4f5e150a0ac68d0b3f39ff6bd04d641fffa78bf1
[gcc.git] / gcc / hash-table.h
1 /* A type-safe hash table template.
2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
3 Contributed by Lawrence Crowl <crowl@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* This file implements a typed hash table.
23 The implementation borrows from libiberty's htab_t in hashtab.h.
24
25
26 INTRODUCTION TO TYPES
27
28 Users of the hash table generally need to be aware of three types.
29
30 1. The type being placed into the hash table. This type is called
31 the value type.
32
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
35 several things.
36
37 - A typedef named 'value_type' to the value type (from above).
38
39 - A static member function named 'hash' that takes a value_type
40 (or 'const value_type &') and returns a hashval_t value.
41
42 - A typedef named 'compare_type' that is used to test when a value
43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
46
47 - A static member function named 'equal' that takes a value_type
48 and a compare_type, and returns a bool. Both arguments can be
49 const references.
50
51 - A static function named 'remove' that takes an value_type pointer
52 and frees the memory allocated by it. This function is used when
53 individual elements of the table need to be disposed of (e.g.,
54 when deleting a hash table, removing elements from the table, etc).
55
56 - An optional static function named 'keep_cache_entry'. This
57 function is provided only for garbage-collected elements that
58 are not marked by the normal gc mark pass. It describes what
59 what should happen to the element at the end of the gc mark phase.
60 The return value should be:
61 - 0 if the element should be deleted
62 - 1 if the element should be kept and needs to be marked
63 - -1 if the element should be kept and is already marked.
64 Returning -1 rather than 1 is purely an optimization.
65
66 3. The type of the hash table itself. (More later.)
67
68 In very special circumstances, users may need to know about a fourth type.
69
70 4. The template type used to describe how hash table memory
71 is allocated. This type is called the allocator type. It is
72 parameterized on the value type. It provides two functions:
73
74 - A static member function named 'data_alloc'. This function
75 allocates the data elements in the table.
76
77 - A static member function named 'data_free'. This function
78 deallocates the data elements in the table.
79
80 Hash table are instantiated with two type arguments.
81
82 * The descriptor type, (2) above.
83
84 * The allocator type, (4) above. In general, you will not need to
85 provide your own allocator type. By default, hash tables will use
86 the class template xcallocator, which uses malloc/free for allocation.
87
88
89 DEFINING A DESCRIPTOR TYPE
90
91 The first task in using the hash table is to describe the element type.
92 We compose this into a few steps.
93
94 1. Decide on a removal policy for values stored in the table.
95 hash-traits.h provides class templates for the four most common
96 policies:
97
98 * typed_free_remove implements the static 'remove' member function
99 by calling free().
100
101 * typed_noop_remove implements the static 'remove' member function
102 by doing nothing.
103
104 * ggc_remove implements the static 'remove' member by doing nothing,
105 but instead provides routines for gc marking and for PCH streaming.
106 Use this for garbage-collected data that needs to be preserved across
107 collections.
108
109 * ggc_cache_remove is like ggc_remove, except that it does not
110 mark the entries during the normal gc mark phase. Instead it
111 uses 'keep_cache_entry' (described above) to keep elements that
112 were not collected and delete those that were. Use this for
113 garbage-collected caches that should not in themselves stop
114 the data from being collected.
115
116 You can use these policies by simply deriving the descriptor type
117 from one of those class template, with the appropriate argument.
118
119 Otherwise, you need to write the static 'remove' member function
120 in the descriptor class.
121
122 2. Choose a hash function. Write the static 'hash' member function.
123
124 3. Decide whether the lookup function should take as input an object
125 of type value_type or something more restricted. Define compare_type
126 accordingly.
127
128 4. Choose an equality testing function 'equal' that compares a value_type
129 and a compare_type.
130
131 If your elements are pointers, it is usually easiest to start with one
132 of the generic pointer descriptors described below and override the bits
133 you need to change.
134
135 AN EXAMPLE DESCRIPTOR TYPE
136
137 Suppose you want to put some_type into the hash table. You could define
138 the descriptor type as follows.
139
140 struct some_type_hasher : nofree_ptr_hash <some_type>
141 // Deriving from nofree_ptr_hash means that we get a 'remove' that does
142 // nothing. This choice is good for raw values.
143 {
144 static inline hashval_t hash (const value_type *);
145 static inline bool equal (const value_type *, const compare_type *);
146 };
147
148 inline hashval_t
149 some_type_hasher::hash (const value_type *e)
150 { ... compute and return a hash value for E ... }
151
152 inline bool
153 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
154 { ... compare P1 vs P2. Return true if they are the 'same' ... }
155
156
157 AN EXAMPLE HASH_TABLE DECLARATION
158
159 To instantiate a hash table for some_type:
160
161 hash_table <some_type_hasher> some_type_hash_table;
162
163 There is no need to mention some_type directly, as the hash table will
164 obtain it using some_type_hasher::value_type.
