5221 if (!NOTE_P (prev_insn))
5222 {
5223 dep_t dep;
5224
5225 dep = sd_find_dep_between (prev_insn, insn, true);
5226
5227 if (dep != NULL)
5228 {
5229 cost = dep_cost (dep);
5230
5231 if (targetm.sched.is_costly_dependence (dep, cost,
5232 flag_sched_stalled_insns_dep - n_cycles))
5233 return false;
5234 }
5235 }
5236
5237 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5238 break;
5239 }
5240
5241 if (i == 0)
5242 break;
5243 }
5244 }
5245
5246 return true;
5247 }
5248
5249
5250 /* Remove insns from the queue, before they become "ready" with respect
5251 to FU latency considerations. */
5252
5253 static int
5254 early_queue_to_ready (state_t state, struct ready_list *ready)
5255 {
5256 rtx_insn *insn;
5257 rtx_insn_list *link;
5258 rtx_insn_list *next_link;
5259 rtx_insn_list *prev_link;
5260 bool move_to_ready;
5261 int cost;
5262 state_t temp_state = alloca (dfa_state_size);
5263 int stalls;
5264 int insns_removed = 0;
5265
5266 /*
5267 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5268 function:
5269
5270 X == 0: There is no limit on how many queued insns can be removed
5271 prematurely. (flag_sched_stalled_insns = -1).
5272
5273 X >= 1: Only X queued insns can be removed prematurely in each
5274 invocation. (flag_sched_stalled_insns = X).
5275
5276 Otherwise: Early queue removal is disabled.
5277 (flag_sched_stalled_insns = 0)
5278 */
5279
5280 if (! flag_sched_stalled_insns)
5281 return 0;
5282
5283 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5284 {
5285 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5286 {
5287 if (sched_verbose > 6)
5288 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5289
5290 prev_link = 0;
5291 while (link)
5292 {
5293 next_link = link->next ();
5294 insn = link->insn ();
5295 if (insn && sched_verbose > 6)
5296 print_rtl_single (sched_dump, insn);
5297
5298 memcpy (temp_state, state, dfa_state_size);
5299 if (recog_memoized (insn) < 0)
5300 /* non-negative to indicate that it's not ready
5301 to avoid infinite Q->R->Q->R... */
5302 cost = 0;
5303 else
5304 cost = state_transition (temp_state, insn);
5305
5306 if (sched_verbose >= 6)
5307 fprintf (sched_dump, "transition cost = %d\n", cost);
5308
5309 move_to_ready = false;
5310 if (cost < 0)
5311 {
5312 move_to_ready = ok_for_early_queue_removal (insn);
5313 if (move_to_ready == true)
5314 {
5315 /* move from Q to R */
5316 q_size -= 1;
5317 ready_add (ready, insn, false);
5318
5319 if (prev_link)
5320 XEXP (prev_link, 1) = next_link;
5321 else
5322 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5323
5324 free_INSN_LIST_node (link);
5325
5326 if (sched_verbose >= 2)
5327 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5328 (*current_sched_info->print_insn) (insn, 0));
5329
5330 insns_removed++;
5331 if (insns_removed == flag_sched_stalled_insns)
5332 /* Remove no more than flag_sched_stalled_insns insns
5333 from Q at a time. */
5334 return insns_removed;
5335 }
5336 }
5337
5338 if (move_to_ready == false)
5339 prev_link = link;
5340
5341 link = next_link;
5342 } /* while link */
5343 } /* if link */
5344
5345 } /* for stalls.. */
5346
5347 return insns_removed;
5348 }
5349
5350
5351 /* Print the ready list for debugging purposes.
5352 If READY_TRY is non-zero then only print insns that max_issue
5353 will consider. */
5354 static void
5355 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5356 {
5357 rtx_insn **p;
5358 int i;
5359
5360 if (ready->n_ready == 0)
5361 {
5362 fprintf (sched_dump, "\n");
5363 return;
5364 }
5365
5366 p = ready_lastpos (ready);
5367 for (i = 0; i < ready->n_ready; i++)
5368 {
5369 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5370 continue;
5371
5372 fprintf (sched_dump, " %s:%d",
5373 (*current_sched_info->print_insn) (p[i], 0),
5374 INSN_LUID (p[i]));
5375 if (sched_pressure != SCHED_PRESSURE_NONE)
5376 fprintf (sched_dump, "(cost=%d",
5377 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5378 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5379 if (INSN_TICK (p[i]) > clock_var)
5380 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5381 if (sched_pressure == SCHED_PRESSURE_MODEL)
5382 fprintf (sched_dump, ":idx=%d",
5383 model_index (p[i]));
5384 if (sched_pressure != SCHED_PRESSURE_NONE)
5385 fprintf (sched_dump, ")");
5386 }
5387 fprintf (sched_dump, "\n");
5388 }
5389
5390 /* Print the ready list. Callable from debugger. */
5391 static void
5392 debug_ready_list (struct ready_list *ready)
5393 {
5394 debug_ready_list_1 (ready, NULL);
5395 }
5396
5397 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5398 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5399 replaces the epilogue note in the correct basic block. */
5400 void
5401 reemit_notes (rtx_insn *insn)
5402 {
5403 rtx note;
5404 rtx_insn *last = insn;
5405
5406 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5407 {
5408 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5409 {
5410 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5411
5412 last = emit_note_before (note_type, last);
5413 remove_note (insn, note);
5414 }
5415 }
5416 }
5417
5418 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5419 static void
5420 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5421 {
5422 if (PREV_INSN (insn) != last)
5423 {
5424 basic_block bb;
5425 rtx_insn *note;
5426 int jump_p = 0;
5427
5428 bb = BLOCK_FOR_INSN (insn);
5429
5430 /* BB_HEAD is either LABEL or NOTE. */
5431 gcc_assert (BB_HEAD (bb) != insn);
5432
5433 if (BB_END (bb) == insn)
5434 /* If this is last instruction in BB, move end marker one
5435 instruction up. */
5436 {
5437 /* Jumps are always placed at the end of basic block. */
5438 jump_p = control_flow_insn_p (insn);
5439
5440 gcc_assert (!jump_p
5441 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5442 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5443 || (common_sched_info->sched_pass_id
5444 == SCHED_EBB_PASS));
5445
5446 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5447
5448 BB_END (bb) = PREV_INSN (insn);
5449 }
5450
5451 gcc_assert (BB_END (bb) != last);
5452
5453 if (jump_p)
5454 /* We move the block note along with jump. */
5455 {
5456 gcc_assert (nt);
5457
5458 note = NEXT_INSN (insn);
5459 while (NOTE_NOT_BB_P (note) && note != nt)
5460 note = NEXT_INSN (note);
5461
5462 if (note != nt
5463 && (LABEL_P (note)
5464 || BARRIER_P (note)))
5465 note = NEXT_INSN (note);
5466
5467 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5468 }
5469 else
5470 note = insn;
5471
5472 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5473 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5474
5475 SET_NEXT_INSN (note) = NEXT_INSN (last);
5476 SET_PREV_INSN (NEXT_INSN (last)) = note;
5477
5478 SET_NEXT_INSN (last) = insn;
5479 SET_PREV_INSN (insn) = last;
5480
5481 bb = BLOCK_FOR_INSN (last);
5482
5483 if (jump_p)
5484 {
5485 fix_jump_move (insn);
5486
5487 if (BLOCK_FOR_INSN (insn) != bb)
5488 move_block_after_check (insn);
5489
5490 gcc_assert (BB_END (bb) == last);
5491 }
5492
5493 df_insn_change_bb (insn, bb);
5494
5495 /* Update BB_END, if needed. */
5496 if (BB_END (bb) == last)
5497 BB_END (bb) = insn;
5498 }
5499
5500 SCHED_GROUP_P (insn) = 0;
5501 }
5502
5503 /* Return true if scheduling INSN will finish current clock cycle. */
5504 static bool
5505 insn_finishes_cycle_p (rtx_insn *insn)
5506 {
5507 if (SCHED_GROUP_P (insn))
5508 /* After issuing INSN, rest of the sched_group will be forced to issue
5509 in order. Don't make any plans for the rest of cycle. */
5510 return true;
5511
5512 /* Finishing the block will, apparently, finish the cycle. */
5513 if (current_sched_info->insn_finishes_block_p
5514 && current_sched_info->insn_finishes_block_p (insn))
5515 return true;
5516
5517 return false;
5518 }
5519
5520 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5521 we're expecting a memory WRITE or not, check that the insn is relevant to
5522 the autoprefetcher modelling code. Return true iff that is the case.
5523 If it is relevant, record the base register of the memory op in BASE and
5524 the offset in OFFSET. */
5525
5526 static bool
5527 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5528 {
5529 if (GET_CODE (pat) != SET)
5530 return false;
5531
5532 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5533 if (!MEM_P (mem))
5534 return false;
5535
5536 struct address_info info;
5537 decompose_mem_address (&info, mem);
5538
5539 /* TODO: Currently only (base+const) addressing is supported. */
5540 if (info.base == NULL || !REG_P (*info.base)
5541 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5542 return false;
5543
5544 *base = *info.base;
5545 *offset = info.disp ? INTVAL (*info.disp) : 0;
5546 return true;
5547 }
5548
5549 /* Functions to model cache auto-prefetcher.
5550
5551 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5552 memory prefetches if it sees instructions with consequitive memory accesses
5553 in the instruction stream. Details of such hardware units are not published,
5554 so we can only guess what exactly is going on there.
5555 In the scheduler, we model abstract auto-prefetcher. If there are memory
5556 insns in the ready list (or the queue) that have same memory base, but
5557 different offsets, then we delay the insns with larger offsets until insns
5558 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5559 is "1", then we look at the ready list; if it is N>1, then we also look
5560 through N-1 queue entries.
5561 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5562 among its heuristics.
5563 Param value of "-1" disables modelling of the auto-prefetcher. */
5564
5565 /* Initialize autoprefetcher model data for INSN. */
5566 static void
5567 autopref_multipass_init (const rtx_insn *insn, int write)
5568 {
5569 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5570
5571 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5572 data->base = NULL_RTX;
5573 data->min_offset = 0;
5574 data->max_offset = 0;
5575 data->multi_mem_insn_p = false;
5576 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5577 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5578
5579 rtx pat = PATTERN (insn);
5580
5581 /* We have a multi-set insn like a load-multiple or store-multiple.
5582 We care about these as long as all the memory ops inside the PARALLEL
5583 have the same base register. We care about the minimum and maximum
5584 offsets from that base but don't check for the order of those offsets
5585 within the PARALLEL insn itself. */
5586 if (GET_CODE (pat) == PARALLEL)
5587 {
5588 int n_elems = XVECLEN (pat, 0);
5589
5590 int i = 0;
5591 rtx prev_base = NULL_RTX;
5592 int min_offset = 0;
5593 int max_offset = 0;
5594
5595 for (i = 0; i < n_elems; i++)
5596 {
5597 rtx set = XVECEXP (pat, 0, i);
5598 if (GET_CODE (set) != SET)
5599 return;
5600
5601 rtx base = NULL_RTX;
5602 int offset = 0;
5603 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5604 return;
5605
5606 if (i == 0)
5607 {
5608 prev_base = base;
5609 min_offset = offset;
5610 max_offset = offset;
5611 }
5612 /* Ensure that all memory operations in the PARALLEL use the same
5613 base register. */
5614 else if (REGNO (base) != REGNO (prev_base))
5615 return;
5616 else
5617 {
5618 min_offset = MIN (min_offset, offset);
5619 max_offset = MAX (max_offset, offset);
5620 }
5621 }
5622
5623 /* If we reached here then we have a valid PARALLEL of multiple memory
5624 ops with prev_base as the base and min_offset and max_offset
5625 containing the offsets range. */
5626 gcc_assert (prev_base);
5627 data->base = prev_base;
5628 data->min_offset = min_offset;
5629 data->max_offset = max_offset;
5630 data->multi_mem_insn_p = true;
5631 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5632
5633 return;
5634 }
5635
5636 /* Otherwise this is a single set memory operation. */
5637 rtx set = single_set (insn);
5638 if (set == NULL_RTX)
5639 return;
5640
5641 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5642 &data->min_offset))
5643 return;
5644
5645 /* This insn is relevant for the auto-prefetcher.
5646 The base and offset fields will have been filled in the
5647 analyze_set_insn_for_autopref call above. */
5648 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5649 }
5650
5651
5652 /* Helper for autopref_rank_for_schedule. Given the data of two
5653 insns relevant to the auto-prefetcher modelling code DATA1 and DATA2
5654 return their comparison result. Return 0 if there is no sensible
5655 ranking order for the two insns. */
5656
5657 static int
5658 autopref_rank_data (autopref_multipass_data_t data1,
5659 autopref_multipass_data_t data2)
5660 {
5661 /* Simple case when both insns are simple single memory ops. */
5662 if (!data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5663 return data1->min_offset - data2->min_offset;
5664
5665 /* Two load/store multiple insns. Return 0 if the offset ranges
5666 overlap and the difference between the minimum offsets otherwise. */
5667 else if (data1->multi_mem_insn_p && data2->multi_mem_insn_p)
5668 {
5669 int min1 = data1->min_offset;
5670 int max1 = data1->max_offset;
5671 int min2 = data2->min_offset;
5672 int max2 = data2->max_offset;
5673
5674 if (max1 < min2 || min1 > max2)
5675 return min1 - min2;
5676 else
5677 return 0;
5678 }
5679
5680 /* The other two cases is a pair of a load/store multiple and
5681 a simple memory op. Return 0 if the single op's offset is within the
5682 range of the multi-op insn and the difference between the single offset
5683 and the minimum offset of the multi-set insn otherwise. */
5684 else if (data1->multi_mem_insn_p && !data2->multi_mem_insn_p)
5685 {
5686 int max1 = data1->max_offset;
5687 int min1 = data1->min_offset;
5688
5689 if (data2->min_offset >= min1
5690 && data2->min_offset <= max1)
5691 return 0;
5692 else
5693 return min1 - data2->min_offset;
5694 }
5695 else
5696 {
5697 int max2 = data2->max_offset;
5698 int min2 = data2->min_offset;
5699
5700 if (data1->min_offset >= min2
5701 && data1->min_offset <= max2)
5702 return 0;
5703 else
5704 return data1->min_offset - min2;
5705 }
5706 }
5707
5708 /* Helper function for rank_for_schedule sorting. */
5709 static int
5710 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5711 {
5712 for (int write = 0; write < 2; ++write)
5713 {
5714 autopref_multipass_data_t data1
5715 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5716 autopref_multipass_data_t data2
5717 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5718
5719 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5720 autopref_multipass_init (insn1, write);
5721 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5722 continue;
5723
5724 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5725 autopref_multipass_init (insn2, write);
5726 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5727 continue;
5728
5729 if (!rtx_equal_p (data1->base, data2->base))
5730 continue;
5731
5732 return autopref_rank_data (data1, data2);
5733 }
5734
5735 return 0;
5736 }
5737
5738 /* True if header of debug dump was printed. */
5739 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5740
5741 /* Helper for autopref_multipass_dfa_lookahead_guard.
