Add -std=c17, -std=gnu17.
[gcc.git] / gcc / hsa-gen.c
1 /* A pass for lowering gimple to HSAIL
2 Copyright (C) 2013-2017 Free Software Foundation, Inc.
3 Contributed by Martin Jambor <mjambor@suse.cz> and
4 Martin Liska <mliska@suse.cz>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "memmodel.h"
26 #include "tm.h"
27 #include "is-a.h"
28 #include "hash-table.h"
29 #include "vec.h"
30 #include "tree.h"
31 #include "tree-pass.h"
32 #include "function.h"
33 #include "basic-block.h"
34 #include "cfg.h"
35 #include "fold-const.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "bitmap.h"
39 #include "dumpfile.h"
40 #include "gimple-pretty-print.h"
41 #include "diagnostic-core.h"
42 #include "gimple-ssa.h"
43 #include "tree-phinodes.h"
44 #include "stringpool.h"
45 #include "tree-vrp.h"
46 #include "tree-ssanames.h"
47 #include "tree-dfa.h"
48 #include "ssa-iterators.h"
49 #include "cgraph.h"
50 #include "print-tree.h"
51 #include "symbol-summary.h"
52 #include "hsa-common.h"
53 #include "cfghooks.h"
54 #include "tree-cfg.h"
55 #include "cfgloop.h"
56 #include "cfganal.h"
57 #include "builtins.h"
58 #include "params.h"
59 #include "gomp-constants.h"
60 #include "internal-fn.h"
61 #include "builtins.h"
62 #include "stor-layout.h"
63 #include "stringpool.h"
64 #include "attribs.h"
65
66 /* Print a warning message and set that we have seen an error. */
67
68 #define HSA_SORRY_ATV(location, message, ...) \
69 do \
70 { \
71 hsa_fail_cfun (); \
72 if (warning_at (EXPR_LOCATION (hsa_cfun->m_decl), OPT_Whsa, \
73 HSA_SORRY_MSG)) \
74 inform (location, message, __VA_ARGS__); \
75 } \
76 while (false)
77
78 /* Same as previous, but highlight a location. */
79
80 #define HSA_SORRY_AT(location, message) \
81 do \
82 { \
83 hsa_fail_cfun (); \
84 if (warning_at (EXPR_LOCATION (hsa_cfun->m_decl), OPT_Whsa, \
85 HSA_SORRY_MSG)) \
86 inform (location, message); \
87 } \
88 while (false)
89
90 /* Default number of threads used by kernel dispatch. */
91
92 #define HSA_DEFAULT_NUM_THREADS 64
93
94 /* Following structures are defined in the final version
95 of HSA specification. */
96
97 /* HSA queue packet is shadow structure, originally provided by AMD. */
98
99 struct hsa_queue_packet
100 {
101 uint16_t header;
102 uint16_t setup;
103 uint16_t workgroup_size_x;
104 uint16_t workgroup_size_y;
105 uint16_t workgroup_size_z;
106 uint16_t reserved0;
107 uint32_t grid_size_x;
108 uint32_t grid_size_y;
109 uint32_t grid_size_z;
110 uint32_t private_segment_size;
111 uint32_t group_segment_size;
112 uint64_t kernel_object;
113 void *kernarg_address;
114 uint64_t reserved2;
115 uint64_t completion_signal;
116 };
117
118 /* HSA queue is shadow structure, originally provided by AMD. */
119
120 struct hsa_queue
121 {
122 int type;
123 uint32_t features;
124 void *base_address;
125 uint64_t doorbell_signal;
126 uint32_t size;
127 uint32_t reserved1;
128 uint64_t id;
129 };
130
131 static struct obstack hsa_obstack;
132
133 /* List of pointers to all instructions that come from an object allocator. */
134 static vec <hsa_insn_basic *> hsa_instructions;
135
136 /* List of pointers to all operands that come from an object allocator. */
137 static vec <hsa_op_base *> hsa_operands;
138
139 hsa_symbol::hsa_symbol ()
140 : m_decl (NULL_TREE), m_name (NULL), m_name_number (0),
141 m_directive_offset (0), m_type (BRIG_TYPE_NONE),
142 m_segment (BRIG_SEGMENT_NONE), m_linkage (BRIG_LINKAGE_NONE), m_dim (0),
143 m_cst_value (NULL), m_global_scope_p (false), m_seen_error (false),
144 m_allocation (BRIG_ALLOCATION_AUTOMATIC), m_emitted_to_brig (false)
145 {
146 }
147
148
149 hsa_symbol::hsa_symbol (BrigType16_t type, BrigSegment8_t segment,
150 BrigLinkage8_t linkage, bool global_scope_p,
151 BrigAllocation allocation, BrigAlignment8_t align)
152 : m_decl (NULL_TREE), m_name (NULL), m_name_number (0),
153 m_directive_offset (0), m_type (type), m_segment (segment),
154 m_linkage (linkage), m_dim (0), m_cst_value (NULL),
155 m_global_scope_p (global_scope_p), m_seen_error (false),
156 m_allocation (allocation), m_emitted_to_brig (false), m_align (align)
157 {
158 }
159
160 unsigned HOST_WIDE_INT
161 hsa_symbol::total_byte_size ()
162 {
163 unsigned HOST_WIDE_INT s
164 = hsa_type_bit_size (~BRIG_TYPE_ARRAY_MASK & m_type);
165 gcc_assert (s % BITS_PER_UNIT == 0);
166 s /= BITS_PER_UNIT;
167
168 if (m_dim)
169 s *= m_dim;
170
171 return s;
172 }
173
174 /* Forward declaration. */
175
176 static BrigType16_t
177 hsa_type_for_tree_type (const_tree type, unsigned HOST_WIDE_INT *dim_p,
178 bool min32int);
179
180 void
181 hsa_symbol::fillup_for_decl (tree decl)
182 {
183 m_decl = decl;
184 m_type = hsa_type_for_tree_type (TREE_TYPE (decl), &m_dim, false);
185 if (hsa_seen_error ())
186 {
187 m_seen_error = true;
188 return;
189 }
190
191 m_align = MAX (m_align, hsa_natural_alignment (m_type));
192 }
193
194 /* Constructor of class representing global HSA function/kernel information and
195 state. FNDECL is function declaration, KERNEL_P is true if the function
196 is going to become a HSA kernel. If the function has body, SSA_NAMES_COUNT
197 should be set to number of SSA names used in the function.
198 MODIFIED_CFG is set to true in case we modified control-flow graph
199 of the function. */
200
201 hsa_function_representation::hsa_function_representation
202 (tree fdecl, bool kernel_p, unsigned ssa_names_count, bool modified_cfg)
203 : m_name (NULL),
204 m_reg_count (0), m_input_args (vNULL),
205 m_output_arg (NULL), m_spill_symbols (vNULL), m_global_symbols (vNULL),
206 m_private_variables (vNULL), m_called_functions (vNULL),
207 m_called_internal_fns (vNULL), m_hbb_count (0),
208 m_in_ssa (true), m_kern_p (kernel_p), m_declaration_p (false),
209 m_decl (fdecl), m_internal_fn (NULL), m_shadow_reg (NULL),
210 m_kernel_dispatch_count (0), m_maximum_omp_data_size (0),
211 m_seen_error (false), m_temp_symbol_count (0), m_ssa_map (),
212 m_modified_cfg (modified_cfg)
213 {
214 int sym_init_len = (vec_safe_length (cfun->local_decls) / 2) + 1;;
215 m_local_symbols = new hash_table <hsa_noop_symbol_hasher> (sym_init_len);
216 m_ssa_map.safe_grow_cleared (ssa_names_count);
217 }
218
219 /* Constructor of class representing HSA function information that
220 is derived for an internal function. */
221 hsa_function_representation::hsa_function_representation (hsa_internal_fn *fn)
222 : m_reg_count (0), m_input_args (vNULL),
223 m_output_arg (NULL), m_local_symbols (NULL),
224 m_spill_symbols (vNULL), m_global_symbols (vNULL),
225 m_private_variables (vNULL), m_called_functions (vNULL),
226 m_called_internal_fns (vNULL), m_hbb_count (0),
227 m_in_ssa (true), m_kern_p (false), m_declaration_p (true), m_decl (NULL),
228 m_internal_fn (fn), m_shadow_reg (NULL), m_kernel_dispatch_count (0),
229 m_maximum_omp_data_size (0), m_seen_error (false), m_temp_symbol_count (0),
230 m_ssa_map () {}
231
232 /* Destructor of class holding function/kernel-wide information and state. */
233
234 hsa_function_representation::~hsa_function_representation ()
235 {
236 /* Kernel names are deallocated at the end of BRIG output when deallocating
237 hsa_decl_kernel_mapping. */
238 if (!m_kern_p || m_seen_error)
239 free (m_name);
240
241 for (unsigned i = 0; i < m_input_args.length (); i++)
242 delete m_input_args[i];
243 m_input_args.release ();
244
245 delete m_output_arg;
246 delete m_local_symbols;
247
248 for (unsigned i = 0; i < m_spill_symbols.length (); i++)
249 delete m_spill_symbols[i];
250 m_spill_symbols.release ();
251
252 hsa_symbol *sym;
253 for (unsigned i = 0; i < m_global_symbols.iterate (i, &sym); i++)
254 if (sym->m_linkage != BRIG_ALLOCATION_PROGRAM)
255 delete sym;
256 m_global_symbols.release ();
257
258 for (unsigned i = 0; i < m_private_variables.length (); i++)
259 delete m_private_variables[i];
260 m_private_variables.release ();
261 m_called_functions.release ();
262 m_ssa_map.release ();
263
264 for (unsigned i = 0; i < m_called_internal_fns.length (); i++)
265 delete m_called_internal_fns[i];
266 }
267
268 hsa_op_reg *
269 hsa_function_representation::get_shadow_reg ()
270 {
271 /* If we compile a function with kernel dispatch and does not set
272 an optimization level, the function won't be inlined and
273 we return NULL. */
274 if (!m_kern_p)
275 return NULL;
276
277 if (m_shadow_reg)
278 return m_shadow_reg;
279
280 /* Append the shadow argument. */
281 hsa_symbol *shadow = new hsa_symbol (BRIG_TYPE_U64, BRIG_SEGMENT_KERNARG,
282 BRIG_LINKAGE_FUNCTION);
283 m_input_args.safe_push (shadow);
284 shadow->m_name = "hsa_runtime_shadow";
285
286 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_U64);
287 hsa_op_address *addr = new hsa_op_address (shadow);
288
289 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, BRIG_TYPE_U64, r, addr);
290 hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun))->append_insn (mem);
291 m_shadow_reg = r;
292
293 return r;
294 }
295
296 bool hsa_function_representation::has_shadow_reg_p ()
297 {
298 return m_shadow_reg != NULL;
299 }
300
301 void
302 hsa_function_representation::init_extra_bbs ()
303 {
304 hsa_init_new_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
305 hsa_init_new_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
306 }
307
308 void
309 hsa_function_representation::update_dominance ()
310 {
311 if (m_modified_cfg)
312 {
313 free_dominance_info (CDI_DOMINATORS);
314 calculate_dominance_info (CDI_DOMINATORS);
315 }
316 }
317
318 hsa_symbol *
319 hsa_function_representation::create_hsa_temporary (BrigType16_t type)
320 {
321 hsa_symbol *s = new hsa_symbol (type, BRIG_SEGMENT_PRIVATE,
322 BRIG_LINKAGE_FUNCTION);
323 s->m_name_number = m_temp_symbol_count++;
324
325 hsa_cfun->m_private_variables.safe_push (s);
326 return s;
327 }
328
329 BrigLinkage8_t
330 hsa_function_representation::get_linkage ()
331 {
332 if (m_internal_fn)
333 return BRIG_LINKAGE_PROGRAM;
334
335 return m_kern_p || TREE_PUBLIC (m_decl) ?
336 BRIG_LINKAGE_PROGRAM : BRIG_LINKAGE_MODULE;
337 }
338
339 /* Hash map of simple OMP builtins. */
340 static hash_map <nofree_string_hash, omp_simple_builtin> *omp_simple_builtins
341 = NULL;
342
343 /* Warning messages for OMP builtins. */
344
345 #define HSA_WARN_LOCK_ROUTINE "support for HSA does not implement OpenMP " \
346 "lock routines"
347 #define HSA_WARN_TIMING_ROUTINE "support for HSA does not implement OpenMP " \
348 "timing routines"
349 #define HSA_WARN_MEMORY_ROUTINE "OpenMP device memory library routines have " \
350 "undefined semantics within target regions, support for HSA ignores them"
351 #define HSA_WARN_AFFINITY "Support for HSA does not implement OpenMP " \
352 "affinity feateres"
353
354 /* Initialize hash map with simple OMP builtins. */
355
356 static void
357 hsa_init_simple_builtins ()
358 {
359 if (omp_simple_builtins != NULL)
360 return;
361
362 omp_simple_builtins
363 = new hash_map <nofree_string_hash, omp_simple_builtin> ();
364
365 omp_simple_builtin omp_builtins[] =
366 {
367 omp_simple_builtin ("omp_get_initial_device", NULL, false,
368 new hsa_op_immed (GOMP_DEVICE_HOST,
369 (BrigType16_t) BRIG_TYPE_S32)),
370 omp_simple_builtin ("omp_is_initial_device", NULL, false,
371 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
372 omp_simple_builtin ("omp_get_dynamic", NULL, false,
373 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
374 omp_simple_builtin ("omp_set_dynamic", NULL, false, NULL),
375 omp_simple_builtin ("omp_init_lock", HSA_WARN_LOCK_ROUTINE, true),
376 omp_simple_builtin ("omp_init_lock_with_hint", HSA_WARN_LOCK_ROUTINE,
377 true),
378 omp_simple_builtin ("omp_init_nest_lock_with_hint", HSA_WARN_LOCK_ROUTINE,
379 true),
380 omp_simple_builtin ("omp_destroy_lock", HSA_WARN_LOCK_ROUTINE, true),
381 omp_simple_builtin ("omp_set_lock", HSA_WARN_LOCK_ROUTINE, true),
382 omp_simple_builtin ("omp_unset_lock", HSA_WARN_LOCK_ROUTINE, true),
383 omp_simple_builtin ("omp_test_lock", HSA_WARN_LOCK_ROUTINE, true),
384 omp_simple_builtin ("omp_get_wtime", HSA_WARN_TIMING_ROUTINE, true),
385 omp_simple_builtin ("omp_get_wtick", HSA_WARN_TIMING_ROUTINE, true),
386 omp_simple_builtin ("omp_target_alloc", HSA_WARN_MEMORY_ROUTINE, false,
387 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_U64)),
388 omp_simple_builtin ("omp_target_free", HSA_WARN_MEMORY_ROUTINE, false),
389 omp_simple_builtin ("omp_target_is_present", HSA_WARN_MEMORY_ROUTINE,
390 false,
391 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
392 omp_simple_builtin ("omp_target_memcpy", HSA_WARN_MEMORY_ROUTINE, false,
393 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
394 omp_simple_builtin ("omp_target_memcpy_rect", HSA_WARN_MEMORY_ROUTINE,
395 false,
396 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
397 omp_simple_builtin ("omp_target_associate_ptr", HSA_WARN_MEMORY_ROUTINE,
398 false,
399 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
400 omp_simple_builtin ("omp_target_disassociate_ptr",
401 HSA_WARN_MEMORY_ROUTINE,
402 false,
403 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
404 omp_simple_builtin ("omp_set_max_active_levels",
405 "Support for HSA only allows only one active level, "
406 "call to omp_set_max_active_levels will be ignored "
407 "in the generated HSAIL",
408 false, NULL),
409 omp_simple_builtin ("omp_get_max_active_levels", NULL, false,
410 new hsa_op_immed (1, (BrigType16_t) BRIG_TYPE_S32)),
411 omp_simple_builtin ("omp_in_final", NULL, false,
412 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
413 omp_simple_builtin ("omp_get_proc_bind", HSA_WARN_AFFINITY, false,
414 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
415 omp_simple_builtin ("omp_get_num_places", HSA_WARN_AFFINITY, false,
416 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
417 omp_simple_builtin ("omp_get_place_num_procs", HSA_WARN_AFFINITY, false,
418 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
419 omp_simple_builtin ("omp_get_place_proc_ids", HSA_WARN_AFFINITY, false,
420 NULL),
421 omp_simple_builtin ("omp_get_place_num", HSA_WARN_AFFINITY, false,
422 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
423 omp_simple_builtin ("omp_get_partition_num_places", HSA_WARN_AFFINITY,
424 false,
425 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
426 omp_simple_builtin ("omp_get_partition_place_nums", HSA_WARN_AFFINITY,
427 false, NULL),
428 omp_simple_builtin ("omp_set_default_device",
429 "omp_set_default_device has undefined semantics "
430 "within target regions, support for HSA ignores it",
431 false, NULL),
432 omp_simple_builtin ("omp_get_default_device",
433 "omp_get_default_device has undefined semantics "
434 "within target regions, support for HSA ignores it",
435 false,
436 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
437 omp_simple_builtin ("omp_get_num_devices",
438 "omp_get_num_devices has undefined semantics "
439 "within target regions, support for HSA ignores it",
440 false,
441 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
442 omp_simple_builtin ("omp_get_num_procs", NULL, true, NULL),
443 omp_simple_builtin ("omp_get_cancellation", NULL, true, NULL),
444 omp_simple_builtin ("omp_set_nested", NULL, true, NULL),
445 omp_simple_builtin ("omp_get_nested", NULL, true, NULL),
446 omp_simple_builtin ("omp_set_schedule", NULL, true, NULL),
447 omp_simple_builtin ("omp_get_schedule", NULL, true, NULL),
448 omp_simple_builtin ("omp_get_thread_limit", NULL, true, NULL),
449 omp_simple_builtin ("omp_get_team_size", NULL, true, NULL),
450 omp_simple_builtin ("omp_get_ancestor_thread_num", NULL, true, NULL),
451 omp_simple_builtin ("omp_get_max_task_priority", NULL, true, NULL)
452 };
453
454 unsigned count = sizeof (omp_builtins) / sizeof (omp_simple_builtin);
455
456 for (unsigned i = 0; i < count; i++)
457 omp_simple_builtins->put (omp_builtins[i].m_name, omp_builtins[i]);
458 }
459
460 /* Allocate HSA structures that we need only while generating with this. */
461
462 static void
463 hsa_init_data_for_cfun ()
464 {
465 hsa_init_compilation_unit_data ();
466 gcc_obstack_init (&hsa_obstack);
467 }
468
469 /* Deinitialize HSA subsystem and free all allocated memory. */
470
471 static void
472 hsa_deinit_data_for_cfun (void)
473 {
474 basic_block bb;
475
476 FOR_ALL_BB_FN (bb, cfun)
477 if (bb->aux)
478 {
479 hsa_bb *hbb = hsa_bb_for_bb (bb);
480 hbb->~hsa_bb ();
481 bb->aux = NULL;
482 }
483
484 for (unsigned int i = 0; i < hsa_operands.length (); i++)
485 hsa_destroy_operand (hsa_operands[i]);
486
487 hsa_operands.release ();
488
489 for (unsigned i = 0; i < hsa_instructions.length (); i++)
490 hsa_destroy_insn (hsa_instructions[i]);
491
492 hsa_instructions.release ();
493
494 if (omp_simple_builtins != NULL)
495 {
496 delete omp_simple_builtins;
497 omp_simple_builtins = NULL;
498 }
499
500 obstack_free (&hsa_obstack, NULL);
501 delete hsa_cfun;
502 }
503
504 /* Return the type which holds addresses in the given SEGMENT. */
505
506 static BrigType16_t
507 hsa_get_segment_addr_type (BrigSegment8_t segment)
508 {
509 switch (segment)
510 {
511 case BRIG_SEGMENT_NONE:
512 gcc_unreachable ();
513
514 case BRIG_SEGMENT_FLAT:
515 case BRIG_SEGMENT_GLOBAL:
516 case BRIG_SEGMENT_READONLY:
517 case BRIG_SEGMENT_KERNARG:
518 return hsa_machine_large_p () ? BRIG_TYPE_U64 : BRIG_TYPE_U32;
519
520 case BRIG_SEGMENT_GROUP:
521 case BRIG_SEGMENT_PRIVATE:
522 case BRIG_SEGMENT_SPILL:
523 case BRIG_SEGMENT_ARG:
524 return BRIG_TYPE_U32;
525 }
526 gcc_unreachable ();
527 }
528
529 /* Return integer brig type according to provided SIZE in bytes. If SIGN
530 is set to true, return signed integer type. */
531
532 static BrigType16_t
533 get_integer_type_by_bytes (unsigned size, bool sign)
534 {
535 if (sign)
536 switch (size)
537 {
538 case 1:
539 return BRIG_TYPE_S8;
540 case 2:
541 return BRIG_TYPE_S16;
542 case 4:
543 return BRIG_TYPE_S32;
544 case 8:
545 return BRIG_TYPE_S64;
546 default:
547 break;
548 }
549 else
550 switch (size)
551 {
552 case 1:
553 return BRIG_TYPE_U8;
554 case 2:
555 return BRIG_TYPE_U16;
556 case 4:
557 return BRIG_TYPE_U32;
558 case 8:
559 return BRIG_TYPE_U64;
560 default:
561 break;
562 }
563
564 return 0;
565 }
566
567 /* If T points to an integral type smaller than 32 bits, change it to a 32bit
568 equivalent and return the result. Otherwise just return the result. */
569
570 static BrigType16_t
571 hsa_extend_inttype_to_32bit (BrigType16_t t)
572 {
573 if (t == BRIG_TYPE_U8 || t == BRIG_TYPE_U16)
574 return BRIG_TYPE_U32;
575 else if (t == BRIG_TYPE_S8 || t == BRIG_TYPE_S16)
576 return BRIG_TYPE_S32;
577 return t;
578 }
579
580 /* Return HSA type for tree TYPE, which has to fit into BrigType16_t. Pointers
581 are assumed to use flat addressing. If min32int is true, always expand
582 integer types to one that has at least 32 bits. */
583
584 static BrigType16_t
585 hsa_type_for_scalar_tree_type (const_tree type, bool min32int)
586 {
587 HOST_WIDE_INT bsize;
588 const_tree base;
589 BrigType16_t res = BRIG_TYPE_NONE;
590
591 gcc_checking_assert (TYPE_P (type));
592 gcc_checking_assert (!AGGREGATE_TYPE_P (type));
593 if (POINTER_TYPE_P (type))
594 return hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
595
596 if (TREE_CODE (type) == VECTOR_TYPE)
597 base = TREE_TYPE (type);
598 else if (TREE_CODE (type) == COMPLEX_TYPE)
599 {
600 base = TREE_TYPE (type);
601 min32int = true;
602 }
603 else
604 base = type;
605
606 if (!tree_fits_uhwi_p (TYPE_SIZE (base)))
607 {
608 HSA_SORRY_ATV (EXPR_LOCATION (type),
609 "support for HSA does not implement huge or "
610 "variable-sized type %qT", type);
611 return res;
612 }
613
614 bsize = tree_to_uhwi (TYPE_SIZE (base));
615 unsigned byte_size = bsize / BITS_PER_UNIT;
616 if (INTEGRAL_TYPE_P (base))
617 res = get_integer_type_by_bytes (byte_size, !TYPE_UNSIGNED (base));
618 else if (SCALAR_FLOAT_TYPE_P (base))
619 {
620 switch (bsize)
621 {
622 case 16:
623 res = BRIG_TYPE_F16;
624 break;
625 case 32:
626 res = BRIG_TYPE_F32;
627 break;
628 case 64:
629 res = BRIG_TYPE_F64;
630 break;
631 default:
632 break;
633 }
634 }
635
636 if (res == BRIG_TYPE_NONE)
637 {
638 HSA_SORRY_ATV (EXPR_LOCATION (type),
639 "support for HSA does not implement type %qT", type);
640 return res;
641 }
642
643 if (TREE_CODE (type) == VECTOR_TYPE)
644 {
645 HOST_WIDE_INT tsize = tree_to_uhwi (TYPE_SIZE (type));
646
647 if (bsize == tsize)
648 {
649 HSA_SORRY_ATV (EXPR_LOCATION (type),
650 "support for HSA does not implement a vector type "
651 "where a type and unit size are equal: %qT", type);
652 return res;
653 }
654
655 switch (tsize)
656 {
657 case 32:
658 res |= BRIG_TYPE_PACK_32;
659 break;
660 case 64:
661 res |= BRIG_TYPE_PACK_64;
662 break;
663 case 128:
664 res |= BRIG_TYPE_PACK_128;
665 break;
666 default:
667 HSA_SORRY_ATV (EXPR_LOCATION (type),
668 "support for HSA does not implement type %qT", type);
669 }
670 }
671
672 if (min32int)
673 /* Registers/immediate operands can only be 32bit or more except for
674 f16. */
675 res = hsa_extend_inttype_to_32bit (res);
676
677 if (TREE_CODE (type) == COMPLEX_TYPE)
678 {
679 unsigned bsize = 2 * hsa_type_bit_size (res);
680 res = hsa_bittype_for_bitsize (bsize);
681 }
682
683 return res;
684 }
685
686 /* Returns the BRIG type we need to load/store entities of TYPE. */
687
688 static BrigType16_t
689 mem_type_for_type (BrigType16_t type)
690 {
691 /* HSA has non-intuitive constraints on load/store types. If it's
692 a bit-type it _must_ be B128, if it's not a bit-type it must be
693 64bit max. So for loading entities of 128 bits (e.g. vectors)
694 we have to to B128, while for loading the rest we have to use the
695 input type (??? or maybe also flattened to a equally sized non-vector
696 unsigned type?). */
697 if ((type & BRIG_TYPE_PACK_MASK) == BRIG_TYPE_PACK_128)
698 return BRIG_TYPE_B128;
699 else if (hsa_btype_p (type) || hsa_type_packed_p (type))
700 {
701 unsigned bitsize = hsa_type_bit_size (type);
702 if (bitsize < 128)
703 return hsa_uint_for_bitsize (bitsize);
704 else
705 return hsa_bittype_for_bitsize (bitsize);
706 }
707 return type;
708 }
709
710 /* Return HSA type for tree TYPE. If it cannot fit into BrigType16_t, some
711 kind of array will be generated, setting DIM appropriately. Otherwise, it
712 will be set to zero. */
713
714 static BrigType16_t
715 hsa_type_for_tree_type (const_tree type, unsigned HOST_WIDE_INT *dim_p = NULL,
716 bool min32int = false)
717 {
718 gcc_checking_assert (TYPE_P (type));
719 if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
720 {
721 HSA_SORRY_ATV (EXPR_LOCATION (type), "support for HSA does not "
722 "implement huge or variable-sized type %qT", type);
723 return BRIG_TYPE_NONE;
724 }
725
726 if (RECORD_OR_UNION_TYPE_P (type))
727 {
728 if (dim_p)
729 *dim_p = tree_to_uhwi (TYPE_SIZE_UNIT (type));
730 return BRIG_TYPE_U8 | BRIG_TYPE_ARRAY;
731 }
732
733 if (TREE_CODE (type) == ARRAY_TYPE)
734 {
735 /* We try to be nice and use the real base-type when this is an array of
736 scalars and only resort to an array of bytes if the type is more
737 complex. */
738
739 unsigned HOST_WIDE_INT dim = 1;
740
741 while (TREE_CODE (type) == ARRAY_TYPE)
742 {
743 tree domain = TYPE_DOMAIN (type);
744 if (!TYPE_MIN_VALUE (domain)
745 || !TYPE_MAX_VALUE (domain)
746 || !tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
747 || !tree_fits_shwi_p (TYPE_MAX_VALUE (domain)))
748 {
749 HSA_SORRY_ATV (EXPR_LOCATION (type),
750 "support for HSA does not implement array "
751 "%qT with unknown bounds", type);
752 return BRIG_TYPE_NONE;
753 }
754 HOST_WIDE_INT min = tree_to_shwi (TYPE_MIN_VALUE (domain));
755 HOST_WIDE_INT max = tree_to_shwi (TYPE_MAX_VALUE (domain));
756 dim = dim * (unsigned HOST_WIDE_INT) (max - min + 1);
757 type = TREE_TYPE (type);
758 }
759
760 BrigType16_t res;
761 if (RECORD_OR_UNION_TYPE_P (type))
762 {
763 dim = dim * tree_to_uhwi (TYPE_SIZE_UNIT (type));
764 res = BRIG_TYPE_U8;
765 }
766 else
767 res = hsa_type_for_scalar_tree_type (type, false);
768
769 if (dim_p)
770 *dim_p = dim;
771 return res | BRIG_TYPE_ARRAY;
772 }
773
774 /* Scalar case: */
775 if (dim_p)
776 *dim_p = 0;
777
778 return hsa_type_for_scalar_tree_type (type, min32int);
779 }
780
781 /* Returns true if converting from STYPE into DTYPE needs the _CVT
782 opcode. If false a normal _MOV is enough. */
783
784 static bool
785 hsa_needs_cvt (BrigType16_t dtype, BrigType16_t stype)
786 {
787 if (hsa_btype_p (dtype))
788 return false;
789
790 /* float <-> int conversions are real converts. */
791 if (hsa_type_float_p (dtype) != hsa_type_float_p (stype))
792 return true;
793 /* When both types have different size, then we need CVT as well. */
794 if (hsa_type_bit_size (dtype) != hsa_type_bit_size (stype))
795 return true;
796 return false;
797 }
798
799 /* Return declaration name if it exists or create one from UID if it does not.
800 If DECL is a local variable, make UID part of its name. */
801
802 const char *
803 hsa_get_declaration_name (tree decl)
804 {
805 if (!DECL_NAME (decl))
806 {
807 char buf[64];
808 snprintf (buf, 64, "__hsa_anon_%u", DECL_UID (decl));
809 size_t len = strlen (buf);
810 char *copy = (char *) obstack_alloc (&hsa_obstack, len + 1);
811 memcpy (copy, buf, len + 1);
812 return copy;
813 }
814
815 tree name_tree;
816 if (TREE_CODE (decl) == FUNCTION_DECL
817 || (TREE_CODE (decl) == VAR_DECL && is_global_var (decl)))
818 name_tree = DECL_ASSEMBLER_NAME (decl);
819 else
820 name_tree = DECL_NAME (decl);
821
822 const char *name = IDENTIFIER_POINTER (name_tree);
823 /* User-defined assembly names have prepended asterisk symbol. */
824 if (name[0] == '*')
825 name++;
826
827 if ((TREE_CODE (decl) == VAR_DECL)
828 && decl_function_context (decl))
829 {
830 size_t len = strlen (name);
831 char *buf = (char *) alloca (len + 32);
832 snprintf (buf, len + 32, "%s_%u", name, DECL_UID (decl));
833 len = strlen (buf);
834 char *copy = (char *) obstack_alloc (&hsa_obstack, len + 1);
835 memcpy (copy, buf, len + 1);
836 return copy;
837 }
838 else
839 return name;
840 }
841
842 /* Lookup or create the associated hsa_symbol structure with a given VAR_DECL
843 or lookup the hsa_structure corresponding to a PARM_DECL. */
844
845 static hsa_symbol *
846 get_symbol_for_decl (tree decl)
847 {
848 hsa_symbol **slot;
849 hsa_symbol dummy (BRIG_TYPE_NONE, BRIG_SEGMENT_NONE, BRIG_LINKAGE_NONE);
850
851 gcc_assert (TREE_CODE (decl) == PARM_DECL
852 || TREE_CODE (decl) == RESULT_DECL
853 || TREE_CODE (decl) == VAR_DECL
854 || TREE_CODE (decl) == CONST_DECL);
855
856 dummy.m_decl = decl;
857
858 bool is_in_global_vars = ((TREE_CODE (decl) == VAR_DECL)
859 && !decl_function_context (decl));
860
861 if (is_in_global_vars)
862 slot = hsa_global_variable_symbols->find_slot (&dummy, INSERT);
863 else
864 slot = hsa_cfun->m_local_symbols->find_slot (&dummy, INSERT);
865
866 gcc_checking_assert (slot);
867 if (*slot)
868 {
869 hsa_symbol *sym = (*slot);
870
871 /* If the symbol is problematic, mark current function also as
872 problematic. */
873 if (sym->m_seen_error)
874 hsa_fail_cfun ();
875
876 /* PR hsa/70234: If a global variable was marked to be emitted,
877 but HSAIL generation of a function using the variable fails,
878 we should retry to emit the variable in context of a different
879 function.
