lto-cgraph.c (output_profile_summary, [...]): Use gcov streaming; stream hot bb thres...
[gcc.git] / gcc / hash-table.h
1 /* A type-safe hash table template.
2 Copyright (C) 2012-2013 Free Software Foundation, Inc.
3 Contributed by Lawrence Crowl <crowl@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* This file implements a typed hash table.
23 The implementation borrows from libiberty's htab_t in hashtab.h.
24
25
26 INTRODUCTION TO TYPES
27
28 Users of the hash table generally need to be aware of three types.
29
30 1. The type being placed into the hash table. This type is called
31 the value type.
32
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
35 several things.
36
37 - A typedef named 'value_type' to the value type (from above).
38
39 - A static member function named 'hash' that takes a value_type
40 pointer and returns a hashval_t value.
41
42 - A typedef named 'compare_type' that is used to test when an value
43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
46
47 - A static member function named 'equal' that takes a value_type
48 pointer and a compare_type pointer, and returns a bool.
49
50 - A static function named 'remove' that takes an value_type pointer
51 and frees the memory allocated by it. This function is used when
52 individual elements of the table need to be disposed of (e.g.,
53 when deleting a hash table, removing elements from the table, etc).
54
55 3. The type of the hash table itself. (More later.)
56
57 In very special circumstances, users may need to know about a fourth type.
58
59 4. The template type used to describe how hash table memory
60 is allocated. This type is called the allocator type. It is
61 parameterized on the value type. It provides four functions.
62
63 - A static member function named 'control_alloc'. This function
64 allocates the control data blocks for the table.
65
66 - A static member function named 'control_free'. This function
67 frees the control data blocks for the table.
68
69 - A static member function named 'data_alloc'. This function
70 allocates the data elements in the table.
71
72 - A static member function named 'data_free'. This function
73 deallocates the data elements in the table.
74
75 Hash table are instantiated with two type arguments.
76
77 * The descriptor type, (2) above.
78
79 * The allocator type, (4) above. In general, you will not need to
80 provide your own allocator type. By default, hash tables will use
81 the class template xcallocator, which uses malloc/free for allocation.
82
83
84 DEFINING A DESCRIPTOR TYPE
85
86 The first task in using the hash table is to describe the element type.
87 We compose this into a few steps.
88
89 1. Decide on a removal policy for values stored in the table.
90 This header provides class templates for the two most common
91 policies.
92
93 * typed_free_remove implements the static 'remove' member function
94 by calling free().
95
96 * typed_noop_remove implements the static 'remove' member function
97 by doing nothing.
98
99 You can use these policies by simply deriving the descriptor type
100 from one of those class template, with the appropriate argument.
101
102 Otherwise, you need to write the static 'remove' member function
103 in the descriptor class.
104
105 2. Choose a hash function. Write the static 'hash' member function.
106
107 3. Choose an equality testing function. In most cases, its two
108 arguments will be value_type pointers. If not, the first argument must
109 be a value_type pointer, and the second argument a compare_type pointer.
110
111
112 AN EXAMPLE DESCRIPTOR TYPE
113
114 Suppose you want to put some_type into the hash table. You could define
115 the descriptor type as follows.
116
117 struct some_type_hasher : typed_noop_remove <some_type>
118 // Deriving from typed_noop_remove means that we get a 'remove' that does
119 // nothing. This choice is good for raw values.
120 {
121 typedef some_type value_type;
122 typedef some_type compare_type;
123 static inline hashval_t hash (const value_type *);
124 static inline bool equal (const value_type *, const compare_type *);
125 };
126
127 inline hashval_t
128 some_type_hasher::hash (const value_type *e)
129 { ... compute and return a hash value for E ... }
130
131 inline bool
132 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
133 { ... compare P1 vs P2. Return true if they are the 'same' ... }
134
135
136 AN EXAMPLE HASH_TABLE DECLARATION
137
138 To instantiate a hash table for some_type:
139
140 hash_table <some_type_hasher> some_type_hash_table;
141
142 There is no need to mention some_type directly, as the hash table will
143 obtain it using some_type_hasher::value_type.
144
145 You can then used any of the functions in hash_table's public interface.
146 See hash_table for details. The interface is very similar to libiberty's
147 htab_t.