5742 Return "1" if INSN1 should be delayed in favor of INSN2. */
5743 static int
5744 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5745 const rtx_insn *insn2, int write)
5746 {
5747 autopref_multipass_data_t data1
5748 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5749 autopref_multipass_data_t data2
5750 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5751
5752 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5753 autopref_multipass_init (insn2, write);
5754 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5755 return 0;
5756
5757 if (rtx_equal_p (data1->base, data2->base)
5758 && autopref_rank_data (data1, data2) > 0)
5759 {
5760 if (sched_verbose >= 2)
5761 {
5762 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5763 {
5764 fprintf (sched_dump,
5765 ";;\t\tnot trying in max_issue due to autoprefetch "
5766 "model: ");
5767 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5768 }
5769
5770 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5771 }
5772
5773 return 1;
5774 }
5775
5776 return 0;
5777 }
5778
5779 /* General note:
5780
5781 We could have also hooked autoprefetcher model into
5782 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5783 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5784 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5785 unblocked). We don't bother about this yet because target of interest
5786 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5787
5788 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5789 Return "1" if INSN1 should not be considered in max_issue due to
5790 auto-prefetcher considerations. */
5791 int
5792 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5793 {
5794 int r = 0;
5795
5796 /* Exit early if the param forbids this or if we're not entering here through
5797 normal haifa scheduling. This can happen if selective scheduling is
5798 explicitly enabled. */
5799 if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5800 return 0;
5801
5802 if (sched_verbose >= 2 && ready_index == 0)
5803 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5804
5805 for (int write = 0; write < 2; ++write)
5806 {
5807 autopref_multipass_data_t data1
5808 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5809
5810 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5811 autopref_multipass_init (insn1, write);
5812 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5813 continue;
5814
5815 if (ready_index == 0
5816 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5817 /* We allow only a single delay on priviledged instructions.
5818 Doing otherwise would cause infinite loop. */
5819 {
5820 if (sched_verbose >= 2)
5821 {
5822 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5823 {
5824 fprintf (sched_dump,
5825 ";;\t\tnot trying in max_issue due to autoprefetch "
5826 "model: ");
5827 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5828 }
5829
5830 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5831 }
5832 continue;
5833 }
5834
5835 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5836 {
5837 rtx_insn *insn2 = get_ready_element (i2);
5838 if (insn1 == insn2)
5839 continue;
5840 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5841 if (r)
5842 {
5843 if (ready_index == 0)
5844 {
5845 r = -1;
5846 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5847 }
5848 goto finish;
5849 }
5850 }
5851
5852 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5853 continue;
5854
5855 /* Everything from the current queue slot should have been moved to
5856 the ready list. */
5857 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5858
5859 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5860 if (n_stalls > max_insn_queue_index)
5861 n_stalls = max_insn_queue_index;
5862
5863 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5864 {
5865 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5866 link != NULL_RTX;
5867 link = link->next ())
5868 {
5869 rtx_insn *insn2 = link->insn ();
5870 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5871 write);
5872 if (r)
5873 {
5874 /* Queue INSN1 until INSN2 can issue. */
5875 r = -stalls;
5876 if (ready_index == 0)
5877 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5878 goto finish;
5879 }
5880 }
5881 }
5882 }
5883
5884 finish:
5885 if (sched_verbose >= 2
5886 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5887 && (ready_index == ready.n_ready - 1 || r < 0))
5888 /* This does not /always/ trigger. We don't output EOL if the last
5889 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5890 called. We can live with this. */
5891 fprintf (sched_dump, "\n");
5892
5893 return r;
5894 }
5895
5896 /* Define type for target data used in multipass scheduling. */
5897 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5898 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5899 #endif
5900 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5901
5902 /* The following structure describe an entry of the stack of choices. */
5903 struct choice_entry
5904 {
5905 /* Ordinal number of the issued insn in the ready queue. */
5906 int index;
5907 /* The number of the rest insns whose issues we should try. */
5908 int rest;
5909 /* The number of issued essential insns. */
5910 int n;
5911 /* State after issuing the insn. */
5912 state_t state;
5913 /* Target-specific data. */
5914 first_cycle_multipass_data_t target_data;
5915 };
5916
5917 /* The following array is used to implement a stack of choices used in
5918 function max_issue. */
5919 static struct choice_entry *choice_stack;
5920
5921 /* This holds the value of the target dfa_lookahead hook. */
5922 int dfa_lookahead;
5923
5924 /* The following variable value is maximal number of tries of issuing
5925 insns for the first cycle multipass insn scheduling. We define
5926 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5927 need this constraint if all real insns (with non-negative codes)
5928 had reservations because in this case the algorithm complexity is
5929 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5930 might be incomplete and such insn might occur. For such
5931 descriptions, the complexity of algorithm (without the constraint)
5932 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5933 static int max_lookahead_tries;
5934
5935 /* The following function returns maximal (or close to maximal) number
5936 of insns which can be issued on the same cycle and one of which
5937 insns is insns with the best rank (the first insn in READY). To
5938 make this function tries different samples of ready insns. READY
5939 is current queue `ready'. Global array READY_TRY reflects what
5940 insns are already issued in this try. The function stops immediately,
5941 if it reached the such a solution, that all instruction can be issued.
5942 INDEX will contain index of the best insn in READY. The following
5943 function is used only for first cycle multipass scheduling.
5944
5945 PRIVILEGED_N >= 0
5946
5947 This function expects recognized insns only. All USEs,
5948 CLOBBERs, etc must be filtered elsewhere. */
5949 int
5950 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5951 bool first_cycle_insn_p, int *index)
5952 {
5953 int n, i, all, n_ready, best, delay, tries_num;
5954 int more_issue;
5955 struct choice_entry *top;
5956 rtx_insn *insn;
5957
5958 if (sched_fusion)
5959 return 0;
5960
5961 n_ready = ready->n_ready;
5962 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5963 && privileged_n <= n_ready);
5964
5965 /* Init MAX_LOOKAHEAD_TRIES. */
5966 if (max_lookahead_tries == 0)
5967 {
5968 max_lookahead_tries = 100;
5969 for (i = 0; i < issue_rate; i++)
5970 max_lookahead_tries *= dfa_lookahead;
5971 }
5972
5973 /* Init max_points. */
5974 more_issue = issue_rate - cycle_issued_insns;
5975 gcc_assert (more_issue >= 0);
5976
5977 /* The number of the issued insns in the best solution. */
5978 best = 0;
5979
5980 top = choice_stack;
5981
5982 /* Set initial state of the search. */
5983 memcpy (top->state, state, dfa_state_size);
5984 top->rest = dfa_lookahead;
5985 top->n = 0;
5986 if (targetm.sched.first_cycle_multipass_begin)
5987 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5988 ready_try, n_ready,
5989 first_cycle_insn_p);
5990
5991 /* Count the number of the insns to search among. */
5992 for (all = i = 0; i < n_ready; i++)
5993 if (!ready_try [i])
5994 all++;
5995
5996 if (sched_verbose >= 2)
5997 {
5998 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5999 debug_ready_list_1 (ready, ready_try);
6000 }
6001
6002 /* I is the index of the insn to try next. */
6003 i = 0;
6004 tries_num = 0;
6005 for (;;)
6006 {
6007 if (/* If we've reached a dead end or searched enough of what we have
6008 been asked... */
6009 top->rest == 0
6010 /* or have nothing else to try... */
6011 || i >= n_ready
6012 /* or should not issue more. */
6013 || top->n >= more_issue)
6014 {
6015 /* ??? (... || i == n_ready). */
6016 gcc_assert (i <= n_ready);
6017
6018 /* We should not issue more than issue_rate instructions. */
6019 gcc_assert (top->n <= more_issue);
6020
6021 if (top == choice_stack)
6022 break;
6023
6024 if (best < top - choice_stack)
6025 {
6026 if (privileged_n)
6027 {
6028 n = privileged_n;
6029 /* Try to find issued privileged insn. */
6030 while (n && !ready_try[--n])
6031 ;
6032 }
6033
6034 if (/* If all insns are equally good... */
6035 privileged_n == 0
6036 /* Or a privileged insn will be issued. */
6037 || ready_try[n])
6038 /* Then we have a solution. */
6039 {
6040 best = top - choice_stack;
6041 /* This is the index of the insn issued first in this
6042 solution. */
6043 *index = choice_stack [1].index;
6044 if (top->n == more_issue || best == all)
6045 break;
6046 }
6047 }
6048
6049 /* Set ready-list index to point to the last insn
6050 ('i++' below will advance it to the next insn). */
6051 i = top->index;
6052
6053 /* Backtrack. */
6054 ready_try [i] = 0;
6055
6056 if (targetm.sched.first_cycle_multipass_backtrack)
6057 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
6058 ready_try, n_ready);
6059
6060 top--;
6061 memcpy (state, top->state, dfa_state_size);
6062 }
6063 else if (!ready_try [i])
6064 {
6065 tries_num++;
6066 if (tries_num > max_lookahead_tries)
6067 break;
6068 insn = ready_element (ready, i);
6069 delay = state_transition (state, insn);
6070 if (delay < 0)
6071 {
6072 if (state_dead_lock_p (state)
6073 || insn_finishes_cycle_p (insn))
6074 /* We won't issue any more instructions in the next
6075 choice_state. */
6076 top->rest = 0;
6077 else
6078 top->rest--;
6079
6080 n = top->n;
6081 if (memcmp (top->state, state, dfa_state_size) != 0)
6082 n++;
6083
6084 /* Advance to the next choice_entry. */
6085 top++;
6086 /* Initialize it. */
6087 top->rest = dfa_lookahead;
6088 top->index = i;
6089 top->n = n;
6090 memcpy (top->state, state, dfa_state_size);
6091 ready_try [i] = 1;
6092
6093 if (targetm.sched.first_cycle_multipass_issue)
6094 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6095 ready_try, n_ready,
6096 insn,
6097 &((top - 1)
6098 ->target_data));
6099
6100 i = -1;
6101 }
6102 }
6103
6104 /* Increase ready-list index. */
6105 i++;
6106 }
6107
6108 if (targetm.sched.first_cycle_multipass_end)
6109 targetm.sched.first_cycle_multipass_end (best != 0
6110 ? &choice_stack[1].target_data
6111 : NULL);
6112
6113 /* Restore the original state of the DFA. */
6114 memcpy (state, choice_stack->state, dfa_state_size);
6115
6116 return best;
6117 }
6118
6119 /* The following function chooses insn from READY and modifies
6120 READY. The following function is used only for first
6121 cycle multipass scheduling.
6122 Return:
6123 -1 if cycle should be advanced,
6124 0 if INSN_PTR is set to point to the desirable insn,
6125 1 if choose_ready () should be restarted without advancing the cycle. */
6126 static int
6127 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6128 rtx_insn **insn_ptr)
6129 {
6130 if (dbg_cnt (sched_insn) == false)
6131 {
6132 if (nonscheduled_insns_begin == NULL_RTX)
6133 nonscheduled_insns_begin = current_sched_info->prev_head;
6134
6135 rtx_insn *insn = first_nonscheduled_insn ();
6136
6137 if (QUEUE_INDEX (insn) == QUEUE_READY)
6138 /* INSN is in the ready_list. */
6139 {
6140 ready_remove_insn (insn);
6141 *insn_ptr = insn;
6142 return 0;
6143 }
6144
6145 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6146 gcc_assert (QUEUE_INDEX (insn) >= 0);
6147 return -1;
6148 }
6149
6150 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6151 || DEBUG_INSN_P (ready_element (ready, 0)))
6152 {
6153 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6154 *insn_ptr = ready_remove_first_dispatch (ready);
6155 else
6156 *insn_ptr = ready_remove_first (ready);
6157
6158 return 0;
6159 }
6160 else
6161 {
6162 /* Try to choose the best insn. */
6163 int index = 0, i;
6164 rtx_insn *insn;
6165
6166 insn = ready_element (ready, 0);
6167 if (INSN_CODE (insn) < 0)
6168 {
6169 *insn_ptr = ready_remove_first (ready);
6170 return 0;
6171 }
6172
6173 /* Filter the search space. */
6174 for (i = 0; i < ready->n_ready; i++)
6175 {
6176 ready_try[i] = 0;
6177
6178 insn = ready_element (ready, i);
6179
6180 /* If this insn is recognizable we should have already
6181 recognized it earlier.
6182 ??? Not very clear where this is supposed to be done.
6183 See dep_cost_1. */
6184 gcc_checking_assert (INSN_CODE (insn) >= 0
6185 || recog_memoized (insn) < 0);
6186 if (INSN_CODE (insn) < 0)
6187 {
6188 /* Non-recognized insns at position 0 are handled above. */
6189 gcc_assert (i > 0);
6190 ready_try[i] = 1;
6191 continue;
6192 }
6193
6194 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6195 {
6196 ready_try[i]
6197 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6198 (insn, i));
6199
6200 if (ready_try[i] < 0)
6201 /* Queue instruction for several cycles.
6202 We need to restart choose_ready as we have changed
6203 the ready list. */
6204 {
6205 change_queue_index (insn, -ready_try[i]);
6206 return 1;
6207 }
6208
6209 /* Make sure that we didn't end up with 0'th insn filtered out.
6210 Don't be tempted to make life easier for backends and just
6211 requeue 0'th insn if (ready_try[0] == 0) and restart
6212 choose_ready. Backends should be very considerate about
6213 requeueing instructions -- especially the highest priority
6214 one at position 0. */
6215 gcc_assert (ready_try[i] == 0 || i > 0);
6216 if (ready_try[i])
6217 continue;
6218 }
6219
6220 gcc_assert (ready_try[i] == 0);
6221 /* INSN made it through the scrutiny of filters! */
6222 }
6223
6224 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6225 {
6226 *insn_ptr = ready_remove_first (ready);
6227 if (sched_verbose >= 4)
6228 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6229 (*current_sched_info->print_insn) (*insn_ptr, 0));
6230 return 0;
6231 }
6232 else
6233 {
6234 if (sched_verbose >= 4)
6235 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6236 (*current_sched_info->print_insn)
6237 (ready_element (ready, index), 0));
6238
6239 *insn_ptr = ready_remove (ready, index);
6240 return 0;
6241 }
6242 }
6243 }
6244
6245 /* This function is called when we have successfully scheduled a
6246 block. It uses the schedule stored in the scheduled_insns vector
6247 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6248 append the scheduled insns; TAIL is the insn after the scheduled
6249 block. TARGET_BB is the argument passed to schedule_block. */
6250
6251 static void
6252 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6253 {
6254 unsigned int i;
6255 rtx_insn *insn;
6256
6257 last_scheduled_insn = prev_head;
6258 for (i = 0;
6259 scheduled_insns.iterate (i, &insn);
6260 i++)
6261 {
6262 if (control_flow_insn_p (last_scheduled_insn)
6263 || current_sched_info->advance_target_bb (*target_bb, insn))
6264 {
6265 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6266
6267 if (sched_verbose)
6268 {
6269 rtx_insn *x;
6270
6271 x = next_real_insn (last_scheduled_insn);
6272 gcc_assert (x);
6273 dump_new_block_header (1, *target_bb, x, tail);
6274 }
6275
6276 last_scheduled_insn = bb_note (*target_bb);
6277 }
6278
6279 if (current_sched_info->begin_move_insn)
6280 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6281 move_insn (insn, last_scheduled_insn,
6282 current_sched_info->next_tail);
6283 if (!DEBUG_INSN_P (insn))
6284 reemit_notes (insn);
6285 last_scheduled_insn = insn;
6286 }
6287
6288 scheduled_insns.truncate (0);
6289 }
6290
6291 /* Examine all insns on the ready list and queue those which can't be
6292 issued in this cycle. TEMP_STATE is temporary scheduler state we
6293 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6294 have been issued for the current cycle, which means it is valid to
6295 issue an asm statement.