880
881 Iterate elements whether a symbol is already in m_global_symbols
882 of not. */
883 if (is_in_global_vars && !sym->m_emitted_to_brig)
884 {
885 for (unsigned i = 0; i < hsa_cfun->m_global_symbols.length (); i++)
886 if (hsa_cfun->m_global_symbols[i] == sym)
887 return *slot;
888 hsa_cfun->m_global_symbols.safe_push (sym);
889 }
890
891 return *slot;
892 }
893 else
894 {
895 hsa_symbol *sym;
896 /* PARM_DECLs and RESULT_DECL should be already in m_local_symbols. */
897 gcc_assert (TREE_CODE (decl) == VAR_DECL
898 || TREE_CODE (decl) == CONST_DECL);
899 BrigAlignment8_t align = hsa_object_alignment (decl);
900
901 if (is_in_global_vars)
902 {
903 gcc_checking_assert (TREE_CODE (decl) != CONST_DECL);
904 sym = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_GLOBAL,
905 BRIG_LINKAGE_PROGRAM, true,
906 BRIG_ALLOCATION_PROGRAM, align);
907 hsa_cfun->m_global_symbols.safe_push (sym);
908 sym->fillup_for_decl (decl);
909 if (sym->m_align > align)
910 {
911 sym->m_seen_error = true;
912 HSA_SORRY_ATV (EXPR_LOCATION (decl),
913 "HSA specification requires that %E is at least "
914 "naturally aligned", decl);
915 }
916 }
917 else
918 {
919 /* As generation of efficient memory copy instructions relies
920 on alignment greater or equal to 8 bytes,
921 we need to increase alignment of all aggregate types.. */
922 if (AGGREGATE_TYPE_P (TREE_TYPE (decl)))
923 align = MAX ((BrigAlignment8_t) BRIG_ALIGNMENT_8, align);
924
925 BrigAllocation allocation = BRIG_ALLOCATION_AUTOMATIC;
926 BrigSegment8_t segment;
927 if (TREE_CODE (decl) == CONST_DECL)
928 {
929 segment = BRIG_SEGMENT_READONLY;
930 allocation = BRIG_ALLOCATION_AGENT;
931 }
932 else if (lookup_attribute ("hsa_group_segment",
933 DECL_ATTRIBUTES (decl)))
934 segment = BRIG_SEGMENT_GROUP;
935 else if (TREE_STATIC (decl)
936 || lookup_attribute ("hsa_global_segment",
937 DECL_ATTRIBUTES (decl)))
938 segment = BRIG_SEGMENT_GLOBAL;
939 else
940 segment = BRIG_SEGMENT_PRIVATE;
941
942 sym = new hsa_symbol (BRIG_TYPE_NONE, segment, BRIG_LINKAGE_FUNCTION,
943 false, allocation, align);
944 sym->fillup_for_decl (decl);
945 hsa_cfun->m_private_variables.safe_push (sym);
946 }
947
948 sym->m_name = hsa_get_declaration_name (decl);
949 *slot = sym;
950 return sym;
951 }
952 }
953
954 /* For a given HSA function declaration, return a host
955 function declaration. */
956
957 tree
958 hsa_get_host_function (tree decl)
959 {
960 hsa_function_summary *s
961 = hsa_summaries->get (cgraph_node::get_create (decl));
962 gcc_assert (s->m_kind != HSA_NONE);
963 gcc_assert (s->m_gpu_implementation_p);
964
965 return s->m_bound_function ? s->m_bound_function->decl : NULL;
966 }
967
968 /* Return true if function DECL has a host equivalent function. */
969
970 static char *
971 get_brig_function_name (tree decl)
972 {
973 tree d = decl;
974
975 hsa_function_summary *s = hsa_summaries->get (cgraph_node::get_create (d));
976 if (s->m_kind != HSA_NONE
977 && s->m_gpu_implementation_p
978 && s->m_bound_function)
979 d = s->m_bound_function->decl;
980
981 /* IPA split can create a function that has no host equivalent. */
982 if (d == NULL)
983 d = decl;
984
985 char *name = xstrdup (hsa_get_declaration_name (d));
986 hsa_sanitize_name (name);
987
988 return name;
989 }
990
991 /* Create a spill symbol of type TYPE. */
992
993 hsa_symbol *
994 hsa_get_spill_symbol (BrigType16_t type)
995 {
996 hsa_symbol *sym = new hsa_symbol (type, BRIG_SEGMENT_SPILL,
997 BRIG_LINKAGE_FUNCTION);
998 hsa_cfun->m_spill_symbols.safe_push (sym);
999 return sym;
1000 }
1001
1002 /* Create a symbol for a read-only string constant. */
1003 hsa_symbol *
1004 hsa_get_string_cst_symbol (tree string_cst)
1005 {
1006 gcc_checking_assert (TREE_CODE (string_cst) == STRING_CST);
1007
1008 hsa_symbol **slot = hsa_cfun->m_string_constants_map.get (string_cst);
1009 if (slot)
1010 return *slot;
1011
1012 hsa_op_immed *cst = new hsa_op_immed (string_cst);
1013 hsa_symbol *sym = new hsa_symbol (cst->m_type, BRIG_SEGMENT_GLOBAL,
1014 BRIG_LINKAGE_MODULE, true,
1015 BRIG_ALLOCATION_AGENT);
1016 sym->m_cst_value = cst;
1017 sym->m_dim = TREE_STRING_LENGTH (string_cst);
1018 sym->m_name_number = hsa_cfun->m_global_symbols.length ();
1019
1020 hsa_cfun->m_global_symbols.safe_push (sym);
1021 hsa_cfun->m_string_constants_map.put (string_cst, sym);
1022 return sym;
1023 }
1024
1025 /* Make the type of a MOV instruction larger if mandated by HSAIL rules. */
1026
1027 static void
1028 hsa_fixup_mov_insn_type (hsa_insn_basic *insn)
1029 {
1030 insn->m_type = hsa_extend_inttype_to_32bit (insn->m_type);
1031 if (insn->m_type == BRIG_TYPE_B8 || insn->m_type == BRIG_TYPE_B16)
1032 insn->m_type = BRIG_TYPE_B32;
1033 }
1034
1035 /* Constructor of the ancestor of all operands. K is BRIG kind that identified
1036 what the operator is. */
1037
1038 hsa_op_base::hsa_op_base (BrigKind16_t k)
1039 : m_next (NULL), m_brig_op_offset (0), m_kind (k)
1040 {
1041 hsa_operands.safe_push (this);
1042 }
1043
1044 /* Constructor of ancestor of all operands which have a type. K is BRIG kind
1045 that identified what the operator is. T is the type of the operator. */
1046
1047 hsa_op_with_type::hsa_op_with_type (BrigKind16_t k, BrigType16_t t)
1048 : hsa_op_base (k), m_type (t)
1049 {
1050 }
1051
1052 hsa_op_with_type *
1053 hsa_op_with_type::get_in_type (BrigType16_t dtype, hsa_bb *hbb)
1054 {
1055 if (m_type == dtype)
1056 return this;
1057
1058 hsa_op_reg *dest;
1059
1060 if (hsa_needs_cvt (dtype, m_type))
1061 {
1062 dest = new hsa_op_reg (dtype);
1063 hbb->append_insn (new hsa_insn_cvt (dest, this));
1064 }
1065 else if (is_a <hsa_op_reg *> (this))
1066 {
1067 /* In the end, HSA registers do not really have types, only sizes, so if
1068 the sizes match, we can use the register directly. */
1069 gcc_checking_assert (hsa_type_bit_size (dtype)
1070 == hsa_type_bit_size (m_type));
1071 return this;
1072 }
1073 else
1074 {
1075 dest = new hsa_op_reg (m_type);
1076
1077 hsa_insn_basic *mov = new hsa_insn_basic (2, BRIG_OPCODE_MOV,
1078 dest->m_type, dest, this);
1079 hsa_fixup_mov_insn_type (mov);
1080 hbb->append_insn (mov);
1081 /* We cannot simply for instance: 'mov_u32 $_3, 48 (s32)' because
1082 type of the operand must be same as type of the instruction. */
1083 dest->m_type = dtype;
1084 }
1085
1086 return dest;
1087 }
1088
1089 /* If this operand has integer type smaller than 32 bits, extend it to 32 bits,
1090 adding instructions to HBB if needed. */
1091
1092 hsa_op_with_type *
1093 hsa_op_with_type::extend_int_to_32bit (hsa_bb *hbb)
1094 {
1095 if (m_type == BRIG_TYPE_U8 || m_type == BRIG_TYPE_U16)
1096 return get_in_type (BRIG_TYPE_U32, hbb);
1097 else if (m_type == BRIG_TYPE_S8 || m_type == BRIG_TYPE_S16)
1098 return get_in_type (BRIG_TYPE_S32, hbb);
1099 else
1100 return this;
1101 }
1102
1103 /* Constructor of class representing HSA immediate values. TREE_VAL is the
1104 tree representation of the immediate value. If min32int is true,
1105 always expand integer types to one that has at least 32 bits. */
1106
1107 hsa_op_immed::hsa_op_immed (tree tree_val, bool min32int)
1108 : hsa_op_with_type (BRIG_KIND_OPERAND_CONSTANT_BYTES,
1109 hsa_type_for_tree_type (TREE_TYPE (tree_val), NULL,
1110 min32int))
1111 {
1112 if (hsa_seen_error ())
1113 return;
1114
1115 gcc_checking_assert ((is_gimple_min_invariant (tree_val)
1116 && (!POINTER_TYPE_P (TREE_TYPE (tree_val))
1117 || TREE_CODE (tree_val) == INTEGER_CST))
1118 || TREE_CODE (tree_val) == CONSTRUCTOR);
1119 m_tree_value = tree_val;
1120
1121 /* Verify that all elements of a constructor are constants. */
1122 if (TREE_CODE (m_tree_value) == CONSTRUCTOR)
1123 for (unsigned i = 0; i < CONSTRUCTOR_NELTS (m_tree_value); i++)
1124 {
1125 tree v = CONSTRUCTOR_ELT (m_tree_value, i)->value;
1126 if (!CONSTANT_CLASS_P (v))
1127 {
1128 HSA_SORRY_AT (EXPR_LOCATION (tree_val),
1129 "HSA ctor should have only constants");
1130 return;
1131 }
1132 }
1133 }
1134
1135 /* Constructor of class representing HSA immediate values. INTEGER_VALUE is the
1136 integer representation of the immediate value. TYPE is BRIG type. */
1137
1138 hsa_op_immed::hsa_op_immed (HOST_WIDE_INT integer_value, BrigType16_t type)
1139 : hsa_op_with_type (BRIG_KIND_OPERAND_CONSTANT_BYTES, type),
1140 m_tree_value (NULL)
1141 {
1142 gcc_assert (hsa_type_integer_p (type));
1143 m_int_value = integer_value;
1144 }
1145
1146 hsa_op_immed::hsa_op_immed ()
1147 : hsa_op_with_type (BRIG_KIND_NONE, BRIG_TYPE_NONE)
1148 {
1149 }
1150
1151 /* New operator to allocate immediate operands from obstack. */
1152
1153 void *
1154 hsa_op_immed::operator new (size_t size)
1155 {
1156 return obstack_alloc (&hsa_obstack, size);
1157 }
1158
1159 /* Destructor. */
1160
1161 hsa_op_immed::~hsa_op_immed ()
1162 {
1163 }
1164
1165 /* Change type of the immediate value to T. */
1166
1167 void
1168 hsa_op_immed::set_type (BrigType16_t t)
1169 {
1170 m_type = t;
1171 }
1172
1173 /* Constructor of class representing HSA registers and pseudo-registers. T is
1174 the BRIG type of the new register. */
1175
1176 hsa_op_reg::hsa_op_reg (BrigType16_t t)
1177 : hsa_op_with_type (BRIG_KIND_OPERAND_REGISTER, t), m_gimple_ssa (NULL_TREE),
1178 m_def_insn (NULL), m_spill_sym (NULL), m_order (hsa_cfun->m_reg_count++),
1179 m_lr_begin (0), m_lr_end (0), m_reg_class (0), m_hard_num (0)
1180 {
1181 }
1182
1183 /* New operator to allocate a register from obstack. */
1184
1185 void *
1186 hsa_op_reg::operator new (size_t size)
1187 {
1188 return obstack_alloc (&hsa_obstack, size);
1189 }
1190
1191 /* Verify register operand. */
1192
1193 void
1194 hsa_op_reg::verify_ssa ()
1195 {
1196 /* Verify that each HSA register has a definition assigned.
1197 Exceptions are VAR_DECL and PARM_DECL that are a default
1198 definition. */
1199 gcc_checking_assert (m_def_insn
1200 || (m_gimple_ssa != NULL
1201 && (!SSA_NAME_VAR (m_gimple_ssa)
1202 || (TREE_CODE (SSA_NAME_VAR (m_gimple_ssa))
1203 != PARM_DECL))
1204 && SSA_NAME_IS_DEFAULT_DEF (m_gimple_ssa)));
1205
1206 /* Verify that every use of the register is really present
1207 in an instruction. */
1208 for (unsigned i = 0; i < m_uses.length (); i++)
1209 {
1210 hsa_insn_basic *use = m_uses[i];
1211
1212 bool is_visited = false;
1213 for (unsigned j = 0; j < use->operand_count (); j++)
1214 {
1215 hsa_op_base *u = use->get_op (j);
1216 hsa_op_address *addr; addr = dyn_cast <hsa_op_address *> (u);
1217 if (addr && addr->m_reg)
1218 u = addr->m_reg;
1219
1220 if (u == this)
1221 {
1222 bool r = !addr && use->op_output_p (j);
1223
1224 if (r)
1225 {
1226 error ("HSA SSA name defined by instruction that is supposed "
1227 "to be using it");
1228 debug_hsa_operand (this);
1229 debug_hsa_insn (use);
1230 internal_error ("HSA SSA verification failed");
1231 }
1232
1233 is_visited = true;
1234 }
1235 }
1236
1237 if (!is_visited)
1238 {
1239 error ("HSA SSA name not among operands of instruction that is "
1240 "supposed to use it");
1241 debug_hsa_operand (this);
1242 debug_hsa_insn (use);
1243 internal_error ("HSA SSA verification failed");
1244 }
1245 }
1246 }
1247
1248 hsa_op_address::hsa_op_address (hsa_symbol *sym, hsa_op_reg *r,
1249 HOST_WIDE_INT offset)
1250 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (sym), m_reg (r),
1251 m_imm_offset (offset)
1252 {
1253 }
1254
1255 hsa_op_address::hsa_op_address (hsa_symbol *sym, HOST_WIDE_INT offset)
1256 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (sym), m_reg (NULL),
1257 m_imm_offset (offset)
1258 {
1259 }
1260
1261 hsa_op_address::hsa_op_address (hsa_op_reg *r, HOST_WIDE_INT offset)
1262 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (NULL), m_reg (r),
1263 m_imm_offset (offset)
1264 {
1265 }
1266
1267 /* New operator to allocate address operands from obstack. */
1268
1269 void *
1270 hsa_op_address::operator new (size_t size)
1271 {
1272 return obstack_alloc (&hsa_obstack, size);
1273 }
1274
1275 /* Constructor of an operand referring to HSAIL code. */
1276
1277 hsa_op_code_ref::hsa_op_code_ref () : hsa_op_base (BRIG_KIND_OPERAND_CODE_REF),
1278 m_directive_offset (0)
1279 {
1280 }
1281
1282 /* Constructor of an operand representing a code list. Set it up so that it
1283 can contain ELEMENTS number of elements. */
1284
1285 hsa_op_code_list::hsa_op_code_list (unsigned elements)
1286 : hsa_op_base (BRIG_KIND_OPERAND_CODE_LIST)
1287 {
1288 m_offsets.create (1);
1289 m_offsets.safe_grow_cleared (elements);
1290 }
1291
1292 /* New operator to allocate code list operands from obstack. */
1293
1294 void *
1295 hsa_op_code_list::operator new (size_t size)
1296 {
1297 return obstack_alloc (&hsa_obstack, size);
1298 }
1299
1300 /* Constructor of an operand representing an operand list.
1301 Set it up so that it can contain ELEMENTS number of elements. */
1302
1303 hsa_op_operand_list::hsa_op_operand_list (unsigned elements)
1304 : hsa_op_base (BRIG_KIND_OPERAND_OPERAND_LIST)
1305 {
1306 m_offsets.create (elements);
1307 m_offsets.safe_grow (elements);
1308 }
1309
1310 /* New operator to allocate operand list operands from obstack. */
1311
1312 void *
1313 hsa_op_operand_list::operator new (size_t size)
1314 {
1315 return obstack_alloc (&hsa_obstack, size);
1316 }
1317
1318 hsa_op_operand_list::~hsa_op_operand_list ()
1319 {
1320 m_offsets.release ();
1321 }
1322
1323
1324 hsa_op_reg *
1325 hsa_function_representation::reg_for_gimple_ssa (tree ssa)
1326 {
1327 hsa_op_reg *hreg;
1328
1329 gcc_checking_assert (TREE_CODE (ssa) == SSA_NAME);
1330 if (m_ssa_map[SSA_NAME_VERSION (ssa)])
1331 return m_ssa_map[SSA_NAME_VERSION (ssa)];
1332
1333 hreg = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (ssa),
1334 false));
1335 hreg->m_gimple_ssa = ssa;
1336 m_ssa_map[SSA_NAME_VERSION (ssa)] = hreg;
1337
1338 return hreg;
1339 }
1340
1341 void
1342 hsa_op_reg::set_definition (hsa_insn_basic *insn)
1343 {
1344 if (hsa_cfun->m_in_ssa)
1345 {
1346 gcc_checking_assert (!m_def_insn);
1347 m_def_insn = insn;
1348 }
1349 else
1350 m_def_insn = NULL;
1351 }
1352
1353 /* Constructor of the class which is the bases of all instructions and directly
1354 represents the most basic ones. NOPS is the number of operands that the
1355 operand vector will contain (and which will be cleared). OP is the opcode
1356 of the instruction. This constructor does not set type. */
1357
1358 hsa_insn_basic::hsa_insn_basic (unsigned nops, int opc)
1359 : m_prev (NULL),
1360 m_next (NULL), m_bb (NULL), m_opcode (opc), m_number (0),
1361 m_type (BRIG_TYPE_NONE), m_brig_offset (0)
1362 {
1363 if (nops > 0)
1364 m_operands.safe_grow_cleared (nops);
1365
1366 hsa_instructions.safe_push (this);
1367 }
1368
1369 /* Make OP the operand number INDEX of operands of this instruction. If OP is a
1370 register or an address containing a register, then either set the definition
1371 of the register to this instruction if it an output operand or add this
1372 instruction to the uses if it is an input one. */
1373
1374 void
1375 hsa_insn_basic::set_op (int index, hsa_op_base *op)
1376 {
1377 /* Each address operand is always use. */
1378 hsa_op_address *addr = dyn_cast <hsa_op_address *> (op);
1379 if (addr && addr->m_reg)
1380 addr->m_reg->m_uses.safe_push (this);
1381 else
1382 {
1383 hsa_op_reg *reg = dyn_cast <hsa_op_reg *> (op);
1384 if (reg)
1385 {
1386 if (op_output_p (index))
1387 reg->set_definition (this);
1388 else
1389 reg->m_uses.safe_push (this);
1390 }
1391 }
1392
1393 m_operands[index] = op;
1394 }
1395
1396 /* Get INDEX-th operand of the instruction. */
1397
1398 hsa_op_base *
1399 hsa_insn_basic::get_op (int index)
1400 {
1401 return m_operands[index];
1402 }
1403
1404 /* Get address of INDEX-th operand of the instruction. */
1405
1406 hsa_op_base **
1407 hsa_insn_basic::get_op_addr (int index)
1408 {
1409 return &m_operands[index];
1410 }
1411
1412 /* Get number of operands of the instruction. */
1413 unsigned int
1414 hsa_insn_basic::operand_count ()
1415 {
1416 return m_operands.length ();
1417 }
1418
1419 /* Constructor of the class which is the bases of all instructions and directly
1420 represents the most basic ones. NOPS is the number of operands that the
1421 operand vector will contain (and which will be cleared). OPC is the opcode
1422 of the instruction, T is the type of the instruction. */
1423
1424 hsa_insn_basic::hsa_insn_basic (unsigned nops, int opc, BrigType16_t t,
1425 hsa_op_base *arg0, hsa_op_base *arg1,
1426 hsa_op_base *arg2, hsa_op_base *arg3)
1427 : m_prev (NULL), m_next (NULL), m_bb (NULL), m_opcode (opc),m_number (0),
1428 m_type (t), m_brig_offset (0)
1429 {
1430 if (nops > 0)
1431 m_operands.safe_grow_cleared (nops);
1432
1433 if (arg0 != NULL)
1434 {
1435 gcc_checking_assert (nops >= 1);
1436 set_op (0, arg0);
1437 }
1438
1439 if (arg1 != NULL)
1440 {
1441 gcc_checking_assert (nops >= 2);
1442 set_op (1, arg1);
1443 }
1444
1445 if (arg2 != NULL)
1446 {
1447 gcc_checking_assert (nops >= 3);
1448 set_op (2, arg2);
1449 }
1450
1451 if (arg3 != NULL)
1452 {
1453 gcc_checking_assert (nops >= 4);
1454 set_op (3, arg3);
1455 }
1456
1457 hsa_instructions.safe_push (this);
1458 }
1459
1460 /* New operator to allocate basic instruction from obstack. */
1461
1462 void *
1463 hsa_insn_basic::operator new (size_t size)
1464 {
1465 return obstack_alloc (&hsa_obstack, size);
1466 }
1467
1468 /* Verify the instruction. */
1469
1470 void
1471 hsa_insn_basic::verify ()
1472 {
1473 hsa_op_address *addr;
1474 hsa_op_reg *reg;
1475
1476 /* Iterate all register operands and verify that the instruction
1477 is set in uses of the register. */
1478 for (unsigned i = 0; i < operand_count (); i++)
1479 {
1480 hsa_op_base *use = get_op (i);
1481
1482 if ((addr = dyn_cast <hsa_op_address *> (use)) && addr->m_reg)
1483 {
1484 gcc_assert (addr->m_reg->m_def_insn != this);
1485 use = addr->m_reg;
1486 }
1487
1488 if ((reg = dyn_cast <hsa_op_reg *> (use)) && !op_output_p (i))
1489 {
1490 unsigned j;
1491 for (j = 0; j < reg->m_uses.length (); j++)
1492 {
1493 if (reg->m_uses[j] == this)
1494 break;
1495 }
1496
1497 if (j == reg->m_uses.length ())
1498 {
1499 error ("HSA instruction uses a register but is not among "
1500 "recorded register uses");
1501 debug_hsa_operand (reg);
1502 debug_hsa_insn (this);
1503 internal_error ("HSA instruction verification failed");
1504 }
1505 }
1506 }
1507 }
1508
1509 /* Constructor of an instruction representing a PHI node. NOPS is the number
1510 of operands (equal to the number of predecessors). */
1511
1512 hsa_insn_phi::hsa_insn_phi (unsigned nops, hsa_op_reg *dst)
1513 : hsa_insn_basic (nops, HSA_OPCODE_PHI), m_dest (dst)
1514 {
1515 dst->set_definition (this);
1516 }
1517
1518 /* Constructor of class representing instructions for control flow and
1519 sychronization, */
1520
1521 hsa_insn_br::hsa_insn_br (unsigned nops, int opc, BrigType16_t t,
1522 BrigWidth8_t width, hsa_op_base *arg0,
1523 hsa_op_base *arg1, hsa_op_base *arg2,
1524 hsa_op_base *arg3)
1525 : hsa_insn_basic (nops, opc, t, arg0, arg1, arg2, arg3),
1526 m_width (width)
1527 {
1528 }
1529
1530 /* Constructor of class representing instruction for conditional jump, CTRL is
1531 the control register determining whether the jump will be carried out, the
1532 new instruction is automatically added to its uses list. */
1533
1534 hsa_insn_cbr::hsa_insn_cbr (hsa_op_reg *ctrl)
1535 : hsa_insn_br (1, BRIG_OPCODE_CBR, BRIG_TYPE_B1, BRIG_WIDTH_1, ctrl)
1536 {
1537 }
1538
1539 /* Constructor of class representing instruction for switch jump, CTRL is
1540 the index register. */
1541
1542 hsa_insn_sbr::hsa_insn_sbr (hsa_op_reg *index, unsigned jump_count)
1543 : hsa_insn_basic (1, BRIG_OPCODE_SBR, BRIG_TYPE_B1, index),
1544 m_width (BRIG_WIDTH_1), m_jump_table (vNULL),
1545 m_label_code_list (new hsa_op_code_list (jump_count))
1546 {
1547 }
1548
1549 /* Replace all occurrences of OLD_BB with NEW_BB in the statements
1550 jump table. */
1551
1552 void
1553 hsa_insn_sbr::replace_all_labels (basic_block old_bb, basic_block new_bb)
1554 {
1555 for (unsigned i = 0; i < m_jump_table.length (); i++)
1556 if (m_jump_table[i] == old_bb)
1557 m_jump_table[i] = new_bb;
1558 }
1559
1560 hsa_insn_sbr::~hsa_insn_sbr ()
1561 {
1562 m_jump_table.release ();
1563 }
1564
1565 /* Constructor of comparison instruction. CMP is the comparison operation and T
1566 is the result type. */
1567
1568 hsa_insn_cmp::hsa_insn_cmp (BrigCompareOperation8_t cmp, BrigType16_t t,
1569 hsa_op_base *arg0, hsa_op_base *arg1,
1570 hsa_op_base *arg2)
1571 : hsa_insn_basic (3 , BRIG_OPCODE_CMP, t, arg0, arg1, arg2), m_compare (cmp)
1572 {
1573 }
1574
1575 /* Constructor of classes representing memory accesses. OPC is the opcode (must
1576 be BRIG_OPCODE_ST or BRIG_OPCODE_LD) and T is the type. The instruction
1577 operands are provided as ARG0 and ARG1. */
1578
1579 hsa_insn_mem::hsa_insn_mem (int opc, BrigType16_t t, hsa_op_base *arg0,
1580 hsa_op_base *arg1)
1581 : hsa_insn_basic (2, opc, t, arg0, arg1),
1582 m_align (hsa_natural_alignment (t)), m_equiv_class (0)
1583 {
1584 gcc_checking_assert (opc == BRIG_OPCODE_LD || opc == BRIG_OPCODE_ST);
1585 }
1586
1587 /* Constructor for descendants allowing different opcodes and number of
1588 operands, it passes its arguments directly to hsa_insn_basic
1589 constructor. The instruction operands are provided as ARG[0-3]. */
1590
1591
1592 hsa_insn_mem::hsa_insn_mem (unsigned nops, int opc, BrigType16_t t,
1593 hsa_op_base *arg0, hsa_op_base *arg1,
1594 hsa_op_base *arg2, hsa_op_base *arg3)
1595 : hsa_insn_basic (nops, opc, t, arg0, arg1, arg2, arg3),
1596 m_align (hsa_natural_alignment (t)), m_equiv_class (0)
1597 {
1598 }
1599
1600 /* Constructor of class representing atomic instructions. OPC is the principal
1601 opcode, AOP is the specific atomic operation opcode. T is the type of the
1602 instruction. The instruction operands are provided as ARG[0-3]. */
1603
1604 hsa_insn_atomic::hsa_insn_atomic (int nops, int opc,
1605 enum BrigAtomicOperation aop,
1606 BrigType16_t t, BrigMemoryOrder memorder,
1607 hsa_op_base *arg0,
1608 hsa_op_base *arg1, hsa_op_base *arg2,
1609 hsa_op_base *arg3)
1610 : hsa_insn_mem (nops, opc, t, arg0, arg1, arg2, arg3), m_atomicop (aop),
1611 m_memoryorder (memorder),
1612 m_memoryscope (BRIG_MEMORY_SCOPE_SYSTEM)
1613 {
1614 gcc_checking_assert (opc == BRIG_OPCODE_ATOMICNORET ||
1615 opc == BRIG_OPCODE_ATOMIC ||
1616 opc == BRIG_OPCODE_SIGNAL ||
1617 opc == BRIG_OPCODE_SIGNALNORET);
1618 }
1619
1620 /* Constructor of class representing signal instructions. OPC is the prinicpal
1621 opcode, SOP is the specific signal operation opcode. T is the type of the
1622 instruction. The instruction operands are provided as ARG[0-3]. */
1623
1624 hsa_insn_signal::hsa_insn_signal (int nops, int opc,
1625 enum BrigAtomicOperation sop,
1626 BrigType16_t t, BrigMemoryOrder memorder,
1627 hsa_op_base *arg0, hsa_op_base *arg1,
1628 hsa_op_base *arg2, hsa_op_base *arg3)
1629 : hsa_insn_basic (nops, opc, t, arg0, arg1, arg2, arg3),
1630 m_memory_order (memorder), m_signalop (sop)
1631 {
1632 }
1633
1634 /* Constructor of class representing segment conversion instructions. OPC is
1635 the opcode which must be either BRIG_OPCODE_STOF or BRIG_OPCODE_FTOS. DEST
1636 and SRCT are destination and source types respectively, SEG is the segment
1637 we are converting to or from. The instruction operands are
1638 provided as ARG0 and ARG1. */
1639
1640 hsa_insn_seg::hsa_insn_seg (int opc, BrigType16_t dest, BrigType16_t srct,
1641 BrigSegment8_t seg, hsa_op_base *arg0,
1642 hsa_op_base *arg1)
1643 : hsa_insn_basic (2, opc, dest, arg0, arg1), m_src_type (srct),
1644 m_segment (seg)
1645 {
1646 gcc_checking_assert (opc == BRIG_OPCODE_STOF || opc == BRIG_OPCODE_FTOS);
1647 }
1648
1649 /* Constructor of class representing a call instruction. CALLEE is the tree
1650 representation of the function being called. */
1651
1652 hsa_insn_call::hsa_insn_call (tree callee)
1653 : hsa_insn_basic (0, BRIG_OPCODE_CALL), m_called_function (callee),
1654 m_output_arg (NULL), m_args_code_list (NULL), m_result_code_list (NULL)
1655 {
1656 }
1657
1658 hsa_insn_call::hsa_insn_call (hsa_internal_fn *fn)
1659 : hsa_insn_basic (0, BRIG_OPCODE_CALL), m_called_function (NULL),
1660 m_called_internal_fn (fn), m_output_arg (NULL), m_args_code_list (NULL),
1661 m_result_code_list (NULL)
1662 {
1663 }
1664
1665 hsa_insn_call::~hsa_insn_call ()
1666 {
1667 for (unsigned i = 0; i < m_input_args.length (); i++)
1668 delete m_input_args[i];
1669
1670 delete m_output_arg;
1671
1672 m_input_args.release ();
1673 m_input_arg_insns.release ();
1674 }
1675
1676 /* Constructor of class representing the argument block required to invoke
1677 a call in HSAIL. */
1678 hsa_insn_arg_block::hsa_insn_arg_block (BrigKind brig_kind,
1679 hsa_insn_call * call)
1680 : hsa_insn_basic (0, HSA_OPCODE_ARG_BLOCK), m_kind (brig_kind),
1681 m_call_insn (call)
1682 {
1683 }
1684
1685 hsa_insn_comment::hsa_insn_comment (const char *s)
1686 : hsa_insn_basic (0, BRIG_KIND_DIRECTIVE_COMMENT)
1687 {
1688 unsigned l = strlen (s);
1689
1690 /* Append '// ' to the string. */
1691 char *buf = XNEWVEC (char, l + 4);
1692 sprintf (buf, "// %s", s);
1693 m_comment = buf;
1694 }
1695
1696 hsa_insn_comment::~hsa_insn_comment ()
1697 {
1698 gcc_checking_assert (m_comment);
1699 free (m_comment);
1700 m_comment = NULL;
1701 }
1702
1703 /* Constructor of class representing the queue instruction in HSAIL. */
1704
1705 hsa_insn_queue::hsa_insn_queue (int nops, int opcode, BrigSegment segment,
1706 BrigMemoryOrder memory_order,
1707 hsa_op_base *arg0, hsa_op_base *arg1,
1708 hsa_op_base *arg2, hsa_op_base *arg3)
1709 : hsa_insn_basic (nops, opcode, BRIG_TYPE_U64, arg0, arg1, arg2, arg3),
1710 m_segment (segment), m_memory_order (memory_order)
1711 {
1712 }
1713
1714 /* Constructor of class representing the source type instruction in HSAIL. */
1715
1716 hsa_insn_srctype::hsa_insn_srctype (int nops, BrigOpcode opcode,
1717 BrigType16_t destt, BrigType16_t srct,
1718 hsa_op_base *arg0, hsa_op_base *arg1,
1719 hsa_op_base *arg2 = NULL)
1720 : hsa_insn_basic (nops, opcode, destt, arg0, arg1, arg2),
1721 m_source_type (srct)
1722 {}
1723
1724 /* Constructor of class representing the packed instruction in HSAIL. */
1725
1726 hsa_insn_packed::hsa_insn_packed (int nops, BrigOpcode opcode,
1727 BrigType16_t destt, BrigType16_t srct,
1728 hsa_op_base *arg0, hsa_op_base *arg1,
1729 hsa_op_base *arg2)
1730 : hsa_insn_srctype (nops, opcode, destt, srct, arg0, arg1, arg2)
1731 {
1732 m_operand_list = new hsa_op_operand_list (nops - 1);
1733 }
1734
1735 /* Constructor of class representing the convert instruction in HSAIL. */
1736
1737 hsa_insn_cvt::hsa_insn_cvt (hsa_op_with_type *dest, hsa_op_with_type *src)
1738 : hsa_insn_basic (2, BRIG_OPCODE_CVT, dest->m_type, dest, src)
1739 {
1740 }
1741
1742 /* Constructor of class representing the alloca in HSAIL. */
1743
1744 hsa_insn_alloca::hsa_insn_alloca (hsa_op_with_type *dest,
1745 hsa_op_with_type *size, unsigned alignment)
1746 : hsa_insn_basic (2, BRIG_OPCODE_ALLOCA, dest->m_type, dest, size),
1747 m_align (BRIG_ALIGNMENT_8)
1748 {
1749 gcc_assert (dest->m_type == BRIG_TYPE_U32);
1750 if (alignment)
1751 m_align = hsa_alignment_encoding (alignment);
1752 }
1753
1754 /* Append an instruction INSN into the basic block. */
1755
1756 void
1757 hsa_bb::append_insn (hsa_insn_basic *insn)
1758 {
1759 gcc_assert (insn->m_opcode != 0 || insn->operand_count () == 0);
1760 gcc_assert (!insn->m_bb);
1761
1762 insn->m_bb = m_bb;
1763 insn->m_prev = m_last_insn;
1764 insn->m_next = NULL;
1765 if (m_last_insn)
1766 m_last_insn->m_next = insn;
1767 m_last_insn = insn;
1768 if (!m_first_insn)
1769 m_first_insn = insn;
1770 }
1771
1772 void
1773 hsa_bb::append_phi (hsa_insn_phi *hphi)
1774 {
1775 hphi->m_bb = m_bb;
1776
1777 hphi->m_prev = m_last_phi;
1778 hphi->m_next = NULL;
1779 if (m_last_phi)
1780 m_last_phi->m_next = hphi;
1781 m_last_phi = hphi;
1782 if (!m_first_phi)
1783 m_first_phi = hphi;
1784 }
1785
1786 /* Insert HSA instruction NEW_INSN immediately before an existing instruction
1787 OLD_INSN. */
1788
1789 static void
1790 hsa_insert_insn_before (hsa_insn_basic *new_insn, hsa_insn_basic *old_insn)
1791 {
1792 hsa_bb *hbb = hsa_bb_for_bb (old_insn->m_bb);
1793
1794 if (hbb->m_first_insn == old_insn)
1795 hbb->m_first_insn = new_insn;
1796 new_insn->m_prev = old_insn->m_prev;
1797 new_insn->m_next = old_insn;
1798 if (old_insn->m_prev)
1799 old_insn->m_prev->m_next = new_insn;
1800 old_insn->m_prev = new_insn;
1801 }
1802
1803 /* Append HSA instruction NEW_INSN immediately after an existing instruction
1804 OLD_INSN. */
1805
1806 static void
1807 hsa_append_insn_after (hsa_insn_basic *new_insn, hsa_insn_basic *old_insn)
1808 {
1809 hsa_bb *hbb = hsa_bb_for_bb (old_insn->m_bb);
1810
1811 if (hbb->m_last_insn == old_insn)
1812 hbb->m_last_insn = new_insn;
1813 new_insn->m_prev = old_insn;
1814 new_insn->m_next = old_insn->m_next;
1815 if (old_insn->m_next)
1816 old_insn->m_next->m_prev = new_insn;
1817 old_insn->m_next = new_insn;
1818 }
1819
1820 /* Return a register containing the calculated value of EXP which must be an
1821 expression consisting of PLUS_EXPRs, MULT_EXPRs, NOP_EXPRs, SSA_NAMEs and
1822 integer constants as returned by get_inner_reference.
