exp_attr.adb (Compile_Stream_Body_In_Scope): When compiling a stream operation for...
[gcc.git] / gcc / hash-table.h
1 /* A type-safe hash table template.
2 Copyright (C) 2012-2015 Free Software Foundation, Inc.
3 Contributed by Lawrence Crowl <crowl@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* This file implements a typed hash table.
23 The implementation borrows from libiberty's htab_t in hashtab.h.
24
25
26 INTRODUCTION TO TYPES
27
28 Users of the hash table generally need to be aware of three types.
29
30 1. The type being placed into the hash table. This type is called
31 the value type.
32
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
35 several things.
36
37 - A typedef named 'value_type' to the value type (from above).
38
39 - A static member function named 'hash' that takes a value_type
40 (or 'const value_type &') and returns a hashval_t value.
41
42 - A typedef named 'compare_type' that is used to test when a value
43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
46
47 - A static member function named 'equal' that takes a value_type
48 and a compare_type, and returns a bool. Both arguments can be
49 const references.
50
51 - A static function named 'remove' that takes an value_type pointer
52 and frees the memory allocated by it. This function is used when
53 individual elements of the table need to be disposed of (e.g.,
54 when deleting a hash table, removing elements from the table, etc).
55
56 - An optional static function named 'keep_cache_entry'. This
57 function is provided only for garbage-collected elements that
58 are not marked by the normal gc mark pass. It describes what
59 what should happen to the element at the end of the gc mark phase.
60 The return value should be:
61 - 0 if the element should be deleted
62 - 1 if the element should be kept and needs to be marked
63 - -1 if the element should be kept and is already marked.
64 Returning -1 rather than 1 is purely an optimization.
65
66 3. The type of the hash table itself. (More later.)
67
68 In very special circumstances, users may need to know about a fourth type.
69
70 4. The template type used to describe how hash table memory
71 is allocated. This type is called the allocator type. It is
72 parameterized on the value type. It provides two functions:
73
74 - A static member function named 'data_alloc'. This function
75 allocates the data elements in the table.
76
77 - A static member function named 'data_free'. This function
78 deallocates the data elements in the table.
79
80 Hash table are instantiated with two type arguments.
81
82 * The descriptor type, (2) above.
83
84 * The allocator type, (4) above. In general, you will not need to
85 provide your own allocator type. By default, hash tables will use
86 the class template xcallocator, which uses malloc/free for allocation.
87
88
89 DEFINING A DESCRIPTOR TYPE
90
91 The first task in using the hash table is to describe the element type.
92 We compose this into a few steps.
93
94 1. Decide on a removal policy for values stored in the table.
95 hash-traits.h provides class templates for the four most common
96 policies:
97
98 * typed_free_remove implements the static 'remove' member function
99 by calling free().
100
101 * typed_noop_remove implements the static 'remove' member function
102 by doing nothing.
103
104 * ggc_remove implements the static 'remove' member by doing nothing,
105 but instead provides routines for gc marking and for PCH streaming.
106 Use this for garbage-collected data that needs to be preserved across
107 collections.
108
109 * ggc_cache_remove is like ggc_remove, except that it does not
110 mark the entries during the normal gc mark phase. Instead it
111 uses 'keep_cache_entry' (described above) to keep elements that
112 were not collected and delete those that were. Use this for
113 garbage-collected caches that should not in themselves stop
114 the data from being collected.
115
116 You can use these policies by simply deriving the descriptor type
117 from one of those class template, with the appropriate argument.
118
119 Otherwise, you need to write the static 'remove' member function
120 in the descriptor class.
121
122 2. Choose a hash function. Write the static 'hash' member function.
123
124 3. Decide whether the lookup function should take as input an object
125 of type value_type or something more restricted. Define compare_type
126 accordingly.
127
128 4. Choose an equality testing function 'equal' that compares a value_type
129 and a compare_type.
130
131 If your elements are pointers, it is usually easiest to start with one
132 of the generic pointer descriptors described below and override the bits
133 you need to change.