6296
6297 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6298 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6299 we only leave insns which have an INSN_EXACT_TICK. */
6300
6301 static void
6302 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6303 bool shadows_only_p, bool modulo_epilogue_p)
6304 {
6305 int i, pass;
6306 bool sched_group_found = false;
6307 int min_cost_group = 1;
6308
6309 if (sched_fusion)
6310 return;
6311
6312 for (i = 0; i < ready.n_ready; i++)
6313 {
6314 rtx_insn *insn = ready_element (&ready, i);
6315 if (SCHED_GROUP_P (insn))
6316 {
6317 sched_group_found = true;
6318 break;
6319 }
6320 }
6321
6322 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6323 such an insn first and note its cost, then schedule all other insns
6324 for one cycle later. */
6325 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6326 {
6327 int n = ready.n_ready;
6328 for (i = 0; i < n; i++)
6329 {
6330 rtx_insn *insn = ready_element (&ready, i);
6331 int cost = 0;
6332 const char *reason = "resource conflict";
6333
6334 if (DEBUG_INSN_P (insn))
6335 continue;
6336
6337 if (sched_group_found && !SCHED_GROUP_P (insn))
6338 {
6339 if (pass == 0)
6340 continue;
6341 cost = min_cost_group;
6342 reason = "not in sched group";
6343 }
6344 else if (modulo_epilogue_p
6345 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6346 {
6347 cost = max_insn_queue_index;
6348 reason = "not an epilogue insn";
6349 }
6350 else if (shadows_only_p && !SHADOW_P (insn))
6351 {
6352 cost = 1;
6353 reason = "not a shadow";
6354 }
6355 else if (recog_memoized (insn) < 0)
6356 {
6357 if (!first_cycle_insn_p
6358 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6359 || asm_noperands (PATTERN (insn)) >= 0))
6360 cost = 1;
6361 reason = "asm";
6362 }
6363 else if (sched_pressure != SCHED_PRESSURE_NONE)
6364 {
6365 if (sched_pressure == SCHED_PRESSURE_MODEL
6366 && INSN_TICK (insn) <= clock_var)
6367 {
6368 memcpy (temp_state, curr_state, dfa_state_size);
6369 if (state_transition (temp_state, insn) >= 0)
6370 INSN_TICK (insn) = clock_var + 1;
6371 }
6372 cost = 0;
6373 }
6374 else
6375 {
6376 int delay_cost = 0;
6377
6378 if (delay_htab)
6379 {
6380 struct delay_pair *delay_entry;
6381 delay_entry
6382 = delay_htab->find_with_hash (insn,
6383 htab_hash_pointer (insn));
6384 while (delay_entry && delay_cost == 0)
6385 {
6386 delay_cost = estimate_shadow_tick (delay_entry);
6387 if (delay_cost > max_insn_queue_index)
6388 delay_cost = max_insn_queue_index;
6389 delay_entry = delay_entry->next_same_i1;
6390 }
6391 }
6392
6393 memcpy (temp_state, curr_state, dfa_state_size);
6394 cost = state_transition (temp_state, insn);
6395 if (cost < 0)
6396 cost = 0;
6397 else if (cost == 0)
6398 cost = 1;
6399 if (cost < delay_cost)
6400 {
6401 cost = delay_cost;
6402 reason = "shadow tick";
6403 }
6404 }
6405 if (cost >= 1)
6406 {
6407 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6408 min_cost_group = cost;
6409 ready_remove (&ready, i);
6410 /* Normally we'd want to queue INSN for COST cycles. However,
6411 if SCHED_GROUP_P is set, then we must ensure that nothing
6412 else comes between INSN and its predecessor. If there is
6413 some other insn ready to fire on the next cycle, then that
6414 invariant would be broken.
6415
6416 So when SCHED_GROUP_P is set, just queue this insn for a
6417 single cycle. */
6418 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6419 if (i + 1 < n)
6420 break;
6421 }
6422 }
6423 if (i == n)
6424 pass++;
6425 }
6426 }
6427
6428 /* Called when we detect that the schedule is impossible. We examine the
6429 backtrack queue to find the earliest insn that caused this condition. */
6430
6431 static struct haifa_saved_data *
6432 verify_shadows (void)
6433 {
6434 struct haifa_saved_data *save, *earliest_fail = NULL;
6435 for (save = backtrack_queue; save; save = save->next)
6436 {
6437 int t;
6438 struct delay_pair *pair = save->delay_pair;
6439 rtx_insn *i1 = pair->i1;
6440
6441 for (; pair; pair = pair->next_same_i1)
6442 {
6443 rtx_insn *i2 = pair->i2;
6444
6445 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6446 continue;
6447
6448 t = INSN_TICK (i1) + pair_delay (pair);
6449 if (t < clock_var)
6450 {
6451 if (sched_verbose >= 2)
6452 fprintf (sched_dump,
6453 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6454 ", not ready\n",
6455 INSN_UID (pair->i1), INSN_UID (pair->i2),
6456 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6457 earliest_fail = save;
6458 break;
6459 }
6460 if (QUEUE_INDEX (i2) >= 0)
6461 {
6462 int queued_for = INSN_TICK (i2);
6463
6464 if (t < queued_for)
6465 {
6466 if (sched_verbose >= 2)
6467 fprintf (sched_dump,
6468 ";;\t\tfailed delay requirements for %d/%d"
6469 " (%d->%d), queued too late\n",
6470 INSN_UID (pair->i1), INSN_UID (pair->i2),
6471 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6472 earliest_fail = save;
6473 break;
6474 }
6475 }
6476 }
6477 }
6478
6479 return earliest_fail;
6480 }
6481
6482 /* Print instructions together with useful scheduling information between
6483 HEAD and TAIL (inclusive). */
6484 static void
6485 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6486 {
6487 fprintf (sched_dump, ";;\t| insn | prio |\n");
6488
6489 rtx_insn *next_tail = NEXT_INSN (tail);
6490 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6491 {
6492 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6493 const char *pattern = (NOTE_P (insn)
6494 ? "note"
6495 : str_pattern_slim (PATTERN (insn)));
6496
6497 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6498 INSN_UID (insn), priority, pattern);
6499
6500 if (sched_verbose >= 4)
6501 {
6502 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
6503 fprintf (sched_dump, "nothing");
6504 else
6505 print_reservation (sched_dump, insn);
6506 }
6507 fprintf (sched_dump, "\n");
6508 }
6509 }
6510
6511 /* Use forward list scheduling to rearrange insns of block pointed to by
6512 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6513 region. */
6514
6515 bool
6516 schedule_block (basic_block *target_bb, state_t init_state)
6517 {
6518 int i;
6519 bool success = modulo_ii == 0;
6520 struct sched_block_state ls;
6521 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6522 int sort_p, advance, start_clock_var;
6523
6524 /* Head/tail info for this block. */
6525 rtx_insn *prev_head = current_sched_info->prev_head;
6526 rtx_insn *next_tail = current_sched_info->next_tail;
6527 rtx_insn *head = NEXT_INSN (prev_head);
6528 rtx_insn *tail = PREV_INSN (next_tail);
6529
6530 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6531 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6532 find_modifiable_mems (head, tail);
6533
6534 /* We used to have code to avoid getting parameters moved from hard
6535 argument registers into pseudos.
6536
6537 However, it was removed when it proved to be of marginal benefit
6538 and caused problems because schedule_block and compute_forward_dependences
6539 had different notions of what the "head" insn was. */
6540
6541 gcc_assert (head != tail || INSN_P (head));
6542
6543 haifa_recovery_bb_recently_added_p = false;
6544
6545 backtrack_queue = NULL;
6546
6547 /* Debug info. */
6548 if (sched_verbose)
6549 {
6550 dump_new_block_header (0, *target_bb, head, tail);
6551
6552 if (sched_verbose >= 2)
6553 {
6554 dump_insn_stream (head, tail);
6555 memset (&rank_for_schedule_stats, 0,
6556 sizeof (rank_for_schedule_stats));
6557 }
6558 }
6559
6560 if (init_state == NULL)
6561 state_reset (curr_state);
6562 else
6563 memcpy (curr_state, init_state, dfa_state_size);
6564
6565 /* Clear the ready list. */
6566 ready.first = ready.veclen - 1;
6567 ready.n_ready = 0;
6568 ready.n_debug = 0;
6569
6570 /* It is used for first cycle multipass scheduling. */
6571 temp_state = alloca (dfa_state_size);
6572
6573 if (targetm.sched.init)
6574 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6575
6576 /* We start inserting insns after PREV_HEAD. */
6577 last_scheduled_insn = prev_head;
6578 last_nondebug_scheduled_insn = NULL;
6579 nonscheduled_insns_begin = NULL;
6580
6581 gcc_assert ((NOTE_P (last_scheduled_insn)
6582 || DEBUG_INSN_P (last_scheduled_insn))
6583 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6584
6585 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6586 queue. */
6587 q_ptr = 0;
6588 q_size = 0;
6589
6590 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6591 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6592
6593 /* Start just before the beginning of time. */
6594 clock_var = -1;
6595
6596 /* We need queue and ready lists and clock_var be initialized
6597 in try_ready () (which is called through init_ready_list ()). */
6598 (*current_sched_info->init_ready_list) ();
6599
6600 if (sched_pressure)
6601 sched_pressure_start_bb (*target_bb);
6602
6603 /* The algorithm is O(n^2) in the number of ready insns at any given
6604 time in the worst case. Before reload we are more likely to have
6605 big lists so truncate them to a reasonable size. */
6606 if (!reload_completed
6607 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6608 {
6609 ready_sort_debug (&ready);
6610 ready_sort_real (&ready);
6611
6612 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6613 If there are debug insns, we know they're first. */
6614 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6615 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6616 break;
6617
6618 if (sched_verbose >= 2)
6619 {
6620 fprintf (sched_dump,
6621 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6622 debug_ready_list (&ready);
6623 fprintf (sched_dump,
6624 ";;\t\t before reload => truncated to %d insns\n", i);
6625 }
6626
6627 /* Delay all insns past it for 1 cycle. If debug counter is
6628 activated make an exception for the insn right after
6629 nonscheduled_insns_begin. */
6630 {
6631 rtx_insn *skip_insn;
6632
6633 if (dbg_cnt (sched_insn) == false)
6634 skip_insn = first_nonscheduled_insn ();
6635 else
6636 skip_insn = NULL;
6637
6638 while (i < ready.n_ready)
6639 {
6640 rtx_insn *insn;
6641
6642 insn = ready_remove (&ready, i);
6643
6644 if (insn != skip_insn)
6645 queue_insn (insn, 1, "list truncated");
6646 }
6647 if (skip_insn)
6648 ready_add (&ready, skip_insn, true);
6649 }
6650 }
6651
6652 /* Now we can restore basic block notes and maintain precise cfg. */
6653 restore_bb_notes (*target_bb);
6654
6655 last_clock_var = -1;
6656
6657 advance = 0;
6658
6659 gcc_assert (scheduled_insns.length () == 0);
6660 sort_p = TRUE;
6661 must_backtrack = false;
6662 modulo_insns_scheduled = 0;
6663
6664 ls.modulo_epilogue = false;
6665 ls.first_cycle_insn_p = true;
6666
6667 /* Loop until all the insns in BB are scheduled. */
6668 while ((*current_sched_info->schedule_more_p) ())
6669 {
6670 perform_replacements_new_cycle ();
6671 do
6672 {
6673 start_clock_var = clock_var;
6674
6675 clock_var++;
6676
6677 advance_one_cycle ();
6678
6679 /* Add to the ready list all pending insns that can be issued now.