1823 Newly generated HSA instructions will be appended to HBB.
1824 Perform all calculations in ADDRTYPE. */
1825
1826 static hsa_op_with_type *
1827 gen_address_calculation (tree exp, hsa_bb *hbb, BrigType16_t addrtype)
1828 {
1829 int opcode;
1830
1831 if (TREE_CODE (exp) == NOP_EXPR)
1832 exp = TREE_OPERAND (exp, 0);
1833
1834 switch (TREE_CODE (exp))
1835 {
1836 case SSA_NAME:
1837 return hsa_cfun->reg_for_gimple_ssa (exp)->get_in_type (addrtype, hbb);
1838
1839 case INTEGER_CST:
1840 {
1841 hsa_op_immed *imm = new hsa_op_immed (exp);
1842 if (addrtype != imm->m_type)
1843 imm->m_type = addrtype;
1844 return imm;
1845 }
1846
1847 case PLUS_EXPR:
1848 opcode = BRIG_OPCODE_ADD;
1849 break;
1850
1851 case MULT_EXPR:
1852 opcode = BRIG_OPCODE_MUL;
1853 break;
1854
1855 default:
1856 gcc_unreachable ();
1857 }
1858
1859 hsa_op_reg *res = new hsa_op_reg (addrtype);
1860 hsa_insn_basic *insn = new hsa_insn_basic (3, opcode, addrtype);
1861 insn->set_op (0, res);
1862
1863 hsa_op_with_type *op1 = gen_address_calculation (TREE_OPERAND (exp, 0), hbb,
1864 addrtype);
1865 hsa_op_with_type *op2 = gen_address_calculation (TREE_OPERAND (exp, 1), hbb,
1866 addrtype);
1867 insn->set_op (1, op1);
1868 insn->set_op (2, op2);
1869
1870 hbb->append_insn (insn);
1871 return res;
1872 }
1873
1874 /* If R1 is NULL, just return R2, otherwise append an instruction adding them
1875 to HBB and return the register holding the result. */
1876
1877 static hsa_op_reg *
1878 add_addr_regs_if_needed (hsa_op_reg *r1, hsa_op_reg *r2, hsa_bb *hbb)
1879 {
1880 gcc_checking_assert (r2);
1881 if (!r1)
1882 return r2;
1883
1884 hsa_op_reg *res = new hsa_op_reg (r1->m_type);
1885 gcc_assert (!hsa_needs_cvt (r1->m_type, r2->m_type));
1886 hsa_insn_basic *insn = new hsa_insn_basic (3, BRIG_OPCODE_ADD, res->m_type);
1887 insn->set_op (0, res);
1888 insn->set_op (1, r1);
1889 insn->set_op (2, r2);
1890 hbb->append_insn (insn);
1891 return res;
1892 }
1893
1894 /* Helper of gen_hsa_addr. Update *SYMBOL, *ADDRTYPE, *REG and *OFFSET to
1895 reflect BASE which is the first operand of a MEM_REF or a TARGET_MEM_REF. */
1896
1897 static void
1898 process_mem_base (tree base, hsa_symbol **symbol, BrigType16_t *addrtype,
1899 hsa_op_reg **reg, offset_int *offset, hsa_bb *hbb)
1900 {
1901 if (TREE_CODE (base) == SSA_NAME)
1902 {
1903 gcc_assert (!*reg);
1904 hsa_op_with_type *ssa
1905 = hsa_cfun->reg_for_gimple_ssa (base)->get_in_type (*addrtype, hbb);
1906 *reg = dyn_cast <hsa_op_reg *> (ssa);
1907 }
1908 else if (TREE_CODE (base) == ADDR_EXPR)
1909 {
1910 tree decl = TREE_OPERAND (base, 0);
1911
1912 if (!DECL_P (decl) || TREE_CODE (decl) == FUNCTION_DECL)
1913 {
1914 HSA_SORRY_AT (EXPR_LOCATION (base),
1915 "support for HSA does not implement a memory reference "
1916 "to a non-declaration type");
1917 return;
1918 }
1919
1920 gcc_assert (!*symbol);
1921
1922 *symbol = get_symbol_for_decl (decl);
1923 *addrtype = hsa_get_segment_addr_type ((*symbol)->m_segment);
1924 }
1925 else if (TREE_CODE (base) == INTEGER_CST)
1926 *offset += wi::to_offset (base);
1927 else
1928 gcc_unreachable ();
1929 }
1930
1931 /* Forward declaration of a function. */
1932
1933 static void
1934 gen_hsa_addr_insns (tree val, hsa_op_reg *dest, hsa_bb *hbb);
1935
1936 /* Generate HSA address operand for a given tree memory reference REF. If
1937 instructions need to be created to calculate the address, they will be added
1938 to the end of HBB. If a caller provider OUTPUT_BITSIZE and OUTPUT_BITPOS,
1939 the function assumes that the caller will handle possible
1940 bit-field references. Otherwise if we reference a bit-field, sorry message
1941 is displayed. */
1942
1943 static hsa_op_address *
1944 gen_hsa_addr (tree ref, hsa_bb *hbb, HOST_WIDE_INT *output_bitsize = NULL,
1945 HOST_WIDE_INT *output_bitpos = NULL)
1946 {
1947 hsa_symbol *symbol = NULL;
1948 hsa_op_reg *reg = NULL;
1949 offset_int offset = 0;
1950 tree origref = ref;
1951 tree varoffset = NULL_TREE;
1952 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
1953 HOST_WIDE_INT bitsize = 0, bitpos = 0;
1954 BrigType16_t flat_addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
1955
1956 if (TREE_CODE (ref) == STRING_CST)
1957 {
1958 symbol = hsa_get_string_cst_symbol (ref);
1959 goto out;
1960 }
1961 else if (TREE_CODE (ref) == BIT_FIELD_REF
1962 && ((tree_to_uhwi (TREE_OPERAND (ref, 1)) % BITS_PER_UNIT) != 0
1963 || (tree_to_uhwi (TREE_OPERAND (ref, 2)) % BITS_PER_UNIT) != 0))
1964 {
1965 HSA_SORRY_ATV (EXPR_LOCATION (origref),
1966 "support for HSA does not implement "
1967 "bit field references such as %E", ref);
1968 goto out;
1969 }
1970
1971 if (handled_component_p (ref))
1972 {
1973 machine_mode mode;
1974 int unsignedp, volatilep, preversep;
1975
1976 ref = get_inner_reference (ref, &bitsize, &bitpos, &varoffset, &mode,
1977 &unsignedp, &preversep, &volatilep);
1978
1979 offset = bitpos;
1980 offset = wi::rshift (offset, LOG2_BITS_PER_UNIT, SIGNED);
1981 }
1982
1983 switch (TREE_CODE (ref))
1984 {
1985 case ADDR_EXPR:
1986 {
1987 addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE);
1988 symbol = hsa_cfun->create_hsa_temporary (flat_addrtype);
1989 hsa_op_reg *r = new hsa_op_reg (flat_addrtype);
1990 gen_hsa_addr_insns (ref, r, hbb);
1991 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST, r->m_type,
1992 r, new hsa_op_address (symbol)));
1993
1994 break;
1995 }
1996 case SSA_NAME:
1997 {
1998 addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE);
1999 hsa_op_with_type *r = hsa_cfun->reg_for_gimple_ssa (ref);
2000 if (r->m_type == BRIG_TYPE_B1)
2001 r = r->get_in_type (BRIG_TYPE_U32, hbb);
2002 symbol = hsa_cfun->create_hsa_temporary (r->m_type);
2003
2004 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST, r->m_type,
2005 r, new hsa_op_address (symbol)));
2006
2007 break;
2008 }
2009 case PARM_DECL:
2010 case VAR_DECL:
2011 case RESULT_DECL:
2012 case CONST_DECL:
2013 gcc_assert (!symbol);
2014 symbol = get_symbol_for_decl (ref);
2015 addrtype = hsa_get_segment_addr_type (symbol->m_segment);
2016 break;
2017
2018 case MEM_REF:
2019 process_mem_base (TREE_OPERAND (ref, 0), &symbol, &addrtype, &reg,
2020 &offset, hbb);
2021
2022 if (!integer_zerop (TREE_OPERAND (ref, 1)))
2023 offset += wi::to_offset (TREE_OPERAND (ref, 1));
2024 break;
2025
2026 case TARGET_MEM_REF:
2027 process_mem_base (TMR_BASE (ref), &symbol, &addrtype, &reg, &offset, hbb);
2028 if (TMR_INDEX (ref))
2029 {
2030 hsa_op_reg *disp1;
2031 hsa_op_base *idx = hsa_cfun->reg_for_gimple_ssa
2032 (TMR_INDEX (ref))->get_in_type (addrtype, hbb);
2033 if (TMR_STEP (ref) && !integer_onep (TMR_STEP (ref)))
2034 {
2035 disp1 = new hsa_op_reg (addrtype);
2036 hsa_insn_basic *insn = new hsa_insn_basic (3, BRIG_OPCODE_MUL,
2037 addrtype);
2038
2039 /* As step must respect addrtype, we overwrite the type
2040 of an immediate value. */
2041 hsa_op_immed *step = new hsa_op_immed (TMR_STEP (ref));
2042 step->m_type = addrtype;
2043
2044 insn->set_op (0, disp1);
2045 insn->set_op (1, idx);
2046 insn->set_op (2, step);
2047 hbb->append_insn (insn);
2048 }
2049 else
2050 disp1 = as_a <hsa_op_reg *> (idx);
2051 reg = add_addr_regs_if_needed (reg, disp1, hbb);
2052 }
2053 if (TMR_INDEX2 (ref))
2054 {
2055 if (TREE_CODE (TMR_INDEX2 (ref)) == SSA_NAME)
2056 {
2057 hsa_op_base *disp2 = hsa_cfun->reg_for_gimple_ssa
2058 (TMR_INDEX2 (ref))->get_in_type (addrtype, hbb);
2059 reg = add_addr_regs_if_needed (reg, as_a <hsa_op_reg *> (disp2),
2060 hbb);
2061 }
2062 else if (TREE_CODE (TMR_INDEX2 (ref)) == INTEGER_CST)
2063 offset += wi::to_offset (TMR_INDEX2 (ref));
2064 else
2065 gcc_unreachable ();
2066 }
2067 offset += wi::to_offset (TMR_OFFSET (ref));
2068 break;
2069 case FUNCTION_DECL:
2070 HSA_SORRY_AT (EXPR_LOCATION (origref),
2071 "support for HSA does not implement function pointers");
2072 goto out;
2073 default:
2074 HSA_SORRY_ATV (EXPR_LOCATION (origref), "support for HSA does "
2075 "not implement memory access to %E", origref);
2076 goto out;
2077 }
2078
2079 if (varoffset)
2080 {
2081 if (TREE_CODE (varoffset) == INTEGER_CST)
2082 offset += wi::to_offset (varoffset);
2083 else
2084 {
2085 hsa_op_base *off_op = gen_address_calculation (varoffset, hbb,
2086 addrtype);
2087 reg = add_addr_regs_if_needed (reg, as_a <hsa_op_reg *> (off_op),
2088 hbb);
2089 }
2090 }
2091
2092 gcc_checking_assert ((symbol
2093 && addrtype
2094 == hsa_get_segment_addr_type (symbol->m_segment))
2095 || (!symbol
2096 && addrtype
2097 == hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT)));
2098 out:
2099 HOST_WIDE_INT hwi_offset = offset.to_shwi ();
2100
2101 /* Calculate remaining bitsize offset (if presented). */
2102 bitpos %= BITS_PER_UNIT;
2103 /* If bitsize is a power of two that is greater or equal to BITS_PER_UNIT, it
2104 is not a reason to think this is a bit-field access. */
2105 if (bitpos == 0
2106 && (bitsize >= BITS_PER_UNIT)
2107 && !(bitsize & (bitsize - 1)))
2108 bitsize = 0;
2109
2110 if ((bitpos || bitsize) && (output_bitpos == NULL || output_bitsize == NULL))
2111 HSA_SORRY_ATV (EXPR_LOCATION (origref), "support for HSA does not "
2112 "implement unhandled bit field reference such as %E", ref);
2113
2114 if (output_bitsize != NULL && output_bitpos != NULL)
2115 {
2116 *output_bitsize = bitsize;
2117 *output_bitpos = bitpos;
2118 }
2119
2120 return new hsa_op_address (symbol, reg, hwi_offset);
2121 }
2122
2123 /* Generate HSA address operand for a given tree memory reference REF. If
2124 instructions need to be created to calculate the address, they will be added
2125 to the end of HBB. OUTPUT_ALIGN is alignment of the created address. */
2126
2127 static hsa_op_address *
2128 gen_hsa_addr_with_align (tree ref, hsa_bb *hbb, BrigAlignment8_t *output_align)
2129 {
2130 hsa_op_address *addr = gen_hsa_addr (ref, hbb);
2131 if (addr->m_reg || !addr->m_symbol)
2132 *output_align = hsa_object_alignment (ref);
2133 else
2134 {
2135 /* If the address consists only of a symbol and an offset, we
2136 compute the alignment ourselves to take into account any alignment
2137 promotions we might have done for the HSA symbol representation. */
2138 unsigned align = hsa_byte_alignment (addr->m_symbol->m_align);
2139 unsigned misalign = addr->m_imm_offset & (align - 1);
2140 if (misalign)
2141 align = least_bit_hwi (misalign);
2142 *output_align = hsa_alignment_encoding (BITS_PER_UNIT * align);
2143 }
2144 return addr;
2145 }
2146
2147 /* Generate HSA address for a function call argument of given TYPE.
2148 INDEX is used to generate corresponding name of the arguments.
2149 Special value -1 represents fact that result value is created. */
2150
2151 static hsa_op_address *
2152 gen_hsa_addr_for_arg (tree tree_type, int index)
2153 {
2154 hsa_symbol *sym = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
2155 BRIG_LINKAGE_ARG);
2156 sym->m_type = hsa_type_for_tree_type (tree_type, &sym->m_dim);
2157
2158 if (index == -1) /* Function result. */
2159 sym->m_name = "res";
2160 else /* Function call arguments. */
2161 {
2162 sym->m_name = NULL;
2163 sym->m_name_number = index;
2164 }
2165
2166 return new hsa_op_address (sym);
2167 }
2168
2169 /* Generate HSA instructions that process all necessary conversions
2170 of an ADDR to flat addressing and place the result into DEST.
2171 Instructions are appended to HBB. */
2172
2173 static void
2174 convert_addr_to_flat_segment (hsa_op_address *addr, hsa_op_reg *dest,
2175 hsa_bb *hbb)
2176 {
2177 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_LDA);
2178 insn->set_op (1, addr);
2179 if (addr->m_symbol && addr->m_symbol->m_segment != BRIG_SEGMENT_GLOBAL)
2180 {
2181 /* LDA produces segment-relative address, we need to convert
2182 it to the flat one. */
2183 hsa_op_reg *tmp;
2184 tmp = new hsa_op_reg (hsa_get_segment_addr_type
2185 (addr->m_symbol->m_segment));
2186 hsa_insn_seg *seg;
2187 seg = new hsa_insn_seg (BRIG_OPCODE_STOF,
2188 hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT),
2189 tmp->m_type, addr->m_symbol->m_segment, dest,
2190 tmp);
2191
2192 insn->set_op (0, tmp);
2193 insn->m_type = tmp->m_type;
2194 hbb->append_insn (insn);
2195 hbb->append_insn (seg);
2196 }
2197 else
2198 {
2199 insn->set_op (0, dest);
2200 insn->m_type = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
2201 hbb->append_insn (insn);
2202 }
2203 }
2204
2205 /* Generate HSA instructions that calculate address of VAL including all
2206 necessary conversions to flat addressing and place the result into DEST.
2207 Instructions are appended to HBB. */
2208
2209 static void
2210 gen_hsa_addr_insns (tree val, hsa_op_reg *dest, hsa_bb *hbb)
2211 {
2212 /* Handle cases like tmp = NULL, where we just emit a move instruction
2213 to a register. */
2214 if (TREE_CODE (val) == INTEGER_CST)
2215 {
2216 hsa_op_immed *c = new hsa_op_immed (val);
2217 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV,
2218 dest->m_type, dest, c);
2219 hbb->append_insn (insn);
2220 return;
2221 }
2222
2223 hsa_op_address *addr;
2224
2225 gcc_assert (dest->m_type == hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
2226 if (TREE_CODE (val) == ADDR_EXPR)
2227 val = TREE_OPERAND (val, 0);
2228 addr = gen_hsa_addr (val, hbb);
2229
2230 if (TREE_CODE (val) == CONST_DECL
2231 && is_gimple_reg_type (TREE_TYPE (val)))
2232 {
2233 gcc_assert (addr->m_symbol
2234 && addr->m_symbol->m_segment == BRIG_SEGMENT_READONLY);
2235 /* CONST_DECLs are in readonly segment which however does not have
2236 addresses convertible to flat segments. So copy it to a private one
2237 and take address of that. */
2238 BrigType16_t csttype
2239 = mem_type_for_type (hsa_type_for_scalar_tree_type (TREE_TYPE (val),
2240 false));
2241 hsa_op_reg *r = new hsa_op_reg (csttype);
2242 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_LD, csttype, r,
2243 new hsa_op_address (addr->m_symbol)));
2244 hsa_symbol *copysym = hsa_cfun->create_hsa_temporary (csttype);
2245 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST, csttype, r,
2246 new hsa_op_address (copysym)));
2247 addr->m_symbol = copysym;
2248 }
2249 else if (addr->m_symbol && addr->m_symbol->m_segment == BRIG_SEGMENT_READONLY)
2250 {
2251 HSA_SORRY_ATV (EXPR_LOCATION (val), "support for HSA does "
2252 "not implement taking addresses of complex "
2253 "CONST_DECLs such as %E", val);
2254 return;
2255 }
2256
2257
2258 convert_addr_to_flat_segment (addr, dest, hbb);
2259 }
2260
2261 /* Return an HSA register or HSA immediate value operand corresponding to
2262 gimple operand OP. */
2263
2264 static hsa_op_with_type *
2265 hsa_reg_or_immed_for_gimple_op (tree op, hsa_bb *hbb)
2266 {
2267 hsa_op_reg *tmp;
2268
2269 if (TREE_CODE (op) == SSA_NAME)
2270 tmp = hsa_cfun->reg_for_gimple_ssa (op);
2271 else if (!POINTER_TYPE_P (TREE_TYPE (op)))
2272 return new hsa_op_immed (op);
2273 else
2274 {
2275 tmp = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
2276 gen_hsa_addr_insns (op, tmp, hbb);
2277 }
2278 return tmp;
2279 }
2280
2281 /* Create a simple movement instruction with register destination DEST and
2282 register or immediate source SRC and append it to the end of HBB. */
2283
2284 void
2285 hsa_build_append_simple_mov (hsa_op_reg *dest, hsa_op_base *src, hsa_bb *hbb)
2286 {
2287 /* Moves of packed data between registers need to adhere to the same type
2288 rules like when dealing with memory. */
2289 BrigType16_t tp = mem_type_for_type (dest->m_type);
2290 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV, tp, dest, src);
2291 hsa_fixup_mov_insn_type (insn);
2292 unsigned dest_size = hsa_type_bit_size (dest->m_type);
2293 if (hsa_op_reg *sreg = dyn_cast <hsa_op_reg *> (src))
2294 gcc_assert (dest_size == hsa_type_bit_size (sreg->m_type));
2295 else
2296 {
2297 unsigned imm_size
2298 = hsa_type_bit_size (as_a <hsa_op_immed *> (src)->m_type);
2299 gcc_assert ((dest_size == imm_size)
2300 /* Eventually < 32bit registers will be promoted to 32bit. */
2301 || (dest_size < 32 && imm_size == 32));
2302 }
2303 hbb->append_insn (insn);
2304 }
2305
2306 /* Generate HSAIL instructions loading a bit field into register DEST.
2307 VALUE_REG is a register of a SSA name that is used in the bit field
2308 reference. To identify a bit field BITPOS is offset to the loaded memory
2309 and BITSIZE is number of bits of the bit field.
2310 Add instructions to HBB. */
2311
2312 static void
2313 gen_hsa_insns_for_bitfield (hsa_op_reg *dest, hsa_op_reg *value_reg,
2314 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2315 hsa_bb *hbb)
2316 {
2317 unsigned type_bitsize
2318 = hsa_type_bit_size (hsa_extend_inttype_to_32bit (dest->m_type));
2319 unsigned left_shift = type_bitsize - (bitsize + bitpos);
2320 unsigned right_shift = left_shift + bitpos;
2321
2322 if (left_shift)
2323 {
2324 hsa_op_reg *value_reg_2
2325 = new hsa_op_reg (hsa_extend_inttype_to_32bit (dest->m_type));
2326 hsa_op_immed *c = new hsa_op_immed (left_shift, BRIG_TYPE_U32);
2327
2328 hsa_insn_basic *lshift
2329 = new hsa_insn_basic (3, BRIG_OPCODE_SHL, value_reg_2->m_type,
2330 value_reg_2, value_reg, c);
2331
2332 hbb->append_insn (lshift);
2333
2334 value_reg = value_reg_2;
2335 }
2336
2337 if (right_shift)
2338 {
2339 hsa_op_reg *value_reg_2
2340 = new hsa_op_reg (hsa_extend_inttype_to_32bit (dest->m_type));
2341 hsa_op_immed *c = new hsa_op_immed (right_shift, BRIG_TYPE_U32);
2342
2343 hsa_insn_basic *rshift
2344 = new hsa_insn_basic (3, BRIG_OPCODE_SHR, value_reg_2->m_type,
2345 value_reg_2, value_reg, c);
2346
2347 hbb->append_insn (rshift);
2348
2349 value_reg = value_reg_2;
2350 }
2351
2352 hsa_insn_basic *assignment
2353 = new hsa_insn_basic (2, BRIG_OPCODE_MOV, dest->m_type, NULL, value_reg);
2354 hsa_fixup_mov_insn_type (assignment);
2355 hbb->append_insn (assignment);
2356 assignment->set_output_in_type (dest, 0, hbb);
2357 }
2358
2359
2360 /* Generate HSAIL instructions loading a bit field into register DEST. ADDR is
2361 prepared memory address which is used to load the bit field. To identify a
2362 bit field BITPOS is offset to the loaded memory and BITSIZE is number of
2363 bits of the bit field. Add instructions to HBB. Load must be performed in
2364 alignment ALIGN. */
2365
2366 static void
2367 gen_hsa_insns_for_bitfield_load (hsa_op_reg *dest, hsa_op_address *addr,
2368 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2369 hsa_bb *hbb, BrigAlignment8_t align)
2370 {
2371 hsa_op_reg *value_reg = new hsa_op_reg (dest->m_type);
2372 hsa_insn_mem *mem
2373 = new hsa_insn_mem (BRIG_OPCODE_LD,
2374 hsa_extend_inttype_to_32bit (dest->m_type),
2375 value_reg, addr);
2376 mem->set_align (align);
2377 hbb->append_insn (mem);
2378 gen_hsa_insns_for_bitfield (dest, value_reg, bitsize, bitpos, hbb);
2379 }
2380
2381 /* Return the alignment of base memory accesses we issue to perform bit-field
2382 memory access REF. */
2383
2384 static BrigAlignment8_t
2385 hsa_bitmemref_alignment (tree ref)
2386 {
2387 unsigned HOST_WIDE_INT bit_offset = 0;
2388
2389 while (true)
2390 {
2391 if (TREE_CODE (ref) == BIT_FIELD_REF)
2392 {
2393 if (!tree_fits_uhwi_p (TREE_OPERAND (ref, 2)))
2394 return BRIG_ALIGNMENT_1;
2395 bit_offset += tree_to_uhwi (TREE_OPERAND (ref, 2));
2396 }
2397 else if (TREE_CODE (ref) == COMPONENT_REF
2398 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2399 bit_offset += int_bit_position (TREE_OPERAND (ref, 1));
2400 else
2401 break;
2402 ref = TREE_OPERAND (ref, 0);
2403 }
2404
2405 unsigned HOST_WIDE_INT bits = bit_offset % BITS_PER_UNIT;
2406 unsigned HOST_WIDE_INT byte_bits = bit_offset - bits;
2407 BrigAlignment8_t base = hsa_object_alignment (ref);
2408 if (byte_bits == 0)
2409 return base;
2410 return MIN (base, hsa_alignment_encoding (least_bit_hwi (byte_bits)));
2411 }
2412
2413 /* Generate HSAIL instructions loading something into register DEST. RHS is
2414 tree representation of the loaded data, which are loaded as type TYPE. Add
2415 instructions to HBB. */
2416
2417 static void
2418 gen_hsa_insns_for_load (hsa_op_reg *dest, tree rhs, tree type, hsa_bb *hbb)
2419 {
2420 /* The destination SSA name will give us the type. */
2421 if (TREE_CODE (rhs) == VIEW_CONVERT_EXPR)
2422 rhs = TREE_OPERAND (rhs, 0);
2423
2424 if (TREE_CODE (rhs) == SSA_NAME)
2425 {
2426 hsa_op_reg *src = hsa_cfun->reg_for_gimple_ssa (rhs);
2427 hsa_build_append_simple_mov (dest, src, hbb);
2428 }
2429 else if (is_gimple_min_invariant (rhs)
2430 || TREE_CODE (rhs) == ADDR_EXPR)
2431 {
2432 if (POINTER_TYPE_P (TREE_TYPE (rhs)))
2433 {
2434 if (dest->m_type != hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT))
2435 {
2436 HSA_SORRY_ATV (EXPR_LOCATION (rhs),
2437 "support for HSA does not implement conversion "
2438 "of %E to the requested non-pointer type.", rhs);
2439 return;
2440 }
2441
2442 gen_hsa_addr_insns (rhs, dest, hbb);
2443 }
2444 else if (TREE_CODE (rhs) == COMPLEX_CST)
2445 {
2446 hsa_op_immed *real_part = new hsa_op_immed (TREE_REALPART (rhs));
2447 hsa_op_immed *imag_part = new hsa_op_immed (TREE_IMAGPART (rhs));
2448
2449 hsa_op_reg *real_part_reg
2450 = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (type),
2451 true));
2452 hsa_op_reg *imag_part_reg
2453 = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (type),
2454 true));
2455
2456 hsa_build_append_simple_mov (real_part_reg, real_part, hbb);
2457 hsa_build_append_simple_mov (imag_part_reg, imag_part, hbb);
2458
2459 BrigType16_t src_type = hsa_bittype_for_type (real_part_reg->m_type);
2460
2461 hsa_insn_packed *insn
2462 = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE, dest->m_type,
2463 src_type, dest, real_part_reg,
2464 imag_part_reg);
2465 hbb->append_insn (insn);
2466 }
2467 else
2468 {
2469 hsa_op_immed *imm = new hsa_op_immed (rhs);
2470 hsa_build_append_simple_mov (dest, imm, hbb);
2471 }
2472 }
2473 else if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (rhs) == IMAGPART_EXPR)
2474 {
2475 tree pack_type = TREE_TYPE (TREE_OPERAND (rhs, 0));
2476
2477 hsa_op_reg *packed_reg
2478 = new hsa_op_reg (hsa_type_for_scalar_tree_type (pack_type, true));
2479
2480 tree complex_rhs = TREE_OPERAND (rhs, 0);
2481 gen_hsa_insns_for_load (packed_reg, complex_rhs, TREE_TYPE (complex_rhs),
2482 hbb);
2483
2484 hsa_op_reg *real_reg
2485 = new hsa_op_reg (hsa_type_for_scalar_tree_type (type, true));
2486
2487 hsa_op_reg *imag_reg
2488 = new hsa_op_reg (hsa_type_for_scalar_tree_type (type, true));
2489
2490 BrigKind16_t brig_type = packed_reg->m_type;
2491 hsa_insn_packed *packed
2492 = new hsa_insn_packed (3, BRIG_OPCODE_EXPAND,
2493 hsa_bittype_for_type (real_reg->m_type),
2494 brig_type, real_reg, imag_reg, packed_reg);
2495
2496 hbb->append_insn (packed);
2497
2498 hsa_op_reg *source = TREE_CODE (rhs) == REALPART_EXPR ?