165
166 You can then use any of the functions in hash_table's public interface.
167 See hash_table for details. The interface is very similar to libiberty's
168 htab_t.
169
170 If a hash table is used only in some rare cases, it is possible
171 to construct the hash_table lazily before first use. This is done
172 through:
173
174 hash_table <some_type_hasher, true> some_type_hash_table;
175
176 which will cause whatever methods actually need the allocated entries
177 array to allocate it later.
178
179
180 EASY DESCRIPTORS FOR POINTERS
181
182 There are four descriptors for pointer elements, one for each of
183 the removal policies above:
184
185 * nofree_ptr_hash (based on typed_noop_remove)
186 * free_ptr_hash (based on typed_free_remove)
187 * ggc_ptr_hash (based on ggc_remove)
188 * ggc_cache_ptr_hash (based on ggc_cache_remove)
189
190 These descriptors hash and compare elements by their pointer value,
191 rather than what they point to. So, to instantiate a hash table over
192 pointers to whatever_type, without freeing the whatever_types, use:
193
194 hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;
195
196
197 HASH TABLE ITERATORS
198
199 The hash table provides standard C++ iterators. For example, consider a
200 hash table of some_info. We wish to consume each element of the table:
201
202 extern void consume (some_info *);
203
204 We define a convenience typedef and the hash table:
205
206 typedef hash_table <some_info_hasher> info_table_type;
207 info_table_type info_table;
208
209 Then we write the loop in typical C++ style:
210
211 for (info_table_type::iterator iter = info_table.begin ();
212 iter != info_table.end ();
213 ++iter)
214 if ((*iter).status == INFO_READY)
215 consume (&*iter);
216
217 Or with common sub-expression elimination:
218
219 for (info_table_type::iterator iter = info_table.begin ();
220 iter != info_table.end ();
221 ++iter)
222 {
223 some_info &elem = *iter;
224 if (elem.status == INFO_READY)
225 consume (&elem);
226 }
227
228 One can also use a more typical GCC style:
229
230 typedef some_info *some_info_p;
231 some_info *elem_ptr;
232 info_table_type::iterator iter;
233 FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
234 if (elem_ptr->status == INFO_READY)
235 consume (elem_ptr);
236
237 */
238
239
240 #ifndef TYPED_HASHTAB_H
241 #define TYPED_HASHTAB_H
242
243 #include "statistics.h"
244 #include "ggc.h"
245 #include "vec.h"
246 #include "hashtab.h"
247 #include "inchash.h"
248 #include "mem-stats-traits.h"
249 #include "hash-traits.h"
250 #include "hash-map-traits.h"
251
252 template<typename, typename, typename> class hash_map;
253 template<typename, bool, typename> class hash_set;
254
255 /* The ordinary memory allocator. */
256 /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
257
258 template <typename Type>
259 struct xcallocator
260 {
261 static Type *data_alloc (size_t count);
262 static void data_free (Type *memory);
263 };
264
265
266 /* Allocate memory for COUNT data blocks. */
267
268 template <typename Type>
269 inline Type *
270 xcallocator <Type>::data_alloc (size_t count)
271 {
272 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
273 }
274
275
276 /* Free memory for data blocks. */
277
278 template <typename Type>
279 inline void
280 xcallocator <Type>::data_free (Type *memory)
281 {
282 return ::free (memory);
283 }
284
285
286 /* Table of primes and their inversion information. */
287
288 struct prime_ent
289 {
290 hashval_t prime;
291 hashval_t inv;
292 hashval_t inv_m2; /* inverse of prime-2 */
293 hashval_t shift;
294 };
295
296 extern struct prime_ent const prime_tab[];
297
298 /* Limit number of comparisons when calling hash_table<>::verify. */
299 extern unsigned int hash_table_sanitize_eq_limit;
300
301 /* Functions for computing hash table indexes. */
302
303 extern unsigned int hash_table_higher_prime_index (unsigned long n)
304 ATTRIBUTE_PURE;
305
306 /* Return X % Y using multiplicative inverse values INV and SHIFT.
307
308 The multiplicative inverses computed above are for 32-bit types,
309 and requires that we be able to compute a highpart multiply.
310
311 FIX: I am not at all convinced that
312 3 loads, 2 multiplications, 3 shifts, and 3 additions
313 will be faster than
314 1 load and 1 modulus
315 on modern systems running a compiler. */
316
317 inline hashval_t
318 mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
319 {
320 hashval_t t1, t2, t3, t4, q, r;
321
322 t1 = ((uint64_t)x * inv) >> 32;
323 t2 = x - t1;
324 t3 = t2 >> 1;
325 t4 = t1 + t3;
326 q = t4 >> shift;
327 r = x - (q * y);
328
329 return r;
330 }
331
332 /* Compute the primary table index for HASH given current prime index. */
333
334 inline hashval_t
335 hash_table_mod1 (hashval_t hash, unsigned int index)
336 {
337 const struct prime_ent *p = &prime_tab[index];
338 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
339 return mul_mod (hash, p->prime, p->inv, p->shift);
340 }
341
342 /* Compute the secondary table index for HASH given current prime index. */
343
344 inline hashval_t
345 hash_table_mod2 (hashval_t hash, unsigned int index)
346 {
347 const struct prime_ent *p = &prime_tab[index];
348 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
349 return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
350 }
351
352 class mem_usage;
353
354 /* User-facing hash table type.