134
135 AN EXAMPLE DESCRIPTOR TYPE
136
137 Suppose you want to put some_type into the hash table. You could define
138 the descriptor type as follows.
139
140 struct some_type_hasher : nofree_ptr_hash <some_type>
141 // Deriving from nofree_ptr_hash means that we get a 'remove' that does
142 // nothing. This choice is good for raw values.
143 {
144 static inline hashval_t hash (const value_type *);
145 static inline bool equal (const value_type *, const compare_type *);
146 };
147
148 inline hashval_t
149 some_type_hasher::hash (const value_type *e)
150 { ... compute and return a hash value for E ... }
151
152 inline bool
153 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
154 { ... compare P1 vs P2. Return true if they are the 'same' ... }
155
156
157 AN EXAMPLE HASH_TABLE DECLARATION
158
159 To instantiate a hash table for some_type:
160
161 hash_table <some_type_hasher> some_type_hash_table;
162
163 There is no need to mention some_type directly, as the hash table will
164 obtain it using some_type_hasher::value_type.
165
166 You can then use any of the functions in hash_table's public interface.
167 See hash_table for details. The interface is very similar to libiberty's
168 htab_t.
169
170
171 EASY DESCRIPTORS FOR POINTERS
172
173 There are four descriptors for pointer elements, one for each of
174 the removal policies above:
175
176 * nofree_ptr_hash (based on typed_noop_remove)
177 * free_ptr_hash (based on typed_free_remove)
178 * ggc_ptr_hash (based on ggc_remove)
179 * ggc_cache_ptr_hash (based on ggc_cache_remove)
180
181 These descriptors hash and compare elements by their pointer value,
182 rather than what they point to. So, to instantiate a hash table over
183 pointers to whatever_type, without freeing the whatever_types, use:
184
185 hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;
186
187
188 HASH TABLE ITERATORS
189
190 The hash table provides standard C++ iterators. For example, consider a
191 hash table of some_info. We wish to consume each element of the table:
192
193 extern void consume (some_info *);
194
195 We define a convenience typedef and the hash table:
196
197 typedef hash_table <some_info_hasher> info_table_type;
198 info_table_type info_table;
199
200 Then we write the loop in typical C++ style:
201
202 for (info_table_type::iterator iter = info_table.begin ();
203 iter != info_table.end ();
204 ++iter)
205 if ((*iter).status == INFO_READY)
206 consume (&*iter);
207
208 Or with common sub-expression elimination:
209
210 for (info_table_type::iterator iter = info_table.begin ();
211 iter != info_table.end ();
212 ++iter)
213 {
214 some_info &elem = *iter;
215 if (elem.status == INFO_READY)
216 consume (&elem);
217 }
218
219 One can also use a more typical GCC style:
220
221 typedef some_info *some_info_p;
222 some_info *elem_ptr;
223 info_table_type::iterator iter;
224 FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
225 if (elem_ptr->status == INFO_READY)
226 consume (elem_ptr);
227
228 */
229
230
231 #ifndef TYPED_HASHTAB_H
232 #define TYPED_HASHTAB_H
233
234 #include "statistics.h"
235 #include "ggc.h"
236 #include "vec.h"
237 #include "hashtab.h"
238 #include "inchash.h"
239 #include "mem-stats-traits.h"
240 #include "hash-traits.h"
241 #include "hash-map-traits.h"
242
243 template<typename, typename, typename> class hash_map;
244 template<typename, typename> class hash_set;
245
246 /* The ordinary memory allocator. */
247 /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
248
249 template <typename Type>
250 struct xcallocator
251 {
252 static Type *data_alloc (size_t count);
253 static void data_free (Type *memory);
254 };
255
256
257 /* Allocate memory for COUNT data blocks. */
258
259 template <typename Type>
260 inline Type *
261 xcallocator <Type>::data_alloc (size_t count)
262 {
263 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
264 }
265
266
267 /* Free memory for data blocks. */
268
269 template <typename Type>
270 inline void
271 xcallocator <Type>::data_free (Type *memory)
272 {
273 return ::free (memory);
274 }
275
276
277 /* Table of primes and their inversion information. */
278
279 struct prime_ent
280 {
281 hashval_t prime;
282 hashval_t inv;
283 hashval_t inv_m2; /* inverse of prime-2 */
284 hashval_t shift;
285 };
286
287 extern struct prime_ent const prime_tab[];
288
289
290 /* Functions for computing hash table indexes. */
291
292 extern unsigned int hash_table_higher_prime_index (unsigned long n)
293 ATTRIBUTE_PURE;
294
295 /* Return X % Y using multiplicative inverse values INV and SHIFT.