148
149
150 EASY DESCRIPTORS FOR POINTERS
151
152 The class template pointer_hash provides everything you need to hash
153 pointers (as opposed to what they point to). So, to instantiate a hash
154 table over pointers to whatever_type,
155
156 hash_table <pointer_hash <whatever_type>> whatever_type_hash_table;
157
158 */
159
160
161 #ifndef TYPED_HASHTAB_H
162 #define TYPED_HASHTAB_H
163
164 #include "hashtab.h"
165
166
167 /* The ordinary memory allocator. */
168 /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
169
170 template <typename Type>
171 struct xcallocator
172 {
173 static Type *control_alloc (size_t count);
174 static Type *data_alloc (size_t count);
175 static void control_free (Type *memory);
176 static void data_free (Type *memory);
177 };
178
179
180 /* Allocate memory for COUNT control blocks. */
181
182 template <typename Type>
183 inline Type *
184 xcallocator <Type>::control_alloc (size_t count)
185 {
186 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
187 }
188
189
190 /* Allocate memory for COUNT data blocks. */
191
192 template <typename Type>
193 inline Type *
194 xcallocator <Type>::data_alloc (size_t count)
195 {
196 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
197 }
198
199
200 /* Free memory for control blocks. */
201
202 template <typename Type>
203 inline void
204 xcallocator <Type>::control_free (Type *memory)
205 {
206 return ::free (memory);
207 }
208
209
210 /* Free memory for data blocks. */
211
212 template <typename Type>
213 inline void
214 xcallocator <Type>::data_free (Type *memory)
215 {
216 return ::free (memory);
217 }
218
219
220 /* Helpful type for removing with free. */
221
222 template <typename Type>
223 struct typed_free_remove
224 {
225 static inline void remove (Type *p);
226 };
227
228
229 /* Remove with free. */
230
231 template <typename Type>
232 inline void
233 typed_free_remove <Type>::remove (Type *p)
234 {
235 free (p);
236 }
237
238
239 /* Helpful type for a no-op remove. */
240
241 template <typename Type>
242 struct typed_noop_remove
243 {
244 static inline void remove (Type *p);
245 };
246
247
248 /* Remove doing nothing. */
249
250 template <typename Type>
251 inline void
252 typed_noop_remove <Type>::remove (Type *p ATTRIBUTE_UNUSED)
253 {
254 }
255
256
257 /* Pointer hash with a no-op remove method. */
258
259 template <typename Type>
260 struct pointer_hash : typed_noop_remove <Type>
261 {
262 typedef Type value_type;
263 typedef Type compare_type;
264
265 static inline hashval_t
266 hash (const value_type *);
267
268 static inline int
269 equal (const value_type *existing, const compare_type *candidate);
270 };
271
272 template <typename Type>
273 inline hashval_t
274 pointer_hash <Type>::hash (const value_type *candidate)
275 {
276 /* This is a really poor hash function, but it is what the current code uses,
277 so I am reusing it to avoid an additional axis in testing. */
278 return (hashval_t) ((intptr_t)candidate >> 3);
279 }
280
281 template <typename Type>
282 inline int
283 pointer_hash <Type>::equal (const value_type *existing,
284 const compare_type *candidate)
285 {
286 return existing == candidate;
287 }
288
289
290 /* Table of primes and their inversion information. */
291
292 struct prime_ent
293 {
294 hashval_t prime;
295 hashval_t inv;
296 hashval_t inv_m2; /* inverse of prime-2 */
297 hashval_t shift;
298 };
299
300 extern struct prime_ent const prime_tab[];
301
302
303 /* Functions for computing hash table indexes. */
304
305 extern unsigned int hash_table_higher_prime_index (unsigned long n);
306 extern hashval_t hash_table_mod1 (hashval_t hash, unsigned int index);
307 extern hashval_t hash_table_mod2 (hashval_t hash, unsigned int index);
308
309
310 /* Internal implementation type. */
311
312 template <typename T>
313 struct hash_table_control
314 {
315 /* Table itself. */
316 T **entries;
317
318 /* Current size (in entries) of the hash table. */
319 size_t size;
320
321 /* Current number of elements including also deleted elements. */
322 size_t n_elements;
323
324 /* Current number of deleted elements in the table. */
325 size_t n_deleted;
326
327 /* The following member is used for debugging. Its value is number
328 of all calls of `htab_find_slot' for the hash table. */
329 unsigned int searches;
330
331 /* The following member is used for debugging. Its value is number
332 of collisions fixed for time of work with the hash table. */
333 unsigned int collisions;
334
335 /* Current size (in entries) of the hash table, as an index into the
336 table of primes. */
337 unsigned int size_prime_index;
338 };
339
340
341 /* User-facing hash table type.