2499 real_reg : imag_reg;
2500
2501 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV,
2502 dest->m_type, NULL, source);
2503 hsa_fixup_mov_insn_type (insn);
2504 hbb->append_insn (insn);
2505 insn->set_output_in_type (dest, 0, hbb);
2506 }
2507 else if (TREE_CODE (rhs) == BIT_FIELD_REF
2508 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
2509 {
2510 tree ssa_name = TREE_OPERAND (rhs, 0);
2511 HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs, 1));
2512 HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs, 2));
2513
2514 hsa_op_reg *imm_value = hsa_cfun->reg_for_gimple_ssa (ssa_name);
2515 gen_hsa_insns_for_bitfield (dest, imm_value, bitsize, bitpos, hbb);
2516 }
2517 else if (DECL_P (rhs) || TREE_CODE (rhs) == MEM_REF
2518 || TREE_CODE (rhs) == TARGET_MEM_REF
2519 || handled_component_p (rhs))
2520 {
2521 HOST_WIDE_INT bitsize, bitpos;
2522
2523 /* Load from memory. */
2524 hsa_op_address *addr;
2525 addr = gen_hsa_addr (rhs, hbb, &bitsize, &bitpos);
2526
2527 /* Handle load of a bit field. */
2528 if (bitsize > 64)
2529 {
2530 HSA_SORRY_AT (EXPR_LOCATION (rhs),
2531 "support for HSA does not implement load from a bit "
2532 "field bigger than 64 bits");
2533 return;
2534 }
2535
2536 if (bitsize || bitpos)
2537 gen_hsa_insns_for_bitfield_load (dest, addr, bitsize, bitpos, hbb,
2538 hsa_bitmemref_alignment (rhs));
2539 else
2540 {
2541 BrigType16_t mtype;
2542 /* Not dest->m_type, that's possibly extended. */
2543 mtype = mem_type_for_type (hsa_type_for_scalar_tree_type (type,
2544 false));
2545 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mtype, dest,
2546 addr);
2547 mem->set_align (hsa_object_alignment (rhs));
2548 hbb->append_insn (mem);
2549 }
2550 }
2551 else
2552 HSA_SORRY_ATV (EXPR_LOCATION (rhs),
2553 "support for HSA does not implement loading "
2554 "of expression %E",
2555 rhs);
2556 }
2557
2558 /* Return number of bits necessary for representation of a bit field,
2559 starting at BITPOS with size of BITSIZE. */
2560
2561 static unsigned
2562 get_bitfield_size (unsigned bitpos, unsigned bitsize)
2563 {
2564 unsigned s = bitpos + bitsize;
2565 unsigned sizes[] = {8, 16, 32, 64};
2566
2567 for (unsigned i = 0; i < 4; i++)
2568 if (s <= sizes[i])
2569 return sizes[i];
2570
2571 gcc_unreachable ();
2572 return 0;
2573 }
2574
2575 /* Generate HSAIL instructions storing into memory. LHS is the destination of
2576 the store, SRC is the source operand. Add instructions to HBB. */
2577
2578 static void
2579 gen_hsa_insns_for_store (tree lhs, hsa_op_base *src, hsa_bb *hbb)
2580 {
2581 HOST_WIDE_INT bitsize = 0, bitpos = 0;
2582 BrigAlignment8_t req_align;
2583 BrigType16_t mtype;
2584 mtype = mem_type_for_type (hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
2585 false));
2586 hsa_op_address *addr;
2587 addr = gen_hsa_addr (lhs, hbb, &bitsize, &bitpos);
2588
2589 /* Handle store to a bit field. */
2590 if (bitsize > 64)
2591 {
2592 HSA_SORRY_AT (EXPR_LOCATION (lhs),
2593 "support for HSA does not implement store to a bit field "
2594 "bigger than 64 bits");
2595 return;
2596 }
2597
2598 unsigned type_bitsize = get_bitfield_size (bitpos, bitsize);
2599
2600 /* HSAIL does not support MOV insn with 16-bits integers. */
2601 if (type_bitsize < 32)
2602 type_bitsize = 32;
2603
2604 if (bitpos || (bitsize && type_bitsize != bitsize))
2605 {
2606 unsigned HOST_WIDE_INT mask = 0;
2607 BrigType16_t mem_type
2608 = get_integer_type_by_bytes (type_bitsize / BITS_PER_UNIT,
2609 !TYPE_UNSIGNED (TREE_TYPE (lhs)));
2610
2611 for (unsigned i = 0; i < type_bitsize; i++)
2612 if (i < bitpos || i >= bitpos + bitsize)
2613 mask |= ((unsigned HOST_WIDE_INT)1 << i);
2614
2615 hsa_op_reg *value_reg = new hsa_op_reg (mem_type);
2616
2617 req_align = hsa_bitmemref_alignment (lhs);
2618 /* Load value from memory. */
2619 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mem_type,
2620 value_reg, addr);
2621 mem->set_align (req_align);
2622 hbb->append_insn (mem);
2623
2624 /* AND the loaded value with prepared mask. */
2625 hsa_op_reg *cleared_reg = new hsa_op_reg (mem_type);
2626
2627 BrigType16_t t
2628 = get_integer_type_by_bytes (type_bitsize / BITS_PER_UNIT, false);
2629 hsa_op_immed *c = new hsa_op_immed (mask, t);
2630
2631 hsa_insn_basic *clearing
2632 = new hsa_insn_basic (3, BRIG_OPCODE_AND, mem_type, cleared_reg,
2633 value_reg, c);
2634 hbb->append_insn (clearing);
2635
2636 /* Shift to left a value that is going to be stored. */
2637 hsa_op_reg *new_value_reg = new hsa_op_reg (mem_type);
2638
2639 hsa_insn_basic *basic = new hsa_insn_basic (2, BRIG_OPCODE_MOV, mem_type,
2640 new_value_reg, src);
2641 hsa_fixup_mov_insn_type (basic);
2642 hbb->append_insn (basic);
2643
2644 if (bitpos)
2645 {
2646 hsa_op_reg *shifted_value_reg = new hsa_op_reg (mem_type);
2647 c = new hsa_op_immed (bitpos, BRIG_TYPE_U32);
2648
2649 hsa_insn_basic *basic
2650 = new hsa_insn_basic (3, BRIG_OPCODE_SHL, mem_type,
2651 shifted_value_reg, new_value_reg, c);
2652 hbb->append_insn (basic);
2653
2654 new_value_reg = shifted_value_reg;
2655 }
2656
2657 /* OR the prepared value with prepared chunk loaded from memory. */
2658 hsa_op_reg *prepared_reg= new hsa_op_reg (mem_type);
2659 basic = new hsa_insn_basic (3, BRIG_OPCODE_OR, mem_type, prepared_reg,
2660 new_value_reg, cleared_reg);
2661 hbb->append_insn (basic);
2662
2663 src = prepared_reg;
2664 mtype = mem_type;
2665 }
2666 else
2667 req_align = hsa_object_alignment (lhs);
2668
2669 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, mtype, src, addr);
2670 mem->set_align (req_align);
2671
2672 /* The HSAIL verifier has another constraint: if the source is an immediate
2673 then it must match the destination type. If it's a register the low bits
2674 will be used for sub-word stores. We're always allocating new operands so
2675 we can modify the above in place. */
2676 if (hsa_op_immed *imm = dyn_cast <hsa_op_immed *> (src))
2677 {
2678 if (!hsa_type_packed_p (imm->m_type))
2679 imm->m_type = mem->m_type;
2680 else
2681 {
2682 /* ...and all vector immediates apparently need to be vectors of
2683 unsigned bytes. */
2684 unsigned bs = hsa_type_bit_size (imm->m_type);
2685 gcc_assert (bs == hsa_type_bit_size (mem->m_type));
2686 switch (bs)
2687 {
2688 case 32:
2689 imm->m_type = BRIG_TYPE_U8X4;
2690 break;
2691 case 64:
2692 imm->m_type = BRIG_TYPE_U8X8;
2693 break;
2694 case 128:
2695 imm->m_type = BRIG_TYPE_U8X16;
2696 break;
2697 default:
2698 gcc_unreachable ();
2699 }
2700 }
2701 }
2702
2703 hbb->append_insn (mem);
2704 }
2705
2706 /* Generate memory copy instructions that are going to be used
2707 for copying a SRC memory to TARGET memory,
2708 represented by pointer in a register. MIN_ALIGN is minimal alignment
2709 of provided HSA addresses. */
2710
2711 static void
2712 gen_hsa_memory_copy (hsa_bb *hbb, hsa_op_address *target, hsa_op_address *src,
2713 unsigned size, BrigAlignment8_t min_align)
2714 {
2715 hsa_op_address *addr;
2716 hsa_insn_mem *mem;
2717
2718 unsigned offset = 0;
2719 unsigned min_byte_align = hsa_byte_alignment (min_align);
2720
2721 while (size)
2722 {
2723 unsigned s;
2724 if (size >= 8)
2725 s = 8;
2726 else if (size >= 4)
2727 s = 4;
2728 else if (size >= 2)
2729 s = 2;
2730 else
2731 s = 1;
2732
2733 if (s > min_byte_align)
2734 s = min_byte_align;
2735
2736 BrigType16_t t = get_integer_type_by_bytes (s, false);
2737
2738 hsa_op_reg *tmp = new hsa_op_reg (t);
2739 addr = new hsa_op_address (src->m_symbol, src->m_reg,
2740 src->m_imm_offset + offset);
2741 mem = new hsa_insn_mem (BRIG_OPCODE_LD, t, tmp, addr);
2742 hbb->append_insn (mem);
2743
2744 addr = new hsa_op_address (target->m_symbol, target->m_reg,
2745 target->m_imm_offset + offset);
2746 mem = new hsa_insn_mem (BRIG_OPCODE_ST, t, tmp, addr);
2747 hbb->append_insn (mem);
2748 offset += s;
2749 size -= s;
2750 }
2751 }
2752
2753 /* Create a memset mask that is created by copying a CONSTANT byte value
2754 to an integer of BYTE_SIZE bytes. */
2755
2756 static unsigned HOST_WIDE_INT
2757 build_memset_value (unsigned HOST_WIDE_INT constant, unsigned byte_size)
2758 {
2759 if (constant == 0)
2760 return 0;
2761
2762 HOST_WIDE_INT v = constant;
2763
2764 for (unsigned i = 1; i < byte_size; i++)
2765 v |= constant << (8 * i);
2766
2767 return v;
2768 }
2769
2770 /* Generate memory set instructions that are going to be used
2771 for setting a CONSTANT byte value to TARGET memory of SIZE bytes.
2772 MIN_ALIGN is minimal alignment of provided HSA addresses. */
2773
2774 static void
2775 gen_hsa_memory_set (hsa_bb *hbb, hsa_op_address *target,
2776 unsigned HOST_WIDE_INT constant,
2777 unsigned size, BrigAlignment8_t min_align)
2778 {
2779 hsa_op_address *addr;
2780 hsa_insn_mem *mem;
2781
2782 unsigned offset = 0;
2783 unsigned min_byte_align = hsa_byte_alignment (min_align);
2784
2785 while (size)
2786 {
2787 unsigned s;
2788 if (size >= 8)
2789 s = 8;
2790 else if (size >= 4)
2791 s = 4;
2792 else if (size >= 2)
2793 s = 2;
2794 else
2795 s = 1;
2796
2797 if (s > min_byte_align)
2798 s = min_byte_align;
2799
2800 addr = new hsa_op_address (target->m_symbol, target->m_reg,
2801 target->m_imm_offset + offset);
2802
2803 BrigType16_t t = get_integer_type_by_bytes (s, false);
2804 HOST_WIDE_INT c = build_memset_value (constant, s);
2805
2806 mem = new hsa_insn_mem (BRIG_OPCODE_ST, t, new hsa_op_immed (c, t),
2807 addr);
2808 hbb->append_insn (mem);
2809 offset += s;
2810 size -= s;
2811 }
2812 }
2813
2814 /* Generate HSAIL instructions for a single assignment
2815 of an empty constructor to an ADDR_LHS. Constructor is passed as a
2816 tree RHS and all instructions are appended to HBB. ALIGN is
2817 alignment of the address. */
2818
2819 void
2820 gen_hsa_ctor_assignment (hsa_op_address *addr_lhs, tree rhs, hsa_bb *hbb,
2821 BrigAlignment8_t align)
2822 {
2823 if (CONSTRUCTOR_NELTS (rhs))
2824 {
2825 HSA_SORRY_AT (EXPR_LOCATION (rhs),
2826 "support for HSA does not implement load from constructor");
2827 return;
2828 }
2829
2830 unsigned size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (rhs)));
2831 gen_hsa_memory_set (hbb, addr_lhs, 0, size, align);
2832 }
2833
2834 /* Generate HSA instructions for a single assignment of RHS to LHS.
2835 HBB is the basic block they will be appended to. */
2836
2837 static void
2838 gen_hsa_insns_for_single_assignment (tree lhs, tree rhs, hsa_bb *hbb)
2839 {
2840 if (TREE_CODE (lhs) == SSA_NAME)
2841 {
2842 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
2843 if (hsa_seen_error ())
2844 return;
2845
2846 gen_hsa_insns_for_load (dest, rhs, TREE_TYPE (lhs), hbb);
2847 }
2848 else if (TREE_CODE (rhs) == SSA_NAME
2849 || (is_gimple_min_invariant (rhs) && TREE_CODE (rhs) != STRING_CST))
2850 {
2851 /* Store to memory. */
2852 hsa_op_base *src = hsa_reg_or_immed_for_gimple_op (rhs, hbb);
2853 if (hsa_seen_error ())
2854 return;
2855
2856 gen_hsa_insns_for_store (lhs, src, hbb);
2857 }
2858 else
2859 {
2860 BrigAlignment8_t lhs_align;
2861 hsa_op_address *addr_lhs = gen_hsa_addr_with_align (lhs, hbb,
2862 &lhs_align);
2863
2864 if (TREE_CODE (rhs) == CONSTRUCTOR)
2865 gen_hsa_ctor_assignment (addr_lhs, rhs, hbb, lhs_align);
2866 else
2867 {
2868 BrigAlignment8_t rhs_align;
2869 hsa_op_address *addr_rhs = gen_hsa_addr_with_align (rhs, hbb,
2870 &rhs_align);
2871
2872 unsigned size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (rhs)));
2873 gen_hsa_memory_copy (hbb, addr_lhs, addr_rhs, size,
2874 MIN (lhs_align, rhs_align));
2875 }
2876 }
2877 }
2878
2879 /* Prepend before INSN a load from spill symbol of SPILL_REG. Return the
2880 register into which we loaded. If this required another register to convert
2881 from a B1 type, return it in *PTMP2, otherwise store NULL into it. We
2882 assume we are out of SSA so the returned register does not have its
2883 definition set. */
2884
2885 hsa_op_reg *
2886 hsa_spill_in (hsa_insn_basic *insn, hsa_op_reg *spill_reg, hsa_op_reg **ptmp2)
2887 {
2888 hsa_symbol *spill_sym = spill_reg->m_spill_sym;
2889 hsa_op_reg *reg = new hsa_op_reg (spill_sym->m_type);
2890 hsa_op_address *addr = new hsa_op_address (spill_sym);
2891
2892 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, spill_sym->m_type,
2893 reg, addr);
2894 hsa_insert_insn_before (mem, insn);
2895
2896 *ptmp2 = NULL;
2897 if (spill_reg->m_type == BRIG_TYPE_B1)
2898 {
2899 hsa_insn_basic *cvtinsn;
2900 *ptmp2 = reg;
2901 reg = new hsa_op_reg (spill_reg->m_type);
2902
2903 cvtinsn = new hsa_insn_cvt (reg, *ptmp2);
2904 hsa_insert_insn_before (cvtinsn, insn);
2905 }
2906 return reg;
2907 }
2908
2909 /* Append after INSN a store to spill symbol of SPILL_REG. Return the register
2910 from which we stored. If this required another register to convert to a B1
2911 type, return it in *PTMP2, otherwise store NULL into it. We assume we are
2912 out of SSA so the returned register does not have its use updated. */
2913
2914 hsa_op_reg *
2915 hsa_spill_out (hsa_insn_basic *insn, hsa_op_reg *spill_reg, hsa_op_reg **ptmp2)
2916 {
2917 hsa_symbol *spill_sym = spill_reg->m_spill_sym;
2918 hsa_op_reg *reg = new hsa_op_reg (spill_sym->m_type);
2919 hsa_op_address *addr = new hsa_op_address (spill_sym);
2920 hsa_op_reg *returnreg;
2921
2922 *ptmp2 = NULL;
2923 returnreg = reg;
2924 if (spill_reg->m_type == BRIG_TYPE_B1)
2925 {
2926 hsa_insn_basic *cvtinsn;
2927 *ptmp2 = new hsa_op_reg (spill_sym->m_type);
2928 reg->m_type = spill_reg->m_type;
2929
2930 cvtinsn = new hsa_insn_cvt (*ptmp2, returnreg);
2931 hsa_append_insn_after (cvtinsn, insn);
2932 insn = cvtinsn;
2933 reg = *ptmp2;
2934 }
2935
2936 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, spill_sym->m_type, reg,
2937 addr);
2938 hsa_append_insn_after (mem, insn);
2939 return returnreg;
2940 }
2941
2942 /* Generate a comparison instruction that will compare LHS and RHS with
2943 comparison specified by CODE and put result into register DEST. DEST has to
2944 have its type set already but must not have its definition set yet.
2945 Generated instructions will be added to HBB. */
2946
2947 static void
2948 gen_hsa_cmp_insn_from_gimple (enum tree_code code, tree lhs, tree rhs,
2949 hsa_op_reg *dest, hsa_bb *hbb)
2950 {
2951 BrigCompareOperation8_t compare;
2952
2953 switch (code)
2954 {
2955 case LT_EXPR:
2956 compare = BRIG_COMPARE_LT;
2957 break;
2958 case LE_EXPR:
2959 compare = BRIG_COMPARE_LE;
2960 break;
2961 case GT_EXPR:
2962 compare = BRIG_COMPARE_GT;
2963 break;
2964 case GE_EXPR:
2965 compare = BRIG_COMPARE_GE;
2966 break;
2967 case EQ_EXPR:
2968 compare = BRIG_COMPARE_EQ;
2969 break;
2970 case NE_EXPR:
2971 compare = BRIG_COMPARE_NE;
2972 break;
2973 case UNORDERED_EXPR:
2974 compare = BRIG_COMPARE_NAN;
2975 break;
2976 case ORDERED_EXPR:
2977 compare = BRIG_COMPARE_NUM;
2978 break;
2979 case UNLT_EXPR:
2980 compare = BRIG_COMPARE_LTU;
2981 break;
2982 case UNLE_EXPR:
2983 compare = BRIG_COMPARE_LEU;
2984 break;
2985 case UNGT_EXPR:
2986 compare = BRIG_COMPARE_GTU;
2987 break;
2988 case UNGE_EXPR:
2989 compare = BRIG_COMPARE_GEU;
2990 break;
2991 case UNEQ_EXPR:
2992 compare = BRIG_COMPARE_EQU;
2993 break;
2994 case LTGT_EXPR:
2995 compare = BRIG_COMPARE_NEU;
2996 break;
2997
2998 default:
2999 HSA_SORRY_ATV (EXPR_LOCATION (lhs),
3000 "support for HSA does not implement comparison tree "
3001 "code %s\n", get_tree_code_name (code));
3002 return;
3003 }
3004
3005 /* CMP instruction returns e.g. 0xffffffff (for a 32-bit with integer)
3006 as a result of comparison. */
3007
3008 BrigType16_t dest_type = hsa_type_integer_p (dest->m_type)
3009 ? (BrigType16_t) BRIG_TYPE_B1 : dest->m_type;
3010
3011 hsa_insn_cmp *cmp = new hsa_insn_cmp (compare, dest_type);
3012 hsa_op_with_type *op1 = hsa_reg_or_immed_for_gimple_op (lhs, hbb);
3013 cmp->set_op (1, op1->extend_int_to_32bit (hbb));
3014 hsa_op_with_type *op2 = hsa_reg_or_immed_for_gimple_op (rhs, hbb);
3015 cmp->set_op (2, op2->extend_int_to_32bit (hbb));
3016
3017 hbb->append_insn (cmp);
3018 cmp->set_output_in_type (dest, 0, hbb);
3019 }
3020
3021 /* Generate an unary instruction with OPCODE and append it to a basic block
3022 HBB. The instruction uses DEST as a destination and OP1
3023 as a single operand. */
3024
3025 static void
3026 gen_hsa_unary_operation (BrigOpcode opcode, hsa_op_reg *dest,
3027 hsa_op_with_type *op1, hsa_bb *hbb)
3028 {
3029 gcc_checking_assert (dest);
3030 hsa_insn_basic *insn;
3031
3032 if (opcode == BRIG_OPCODE_MOV && hsa_needs_cvt (dest->m_type, op1->m_type))
3033 {
3034 insn = new hsa_insn_cvt (dest, op1);
3035 hbb->append_insn (insn);
3036 return;
3037 }
3038
3039 op1 = op1->extend_int_to_32bit (hbb);
3040 if (opcode == BRIG_OPCODE_FIRSTBIT || opcode == BRIG_OPCODE_LASTBIT)
3041 {
3042 BrigType16_t srctype = hsa_type_integer_p (op1->m_type) ? op1->m_type
3043 : hsa_unsigned_type_for_type (op1->m_type);
3044 insn = new hsa_insn_srctype (2, opcode, BRIG_TYPE_U32, srctype, NULL,
3045 op1);
3046 }
3047 else
3048 {
3049 BrigType16_t optype = hsa_extend_inttype_to_32bit (dest->m_type);
3050 insn = new hsa_insn_basic (2, opcode, optype, NULL, op1);
3051
3052 if (opcode == BRIG_OPCODE_MOV)
3053 hsa_fixup_mov_insn_type (insn);
3054 else if (opcode == BRIG_OPCODE_ABS || opcode == BRIG_OPCODE_NEG)
3055 {
3056 /* ABS and NEG only exist in _s form :-/ */
3057 if (insn->m_type == BRIG_TYPE_U32)
3058 insn->m_type = BRIG_TYPE_S32;
3059 else if (insn->m_type == BRIG_TYPE_U64)
3060 insn->m_type = BRIG_TYPE_S64;
3061 }
3062 }
3063
3064 hbb->append_insn (insn);
3065 insn->set_output_in_type (dest, 0, hbb);
3066 }
3067
3068 /* Generate a binary instruction with OPCODE and append it to a basic block
3069 HBB. The instruction uses DEST as a destination and operands OP1
3070 and OP2. */
3071
3072 static void
3073 gen_hsa_binary_operation (int opcode, hsa_op_reg *dest,
3074 hsa_op_with_type *op1, hsa_op_with_type *op2,
3075 hsa_bb *hbb)
3076 {
3077 gcc_checking_assert (dest);
3078
3079 BrigType16_t optype = hsa_extend_inttype_to_32bit (dest->m_type);
3080 op1 = op1->extend_int_to_32bit (hbb);
3081 op2 = op2->extend_int_to_32bit (hbb);
3082
3083 if ((opcode == BRIG_OPCODE_SHL || opcode == BRIG_OPCODE_SHR)
3084 && is_a <hsa_op_immed *> (op2))
3085 {
3086 hsa_op_immed *i = dyn_cast <hsa_op_immed *> (op2);
3087 i->set_type (BRIG_TYPE_U32);
3088 }
3089 if ((opcode == BRIG_OPCODE_OR
3090 || opcode == BRIG_OPCODE_XOR
3091 || opcode == BRIG_OPCODE_AND)
3092 && is_a <hsa_op_immed *> (op2))
3093 {
3094 hsa_op_immed *i = dyn_cast <hsa_op_immed *> (op2);
3095 i->set_type (hsa_unsigned_type_for_type (i->m_type));
3096 }
3097
3098 hsa_insn_basic *insn = new hsa_insn_basic (3, opcode, optype, NULL,
3099 op1, op2);
3100 hbb->append_insn (insn);
3101 insn->set_output_in_type (dest, 0, hbb);
3102 }
3103
3104 /* Generate HSA instructions for a single assignment. HBB is the basic block
3105 they will be appended to. */
3106
3107 static void
3108 gen_hsa_insns_for_operation_assignment (gimple *assign, hsa_bb *hbb)
3109 {
3110 tree_code code = gimple_assign_rhs_code (assign);
3111 gimple_rhs_class rhs_class = get_gimple_rhs_class (gimple_expr_code (assign));
3112
3113 tree lhs = gimple_assign_lhs (assign);
3114 tree rhs1 = gimple_assign_rhs1 (assign);
3115 tree rhs2 = gimple_assign_rhs2 (assign);
3116 tree rhs3 = gimple_assign_rhs3 (assign);
3117
3118 BrigOpcode opcode;
3119
3120 switch (code)
3121 {
3122 CASE_CONVERT:
3123 case FLOAT_EXPR:
3124 /* The opcode is changed to BRIG_OPCODE_CVT if BRIG types
3125 needs a conversion. */
3126 opcode = BRIG_OPCODE_MOV;
3127 break;
3128
3129 case PLUS_EXPR:
3130 case POINTER_PLUS_EXPR:
3131 opcode = BRIG_OPCODE_ADD;
3132 break;
3133 case MINUS_EXPR:
3134 opcode = BRIG_OPCODE_SUB;
3135 break;
3136 case MULT_EXPR:
3137 opcode = BRIG_OPCODE_MUL;
3138 break;
3139 case MULT_HIGHPART_EXPR:
3140 opcode = BRIG_OPCODE_MULHI;
3141 break;
3142 case RDIV_EXPR:
3143 case TRUNC_DIV_EXPR:
3144 case EXACT_DIV_EXPR:
3145 opcode = BRIG_OPCODE_DIV;
3146 break;
3147 case CEIL_DIV_EXPR:
3148 case FLOOR_DIV_EXPR:
3149 case ROUND_DIV_EXPR:
3150 HSA_SORRY_AT (gimple_location (assign),
3151 "support for HSA does not implement CEIL_DIV_EXPR, "
3152 "FLOOR_DIV_EXPR or ROUND_DIV_EXPR");
3153 return;
3154 case TRUNC_MOD_EXPR:
3155 opcode = BRIG_OPCODE_REM;
3156 break;
3157 case CEIL_MOD_EXPR:
3158 case FLOOR_MOD_EXPR:
3159 case ROUND_MOD_EXPR:
3160 HSA_SORRY_AT (gimple_location (assign),
3161 "support for HSA does not implement CEIL_MOD_EXPR, "
3162 "FLOOR_MOD_EXPR or ROUND_MOD_EXPR");
3163 return;
3164 case NEGATE_EXPR:
3165 opcode = BRIG_OPCODE_NEG;
3166 break;
3167 case FMA_EXPR:
3168 /* There is a native HSA instruction for scalar FMAs but not for vector
3169 ones. */
3170 if (TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE)
3171 {
3172 hsa_op_reg *dest
3173 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3174 hsa_op_with_type *op1 = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3175 hsa_op_with_type *op2 = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3176 hsa_op_with_type *op3 = hsa_reg_or_immed_for_gimple_op (rhs3, hbb);
3177 hsa_op_reg *tmp = new hsa_op_reg (dest->m_type);
3178 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp, op1, op2, hbb);
3179 gen_hsa_binary_operation (BRIG_OPCODE_ADD, dest, tmp, op3, hbb);
3180 return;
3181 }
3182 opcode = BRIG_OPCODE_MAD;
3183 break;
3184 case MIN_EXPR:
3185 opcode = BRIG_OPCODE_MIN;
3186 break;
3187 case MAX_EXPR:
3188 opcode = BRIG_OPCODE_MAX;
3189 break;
3190 case ABS_EXPR:
3191 opcode = BRIG_OPCODE_ABS;
3192 break;
3193 case LSHIFT_EXPR:
3194 opcode = BRIG_OPCODE_SHL;
3195 break;
3196 case RSHIFT_EXPR:
3197 opcode = BRIG_OPCODE_SHR;
3198 break;
3199 case LROTATE_EXPR:
3200 case RROTATE_EXPR:
3201 {
3202 hsa_insn_basic *insn = NULL;
3203 int code1 = code == LROTATE_EXPR ? BRIG_OPCODE_SHL : BRIG_OPCODE_SHR;
3204 int code2 = code != LROTATE_EXPR ? BRIG_OPCODE_SHL : BRIG_OPCODE_SHR;
3205 BrigType16_t btype = hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
3206 true);
3207
3208 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3209 hsa_op_reg *op1 = new hsa_op_reg (btype);
3210 hsa_op_reg *op2 = new hsa_op_reg (btype);
3211 hsa_op_with_type *shift1 = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3212
3213 tree type = TREE_TYPE (rhs2);
3214 unsigned HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (TYPE_SIZE (type));
3215
3216 hsa_op_with_type *shift2 = NULL;
3217 if (TREE_CODE (rhs2) == INTEGER_CST)
3218 shift2 = new hsa_op_immed (bitsize - tree_to_uhwi (rhs2),
3219 BRIG_TYPE_U32);
3220 else if (TREE_CODE (rhs2) == SSA_NAME)
3221 {
3222 hsa_op_reg *s = hsa_cfun->reg_for_gimple_ssa (rhs2);
3223 s = as_a <hsa_op_reg *> (s->extend_int_to_32bit (hbb));
3224 hsa_op_reg *d = new hsa_op_reg (s->m_type);
3225 hsa_op_immed *size_imm = new hsa_op_immed (bitsize, BRIG_TYPE_U32);
3226
3227 insn = new hsa_insn_basic (3, BRIG_OPCODE_SUB, d->m_type,
3228 d, s, size_imm);
3229 hbb->append_insn (insn);
3230
3231 shift2 = d;
3232 }
3233 else
3234 gcc_unreachable ();
3235
3236 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3237 gen_hsa_binary_operation (code1, op1, src, shift1, hbb);
3238 gen_hsa_binary_operation (code2, op2, src, shift2, hbb);
3239 gen_hsa_binary_operation (BRIG_OPCODE_OR, dest, op1, op2, hbb);
3240
3241 return;
3242 }
3243 case BIT_IOR_EXPR:
3244 opcode = BRIG_OPCODE_OR;
3245 break;
3246 case BIT_XOR_EXPR:
3247 opcode = BRIG_OPCODE_XOR;
3248 break;
3249 case BIT_AND_EXPR:
3250 opcode = BRIG_OPCODE_AND;
3251 break;
3252 case BIT_NOT_EXPR:
3253 opcode = BRIG_OPCODE_NOT;
3254 break;
3255 case FIX_TRUNC_EXPR:
3256 {
3257 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3258 hsa_op_with_type *v = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3259
3260 if (hsa_needs_cvt (dest->m_type, v->m_type))
3261 {
3262 hsa_op_reg *tmp = new hsa_op_reg (v->m_type);
3263
3264 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_TRUNC,
3265 tmp->m_type, tmp, v);
3266 hbb->append_insn (insn);
3267
3268 hsa_insn_basic *cvtinsn = new hsa_insn_cvt (dest, tmp);
3269 hbb->append_insn (cvtinsn);
3270 }
3271 else
3272 {
3273 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_TRUNC,
3274 dest->m_type, dest, v);
3275 hbb->append_insn (insn);
3276 }
3277
3278 return;
3279 }
3280 opcode = BRIG_OPCODE_TRUNC;
3281 break;
3282
3283 case LT_EXPR:
3284 case LE_EXPR:
3285 case GT_EXPR:
3286 case GE_EXPR:
3287 case EQ_EXPR:
3288 case NE_EXPR:
3289 case UNORDERED_EXPR:
3290 case ORDERED_EXPR:
3291 case UNLT_EXPR:
3292 case UNLE_EXPR:
3293 case UNGT_EXPR:
3294 case UNGE_EXPR:
3295 case UNEQ_EXPR:
3296 case LTGT_EXPR:
3297 {
3298 hsa_op_reg *dest
3299 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3300
3301 gen_hsa_cmp_insn_from_gimple (code, rhs1, rhs2, dest, hbb);
3302 return;
3303 }
3304 case COND_EXPR:
3305 {
3306 hsa_op_reg *dest
3307 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3308 hsa_op_with_type *ctrl = NULL;
3309 tree cond = rhs1;
3310
3311 if (CONSTANT_CLASS_P (cond) || TREE_CODE (cond) == SSA_NAME)
3312 ctrl = hsa_reg_or_immed_for_gimple_op (cond, hbb);
3313 else
3314 {
3315 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_B1);
3316
3317 gen_hsa_cmp_insn_from_gimple (TREE_CODE (cond),
3318 TREE_OPERAND (cond, 0),
3319 TREE_OPERAND (cond, 1),
3320 r, hbb);
3321
3322 ctrl = r;
3323 }
3324
3325 hsa_op_with_type *op2 = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3326 hsa_op_with_type *op3 = hsa_reg_or_immed_for_gimple_op (rhs3, hbb);
3327 op2 = op2->extend_int_to_32bit (hbb);
3328 op3 = op3->extend_int_to_32bit (hbb);
3329
3330 BrigType16_t type = hsa_extend_inttype_to_32bit (dest->m_type);
3331 BrigType16_t utype = hsa_unsigned_type_for_type (type);
3332 if (is_a <hsa_op_immed *> (op2))
3333 op2->m_type = utype;
3334 if (is_a <hsa_op_immed *> (op3))
3335 op3->m_type = utype;
3336
3337 hsa_insn_basic *insn
3338 = new hsa_insn_basic (4, BRIG_OPCODE_CMOV,
3339 hsa_bittype_for_type (type),
3340 NULL, ctrl, op2, op3);
3341
3342 hbb->append_insn (insn);
3343 insn->set_output_in_type (dest, 0, hbb);
3344 return;
3345 }
3346 case COMPLEX_EXPR:
3347 {
3348 hsa_op_reg *dest
3349 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3350 hsa_op_with_type *rhs1_reg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3351 rhs1_reg = rhs1_reg->extend_int_to_32bit (hbb);
3352 hsa_op_with_type *rhs2_reg = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3353 rhs2_reg = rhs2_reg->extend_int_to_32bit (hbb);
3354
3355 if (hsa_seen_error ())
3356 return;
3357
3358 BrigType16_t src_type = hsa_bittype_for_type (rhs1_reg->m_type);
3359 rhs1_reg = rhs1_reg->get_in_type (src_type, hbb);
3360 rhs2_reg = rhs2_reg->get_in_type (src_type, hbb);
3361
3362 hsa_insn_packed *insn
3363 = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE, dest->m_type, src_type,
3364 dest, rhs1_reg, rhs2_reg);
3365 hbb->append_insn (insn);
3366
3367 return;
3368 }
3369 default:
3370 /* Implement others as we come across them. */
3371 HSA_SORRY_ATV (gimple_location (assign),
3372 "support for HSA does not implement operation %s",
3373 get_tree_code_name (code));
3374 return;
3375 }
3376
3377
3378 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3379 hsa_op_with_type *op1 = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3380 hsa_op_with_type *op2
3381 = rhs2 ? hsa_reg_or_immed_for_gimple_op (rhs2, hbb) : NULL;
3382
3383 if (hsa_seen_error ())
3384 return;
3385
3386 switch (rhs_class)
3387 {
3388 case GIMPLE_TERNARY_RHS:
3389 {
3390 hsa_op_with_type *op3 = hsa_reg_or_immed_for_gimple_op (rhs3, hbb);
3391 op3 = op3->extend_int_to_32bit (hbb);
3392 hsa_insn_basic *insn = new hsa_insn_basic (4, opcode, dest->m_type, dest,
3393 op1, op2, op3);
3394 hbb->append_insn (insn);
3395 }
3396 return;
3397
3398 case GIMPLE_BINARY_RHS:
3399 gen_hsa_binary_operation (opcode, dest, op1, op2, hbb);
3400 break;
3401
3402 case GIMPLE_UNARY_RHS:
3403 gen_hsa_unary_operation (opcode, dest, op1, hbb);
3404 break;
3405 default:
3406 gcc_unreachable ();
3407 }
3408 }
3409
3410 /* Generate HSA instructions for a given gimple condition statement COND.