296
297 The multiplicative inverses computed above are for 32-bit types,
298 and requires that we be able to compute a highpart multiply.
299
300 FIX: I am not at all convinced that
301 3 loads, 2 multiplications, 3 shifts, and 3 additions
302 will be faster than
303 1 load and 1 modulus
304 on modern systems running a compiler. */
305
306 inline hashval_t
307 mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
308 {
309 hashval_t t1, t2, t3, t4, q, r;
310
311 t1 = ((uint64_t)x * inv) >> 32;
312 t2 = x - t1;
313 t3 = t2 >> 1;
314 t4 = t1 + t3;
315 q = t4 >> shift;
316 r = x - (q * y);
317
318 return r;
319 }
320
321 /* Compute the primary table index for HASH given current prime index. */
322
323 inline hashval_t
324 hash_table_mod1 (hashval_t hash, unsigned int index)
325 {
326 const struct prime_ent *p = &prime_tab[index];
327 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
328 return mul_mod (hash, p->prime, p->inv, p->shift);
329 }
330
331 /* Compute the secondary table index for HASH given current prime index. */
332
333 inline hashval_t
334 hash_table_mod2 (hashval_t hash, unsigned int index)
335 {
336 const struct prime_ent *p = &prime_tab[index];
337 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
338 return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
339 }
340
341 class mem_usage;
342
343 /* User-facing hash table type.
344
345 The table stores elements of type Descriptor::value_type and uses
346 the static descriptor functions described at the top of the file
347 to hash, compare and remove elements.
348
349 Specify the template Allocator to allocate and free memory.
350 The default is xcallocator.
351
352 Storage is an implementation detail and should not be used outside the
353 hash table code.
354
355 */
356 template <typename Descriptor,
357 template<typename Type> class Allocator = xcallocator>
358 class hash_table
359 {
360 typedef typename Descriptor::value_type value_type;
361 typedef typename Descriptor::compare_type compare_type;
362
363 public:
364 explicit hash_table (size_t, bool ggc = false, bool gather_mem_stats = true,
365 mem_alloc_origin origin = HASH_TABLE_ORIGIN
366 CXX_MEM_STAT_INFO);
367 ~hash_table ();
368
369 /* Create a hash_table in gc memory. */
370 static hash_table *
371 create_ggc (size_t n CXX_MEM_STAT_INFO)
372 {
373 hash_table *table = ggc_alloc<hash_table> ();
374 new (table) hash_table (n, true, true, HASH_TABLE_ORIGIN PASS_MEM_STAT);
375 return table;
376 }
377
378 /* Current size (in entries) of the hash table. */
379 size_t size () const { return m_size; }
380
381 /* Return the current number of elements in this hash table. */
382 size_t elements () const { return m_n_elements - m_n_deleted; }
383
384 /* Return the current number of elements in this hash table. */
385 size_t elements_with_deleted () const { return m_n_elements; }
386
387 /* This function clears all entries in the given hash table. */
388 void empty ();
389
390 /* This function clears a specified SLOT in a hash table. It is
391 useful when you've already done the lookup and don't want to do it
392 again. */
393 void clear_slot (value_type *);
394
395 /* This function searches for a hash table entry equal to the given
396 COMPARABLE element starting with the given HASH value. It cannot
397 be used to insert or delete an element. */
398 value_type &find_with_hash (const compare_type &, hashval_t);
399
400 /* Like find_slot_with_hash, but compute the hash value from the element. */
401 value_type &find (const value_type &value)
402 {
403 return find_with_hash (value, Descriptor::hash (value));
404 }
405
406 value_type *find_slot (const value_type &value, insert_option insert)