342
343 The table stores elements of type Descriptor::value_type.
344
345 It hashes values with the hash member function.
346 The table currently works with relatively weak hash functions.
347 Use typed_pointer_hash <Value> when hashing pointers instead of objects.
348
349 It compares elements with the equal member function.
350 Two elements with the same hash may not be equal.
351 Use typed_pointer_equal <Value> when hashing pointers instead of objects.
352
353 It removes elements with the remove member function.
354 This feature is useful for freeing memory.
355 Derive from typed_null_remove <Value> when not freeing objects.
356 Derive from typed_free_remove <Value> when doing a simple object free.
357
358 Specify the template Allocator to allocate and free memory.
359 The default is xcallocator.
360
361 */
362
363 template <typename Descriptor,
364 template <typename Type> class Allocator = xcallocator>
365 class hash_table
366 {
367 public:
368 typedef typename Descriptor::value_type value_type;
369 typedef typename Descriptor::compare_type compare_type;
370
371 private:
372 hash_table_control <value_type> *htab;
373
374 value_type **find_empty_slot_for_expand (hashval_t hash);
375 void expand ();
376
377 public:
378 hash_table ();
379 void create (size_t initial_slots);
380 bool is_created ();
381 void dispose ();
382 value_type *find (const compare_type *comparable);
383 value_type *find_with_hash (const compare_type *comparable, hashval_t hash);
384 value_type **find_slot (const compare_type *comparable,
385 enum insert_option insert);
386 value_type **find_slot_with_hash (const compare_type *comparable,
387 hashval_t hash, enum insert_option insert);
388 void empty ();
389 void clear_slot (value_type **slot);
390 void remove_elt (const compare_type *comparable);
391 void remove_elt_with_hash (const compare_type *comparable, hashval_t hash);
392 size_t size();
393 size_t elements();
394 double collisions();
395
396 template <typename Argument,
397 int (*Callback) (value_type **slot, Argument argument)>
398 void traverse_noresize (Argument argument);
399
400 template <typename Argument,
401 int (*Callback) (value_type **slot, Argument argument)>
402 void traverse (Argument argument);
403 };
404
405
406 /* Construct the hash table. The only useful operation next is create. */
407
408 template <typename Descriptor,
409 template <typename Type> class Allocator>
410 inline
411 hash_table <Descriptor, Allocator>::hash_table ()
412 : htab (NULL)
413 {
414 }
415
416
417 /* See if the table has been created, as opposed to constructed. */
418
419 template <typename Descriptor,
420 template <typename Type> class Allocator>
421 inline bool
422 hash_table <Descriptor, Allocator>::is_created ()
423 {
424 return htab != NULL;
425 }
426
427
428 /* Like find_with_hash, but compute the hash value from the element. */
429
430 template <typename Descriptor,
431 template <typename Type> class Allocator>
432 inline typename Descriptor::value_type *
433 hash_table <Descriptor, Allocator>::find (const compare_type *comparable)
434 {
435 return find_with_hash (comparable, Descriptor::hash (comparable));
436 }
437
438
439 /* Like find_slot_with_hash, but compute the hash value from the element. */
440
441 template <typename Descriptor,
442 template <typename Type> class Allocator>
443 inline typename Descriptor::value_type **
444 hash_table <Descriptor, Allocator>
445 ::find_slot (const compare_type *comparable, enum insert_option insert)
446 {
447 return find_slot_with_hash (comparable, Descriptor::hash (comparable), insert);
448 }
449
450
451 /* Like remove_elt_with_hash, but compute the hash value from the element. */
452
453 template <typename Descriptor,
454 template <typename Type> class Allocator>
455 inline void
456 hash_table <Descriptor, Allocator>::remove_elt (const compare_type *comparable)
457 {
458 remove_elt_with_hash (comparable, Descriptor::hash (comparable));
459 }
460
461
462 /* Return the current size of this hash table. */
463
464 template <typename Descriptor,