355
356 The table stores elements of type Descriptor::value_type and uses
357 the static descriptor functions described at the top of the file
358 to hash, compare and remove elements.
359
360 Specify the template Allocator to allocate and free memory.
361 The default is xcallocator.
362
363 Storage is an implementation detail and should not be used outside the
364 hash table code.
365
366 */
367 template <typename Descriptor, bool Lazy = false,
368 template<typename Type> class Allocator = xcallocator>
369 class hash_table
370 {
371 typedef typename Descriptor::value_type value_type;
372 typedef typename Descriptor::compare_type compare_type;
373
374 public:
375 explicit hash_table (size_t, bool ggc = false,
376 bool sanitize_eq_and_hash = true,
377 bool gather_mem_stats = GATHER_STATISTICS,
378 mem_alloc_origin origin = HASH_TABLE_ORIGIN
379 CXX_MEM_STAT_INFO);
380 explicit hash_table (const hash_table &, bool ggc = false,
381 bool sanitize_eq_and_hash = true,
382 bool gather_mem_stats = GATHER_STATISTICS,
383 mem_alloc_origin origin = HASH_TABLE_ORIGIN
384 CXX_MEM_STAT_INFO);
385 ~hash_table ();
386
387 /* Create a hash_table in gc memory. */
388 static hash_table *
389 create_ggc (size_t n, bool sanitize_eq_and_hash = true CXX_MEM_STAT_INFO)
390 {
391 hash_table *table = ggc_alloc<hash_table> ();
392 new (table) hash_table (n, true, sanitize_eq_and_hash, GATHER_STATISTICS,
393 HASH_TABLE_ORIGIN PASS_MEM_STAT);
394 return table;
395 }
396
397 /* Current size (in entries) of the hash table. */
398 size_t size () const { return m_size; }
399
400 /* Return the current number of elements in this hash table. */
401 size_t elements () const { return m_n_elements - m_n_deleted; }
402
403 /* Return the current number of elements in this hash table. */
404 size_t elements_with_deleted () const { return m_n_elements; }
405
406 /* This function clears all entries in this hash table. */
407 void empty () { if (elements ()) empty_slow (); }
408
409 /* Return true when there are no elements in this hash table. */
410 bool is_empty () const { return elements () == 0; }
411
412 /* This function clears a specified SLOT in a hash table. It is
413 useful when you've already done the lookup and don't want to do it
414 again. */
415 void clear_slot (value_type *);
416
417 /* This function searches for a hash table entry equal to the given
418 COMPARABLE element starting with the given HASH value. It cannot
419 be used to insert or delete an element. */
420 value_type &find_with_hash (const compare_type &, hashval_t);
421
422 /* Like find_slot_with_hash, but compute the hash value from the element. */
423 value_type &find (const value_type &value)
424 {
425 return find_with_hash (value, Descriptor::hash (value));
426 }
427
428 value_type *find_slot (const value_type &value, insert_option insert)
429 {
430 return find_slot_with_hash (value, Descriptor::hash (value), insert);
431 }
432
433 /* This function searches for a hash table slot containing an entry
434 equal to the given COMPARABLE element and starting with the given
435 HASH. To delete an entry, call this with insert=NO_INSERT, then
436 call clear_slot on the slot returned (possibly after doing some
437 checks). To insert an entry, call this with insert=INSERT, then
438 write the value you want into the returned slot. When inserting an
439 entry, NULL may be returned if memory allocation fails. */
440 value_type *find_slot_with_hash (const compare_type &comparable,
441 hashval_t hash, enum insert_option insert);
442
443 /* This function deletes an element with the given COMPARABLE value
444 from hash table starting with the given HASH. If there is no
445 matching element in the hash table, this function does nothing. */
446 void remove_elt_with_hash (const compare_type &, hashval_t);
447
448 /* Like remove_elt_with_hash, but compute the hash value from the
449 element. */
450 void remove_elt (const value_type &value)
451 {
452 remove_elt_with_hash (value, Descriptor::hash (value));
453 }
454
455 /* This function scans over the entire hash table calling CALLBACK for
456 each live entry. If CALLBACK returns false, the iteration stops.