407 {
408 return find_slot_with_hash (value, Descriptor::hash (value), insert);
409 }
410
411 /* This function searches for a hash table slot containing an entry
412 equal to the given COMPARABLE element and starting with the given
413 HASH. To delete an entry, call this with insert=NO_INSERT, then
414 call clear_slot on the slot returned (possibly after doing some
415 checks). To insert an entry, call this with insert=INSERT, then
416 write the value you want into the returned slot. When inserting an
417 entry, NULL may be returned if memory allocation fails. */
418 value_type *find_slot_with_hash (const compare_type &comparable,
419 hashval_t hash, enum insert_option insert);
420
421 /* This function deletes an element with the given COMPARABLE value
422 from hash table starting with the given HASH. If there is no
423 matching element in the hash table, this function does nothing. */
424 void remove_elt_with_hash (const compare_type &, hashval_t);
425
426 /* Like remove_elt_with_hash, but compute the hash value from the
427 element. */
428 void remove_elt (const value_type &value)
429 {
430 remove_elt_with_hash (value, Descriptor::hash (value));
431 }
432
433 /* This function scans over the entire hash table calling CALLBACK for
434 each live entry. If CALLBACK returns false, the iteration stops.
435 ARGUMENT is passed as CALLBACK's second argument. */
436 template <typename Argument,
437 int (*Callback) (value_type *slot, Argument argument)>
438 void traverse_noresize (Argument argument);
439
440 /* Like traverse_noresize, but does resize the table when it is too empty
441 to improve effectivity of subsequent calls. */
442 template <typename Argument,
443 int (*Callback) (value_type *slot, Argument argument)>
444 void traverse (Argument argument);
445
446 class iterator
447 {
448 public:
449 iterator () : m_slot (NULL), m_limit (NULL) {}
450
451 iterator (value_type *slot, value_type *limit) :
452 m_slot (slot), m_limit (limit) {}
453
454 inline value_type &operator * () { return *m_slot; }
455 void slide ();
456 inline iterator &operator ++ ();
457 bool operator != (const iterator &other) const
458 {
459 return m_slot != other.m_slot || m_limit != other.m_limit;
460 }
461
462 private:
463 value_type *m_slot;
464 value_type *m_limit;
465 };
466
467 iterator begin () const
468 {
469 iterator iter (m_entries, m_entries + m_size);
470 iter.slide ();
471 return iter;
472 }
473
474 iterator end () const { return iterator (); }
475
476 double collisions () const
477 {
478 return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
479 }
480
481 private:
482 template<typename T> friend void gt_ggc_mx (hash_table<T> *);
483 template<typename T> friend void gt_pch_nx (hash_table<T> *);
484 template<typename T> friend void
485 hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
486 template<typename T, typename U, typename V> friend void
487 gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
488 template<typename T, typename U> friend void gt_pch_nx (hash_set<T, U> *,
489 gt_pointer_operator,
490 void *);
491 template<typename T> friend void gt_pch_nx (hash_table<T> *,
492 gt_pointer_operator, void *);
493
494 template<typename T> friend void gt_cleare_cache (hash_table<T> *);
495
496 value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const;
497 value_type *find_empty_slot_for_expand (hashval_t);
498 void expand ();
499 static bool is_deleted (value_type &v)
500 {
501 return Descriptor::is_deleted (v);
502 }
503
504 static bool is_empty (value_type &v)
505 {
506 return Descriptor::is_empty (v);
507 }
508
509 static void mark_deleted (value_type &v)