3411 Instructions will be appended to HBB, which also needs to be the
3412 corresponding structure to the basic_block of COND. */
3413
3414 static void
3415 gen_hsa_insns_for_cond_stmt (gimple *cond, hsa_bb *hbb)
3416 {
3417 hsa_op_reg *ctrl = new hsa_op_reg (BRIG_TYPE_B1);
3418 hsa_insn_cbr *cbr;
3419
3420 gen_hsa_cmp_insn_from_gimple (gimple_cond_code (cond),
3421 gimple_cond_lhs (cond),
3422 gimple_cond_rhs (cond),
3423 ctrl, hbb);
3424
3425 cbr = new hsa_insn_cbr (ctrl);
3426 hbb->append_insn (cbr);
3427 }
3428
3429 /* Maximum number of elements in a jump table for an HSA SBR instruction. */
3430
3431 #define HSA_MAXIMUM_SBR_LABELS 16
3432
3433 /* Return lowest value of a switch S that is handled in a non-default
3434 label. */
3435
3436 static tree
3437 get_switch_low (gswitch *s)
3438 {
3439 unsigned labels = gimple_switch_num_labels (s);
3440 gcc_checking_assert (labels >= 1);
3441
3442 return CASE_LOW (gimple_switch_label (s, 1));
3443 }
3444
3445 /* Return highest value of a switch S that is handled in a non-default
3446 label. */
3447
3448 static tree
3449 get_switch_high (gswitch *s)
3450 {
3451 unsigned labels = gimple_switch_num_labels (s);
3452
3453 /* Compare last label to maximum number of labels. */
3454 tree label = gimple_switch_label (s, labels - 1);
3455 tree low = CASE_LOW (label);
3456 tree high = CASE_HIGH (label);
3457
3458 return high != NULL_TREE ? high : low;
3459 }
3460
3461 static tree
3462 get_switch_size (gswitch *s)
3463 {
3464 return int_const_binop (MINUS_EXPR, get_switch_high (s), get_switch_low (s));
3465 }
3466
3467 /* Generate HSA instructions for a given gimple switch.
3468 Instructions will be appended to HBB. */
3469
3470 static void
3471 gen_hsa_insns_for_switch_stmt (gswitch *s, hsa_bb *hbb)
3472 {
3473 gimple_stmt_iterator it = gsi_for_stmt (s);
3474 gsi_prev (&it);
3475
3476 /* Create preambule that verifies that index - lowest_label >= 0. */
3477 edge e = split_block (hbb->m_bb, gsi_stmt (it));
3478 e->flags &= ~EDGE_FALLTHRU;
3479 e->flags |= EDGE_TRUE_VALUE;
3480
3481 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
3482 tree index_tree = gimple_switch_index (s);
3483 tree lowest = get_switch_low (s);
3484 tree highest = get_switch_high (s);
3485
3486 hsa_op_reg *index = hsa_cfun->reg_for_gimple_ssa (index_tree);
3487 index = as_a <hsa_op_reg *> (index->extend_int_to_32bit (hbb));
3488
3489 hsa_op_reg *cmp1_reg = new hsa_op_reg (BRIG_TYPE_B1);
3490 hsa_op_immed *cmp1_immed = new hsa_op_immed (lowest, true);
3491 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_GE, cmp1_reg->m_type,
3492 cmp1_reg, index, cmp1_immed));
3493
3494 hsa_op_reg *cmp2_reg = new hsa_op_reg (BRIG_TYPE_B1);
3495 hsa_op_immed *cmp2_immed = new hsa_op_immed (highest, true);
3496 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_LE, cmp2_reg->m_type,
3497 cmp2_reg, index, cmp2_immed));
3498
3499 hsa_op_reg *cmp_reg = new hsa_op_reg (BRIG_TYPE_B1);
3500 hbb->append_insn (new hsa_insn_basic (3, BRIG_OPCODE_AND, cmp_reg->m_type,
3501 cmp_reg, cmp1_reg, cmp2_reg));
3502
3503 hbb->append_insn (new hsa_insn_cbr (cmp_reg));
3504
3505 tree default_label = gimple_switch_default_label (s);
3506 basic_block default_label_bb = label_to_block_fn (func,
3507 CASE_LABEL (default_label));
3508
3509 if (!gimple_seq_empty_p (phi_nodes (default_label_bb)))
3510 {
3511 default_label_bb = split_edge (find_edge (e->dest, default_label_bb));
3512 hsa_init_new_bb (default_label_bb);
3513 }
3514
3515 make_edge (e->src, default_label_bb, EDGE_FALSE_VALUE);
3516
3517 hsa_cfun->m_modified_cfg = true;
3518
3519 /* Basic block with the SBR instruction. */
3520 hbb = hsa_init_new_bb (e->dest);
3521
3522 hsa_op_reg *sub_index = new hsa_op_reg (index->m_type);
3523 hbb->append_insn (new hsa_insn_basic (3, BRIG_OPCODE_SUB, sub_index->m_type,
3524 sub_index, index,
3525 new hsa_op_immed (lowest, true)));
3526
3527 hsa_op_base *tmp = sub_index->get_in_type (BRIG_TYPE_U64, hbb);
3528 sub_index = as_a <hsa_op_reg *> (tmp);
3529 unsigned labels = gimple_switch_num_labels (s);
3530 unsigned HOST_WIDE_INT size = tree_to_uhwi (get_switch_size (s));
3531
3532 hsa_insn_sbr *sbr = new hsa_insn_sbr (sub_index, size + 1);
3533
3534 /* Prepare array with default label destination. */
3535 for (unsigned HOST_WIDE_INT i = 0; i <= size; i++)
3536 sbr->m_jump_table.safe_push (default_label_bb);
3537
3538 /* Iterate all labels and fill up the jump table. */
3539 for (unsigned i = 1; i < labels; i++)
3540 {
3541 tree label = gimple_switch_label (s, i);
3542 basic_block bb = label_to_block_fn (func, CASE_LABEL (label));
3543
3544 unsigned HOST_WIDE_INT sub_low
3545 = tree_to_uhwi (int_const_binop (MINUS_EXPR, CASE_LOW (label), lowest));
3546
3547 unsigned HOST_WIDE_INT sub_high = sub_low;
3548 tree high = CASE_HIGH (label);
3549 if (high != NULL)
3550 sub_high = tree_to_uhwi (int_const_binop (MINUS_EXPR, high, lowest));
3551
3552 for (unsigned HOST_WIDE_INT j = sub_low; j <= sub_high; j++)
3553 sbr->m_jump_table[j] = bb;
3554 }
3555
3556 hbb->append_insn (sbr);
3557 }
3558
3559 /* Verify that the function DECL can be handled by HSA. */
3560
3561 static void
3562 verify_function_arguments (tree decl)
3563 {
3564 tree type = TREE_TYPE (decl);
3565 if (DECL_STATIC_CHAIN (decl))
3566 {
3567 HSA_SORRY_ATV (EXPR_LOCATION (decl),
3568 "HSA does not support nested functions: %qD", decl);
3569 return;
3570 }
3571 else if (!TYPE_ARG_TYPES (type) || stdarg_p (type))
3572 {
3573 HSA_SORRY_ATV (EXPR_LOCATION (decl),
3574 "HSA does not support functions with variadic arguments "
3575 "(or unknown return type): %qD", decl);
3576 return;
3577 }
3578 }
3579
3580 /* Return BRIG type for FORMAL_ARG_TYPE. If the formal argument type is NULL,
3581 return ACTUAL_ARG_TYPE. */
3582
3583 static BrigType16_t
3584 get_format_argument_type (tree formal_arg_type, BrigType16_t actual_arg_type)
3585 {
3586 if (formal_arg_type == NULL)
3587 return actual_arg_type;
3588
3589 BrigType16_t decl_type
3590 = hsa_type_for_scalar_tree_type (formal_arg_type, false);
3591 return mem_type_for_type (decl_type);
3592 }
3593
3594 /* Generate HSA instructions for a direct call instruction.
3595 Instructions will be appended to HBB, which also needs to be the
3596 corresponding structure to the basic_block of STMT.
3597 If ASSIGN_LHS is false, do not copy HSA function result argument into the
3598 corresponding HSA representation of the gimple statement LHS. */
3599
3600 static void
3601 gen_hsa_insns_for_direct_call (gimple *stmt, hsa_bb *hbb,
3602 bool assign_lhs = true)
3603 {
3604 tree decl = gimple_call_fndecl (stmt);
3605 verify_function_arguments (decl);
3606 if (hsa_seen_error ())
3607 return;
3608
3609 hsa_insn_call *call_insn = new hsa_insn_call (decl);
3610 hsa_cfun->m_called_functions.safe_push (call_insn->m_called_function);
3611
3612 /* Argument block start. */
3613 hsa_insn_arg_block *arg_start
3614 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_START, call_insn);
3615 hbb->append_insn (arg_start);
3616
3617 tree parm_type_chain = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
3618
3619 /* Preparation of arguments that will be passed to function. */
3620 const unsigned args = gimple_call_num_args (stmt);
3621 for (unsigned i = 0; i < args; ++i)
3622 {
3623 tree parm = gimple_call_arg (stmt, (int)i);
3624 tree parm_decl_type = parm_type_chain != NULL_TREE
3625 ? TREE_VALUE (parm_type_chain) : NULL_TREE;
3626 hsa_op_address *addr;
3627
3628 if (AGGREGATE_TYPE_P (TREE_TYPE (parm)))
3629 {
3630 addr = gen_hsa_addr_for_arg (TREE_TYPE (parm), i);
3631 BrigAlignment8_t align;
3632 hsa_op_address *src = gen_hsa_addr_with_align (parm, hbb, &align);
3633 gen_hsa_memory_copy (hbb, addr, src,
3634 addr->m_symbol->total_byte_size (), align);
3635 }
3636 else
3637 {
3638 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (parm, hbb);
3639
3640 if (parm_decl_type != NULL && AGGREGATE_TYPE_P (parm_decl_type))
3641 {
3642 HSA_SORRY_AT (gimple_location (stmt),
3643 "support for HSA does not implement an aggregate "
3644 "formal argument in a function call, while actual "
3645 "argument is not an aggregate");
3646 return;
3647 }
3648
3649 BrigType16_t formal_arg_type
3650 = get_format_argument_type (parm_decl_type, src->m_type);
3651 if (hsa_seen_error ())
3652 return;
3653
3654 if (src->m_type != formal_arg_type)
3655 src = src->get_in_type (formal_arg_type, hbb);
3656
3657 addr
3658 = gen_hsa_addr_for_arg (parm_decl_type != NULL_TREE ?
3659 parm_decl_type: TREE_TYPE (parm), i);
3660 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, formal_arg_type,
3661 src, addr);
3662
3663 hbb->append_insn (mem);
3664 }
3665
3666 call_insn->m_input_args.safe_push (addr->m_symbol);
3667 if (parm_type_chain)
3668 parm_type_chain = TREE_CHAIN (parm_type_chain);
3669 }
3670
3671 call_insn->m_args_code_list = new hsa_op_code_list (args);
3672 hbb->append_insn (call_insn);
3673
3674 tree result_type = TREE_TYPE (TREE_TYPE (decl));
3675
3676 tree result = gimple_call_lhs (stmt);
3677 hsa_insn_mem *result_insn = NULL;
3678 if (!VOID_TYPE_P (result_type))
3679 {
3680 hsa_op_address *addr = gen_hsa_addr_for_arg (result_type, -1);
3681
3682 /* Even if result of a function call is unused, we have to emit
3683 declaration for the result. */
3684 if (result && assign_lhs)
3685 {
3686 tree lhs_type = TREE_TYPE (result);
3687
3688 if (hsa_seen_error ())
3689 return;
3690
3691 if (AGGREGATE_TYPE_P (lhs_type))
3692 {
3693 BrigAlignment8_t align;
3694 hsa_op_address *result_addr
3695 = gen_hsa_addr_with_align (result, hbb, &align);
3696 gen_hsa_memory_copy (hbb, result_addr, addr,
3697 addr->m_symbol->total_byte_size (), align);
3698 }
3699 else
3700 {
3701 BrigType16_t mtype
3702 = mem_type_for_type (hsa_type_for_scalar_tree_type (lhs_type,
3703 false));
3704
3705 hsa_op_reg *dst = hsa_cfun->reg_for_gimple_ssa (result);
3706 result_insn = new hsa_insn_mem (BRIG_OPCODE_LD, mtype, dst, addr);
3707 hbb->append_insn (result_insn);
3708 }
3709 }
3710
3711 call_insn->m_output_arg = addr->m_symbol;
3712 call_insn->m_result_code_list = new hsa_op_code_list (1);
3713 }
3714 else
3715 {
3716 if (result)
3717 {
3718 HSA_SORRY_AT (gimple_location (stmt),
3719 "support for HSA does not implement an assignment of "
3720 "return value from a void function");
3721 return;
3722 }
3723
3724 call_insn->m_result_code_list = new hsa_op_code_list (0);
3725 }
3726
3727 /* Argument block end. */
3728 hsa_insn_arg_block *arg_end
3729 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_END, call_insn);
3730 hbb->append_insn (arg_end);
3731 }
3732
3733 /* Generate HSA instructions for a direct call of an internal fn.
3734 Instructions will be appended to HBB, which also needs to be the
3735 corresponding structure to the basic_block of STMT. */
3736
3737 static void
3738 gen_hsa_insns_for_call_of_internal_fn (gimple *stmt, hsa_bb *hbb)
3739 {
3740 tree lhs = gimple_call_lhs (stmt);
3741 if (!lhs)
3742 return;
3743
3744 tree lhs_type = TREE_TYPE (lhs);
3745 tree rhs1 = gimple_call_arg (stmt, 0);
3746 tree rhs1_type = TREE_TYPE (rhs1);
3747 enum internal_fn fn = gimple_call_internal_fn (stmt);
3748 hsa_internal_fn *ifn
3749 = new hsa_internal_fn (fn, tree_to_uhwi (TYPE_SIZE (rhs1_type)));
3750 hsa_insn_call *call_insn = new hsa_insn_call (ifn);
3751
3752 gcc_checking_assert (FLOAT_TYPE_P (rhs1_type));
3753
3754 if (!hsa_emitted_internal_decls->find (call_insn->m_called_internal_fn))
3755 hsa_cfun->m_called_internal_fns.safe_push (call_insn->m_called_internal_fn);
3756
3757 hsa_insn_arg_block *arg_start
3758 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_START, call_insn);
3759 hbb->append_insn (arg_start);
3760
3761 unsigned num_args = gimple_call_num_args (stmt);
3762
3763 /* Function arguments. */
3764 for (unsigned i = 0; i < num_args; i++)
3765 {
3766 tree parm = gimple_call_arg (stmt, (int)i);
3767 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (parm, hbb);
3768
3769 hsa_op_address *addr = gen_hsa_addr_for_arg (TREE_TYPE (parm), i);
3770 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, src->m_type,
3771 src, addr);
3772
3773 call_insn->m_input_args.safe_push (addr->m_symbol);
3774 hbb->append_insn (mem);
3775 }
3776
3777 call_insn->m_args_code_list = new hsa_op_code_list (num_args);
3778 hbb->append_insn (call_insn);
3779
3780 /* Assign returned value. */
3781 hsa_op_address *addr = gen_hsa_addr_for_arg (lhs_type, -1);
3782
3783 call_insn->m_output_arg = addr->m_symbol;
3784 call_insn->m_result_code_list = new hsa_op_code_list (1);
3785
3786 /* Argument block end. */
3787 hsa_insn_arg_block *arg_end
3788 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_END, call_insn);
3789 hbb->append_insn (arg_end);
3790 }
3791
3792 /* Generate HSA instructions for a return value instruction.
3793 Instructions will be appended to HBB, which also needs to be the
3794 corresponding structure to the basic_block of STMT. */
3795
3796 static void
3797 gen_hsa_insns_for_return (greturn *stmt, hsa_bb *hbb)
3798 {
3799 tree retval = gimple_return_retval (stmt);
3800 if (retval)
3801 {
3802 hsa_op_address *addr = new hsa_op_address (hsa_cfun->m_output_arg);
3803
3804 if (AGGREGATE_TYPE_P (TREE_TYPE (retval)))
3805 {
3806 BrigAlignment8_t align;
3807 hsa_op_address *retval_addr = gen_hsa_addr_with_align (retval, hbb,
3808 &align);
3809 gen_hsa_memory_copy (hbb, addr, retval_addr,
3810 hsa_cfun->m_output_arg->total_byte_size (),
3811 align);
3812 }
3813 else
3814 {
3815 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (retval),
3816 false);
3817 BrigType16_t mtype = mem_type_for_type (t);
3818
3819 /* Store of return value. */
3820 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (retval, hbb);
3821 src = src->get_in_type (mtype, hbb);
3822 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, mtype, src,
3823 addr);
3824 hbb->append_insn (mem);
3825 }
3826 }
3827
3828 /* HSAIL return instruction emission. */
3829 hsa_insn_basic *ret = new hsa_insn_basic (0, BRIG_OPCODE_RET);
3830 hbb->append_insn (ret);
3831 }
3832
3833 /* Set OP_INDEX-th operand of the instruction to DEST, as the DEST
3834 can have a different type, conversion instructions are possibly
3835 appended to HBB. */
3836
3837 void
3838 hsa_insn_basic::set_output_in_type (hsa_op_reg *dest, unsigned op_index,
3839 hsa_bb *hbb)
3840 {
3841 gcc_checking_assert (op_output_p (op_index));
3842
3843 if (dest->m_type == m_type)
3844 {
3845 set_op (op_index, dest);
3846 return;
3847 }
3848
3849 hsa_insn_basic *insn;
3850 hsa_op_reg *tmp;
3851 if (hsa_needs_cvt (dest->m_type, m_type))
3852 {
3853 tmp = new hsa_op_reg (m_type);
3854 insn = new hsa_insn_cvt (dest, tmp);
3855 }
3856 else if (hsa_type_bit_size (dest->m_type) == hsa_type_bit_size (m_type))
3857 {
3858 /* When output, HSA registers do not really have types, only sizes, so if
3859 the sizes match, we can use the register directly. */
3860 set_op (op_index, dest);
3861 return;
3862 }
3863 else
3864 {
3865 tmp = new hsa_op_reg (m_type);
3866 insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV, dest->m_type,
3867 dest, tmp->get_in_type (dest->m_type, hbb));
3868 hsa_fixup_mov_insn_type (insn);
3869 }
3870 set_op (op_index, tmp);
3871 hbb->append_insn (insn);
3872 }
3873
3874 /* Generate instruction OPCODE to query a property of HSA grid along the
3875 given DIMENSION. Store result into DEST and append the instruction to
3876 HBB. */
3877
3878 static void
3879 query_hsa_grid_dim (hsa_op_reg *dest, int opcode, hsa_op_immed *dimension,
3880 hsa_bb *hbb)
3881 {
3882 hsa_insn_basic *insn = new hsa_insn_basic (2, opcode, BRIG_TYPE_U32, NULL,
3883 dimension);
3884 hbb->append_insn (insn);
3885 insn->set_output_in_type (dest, 0, hbb);
3886 }
3887
3888 /* Generate instruction OPCODE to query a property of HSA grid along the given
3889 dimension which is an immediate in first argument of STMT. Store result
3890 into the register corresponding to LHS of STMT and append the instruction to
3891 HBB. */
3892
3893 static void
3894 query_hsa_grid_dim (gimple *stmt, int opcode, hsa_bb *hbb)
3895 {
3896 tree lhs = gimple_call_lhs (dyn_cast <gcall *> (stmt));
3897 if (lhs == NULL_TREE)
3898 return;
3899
3900 tree arg = gimple_call_arg (stmt, 0);
3901 unsigned HOST_WIDE_INT dim = 5;
3902 if (tree_fits_uhwi_p (arg))
3903 dim = tree_to_uhwi (arg);
3904 if (dim > 2)
3905 {
3906 HSA_SORRY_AT (gimple_location (stmt),
3907 "HSA grid query dimension must be immediate constant 0, 1 "
3908 "or 2");
3909 return;
3910 }
3911
3912 hsa_op_immed *hdim = new hsa_op_immed (dim, (BrigKind16_t) BRIG_TYPE_U32);
3913 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3914 query_hsa_grid_dim (dest, opcode, hdim, hbb);
3915 }
3916
3917 /* Generate instruction OPCODE to query a property of HSA grid that is
3918 independent of any dimension. Store result into the register corresponding
3919 to LHS of STMT and append the instruction to HBB. */
3920
3921 static void
3922 query_hsa_grid_nodim (gimple *stmt, BrigOpcode16_t opcode, hsa_bb *hbb)
3923 {
3924 tree lhs = gimple_call_lhs (dyn_cast <gcall *> (stmt));
3925 if (lhs == NULL_TREE)
3926 return;
3927 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3928 BrigType16_t brig_type = hsa_unsigned_type_for_type (dest->m_type);
3929 hsa_insn_basic *insn = new hsa_insn_basic (1, opcode, brig_type, dest);
3930 hbb->append_insn (insn);
3931 }
3932
3933 /* Emit instructions that set hsa_num_threads according to provided VALUE.
3934 Instructions are appended to basic block HBB. */
3935
3936 static void
3937 gen_set_num_threads (tree value, hsa_bb *hbb)
3938 {
3939 hbb->append_insn (new hsa_insn_comment ("omp_set_num_threads"));
3940 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (value, hbb);
3941
3942 src = src->get_in_type (hsa_num_threads->m_type, hbb);
3943 hsa_op_address *addr = new hsa_op_address (hsa_num_threads);
3944
3945 hsa_insn_basic *basic
3946 = new hsa_insn_mem (BRIG_OPCODE_ST, hsa_num_threads->m_type, src, addr);
3947 hbb->append_insn (basic);
3948 }
3949
3950 /* Return byte offset of a FIELD_NAME in GOMP_hsa_kernel_dispatch which
3951 is defined in plugin-hsa.c. */
3952
3953 static HOST_WIDE_INT
3954 get_hsa_kernel_dispatch_offset (const char *field_name)
3955 {
3956 tree *hsa_kernel_dispatch_type = hsa_get_kernel_dispatch_type ();
3957 if (*hsa_kernel_dispatch_type == NULL)
3958 {
3959 /* Collection of information needed for a dispatch of a kernel from a
3960 kernel. Keep in sync with libgomp's plugin-hsa.c. */
3961
3962 *hsa_kernel_dispatch_type = make_node (RECORD_TYPE);
3963 tree id_f1 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3964 get_identifier ("queue"), ptr_type_node);
3965 DECL_CHAIN (id_f1) = NULL_TREE;
3966 tree id_f2 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3967 get_identifier ("omp_data_memory"),
3968 ptr_type_node);
3969 DECL_CHAIN (id_f2) = id_f1;
3970 tree id_f3 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3971 get_identifier ("kernarg_address"),
3972 ptr_type_node);
3973 DECL_CHAIN (id_f3) = id_f2;
3974 tree id_f4 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3975 get_identifier ("object"),
3976 uint64_type_node);
3977 DECL_CHAIN (id_f4) = id_f3;
3978 tree id_f5 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3979 get_identifier ("signal"),
3980 uint64_type_node);
3981 DECL_CHAIN (id_f5) = id_f4;
3982 tree id_f6 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3983 get_identifier ("private_segment_size"),
3984 uint32_type_node);
3985 DECL_CHAIN (id_f6) = id_f5;
3986 tree id_f7 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3987 get_identifier ("group_segment_size"),
3988 uint32_type_node);
3989 DECL_CHAIN (id_f7) = id_f6;
3990 tree id_f8 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3991 get_identifier ("kernel_dispatch_count"),
3992 uint64_type_node);
3993 DECL_CHAIN (id_f8) = id_f7;
3994 tree id_f9 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3995 get_identifier ("debug"),
3996 uint64_type_node);
3997 DECL_CHAIN (id_f9) = id_f8;
3998 tree id_f10 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3999 get_identifier ("omp_level"),
4000 uint64_type_node);
4001 DECL_CHAIN (id_f10) = id_f9;
4002 tree id_f11 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
4003 get_identifier ("children_dispatches"),
4004 ptr_type_node);
4005 DECL_CHAIN (id_f11) = id_f10;
4006 tree id_f12 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
4007 get_identifier ("omp_num_threads"),
4008 uint32_type_node);
4009 DECL_CHAIN (id_f12) = id_f11;
4010
4011
4012 finish_builtin_struct (*hsa_kernel_dispatch_type, "__hsa_kernel_dispatch",
4013 id_f12, NULL_TREE);
4014 TYPE_ARTIFICIAL (*hsa_kernel_dispatch_type) = 1;
4015 }
4016
4017 for (tree chain = TYPE_FIELDS (*hsa_kernel_dispatch_type);
4018 chain != NULL_TREE; chain = TREE_CHAIN (chain))
4019 if (id_equal (DECL_NAME (chain), field_name))
4020 return int_byte_position (chain);
4021
4022 gcc_unreachable ();
4023 }
4024
4025 /* Return an HSA register that will contain number of threads for
4026 a future dispatched kernel. Instructions are added to HBB. */
4027
4028 static hsa_op_reg *
4029 gen_num_threads_for_dispatch (hsa_bb *hbb)
4030 {
4031 /* Step 1) Assign to number of threads:
4032 MIN (HSA_DEFAULT_NUM_THREADS, hsa_num_threads). */
4033 hsa_op_reg *threads = new hsa_op_reg (hsa_num_threads->m_type);
4034 hsa_op_address *addr = new hsa_op_address (hsa_num_threads);
4035
4036 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_LD, threads->m_type,
4037 threads, addr));
4038
4039 hsa_op_immed *limit = new hsa_op_immed (HSA_DEFAULT_NUM_THREADS,
4040 BRIG_TYPE_U32);
4041 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_B1);
4042 hsa_insn_cmp * cmp
4043 = new hsa_insn_cmp (BRIG_COMPARE_LT, r->m_type, r, threads, limit);
4044 hbb->append_insn (cmp);
4045
4046 BrigType16_t btype = hsa_bittype_for_type (threads->m_type);
4047 hsa_op_reg *tmp = new hsa_op_reg (threads->m_type);
4048
4049 hbb->append_insn (new hsa_insn_basic (4, BRIG_OPCODE_CMOV, btype, tmp, r,
4050 threads, limit));
4051
4052 /* Step 2) If the number is equal to zero,
4053 return shadow->omp_num_threads. */
4054 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
4055
4056 hsa_op_reg *shadow_thread_count = new hsa_op_reg (BRIG_TYPE_U32);
4057 addr
4058 = new hsa_op_address (shadow_reg_ptr,
4059 get_hsa_kernel_dispatch_offset ("omp_num_threads"));
4060 hsa_insn_basic *basic
4061 = new hsa_insn_mem (BRIG_OPCODE_LD, shadow_thread_count->m_type,
4062 shadow_thread_count, addr);
4063 hbb->append_insn (basic);
4064
4065 hsa_op_reg *tmp2 = new hsa_op_reg (threads->m_type);
4066 r = new hsa_op_reg (BRIG_TYPE_B1);
4067 hsa_op_immed *imm = new hsa_op_immed (0, shadow_thread_count->m_type);
4068 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_EQ, r->m_type, r, tmp, imm));
4069 hbb->append_insn (new hsa_insn_basic (4, BRIG_OPCODE_CMOV, btype, tmp2, r,
4070 shadow_thread_count, tmp));
4071
4072 hsa_op_base *dest = tmp2->get_in_type (BRIG_TYPE_U16, hbb);
4073
4074 return as_a <hsa_op_reg *> (dest);
4075 }
4076
4077 /* Build OPCODE query for all three hsa dimensions, multiply them and store the
4078 result into DEST. */
4079
4080 static void
4081 multiply_grid_dim_characteristics (hsa_op_reg *dest, int opcode, hsa_bb *hbb)
4082 {
4083 hsa_op_reg *dimx = new hsa_op_reg (BRIG_TYPE_U32);
4084 query_hsa_grid_dim (dimx, opcode,
4085 new hsa_op_immed (0, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4086 hsa_op_reg *dimy = new hsa_op_reg (BRIG_TYPE_U32);
4087 query_hsa_grid_dim (dimy, opcode,
4088 new hsa_op_immed (1, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4089 hsa_op_reg *dimz = new hsa_op_reg (BRIG_TYPE_U32);
4090 query_hsa_grid_dim (dimz, opcode,
4091 new hsa_op_immed (2, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4092 hsa_op_reg *tmp = new hsa_op_reg (dest->m_type);
4093 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp,
4094 dimx->get_in_type (dest->m_type, hbb),
4095 dimy->get_in_type (dest->m_type, hbb), hbb);
4096 gen_hsa_binary_operation (BRIG_OPCODE_MUL, dest, tmp,
4097 dimz->get_in_type (dest->m_type, hbb), hbb);
4098 }
4099
4100 /* Emit instructions that assign number of threads to lhs of gimple STMT.