465 template <typename Type> class Allocator>
466 inline size_t
467 hash_table <Descriptor, Allocator>::size()
468 {
469 return htab->size;
470 }
471
472
473 /* Return the current number of elements in this hash table. */
474
475 template <typename Descriptor,
476 template <typename Type> class Allocator>
477 inline size_t
478 hash_table <Descriptor, Allocator>::elements()
479 {
480 return htab->n_elements - htab->n_deleted;
481 }
482
483
484 /* Return the fraction of fixed collisions during all work with given
485 hash table. */
486
487 template <typename Descriptor,
488 template <typename Type> class Allocator>
489 inline double
490 hash_table <Descriptor, Allocator>::collisions()
491 {
492 if (htab->searches == 0)
493 return 0.0;
494
495 return static_cast <double> (htab->collisions) / htab->searches;
496 }
497
498
499 /* Create a hash table with at least the given number of INITIAL_SLOTS. */
500
501 template <typename Descriptor,
502 template <typename Type> class Allocator>
503 void
504 hash_table <Descriptor, Allocator>::create (size_t size)
505 {
506 unsigned int size_prime_index;
507
508 size_prime_index = hash_table_higher_prime_index (size);
509 size = prime_tab[size_prime_index].prime;
510
511 htab = Allocator <hash_table_control <value_type> > ::control_alloc (1);
512 gcc_assert (htab != NULL);
513 htab->entries = Allocator <value_type*> ::data_alloc (size);
514 gcc_assert (htab->entries != NULL);
515 htab->size = size;
516 htab->size_prime_index = size_prime_index;
517 }
518
519
520 /* Dispose of a hash table. Free all memory and return this hash table to
521 the non-created state. Naturally the hash table must already exist. */
522
523 template <typename Descriptor,
524 template <typename Type> class Allocator>
525 void
526 hash_table <Descriptor, Allocator>::dispose ()
527 {
528 size_t size = htab->size;
529 value_type **entries = htab->entries;
530
531 for (int i = size - 1; i >= 0; i--)
532 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
533 Descriptor::remove (entries[i]);
534
535 Allocator <value_type *> ::data_free (entries);
536 Allocator <hash_table_control <value_type> > ::control_free (htab);
537 htab = NULL;
538 }
539
540
541 /* Similar to find_slot, but without several unwanted side effects:
542 - Does not call equal when it finds an existing entry.
543 - Does not change the count of elements/searches/collisions in the
544 hash table.
545 This function also assumes there are no deleted entries in the table.
546 HASH is the hash value for the element to be inserted. */
547
548 template <typename Descriptor,
549 template <typename Type> class Allocator>
550 typename Descriptor::value_type **
551 hash_table <Descriptor, Allocator>::find_empty_slot_for_expand (hashval_t hash)
552 {
553 hashval_t index = hash_table_mod1 (hash, htab->size_prime_index);
554 size_t size = htab->size;
555 value_type **slot = htab->entries + index;
556 hashval_t hash2;
557
558 if (*slot == HTAB_EMPTY_ENTRY)
559 return slot;
560 else if (*slot == HTAB_DELETED_ENTRY)
561 abort ();
562
563 hash2 = hash_table_mod2 (hash, htab->size_prime_index);
564 for (;;)
565 {
566 index += hash2;
567 if (index >= size)
568 index -= size;
569
570 slot = htab->entries + index;
571 if (*slot == HTAB_EMPTY_ENTRY)
572 return slot;
573 else if (*slot == HTAB_DELETED_ENTRY)
574 abort ();
575 }
576 }
577
578
579 /* The following function changes size of memory allocated for the
580 entries and repeatedly inserts the table elements. The occupancy
581 of the table after the call will be about 50%. Naturally the hash
582 table must already exist. Remember also that the place of the
583 table entries is changed. If memory allocation fails, this function
584 will abort. */
585
586 template <typename Descriptor,
587 template <typename Type> class Allocator>
588 void
589 hash_table <Descriptor, Allocator>::expand ()
590 {
591 value_type **oentries;
592 value_type **olimit;
593 value_type **p;
594 value_type **nentries;
595 size_t nsize, osize, elts;
596 unsigned int oindex, nindex;
597