510 {
511 Descriptor::mark_deleted (v);
512 }
513
514 static void mark_empty (value_type &v)
515 {
516 Descriptor::mark_empty (v);
517 }
518
519 /* Table itself. */
520 typename Descriptor::value_type *m_entries;
521
522 size_t m_size;
523
524 /* Current number of elements including also deleted elements. */
525 size_t m_n_elements;
526
527 /* Current number of deleted elements in the table. */
528 size_t m_n_deleted;
529
530 /* The following member is used for debugging. Its value is number
531 of all calls of `htab_find_slot' for the hash table. */
532 unsigned int m_searches;
533
534 /* The following member is used for debugging. Its value is number
535 of collisions fixed for time of work with the hash table. */
536 unsigned int m_collisions;
537
538 /* Current size (in entries) of the hash table, as an index into the
539 table of primes. */
540 unsigned int m_size_prime_index;
541
542 /* if m_entries is stored in ggc memory. */
543 bool m_ggc;
544
545 /* If we should gather memory statistics for the table. */
546 bool m_gather_mem_stats;
547 };
548
549 /* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
550 mem-stats.h after hash_table declaration. */
551
552 #include "mem-stats.h"
553 #include "hash-map.h"
554
555 extern mem_alloc_description<mem_usage> hash_table_usage;
556
557 /* Support function for statistics. */
558 extern void dump_hash_table_loc_statistics (void);
559
560 template<typename Descriptor, template<typename Type> class Allocator>
561 hash_table<Descriptor, Allocator>::hash_table (size_t size, bool ggc, bool
562 gather_mem_stats,
563 mem_alloc_origin origin
564 MEM_STAT_DECL) :
565 m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
566 m_ggc (ggc), m_gather_mem_stats (gather_mem_stats)
567 {
568 unsigned int size_prime_index;
569
570 size_prime_index = hash_table_higher_prime_index (size);
571 size = prime_tab[size_prime_index].prime;
572
573 if (m_gather_mem_stats)
574 hash_table_usage.register_descriptor (this, origin, ggc
575 FINAL_PASS_MEM_STAT);
576
577 m_entries = alloc_entries (size PASS_MEM_STAT);
578 m_size = size;
579 m_size_prime_index = size_prime_index;
580 }
581
582 template<typename Descriptor, template<typename Type> class Allocator>
583 hash_table<Descriptor, Allocator>::~hash_table ()
584 {
585 for (size_t i = m_size - 1; i < m_size; i--)
586 if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
587 Descriptor::remove (m_entries[i]);
588
589 if (!m_ggc)
590 Allocator <value_type> ::data_free (m_entries);
591 else
592 ggc_free (m_entries);
593
594 if (m_gather_mem_stats)
595 hash_table_usage.release_instance_overhead (this,
596 sizeof (value_type) * m_size,
597 true);
598 }
599
600 /* This function returns an array of empty hash table elements. */
601
602 template<typename Descriptor, template<typename Type> class Allocator>
603 inline typename hash_table<Descriptor, Allocator>::value_type *
604 hash_table<Descriptor, Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
605 {
606 value_type *nentries;
607
608 if (m_gather_mem_stats)
609 hash_table_usage.register_instance_overhead (sizeof (value_type) * n, this);
610
611 if (!m_ggc)
612 nentries = Allocator <value_type> ::data_alloc (n);
613 else
614 nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT);
615
616 gcc_assert (nentries != NULL);
617 for (size_t i = 0; i < n; i++)
618 mark_empty (nentries[i]);
619
620 return nentries;
621 }
622
623 /* Similar to find_slot, but without several unwanted side effects:
624 - Does not call equal when it finds an existing entry.
625 - Does not change the count of elements/searches/collisions in the
626 hash table.