6680 If there are no ready insns, increment clock until one
6681 is ready and add all pending insns at that point to the ready
6682 list. */
6683 queue_to_ready (&ready);
6684
6685 gcc_assert (ready.n_ready);
6686
6687 if (sched_verbose >= 2)
6688 {
6689 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6690 debug_ready_list (&ready);
6691 }
6692 advance -= clock_var - start_clock_var;
6693 }
6694 while (advance > 0);
6695
6696 if (ls.modulo_epilogue)
6697 {
6698 int stage = clock_var / modulo_ii;
6699 if (stage > modulo_last_stage * 2 + 2)
6700 {
6701 if (sched_verbose >= 2)
6702 fprintf (sched_dump,
6703 ";;\t\tmodulo scheduled succeeded at II %d\n",
6704 modulo_ii);
6705 success = true;
6706 goto end_schedule;
6707 }
6708 }
6709 else if (modulo_ii > 0)
6710 {
6711 int stage = clock_var / modulo_ii;
6712 if (stage > modulo_max_stages)
6713 {
6714 if (sched_verbose >= 2)
6715 fprintf (sched_dump,
6716 ";;\t\tfailing schedule due to excessive stages\n");
6717 goto end_schedule;
6718 }
6719 if (modulo_n_insns == modulo_insns_scheduled
6720 && stage > modulo_last_stage)
6721 {
6722 if (sched_verbose >= 2)
6723 fprintf (sched_dump,
6724 ";;\t\tfound kernel after %d stages, II %d\n",
6725 stage, modulo_ii);
6726 ls.modulo_epilogue = true;
6727 }
6728 }
6729
6730 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6731 if (ready.n_ready == 0)
6732 continue;
6733 if (must_backtrack)
6734 goto do_backtrack;
6735
6736 ls.shadows_only_p = false;
6737 cycle_issued_insns = 0;
6738 ls.can_issue_more = issue_rate;
6739 for (;;)
6740 {
6741 rtx_insn *insn;
6742 int cost;
6743 bool asm_p;
6744
6745 if (sort_p && ready.n_ready > 0)
6746 {
6747 /* Sort the ready list based on priority. This must be
6748 done every iteration through the loop, as schedule_insn
6749 may have readied additional insns that will not be
6750 sorted correctly. */
6751 ready_sort (&ready);
6752
6753 if (sched_verbose >= 2)
6754 {
6755 fprintf (sched_dump,
6756 ";;\t\tReady list after ready_sort: ");
6757 debug_ready_list (&ready);
6758 }
6759 }
6760
6761 /* We don't want md sched reorder to even see debug isns, so put
6762 them out right away. */
6763 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6764 && (*current_sched_info->schedule_more_p) ())
6765 {
6766 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6767 {
6768 rtx_insn *insn = ready_remove_first (&ready);
6769 gcc_assert (DEBUG_INSN_P (insn));
6770 (*current_sched_info->begin_schedule_ready) (insn);
6771 scheduled_insns.safe_push (insn);
6772 last_scheduled_insn = insn;
6773 advance = schedule_insn (insn);
6774 gcc_assert (advance == 0);
6775 if (ready.n_ready > 0)
6776 ready_sort (&ready);
6777 }
6778 }
6779
6780 if (ls.first_cycle_insn_p && !ready.n_ready)
6781 break;
6782
6783 resume_after_backtrack:
6784 /* Allow the target to reorder the list, typically for
6785 better instruction bundling. */
6786 if (sort_p
6787 && (ready.n_ready == 0
6788 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6789 {
6790 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6791 ls.can_issue_more
6792 = targetm.sched.reorder (sched_dump, sched_verbose,
6793 ready_lastpos (&ready),
6794 &ready.n_ready, clock_var);
6795 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6796 ls.can_issue_more
6797 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6798 ready.n_ready
6799 ? ready_lastpos (&ready) : NULL,
6800 &ready.n_ready, clock_var);
6801 }
6802
6803 restart_choose_ready:
6804 if (sched_verbose >= 2)
6805 {
6806 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6807 clock_var);
6808 debug_ready_list (&ready);
6809 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6810 print_curr_reg_pressure ();
6811 }
6812
6813 if (ready.n_ready == 0
6814 && ls.can_issue_more
6815 && reload_completed)
6816 {
6817 /* Allow scheduling insns directly from the queue in case
6818 there's nothing better to do (ready list is empty) but
6819 there are still vacant dispatch slots in the current cycle. */
6820 if (sched_verbose >= 6)
6821 fprintf (sched_dump,";;\t\tSecond chance\n");
6822 memcpy (temp_state, curr_state, dfa_state_size);
6823 if (early_queue_to_ready (temp_state, &ready))
6824 ready_sort (&ready);
6825 }
6826
6827 if (ready.n_ready == 0
6828 || !ls.can_issue_more
6829 || state_dead_lock_p (curr_state)
6830 || !(*current_sched_info->schedule_more_p) ())
6831 break;
6832
6833 /* Select and remove the insn from the ready list. */
6834 if (sort_p)
6835 {
6836 int res;
6837
6838 insn = NULL;
6839 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6840
6841 if (res < 0)
6842 /* Finish cycle. */
6843 break;
6844 if (res > 0)
6845 goto restart_choose_ready;
6846
6847 gcc_assert (insn != NULL_RTX);
6848 }
6849 else
6850 insn = ready_remove_first (&ready);
6851
6852 if (sched_pressure != SCHED_PRESSURE_NONE
6853 && INSN_TICK (insn) > clock_var)
6854 {
6855 ready_add (&ready, insn, true);
6856 advance = 1;
6857 break;
6858 }
6859
6860 if (targetm.sched.dfa_new_cycle
6861 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6862 insn, last_clock_var,
6863 clock_var, &sort_p))
6864 /* SORT_P is used by the target to override sorting
6865 of the ready list. This is needed when the target
6866 has modified its internal structures expecting that
6867 the insn will be issued next. As we need the insn
6868 to have the highest priority (so it will be returned by
6869 the ready_remove_first call above), we invoke
6870 ready_add (&ready, insn, true).
6871 But, still, there is one issue: INSN can be later
6872 discarded by scheduler's front end through
6873 current_sched_info->can_schedule_ready_p, hence, won't
6874 be issued next. */
6875 {
6876 ready_add (&ready, insn, true);
6877 break;
6878 }
6879
6880 sort_p = TRUE;
6881
6882 if (current_sched_info->can_schedule_ready_p
6883 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6884 /* We normally get here only if we don't want to move
6885 insn from the split block. */
6886 {
6887 TODO_SPEC (insn) = DEP_POSTPONED;
6888 goto restart_choose_ready;
6889 }
6890
6891 if (delay_htab)
6892 {
6893 /* If this insn is the first part of a delay-slot pair, record a
6894 backtrack point. */
6895 struct delay_pair *delay_entry;
6896 delay_entry
6897 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6898 if (delay_entry)
6899 {
6900 save_backtrack_point (delay_entry, ls);
6901 if (sched_verbose >= 2)
6902 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6903 }
6904 }
6905
6906 /* DECISION is made. */
6907
6908 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6909 {
6910 modulo_insns_scheduled++;
6911 modulo_last_stage = clock_var / modulo_ii;
6912 }
6913 if (TODO_SPEC (insn) & SPECULATIVE)
6914 generate_recovery_code (insn);
6915
6916 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6917 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6918
6919 /* Update counters, etc in the scheduler's front end. */
6920 (*current_sched_info->begin_schedule_ready) (insn);
6921 scheduled_insns.safe_push (insn);
6922 gcc_assert (NONDEBUG_INSN_P (insn));
6923 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6924
6925 if (recog_memoized (insn) >= 0)
6926 {
6927 memcpy (temp_state, curr_state, dfa_state_size);
6928 cost = state_transition (curr_state, insn);
6929 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6930 gcc_assert (cost < 0);
6931 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6932 cycle_issued_insns++;
6933 asm_p = false;
6934 }
6935 else
6936 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6937 || asm_noperands (PATTERN (insn)) >= 0);
6938
6939 if (targetm.sched.variable_issue)
6940 ls.can_issue_more =
6941 targetm.sched.variable_issue (sched_dump, sched_verbose,
6942 insn, ls.can_issue_more);
6943 /* A naked CLOBBER or USE generates no instruction, so do
6944 not count them against the issue rate. */
6945 else if (GET_CODE (PATTERN (insn)) != USE
6946 && GET_CODE (PATTERN (insn)) != CLOBBER)
6947 ls.can_issue_more--;
6948 advance = schedule_insn (insn);
6949
6950 if (SHADOW_P (insn))
6951 ls.shadows_only_p = true;
6952
6953 /* After issuing an asm insn we should start a new cycle. */
6954 if (advance == 0 && asm_p)
6955 advance = 1;
6956
6957 if (must_backtrack)
6958 break;
6959
6960 if (advance != 0)
6961 break;
6962
6963 ls.first_cycle_insn_p = false;
6964 if (ready.n_ready > 0)
6965 prune_ready_list (temp_state, false, ls.shadows_only_p,
6966 ls.modulo_epilogue);
6967 }
6968
6969 do_backtrack:
6970 if (!must_backtrack)
6971 for (i = 0; i < ready.n_ready; i++)
6972 {
6973 rtx_insn *insn = ready_element (&ready, i);
6974 if (INSN_EXACT_TICK (insn) == clock_var)
6975 {
6976 must_backtrack = true;
6977 clock_var++;
6978 break;
6979 }
6980 }
6981 if (must_backtrack && modulo_ii > 0)
6982 {
6983 if (modulo_backtracks_left == 0)
6984 goto end_schedule;
6985 modulo_backtracks_left--;
6986 }
6987 while (must_backtrack)
6988 {
6989 struct haifa_saved_data *failed;
6990 rtx_insn *failed_insn;
6991
6992 must_backtrack = false;
6993 failed = verify_shadows ();
6994 gcc_assert (failed);
6995
6996 failed_insn = failed->delay_pair->i1;
6997 /* Clear these queues. */
6998 perform_replacements_new_cycle ();
6999 toggle_cancelled_flags (false);
7000 unschedule_insns_until (failed_insn);
7001 while (failed != backtrack_queue)
7002 free_topmost_backtrack_point (true);
7003 restore_last_backtrack_point (&ls);
7004 if (sched_verbose >= 2)
7005 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
7006 /* Delay by at least a cycle. This could cause additional
7007 backtracking. */
7008 queue_insn (failed_insn, 1, "backtracked");
7009 advance = 0;
7010 if (must_backtrack)
7011 continue;
7012 if (ready.n_ready > 0)
7013 goto resume_after_backtrack;
7014 else
7015 {
7016 if (clock_var == 0 && ls.first_cycle_insn_p)
7017 goto end_schedule;
7018 advance = 1;
7019 break;
7020 }
7021 }
7022 ls.first_cycle_insn_p = true;
7023 }
7024 if (ls.modulo_epilogue)
7025 success = true;
7026 end_schedule:
7027 if (!ls.first_cycle_insn_p || advance)
7028 advance_one_cycle ();
7029 perform_replacements_new_cycle ();
7030 if (modulo_ii > 0)
7031 {
7032 /* Once again, debug insn suckiness: they can be on the ready list
7033 even if they have unresolved dependencies. To make our view
7034 of the world consistent, remove such "ready" insns. */
7035 restart_debug_insn_loop:
7036 for (i = ready.n_ready - 1; i >= 0; i--)
7037 {
7038 rtx_insn *x;
7039
7040 x = ready_element (&ready, i);
7041 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
7042 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
7043 {
7044 ready_remove (&ready, i);
7045 goto restart_debug_insn_loop;
7046 }
7047 }
7048 for (i = ready.n_ready - 1; i >= 0; i--)
7049 {
7050 rtx_insn *x;
7051
7052 x = ready_element (&ready, i);
7053 resolve_dependencies (x);
7054 }
7055 for (i = 0; i <= max_insn_queue_index; i++)
7056 {
7057 rtx_insn_list *link;
7058 while ((link = insn_queue[i]) != NULL)
7059 {
7060 rtx_insn *x = link->insn ();
7061 insn_queue[i] = link->next ();
7062 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7063 free_INSN_LIST_node (link);
7064 resolve_dependencies (x);
7065 }
7066 }
7067 }
7068
7069 if (!success)
7070 undo_all_replacements ();
7071
7072 /* Debug info. */
7073 if (sched_verbose)
7074 {
7075 fprintf (sched_dump, ";;\tReady list (final): ");
7076 debug_ready_list (&ready);
7077 }
7078
7079 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7080 /* Sanity check -- queue must be empty now. Meaningless if region has
7081 multiple bbs. */
7082 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7083 else if (modulo_ii == 0)
7084 {
7085 /* We must maintain QUEUE_INDEX between blocks in region. */
7086 for (i = ready.n_ready - 1; i >= 0; i--)
7087 {
7088 rtx_insn *x;
7089
7090 x = ready_element (&ready, i);
7091 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7092 TODO_SPEC (x) = HARD_DEP;
7093 }
7094
7095 if (q_size)
7096 for (i = 0; i <= max_insn_queue_index; i++)
7097 {
7098 rtx_insn_list *link;
7099 for (link = insn_queue[i]; link; link = link->next ())
7100 {
7101 rtx_insn *x;
7102
7103 x = link->insn ();
7104 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7105 TODO_SPEC (x) = HARD_DEP;
7106 }
7107 free_INSN_LIST_list (&insn_queue[i]);
7108 }
7109 }
7110
7111 if (sched_pressure == SCHED_PRESSURE_MODEL)
7112 model_end_schedule ();
7113
7114 if (success)
7115 {
7116 commit_schedule (prev_head, tail, target_bb);
7117 if (sched_verbose)
7118 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7119 }
7120 else
7121 last_scheduled_insn = tail;
7122
7123 scheduled_insns.truncate (0);
7124
7125 if (!current_sched_info->queue_must_finish_empty
7126 || haifa_recovery_bb_recently_added_p)
7127 {
7128 /* INSN_TICK (minimum clock tick at which the insn becomes
7129 ready) may be not correct for the insn in the subsequent
7130 blocks of the region. We should use a correct value of
7131 `clock_var' or modify INSN_TICK. It is better to keep
7132 clock_var value equal to 0 at the start of a basic block.