457 ARGUMENT is passed as CALLBACK's second argument. */
458 template <typename Argument,
459 int (*Callback) (value_type *slot, Argument argument)>
460 void traverse_noresize (Argument argument);
461
462 /* Like traverse_noresize, but does resize the table when it is too empty
463 to improve effectivity of subsequent calls. */
464 template <typename Argument,
465 int (*Callback) (value_type *slot, Argument argument)>
466 void traverse (Argument argument);
467
468 class iterator
469 {
470 public:
471 iterator () : m_slot (NULL), m_limit (NULL) {}
472
473 iterator (value_type *slot, value_type *limit) :
474 m_slot (slot), m_limit (limit) {}
475
476 inline value_type &operator * () { return *m_slot; }
477 void slide ();
478 inline iterator &operator ++ ();
479 bool operator != (const iterator &other) const
480 {
481 return m_slot != other.m_slot || m_limit != other.m_limit;
482 }
483
484 private:
485 value_type *m_slot;
486 value_type *m_limit;
487 };
488
489 iterator begin () const
490 {
491 if (Lazy && m_entries == NULL)
492 return iterator ();
493 iterator iter (m_entries, m_entries + m_size);
494 iter.slide ();
495 return iter;
496 }
497
498 iterator end () const { return iterator (); }
499
500 double collisions () const
501 {
502 return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
503 }
504
505 private:
506 template<typename T> friend void gt_ggc_mx (hash_table<T> *);
507 template<typename T> friend void gt_pch_nx (hash_table<T> *);
508 template<typename T> friend void
509 hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
510 template<typename T, typename U, typename V> friend void
511 gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
512 template<typename T, typename U>
513 friend void gt_pch_nx (hash_set<T, false, U> *, gt_pointer_operator, void *);
514 template<typename T> friend void gt_pch_nx (hash_table<T> *,
515 gt_pointer_operator, void *);
516
517 template<typename T> friend void gt_cleare_cache (hash_table<T> *);
518
519 void empty_slow ();
520
521 value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const;
522 value_type *find_empty_slot_for_expand (hashval_t);
523 void verify (const compare_type &comparable, hashval_t hash);
524 bool too_empty_p (unsigned int);
525 void expand ();
526 static bool is_deleted (value_type &v)
527 {
528 return Descriptor::is_deleted (v);
529 }
530
531 static bool is_empty (value_type &v)
532 {
533 return Descriptor::is_empty (v);
534 }
535
536 static void mark_deleted (value_type &v)
537 {
538 Descriptor::mark_deleted (v);
539 }
540
541 static void mark_empty (value_type &v)
542 {
543 Descriptor::mark_empty (v);
544 }
545
546 /* Table itself. */
547 typename Descriptor::value_type *m_entries;
548
549 size_t m_size;
550
551 /* Current number of elements including also deleted elements. */
552 size_t m_n_elements;
553
554 /* Current number of deleted elements in the table. */
555 size_t m_n_deleted;
556
557 /* The following member is used for debugging. Its value is number
558 of all calls of `htab_find_slot' for the hash table. */
559 unsigned int m_searches;
560
561 /* The following member is used for debugging. Its value is number
562 of collisions fixed for time of work with the hash table. */
563 unsigned int m_collisions;
564
565 /* Current size (in entries) of the hash table, as an index into the
566 table of primes. */
567 unsigned int m_size_prime_index;
568
569 /* if m_entries is stored in ggc memory. */
570 bool m_ggc;
571
572 /* True if the table should be sanitized for equal and hash functions. */
573 bool m_sanitize_eq_and_hash;
574
575 /* If we should gather memory statistics for the table. */
576 #if GATHER_STATISTICS
577 bool m_gather_mem_stats;
578 #else
579 static const bool m_gather_mem_stats = false;
580 #endif
581 };
582
583 /* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
584 mem-stats.h after hash_table declaration. */
585
586 #include "mem-stats.h"
587 #include "hash-map.h"
588