627 This function also assumes there are no deleted entries in the table.
628 HASH is the hash value for the element to be inserted. */
629
630 template<typename Descriptor, template<typename Type> class Allocator>
631 typename hash_table<Descriptor, Allocator>::value_type *
632 hash_table<Descriptor, Allocator>::find_empty_slot_for_expand (hashval_t hash)
633 {
634 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
635 size_t size = m_size;
636 value_type *slot = m_entries + index;
637 hashval_t hash2;
638
639 if (is_empty (*slot))
640 return slot;
641 gcc_checking_assert (!is_deleted (*slot));
642
643 hash2 = hash_table_mod2 (hash, m_size_prime_index);
644 for (;;)
645 {
646 index += hash2;
647 if (index >= size)
648 index -= size;
649
650 slot = m_entries + index;
651 if (is_empty (*slot))
652 return slot;
653 gcc_checking_assert (!is_deleted (*slot));
654 }
655 }
656
657 /* The following function changes size of memory allocated for the
658 entries and repeatedly inserts the table elements. The occupancy
659 of the table after the call will be about 50%. Naturally the hash
660 table must already exist. Remember also that the place of the
661 table entries is changed. If memory allocation fails, this function
662 will abort. */
663
664 template<typename Descriptor, template<typename Type> class Allocator>
665 void
666 hash_table<Descriptor, Allocator>::expand ()
667 {
668 value_type *oentries = m_entries;
669 unsigned int oindex = m_size_prime_index;
670 size_t osize = size ();
671 value_type *olimit = oentries + osize;
672 size_t elts = elements ();
673
674 /* Resize only when table after removal of unused elements is either
675 too full or too empty. */
676 unsigned int nindex;
677 size_t nsize;
678 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
679 {
680 nindex = hash_table_higher_prime_index (elts * 2);
681 nsize = prime_tab[nindex].prime;
682 }
683 else
684 {
685 nindex = oindex;
686 nsize = osize;
687 }
688
689 value_type *nentries = alloc_entries (nsize);
690
691 if (m_gather_mem_stats)
692 hash_table_usage.release_instance_overhead (this, sizeof (value_type)
693 * osize);
694
695 m_entries = nentries;
696 m_size = nsize;
697 m_size_prime_index = nindex;
698 m_n_elements -= m_n_deleted;
699 m_n_deleted = 0;
700
701 value_type *p = oentries;
702 do
703 {
704 value_type &x = *p;
705
706 if (!is_empty (x) && !is_deleted (x))
707 {
708 value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
709
710 *q = x;
711 }
712
713 p++;
714 }
715 while (p < olimit);
716
717 if (!m_ggc)
718 Allocator <value_type> ::data_free (oentries);
719 else
720 ggc_free (oentries);
721 }
722
723 template<typename Descriptor, template<typename Type> class Allocator>
724 void
725 hash_table<Descriptor, Allocator>::empty ()
726 {
727 size_t size = m_size;
728 value_type *entries = m_entries;
729 int i;
730
731 for (i = size - 1; i >= 0; i--)
732 if (!is_empty (entries[i]) && !is_deleted (entries[i]))
733 Descriptor::remove (entries[i]);
734
735 /* Instead of clearing megabyte, downsize the table. */
736 if (size > 1024*1024 / sizeof (PTR))
737 {
738 int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
739 int nsize = prime_tab[nindex].prime;
740
741 if (!m_ggc)
742 Allocator <value_type> ::data_free (m_entries);
743 else
744 ggc_free (m_entries);
745
746 m_entries = alloc_entries (nsize);
747 m_size = nsize;
748 m_size_prime_index = nindex;
749 }
750 else
751 memset (entries, 0, size * sizeof (value_type));
752 m_n_deleted = 0;
753 m_n_elements = 0;
754 }
755
756 /* This function clears a specified SLOT in a hash table. It is
757 useful when you've already done the lookup and don't want to do it
758 again. */
759
760 template<typename Descriptor, template<typename Type> class Allocator>
761 void
762 hash_table<Descriptor, Allocator>::clear_slot (value_type *slot)
763 {
764 gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