7133 Therefore we modify INSN_TICK here. */
7134 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7135 }
7136
7137 if (targetm.sched.finish)
7138 {
7139 targetm.sched.finish (sched_dump, sched_verbose);
7140 /* Target might have added some instructions to the scheduled block
7141 in its md_finish () hook. These new insns don't have any data
7142 initialized and to identify them we extend h_i_d so that they'll
7143 get zero luids. */
7144 sched_extend_luids ();
7145 }
7146
7147 /* Update head/tail boundaries. */
7148 head = NEXT_INSN (prev_head);
7149 tail = last_scheduled_insn;
7150
7151 if (sched_verbose)
7152 {
7153 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7154 INSN_UID (head), INSN_UID (tail));
7155
7156 if (sched_verbose >= 2)
7157 {
7158 dump_insn_stream (head, tail);
7159 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7160 NULL);
7161 }
7162
7163 fprintf (sched_dump, "\n");
7164 }
7165
7166 head = restore_other_notes (head, NULL);
7167
7168 current_sched_info->head = head;
7169 current_sched_info->tail = tail;
7170
7171 free_backtrack_queue ();
7172
7173 return success;
7174 }
7175 \f
7176 /* Set_priorities: compute priority of each insn in the block. */
7177
7178 int
7179 set_priorities (rtx_insn *head, rtx_insn *tail)
7180 {
7181 rtx_insn *insn;
7182 int n_insn;
7183 int sched_max_insns_priority =
7184 current_sched_info->sched_max_insns_priority;
7185 rtx_insn *prev_head;
7186
7187 if (head == tail && ! INSN_P (head))
7188 gcc_unreachable ();
7189
7190 n_insn = 0;
7191
7192 prev_head = PREV_INSN (head);
7193 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7194 {
7195 if (!INSN_P (insn))
7196 continue;
7197
7198 n_insn++;
7199 (void) priority (insn);
7200
7201 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7202
7203 sched_max_insns_priority = MAX (sched_max_insns_priority,
7204 INSN_PRIORITY (insn));
7205 }
7206
7207 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7208
7209 return n_insn;
7210 }
7211
7212 /* Set sched_dump and sched_verbose for the desired debugging output. */
7213 void
7214 setup_sched_dump (void)
7215 {
7216 sched_verbose = sched_verbose_param;
7217 sched_dump = dump_file;
7218 if (!dump_file)
7219 sched_verbose = 0;
7220 }
7221
7222 /* Allocate data for register pressure sensitive scheduling. */
7223 static void
7224 alloc_global_sched_pressure_data (void)
7225 {
7226 if (sched_pressure != SCHED_PRESSURE_NONE)
7227 {
7228 int i, max_regno = max_reg_num ();
7229
7230 if (sched_dump != NULL)
7231 /* We need info about pseudos for rtl dumps about pseudo
7232 classes and costs. */
7233 regstat_init_n_sets_and_refs ();
7234 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7235 sched_regno_pressure_class
7236 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7237 for (i = 0; i < max_regno; i++)
7238 sched_regno_pressure_class[i]
7239 = (i < FIRST_PSEUDO_REGISTER
7240 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7241 : ira_pressure_class_translate[reg_allocno_class (i)]);
7242 curr_reg_live = BITMAP_ALLOC (NULL);
7243 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7244 {
7245 saved_reg_live = BITMAP_ALLOC (NULL);
7246 region_ref_regs = BITMAP_ALLOC (NULL);
7247 }
7248 if (sched_pressure == SCHED_PRESSURE_MODEL)
7249 tmp_bitmap = BITMAP_ALLOC (NULL);
7250
7251 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7252 that we calculate register pressure for. */
7253 for (int c = 0; c < ira_pressure_classes_num; ++c)
7254 {
7255 enum reg_class cl = ira_pressure_classes[c];
7256
7257 call_saved_regs_num[cl] = 0;
7258 fixed_regs_num[cl] = 0;
7259
7260 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7261 if (!call_used_regs[ira_class_hard_regs[cl][i]])
7262 ++call_saved_regs_num[cl];
7263 else if (fixed_regs[ira_class_hard_regs[cl][i]])
7264 ++fixed_regs_num[cl];
7265 }
7266 }
7267 }
7268
7269 /* Free data for register pressure sensitive scheduling. Also called
7270 from schedule_region when stopping sched-pressure early. */
7271 void
7272 free_global_sched_pressure_data (void)
7273 {
7274 if (sched_pressure != SCHED_PRESSURE_NONE)
7275 {
7276 if (regstat_n_sets_and_refs != NULL)
7277 regstat_free_n_sets_and_refs ();
7278 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7279 {
7280 BITMAP_FREE (region_ref_regs);
7281 BITMAP_FREE (saved_reg_live);
7282 }
7283 if (sched_pressure == SCHED_PRESSURE_MODEL)
7284 BITMAP_FREE (tmp_bitmap);
7285 BITMAP_FREE (curr_reg_live);
7286 free (sched_regno_pressure_class);
7287 }
7288 }
7289
7290 /* Initialize some global state for the scheduler. This function works
7291 with the common data shared between all the schedulers. It is called
7292 from the scheduler specific initialization routine. */
7293
7294 void
7295 sched_init (void)
7296 {
7297 /* Disable speculative loads in their presence if cc0 defined. */
7298 if (HAVE_cc0)
7299 flag_schedule_speculative_load = 0;
7300
7301 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7302 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7303
7304 if (live_range_shrinkage_p)
7305 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7306 else if (flag_sched_pressure
7307 && !reload_completed
7308 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7309 sched_pressure = ((enum sched_pressure_algorithm)
7310 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7311 else
7312 sched_pressure = SCHED_PRESSURE_NONE;
7313
7314 if (sched_pressure != SCHED_PRESSURE_NONE)
7315 ira_setup_eliminable_regset ();
7316
7317 /* Initialize SPEC_INFO. */
7318 if (targetm.sched.set_sched_flags)
7319 {
7320 spec_info = &spec_info_var;
7321 targetm.sched.set_sched_flags (spec_info);
7322
7323 if (spec_info->mask != 0)
7324 {
7325 spec_info->data_weakness_cutoff =
7326 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7327 spec_info->control_weakness_cutoff =
7328 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7329 * REG_BR_PROB_BASE) / 100;
7330 }
7331 else
7332 /* So we won't read anything accidentally. */
7333 spec_info = NULL;
7334
7335 }
7336 else
7337 /* So we won't read anything accidentally. */
7338 spec_info = 0;
7339
7340 /* Initialize issue_rate. */
7341 if (targetm.sched.issue_rate)
7342 issue_rate = targetm.sched.issue_rate ();
7343 else
7344 issue_rate = 1;
7345
7346 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7347 /* Don't use max_issue with reg_pressure scheduling. Multipass
7348 scheduling and reg_pressure scheduling undo each other's decisions. */
7349 && sched_pressure == SCHED_PRESSURE_NONE)
7350 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7351 else
7352 dfa_lookahead = 0;
7353
7354 /* Set to "0" so that we recalculate. */
7355 max_lookahead_tries = 0;
7356
7357 if (targetm.sched.init_dfa_pre_cycle_insn)
7358 targetm.sched.init_dfa_pre_cycle_insn ();
7359
7360 if (targetm.sched.init_dfa_post_cycle_insn)
7361 targetm.sched.init_dfa_post_cycle_insn ();
7362
7363 dfa_start ();
7364 dfa_state_size = state_size ();
7365
7366 init_alias_analysis ();
7367
7368 if (!sched_no_dce)
7369 df_set_flags (DF_LR_RUN_DCE);
7370 df_note_add_problem ();
7371
7372 /* More problems needed for interloop dep calculation in SMS. */
7373 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7374 {
7375 df_rd_add_problem ();
7376 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7377 }
7378
7379 df_analyze ();
7380
7381 /* Do not run DCE after reload, as this can kill nops inserted
7382 by bundling. */
7383 if (reload_completed)
7384 df_clear_flags (DF_LR_RUN_DCE);
7385
7386 regstat_compute_calls_crossed ();
7387
7388 if (targetm.sched.init_global)
7389 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7390
7391 alloc_global_sched_pressure_data ();
7392
7393 curr_state = xmalloc (dfa_state_size);
7394 }
7395
7396 static void haifa_init_only_bb (basic_block, basic_block);
7397
7398 /* Initialize data structures specific to the Haifa scheduler. */
7399 void
7400 haifa_sched_init (void)
7401 {
7402 setup_sched_dump ();
7403 sched_init ();
7404
7405 scheduled_insns.create (0);
7406
7407 if (spec_info != NULL)
7408 {
7409 sched_deps_info->use_deps_list = 1;
7410 sched_deps_info->generate_spec_deps = 1;
7411 }
7412
7413 /* Initialize luids, dependency caches, target and h_i_d for the
7414 whole function. */
7415 {
7416 sched_init_bbs ();
7417
7418 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7419 basic_block bb;
7420 FOR_EACH_BB_FN (bb, cfun)
7421 bbs.quick_push (bb);
7422 sched_init_luids (bbs);
7423 sched_deps_init (true);
7424 sched_extend_target ();
7425 haifa_init_h_i_d (bbs);
7426 }
7427
7428 sched_init_only_bb = haifa_init_only_bb;
7429 sched_split_block = sched_split_block_1;
7430 sched_create_empty_bb = sched_create_empty_bb_1;
7431 haifa_recovery_bb_ever_added_p = false;
7432
7433 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7434 before_recovery = 0;
7435 after_recovery = 0;
7436
7437 modulo_ii = 0;
7438 }
7439
7440 /* Finish work with the data specific to the Haifa scheduler. */
7441 void
7442 haifa_sched_finish (void)
7443 {
7444 sched_create_empty_bb = NULL;
7445 sched_split_block = NULL;
7446 sched_init_only_bb = NULL;
7447
7448 if (spec_info && spec_info->dump)
7449 {
7450 char c = reload_completed ? 'a' : 'b';
7451
7452 fprintf (spec_info->dump,
7453 ";; %s:\n", current_function_name ());
7454
7455 fprintf (spec_info->dump,
7456 ";; Procedure %cr-begin-data-spec motions == %d\n",
7457 c, nr_begin_data);
7458 fprintf (spec_info->dump,
7459 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7460 c, nr_be_in_data);
7461 fprintf (spec_info->dump,
7462 ";; Procedure %cr-begin-control-spec motions == %d\n",
7463 c, nr_begin_control);
7464 fprintf (spec_info->dump,
7465 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7466 c, nr_be_in_control);
7467 }
7468
7469 scheduled_insns.release ();
7470
7471 /* Finalize h_i_d, dependency caches, and luids for the whole
7472 function. Target will be finalized in md_global_finish (). */
7473 sched_deps_finish ();
7474 sched_finish_luids ();
7475 current_sched_info = NULL;
7476 insn_queue = NULL;
7477 sched_finish ();
7478 }
7479
7480 /* Free global data used during insn scheduling. This function works with
7481 the common data shared between the schedulers. */
7482
7483 void
7484 sched_finish (void)
7485 {
7486 haifa_finish_h_i_d ();
7487 free_global_sched_pressure_data ();
7488 free (curr_state);
7489
7490 if (targetm.sched.finish_global)
7491 targetm.sched.finish_global (sched_dump, sched_verbose);
7492
7493 end_alias_analysis ();
7494
7495 regstat_free_calls_crossed ();
7496
7497 dfa_finish ();
7498 }
7499
7500 /* Free all delay_pair structures that were recorded. */
7501 void
7502 free_delay_pairs (void)
7503 {
7504 if (delay_htab)
7505 {
7506 delay_htab->empty ();
7507 delay_htab_i2->empty ();
7508 }
7509 }
7510
7511 /* Fix INSN_TICKs of the instructions in the current block as well as
7512 INSN_TICKs of their dependents.
7513 HEAD and TAIL are the begin and the end of the current scheduled block. */
7514 static void
7515 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7516 {
7517 /* Set of instructions with corrected INSN_TICK. */
7518 bitmap_head processed;
7519 /* ??? It is doubtful if we should assume that cycle advance happens on
7520 basic block boundaries. Basically insns that are unconditionally ready
7521 on the start of the block are more preferable then those which have
7522 a one cycle dependency over insn from the previous block. */
7523 int next_clock = clock_var + 1;
7524
7525 bitmap_initialize (&processed, 0);
7526
7527 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7528 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7529 across different blocks. */
7530 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7531 {
7532 if (INSN_P (head))
7533 {
7534 int tick;
7535 sd_iterator_def sd_it;
7536 dep_t dep;
7537
7538 tick = INSN_TICK (head);
7539 gcc_assert (tick >= MIN_TICK);
7540
7541 /* Fix INSN_TICK of instruction from just scheduled block. */
7542 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7543 {
7544 tick -= next_clock;
7545
7546 if (tick < MIN_TICK)
7547 tick = MIN_TICK;
7548
7549 INSN_TICK (head) = tick;
7550 }
7551
7552 if (DEBUG_INSN_P (head))
7553 continue;
7554
7555 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7556 {
7557 rtx_insn *next;
7558
7559 next = DEP_CON (dep);
7560 tick = INSN_TICK (next);
7561
7562 if (tick != INVALID_TICK
7563 /* If NEXT has its INSN_TICK calculated, fix it.
7564 If not - it will be properly calculated from
7565 scratch later in fix_tick_ready. */
7566 && bitmap_set_bit (&processed, INSN_LUID (next)))
7567 {
7568 tick -= next_clock;
7569
7570 if (tick < MIN_TICK)
7571 tick = MIN_TICK;
7572
7573 if (tick > INTER_TICK (next))
7574 INTER_TICK (next) = tick;
7575 else
7576 tick = INTER_TICK (next);
7577
7578 INSN_TICK (next) = tick;
7579 }
7580 }
7581 }
7582 }
7583 bitmap_clear (&processed);
7584 }
7585
7586 /* Check if NEXT is ready to be added to the ready or queue list.
7587 If "yes", add it to the proper list.
7588 Returns:
7589 -1 - is not ready yet,
7590 0 - added to the ready list,
7591 0 < N - queued for N cycles. */
7592 int
7593 try_ready (rtx_insn *next)
7594 {
7595 ds_t old_ts, new_ts;
7596
7597 old_ts = TODO_SPEC (next);
7598
7599 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7600 && (old_ts == HARD_DEP
7601 || old_ts == DEP_POSTPONED
7602 || (old_ts & SPECULATIVE)
7603 || old_ts == DEP_CONTROL));
7604
7605 new_ts = recompute_todo_spec (next, false);
7606
7607 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7608 gcc_assert (new_ts == old_ts
7609 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7610 else if (current_sched_info->new_ready)
7611 new_ts = current_sched_info->new_ready (next, new_ts);
7612
7613 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7614 have its original pattern or changed (speculative) one. This is due
7615 to changing ebb in region scheduling.
7616 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7617 has speculative pattern.