589 extern mem_alloc_description<mem_usage>& hash_table_usage (void);
590
591 /* Support function for statistics. */
592 extern void dump_hash_table_loc_statistics (void);
593
594 template<typename Descriptor, bool Lazy,
595 template<typename Type> class Allocator>
596 hash_table<Descriptor, Lazy, Allocator>::hash_table (size_t size, bool ggc,
597 bool sanitize_eq_and_hash,
598 bool gather_mem_stats
599 ATTRIBUTE_UNUSED,
600 mem_alloc_origin origin
601 MEM_STAT_DECL) :
602 m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
603 m_ggc (ggc), m_sanitize_eq_and_hash (sanitize_eq_and_hash)
604 #if GATHER_STATISTICS
605 , m_gather_mem_stats (gather_mem_stats)
606 #endif
607 {
608 unsigned int size_prime_index;
609
610 size_prime_index = hash_table_higher_prime_index (size);
611 size = prime_tab[size_prime_index].prime;
612
613 if (m_gather_mem_stats)
614 hash_table_usage ().register_descriptor (this, origin, ggc
615 FINAL_PASS_MEM_STAT);
616
617 if (Lazy)
618 m_entries = NULL;
619 else
620 m_entries = alloc_entries (size PASS_MEM_STAT);
621 m_size = size;
622 m_size_prime_index = size_prime_index;
623 }
624
625 template<typename Descriptor, bool Lazy,
626 template<typename Type> class Allocator>
627 hash_table<Descriptor, Lazy, Allocator>::hash_table (const hash_table &h,
628 bool ggc,
629 bool sanitize_eq_and_hash,
630 bool gather_mem_stats
631 ATTRIBUTE_UNUSED,
632 mem_alloc_origin origin
633 MEM_STAT_DECL) :
634 m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted),
635 m_searches (0), m_collisions (0), m_ggc (ggc),
636 m_sanitize_eq_and_hash (sanitize_eq_and_hash)
637 #if GATHER_STATISTICS
638 , m_gather_mem_stats (gather_mem_stats)
639 #endif
640 {
641 size_t size = h.m_size;
642
643 if (m_gather_mem_stats)
644 hash_table_usage ().register_descriptor (this, origin, ggc
645 FINAL_PASS_MEM_STAT);
646
647 if (Lazy && h.m_entries == NULL)
648 m_entries = NULL;
649 else
650 {
651 value_type *nentries = alloc_entries (size PASS_MEM_STAT);
652 for (size_t i = 0; i < size; ++i)
653 {
654 value_type &entry = h.m_entries[i];
655 if (is_deleted (entry))
656 mark_deleted (nentries[i]);
657 else if (!is_empty (entry))
658 nentries[i] = entry;
659 }
660 m_entries = nentries;
661 }
662 m_size = size;
663 m_size_prime_index = h.m_size_prime_index;
664 }
665
666 template<typename Descriptor, bool Lazy,
667 template<typename Type> class Allocator>
668 hash_table<Descriptor, Lazy, Allocator>::~hash_table ()
669 {
670 if (!Lazy || m_entries)
671 {
672 for (size_t i = m_size - 1; i < m_size; i--)
673 if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
674 Descriptor::remove (m_entries[i]);
675
676 if (!m_ggc)
677 Allocator <value_type> ::data_free (m_entries);
678 else
679 ggc_free (m_entries);
680 if (m_gather_mem_stats)
681 hash_table_usage ().release_instance_overhead (this,
682 sizeof (value_type)
683 * m_size, true);
684 }
685 else if (m_gather_mem_stats)
686 hash_table_usage ().unregister_descriptor (this);
687 }
688
689 /* This function returns an array of empty hash table elements. */
690
691 template<typename Descriptor, bool Lazy,
692 template<typename Type> class Allocator>
693 inline typename hash_table<Descriptor, Lazy, Allocator>::value_type *
694 hash_table<Descriptor, Lazy,
695 Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
696 {
697 value_type *nentries;
698
699 if (m_gather_mem_stats)
700 hash_table_usage ().register_instance_overhead (sizeof (value_type) * n, this);
701
702 if (!m_ggc)
703 nentries = Allocator <value_type> ::data_alloc (n);
704 else
705 nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT);
706
707 gcc_assert (nentries != NULL);
708 for (size_t i = 0; i < n; i++)
709 mark_empty (nentries[i]);
710
711 return nentries;
712 }
713
714 /* Similar to find_slot, but without several unwanted side effects:
715 - Does not call equal when it finds an existing entry.
716 - Does not change the count of elements/searches/collisions in the
717 hash table.