4101 Instructions are appended to basic block HBB. */
4102
4103 static void
4104 gen_get_num_threads (gimple *stmt, hsa_bb *hbb)
4105 {
4106 if (gimple_call_lhs (stmt) == NULL_TREE)
4107 return;
4108
4109 hbb->append_insn (new hsa_insn_comment ("omp_get_num_threads"));
4110 tree lhs = gimple_call_lhs (stmt);
4111 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4112 multiply_grid_dim_characteristics (dest, BRIG_OPCODE_CURRENTWORKGROUPSIZE,
4113 hbb);
4114 }
4115
4116 /* Emit instructions that assign number of teams to lhs of gimple STMT.
4117 Instructions are appended to basic block HBB. */
4118
4119 static void
4120 gen_get_num_teams (gimple *stmt, hsa_bb *hbb)
4121 {
4122 if (gimple_call_lhs (stmt) == NULL_TREE)
4123 return;
4124
4125 hbb->append_insn (new hsa_insn_comment ("omp_get_num_teams"));
4126 tree lhs = gimple_call_lhs (stmt);
4127 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4128 multiply_grid_dim_characteristics (dest, BRIG_OPCODE_GRIDGROUPS, hbb);
4129 }
4130
4131 /* Emit instructions that assign a team number to lhs of gimple STMT.
4132 Instructions are appended to basic block HBB. */
4133
4134 static void
4135 gen_get_team_num (gimple *stmt, hsa_bb *hbb)
4136 {
4137 if (gimple_call_lhs (stmt) == NULL_TREE)
4138 return;
4139
4140 hbb->append_insn (new hsa_insn_comment ("omp_get_team_num"));
4141 tree lhs = gimple_call_lhs (stmt);
4142 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4143
4144 hsa_op_reg *gnum_x = new hsa_op_reg (BRIG_TYPE_U32);
4145 query_hsa_grid_dim (gnum_x, BRIG_OPCODE_GRIDGROUPS,
4146 new hsa_op_immed (0, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4147 hsa_op_reg *gnum_y = new hsa_op_reg (BRIG_TYPE_U32);
4148 query_hsa_grid_dim (gnum_y, BRIG_OPCODE_GRIDGROUPS,
4149 new hsa_op_immed (1, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4150
4151 hsa_op_reg *gno_z = new hsa_op_reg (BRIG_TYPE_U32);
4152 query_hsa_grid_dim (gno_z, BRIG_OPCODE_WORKGROUPID,
4153 new hsa_op_immed (2, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4154
4155 hsa_op_reg *tmp1 = new hsa_op_reg (dest->m_type);
4156 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp1,
4157 gnum_x->get_in_type (dest->m_type, hbb),
4158 gnum_y->get_in_type (dest->m_type, hbb), hbb);
4159 hsa_op_reg *tmp2 = new hsa_op_reg (dest->m_type);
4160 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp2, tmp1,
4161 gno_z->get_in_type (dest->m_type, hbb), hbb);
4162
4163 hsa_op_reg *gno_y = new hsa_op_reg (BRIG_TYPE_U32);
4164 query_hsa_grid_dim (gno_y, BRIG_OPCODE_WORKGROUPID,
4165 new hsa_op_immed (1, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4166 hsa_op_reg *tmp3 = new hsa_op_reg (dest->m_type);
4167 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp3,
4168 gnum_x->get_in_type (dest->m_type, hbb),
4169 gno_y->get_in_type (dest->m_type, hbb), hbb);
4170 hsa_op_reg *tmp4 = new hsa_op_reg (dest->m_type);
4171 gen_hsa_binary_operation (BRIG_OPCODE_ADD, tmp4, tmp3, tmp2, hbb);
4172 hsa_op_reg *gno_x = new hsa_op_reg (BRIG_TYPE_U32);
4173 query_hsa_grid_dim (gno_x, BRIG_OPCODE_WORKGROUPID,
4174 new hsa_op_immed (0, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4175 gen_hsa_binary_operation (BRIG_OPCODE_ADD, dest, tmp4,
4176 gno_x->get_in_type (dest->m_type, hbb), hbb);
4177 }
4178
4179 /* Emit instructions that get levels-var ICV to lhs of gimple STMT.
4180 Instructions are appended to basic block HBB. */
4181
4182 static void
4183 gen_get_level (gimple *stmt, hsa_bb *hbb)
4184 {
4185 if (gimple_call_lhs (stmt) == NULL_TREE)
4186 return;
4187
4188 hbb->append_insn (new hsa_insn_comment ("omp_get_level"));
4189
4190 tree lhs = gimple_call_lhs (stmt);
4191 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4192
4193 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
4194 if (shadow_reg_ptr == NULL)
4195 {
4196 HSA_SORRY_AT (gimple_location (stmt),
4197 "support for HSA does not implement omp_get_level called "
4198 "from a function not being inlined within a kernel");
4199 return;
4200 }
4201
4202 hsa_op_address *addr
4203 = new hsa_op_address (shadow_reg_ptr,
4204 get_hsa_kernel_dispatch_offset ("omp_level"));
4205
4206 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, BRIG_TYPE_U64,
4207 (hsa_op_base *) NULL, addr);
4208 hbb->append_insn (mem);
4209 mem->set_output_in_type (dest, 0, hbb);
4210 }
4211
4212 /* Emit instruction that implement omp_get_max_threads of gimple STMT. */
4213
4214 static void
4215 gen_get_max_threads (gimple *stmt, hsa_bb *hbb)
4216 {
4217 tree lhs = gimple_call_lhs (stmt);
4218 if (!lhs)
4219 return;
4220
4221 hbb->append_insn (new hsa_insn_comment ("omp_get_max_threads"));
4222
4223 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4224 hsa_op_with_type *num_theads_reg = gen_num_threads_for_dispatch (hbb)
4225 ->get_in_type (dest->m_type, hbb);
4226 hsa_build_append_simple_mov (dest, num_theads_reg, hbb);
4227 }
4228
4229 /* Emit instructions that implement alloca builtin gimple STMT.
4230 Instructions are appended to basic block HBB. */
4231
4232 static void
4233 gen_hsa_alloca (gcall *call, hsa_bb *hbb)
4234 {
4235 tree lhs = gimple_call_lhs (call);
4236 if (lhs == NULL_TREE)
4237 return;
4238
4239 built_in_function fn = DECL_FUNCTION_CODE (gimple_call_fndecl (call));
4240
4241 gcc_checking_assert (ALLOCA_FUNCTION_CODE_P (fn));
4242
4243 unsigned bit_alignment = 0;
4244
4245 if (fn != BUILT_IN_ALLOCA)
4246 {
4247 tree alignment_tree = gimple_call_arg (call, 1);
4248 if (TREE_CODE (alignment_tree) != INTEGER_CST)
4249 {
4250 HSA_SORRY_ATV (gimple_location (call),
4251 "support for HSA does not implement "
4252 "__builtin_alloca_with_align with a non-constant "
4253 "alignment: %E", alignment_tree);
4254 }
4255
4256 bit_alignment = tree_to_uhwi (alignment_tree);
4257 }
4258
4259 tree rhs1 = gimple_call_arg (call, 0);
4260 hsa_op_with_type *size = hsa_reg_or_immed_for_gimple_op (rhs1, hbb)
4261 ->get_in_type (BRIG_TYPE_U32, hbb);
4262 hsa_op_with_type *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4263
4264 hsa_op_reg *tmp
4265 = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE));
4266 hsa_insn_alloca *a = new hsa_insn_alloca (tmp, size, bit_alignment);
4267 hbb->append_insn (a);
4268
4269 hsa_insn_seg *seg
4270 = new hsa_insn_seg (BRIG_OPCODE_STOF,
4271 hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT),
4272 tmp->m_type, BRIG_SEGMENT_PRIVATE, dest, tmp);
4273 hbb->append_insn (seg);
4274 }
4275
4276 /* Emit instructions that implement clrsb builtin STMT:
4277 Returns the number of leading redundant sign bits in x, i.e. the number
4278 of bits following the most significant bit that are identical to it.
4279 There are no special cases for 0 or other values.
4280 Instructions are appended to basic block HBB. */
4281
4282 static void
4283 gen_hsa_clrsb (gcall *call, hsa_bb *hbb)
4284 {
4285 tree lhs = gimple_call_lhs (call);
4286 if (lhs == NULL_TREE)
4287 return;
4288
4289 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4290 tree rhs1 = gimple_call_arg (call, 0);
4291 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4292 arg->extend_int_to_32bit (hbb);
4293 BrigType16_t bittype = hsa_bittype_for_type (arg->m_type);
4294 unsigned bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (rhs1)));
4295
4296 /* FIRSTBIT instruction is defined just for 32 and 64-bits wide integers. */
4297 gcc_checking_assert (bitsize == 32 || bitsize == 64);
4298
4299 /* Set true to MOST_SIG if the most significant bit is set to one. */
4300 hsa_op_immed *c = new hsa_op_immed (1ul << (bitsize - 1),
4301 hsa_uint_for_bitsize (bitsize));
4302
4303 hsa_op_reg *and_reg = new hsa_op_reg (bittype);
4304 gen_hsa_binary_operation (BRIG_OPCODE_AND, and_reg, arg, c, hbb);
4305
4306 hsa_op_reg *most_sign = new hsa_op_reg (BRIG_TYPE_B1);
4307 hsa_insn_cmp *cmp
4308 = new hsa_insn_cmp (BRIG_COMPARE_EQ, most_sign->m_type, most_sign,
4309 and_reg, c);
4310 hbb->append_insn (cmp);
4311
4312 /* If the most significant bit is one, negate the input. Otherwise
4313 shift the input value to left by one bit. */
4314 hsa_op_reg *arg_neg = new hsa_op_reg (arg->m_type);
4315 gen_hsa_unary_operation (BRIG_OPCODE_NEG, arg_neg, arg, hbb);
4316
4317 hsa_op_reg *shifted_arg = new hsa_op_reg (arg->m_type);
4318 gen_hsa_binary_operation (BRIG_OPCODE_SHL, shifted_arg, arg,
4319 new hsa_op_immed (1, BRIG_TYPE_U64), hbb);
4320
4321 /* Assign the value that can be used for FIRSTBIT instruction according
4322 to the most significant bit. */
4323 hsa_op_reg *tmp = new hsa_op_reg (bittype);
4324 hsa_insn_basic *cmov
4325 = new hsa_insn_basic (4, BRIG_OPCODE_CMOV, bittype, tmp, most_sign,
4326 arg_neg, shifted_arg);
4327 hbb->append_insn (cmov);
4328
4329 hsa_op_reg *leading_bits = new hsa_op_reg (BRIG_TYPE_S32);
4330 gen_hsa_unary_operation (BRIG_OPCODE_FIRSTBIT, leading_bits,
4331 tmp->get_in_type (hsa_uint_for_bitsize (bitsize),
4332 hbb), hbb);
4333
4334 /* Set flag if the input value is equal to zero. */
4335 hsa_op_reg *is_zero = new hsa_op_reg (BRIG_TYPE_B1);
4336 cmp = new hsa_insn_cmp (BRIG_COMPARE_EQ, is_zero->m_type, is_zero, arg,
4337 new hsa_op_immed (0, arg->m_type));
4338 hbb->append_insn (cmp);
4339
4340 /* Return the number of leading bits,
4341 or (bitsize - 1) if the input value is zero. */
4342 cmov = new hsa_insn_basic (4, BRIG_OPCODE_CMOV, BRIG_TYPE_B32, NULL, is_zero,
4343 new hsa_op_immed (bitsize - 1, BRIG_TYPE_U32),
4344 leading_bits->get_in_type (BRIG_TYPE_B32, hbb));
4345 hbb->append_insn (cmov);
4346 cmov->set_output_in_type (dest, 0, hbb);
4347 }
4348
4349 /* Emit instructions that implement ffs builtin STMT:
4350 Returns one plus the index of the least significant 1-bit of x,
4351 or if x is zero, returns zero.
4352 Instructions are appended to basic block HBB. */
4353
4354 static void
4355 gen_hsa_ffs (gcall *call, hsa_bb *hbb)
4356 {
4357 tree lhs = gimple_call_lhs (call);
4358 if (lhs == NULL_TREE)
4359 return;
4360
4361 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4362
4363 tree rhs1 = gimple_call_arg (call, 0);
4364 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4365 arg = arg->extend_int_to_32bit (hbb);
4366
4367 hsa_op_reg *tmp = new hsa_op_reg (BRIG_TYPE_U32);
4368 hsa_insn_srctype *insn = new hsa_insn_srctype (2, BRIG_OPCODE_LASTBIT,
4369 tmp->m_type, arg->m_type,
4370 tmp, arg);
4371 hbb->append_insn (insn);
4372
4373 hsa_insn_basic *addition
4374 = new hsa_insn_basic (3, BRIG_OPCODE_ADD, tmp->m_type, NULL, tmp,
4375 new hsa_op_immed (1, tmp->m_type));
4376 hbb->append_insn (addition);
4377 addition->set_output_in_type (dest, 0, hbb);
4378 }
4379
4380 static void
4381 gen_hsa_popcount_to_dest (hsa_op_reg *dest, hsa_op_with_type *arg, hsa_bb *hbb)
4382 {
4383 gcc_checking_assert (hsa_type_integer_p (arg->m_type));
4384
4385 if (hsa_type_bit_size (arg->m_type) < 32)
4386 arg = arg->get_in_type (BRIG_TYPE_B32, hbb);
4387
4388 BrigType16_t srctype = hsa_bittype_for_type (arg->m_type);
4389 if (!hsa_btype_p (arg->m_type))
4390 arg = arg->get_in_type (srctype, hbb);
4391
4392 hsa_insn_srctype *popcount
4393 = new hsa_insn_srctype (2, BRIG_OPCODE_POPCOUNT, BRIG_TYPE_U32,
4394 srctype, NULL, arg);
4395 hbb->append_insn (popcount);
4396 popcount->set_output_in_type (dest, 0, hbb);
4397 }
4398
4399 /* Emit instructions that implement parity builtin STMT:
4400 Returns the parity of x, i.e. the number of 1-bits in x modulo 2.
4401 Instructions are appended to basic block HBB. */
4402
4403 static void
4404 gen_hsa_parity (gcall *call, hsa_bb *hbb)
4405 {
4406 tree lhs = gimple_call_lhs (call);
4407 if (lhs == NULL_TREE)
4408 return;
4409
4410 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4411 tree rhs1 = gimple_call_arg (call, 0);
4412 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4413
4414 hsa_op_reg *popcount = new hsa_op_reg (BRIG_TYPE_U32);
4415 gen_hsa_popcount_to_dest (popcount, arg, hbb);
4416
4417 hsa_insn_basic *insn
4418 = new hsa_insn_basic (3, BRIG_OPCODE_REM, popcount->m_type, NULL, popcount,
4419 new hsa_op_immed (2, popcount->m_type));
4420 hbb->append_insn (insn);
4421 insn->set_output_in_type (dest, 0, hbb);
4422 }
4423
4424 /* Emit instructions that implement popcount builtin STMT.
4425 Instructions are appended to basic block HBB. */
4426
4427 static void
4428 gen_hsa_popcount (gcall *call, hsa_bb *hbb)
4429 {
4430 tree lhs = gimple_call_lhs (call);
4431 if (lhs == NULL_TREE)
4432 return;
4433
4434 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4435 tree rhs1 = gimple_call_arg (call, 0);
4436 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4437
4438 gen_hsa_popcount_to_dest (dest, arg, hbb);
4439 }
4440
4441 /* Emit instructions that implement DIVMOD builtin STMT.
4442 Instructions are appended to basic block HBB. */
4443
4444 static void
4445 gen_hsa_divmod (gcall *call, hsa_bb *hbb)
4446 {
4447 tree lhs = gimple_call_lhs (call);
4448 if (lhs == NULL_TREE)
4449 return;
4450
4451 tree rhs0 = gimple_call_arg (call, 0);
4452 tree rhs1 = gimple_call_arg (call, 1);
4453
4454 hsa_op_with_type *arg0 = hsa_reg_or_immed_for_gimple_op (rhs0, hbb);
4455 arg0 = arg0->extend_int_to_32bit (hbb);
4456 hsa_op_with_type *arg1 = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4457 arg1 = arg1->extend_int_to_32bit (hbb);
4458
4459 hsa_op_reg *dest0 = new hsa_op_reg (arg0->m_type);
4460 hsa_op_reg *dest1 = new hsa_op_reg (arg1->m_type);
4461
4462 hsa_insn_basic *insn = new hsa_insn_basic (3, BRIG_OPCODE_DIV, dest0->m_type,
4463 dest0, arg0, arg1);
4464 hbb->append_insn (insn);
4465 insn = new hsa_insn_basic (3, BRIG_OPCODE_REM, dest1->m_type, dest1, arg0,
4466 arg1);
4467 hbb->append_insn (insn);
4468
4469 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4470 BrigType16_t dst_type = hsa_extend_inttype_to_32bit (dest->m_type);
4471 BrigType16_t src_type = hsa_bittype_for_type (dest0->m_type);
4472
4473 insn = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE, dst_type,
4474 src_type, NULL, dest0, dest1);
4475 hbb->append_insn (insn);
4476 insn->set_output_in_type (dest, 0, hbb);
4477 }
4478
4479 /* Set VALUE to a shadow kernel debug argument and append a new instruction
4480 to HBB basic block. */
4481
4482 static void
4483 set_debug_value (hsa_bb *hbb, hsa_op_with_type *value)
4484 {
4485 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
4486 if (shadow_reg_ptr == NULL)
4487 return;
4488
4489 hsa_op_address *addr
4490 = new hsa_op_address (shadow_reg_ptr,
4491 get_hsa_kernel_dispatch_offset ("debug"));
4492 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, BRIG_TYPE_U64, value,
4493 addr);
4494 hbb->append_insn (mem);
4495 }
4496
4497 void
4498 omp_simple_builtin::generate (gimple *stmt, hsa_bb *hbb)
4499 {
4500 if (m_sorry)
4501 {
4502 if (m_warning_message)
4503 HSA_SORRY_AT (gimple_location (stmt), m_warning_message);
4504 else
4505 HSA_SORRY_ATV (gimple_location (stmt),
4506 "Support for HSA does not implement calls to %s\n",
4507 m_name);
4508 }
4509 else if (m_warning_message != NULL)
4510 warning_at (gimple_location (stmt), OPT_Whsa, m_warning_message);
4511
4512 if (m_return_value != NULL)
4513 {
4514 tree lhs = gimple_call_lhs (stmt);
4515 if (!lhs)
4516 return;
4517
4518 hbb->append_insn (new hsa_insn_comment (m_name));
4519
4520 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4521 hsa_op_with_type *op = m_return_value->get_in_type (dest->m_type, hbb);
4522 hsa_build_append_simple_mov (dest, op, hbb);
4523 }
4524 }
4525
4526 /* If STMT is a call of a known library function, generate code to perform
4527 it and return true. */
4528
4529 static bool
4530 gen_hsa_insns_for_known_library_call (gimple *stmt, hsa_bb *hbb)
4531 {
4532 bool handled = false;
4533 const char *name = hsa_get_declaration_name (gimple_call_fndecl (stmt));
4534
4535 char *copy = NULL;
4536 size_t len = strlen (name);
4537 if (len > 0 && name[len - 1] == '_')
4538 {
4539 copy = XNEWVEC (char, len + 1);
4540 strcpy (copy, name);
4541 copy[len - 1] = '\0';
4542 name = copy;
4543 }
4544
4545 /* Handle omp_* routines. */
4546 if (strstr (name, "omp_") == name)
4547 {
4548 hsa_init_simple_builtins ();
4549 omp_simple_builtin *builtin = omp_simple_builtins->get (name);
4550 if (builtin)
4551 {
4552 builtin->generate (stmt, hbb);
4553 return true;
4554 }
4555
4556 handled = true;
4557 if (strcmp (name, "omp_set_num_threads") == 0)
4558 gen_set_num_threads (gimple_call_arg (stmt, 0), hbb);
4559 else if (strcmp (name, "omp_get_thread_num") == 0)
4560 {
4561 hbb->append_insn (new hsa_insn_comment (name));
4562 query_hsa_grid_nodim (stmt, BRIG_OPCODE_WORKITEMFLATABSID, hbb);
4563 }
4564 else if (strcmp (name, "omp_get_num_threads") == 0)
4565 {
4566 hbb->append_insn (new hsa_insn_comment (name));
4567 gen_get_num_threads (stmt, hbb);
4568 }
4569 else if (strcmp (name, "omp_get_num_teams") == 0)
4570 gen_get_num_teams (stmt, hbb);
4571 else if (strcmp (name, "omp_get_team_num") == 0)
4572 gen_get_team_num (stmt, hbb);
4573 else if (strcmp (name, "omp_get_level") == 0)
4574 gen_get_level (stmt, hbb);
4575 else if (strcmp (name, "omp_get_active_level") == 0)
4576 gen_get_level (stmt, hbb);
4577 else if (strcmp (name, "omp_in_parallel") == 0)
4578 gen_get_level (stmt, hbb);
4579 else if (strcmp (name, "omp_get_max_threads") == 0)
4580 gen_get_max_threads (stmt, hbb);
4581 else
4582 handled = false;
4583
4584 if (handled)
4585 {
4586 if (copy)
4587 free (copy);
4588 return true;
4589 }
4590 }
4591
4592 if (strcmp (name, "__hsa_set_debug_value") == 0)
4593 {
4594 handled = true;
4595 if (hsa_cfun->has_shadow_reg_p ())
4596 {
4597 tree rhs1 = gimple_call_arg (stmt, 0);
4598 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4599
4600 src = src->get_in_type (BRIG_TYPE_U64, hbb);
4601 set_debug_value (hbb, src);
4602 }
4603 }
4604
4605 if (copy)
4606 free (copy);
4607 return handled;
4608 }
4609
4610 /* Helper functions to create a single unary HSA operations out of calls to
4611 builtins. OPCODE is the HSA operation to be generated. STMT is a gimple
4612 call to a builtin. HBB is the HSA BB to which the instruction should be
4613 added. Note that nothing will be created if STMT does not have a LHS. */
4614
4615 static void
4616 gen_hsa_unaryop_for_builtin (BrigOpcode opcode, gimple *stmt, hsa_bb *hbb)
4617 {
4618 tree lhs = gimple_call_lhs (stmt);
4619 if (!lhs)
4620 return;
4621 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4622 hsa_op_with_type *op
4623 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 0), hbb);
4624 gen_hsa_unary_operation (opcode, dest, op, hbb);
4625 }
4626
4627 /* Helper functions to create a call to standard library if LHS of the
4628 STMT is used. HBB is the HSA BB to which the instruction should be
4629 added. */
4630
4631 static void
4632 gen_hsa_unaryop_builtin_call (gimple *stmt, hsa_bb *hbb)
4633 {
4634 tree lhs = gimple_call_lhs (stmt);
4635 if (!lhs)
4636 return;
4637
4638 if (gimple_call_internal_p (stmt))
4639 gen_hsa_insns_for_call_of_internal_fn (stmt, hbb);
4640 else
4641 gen_hsa_insns_for_direct_call (stmt, hbb);
4642 }
4643
4644 /* Helper functions to create a single unary HSA operations out of calls to
4645 builtins (if unsafe math optimizations are enable). Otherwise, create
4646 a call to standard library function.
4647 OPCODE is the HSA operation to be generated. STMT is a gimple
4648 call to a builtin. HBB is the HSA BB to which the instruction should be
4649 added. Note that nothing will be created if STMT does not have a LHS. */
4650
4651 static void
4652 gen_hsa_unaryop_or_call_for_builtin (BrigOpcode opcode, gimple *stmt,
4653 hsa_bb *hbb)
4654 {
4655 if (flag_unsafe_math_optimizations)
4656 gen_hsa_unaryop_for_builtin (opcode, stmt, hbb);
4657 else
4658 gen_hsa_unaryop_builtin_call (stmt, hbb);
4659 }
4660
4661 /* Generate HSA address corresponding to a value VAL (as opposed to a memory
4662 reference tree), for example an SSA_NAME or an ADDR_EXPR. HBB is the HSA BB
4663 to which the instruction should be added. */
4664
4665 static hsa_op_address *
4666 get_address_from_value (tree val, hsa_bb *hbb)
4667 {
4668 switch (TREE_CODE (val))
4669 {
4670 case SSA_NAME:
4671 {
4672 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4673 hsa_op_base *reg
4674 = hsa_cfun->reg_for_gimple_ssa (val)->get_in_type (addrtype, hbb);
4675 return new hsa_op_address (NULL, as_a <hsa_op_reg *> (reg), 0);
4676 }
4677 case ADDR_EXPR:
4678 return gen_hsa_addr (TREE_OPERAND (val, 0), hbb);
4679
4680 case INTEGER_CST:
4681 if (tree_fits_shwi_p (val))
4682 return new hsa_op_address (NULL, NULL, tree_to_shwi (val));
4683 /* fall-through */
4684
4685 default:
4686 HSA_SORRY_ATV (EXPR_LOCATION (val),
4687 "support for HSA does not implement memory access to %E",
4688 val);
4689 return new hsa_op_address (NULL, NULL, 0);
4690 }
4691 }
4692
4693 /* Expand assignment of a result of a string BUILTIN to DST.
4694 Size of the operation is N bytes, where instructions
4695 will be append to HBB. */
4696
4697 static void
4698 expand_lhs_of_string_op (gimple *stmt,
4699 unsigned HOST_WIDE_INT n, hsa_bb *hbb,
4700 enum built_in_function builtin)
4701 {
4702 /* If LHS is expected, we need to emit a PHI instruction. */
4703 tree lhs = gimple_call_lhs (stmt);
4704 if (!lhs)
4705 return;
4706
4707 hsa_op_reg *lhs_reg = hsa_cfun->reg_for_gimple_ssa (lhs);
4708
4709 hsa_op_with_type *dst_reg
4710 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 0), hbb);
4711 hsa_op_with_type *tmp;
4712
4713 switch (builtin)
4714 {
4715 case BUILT_IN_MEMPCPY:
4716 {
4717 tmp = new hsa_op_reg (dst_reg->m_type);
4718 hsa_insn_basic *add
4719 = new hsa_insn_basic (3, BRIG_OPCODE_ADD, tmp->m_type,
4720 tmp, dst_reg,
4721 new hsa_op_immed (n, dst_reg->m_type));
4722 hbb->append_insn (add);
4723 break;
4724 }
4725 case BUILT_IN_MEMCPY:
4726 case BUILT_IN_MEMSET:
4727 tmp = dst_reg;
4728 break;
4729 default:
4730 gcc_unreachable ();
4731 }
4732
4733 hbb->append_insn (new hsa_insn_basic (2, BRIG_OPCODE_MOV, lhs_reg->m_type,
4734 lhs_reg, tmp));
4735 }
4736
4737 #define HSA_MEMORY_BUILTINS_LIMIT 128
4738
4739 /* Expand a string builtin (from a gimple STMT) in a way that
4740 according to MISALIGNED_FLAG we process either direct emission
4741 (a bunch of memory load and store instructions), or we emit a function call
4742 of a library function (for instance 'memcpy'). Actually, a basic block
4743 for direct emission is just prepared, where caller is responsible
4744 for emission of corresponding instructions.
4745 All instruction are appended to HBB. */
4746
4747 hsa_bb *
4748 expand_string_operation_builtin (gimple *stmt, hsa_bb *hbb,
4749 hsa_op_reg *misaligned_flag)
4750 {
4751 edge e = split_block (hbb->m_bb, stmt);
4752 basic_block condition_bb = e->src;
4753 hbb->append_insn (new hsa_insn_cbr (misaligned_flag));
4754
4755 /* Prepare the control flow. */
4756 edge condition_edge = EDGE_SUCC (condition_bb, 0);
4757 basic_block call_bb = split_edge (condition_edge);
4758
4759 basic_block expanded_bb = split_edge (EDGE_SUCC (call_bb, 0));
4760 basic_block cont_bb = EDGE_SUCC (expanded_bb, 0)->dest;
4761 basic_block merge_bb = split_edge (EDGE_PRED (cont_bb, 0));
4762
4763 condition_edge->flags &= ~EDGE_FALLTHRU;
4764 condition_edge->flags |= EDGE_TRUE_VALUE;
4765 make_edge (condition_bb, expanded_bb, EDGE_FALSE_VALUE);
4766
4767 redirect_edge_succ (EDGE_SUCC (call_bb, 0), merge_bb);
4768
4769 hsa_cfun->m_modified_cfg = true;
4770
4771 hsa_init_new_bb (expanded_bb);
4772
4773 /* Slow path: function call. */
4774 gen_hsa_insns_for_direct_call (stmt, hsa_init_new_bb (call_bb), false);
4775
4776 return hsa_bb_for_bb (expanded_bb);
4777 }
4778
4779 /* Expand a memory copy BUILTIN (BUILT_IN_MEMCPY, BUILT_IN_MEMPCPY) from
4780 a gimple STMT and store all necessary instruction to HBB basic block. */
4781
4782 static void
4783 expand_memory_copy (gimple *stmt, hsa_bb *hbb, enum built_in_function builtin)
4784 {
4785 tree byte_size = gimple_call_arg (stmt, 2);
4786
4787 if (!tree_fits_uhwi_p (byte_size))
4788 {
4789 gen_hsa_insns_for_direct_call (stmt, hbb);
4790 return;
4791 }
4792
4793 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
4794
4795 if (n > HSA_MEMORY_BUILTINS_LIMIT)
4796 {
4797 gen_hsa_insns_for_direct_call (stmt, hbb);
4798 return;
4799 }
4800
4801 tree dst = gimple_call_arg (stmt, 0);
4802 tree src = gimple_call_arg (stmt, 1);
4803
4804 hsa_op_address *dst_addr = get_address_from_value (dst, hbb);
4805 hsa_op_address *src_addr = get_address_from_value (src, hbb);
4806
4807 /* As gen_hsa_memory_copy relies on memory alignment
4808 greater or equal to 8 bytes, we need to verify the alignment. */
4809 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4810 hsa_op_reg *src_addr_reg = new hsa_op_reg (addrtype);
4811 hsa_op_reg *dst_addr_reg = new hsa_op_reg (addrtype);
4812
4813 convert_addr_to_flat_segment (src_addr, src_addr_reg, hbb);
4814 convert_addr_to_flat_segment (dst_addr, dst_addr_reg, hbb);
4815
4816 /* Process BIT OR for source and destination addresses. */
4817 hsa_op_reg *or_reg = new hsa_op_reg (addrtype);
4818 gen_hsa_binary_operation (BRIG_OPCODE_OR, or_reg, src_addr_reg,
4819 dst_addr_reg, hbb);
4820
4821 /* Process BIT AND with 0x7 to identify the desired alignment
4822 of 8 bytes. */
4823 hsa_op_reg *masked = new hsa_op_reg (addrtype);
4824
4825 gen_hsa_binary_operation (BRIG_OPCODE_AND, masked, or_reg,
4826 new hsa_op_immed (7, addrtype), hbb);
4827
4828 hsa_op_reg *misaligned = new hsa_op_reg (BRIG_TYPE_B1);
4829 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_NE, misaligned->m_type,
4830 misaligned, masked,
4831 new hsa_op_immed (0, masked->m_type)));
4832
4833 hsa_bb *native_impl_bb
4834 = expand_string_operation_builtin (stmt, hbb, misaligned);
4835
4836 gen_hsa_memory_copy (native_impl_bb, dst_addr, src_addr, n, BRIG_ALIGNMENT_8);
4837 hsa_bb *merge_bb
4838 = hsa_init_new_bb (EDGE_SUCC (native_impl_bb->m_bb, 0)->dest);
4839 expand_lhs_of_string_op (stmt, n, merge_bb, builtin);
4840 }
4841
4842
4843 /* Expand a memory set BUILTIN (BUILT_IN_MEMSET, BUILT_IN_BZERO) from
4844 a gimple STMT and store all necessary instruction to HBB basic block.