7618
7619 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7620 control-speculative NEXT could have been discarded by sched-rgn.c
7621 (the same case as when discarded by can_schedule_ready_p ()). */
7622
7623 if ((new_ts & SPECULATIVE)
7624 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7625 need to change anything. */
7626 && new_ts != old_ts)
7627 {
7628 int res;
7629 rtx new_pat;
7630
7631 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7632
7633 res = haifa_speculate_insn (next, new_ts, &new_pat);
7634
7635 switch (res)
7636 {
7637 case -1:
7638 /* It would be nice to change DEP_STATUS of all dependences,
7639 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7640 so we won't reanalyze anything. */
7641 new_ts = HARD_DEP;
7642 break;
7643
7644 case 0:
7645 /* We follow the rule, that every speculative insn
7646 has non-null ORIG_PAT. */
7647 if (!ORIG_PAT (next))
7648 ORIG_PAT (next) = PATTERN (next);
7649 break;
7650
7651 case 1:
7652 if (!ORIG_PAT (next))
7653 /* If we gonna to overwrite the original pattern of insn,
7654 save it. */
7655 ORIG_PAT (next) = PATTERN (next);
7656
7657 res = haifa_change_pattern (next, new_pat);
7658 gcc_assert (res);
7659 break;
7660
7661 default:
7662 gcc_unreachable ();
7663 }
7664 }
7665
7666 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7667 either correct (new_ts & SPECULATIVE),
7668 or we simply don't care (new_ts & HARD_DEP). */
7669
7670 gcc_assert (!ORIG_PAT (next)
7671 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7672
7673 TODO_SPEC (next) = new_ts;
7674
7675 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7676 {
7677 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7678 control-speculative NEXT could have been discarded by sched-rgn.c
7679 (the same case as when discarded by can_schedule_ready_p ()). */
7680 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7681
7682 change_queue_index (next, QUEUE_NOWHERE);
7683
7684 return -1;
7685 }
7686 else if (!(new_ts & BEGIN_SPEC)
7687 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7688 && !IS_SPECULATION_CHECK_P (next))
7689 /* We should change pattern of every previously speculative
7690 instruction - and we determine if NEXT was speculative by using
7691 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7692 pat too, so skip them. */
7693 {
7694 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7695 gcc_assert (success);
7696 ORIG_PAT (next) = 0;
7697 }
7698
7699 if (sched_verbose >= 2)
7700 {
7701 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7702 (*current_sched_info->print_insn) (next, 0));
7703
7704 if (spec_info && spec_info->dump)
7705 {
7706 if (new_ts & BEGIN_DATA)
7707 fprintf (spec_info->dump, "; data-spec;");
7708 if (new_ts & BEGIN_CONTROL)
7709 fprintf (spec_info->dump, "; control-spec;");
7710 if (new_ts & BE_IN_CONTROL)
7711 fprintf (spec_info->dump, "; in-control-spec;");
7712 }
7713 if (TODO_SPEC (next) & DEP_CONTROL)
7714 fprintf (sched_dump, " predicated");
7715 fprintf (sched_dump, "\n");
7716 }
7717
7718 adjust_priority (next);
7719
7720 return fix_tick_ready (next);
7721 }
7722
7723 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7724 static int
7725 fix_tick_ready (rtx_insn *next)
7726 {
7727 int tick, delay;
7728
7729 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7730 {
7731 int full_p;
7732 sd_iterator_def sd_it;
7733 dep_t dep;
7734
7735 tick = INSN_TICK (next);
7736 /* if tick is not equal to INVALID_TICK, then update
7737 INSN_TICK of NEXT with the most recent resolved dependence
7738 cost. Otherwise, recalculate from scratch. */
7739 full_p = (tick == INVALID_TICK);
7740
7741 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7742 {
7743 rtx_insn *pro = DEP_PRO (dep);
7744 int tick1;
7745
7746 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7747
7748 tick1 = INSN_TICK (pro) + dep_cost (dep);
7749 if (tick1 > tick)
7750 tick = tick1;
7751
7752 if (!full_p)
7753 break;
7754 }
7755 }
7756 else
7757 tick = -1;
7758
7759 INSN_TICK (next) = tick;
7760
7761 delay = tick - clock_var;
7762 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7763 delay = QUEUE_READY;
7764
7765 change_queue_index (next, delay);
7766
7767 return delay;
7768 }
7769
7770 /* Move NEXT to the proper queue list with (DELAY >= 1),
7771 or add it to the ready list (DELAY == QUEUE_READY),
7772 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7773 static void
7774 change_queue_index (rtx_insn *next, int delay)
7775 {
7776 int i = QUEUE_INDEX (next);
7777
7778 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7779 && delay != 0);
7780 gcc_assert (i != QUEUE_SCHEDULED);
7781
7782 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7783 || (delay < 0 && delay == i))
7784 /* We have nothing to do. */
7785 return;
7786
7787 /* Remove NEXT from wherever it is now. */
7788 if (i == QUEUE_READY)
7789 ready_remove_insn (next);
7790 else if (i >= 0)
7791 queue_remove (next);
7792
7793 /* Add it to the proper place. */
7794 if (delay == QUEUE_READY)
7795 ready_add (readyp, next, false);
7796 else if (delay >= 1)
7797 queue_insn (next, delay, "change queue index");
7798
7799 if (sched_verbose >= 2)
7800 {
7801 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7802 (*current_sched_info->print_insn) (next, 0));
7803
7804 if (delay == QUEUE_READY)
7805 fprintf (sched_dump, " into ready\n");
7806 else if (delay >= 1)
7807 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7808 else
7809 fprintf (sched_dump, " removed from ready or queue lists\n");
7810 }
7811 }
7812
7813 static int sched_ready_n_insns = -1;
7814
7815 /* Initialize per region data structures. */
7816 void
7817 sched_extend_ready_list (int new_sched_ready_n_insns)
7818 {
7819 int i;
7820
7821 if (sched_ready_n_insns == -1)
7822 /* At the first call we need to initialize one more choice_stack
7823 entry. */
7824 {
7825 i = 0;
7826 sched_ready_n_insns = 0;
7827 scheduled_insns.reserve (new_sched_ready_n_insns);
7828 }
7829 else
7830 i = sched_ready_n_insns + 1;
7831
7832 ready.veclen = new_sched_ready_n_insns + issue_rate;
7833 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7834
7835 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7836
7837 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7838 sched_ready_n_insns,
7839 sizeof (*ready_try));
7840
7841 /* We allocate +1 element to save initial state in the choice_stack[0]
7842 entry. */
7843 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7844 new_sched_ready_n_insns + 1);
7845
7846 for (; i <= new_sched_ready_n_insns; i++)
7847 {
7848 choice_stack[i].state = xmalloc (dfa_state_size);
7849
7850 if (targetm.sched.first_cycle_multipass_init)
7851 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7852 .target_data));
7853 }
7854
7855 sched_ready_n_insns = new_sched_ready_n_insns;
7856 }
7857
7858 /* Free per region data structures. */
7859 void
7860 sched_finish_ready_list (void)
7861 {
7862 int i;
7863
7864 free (ready.vec);
7865 ready.vec = NULL;
7866 ready.veclen = 0;
7867
7868 free (ready_try);
7869 ready_try = NULL;
7870
7871 for (i = 0; i <= sched_ready_n_insns; i++)
7872 {
7873 if (targetm.sched.first_cycle_multipass_fini)
7874 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7875 .target_data));
7876
7877 free (choice_stack [i].state);
7878 }
7879 free (choice_stack);
7880 choice_stack = NULL;
7881
7882 sched_ready_n_insns = -1;
7883 }
7884
7885 static int
7886 haifa_luid_for_non_insn (rtx x)
7887 {
7888 gcc_assert (NOTE_P (x) || LABEL_P (x));
7889
7890 return 0;
7891 }
7892
7893 /* Generates recovery code for INSN. */
7894 static void
7895 generate_recovery_code (rtx_insn *insn)
7896 {
7897 if (TODO_SPEC (insn) & BEGIN_SPEC)
7898 begin_speculative_block (insn);
7899
7900 /* Here we have insn with no dependencies to
7901 instructions other then CHECK_SPEC ones. */
7902
7903 if (TODO_SPEC (insn) & BE_IN_SPEC)
7904 add_to_speculative_block (insn);
7905 }
7906
7907 /* Helper function.
7908 Tries to add speculative dependencies of type FS between instructions
7909 in deps_list L and TWIN. */
7910 static void
7911 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7912 {
7913 sd_iterator_def sd_it;
7914 dep_t dep;
7915
7916 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7917 {
7918 ds_t ds;
7919 rtx_insn *consumer;
7920
7921 consumer = DEP_CON (dep);
7922
7923 ds = DEP_STATUS (dep);
7924
7925 if (/* If we want to create speculative dep. */
7926 fs
7927 /* And we can do that because this is a true dep. */
7928 && (ds & DEP_TYPES) == DEP_TRUE)
7929 {
7930 gcc_assert (!(ds & BE_IN_SPEC));
7931
7932 if (/* If this dep can be overcome with 'begin speculation'. */
7933 ds & BEGIN_SPEC)
7934 /* Then we have a choice: keep the dep 'begin speculative'
7935 or transform it into 'be in speculative'. */
7936 {
7937 if (/* In try_ready we assert that if insn once became ready
7938 it can be removed from the ready (or queue) list only
7939 due to backend decision. Hence we can't let the
7940 probability of the speculative dep to decrease. */
7941 ds_weak (ds) <= ds_weak (fs))
7942 {
7943 ds_t new_ds;
7944
7945 new_ds = (ds & ~BEGIN_SPEC) | fs;
7946
7947 if (/* consumer can 'be in speculative'. */
7948 sched_insn_is_legitimate_for_speculation_p (consumer,
7949 new_ds))
7950 /* Transform it to be in speculative. */
7951 ds = new_ds;
7952 }
7953 }
7954 else
7955 /* Mark the dep as 'be in speculative'. */
7956 ds |= fs;
7957 }
7958
7959 {
7960 dep_def _new_dep, *new_dep = &_new_dep;
7961
7962 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7963 sd_add_dep (new_dep, false);
7964 }
7965 }
7966 }
7967
7968 /* Generates recovery code for BEGIN speculative INSN. */
7969 static void
7970 begin_speculative_block (rtx_insn *insn)
7971 {
7972 if (TODO_SPEC (insn) & BEGIN_DATA)
7973 nr_begin_data++;
7974 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7975 nr_begin_control++;
7976
7977 create_check_block_twin (insn, false);
7978
7979 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7980 }
7981
7982 static void haifa_init_insn (rtx_insn *);
7983
7984 /* Generates recovery code for BE_IN speculative INSN. */
7985 static void
7986 add_to_speculative_block (rtx_insn *insn)
7987 {
7988 ds_t ts;
7989 sd_iterator_def sd_it;
7990 dep_t dep;
7991 auto_vec<rtx_insn *, 10> twins;
7992
7993 ts = TODO_SPEC (insn);
7994 gcc_assert (!(ts & ~BE_IN_SPEC));
7995
7996 if (ts & BE_IN_DATA)
7997 nr_be_in_data++;
7998 if (ts & BE_IN_CONTROL)
7999 nr_be_in_control++;
8000
8001 TODO_SPEC (insn) &= ~BE_IN_SPEC;
8002 gcc_assert (!TODO_SPEC (insn));
8003
8004 DONE_SPEC (insn) |= ts;
8005
8006 /* First we convert all simple checks to branchy. */
8007 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8008 sd_iterator_cond (&sd_it, &dep);)
8009 {
8010 rtx_insn *check = DEP_PRO (dep);
8011
8012 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
8013 {
8014 create_check_block_twin (check, true);
8015
8016 /* Restart search. */
8017 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8018 }
8019 else
8020 /* Continue search. */
8021 sd_iterator_next (&sd_it);
8022 }
8023
8024 auto_vec<rtx_insn *> priorities_roots;
8025 clear_priorities (insn, &priorities_roots);
8026
8027 while (1)
8028 {
8029 rtx_insn *check, *twin;
8030 basic_block rec;
8031
8032 /* Get the first backward dependency of INSN. */
8033 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8034 if (!sd_iterator_cond (&sd_it, &dep))
8035 /* INSN has no backward dependencies left. */
8036 break;
8037
8038 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
8039 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
8040 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8041
8042 check = DEP_PRO (dep);
8043
8044 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
8045 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
8046
8047 rec = BLOCK_FOR_INSN (check);
8048
8049 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
8050 haifa_init_insn (twin);
8051
8052 sd_copy_back_deps (twin, insn, true);
8053
8054 if (sched_verbose && spec_info->dump)
8055 /* INSN_BB (insn) isn't determined for twin insns yet.
8056 So we can't use current_sched_info->print_insn. */
8057 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8058 INSN_UID (twin), rec->index);
8059
8060 twins.safe_push (twin);
8061
8062 /* Add dependences between TWIN and all appropriate
8063 instructions from REC. */
8064 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
8065 {
8066 rtx_insn *pro = DEP_PRO (dep);
8067
8068 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
8069
8070 /* INSN might have dependencies from the instructions from
8071 several recovery blocks. At this iteration we process those
8072 producers that reside in REC. */
8073 if (BLOCK_FOR_INSN (pro) == rec)
8074 {
8075 dep_def _new_dep, *new_dep = &_new_dep;
8076
8077 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
8078 sd_add_dep (new_dep, false);
8079 }
8080 }
8081
8082 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8083
8084 /* Remove all dependencies between INSN and insns in REC. */
8085 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8086 sd_iterator_cond (&sd_it, &dep);)
8087 {
8088 rtx_insn *pro = DEP_PRO (dep);
8089
8090 if (BLOCK_FOR_INSN (pro) == rec)
8091 sd_delete_dep (sd_it);
8092 else
8093 sd_iterator_next (&sd_it);
8094 }
8095 }
8096
8097 /* We couldn't have added the dependencies between INSN and TWINS earlier
8098 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8099 unsigned int i;
8100 rtx_insn *twin;
8101 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8102 {
8103 dep_def _new_dep, *new_dep = &_new_dep;
8104
8105 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8106 sd_add_dep (new_dep, false);
8107 }
8108
8109 calc_priorities (priorities_roots);
8110 }
8111
8112 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8113 void *
8114 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8115 {
8116 gcc_assert (new_nmemb >= old_nmemb);
8117 p = XRESIZEVAR (void, p, new_nmemb * size);
8118 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8119 return p;
8120 }
8121
8122 /* Helper function.
8123 Find fallthru edge from PRED. */
8124 edge
8125 find_fallthru_edge_from (basic_block pred)
8126 {
8127 edge e;
8128 basic_block succ;
8129
8130 succ = pred->next_bb;
8131 gcc_assert (succ->prev_bb == pred);
8132
8133 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8134 {
8135 e = find_fallthru_edge (pred->succs);
8136
8137 if (e)
8138 {
8139 gcc_assert (e->dest == succ);
8140 return e;
8141 }
8142 }
8143 else
8144 {
8145 e = find_fallthru_edge (succ->preds);
8146
8147 if (e)
8148 {
8149 gcc_assert (e->src == pred);
8150 return e;
8151 }
8152 }
8153
8154 return NULL;
8155 }
8156
8157 /* Extend per basic block data structures. */
8158 static void
8159 sched_extend_bb (void)
8160 {
8161 /* The following is done to keep current_sched_info->next_tail non null. */
8162 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8163 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8164 if (NEXT_INSN (end) == 0
8165 || (!NOTE_P (insn)
8166 && !LABEL_P (insn)
8167 /* Don't emit a NOTE if it would end up before a BARRIER. */
8168 && !BARRIER_P (NEXT_INSN (end))))
8169 {
8170 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8171 /* Make note appear outside BB. */
8172 set_block_for_insn (note, NULL);
8173 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8174 }
8175 }
8176
8177 /* Init per basic block data structures. */
8178 void
8179 sched_init_bbs (void)
8180 {
8181 sched_extend_bb ();
8182 }
8183
8184 /* Initialize BEFORE_RECOVERY variable. */
8185 static void
8186 init_before_recovery (basic_block *before_recovery_ptr)
8187 {
8188 basic_block last;
8189 edge e;
8190
8191 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8192 e = find_fallthru_edge_from (last);
8193
8194 if (e)
8195 {
8196 /* We create two basic blocks:
8197 1. Single instruction block is inserted right after E->SRC
8198 and has jump to
8199 2. Empty block right before EXIT_BLOCK.