598 oentries = htab->entries;
599 oindex = htab->size_prime_index;
600 osize = htab->size;
601 olimit = oentries + osize;
602 elts = elements ();
603
604 /* Resize only when table after removal of unused elements is either
605 too full or too empty. */
606 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
607 {
608 nindex = hash_table_higher_prime_index (elts * 2);
609 nsize = prime_tab[nindex].prime;
610 }
611 else
612 {
613 nindex = oindex;
614 nsize = osize;
615 }
616
617 nentries = Allocator <value_type *> ::data_alloc (nsize);
618 gcc_assert (nentries != NULL);
619 htab->entries = nentries;
620 htab->size = nsize;
621 htab->size_prime_index = nindex;
622 htab->n_elements -= htab->n_deleted;
623 htab->n_deleted = 0;
624
625 p = oentries;
626 do
627 {
628 value_type *x = *p;
629
630 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
631 {
632 value_type **q = find_empty_slot_for_expand (Descriptor::hash (x));
633
634 *q = x;
635 }
636
637 p++;
638 }
639 while (p < olimit);
640
641 Allocator <value_type *> ::data_free (oentries);
642 }
643
644
645 /* This function searches for a hash table entry equal to the given
646 COMPARABLE element starting with the given HASH value. It cannot
647 be used to insert or delete an element. */
648
649 template <typename Descriptor,
650 template <typename Type> class Allocator>
651 typename Descriptor::value_type *
652 hash_table <Descriptor, Allocator>
653 ::find_with_hash (const compare_type *comparable, hashval_t hash)
654 {
655 hashval_t index, hash2;
656 size_t size;
657 value_type *entry;
658
659 htab->searches++;
660 size = htab->size;
661 index = hash_table_mod1 (hash, htab->size_prime_index);
662
663 entry = htab->entries[index];
664 if (entry == HTAB_EMPTY_ENTRY
665 || (entry != HTAB_DELETED_ENTRY && Descriptor::equal (entry, comparable)))
666 return entry;
667
668 hash2 = hash_table_mod2 (hash, htab->size_prime_index);
669 for (;;)
670 {
671 htab->collisions++;
672 index += hash2;
673 if (index >= size)
674 index -= size;
675
676 entry = htab->entries[index];
677 if (entry == HTAB_EMPTY_ENTRY
678 || (entry != HTAB_DELETED_ENTRY
679 && Descriptor::equal (entry, comparable)))
680 return entry;
681 }
682 }
683
684
685 /* This function searches for a hash table slot containing an entry
686 equal to the given COMPARABLE element and starting with the given
687 HASH. To delete an entry, call this with insert=NO_INSERT, then
688 call clear_slot on the slot returned (possibly after doing some
689 checks). To insert an entry, call this with insert=INSERT, then
690 write the value you want into the returned slot. When inserting an
691 entry, NULL may be returned if memory allocation fails. */
692
693 template <typename Descriptor,
694 template <typename Type> class Allocator>
695 typename Descriptor::value_type **
696 hash_table <Descriptor, Allocator>
697 ::find_slot_with_hash (const compare_type *comparable, hashval_t hash,
698 enum insert_option insert)
699 {
700 value_type **first_deleted_slot;
701 hashval_t index, hash2;
702 size_t size;
703 value_type *entry;
704
705 size = htab->size;
706 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
707 {
708 expand ();
709 size = htab->size;
710 }
711
712 index = hash_table_mod1 (hash, htab->size_prime_index);
713
714 htab->searches++;
715 first_deleted_slot = NULL;
716
717 entry = htab->entries[index];
718 if (entry == HTAB_EMPTY_ENTRY)
719 goto empty_entry;
720 else if (entry == HTAB_DELETED_ENTRY)
721 first_deleted_slot = &htab->entries[index];
722 else if (Descriptor::equal (entry, comparable))
723 return &htab->entries[index];
724
725 hash2 = hash_table_mod2 (hash, htab->size_prime_index);
726 for (;;)
727 {
728 htab->collisions++;
729 index += hash2;
730 if (index >= size)
731 index -= size;
732
733 entry = htab->entries[index];
734 if (entry == HTAB_EMPTY_ENTRY)
735 goto empty_entry;
736 else if (entry == HTAB_DELETED_ENTRY)
737 {
738 if (!first_deleted_slot)
739 first_deleted_slot = &htab->entries[index];
740 }
741 else if (Descriptor::equal (entry, comparable))