765 || is_empty (*slot) || is_deleted (*slot)));
766
767 Descriptor::remove (*slot);
768
769 mark_deleted (*slot);
770 m_n_deleted++;
771 }
772
773 /* This function searches for a hash table entry equal to the given
774 COMPARABLE element starting with the given HASH value. It cannot
775 be used to insert or delete an element. */
776
777 template<typename Descriptor, template<typename Type> class Allocator>
778 typename hash_table<Descriptor, Allocator>::value_type &
779 hash_table<Descriptor, Allocator>
780 ::find_with_hash (const compare_type &comparable, hashval_t hash)
781 {
782 m_searches++;
783 size_t size = m_size;
784 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
785
786 value_type *entry = &m_entries[index];
787 if (is_empty (*entry)
788 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
789 return *entry;
790
791 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
792 for (;;)
793 {
794 m_collisions++;
795 index += hash2;
796 if (index >= size)
797 index -= size;
798
799 entry = &m_entries[index];
800 if (is_empty (*entry)
801 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
802 return *entry;
803 }
804 }
805
806 /* This function searches for a hash table slot containing an entry
807 equal to the given COMPARABLE element and starting with the given
808 HASH. To delete an entry, call this with insert=NO_INSERT, then
809 call clear_slot on the slot returned (possibly after doing some
810 checks). To insert an entry, call this with insert=INSERT, then
811 write the value you want into the returned slot. When inserting an
812 entry, NULL may be returned if memory allocation fails. */
813
814 template<typename Descriptor, template<typename Type> class Allocator>
815 typename hash_table<Descriptor, Allocator>::value_type *
816 hash_table<Descriptor, Allocator>
817 ::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
818 enum insert_option insert)
819 {
820 if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
821 expand ();
822
823 m_searches++;
824
825 value_type *first_deleted_slot = NULL;
826 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
827 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
828 value_type *entry = &m_entries[index];
829 size_t size = m_size;
830 if (is_empty (*entry))
831 goto empty_entry;
832 else if (is_deleted (*entry))
833 first_deleted_slot = &m_entries[index];
834 else if (Descriptor::equal (*entry, comparable))
835 return &m_entries[index];
836
837 for (;;)
838 {
839 m_collisions++;
840 index += hash2;
841 if (index >= size)
842 index -= size;
843
844 entry = &m_entries[index];
845 if (is_empty (*entry))
846 goto empty_entry;
847 else if (is_deleted (*entry))
848 {
849 if (!first_deleted_slot)
850 first_deleted_slot = &m_entries[index];
851 }
852 else if (Descriptor::equal (*entry, comparable))
853 return &m_entries[index];
854 }
855
856 empty_entry:
857 if (insert == NO_INSERT)
858 return NULL;
859
860 if (first_deleted_slot)
861 {
862 m_n_deleted--;
863 mark_empty (*first_deleted_slot);
864 return first_deleted_slot;
865 }
866
867 m_n_elements++;
868 return &m_entries[index];
869 }
870
871 /* This function deletes an element with the given COMPARABLE value
872 from hash table starting with the given HASH. If there is no
873 matching element in the hash table, this function does nothing. */
874
875 template<typename Descriptor, template<typename Type> class Allocator>
876 void
877 hash_table<Descriptor, Allocator>
878 ::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
879 {
880 value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
881 if (is_empty (*slot))
882 return;
883
884 Descriptor::remove (*slot);
885
886 mark_deleted (*slot);
887 m_n_deleted++;
888 }
889
890 /* This function scans over the entire hash table calling CALLBACK for
891 each live entry. If CALLBACK returns false, the iteration stops.