8200 Between these two blocks recovery blocks will be emitted. */
8201
8202 basic_block single, empty;
8203
8204 /* If the fallthrough edge to exit we've found is from the block we've
8205 created before, don't do anything more. */
8206 if (last == after_recovery)
8207 return;
8208
8209 adding_bb_to_current_region_p = false;
8210
8211 single = sched_create_empty_bb (last);
8212 empty = sched_create_empty_bb (single);
8213
8214 /* Add new blocks to the root loop. */
8215 if (current_loops != NULL)
8216 {
8217 add_bb_to_loop (single, (*current_loops->larray)[0]);
8218 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8219 }
8220
8221 single->count = last->count;
8222 empty->count = last->count;
8223 single->frequency = last->frequency;
8224 empty->frequency = last->frequency;
8225 BB_COPY_PARTITION (single, last);
8226 BB_COPY_PARTITION (empty, last);
8227
8228 redirect_edge_succ (e, single);
8229 make_single_succ_edge (single, empty, 0);
8230 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8231 EDGE_FALLTHRU);
8232
8233 rtx_code_label *label = block_label (empty);
8234 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8235 BB_END (single));
8236 JUMP_LABEL (x) = label;
8237 LABEL_NUSES (label)++;
8238 haifa_init_insn (x);
8239
8240 emit_barrier_after (x);
8241
8242 sched_init_only_bb (empty, NULL);
8243 sched_init_only_bb (single, NULL);
8244 sched_extend_bb ();
8245
8246 adding_bb_to_current_region_p = true;
8247 before_recovery = single;
8248 after_recovery = empty;
8249
8250 if (before_recovery_ptr)
8251 *before_recovery_ptr = before_recovery;
8252
8253 if (sched_verbose >= 2 && spec_info->dump)
8254 fprintf (spec_info->dump,
8255 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8256 last->index, single->index, empty->index);
8257 }
8258 else
8259 before_recovery = last;
8260 }
8261
8262 /* Returns new recovery block. */
8263 basic_block
8264 sched_create_recovery_block (basic_block *before_recovery_ptr)
8265 {
8266 rtx_insn *barrier;
8267 basic_block rec;
8268
8269 haifa_recovery_bb_recently_added_p = true;
8270 haifa_recovery_bb_ever_added_p = true;
8271
8272 init_before_recovery (before_recovery_ptr);
8273
8274 barrier = get_last_bb_insn (before_recovery);
8275 gcc_assert (BARRIER_P (barrier));
8276
8277 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8278
8279 rec = create_basic_block (label, label, before_recovery);
8280
8281 /* A recovery block always ends with an unconditional jump. */
8282 emit_barrier_after (BB_END (rec));
8283
8284 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8285 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8286
8287 if (sched_verbose && spec_info->dump)
8288 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8289 rec->index);
8290
8291 return rec;
8292 }
8293
8294 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8295 and emit necessary jumps. */
8296 void
8297 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8298 basic_block second_bb)
8299 {
8300 int edge_flags;
8301
8302 /* This is fixing of incoming edge. */
8303 /* ??? Which other flags should be specified? */
8304 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8305 /* Partition type is the same, if it is "unpartitioned". */
8306 edge_flags = EDGE_CROSSING;
8307 else
8308 edge_flags = 0;
8309
8310 make_edge (first_bb, rec, edge_flags);
8311 rtx_code_label *label = block_label (second_bb);
8312 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8313 BB_END (rec));
8314 JUMP_LABEL (jump) = label;
8315 LABEL_NUSES (label)++;
8316
8317 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8318 /* Partition type is the same, if it is "unpartitioned". */
8319 {
8320 /* Rewritten from cfgrtl.c. */
8321 if (flag_reorder_blocks_and_partition
8322 && targetm_common.have_named_sections)
8323 {
8324 /* We don't need the same note for the check because
8325 any_condjump_p (check) == true. */
8326 CROSSING_JUMP_P (jump) = 1;
8327 }
8328 edge_flags = EDGE_CROSSING;
8329 }
8330 else
8331 edge_flags = 0;
8332
8333 make_single_succ_edge (rec, second_bb, edge_flags);
8334 if (dom_info_available_p (CDI_DOMINATORS))
8335 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8336 }
8337
8338 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8339 INSN is a simple check, that should be converted to branchy one. */
8340 static void
8341 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8342 {
8343 basic_block rec;
8344 rtx_insn *label, *check, *twin;
8345 rtx check_pat;
8346 ds_t fs;
8347 sd_iterator_def sd_it;
8348 dep_t dep;
8349 dep_def _new_dep, *new_dep = &_new_dep;
8350 ds_t todo_spec;
8351
8352 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8353
8354 if (!mutate_p)
8355 todo_spec = TODO_SPEC (insn);
8356 else
8357 {
8358 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8359 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8360
8361 todo_spec = CHECK_SPEC (insn);
8362 }
8363
8364 todo_spec &= SPECULATIVE;
8365
8366 /* Create recovery block. */
8367 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8368 {
8369 rec = sched_create_recovery_block (NULL);
8370 label = BB_HEAD (rec);
8371 }
8372 else
8373 {
8374 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8375 label = NULL;
8376 }
8377
8378 /* Emit CHECK. */
8379 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8380
8381 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8382 {
8383 /* To have mem_reg alive at the beginning of second_bb,
8384 we emit check BEFORE insn, so insn after splitting
8385 insn will be at the beginning of second_bb, which will
8386 provide us with the correct life information. */
8387 check = emit_jump_insn_before (check_pat, insn);
8388 JUMP_LABEL (check) = label;
8389 LABEL_NUSES (label)++;
8390 }
8391 else
8392 check = emit_insn_before (check_pat, insn);
8393
8394 /* Extend data structures. */
8395 haifa_init_insn (check);
8396
8397 /* CHECK is being added to current region. Extend ready list. */
8398 gcc_assert (sched_ready_n_insns != -1);
8399 sched_extend_ready_list (sched_ready_n_insns + 1);
8400
8401 if (current_sched_info->add_remove_insn)
8402 current_sched_info->add_remove_insn (insn, 0);
8403
8404 RECOVERY_BLOCK (check) = rec;
8405
8406 if (sched_verbose && spec_info->dump)
8407 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8408 (*current_sched_info->print_insn) (check, 0));
8409
8410 gcc_assert (ORIG_PAT (insn));
8411
8412 /* Initialize TWIN (twin is a duplicate of original instruction
8413 in the recovery block). */
8414 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8415 {
8416 sd_iterator_def sd_it;
8417 dep_t dep;
8418
8419 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8420 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8421 {
8422 struct _dep _dep2, *dep2 = &_dep2;
8423
8424 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8425
8426 sd_add_dep (dep2, true);
8427 }
8428
8429 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8430 haifa_init_insn (twin);
8431
8432 if (sched_verbose && spec_info->dump)
8433 /* INSN_BB (insn) isn't determined for twin insns yet.
8434 So we can't use current_sched_info->print_insn. */
8435 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8436 INSN_UID (twin), rec->index);
8437 }
8438 else
8439 {
8440 ORIG_PAT (check) = ORIG_PAT (insn);
8441 HAS_INTERNAL_DEP (check) = 1;
8442 twin = check;
8443 /* ??? We probably should change all OUTPUT dependencies to
8444 (TRUE | OUTPUT). */
8445 }
8446
8447 /* Copy all resolved back dependencies of INSN to TWIN. This will
8448 provide correct value for INSN_TICK (TWIN). */
8449 sd_copy_back_deps (twin, insn, true);
8450
8451 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8452 /* In case of branchy check, fix CFG. */
8453 {
8454 basic_block first_bb, second_bb;
8455 rtx_insn *jump;
8456
8457 first_bb = BLOCK_FOR_INSN (check);
8458 second_bb = sched_split_block (first_bb, check);
8459
8460 sched_create_recovery_edges (first_bb, rec, second_bb);
8461
8462 sched_init_only_bb (second_bb, first_bb);
8463 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8464
8465 jump = BB_END (rec);
8466 haifa_init_insn (jump);
8467 }
8468
8469 /* Move backward dependences from INSN to CHECK and
8470 move forward dependences from INSN to TWIN. */
8471
8472 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8473 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8474 {
8475 rtx_insn *pro = DEP_PRO (dep);
8476 ds_t ds;
8477
8478 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8479 check --TRUE--> producer ??? or ANTI ???
8480 twin --TRUE--> producer
8481 twin --ANTI--> check
8482
8483 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8484 check --ANTI--> producer
8485 twin --ANTI--> producer
8486 twin --ANTI--> check
8487
8488 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8489 check ~~TRUE~~> producer
8490 twin ~~TRUE~~> producer
8491 twin --ANTI--> check */
8492
8493 ds = DEP_STATUS (dep);
8494
8495 if (ds & BEGIN_SPEC)
8496 {
8497 gcc_assert (!mutate_p);
8498 ds &= ~BEGIN_SPEC;
8499 }
8500
8501 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8502 sd_add_dep (new_dep, false);
8503
8504 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8505 {
8506 DEP_CON (new_dep) = twin;
8507 sd_add_dep (new_dep, false);
8508 }
8509 }
8510
8511 /* Second, remove backward dependencies of INSN. */
8512 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8513 sd_iterator_cond (&sd_it, &dep);)
8514 {
8515 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8516 || mutate_p)
8517 /* We can delete this dep because we overcome it with
8518 BEGIN_SPECULATION. */
8519 sd_delete_dep (sd_it);
8520 else
8521 sd_iterator_next (&sd_it);
8522 }
8523
8524 /* Future Speculations. Determine what BE_IN speculations will be like. */
8525 fs = 0;
8526
8527 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8528 here. */
8529
8530 gcc_assert (!DONE_SPEC (insn));
8531
8532 if (!mutate_p)
8533 {
8534 ds_t ts = TODO_SPEC (insn);
8535
8536 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8537 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8538
8539 /* Luckiness of future speculations solely depends upon initial
8540 BEGIN speculation. */
8541 if (ts & BEGIN_DATA)
8542 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8543 if (ts & BEGIN_CONTROL)
8544 fs = set_dep_weak (fs, BE_IN_CONTROL,
8545 get_dep_weak (ts, BEGIN_CONTROL));
8546 }
8547 else
8548 CHECK_SPEC (check) = CHECK_SPEC (insn);
8549
8550 /* Future speculations: call the helper. */
8551 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8552
8553 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8554 {
8555 /* Which types of dependencies should we use here is,
8556 generally, machine-dependent question... But, for now,
8557 it is not. */
8558
8559 if (!mutate_p)
8560 {
8561 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8562 sd_add_dep (new_dep, false);
8563
8564 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8565 sd_add_dep (new_dep, false);
8566 }
8567 else
8568 {
8569 if (spec_info->dump)
8570 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8571 (*current_sched_info->print_insn) (insn, 0));
8572
8573 /* Remove all dependencies of the INSN. */
8574 {
8575 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8576 | SD_LIST_BACK
8577 | SD_LIST_RES_BACK));
8578 while (sd_iterator_cond (&sd_it, &dep))
8579 sd_delete_dep (sd_it);
8580 }
8581
8582 /* If former check (INSN) already was moved to the ready (or queue)
8583 list, add new check (CHECK) there too. */
8584 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8585 try_ready (check);
8586
8587 /* Remove old check from instruction stream and free its
8588 data. */
8589 sched_remove_insn (insn);
8590 }
8591
8592 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8593 sd_add_dep (new_dep, false);
8594 }
8595 else
8596 {
8597 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8598 sd_add_dep (new_dep, false);
8599 }
8600
8601 if (!mutate_p)
8602 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8603 because it'll be done later in add_to_speculative_block. */
8604 {
8605 auto_vec<rtx_insn *> priorities_roots;
8606
8607 clear_priorities (twin, &priorities_roots);
8608 calc_priorities (priorities_roots);
8609 }
8610 }
8611
8612 /* Removes dependency between instructions in the recovery block REC
8613 and usual region instructions. It keeps inner dependences so it
8614 won't be necessary to recompute them. */
8615 static void
8616 fix_recovery_deps (basic_block rec)
8617 {
8618 rtx_insn *note, *insn, *jump;
8619 auto_vec<rtx_insn *, 10> ready_list;
8620 bitmap_head in_ready;
8621
8622 bitmap_initialize (&in_ready, 0);
8623
8624 /* NOTE - a basic block note. */
8625 note = NEXT_INSN (BB_HEAD (rec));
8626 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8627 insn = BB_END (rec);
8628 gcc_assert (JUMP_P (insn));
8629 insn = PREV_INSN (insn);
8630
8631 do
8632 {
8633 sd_iterator_def sd_it;
8634 dep_t dep;
8635
8636 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8637 sd_iterator_cond (&sd_it, &dep);)
8638 {
8639 rtx_insn *consumer = DEP_CON (dep);
8640
8641 if (BLOCK_FOR_INSN (consumer) != rec)
8642 {
8643 sd_delete_dep (sd_it);
8644
8645 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8646 ready_list.safe_push (consumer);
8647 }
8648 else
8649 {
8650 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8651
8652 sd_iterator_next (&sd_it);
8653 }
8654 }
8655
8656 insn = PREV_INSN (insn);
8657 }
8658 while (insn != note);
8659
8660 bitmap_clear (&in_ready);
8661
8662 /* Try to add instructions to the ready or queue list. */
8663 unsigned int i;
8664 rtx_insn *temp;
8665 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8666 try_ready (temp);
8667
8668 /* Fixing jump's dependences. */
8669 insn = BB_HEAD (rec);
8670 jump = BB_END (rec);
8671
8672 gcc_assert (LABEL_P (insn));
8673 insn = NEXT_INSN (insn);
8674
8675 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8676 add_jump_dependencies (insn, jump);
8677 }
8678
8679 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8680 instruction data. */
8681 static bool
8682 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8683 {
8684 int t;
8685
8686 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8687 if (!t)
8688 return false;
8689
8690 update_insn_after_change (insn);
8691 return true;
8692 }
8693
8694 /* -1 - can't speculate,
8695 0 - for speculation with REQUEST mode it is OK to use
8696 current instruction pattern,
8697 1 - need to change pattern for *NEW_PAT to be speculative. */
8698 int
8699 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8700 {
8701 gcc_assert (current_sched_info->flags & DO_SPECULATION
8702 && (request & SPECULATIVE)
8703 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8704
8705 if ((request & spec_info->mask) != request)
8706 return -1;
8707
8708 if (request & BE_IN_SPEC
8709 && !(request & BEGIN_SPEC))
8710 return 0;
8711
8712 return targetm.sched.speculate_insn (insn, request, new_pat);
8713 }
8714
8715 static int
8716 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8717 {
8718 gcc_assert (sched_deps_info->generate_spec_deps
8719 && !IS_SPECULATION_CHECK_P (insn));
8720
8721 if (HAS_INTERNAL_DEP (insn)
8722 || SCHED_GROUP_P (insn))
8723 return -1;
8724
8725 return sched_speculate_insn (insn, request, new_pat);
8726 }
8727
8728 /* Print some information about block BB, which starts with HEAD and
8729 ends with TAIL, before scheduling it.
8730 I is zero, if scheduler is about to start with the fresh ebb. */
8731 static void
8732 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8733 {
8734 if (!i)
8735 fprintf (sched_dump,
8736 ";; ======================================================\n");
8737 else
8738 fprintf (sched_dump,
8739 ";; =====================ADVANCING TO=====================\n");
8740 fprintf (sched_dump,
8741 ";; -- basic block %d from %d to %d -- %s reload\n",
8742 bb->index, INSN_UID (head), INSN_UID (tail),
8743 (reload_completed ? "after" : "before"));
8744 fprintf (sched_dump,
8745 ";; ======================================================\n");
8746 fprintf (sched_dump, "\n");
8747 }
8748
8749 /* Unlink basic block notes and labels and saves them, so they
8750 can be easily restored. We unlink basic block notes in EBB to
8751 provide back-compatibility with the previous code, as target backends
8752 assume, that there'll be only instructions between
8753 current_sched_info->{head and tail}. We restore these notes as soon
8754 as we can.