718 This function also assumes there are no deleted entries in the table.
719 HASH is the hash value for the element to be inserted. */
720
721 template<typename Descriptor, bool Lazy,
722 template<typename Type> class Allocator>
723 typename hash_table<Descriptor, Lazy, Allocator>::value_type *
724 hash_table<Descriptor, Lazy,
725 Allocator>::find_empty_slot_for_expand (hashval_t hash)
726 {
727 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
728 size_t size = m_size;
729 value_type *slot = m_entries + index;
730 hashval_t hash2;
731
732 if (is_empty (*slot))
733 return slot;
734 gcc_checking_assert (!is_deleted (*slot));
735
736 hash2 = hash_table_mod2 (hash, m_size_prime_index);
737 for (;;)
738 {
739 index += hash2;
740 if (index >= size)
741 index -= size;
742
743 slot = m_entries + index;
744 if (is_empty (*slot))
745 return slot;
746 gcc_checking_assert (!is_deleted (*slot));
747 }
748 }
749
750 /* Return true if the current table is excessively big for ELTS elements. */
751
752 template<typename Descriptor, bool Lazy,
753 template<typename Type> class Allocator>
754 inline bool
755 hash_table<Descriptor, Lazy, Allocator>::too_empty_p (unsigned int elts)
756 {
757 return elts * 8 < m_size && m_size > 32;
758 }
759
760 /* The following function changes size of memory allocated for the
761 entries and repeatedly inserts the table elements. The occupancy
762 of the table after the call will be about 50%. Naturally the hash
763 table must already exist. Remember also that the place of the
764 table entries is changed. If memory allocation fails, this function
765 will abort. */
766
767 template<typename Descriptor, bool Lazy,
768 template<typename Type> class Allocator>
769 void
770 hash_table<Descriptor, Lazy, Allocator>::expand ()
771 {
772 value_type *oentries = m_entries;
773 unsigned int oindex = m_size_prime_index;
774 size_t osize = size ();
775 value_type *olimit = oentries + osize;
776 size_t elts = elements ();
777
778 /* Resize only when table after removal of unused elements is either
779 too full or too empty. */
780 unsigned int nindex;
781 size_t nsize;
782 if (elts * 2 > osize || too_empty_p (elts))
783 {
784 nindex = hash_table_higher_prime_index (elts * 2);
785 nsize = prime_tab[nindex].prime;
786 }
787 else
788 {
789 nindex = oindex;
790 nsize = osize;
791 }
792
793 value_type *nentries = alloc_entries (nsize);
794
795 if (m_gather_mem_stats)
796 hash_table_usage ().release_instance_overhead (this, sizeof (value_type)
797 * osize);
798
799 m_entries = nentries;
800 m_size = nsize;
801 m_size_prime_index = nindex;
802 m_n_elements -= m_n_deleted;
803 m_n_deleted = 0;
804
805 value_type *p = oentries;
806 do
807 {
808 value_type &x = *p;
809
810 if (!is_empty (x) && !is_deleted (x))
811 {
812 value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
813
814 *q = x;
815 }
816
817 p++;
818 }
819 while (p < olimit);
820
821 if (!m_ggc)
822 Allocator <value_type> ::data_free (oentries);
823 else
824 ggc_free (oentries);
825 }
826
827 /* Implements empty() in cases where it isn't a no-op. */
828
829 template<typename Descriptor, bool Lazy,
830 template<typename Type> class Allocator>
831 void
832 hash_table<Descriptor, Lazy, Allocator>::empty_slow ()
833 {
834 size_t size = m_size;
835 size_t nsize = size;
836 value_type *entries = m_entries;
837 int i;
838
839 for (i = size - 1; i >= 0; i--)
840 if (!is_empty (entries[i]) && !is_deleted (entries[i]))
841 Descriptor::remove (entries[i]);
842
843 /* Instead of clearing megabyte, downsize the table. */
844 if (size > 1024*1024 / sizeof (value_type))
845 nsize = 1024 / sizeof (value_type);
846 else if (too_empty_p (m_n_elements))
847 nsize = m_n_elements * 2;
848
849 if (nsize != size)
850 {
851 int nindex = hash_table_higher_prime_index (nsize);
852 int nsize = prime_tab[nindex].prime;
853
854 if (!m_ggc)
855 Allocator <value_type> ::data_free (m_entries);
856 else
857 ggc_free (m_entries);
858
859 m_entries = alloc_entries (nsize);
860 m_size = nsize;
861 m_size_prime_index = nindex;
862 }
863 else
864 {
865 #ifndef BROKEN_VALUE_INITIALIZATION
866 for ( ; size; ++entries, --size)
867 *entries = value_type ();
868 #else
869 memset (entries, 0, size * sizeof (value_type));
870 #endif
871 }
872 m_n_deleted = 0;
873 m_n_elements = 0;
874 }
875
876 /* This function clears a specified SLOT in a hash table. It is
877 useful when you've already done the lookup and don't want to do it
878 again. */
879
880 template<typename Descriptor, bool Lazy,
881 template<typename Type> class Allocator>
882 void
883 hash_table<Descriptor, Lazy, Allocator>::clear_slot (value_type *slot)
884 {
885 gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
886 || is_empty (*slot) || is_deleted (*slot)));
887
888 Descriptor::remove (*slot);
889
890 mark_deleted (*slot);
891 m_n_deleted++;
892 }
893
894 /* This function searches for a hash table entry equal to the given
895 COMPARABLE element starting with the given HASH value. It cannot
896 be used to insert or delete an element. */
897