4845 The operation set N bytes with a CONSTANT value. */
4846
4847 static void
4848 expand_memory_set (gimple *stmt, unsigned HOST_WIDE_INT n,
4849 unsigned HOST_WIDE_INT constant, hsa_bb *hbb,
4850 enum built_in_function builtin)
4851 {
4852 tree dst = gimple_call_arg (stmt, 0);
4853 hsa_op_address *dst_addr = get_address_from_value (dst, hbb);
4854
4855 /* As gen_hsa_memory_set relies on memory alignment
4856 greater or equal to 8 bytes, we need to verify the alignment. */
4857 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4858 hsa_op_reg *dst_addr_reg = new hsa_op_reg (addrtype);
4859 convert_addr_to_flat_segment (dst_addr, dst_addr_reg, hbb);
4860
4861 /* Process BIT AND with 0x7 to identify the desired alignment
4862 of 8 bytes. */
4863 hsa_op_reg *masked = new hsa_op_reg (addrtype);
4864
4865 gen_hsa_binary_operation (BRIG_OPCODE_AND, masked, dst_addr_reg,
4866 new hsa_op_immed (7, addrtype), hbb);
4867
4868 hsa_op_reg *misaligned = new hsa_op_reg (BRIG_TYPE_B1);
4869 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_NE, misaligned->m_type,
4870 misaligned, masked,
4871 new hsa_op_immed (0, masked->m_type)));
4872
4873 hsa_bb *native_impl_bb
4874 = expand_string_operation_builtin (stmt, hbb, misaligned);
4875
4876 gen_hsa_memory_set (native_impl_bb, dst_addr, constant, n, BRIG_ALIGNMENT_8);
4877 hsa_bb *merge_bb
4878 = hsa_init_new_bb (EDGE_SUCC (native_impl_bb->m_bb, 0)->dest);
4879 expand_lhs_of_string_op (stmt, n, merge_bb, builtin);
4880 }
4881
4882 /* Store into MEMORDER the memory order specified by tree T, which must be an
4883 integer constant representing a C++ memory order. If it isn't, issue an HSA
4884 sorry message using LOC and return true, otherwise return false and store
4885 the name of the requested order to *MNAME. */
4886
4887 static bool
4888 hsa_memorder_from_tree (tree t, BrigMemoryOrder *memorder, const char **mname,
4889 location_t loc)
4890 {
4891 if (!tree_fits_uhwi_p (t))
4892 {
4893 HSA_SORRY_ATV (loc, "support for HSA does not implement memory model %E",
4894 t);
4895 return true;
4896 }
4897
4898 unsigned HOST_WIDE_INT mm = tree_to_uhwi (t);
4899 switch (mm & MEMMODEL_BASE_MASK)
4900 {
4901 case MEMMODEL_RELAXED:
4902 *memorder = BRIG_MEMORY_ORDER_RELAXED;
4903 *mname = "relaxed";
4904 break;
4905 case MEMMODEL_CONSUME:
4906 /* HSA does not have an equivalent, but we can use the slightly stronger
4907 ACQUIRE. */
4908 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE;
4909 *mname = "consume";
4910 break;
4911 case MEMMODEL_ACQUIRE:
4912 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE;
4913 *mname = "acquire";
4914 break;
4915 case MEMMODEL_RELEASE:
4916 *memorder = BRIG_MEMORY_ORDER_SC_RELEASE;
4917 *mname = "release";
4918 break;
4919 case MEMMODEL_ACQ_REL:
4920 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE;
4921 *mname = "acq_rel";
4922 break;
4923 case MEMMODEL_SEQ_CST:
4924 /* Callers implementing a simple load or store need to remove the release
4925 or acquire part respectively. */
4926 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE;
4927 *mname = "seq_cst";
4928 break;
4929 default:
4930 {
4931 HSA_SORRY_AT (loc, "support for HSA does not implement the specified "
4932 "memory model");
4933 return true;
4934 }
4935 }
4936 return false;
4937 }
4938
4939 /* Helper function to create an HSA atomic operation instruction out of calls
4940 to atomic builtins. RET_ORIG is true if the built-in is the variant that
4941 return s the value before applying operation, and false if it should return
4942 the value after applying the operation (if it returns value at all). ACODE
4943 is the atomic operation code, STMT is a gimple call to a builtin. HBB is
4944 the HSA BB to which the instruction should be added. If SIGNAL is true, the
4945 created operation will work on HSA signals rather than atomic variables. */
4946
4947 static void
4948 gen_hsa_atomic_for_builtin (bool ret_orig, enum BrigAtomicOperation acode,
4949 gimple *stmt, hsa_bb *hbb, bool signal)
4950 {
4951 tree lhs = gimple_call_lhs (stmt);
4952
4953 tree type = TREE_TYPE (gimple_call_arg (stmt, 1));
4954 BrigType16_t hsa_type = hsa_type_for_scalar_tree_type (type, false);
4955 BrigType16_t mtype = mem_type_for_type (hsa_type);
4956 BrigMemoryOrder memorder;
4957 const char *mmname;
4958
4959 if (hsa_memorder_from_tree (gimple_call_arg (stmt, 2), &memorder, &mmname,
4960 gimple_location (stmt)))
4961 return;
4962
4963 /* Certain atomic insns must have Bx memory types. */
4964 switch (acode)
4965 {
4966 case BRIG_ATOMIC_LD:
4967 case BRIG_ATOMIC_ST:
4968 case BRIG_ATOMIC_AND:
4969 case BRIG_ATOMIC_OR:
4970 case BRIG_ATOMIC_XOR:
4971 case BRIG_ATOMIC_EXCH:
4972 mtype = hsa_bittype_for_type (mtype);
4973 break;
4974 default:
4975 break;
4976 }
4977
4978 hsa_op_reg *dest;
4979 int nops, opcode;
4980 if (lhs)
4981 {
4982 if (ret_orig)
4983 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4984 else
4985 dest = new hsa_op_reg (hsa_type);
4986 opcode = signal ? BRIG_OPCODE_SIGNAL : BRIG_OPCODE_ATOMIC;
4987 nops = 3;
4988 }
4989 else
4990 {
4991 dest = NULL;
4992 opcode = signal ? BRIG_OPCODE_SIGNALNORET : BRIG_OPCODE_ATOMICNORET;
4993 nops = 2;
4994 }
4995
4996 if (acode == BRIG_ATOMIC_ST)
4997 {
4998 if (memorder == BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE)
4999 memorder = BRIG_MEMORY_ORDER_SC_RELEASE;
5000
5001 if (memorder != BRIG_MEMORY_ORDER_RELAXED
5002 && memorder != BRIG_MEMORY_ORDER_SC_RELEASE
5003 && memorder != BRIG_MEMORY_ORDER_NONE)
5004 {
5005 HSA_SORRY_ATV (gimple_location (stmt),
5006 "support for HSA does not implement memory model for "
5007 "ATOMIC_ST: %s", mmname);
5008 return;
5009 }
5010 }
5011
5012 hsa_insn_basic *atominsn;
5013 hsa_op_base *tgt;
5014 if (signal)
5015 {
5016 atominsn = new hsa_insn_signal (nops, opcode, acode, mtype, memorder);
5017 tgt = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 0), hbb);
5018 }
5019 else
5020 {
5021 atominsn = new hsa_insn_atomic (nops, opcode, acode, mtype, memorder);
5022 hsa_op_address *addr;
5023 addr = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
5024 if (addr->m_symbol && addr->m_symbol->m_segment == BRIG_SEGMENT_PRIVATE)
5025 {
5026 HSA_SORRY_AT (gimple_location (stmt),
5027 "HSA does not implement atomic operations in private "
5028 "segment");
5029 return;
5030 }
5031 tgt = addr;
5032 }
5033
5034 hsa_op_with_type *op
5035 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 1), hbb);
5036 if (lhs)
5037 {
5038 atominsn->set_op (0, dest);
5039 atominsn->set_op (1, tgt);
5040 atominsn->set_op (2, op);
5041 }
5042 else
5043 {
5044 atominsn->set_op (0, tgt);
5045 atominsn->set_op (1, op);
5046 }
5047
5048 hbb->append_insn (atominsn);
5049
5050 /* HSA does not natively support the variants that return the modified value,
5051 so re-do the operation again non-atomically if that is what was
5052 requested. */
5053 if (lhs && !ret_orig)
5054 {
5055 int arith;
5056 switch (acode)
5057 {
5058 case BRIG_ATOMIC_ADD:
5059 arith = BRIG_OPCODE_ADD;
5060 break;
5061 case BRIG_ATOMIC_AND:
5062 arith = BRIG_OPCODE_AND;
5063 break;
5064 case BRIG_ATOMIC_OR:
5065 arith = BRIG_OPCODE_OR;
5066 break;
5067 case BRIG_ATOMIC_SUB:
5068 arith = BRIG_OPCODE_SUB;
5069 break;
5070 case BRIG_ATOMIC_XOR:
5071 arith = BRIG_OPCODE_XOR;
5072 break;
5073 default:
5074 gcc_unreachable ();
5075 }
5076 hsa_op_reg *real_dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5077 gen_hsa_binary_operation (arith, real_dest, dest, op, hbb);
5078 }
5079 }
5080
5081 /* Generate HSA instructions for an internal fn.
5082 Instructions will be appended to HBB, which also needs to be the
5083 corresponding structure to the basic_block of STMT. */
5084
5085 static void
5086 gen_hsa_insn_for_internal_fn_call (gcall *stmt, hsa_bb *hbb)
5087 {
5088 gcc_checking_assert (gimple_call_internal_fn (stmt));
5089 internal_fn fn = gimple_call_internal_fn (stmt);
5090
5091 bool is_float_type_p = false;
5092 if (gimple_call_lhs (stmt) != NULL
5093 && TREE_TYPE (gimple_call_lhs (stmt)) == float_type_node)
5094 is_float_type_p = true;
5095
5096 switch (fn)
5097 {
5098 case IFN_CEIL:
5099 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_CEIL, stmt, hbb);
5100 break;
5101
5102 case IFN_FLOOR:
5103 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FLOOR, stmt, hbb);
5104 break;
5105
5106 case IFN_RINT:
5107 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_RINT, stmt, hbb);
5108 break;
5109
5110 case IFN_SQRT:
5111 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_SQRT, stmt, hbb);
5112 break;
5113
5114 case IFN_RSQRT:
5115 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_NRSQRT, stmt, hbb);
5116 break;
5117
5118 case IFN_TRUNC:
5119 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_TRUNC, stmt, hbb);
5120 break;
5121
5122 case IFN_COS:
5123 {
5124 if (is_float_type_p)
5125 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NCOS, stmt, hbb);
5126 else
5127 gen_hsa_unaryop_builtin_call (stmt, hbb);
5128
5129 break;
5130 }
5131 case IFN_EXP2:
5132 {
5133 if (is_float_type_p)
5134 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NEXP2, stmt, hbb);
5135 else
5136 gen_hsa_unaryop_builtin_call (stmt, hbb);
5137
5138 break;
5139 }
5140
5141 case IFN_LOG2:
5142 {
5143 if (is_float_type_p)
5144 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NLOG2, stmt, hbb);
5145 else
5146 gen_hsa_unaryop_builtin_call (stmt, hbb);
5147
5148 break;
5149 }
5150
5151 case IFN_SIN:
5152 {
5153 if (is_float_type_p)
5154 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NSIN, stmt, hbb);
5155 else
5156 gen_hsa_unaryop_builtin_call (stmt, hbb);
5157 break;
5158 }
5159
5160 case IFN_CLRSB:
5161 gen_hsa_clrsb (stmt, hbb);
5162 break;
5163
5164 case IFN_CLZ:
5165 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FIRSTBIT, stmt, hbb);
5166 break;
5167
5168 case IFN_CTZ:
5169 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_LASTBIT, stmt, hbb);
5170 break;
5171
5172 case IFN_FFS:
5173 gen_hsa_ffs (stmt, hbb);
5174 break;
5175
5176 case IFN_PARITY:
5177 gen_hsa_parity (stmt, hbb);
5178 break;
5179
5180 case IFN_POPCOUNT:
5181 gen_hsa_popcount (stmt, hbb);
5182 break;
5183
5184 case IFN_DIVMOD:
5185 gen_hsa_divmod (stmt, hbb);
5186 break;
5187
5188 case IFN_ACOS:
5189 case IFN_ASIN:
5190 case IFN_ATAN:
5191 case IFN_EXP:
5192 case IFN_EXP10:
5193 case IFN_EXPM1:
5194 case IFN_LOG:
5195 case IFN_LOG10:
5196 case IFN_LOG1P:
5197 case IFN_LOGB:
5198 case IFN_SIGNIFICAND:
5199 case IFN_TAN:
5200 case IFN_NEARBYINT:
5201 case IFN_ROUND:
5202 case IFN_ATAN2:
5203 case IFN_COPYSIGN:
5204 case IFN_FMOD:
5205 case IFN_POW:
5206 case IFN_REMAINDER:
5207 case IFN_SCALB:
5208 case IFN_FMIN:
5209 case IFN_FMAX:
5210 gen_hsa_insns_for_call_of_internal_fn (stmt, hbb);
5211 break;
5212
5213 default:
5214 HSA_SORRY_ATV (gimple_location (stmt),
5215 "support for HSA does not implement internal function: %s",
5216 internal_fn_name (fn));
5217 break;
5218 }
5219 }
5220
5221 /* Generate HSA instructions for the given call statement STMT. Instructions
5222 will be appended to HBB. */
5223
5224 static void
5225 gen_hsa_insns_for_call (gimple *stmt, hsa_bb *hbb)
5226 {
5227 gcall *call = as_a <gcall *> (stmt);
5228 tree lhs = gimple_call_lhs (stmt);
5229 hsa_op_reg *dest;
5230
5231 if (gimple_call_internal_p (stmt))
5232 {
5233 gen_hsa_insn_for_internal_fn_call (call, hbb);
5234 return;
5235 }
5236
5237 if (!gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
5238 {
5239 tree function_decl = gimple_call_fndecl (stmt);
5240 /* Prefetch pass can create type-mismatching prefetch builtin calls which
5241 fail the gimple_call_builtin_p test above. Handle them here. */
5242 if (DECL_BUILT_IN_CLASS (function_decl)
5243 && DECL_FUNCTION_CODE (function_decl) == BUILT_IN_PREFETCH)
5244 return;
5245
5246 if (function_decl == NULL_TREE)
5247 {
5248 HSA_SORRY_AT (gimple_location (stmt),
5249 "support for HSA does not implement indirect calls");
5250 return;
5251 }
5252
5253 if (hsa_callable_function_p (function_decl))
5254 gen_hsa_insns_for_direct_call (stmt, hbb);
5255 else if (!gen_hsa_insns_for_known_library_call (stmt, hbb))
5256 HSA_SORRY_AT (gimple_location (stmt),
5257 "HSA supports only calls of functions marked with pragma "
5258 "omp declare target");
5259 return;
5260 }
5261
5262 tree fndecl = gimple_call_fndecl (stmt);
5263 enum built_in_function builtin = DECL_FUNCTION_CODE (fndecl);
5264 switch (builtin)
5265 {
5266 case BUILT_IN_FABS:
5267 case BUILT_IN_FABSF:
5268 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_ABS, stmt, hbb);
5269 break;
5270
5271 case BUILT_IN_CEIL:
5272 case BUILT_IN_CEILF:
5273 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_CEIL, stmt, hbb);
5274 break;
5275
5276 case BUILT_IN_FLOOR:
5277 case BUILT_IN_FLOORF:
5278 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FLOOR, stmt, hbb);
5279 break;
5280
5281 case BUILT_IN_RINT:
5282 case BUILT_IN_RINTF:
5283 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_RINT, stmt, hbb);
5284 break;
5285
5286 case BUILT_IN_SQRT:
5287 case BUILT_IN_SQRTF:
5288 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_SQRT, stmt, hbb);
5289 break;
5290
5291 case BUILT_IN_TRUNC:
5292 case BUILT_IN_TRUNCF:
5293 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_TRUNC, stmt, hbb);
5294 break;
5295
5296 case BUILT_IN_COS:
5297 case BUILT_IN_SIN:
5298 case BUILT_IN_EXP2:
5299 case BUILT_IN_LOG2:
5300 /* HSAIL does not provide an instruction for double argument type. */
5301 gen_hsa_unaryop_builtin_call (stmt, hbb);
5302 break;
5303
5304 case BUILT_IN_COSF:
5305 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NCOS, stmt, hbb);
5306 break;
5307
5308 case BUILT_IN_EXP2F:
5309 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NEXP2, stmt, hbb);
5310 break;
5311
5312 case BUILT_IN_LOG2F:
5313 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NLOG2, stmt, hbb);
5314 break;
5315
5316 case BUILT_IN_SINF:
5317 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NSIN, stmt, hbb);
5318 break;
5319
5320 case BUILT_IN_CLRSB:
5321 case BUILT_IN_CLRSBL:
5322 case BUILT_IN_CLRSBLL:
5323 gen_hsa_clrsb (call, hbb);
5324 break;
5325
5326 case BUILT_IN_CLZ:
5327 case BUILT_IN_CLZL:
5328 case BUILT_IN_CLZLL:
5329 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FIRSTBIT, stmt, hbb);
5330 break;
5331
5332 case BUILT_IN_CTZ:
5333 case BUILT_IN_CTZL:
5334 case BUILT_IN_CTZLL:
5335 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_LASTBIT, stmt, hbb);
5336 break;
5337
5338 case BUILT_IN_FFS:
5339 case BUILT_IN_FFSL:
5340 case BUILT_IN_FFSLL:
5341 gen_hsa_ffs (call, hbb);
5342 break;
5343
5344 case BUILT_IN_PARITY:
5345 case BUILT_IN_PARITYL:
5346 case BUILT_IN_PARITYLL:
5347 gen_hsa_parity (call, hbb);
5348 break;
5349
5350 case BUILT_IN_POPCOUNT:
5351 case BUILT_IN_POPCOUNTL:
5352 case BUILT_IN_POPCOUNTLL:
5353 gen_hsa_popcount (call, hbb);
5354 break;
5355
5356 case BUILT_IN_ATOMIC_LOAD_1:
5357 case BUILT_IN_ATOMIC_LOAD_2:
5358 case BUILT_IN_ATOMIC_LOAD_4:
5359 case BUILT_IN_ATOMIC_LOAD_8:
5360 case BUILT_IN_ATOMIC_LOAD_16:
5361 {
5362 BrigType16_t mtype;
5363 hsa_op_base *src;
5364 src = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
5365
5366 BrigMemoryOrder memorder;
5367 const char *mmname;
5368 if (hsa_memorder_from_tree (gimple_call_arg (stmt, 1), &memorder,
5369 &mmname, gimple_location (stmt)))
5370 return;
5371
5372 if (memorder == BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE)
5373 memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE;
5374
5375 if (memorder != BRIG_MEMORY_ORDER_RELAXED
5376 && memorder != BRIG_MEMORY_ORDER_SC_ACQUIRE
5377 && memorder != BRIG_MEMORY_ORDER_NONE)
5378 {
5379 HSA_SORRY_ATV (gimple_location (stmt),
5380 "support for HSA does not implement "
5381 "memory model for atomic loads: %s", mmname);
5382 return;
5383 }
5384
5385 if (lhs)
5386 {
5387 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
5388 false);
5389 mtype = mem_type_for_type (t);
5390 mtype = hsa_bittype_for_type (mtype);
5391 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5392 }
5393 else
5394 {
5395 mtype = BRIG_TYPE_B64;
5396 dest = new hsa_op_reg (mtype);
5397 }
5398
5399 hsa_insn_basic *atominsn;
5400 atominsn = new hsa_insn_atomic (2, BRIG_OPCODE_ATOMIC, BRIG_ATOMIC_LD,
5401 mtype, memorder, dest, src);
5402
5403 hbb->append_insn (atominsn);
5404 break;
5405 }
5406
5407 case BUILT_IN_ATOMIC_EXCHANGE_1:
5408 case BUILT_IN_ATOMIC_EXCHANGE_2:
5409 case BUILT_IN_ATOMIC_EXCHANGE_4:
5410 case BUILT_IN_ATOMIC_EXCHANGE_8:
5411 case BUILT_IN_ATOMIC_EXCHANGE_16:
5412 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_EXCH, stmt, hbb, false);
5413 break;
5414 break;
5415
5416 case BUILT_IN_ATOMIC_FETCH_ADD_1:
5417 case BUILT_IN_ATOMIC_FETCH_ADD_2:
5418 case BUILT_IN_ATOMIC_FETCH_ADD_4:
5419 case BUILT_IN_ATOMIC_FETCH_ADD_8:
5420 case BUILT_IN_ATOMIC_FETCH_ADD_16:
5421 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_ADD, stmt, hbb, false);
5422 break;
5423 break;
5424
5425 case BUILT_IN_ATOMIC_FETCH_SUB_1:
5426 case BUILT_IN_ATOMIC_FETCH_SUB_2:
5427 case BUILT_IN_ATOMIC_FETCH_SUB_4:
5428 case BUILT_IN_ATOMIC_FETCH_SUB_8:
5429 case BUILT_IN_ATOMIC_FETCH_SUB_16:
5430 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_SUB, stmt, hbb, false);
5431 break;
5432 break;
5433
5434 case BUILT_IN_ATOMIC_FETCH_AND_1:
5435 case BUILT_IN_ATOMIC_FETCH_AND_2:
5436 case BUILT_IN_ATOMIC_FETCH_AND_4:
5437 case BUILT_IN_ATOMIC_FETCH_AND_8:
5438 case BUILT_IN_ATOMIC_FETCH_AND_16:
5439 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_AND, stmt, hbb, false);
5440 break;
5441 break;
5442
5443 case BUILT_IN_ATOMIC_FETCH_XOR_1:
5444 case BUILT_IN_ATOMIC_FETCH_XOR_2:
5445 case BUILT_IN_ATOMIC_FETCH_XOR_4:
5446 case BUILT_IN_ATOMIC_FETCH_XOR_8:
5447 case BUILT_IN_ATOMIC_FETCH_XOR_16:
5448 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_XOR, stmt, hbb, false);
5449 break;
5450 break;
5451
5452 case BUILT_IN_ATOMIC_FETCH_OR_1:
5453 case BUILT_IN_ATOMIC_FETCH_OR_2:
5454 case BUILT_IN_ATOMIC_FETCH_OR_4:
5455 case BUILT_IN_ATOMIC_FETCH_OR_8:
5456 case BUILT_IN_ATOMIC_FETCH_OR_16:
5457 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_OR, stmt, hbb, false);
5458 break;
5459 break;
5460
5461 case BUILT_IN_ATOMIC_STORE_1:
5462 case BUILT_IN_ATOMIC_STORE_2:
5463 case BUILT_IN_ATOMIC_STORE_4:
5464 case BUILT_IN_ATOMIC_STORE_8:
5465 case BUILT_IN_ATOMIC_STORE_16:
5466 /* Since there cannot be any LHS, the first parameter is meaningless. */
5467 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_ST, stmt, hbb, false);
5468 break;
5469 break;
5470
5471 case BUILT_IN_ATOMIC_ADD_FETCH_1:
5472 case BUILT_IN_ATOMIC_ADD_FETCH_2:
5473 case BUILT_IN_ATOMIC_ADD_FETCH_4:
5474 case BUILT_IN_ATOMIC_ADD_FETCH_8:
5475 case BUILT_IN_ATOMIC_ADD_FETCH_16:
5476 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_ADD, stmt, hbb, false);
5477 break;
5478
5479 case BUILT_IN_ATOMIC_SUB_FETCH_1:
5480 case BUILT_IN_ATOMIC_SUB_FETCH_2:
5481 case BUILT_IN_ATOMIC_SUB_FETCH_4:
5482 case BUILT_IN_ATOMIC_SUB_FETCH_8:
5483 case BUILT_IN_ATOMIC_SUB_FETCH_16:
5484 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_SUB, stmt, hbb, false);
5485 break;
5486
5487 case BUILT_IN_ATOMIC_AND_FETCH_1:
5488 case BUILT_IN_ATOMIC_AND_FETCH_2:
5489 case BUILT_IN_ATOMIC_AND_FETCH_4:
5490 case BUILT_IN_ATOMIC_AND_FETCH_8:
5491 case BUILT_IN_ATOMIC_AND_FETCH_16:
5492 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_AND, stmt, hbb, false);
5493 break;
5494
5495 case BUILT_IN_ATOMIC_XOR_FETCH_1:
5496 case BUILT_IN_ATOMIC_XOR_FETCH_2:
5497 case BUILT_IN_ATOMIC_XOR_FETCH_4:
5498 case BUILT_IN_ATOMIC_XOR_FETCH_8:
5499 case BUILT_IN_ATOMIC_XOR_FETCH_16:
5500 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_XOR, stmt, hbb, false);
5501 break;
5502
5503 case BUILT_IN_ATOMIC_OR_FETCH_1:
5504 case BUILT_IN_ATOMIC_OR_FETCH_2:
5505 case BUILT_IN_ATOMIC_OR_FETCH_4:
5506 case BUILT_IN_ATOMIC_OR_FETCH_8:
5507 case BUILT_IN_ATOMIC_OR_FETCH_16:
5508 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_OR, stmt, hbb, false);
5509 break;
5510
5511 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
5512 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
5513 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
5514 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
5515 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
5516 {
5517 tree type = TREE_TYPE (gimple_call_arg (stmt, 1));
5518 BrigType16_t atype
5519 = hsa_bittype_for_type (hsa_type_for_scalar_tree_type (type, false));
5520 BrigMemoryOrder memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE;
5521 hsa_insn_basic *atominsn;
5522 hsa_op_base *tgt;
5523 atominsn = new hsa_insn_atomic (4, BRIG_OPCODE_ATOMIC,
5524 BRIG_ATOMIC_CAS, atype, memorder);
5525 tgt = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
5526
5527 if (lhs != NULL)
5528 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5529 else
5530 dest = new hsa_op_reg (atype);
5531
5532 atominsn->set_op (0, dest);
5533 atominsn->set_op (1, tgt);
5534
5535 hsa_op_with_type *op
5536 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 1), hbb);
5537 atominsn->set_op (2, op);
5538 op = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 2), hbb);
5539 atominsn->set_op (3, op);
5540
5541 hbb->append_insn (atominsn);
5542 break;
5543 }
5544
5545 case BUILT_IN_HSA_WORKGROUPID:
5546 query_hsa_grid_dim (stmt, BRIG_OPCODE_WORKGROUPID, hbb);
5547 break;
5548 case BUILT_IN_HSA_WORKITEMID:
5549 query_hsa_grid_dim (stmt, BRIG_OPCODE_WORKITEMID, hbb);
5550 break;
5551 case BUILT_IN_HSA_WORKITEMABSID:
5552 query_hsa_grid_dim (stmt, BRIG_OPCODE_WORKITEMABSID, hbb);
5553 break;
5554 case BUILT_IN_HSA_GRIDSIZE:
5555 query_hsa_grid_dim (stmt, BRIG_OPCODE_GRIDSIZE, hbb);
5556 break;
5557 case BUILT_IN_HSA_CURRENTWORKGROUPSIZE:
5558 query_hsa_grid_dim (stmt, BRIG_OPCODE_CURRENTWORKGROUPSIZE, hbb);
5559 break;
5560
5561 case BUILT_IN_GOMP_BARRIER:
5562 hbb->append_insn (new hsa_insn_br (0, BRIG_OPCODE_BARRIER, BRIG_TYPE_NONE,
5563 BRIG_WIDTH_ALL));
5564 break;
5565 case BUILT_IN_GOMP_PARALLEL:
5566 HSA_SORRY_AT (gimple_location (stmt),
5567 "support for HSA does not implement non-gridified "
5568 "OpenMP parallel constructs.");
5569 break;
5570
5571 case BUILT_IN_OMP_GET_THREAD_NUM:
5572 {
5573 query_hsa_grid_nodim (stmt, BRIG_OPCODE_WORKITEMFLATABSID, hbb);
5574 break;
5575 }
5576
5577 case BUILT_IN_OMP_GET_NUM_THREADS:
5578 {
5579 gen_get_num_threads (stmt, hbb);
5580 break;
5581 }
5582 case BUILT_IN_GOMP_TEAMS:
5583 {
5584 gen_set_num_threads (gimple_call_arg (stmt, 1), hbb);
5585 break;
5586 }
5587 case BUILT_IN_OMP_GET_NUM_TEAMS:
5588 {
5589 gen_get_num_teams (stmt, hbb);
5590 break;
5591 }
5592 case BUILT_IN_OMP_GET_TEAM_NUM:
5593 {
5594 gen_get_team_num (stmt, hbb);
5595 break;
5596 }
5597 case BUILT_IN_MEMCPY:
5598 case BUILT_IN_MEMPCPY:
5599 {
5600 expand_memory_copy (stmt, hbb, builtin);
5601 break;
5602 }
5603 case BUILT_IN_MEMSET:
5604 {
5605 tree c = gimple_call_arg (stmt, 1);
5606
5607 if (TREE_CODE (c) != INTEGER_CST)
5608 {
5609 gen_hsa_insns_for_direct_call (stmt, hbb);
5610 return;
5611 }
5612
5613 tree byte_size = gimple_call_arg (stmt, 2);
5614
5615 if (!tree_fits_uhwi_p (byte_size))
5616 {
5617 gen_hsa_insns_for_direct_call (stmt, hbb);
5618 return;
5619 }
5620
5621 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
5622
5623 if (n > HSA_MEMORY_BUILTINS_LIMIT)
5624 {
5625 gen_hsa_insns_for_direct_call (stmt, hbb);
5626 return;
5627 }
5628
5629 unsigned HOST_WIDE_INT constant
5630 = tree_to_uhwi (fold_convert (unsigned_char_type_node, c));
5631
5632 expand_memory_set (stmt, n, constant, hbb, builtin);
5633
5634 break;
5635 }
5636 case BUILT_IN_BZERO:
5637 {
5638 tree byte_size = gimple_call_arg (stmt, 1);
5639
5640 if (!tree_fits_uhwi_p (byte_size))
5641 {
5642 gen_hsa_insns_for_direct_call (stmt, hbb);
5643 return;
5644 }
5645
5646 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
5647
5648 if (n > HSA_MEMORY_BUILTINS_LIMIT)
5649 {
5650 gen_hsa_insns_for_direct_call (stmt, hbb);
5651 return;
5652 }
5653
5654 expand_memory_set (stmt, n, 0, hbb, builtin);
5655
5656 break;
5657 }
5658 CASE_BUILT_IN_ALLOCA:
5659 {
5660 gen_hsa_alloca (call, hbb);
5661 break;
5662 }
5663 case BUILT_IN_PREFETCH:
5664 break;
5665 default:
5666 {
5667 tree name_tree = DECL_NAME (fndecl);
5668 const char *s = IDENTIFIER_POINTER (name_tree);
5669 size_t len = strlen (s);
5670 if (len > 4 && (strncmp (s, "__builtin_GOMP_", 15) == 0))
5671 HSA_SORRY_ATV (gimple_location (stmt),
5672 "support for HSA does not implement GOMP function %s",
5673 s);
5674 else
5675 gen_hsa_insns_for_direct_call (stmt, hbb);
5676 return;
5677 }
5678 }
5679 }
5680
5681 /* Generate HSA instructions for a given gimple statement. Instructions will be
5682 appended to HBB. */
5683
5684 static void
5685 gen_hsa_insns_for_gimple_stmt (gimple *stmt, hsa_bb *hbb)
5686 {
5687 switch (gimple_code (stmt))
5688 {
5689 case GIMPLE_ASSIGN:
5690 if (gimple_clobber_p (stmt))
5691 break;
5692
5693 if (gimple_assign_single_p (stmt))
5694 {
5695 tree lhs = gimple_assign_lhs (stmt);
5696 tree rhs = gimple_assign_rhs1 (stmt);
5697 gen_hsa_insns_for_single_assignment (lhs, rhs, hbb);
5698 }
5699 else
5700 gen_hsa_insns_for_operation_assignment (stmt, hbb);
5701 break;
5702 case GIMPLE_RETURN:
5703 gen_hsa_insns_for_return (as_a <greturn *> (stmt), hbb);
5704 break;
5705 case GIMPLE_COND:
5706 gen_hsa_insns_for_cond_stmt (stmt, hbb);
5707 break;
5708 case GIMPLE_CALL:
5709 gen_hsa_insns_for_call (stmt, hbb);
5710 break;
5711 case GIMPLE_DEBUG:
5712 /* ??? HSA supports some debug facilities. */
5713 break;
5714 case GIMPLE_LABEL:
5715 {
5716 tree label = gimple_label_label (as_a <glabel *> (stmt));
5717 if (FORCED_LABEL (label))
5718 HSA_SORRY_AT (gimple_location (stmt),
5719 "support for HSA does not implement gimple label with "
5720 "address taken");
5721
5722 break;
5723 }
5724 case GIMPLE_NOP:
5725 {
5726 hbb->append_insn (new hsa_insn_basic (0, BRIG_OPCODE_NOP));
5727 break;
5728 }
5729 case GIMPLE_SWITCH:
5730 {
5731 gen_hsa_insns_for_switch_stmt (as_a <gswitch *> (stmt), hbb);
5732 break;
5733 }