892 ARGUMENT is passed as CALLBACK's second argument. */
893
894 template<typename Descriptor,
895 template<typename Type> class Allocator>
896 template<typename Argument,
897 int (*Callback)
898 (typename hash_table<Descriptor, Allocator>::value_type *slot,
899 Argument argument)>
900 void
901 hash_table<Descriptor, Allocator>::traverse_noresize (Argument argument)
902 {
903 value_type *slot = m_entries;
904 value_type *limit = slot + size ();
905
906 do
907 {
908 value_type &x = *slot;
909
910 if (!is_empty (x) && !is_deleted (x))
911 if (! Callback (slot, argument))
912 break;
913 }
914 while (++slot < limit);
915 }
916
917 /* Like traverse_noresize, but does resize the table when it is too empty
918 to improve effectivity of subsequent calls. */
919
920 template <typename Descriptor,
921 template <typename Type> class Allocator>
922 template <typename Argument,
923 int (*Callback)
924 (typename hash_table<Descriptor, Allocator>::value_type *slot,
925 Argument argument)>
926 void
927 hash_table<Descriptor, Allocator>::traverse (Argument argument)
928 {
929 size_t size = m_size;
930 if (elements () * 8 < size && size > 32)
931 expand ();
932
933 traverse_noresize <Argument, Callback> (argument);
934 }
935
936 /* Slide down the iterator slots until an active entry is found. */
937
938 template<typename Descriptor, template<typename Type> class Allocator>
939 void
940 hash_table<Descriptor, Allocator>::iterator::slide ()
941 {
942 for ( ; m_slot < m_limit; ++m_slot )
943 {
944 value_type &x = *m_slot;
945 if (!is_empty (x) && !is_deleted (x))
946 return;
947 }
948 m_slot = NULL;
949 m_limit = NULL;
950 }
951
952 /* Bump the iterator. */
953
954 template<typename Descriptor, template<typename Type> class Allocator>
955 inline typename hash_table<Descriptor, Allocator>::iterator &
956 hash_table<Descriptor, Allocator>::iterator::operator ++ ()
957 {
958 ++m_slot;
959 slide ();
960 return *this;
961 }
962
963
964 /* Iterate through the elements of hash_table HTAB,
965 using hash_table <....>::iterator ITER,
966 storing each element in RESULT, which is of type TYPE. */
967
968 #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
969 for ((ITER) = (HTAB).begin (); \
970 (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
971 ++(ITER))
972
973 /* ggc walking routines. */
974
975 template<typename E>
976 static inline void
977 gt_ggc_mx (hash_table<E> *h)
978 {
979 typedef hash_table<E> table;
980
981 if (!ggc_test_and_set_mark (h->m_entries))
982 return;
983
984 for (size_t i = 0; i < h->m_size; i++)
985 {
986 if (table::is_empty (h->m_entries[i])
987 || table::is_deleted (h->m_entries[i]))
988 continue;
989
990 E::ggc_mx (h->m_entries[i]);
991 }
992 }
993
994 template<typename D>
995 static inline void
996 hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
997 void *cookie)
998 {
999 hash_table<D> *map = static_cast<hash_table<D> *> (h);
1000 gcc_checking_assert (map->m_entries == obj);
1001 for (size_t i = 0; i < map->m_size; i++)
1002 {
1003 typedef hash_table<D> table;
1004 if (table::is_empty (map->m_entries[i])
1005 || table::is_deleted (map->m_entries[i]))
1006 continue;
1007
1008 D::pch_nx (map->m_entries[i], op, cookie);
1009 }
1010 }
1011
1012 template<typename D>
1013 static void
1014 gt_pch_nx (hash_table<D> *h)
1015 {
1016 bool success
1017 = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
1018 gcc_checking_assert (success);
1019 for (size_t i = 0; i < h->m_size; i++)
1020 {
1021 if (hash_table<D>::is_empty (h->m_entries[i])
1022 || hash_table<D>::is_deleted (h->m_entries[i]))
1023 continue;
1024
1025 D::pch_nx (h->m_entries[i]);
1026 }
1027 }
1028
1029 template<typename D>
1030 static inline void
1031 gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
1032 {
1033 op (&h->m_entries, cookie);
1034 }
1035
1036 template<typename H>
1037 inline void
1038 gt_cleare_cache (hash_table<H> *h)
1039 {
1040 extern void gt_ggc_mx (typename H::value_type &t);
1041 typedef hash_table<H> table;
1042 if (!h)
1043 return;
1044
1045 for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter)
1046 if (!table::is_empty (*iter) && !table::is_deleted (*iter))
1047 {
1048 int res = H::keep_cache_entry (*iter);
1049 if (res == 0)
1050 h->clear_slot (&*iter);
1051 else if (res != -1)
1052 gt_ggc_mx (*iter);
1053 }
1054 }
1055
1056 #endif /* TYPED_HASHTAB_H */