898 template<typename Descriptor, bool Lazy,
899 template<typename Type> class Allocator>
900 typename hash_table<Descriptor, Lazy, Allocator>::value_type &
901 hash_table<Descriptor, Lazy, Allocator>
902 ::find_with_hash (const compare_type &comparable, hashval_t hash)
903 {
904 m_searches++;
905 size_t size = m_size;
906 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
907
908 if (Lazy && m_entries == NULL)
909 m_entries = alloc_entries (size);
910 value_type *entry = &m_entries[index];
911 if (is_empty (*entry)
912 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
913 return *entry;
914
915 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
916 for (;;)
917 {
918 m_collisions++;
919 index += hash2;
920 if (index >= size)
921 index -= size;
922
923 entry = &m_entries[index];
924 if (is_empty (*entry)
925 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
926 {
927 #if CHECKING_P
928 if (m_sanitize_eq_and_hash)
929 verify (comparable, hash);
930 #endif
931 return *entry;
932 }
933 }
934 }
935
936 /* This function searches for a hash table slot containing an entry
937 equal to the given COMPARABLE element and starting with the given
938 HASH. To delete an entry, call this with insert=NO_INSERT, then
939 call clear_slot on the slot returned (possibly after doing some
940 checks). To insert an entry, call this with insert=INSERT, then
941 write the value you want into the returned slot. When inserting an
942 entry, NULL may be returned if memory allocation fails. */
943
944 template<typename Descriptor, bool Lazy,
945 template<typename Type> class Allocator>
946 typename hash_table<Descriptor, Lazy, Allocator>::value_type *
947 hash_table<Descriptor, Lazy, Allocator>
948 ::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
949 enum insert_option insert)
950 {
951 if (Lazy && m_entries == NULL)
952 {
953 if (insert == INSERT)
954 m_entries = alloc_entries (m_size);
955 else
956 return NULL;
957 }
958 if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
959 expand ();
960
961 #if CHECKING_P
962 if (m_sanitize_eq_and_hash)
963 verify (comparable, hash);
964 #endif
965
966 m_searches++;
967 value_type *first_deleted_slot = NULL;
968 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
969 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
970 value_type *entry = &m_entries[index];
971 size_t size = m_size;
972 if (is_empty (*entry))
973 goto empty_entry;
974 else if (is_deleted (*entry))
975 first_deleted_slot = &m_entries[index];
976 else if (Descriptor::equal (*entry, comparable))
977 return &m_entries[index];
978
979 for (;;)
980 {
981 m_collisions++;
982 index += hash2;
983 if (index >= size)
984 index -= size;
985
986 entry = &m_entries[index];
987 if (is_empty (*entry))
988 goto empty_entry;
989 else if (is_deleted (*entry))
990 {
991 if (!first_deleted_slot)
992 first_deleted_slot = &m_entries[index];
993 }
994 else if (Descriptor::equal (*entry, comparable))
995 return &m_entries[index];
996 }
997
998 empty_entry:
999 if (insert == NO_INSERT)
1000 return NULL;
1001
1002 if (first_deleted_slot)
1003 {
1004 m_n_deleted--;
1005 mark_empty (*first_deleted_slot);
1006 return first_deleted_slot;
1007 }
1008
1009 m_n_elements++;
1010 return &m_entries[index];
1011 }
1012
1013 /* Report a hash table checking error. */
1014
1015 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1016 static void
1017 hashtab_chk_error ()
1018 {
1019 fprintf (stderr, "hash table checking failed: "
1020 "equal operator returns true for a pair "
1021 "of values with a different hash value\n");
1022 gcc_unreachable ();
1023 }
1024
1025 /* Verify that all existing elements in th hash table which are
1026 equal to COMPARABLE have an equal HASH value provided as argument. */
1027
1028 template<typename Descriptor, bool Lazy,
1029 template<typename Type> class Allocator>
1030 void
1031 hash_table<Descriptor, Lazy, Allocator>
1032 ::verify (const compare_type &comparable, hashval_t hash)
1033 {
1034 for (size_t i = 0; i < MIN (hash_table_sanitize_eq_limit, m_size); i++)
1035 {
1036 value_type *entry = &m_entries[i];
1037 if (!is_empty (*entry) && !is_deleted (*entry)
1038 && hash != Descriptor::hash (*entry)
1039 && Descriptor::equal (*entry, comparable))
1040 hashtab_chk_error ();
1041 }
1042 }
1043
1044 /* This function deletes an element with the given COMPARABLE value
1045 from hash table starting with the given HASH. If there is no
1046 matching element in the hash table, this function does nothing. */
1047
1048 template<typename Descriptor, bool Lazy,
1049 template<typename Type> class Allocator>
1050 void
1051 hash_table<Descriptor, Lazy, Allocator>
1052 ::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
1053 {
1054 value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
1055 if (slot == NULL)
1056 return;
1057
1058 Descriptor::remove (*slot);
1059
1060 mark_deleted (*slot);
1061 m_n_deleted++;
1062 }
1063
1064 /* This function scans over the entire hash table calling CALLBACK for
1065 each live entry. If CALLBACK returns false, the iteration stops.