8755 FIRST (LAST) is the first (last) basic block in the ebb.
8756 NB: In usual case (FIRST == LAST) nothing is really done. */
8757 void
8758 unlink_bb_notes (basic_block first, basic_block last)
8759 {
8760 /* We DON'T unlink basic block notes of the first block in the ebb. */
8761 if (first == last)
8762 return;
8763
8764 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8765
8766 /* Make a sentinel. */
8767 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8768 bb_header[last->next_bb->index] = 0;
8769
8770 first = first->next_bb;
8771 do
8772 {
8773 rtx_insn *prev, *label, *note, *next;
8774
8775 label = BB_HEAD (last);
8776 if (LABEL_P (label))
8777 note = NEXT_INSN (label);
8778 else
8779 note = label;
8780 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8781
8782 prev = PREV_INSN (label);
8783 next = NEXT_INSN (note);
8784 gcc_assert (prev && next);
8785
8786 SET_NEXT_INSN (prev) = next;
8787 SET_PREV_INSN (next) = prev;
8788
8789 bb_header[last->index] = label;
8790
8791 if (last == first)
8792 break;
8793
8794 last = last->prev_bb;
8795 }
8796 while (1);
8797 }
8798
8799 /* Restore basic block notes.
8800 FIRST is the first basic block in the ebb. */
8801 static void
8802 restore_bb_notes (basic_block first)
8803 {
8804 if (!bb_header)
8805 return;
8806
8807 /* We DON'T unlink basic block notes of the first block in the ebb. */
8808 first = first->next_bb;
8809 /* Remember: FIRST is actually a second basic block in the ebb. */
8810
8811 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8812 && bb_header[first->index])
8813 {
8814 rtx_insn *prev, *label, *note, *next;
8815
8816 label = bb_header[first->index];
8817 prev = PREV_INSN (label);
8818 next = NEXT_INSN (prev);
8819
8820 if (LABEL_P (label))
8821 note = NEXT_INSN (label);
8822 else
8823 note = label;
8824 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8825
8826 bb_header[first->index] = 0;
8827
8828 SET_NEXT_INSN (prev) = label;
8829 SET_NEXT_INSN (note) = next;
8830 SET_PREV_INSN (next) = note;
8831
8832 first = first->next_bb;
8833 }
8834
8835 free (bb_header);
8836 bb_header = 0;
8837 }
8838
8839 /* Helper function.
8840 Fix CFG after both in- and inter-block movement of
8841 control_flow_insn_p JUMP. */
8842 static void
8843 fix_jump_move (rtx_insn *jump)
8844 {
8845 basic_block bb, jump_bb, jump_bb_next;
8846
8847 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8848 jump_bb = BLOCK_FOR_INSN (jump);
8849 jump_bb_next = jump_bb->next_bb;
8850
8851 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8852 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8853
8854 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8855 /* if jump_bb_next is not empty. */
8856 BB_END (jump_bb) = BB_END (jump_bb_next);
8857
8858 if (BB_END (bb) != PREV_INSN (jump))
8859 /* Then there are instruction after jump that should be placed
8860 to jump_bb_next. */
8861 BB_END (jump_bb_next) = BB_END (bb);
8862 else
8863 /* Otherwise jump_bb_next is empty. */
8864 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8865
8866 /* To make assertion in move_insn happy. */
8867 BB_END (bb) = PREV_INSN (jump);
8868
8869 update_bb_for_insn (jump_bb_next);
8870 }
8871
8872 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8873 static void
8874 move_block_after_check (rtx_insn *jump)
8875 {
8876 basic_block bb, jump_bb, jump_bb_next;
8877 vec<edge, va_gc> *t;
8878
8879 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8880 jump_bb = BLOCK_FOR_INSN (jump);
8881 jump_bb_next = jump_bb->next_bb;
8882
8883 update_bb_for_insn (jump_bb);
8884
8885 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8886 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8887
8888 unlink_block (jump_bb_next);
8889 link_block (jump_bb_next, bb);
8890
8891 t = bb->succs;
8892 bb->succs = 0;
8893 move_succs (&(jump_bb->succs), bb);
8894 move_succs (&(jump_bb_next->succs), jump_bb);
8895 move_succs (&t, jump_bb_next);
8896
8897 df_mark_solutions_dirty ();
8898
8899 common_sched_info->fix_recovery_cfg
8900 (bb->index, jump_bb->index, jump_bb_next->index);
8901 }
8902
8903 /* Helper function for move_block_after_check.
8904 This functions attaches edge vector pointed to by SUCCSP to
8905 block TO. */
8906 static void
8907 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8908 {
8909 edge e;
8910 edge_iterator ei;
8911
8912 gcc_assert (to->succs == 0);
8913
8914 to->succs = *succsp;
8915
8916 FOR_EACH_EDGE (e, ei, to->succs)
8917 e->src = to;
8918
8919 *succsp = 0;
8920 }
8921
8922 /* Remove INSN from the instruction stream.
8923 INSN should have any dependencies. */
8924 static void
8925 sched_remove_insn (rtx_insn *insn)
8926 {
8927 sd_finish_insn (insn);
8928
8929 change_queue_index (insn, QUEUE_NOWHERE);
8930 current_sched_info->add_remove_insn (insn, 1);
8931 delete_insn (insn);
8932 }
8933
8934 /* Clear priorities of all instructions, that are forward dependent on INSN.
8935 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8936 be invoked to initialize all cleared priorities. */
8937 static void
8938 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8939 {
8940 sd_iterator_def sd_it;
8941 dep_t dep;
8942 bool insn_is_root_p = true;
8943
8944 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8945
8946 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8947 {
8948 rtx_insn *pro = DEP_PRO (dep);
8949
8950 if (INSN_PRIORITY_STATUS (pro) >= 0
8951 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8952 {
8953 /* If DEP doesn't contribute to priority then INSN itself should
8954 be added to priority roots. */
8955 if (contributes_to_priority_p (dep))
8956 insn_is_root_p = false;
8957
8958 INSN_PRIORITY_STATUS (pro) = -1;
8959 clear_priorities (pro, roots_ptr);
8960 }
8961 }
8962
8963 if (insn_is_root_p)
8964 roots_ptr->safe_push (insn);
8965 }
8966
8967 /* Recompute priorities of instructions, whose priorities might have been
8968 changed. ROOTS is a vector of instructions whose priority computation will
8969 trigger initialization of all cleared priorities. */
8970 static void
8971 calc_priorities (rtx_vec_t roots)
8972 {
8973 int i;
8974 rtx_insn *insn;
8975
8976 FOR_EACH_VEC_ELT (roots, i, insn)
8977 priority (insn);
8978 }
8979
8980
8981 /* Add dependences between JUMP and other instructions in the recovery
8982 block. INSN is the first insn the recovery block. */
8983 static void
8984 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8985 {
8986 do
8987 {
8988 insn = NEXT_INSN (insn);
8989 if (insn == jump)
8990 break;
8991
8992 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8993 {
8994 dep_def _new_dep, *new_dep = &_new_dep;
8995
8996 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8997 sd_add_dep (new_dep, false);
8998 }
8999 }
9000 while (1);
9001
9002 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
9003 }
9004
9005 /* Extend data structures for logical insn UID. */
9006 void
9007 sched_extend_luids (void)
9008 {
9009 int new_luids_max_uid = get_max_uid () + 1;
9010
9011 sched_luids.safe_grow_cleared (new_luids_max_uid);
9012 }
9013
9014 /* Initialize LUID for INSN. */
9015 void
9016 sched_init_insn_luid (rtx_insn *insn)
9017 {
9018 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
9019 int luid;
9020
9021 if (i >= 0)
9022 {
9023 luid = sched_max_luid;
9024 sched_max_luid += i;
9025 }
9026 else
9027 luid = -1;
9028
9029 SET_INSN_LUID (insn, luid);
9030 }
9031
9032 /* Initialize luids for BBS.
9033 The hook common_sched_info->luid_for_non_insn () is used to determine
9034 if notes, labels, etc. need luids. */
9035 void
9036 sched_init_luids (bb_vec_t bbs)
9037 {
9038 int i;
9039 basic_block bb;
9040
9041 sched_extend_luids ();
9042 FOR_EACH_VEC_ELT (bbs, i, bb)
9043 {
9044 rtx_insn *insn;
9045
9046 FOR_BB_INSNS (bb, insn)
9047 sched_init_insn_luid (insn);
9048 }
9049 }
9050
9051 /* Free LUIDs. */
9052 void
9053 sched_finish_luids (void)
9054 {
9055 sched_luids.release ();
9056 sched_max_luid = 1;
9057 }
9058
9059 /* Return logical uid of INSN. Helpful while debugging. */
9060 int
9061 insn_luid (rtx_insn *insn)
9062 {
9063 return INSN_LUID (insn);
9064 }
9065
9066 /* Extend per insn data in the target. */
9067 void
9068 sched_extend_target (void)
9069 {
9070 if (targetm.sched.h_i_d_extended)
9071 targetm.sched.h_i_d_extended ();
9072 }
9073
9074 /* Extend global scheduler structures (those, that live across calls to
9075 schedule_block) to include information about just emitted INSN. */
9076 static void
9077 extend_h_i_d (void)
9078 {
9079 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9080 if (reserve > 0
9081 && ! h_i_d.space (reserve))
9082 {
9083 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9084 sched_extend_target ();
9085 }
9086 }
9087
9088 /* Initialize h_i_d entry of the INSN with default values.
9089 Values, that are not explicitly initialized here, hold zero. */
9090 static void
9091 init_h_i_d (rtx_insn *insn)
9092 {
9093 if (INSN_LUID (insn) > 0)
9094 {
9095 INSN_COST (insn) = -1;
9096 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9097 INSN_TICK (insn) = INVALID_TICK;
9098 INSN_EXACT_TICK (insn) = INVALID_TICK;
9099 INTER_TICK (insn) = INVALID_TICK;
9100 TODO_SPEC (insn) = HARD_DEP;
9101 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9102 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9103 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9104 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9105 }
9106 }
9107
9108 /* Initialize haifa_insn_data for BBS. */
9109 void
9110 haifa_init_h_i_d (bb_vec_t bbs)
9111 {
9112 int i;
9113 basic_block bb;
9114
9115 extend_h_i_d ();
9116 FOR_EACH_VEC_ELT (bbs, i, bb)
9117 {
9118 rtx_insn *insn;
9119
9120 FOR_BB_INSNS (bb, insn)
9121 init_h_i_d (insn);
9122 }
9123 }
9124
9125 /* Finalize haifa_insn_data. */
9126 void
9127 haifa_finish_h_i_d (void)
9128 {
9129 int i;
9130 haifa_insn_data_t data;
9131 reg_use_data *use, *next_use;
9132 reg_set_data *set, *next_set;
9133
9134 FOR_EACH_VEC_ELT (h_i_d, i, data)
9135 {
9136 free (data->max_reg_pressure);
9137 free (data->reg_pressure);
9138 for (use = data->reg_use_list; use != NULL; use = next_use)
9139 {
9140 next_use = use->next_insn_use;
9141 free (use);
9142 }
9143 for (set = data->reg_set_list; set != NULL; set = next_set)
9144 {
9145 next_set = set->next_insn_set;
9146 free (set);
9147 }
9148
9149 }
9150 h_i_d.release ();
9151 }
9152
9153 /* Init data for the new insn INSN. */
9154 static void
9155 haifa_init_insn (rtx_insn *insn)
9156 {
9157 gcc_assert (insn != NULL);
9158
9159 sched_extend_luids ();
9160 sched_init_insn_luid (insn);
9161 sched_extend_target ();
9162 sched_deps_init (false);
9163 extend_h_i_d ();
9164 init_h_i_d (insn);
9165
9166 if (adding_bb_to_current_region_p)
9167 {
9168 sd_init_insn (insn);
9169
9170 /* Extend dependency caches by one element. */
9171 extend_dependency_caches (1, false);
9172 }
9173 if (sched_pressure != SCHED_PRESSURE_NONE)
9174 init_insn_reg_pressure_info (insn);
9175 }
9176
9177 /* Init data for the new basic block BB which comes after AFTER. */
9178 static void
9179 haifa_init_only_bb (basic_block bb, basic_block after)
9180 {
9181 gcc_assert (bb != NULL);
9182
9183 sched_init_bbs ();
9184
9185 if (common_sched_info->add_block)
9186 /* This changes only data structures of the front-end. */
9187 common_sched_info->add_block (bb, after);
9188 }
9189
9190 /* A generic version of sched_split_block (). */
9191 basic_block
9192 sched_split_block_1 (basic_block first_bb, rtx after)
9193 {
9194 edge e;
9195
9196 e = split_block (first_bb, after);
9197 gcc_assert (e->src == first_bb);
9198
9199 /* sched_split_block emits note if *check == BB_END. Probably it
9200 is better to rip that note off. */
9201
9202 return e->dest;
9203 }
9204
9205 /* A generic version of sched_create_empty_bb (). */
9206 basic_block
9207 sched_create_empty_bb_1 (basic_block after)
9208 {
9209 return create_empty_bb (after);
9210 }
9211
9212 /* Insert PAT as an INSN into the schedule and update the necessary data
9213 structures to account for it. */
9214 rtx_insn *
9215 sched_emit_insn (rtx pat)
9216 {
9217 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9218 haifa_init_insn (insn);
9219
9220 if (current_sched_info->add_remove_insn)
9221 current_sched_info->add_remove_insn (insn, 0);
9222
9223 (*current_sched_info->begin_schedule_ready) (insn);
9224 scheduled_insns.safe_push (insn);
9225
9226 last_scheduled_insn = insn;
9227 return insn;
9228 }
9229
9230 /* This function returns a candidate satisfying dispatch constraints from
9231 the ready list. */
9232
9233 static rtx_insn *
9234 ready_remove_first_dispatch (struct ready_list *ready)
9235 {
9236 int i;
9237 rtx_insn *insn = ready_element (ready, 0);
9238
9239 if (ready->n_ready == 1
9240 || !INSN_P (insn)
9241 || INSN_CODE (insn) < 0
9242 || !active_insn_p (insn)
9243 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9244 return ready_remove_first (ready);
9245
9246 for (i = 1; i < ready->n_ready; i++)
9247 {
9248 insn = ready_element (ready, i);
9249
9250 if (!INSN_P (insn)
9251 || INSN_CODE (insn) < 0
9252 || !active_insn_p (insn))
9253 continue;
9254
9255 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9256 {
9257 /* Return ith element of ready. */
9258 insn = ready_remove (ready, i);
9259 return insn;
9260 }
9261 }
9262
9263 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9264 return ready_remove_first (ready);
9265
9266 for (i = 1; i < ready->n_ready; i++)
9267 {
9268 insn = ready_element (ready, i);
9269
9270 if (!INSN_P (insn)
9271 || INSN_CODE (insn) < 0
9272 || !active_insn_p (insn))
9273 continue;
9274
9275 /* Return i-th element of ready. */
9276 if (targetm.sched.dispatch (insn, IS_CMP))
9277 return ready_remove (ready, i);
9278 }
9279
9280 return ready_remove_first (ready);
9281 }
9282
9283 /* Get number of ready insn in the ready list. */
9284
9285 int
9286 number_in_ready (void)
9287 {
9288 return ready.n_ready;
9289 }
9290
9291 /* Get number of ready's in the ready list. */
9292
9293 rtx_insn *
9294 get_ready_element (int i)
9295 {
9296 return ready_element (&ready, i);
9297 }
9298
9299 #endif /* INSN_SCHEDULING */