5734 default:
5735 HSA_SORRY_ATV (gimple_location (stmt),
5736 "support for HSA does not implement gimple statement %s",
5737 gimple_code_name[(int) gimple_code (stmt)]);
5738 }
5739 }
5740
5741 /* Generate a HSA PHI from a gimple PHI. */
5742
5743 static void
5744 gen_hsa_phi_from_gimple_phi (gimple *phi_stmt, hsa_bb *hbb)
5745 {
5746 hsa_insn_phi *hphi;
5747 unsigned count = gimple_phi_num_args (phi_stmt);
5748
5749 hsa_op_reg *dest
5750 = hsa_cfun->reg_for_gimple_ssa (gimple_phi_result (phi_stmt));
5751 hphi = new hsa_insn_phi (count, dest);
5752 hphi->m_bb = hbb->m_bb;
5753
5754 auto_vec <tree, 8> aexprs;
5755 auto_vec <hsa_op_reg *, 8> aregs;
5756
5757 /* Calling split_edge when processing a PHI node messes up with the order of
5758 gimple phi node arguments (it moves the one associated with the edge to
5759 the end). We need to keep the order of edges and arguments of HSA phi
5760 node arguments consistent, so we do all required splitting as the first
5761 step, and in reverse order as to not be affected by the re-orderings. */
5762 for (unsigned j = count; j != 0; j--)
5763 {
5764 unsigned i = j - 1;
5765 tree op = gimple_phi_arg_def (phi_stmt, i);
5766 if (TREE_CODE (op) != ADDR_EXPR)
5767 continue;
5768
5769 edge e = gimple_phi_arg_edge (as_a <gphi *> (phi_stmt), i);
5770 hsa_bb *hbb_src = hsa_init_new_bb (split_edge (e));
5771 hsa_op_address *addr = gen_hsa_addr (TREE_OPERAND (op, 0),
5772 hbb_src);
5773
5774 hsa_op_reg *dest
5775 = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
5776 hsa_insn_basic *insn
5777 = new hsa_insn_basic (2, BRIG_OPCODE_LDA, BRIG_TYPE_U64,
5778 dest, addr);
5779 hbb_src->append_insn (insn);
5780 aexprs.safe_push (op);
5781 aregs.safe_push (dest);
5782 }
5783
5784 tree lhs = gimple_phi_result (phi_stmt);
5785 for (unsigned i = 0; i < count; i++)
5786 {
5787 tree op = gimple_phi_arg_def (phi_stmt, i);
5788
5789 if (TREE_CODE (op) == SSA_NAME)
5790 {
5791 hsa_op_reg *hreg = hsa_cfun->reg_for_gimple_ssa (op);
5792 hphi->set_op (i, hreg);
5793 }
5794 else
5795 {
5796 gcc_assert (is_gimple_min_invariant (op));
5797 tree t = TREE_TYPE (op);
5798 if (!POINTER_TYPE_P (t)
5799 || (TREE_CODE (op) == STRING_CST
5800 && TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE))
5801 hphi->set_op (i, new hsa_op_immed (op));
5802 else if (POINTER_TYPE_P (TREE_TYPE (lhs))
5803 && TREE_CODE (op) == INTEGER_CST)
5804 {
5805 /* Handle assignment of NULL value to a pointer type. */
5806 hphi->set_op (i, new hsa_op_immed (op));
5807 }
5808 else if (TREE_CODE (op) == ADDR_EXPR)
5809 {
5810 hsa_op_reg *dest = NULL;
5811 for (unsigned a_idx = 0; a_idx < aexprs.length (); a_idx++)
5812 if (aexprs[a_idx] == op)
5813 {
5814 dest = aregs[a_idx];
5815 break;
5816 }
5817 gcc_assert (dest);
5818 hphi->set_op (i, dest);
5819 }
5820 else
5821 {
5822 HSA_SORRY_AT (gimple_location (phi_stmt),
5823 "support for HSA does not handle PHI nodes with "
5824 "constant address operands");
5825 return;
5826 }
5827 }
5828 }
5829
5830 hbb->append_phi (hphi);
5831 }
5832
5833 /* Constructor of class containing HSA-specific information about a basic
5834 block. CFG_BB is the CFG BB this HSA BB is associated with. IDX is the new
5835 index of this BB (so that the constructor does not attempt to use
5836 hsa_cfun during its construction). */
5837
5838 hsa_bb::hsa_bb (basic_block cfg_bb, int idx)
5839 : m_bb (cfg_bb), m_first_insn (NULL), m_last_insn (NULL), m_first_phi (NULL),
5840 m_last_phi (NULL), m_index (idx)
5841 {
5842 gcc_assert (!cfg_bb->aux);
5843 cfg_bb->aux = this;
5844 }
5845
5846 /* Constructor of class containing HSA-specific information about a basic
5847 block. CFG_BB is the CFG BB this HSA BB is associated with. */
5848
5849 hsa_bb::hsa_bb (basic_block cfg_bb)
5850 : m_bb (cfg_bb), m_first_insn (NULL), m_last_insn (NULL), m_first_phi (NULL),
5851 m_last_phi (NULL), m_index (hsa_cfun->m_hbb_count++)
5852 {
5853 gcc_assert (!cfg_bb->aux);
5854 cfg_bb->aux = this;
5855 }
5856
5857 /* Create and initialize and return a new hsa_bb structure for a given CFG
5858 basic block BB. */
5859
5860 hsa_bb *
5861 hsa_init_new_bb (basic_block bb)
5862 {
5863 void *m = obstack_alloc (&hsa_obstack, sizeof (hsa_bb));
5864 return new (m) hsa_bb (bb);
5865 }
5866
5867 /* Initialize OMP in an HSA basic block PROLOGUE. */
5868
5869 static void
5870 init_prologue (void)
5871 {
5872 if (!hsa_cfun->m_kern_p)
5873 return;
5874
5875 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5876
5877 /* Create a magic number that is going to be printed by libgomp. */
5878 unsigned index = hsa_get_number_decl_kernel_mappings ();
5879
5880 /* Emit store to debug argument. */
5881 if (PARAM_VALUE (PARAM_HSA_GEN_DEBUG_STORES) > 0)
5882 set_debug_value (prologue, new hsa_op_immed (1000 + index, BRIG_TYPE_U64));
5883 }
5884
5885 /* Initialize hsa_num_threads to a default value. */
5886
5887 static void
5888 init_hsa_num_threads (void)
5889 {
5890 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5891
5892 /* Save the default value to private variable hsa_num_threads. */
5893 hsa_insn_basic *basic
5894 = new hsa_insn_mem (BRIG_OPCODE_ST, hsa_num_threads->m_type,
5895 new hsa_op_immed (0, hsa_num_threads->m_type),
5896 new hsa_op_address (hsa_num_threads));
5897 prologue->append_insn (basic);
5898 }
5899
5900 /* Go over gimple representation and generate our internal HSA one. */
5901
5902 static void
5903 gen_body_from_gimple ()
5904 {
5905 basic_block bb;
5906
5907 /* Verify CFG for complex edges we are unable to handle. */
5908 edge_iterator ei;
5909 edge e;
5910
5911 FOR_EACH_BB_FN (bb, cfun)
5912 {
5913 FOR_EACH_EDGE (e, ei, bb->succs)
5914 {
5915 /* Verify all unsupported flags for edges that point
5916 to the same basic block. */
5917 if (e->flags & EDGE_EH)
5918 {
5919 HSA_SORRY_AT (UNKNOWN_LOCATION,
5920 "support for HSA does not implement exception "
5921 "handling");
5922 return;
5923 }
5924 }
5925 }
5926
5927 FOR_EACH_BB_FN (bb, cfun)
5928 {
5929 gimple_stmt_iterator gsi;
5930 hsa_bb *hbb = hsa_bb_for_bb (bb);
5931 if (hbb)
5932 continue;
5933
5934 hbb = hsa_init_new_bb (bb);
5935
5936 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5937 {
5938 gen_hsa_insns_for_gimple_stmt (gsi_stmt (gsi), hbb);
5939 if (hsa_seen_error ())
5940 return;
5941 }
5942 }
5943
5944 FOR_EACH_BB_FN (bb, cfun)
5945 {
5946 gimple_stmt_iterator gsi;
5947 hsa_bb *hbb = hsa_bb_for_bb (bb);
5948 gcc_assert (hbb != NULL);
5949
5950 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5951 if (!virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
5952 gen_hsa_phi_from_gimple_phi (gsi_stmt (gsi), hbb);
5953 }
5954
5955 if (dump_file && (dump_flags & TDF_DETAILS))
5956 {
5957 fprintf (dump_file, "------- Generated SSA form -------\n");
5958 dump_hsa_cfun (dump_file);
5959 }
5960 }
5961
5962 static void
5963 gen_function_decl_parameters (hsa_function_representation *f,
5964 tree decl)
5965 {
5966 tree parm;
5967 unsigned i;
5968
5969 for (parm = TYPE_ARG_TYPES (TREE_TYPE (decl)), i = 0;
5970 parm;
5971 parm = TREE_CHAIN (parm), i++)
5972 {
5973 /* Result type if last in the tree list. */
5974 if (TREE_CHAIN (parm) == NULL)
5975 break;
5976
5977 tree v = TREE_VALUE (parm);
5978
5979 hsa_symbol *arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
5980 BRIG_LINKAGE_NONE);
5981 arg->m_type = hsa_type_for_tree_type (v, &arg->m_dim);
5982 arg->m_name_number = i;
5983
5984 f->m_input_args.safe_push (arg);
5985 }
5986
5987 tree result_type = TREE_TYPE (TREE_TYPE (decl));
5988 if (!VOID_TYPE_P (result_type))
5989 {
5990 f->m_output_arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
5991 BRIG_LINKAGE_NONE);
5992 f->m_output_arg->m_type
5993 = hsa_type_for_tree_type (result_type, &f->m_output_arg->m_dim);
5994 f->m_output_arg->m_name = "res";
5995 }
5996 }
5997
5998 /* Generate the vector of parameters of the HSA representation of the current
5999 function. This also includes the output parameter representing the
6000 result. */
6001
6002 static void
6003 gen_function_def_parameters ()
6004 {
6005 tree parm;
6006
6007 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6008
6009 for (parm = DECL_ARGUMENTS (cfun->decl); parm;
6010 parm = DECL_CHAIN (parm))
6011 {
6012 struct hsa_symbol **slot;
6013
6014 hsa_symbol *arg
6015 = new hsa_symbol (BRIG_TYPE_NONE, hsa_cfun->m_kern_p
6016 ? BRIG_SEGMENT_KERNARG : BRIG_SEGMENT_ARG,
6017 BRIG_LINKAGE_FUNCTION);
6018 arg->fillup_for_decl (parm);
6019
6020 hsa_cfun->m_input_args.safe_push (arg);
6021
6022 if (hsa_seen_error ())
6023 return;
6024
6025 arg->m_name = hsa_get_declaration_name (parm);
6026
6027 /* Copy all input arguments and create corresponding private symbols
6028 for them. */
6029 hsa_symbol *private_arg;
6030 hsa_op_address *parm_addr = new hsa_op_address (arg);
6031
6032 if (TREE_ADDRESSABLE (parm)
6033 || (!is_gimple_reg (parm) && !TREE_READONLY (parm)))
6034 {
6035 private_arg = hsa_cfun->create_hsa_temporary (arg->m_type);
6036 private_arg->fillup_for_decl (parm);
6037
6038 BrigAlignment8_t align = MIN (arg->m_align, private_arg->m_align);
6039
6040 hsa_op_address *private_arg_addr = new hsa_op_address (private_arg);
6041 gen_hsa_memory_copy (prologue, private_arg_addr, parm_addr,
6042 arg->total_byte_size (), align);
6043 }
6044 else
6045 private_arg = arg;
6046
6047 slot = hsa_cfun->m_local_symbols->find_slot (private_arg, INSERT);
6048 gcc_assert (!*slot);
6049 *slot = private_arg;
6050
6051 if (is_gimple_reg (parm))
6052 {
6053 tree ddef = ssa_default_def (cfun, parm);
6054 if (ddef && !has_zero_uses (ddef))
6055 {
6056 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (ddef),
6057 false);
6058 BrigType16_t mtype = mem_type_for_type (t);
6059 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (ddef);
6060 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mtype,
6061 dest, parm_addr);
6062 gcc_assert (!parm_addr->m_reg);
6063 prologue->append_insn (mem);
6064 }
6065 }
6066 }
6067
6068 if (!VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
6069 {
6070 struct hsa_symbol **slot;
6071
6072 hsa_cfun->m_output_arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
6073 BRIG_LINKAGE_FUNCTION);
6074 hsa_cfun->m_output_arg->fillup_for_decl (DECL_RESULT (cfun->decl));
6075
6076 if (hsa_seen_error ())
6077 return;
6078
6079 hsa_cfun->m_output_arg->m_name = "res";
6080 slot = hsa_cfun->m_local_symbols->find_slot (hsa_cfun->m_output_arg,
6081 INSERT);
6082 gcc_assert (!*slot);
6083 *slot = hsa_cfun->m_output_arg;
6084 }
6085 }
6086
6087 /* Generate function representation that corresponds to
6088 a function declaration. */
6089
6090 hsa_function_representation *
6091 hsa_generate_function_declaration (tree decl)
6092 {
6093 hsa_function_representation *fun
6094 = new hsa_function_representation (decl, false, 0);
6095
6096 fun->m_declaration_p = true;
6097 fun->m_name = get_brig_function_name (decl);
6098 gen_function_decl_parameters (fun, decl);
6099
6100 return fun;
6101 }
6102
6103
6104 /* Generate function representation that corresponds to
6105 an internal FN. */
6106
6107 hsa_function_representation *
6108 hsa_generate_internal_fn_decl (hsa_internal_fn *fn)
6109 {
6110 hsa_function_representation *fun = new hsa_function_representation (fn);
6111
6112 fun->m_name = fn->name ();
6113
6114 for (unsigned i = 0; i < fn->get_arity (); i++)
6115 {
6116 hsa_symbol *arg
6117 = new hsa_symbol (fn->get_argument_type (i), BRIG_SEGMENT_ARG,
6118 BRIG_LINKAGE_NONE);
6119 arg->m_name_number = i;
6120 fun->m_input_args.safe_push (arg);
6121 }
6122
6123 fun->m_output_arg = new hsa_symbol (fn->get_argument_type (-1),
6124 BRIG_SEGMENT_ARG, BRIG_LINKAGE_NONE);
6125 fun->m_output_arg->m_name = "res";
6126
6127 return fun;
6128 }
6129
6130 /* Return true if switch statement S can be transformed
6131 to a SBR instruction in HSAIL. */
6132
6133 static bool
6134 transformable_switch_to_sbr_p (gswitch *s)
6135 {
6136 /* Identify if a switch statement can be transformed to
6137 SBR instruction, like:
6138
6139 sbr_u32 $s1 [@label1, @label2, @label3];
6140 */
6141
6142 tree size = get_switch_size (s);
6143 if (!tree_fits_uhwi_p (size))
6144 return false;
6145
6146 if (tree_to_uhwi (size) > HSA_MAXIMUM_SBR_LABELS)
6147 return false;
6148
6149 return true;
6150 }
6151
6152 /* Structure hold connection between PHI nodes and immediate
6153 values hold by there nodes. */
6154
6155 struct phi_definition
6156 {
6157 phi_definition (unsigned phi_i, unsigned label_i, tree imm):
6158 phi_index (phi_i), label_index (label_i), phi_value (imm)
6159 {}
6160
6161 unsigned phi_index;
6162 unsigned label_index;
6163 tree phi_value;
6164 };
6165
6166 /* Sum slice of a vector V, starting from index START and ending
6167 at the index END - 1. */
6168
6169 template <typename T>
6170 static
6171 T sum_slice (const auto_vec <T> &v, unsigned start, unsigned end,
6172 T zero)
6173 {
6174 T s = zero;
6175
6176 for (unsigned i = start; i < end; i++)
6177 s += v[i];
6178
6179 return s;
6180 }
6181
6182 /* Function transforms GIMPLE SWITCH statements to a series of IF statements.
6183 Let's assume following example:
6184
6185 L0:
6186 switch (index)
6187 case C1:
6188 L1: hard_work_1 ();
6189 break;
6190 case C2..C3:
6191 L2: hard_work_2 ();
6192 break;
6193 default:
6194 LD: hard_work_3 ();
6195 break;
6196
6197 The transformation encompasses following steps:
6198 1) all immediate values used by edges coming from the switch basic block
6199 are saved
6200 2) all these edges are removed
6201 3) the switch statement (in L0) is replaced by:
6202 if (index == C1)
6203 goto L1;
6204 else
6205 goto L1';
6206
6207 4) newly created basic block Lx' is used for generation of
6208 a next condition
6209 5) else branch of the last condition goes to LD
6210 6) fix all immediate values in PHI nodes that were propagated though
6211 edges that were removed in step 2
6212
6213 Note: if a case is made by a range C1..C2, then process
6214 following transformation:
6215
6216 switch_cond_op1 = C1 <= index;
6217 switch_cond_op2 = index <= C2;
6218 switch_cond_and = switch_cond_op1 & switch_cond_op2;
6219 if (switch_cond_and != 0)
6220 goto Lx;
6221 else
6222 goto Ly;
6223
6224 */
6225
6226 static bool
6227 convert_switch_statements (void)
6228 {
6229 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
6230 basic_block bb;
6231
6232 bool modified_cfg = false;
6233
6234 FOR_EACH_BB_FN (bb, func)
6235 {
6236 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6237 if (gsi_end_p (gsi))
6238 continue;
6239
6240 gimple *stmt = gsi_stmt (gsi);
6241
6242 if (gimple_code (stmt) == GIMPLE_SWITCH)
6243 {
6244 gswitch *s = as_a <gswitch *> (stmt);
6245
6246 /* If the switch can utilize SBR insn, skip the statement. */
6247 if (transformable_switch_to_sbr_p (s))
6248 continue;
6249
6250 modified_cfg = true;
6251
6252 unsigned labels = gimple_switch_num_labels (s);
6253 tree index = gimple_switch_index (s);
6254 tree index_type = TREE_TYPE (index);
6255 tree default_label = gimple_switch_default_label (s);
6256 basic_block default_label_bb
6257 = label_to_block_fn (func, CASE_LABEL (default_label));
6258 basic_block cur_bb = bb;
6259
6260 auto_vec <edge> new_edges;
6261 auto_vec <phi_definition *> phi_todo_list;
6262 auto_vec <profile_count> edge_counts;
6263 auto_vec <profile_probability> edge_probabilities;
6264
6265 /* Investigate all labels that and PHI nodes in these edges which
6266 should be fixed after we add new collection of edges. */
6267 for (unsigned i = 0; i < labels; i++)
6268 {
6269 tree label = gimple_switch_label (s, i);
6270 basic_block label_bb = label_to_block_fn (func, CASE_LABEL (label));
6271 edge e = find_edge (bb, label_bb);
6272 edge_counts.safe_push (e->count ());
6273 edge_probabilities.safe_push (e->probability);
6274 gphi_iterator phi_gsi;
6275
6276 /* Save PHI definitions that will be destroyed because of an edge
6277 is going to be removed. */
6278 unsigned phi_index = 0;
6279 for (phi_gsi = gsi_start_phis (e->dest);
6280 !gsi_end_p (phi_gsi); gsi_next (&phi_gsi))
6281 {
6282 gphi *phi = phi_gsi.phi ();
6283 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
6284 {
6285 if (gimple_phi_arg_edge (phi, j) == e)
6286 {
6287 tree imm = gimple_phi_arg_def (phi, j);
6288 phi_definition *p = new phi_definition (phi_index, i,
6289 imm);
6290 phi_todo_list.safe_push (p);
6291 break;
6292 }
6293 }
6294 phi_index++;
6295 }
6296 }
6297
6298 /* Remove all edges for the current basic block. */
6299 for (int i = EDGE_COUNT (bb->succs) - 1; i >= 0; i--)
6300 {
6301 edge e = EDGE_SUCC (bb, i);
6302 remove_edge (e);
6303 }
6304
6305 /* Iterate all non-default labels. */
6306 for (unsigned i = 1; i < labels; i++)
6307 {
6308 tree label = gimple_switch_label (s, i);
6309 tree low = CASE_LOW (label);
6310 tree high = CASE_HIGH (label);
6311
6312 if (!useless_type_conversion_p (TREE_TYPE (low), index_type))
6313 low = fold_convert (index_type, low);
6314
6315 gimple_stmt_iterator cond_gsi = gsi_last_bb (cur_bb);
6316 gimple *c = NULL;
6317 if (high)
6318 {
6319 tree tmp1 = make_temp_ssa_name (boolean_type_node, NULL,
6320 "switch_cond_op1");
6321
6322 gimple *assign1 = gimple_build_assign (tmp1, LE_EXPR, low,
6323 index);
6324
6325 tree tmp2 = make_temp_ssa_name (boolean_type_node, NULL,
6326 "switch_cond_op2");
6327
6328 if (!useless_type_conversion_p (TREE_TYPE (high), index_type))
6329 high = fold_convert (index_type, high);
6330 gimple *assign2 = gimple_build_assign (tmp2, LE_EXPR, index,
6331 high);
6332
6333 tree tmp3 = make_temp_ssa_name (boolean_type_node, NULL,
6334 "switch_cond_and");
6335 gimple *assign3 = gimple_build_assign (tmp3, BIT_AND_EXPR, tmp1,
6336 tmp2);
6337
6338 gsi_insert_before (&cond_gsi, assign1, GSI_SAME_STMT);
6339 gsi_insert_before (&cond_gsi, assign2, GSI_SAME_STMT);
6340 gsi_insert_before (&cond_gsi, assign3, GSI_SAME_STMT);
6341
6342 tree b = constant_boolean_node (false, boolean_type_node);
6343 c = gimple_build_cond (NE_EXPR, tmp3, b, NULL, NULL);
6344 }
6345 else
6346 c = gimple_build_cond (EQ_EXPR, index, low, NULL, NULL);
6347
6348 gimple_set_location (c, gimple_location (stmt));
6349
6350 gsi_insert_before (&cond_gsi, c, GSI_SAME_STMT);
6351
6352 basic_block label_bb
6353 = label_to_block_fn (func, CASE_LABEL (label));
6354 edge new_edge = make_edge (cur_bb, label_bb, EDGE_TRUE_VALUE);
6355 profile_probability prob_sum = sum_slice <profile_probability>
6356 (edge_probabilities, i, labels, profile_probability::never ())
6357 + edge_probabilities[0];
6358
6359 if (prob_sum.initialized_p ())
6360 new_edge->probability = edge_probabilities[i] / prob_sum;
6361
6362 new_edges.safe_push (new_edge);
6363
6364 if (i < labels - 1)
6365 {
6366 /* Prepare another basic block that will contain
6367 next condition. */
6368 basic_block next_bb = create_empty_bb (cur_bb);
6369 if (current_loops)
6370 {
6371 add_bb_to_loop (next_bb, cur_bb->loop_father);
6372 loops_state_set (LOOPS_NEED_FIXUP);
6373 }
6374
6375 edge next_edge = make_edge (cur_bb, next_bb, EDGE_FALSE_VALUE);
6376 next_edge->probability = new_edge->probability.invert ();
6377 next_bb->frequency = EDGE_FREQUENCY (next_edge);
6378 cur_bb = next_bb;
6379 }
6380 else /* Link last IF statement and default label
6381 of the switch. */
6382 {
6383 edge e = make_edge (cur_bb, default_label_bb, EDGE_FALSE_VALUE);
6384 e->probability = new_edge->probability.invert ();
6385 new_edges.safe_insert (0, e);
6386 }
6387 }
6388
6389 /* Restore original PHI immediate value. */
6390 for (unsigned i = 0; i < phi_todo_list.length (); i++)
6391 {
6392 phi_definition *phi_def = phi_todo_list[i];
6393 edge new_edge = new_edges[phi_def->label_index];
6394
6395 gphi_iterator it = gsi_start_phis (new_edge->dest);
6396 for (unsigned i = 0; i < phi_def->phi_index; i++)
6397 gsi_next (&it);
6398
6399 gphi *phi = it.phi ();
6400 add_phi_arg (phi, phi_def->phi_value, new_edge, UNKNOWN_LOCATION);
6401 delete phi_def;
6402 }
6403
6404 /* Remove the original GIMPLE switch statement. */
6405 gsi_remove (&gsi, true);
6406 }
6407 }
6408
6409 if (dump_file)
6410 dump_function_to_file (current_function_decl, dump_file, TDF_DETAILS);
6411
6412 return modified_cfg;
6413 }
6414
6415 /* Expand builtins that can't be handled by HSA back-end. */
6416
6417 static void
6418 expand_builtins ()
6419 {
6420 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
6421 basic_block bb;
6422
6423 FOR_EACH_BB_FN (bb, func)
6424 {
6425 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
6426 gsi_next (&gsi))
6427 {
6428 gimple *stmt = gsi_stmt (gsi);
6429
6430 if (gimple_code (stmt) != GIMPLE_CALL)
6431 continue;
6432
6433 gcall *call = as_a <gcall *> (stmt);
6434
6435 if (!gimple_call_builtin_p (call, BUILT_IN_NORMAL))
6436 continue;
6437
6438 tree fndecl = gimple_call_fndecl (stmt);
6439 enum built_in_function fn = DECL_FUNCTION_CODE (fndecl);
6440 switch (fn)
6441 {
6442 case BUILT_IN_CEXPF:
6443 case BUILT_IN_CEXPIF:
6444 case BUILT_IN_CEXPI:
6445 {
6446 /* Similar to builtins.c (expand_builtin_cexpi), the builtin
6447 can be transformed to: cexp(I * z) = ccos(z) + I * csin(z). */
6448 tree lhs = gimple_call_lhs (stmt);
6449 tree rhs = gimple_call_arg (stmt, 0);
6450 tree rhs_type = TREE_TYPE (rhs);
6451 bool float_type_p = rhs_type == float_type_node;
6452 tree real_part = make_temp_ssa_name (rhs_type, NULL,
6453 "cexp_real_part");
6454 tree imag_part = make_temp_ssa_name (rhs_type, NULL,
6455 "cexp_imag_part");
6456
6457 tree cos_fndecl
6458 = mathfn_built_in (rhs_type, fn == float_type_p
6459 ? BUILT_IN_COSF : BUILT_IN_COS);
6460 gcall *cos = gimple_build_call (cos_fndecl, 1, rhs);
6461 gimple_call_set_lhs (cos, real_part);
6462 gsi_insert_before (&gsi, cos, GSI_SAME_STMT);
6463
6464 tree sin_fndecl
6465 = mathfn_built_in (rhs_type, fn == float_type_p
6466 ? BUILT_IN_SINF : BUILT_IN_SIN);
6467 gcall *sin = gimple_build_call (sin_fndecl, 1, rhs);
6468 gimple_call_set_lhs (sin, imag_part);
6469 gsi_insert_before (&gsi, sin, GSI_SAME_STMT);
6470
6471
6472 gassign *assign = gimple_build_assign (lhs, COMPLEX_EXPR,
6473 real_part, imag_part);
6474 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
6475 gsi_remove (&gsi, true);
6476
6477 break;
6478 }
6479 default:
6480 break;
6481 }
6482 }
6483 }
6484 }
6485
6486 /* Emit HSA module variables that are global for the entire module. */
6487
6488 static void
6489 emit_hsa_module_variables (void)
6490 {
6491 hsa_num_threads = new hsa_symbol (BRIG_TYPE_U32, BRIG_SEGMENT_PRIVATE,
6492 BRIG_LINKAGE_MODULE, true);
6493
6494 hsa_num_threads->m_name = "hsa_num_threads";
6495
6496 hsa_brig_emit_omp_symbols ();
6497 }
6498
6499 /* Generate HSAIL representation of the current function and write into a
6500 special section of the output file. If KERNEL is set, the function will be
6501 considered an HSA kernel callable from the host, otherwise it will be
6502 compiled as an HSA function callable from other HSA code. */
6503
6504 static void
6505 generate_hsa (bool kernel)
6506 {
6507 hsa_init_data_for_cfun ();
6508
6509 if (hsa_num_threads == NULL)
6510 emit_hsa_module_variables ();
6511
6512 bool modified_cfg = convert_switch_statements ();
6513 /* Initialize hsa_cfun. */
6514 hsa_cfun = new hsa_function_representation (cfun->decl, kernel,
6515 SSANAMES (cfun)->length (),
6516 modified_cfg);
6517 hsa_cfun->init_extra_bbs ();
6518
6519 if (flag_tm)
6520 {
6521 HSA_SORRY_AT (UNKNOWN_LOCATION,
6522 "support for HSA does not implement transactional memory");
6523 goto fail;
6524 }
6525
6526 verify_function_arguments (cfun->decl);
6527 if (hsa_seen_error ())
6528 goto fail;
6529
6530 hsa_cfun->m_name = get_brig_function_name (cfun->decl);
6531
6532 gen_function_def_parameters ();
6533 if (hsa_seen_error ())
6534 goto fail;
6535
6536 init_prologue ();
6537
6538 gen_body_from_gimple ();
6539 if (hsa_seen_error ())
6540 goto fail;
6541
6542 if (hsa_cfun->m_kernel_dispatch_count)
6543 init_hsa_num_threads ();
6544
6545 if (hsa_cfun->m_kern_p)
6546 {
6547 hsa_function_summary *s
6548 = hsa_summaries->get (cgraph_node::get (hsa_cfun->m_decl));
6549 hsa_add_kern_decl_mapping (current_function_decl, hsa_cfun->m_name,
6550 hsa_cfun->m_maximum_omp_data_size,
6551 s->m_gridified_kernel_p);
6552 }
6553
6554 if (flag_checking)
6555 {
6556 for (unsigned i = 0; i < hsa_cfun->m_ssa_map.length (); i++)
6557 if (hsa_cfun->m_ssa_map[i])
6558 hsa_cfun->m_ssa_map[i]->verify_ssa ();
6559
6560 basic_block bb;
6561 FOR_EACH_BB_FN (bb, cfun)
6562 {
6563 hsa_bb *hbb = hsa_bb_for_bb (bb);
6564
6565 for (hsa_insn_basic *insn = hbb->m_first_insn; insn;
6566 insn = insn->m_next)
6567 insn->verify ();
6568 }
6569 }
6570
6571 hsa_regalloc ();
6572 hsa_brig_emit_function ();
6573
6574 fail:
6575 hsa_deinit_data_for_cfun ();
6576 }
6577
6578 namespace {
6579
6580 const pass_data pass_data_gen_hsail =
6581 {
6582 GIMPLE_PASS,
6583 "hsagen", /* name */
6584 OPTGROUP_OMP, /* optinfo_flags */
6585 TV_NONE, /* tv_id */
6586 PROP_cfg | PROP_ssa, /* properties_required */
6587 0, /* properties_provided */
6588 0, /* properties_destroyed */
6589 0, /* todo_flags_start */
6590 0 /* todo_flags_finish */
6591 };
6592
6593 class pass_gen_hsail : public gimple_opt_pass
6594 {
6595 public:
6596 pass_gen_hsail (gcc::context *ctxt)
6597 : gimple_opt_pass(pass_data_gen_hsail, ctxt)
6598 {}
6599
6600 /* opt_pass methods: */
6601 bool gate (function *);
6602 unsigned int execute (function *);
6603
6604 }; // class pass_gen_hsail
6605
6606 /* Determine whether or not to run generation of HSAIL. */
6607
6608 bool
6609 pass_gen_hsail::gate (function *f)
6610 {
6611 return hsa_gen_requested_p ()
6612 && hsa_gpu_implementation_p (f->decl);
6613 }
6614
6615 unsigned int
6616 pass_gen_hsail::execute (function *)
6617 {
6618 hsa_function_summary *s
6619 = hsa_summaries->get (cgraph_node::get_create (current_function_decl));
6620
6621 expand_builtins ();
6622 generate_hsa (s->m_kind == HSA_KERNEL);
6623 TREE_ASM_WRITTEN (current_function_decl) = 1;
6624 return TODO_discard_function;
6625 }
6626
6627 } // anon namespace
6628
6629 /* Create the instance of hsa gen pass. */
6630
6631 gimple_opt_pass *
6632 make_pass_gen_hsail (gcc::context *ctxt)
6633 {
6634 return new pass_gen_hsail (ctxt);
6635 }