742 return &htab->entries[index];
743 }
744
745 empty_entry:
746 if (insert == NO_INSERT)
747 return NULL;
748
749 if (first_deleted_slot)
750 {
751 htab->n_deleted--;
752 *first_deleted_slot = static_cast <value_type *> (HTAB_EMPTY_ENTRY);
753 return first_deleted_slot;
754 }
755
756 htab->n_elements++;
757 return &htab->entries[index];
758 }
759
760
761 /* This function clears all entries in the given hash table. */
762
763 template <typename Descriptor,
764 template <typename Type> class Allocator>
765 void
766 hash_table <Descriptor, Allocator>::empty ()
767 {
768 size_t size = htab->size;
769 value_type **entries = htab->entries;
770 int i;
771
772 for (i = size - 1; i >= 0; i--)
773 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
774 Descriptor::remove (entries[i]);
775
776 /* Instead of clearing megabyte, downsize the table. */
777 if (size > 1024*1024 / sizeof (PTR))
778 {
779 int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
780 int nsize = prime_tab[nindex].prime;
781
782 Allocator <value_type *> ::data_free (htab->entries);
783 htab->entries = Allocator <value_type *> ::data_alloc (nsize);
784 htab->size = nsize;
785 htab->size_prime_index = nindex;
786 }
787 else
788 memset (entries, 0, size * sizeof (value_type *));
789 htab->n_deleted = 0;
790 htab->n_elements = 0;
791 }
792
793
794 /* This function clears a specified SLOT in a hash table. It is
795 useful when you've already done the lookup and don't want to do it
796 again. */
797
798 template <typename Descriptor,
799 template <typename Type> class Allocator>
800 void
801 hash_table <Descriptor, Allocator>::clear_slot (value_type **slot)
802 {
803 if (slot < htab->entries || slot >= htab->entries + htab->size
804 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
805 abort ();
806
807 Descriptor::remove (*slot);
808
809 *slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
810 htab->n_deleted++;
811 }
812
813
814 /* This function deletes an element with the given COMPARABLE value
815 from hash table starting with the given HASH. If there is no
816 matching element in the hash table, this function does nothing. */
817
818 template <typename Descriptor,
819 template <typename Type> class Allocator>
820 void
821 hash_table <Descriptor, Allocator>
822 ::remove_elt_with_hash (const compare_type *comparable, hashval_t hash)
823 {
824 value_type **slot;
825
826 slot = find_slot_with_hash (comparable, hash, NO_INSERT);
827 if (*slot == HTAB_EMPTY_ENTRY)
828 return;
829
830 Descriptor::remove (*slot);
831
832 *slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
833 htab->n_deleted++;
834 }
835
836
837 /* This function scans over the entire hash table calling CALLBACK for
838 each live entry. If CALLBACK returns false, the iteration stops.
839 ARGUMENT is passed as CALLBACK's second argument. */
840
841 template <typename Descriptor,
842 template <typename Type> class Allocator>
843 template <typename Argument,
844 int (*Callback) (typename Descriptor::value_type **slot, Argument argument)>
845 void
846 hash_table <Descriptor, Allocator>::traverse_noresize (Argument argument)
847 {
848 value_type **slot;
849 value_type **limit;
850
851 slot = htab->entries;
852 limit = slot + htab->size;
853
854 do
855 {
856 value_type *x = *slot;
857
858 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
859 if (! Callback (slot, argument))
860 break;
861 }
862 while (++slot < limit);
863 }
864
865
866 /* Like traverse_noresize, but does resize the table when it is too empty
867 to improve effectivity of subsequent calls. */
868
869 template <typename Descriptor,
870 template <typename Type> class Allocator>
871 template <typename Argument,
872 int (*Callback) (typename Descriptor::value_type **slot,
873 Argument argument)>
874 void
875 hash_table <Descriptor, Allocator>::traverse (Argument argument)
876 {
877 size_t size = htab->size;
878 if (elements () * 8 < size && size > 32)
879 expand ();
880
881 traverse_noresize <Argument, Callback> (argument);
882 }
883
884 #endif /* TYPED_HASHTAB_H */