1066 ARGUMENT is passed as CALLBACK's second argument. */
1067
1068 template<typename Descriptor, bool Lazy,
1069 template<typename Type> class Allocator>
1070 template<typename Argument,
1071 int (*Callback)
1072 (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
1073 Argument argument)>
1074 void
1075 hash_table<Descriptor, Lazy, Allocator>::traverse_noresize (Argument argument)
1076 {
1077 if (Lazy && m_entries == NULL)
1078 return;
1079
1080 value_type *slot = m_entries;
1081 value_type *limit = slot + size ();
1082
1083 do
1084 {
1085 value_type &x = *slot;
1086
1087 if (!is_empty (x) && !is_deleted (x))
1088 if (! Callback (slot, argument))
1089 break;
1090 }
1091 while (++slot < limit);
1092 }
1093
1094 /* Like traverse_noresize, but does resize the table when it is too empty
1095 to improve effectivity of subsequent calls. */
1096
1097 template <typename Descriptor, bool Lazy,
1098 template <typename Type> class Allocator>
1099 template <typename Argument,
1100 int (*Callback)
1101 (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
1102 Argument argument)>
1103 void
1104 hash_table<Descriptor, Lazy, Allocator>::traverse (Argument argument)
1105 {
1106 if (too_empty_p (elements ()) && (!Lazy || m_entries))
1107 expand ();
1108
1109 traverse_noresize <Argument, Callback> (argument);
1110 }
1111
1112 /* Slide down the iterator slots until an active entry is found. */
1113
1114 template<typename Descriptor, bool Lazy,
1115 template<typename Type> class Allocator>
1116 void
1117 hash_table<Descriptor, Lazy, Allocator>::iterator::slide ()
1118 {
1119 for ( ; m_slot < m_limit; ++m_slot )
1120 {
1121 value_type &x = *m_slot;
1122 if (!is_empty (x) && !is_deleted (x))
1123 return;
1124 }
1125 m_slot = NULL;
1126 m_limit = NULL;
1127 }
1128
1129 /* Bump the iterator. */
1130
1131 template<typename Descriptor, bool Lazy,
1132 template<typename Type> class Allocator>
1133 inline typename hash_table<Descriptor, Lazy, Allocator>::iterator &
1134 hash_table<Descriptor, Lazy, Allocator>::iterator::operator ++ ()
1135 {
1136 ++m_slot;
1137 slide ();
1138 return *this;
1139 }
1140
1141
1142 /* Iterate through the elements of hash_table HTAB,
1143 using hash_table <....>::iterator ITER,
1144 storing each element in RESULT, which is of type TYPE. */
1145
1146 #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
1147 for ((ITER) = (HTAB).begin (); \
1148 (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
1149 ++(ITER))
1150
1151 /* ggc walking routines. */
1152
1153 template<typename E>
1154 static inline void
1155 gt_ggc_mx (hash_table<E> *h)
1156 {
1157 typedef hash_table<E> table;
1158
1159 if (!ggc_test_and_set_mark (h->m_entries))
1160 return;
1161
1162 for (size_t i = 0; i < h->m_size; i++)
1163 {
1164 if (table::is_empty (h->m_entries[i])
1165 || table::is_deleted (h->m_entries[i]))
1166 continue;
1167
1168 /* Use ggc_maxbe_mx so we don't mark right away for cache tables; we'll
1169 mark in gt_cleare_cache if appropriate. */
1170 E::ggc_maybe_mx (h->m_entries[i]);
1171 }
1172 }
1173
1174 template<typename D>
1175 static inline void
1176 hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
1177 void *cookie)
1178 {
1179 hash_table<D> *map = static_cast<hash_table<D> *> (h);
1180 gcc_checking_assert (map->m_entries == obj);
1181 for (size_t i = 0; i < map->m_size; i++)
1182 {
1183 typedef hash_table<D> table;
1184 if (table::is_empty (map->m_entries[i])
1185 || table::is_deleted (map->m_entries[i]))
1186 continue;
1187
1188 D::pch_nx (map->m_entries[i], op, cookie);
1189 }
1190 }
1191
1192 template<typename D>
1193 static void
1194 gt_pch_nx (hash_table<D> *h)
1195 {
1196 bool success
1197 = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
1198 gcc_checking_assert (success);
1199 for (size_t i = 0; i < h->m_size; i++)
1200 {
1201 if (hash_table<D>::is_empty (h->m_entries[i])
1202 || hash_table<D>::is_deleted (h->m_entries[i]))
1203 continue;
1204
1205 D::pch_nx (h->m_entries[i]);
1206 }
1207 }
1208
1209 template<typename D>
1210 static inline void
1211 gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
1212 {
1213 op (&h->m_entries, cookie);
1214 }
1215
1216 template<typename H>
1217 inline void
1218 gt_cleare_cache (hash_table<H> *h)
1219 {
1220 typedef hash_table<H> table;
1221 if (!h)
1222 return;
1223
1224 for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter)
1225 if (!table::is_empty (*iter) && !table::is_deleted (*iter))
1226 {
1227 int res = H::keep_cache_entry (*iter);
1228 if (res == 0)
1229 h->clear_slot (&*iter);
1230 else if (res != -1)
1231 H::ggc_mx (*iter);
1232 }
1233 }
1234
1235 #endif /* TYPED_HASHTAB_H */