Makefile.in (hwint.o): Depend on DIAGNOSTIC_CORE_H.
[gcc.git] / gcc / hwint.c
1 /* Operations on HOST_WIDE_INT.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "diagnostic-core.h"
25
26 #if GCC_VERSION < 3004
27
28 /* The functions clz_hwi, ctz_hwi, ffs_hwi, floor_log2 and exact_log2
29 are defined as inline functions in hwint.h if GCC_VERSION >= 3004.
30 The definitions here are used for older versions of GCC and non-GCC
31 bootstrap compilers. */
32
33 /* Given X, an unsigned number, return the largest int Y such that 2**Y <= X.
34 If X is 0, return -1. */
35
36 int
37 floor_log2 (unsigned HOST_WIDE_INT x)
38 {
39 int t = 0;
40
41 if (x == 0)
42 return -1;
43
44 if (HOST_BITS_PER_WIDE_INT > 64)
45 if (x >= (unsigned HOST_WIDE_INT) 1 << (t + 64))
46 t += 64;
47 if (HOST_BITS_PER_WIDE_INT > 32)
48 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 32))
49 t += 32;
50 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 16))
51 t += 16;
52 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 8))
53 t += 8;
54 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 4))
55 t += 4;
56 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 2))
57 t += 2;
58 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 1))
59 t += 1;
60
61 return t;
62 }
63
64 /* Return the logarithm of X, base 2, considering X unsigned,
65 if X is a power of 2. Otherwise, returns -1. */
66
67 int
68 exact_log2 (unsigned HOST_WIDE_INT x)
69 {
70 if (x != (x & -x))
71 return -1;
72 return floor_log2 (x);
73 }
74
75 /* Given X, an unsigned number, return the number of least significant bits
76 that are zero. When X == 0, the result is the word size. */
77
78 int
79 ctz_hwi (unsigned HOST_WIDE_INT x)
80 {
81 return x ? floor_log2 (x & -x) : HOST_BITS_PER_WIDE_INT;
82 }
83
84 /* Similarly for most significant bits. */
85
86 int
87 clz_hwi (unsigned HOST_WIDE_INT x)
88 {
89 return HOST_BITS_PER_WIDE_INT - 1 - floor_log2(x);
90 }
91
92 /* Similar to ctz_hwi, except that the least significant bit is numbered
93 starting from 1, and X == 0 yields 0. */
94
95 int
96 ffs_hwi (unsigned HOST_WIDE_INT x)
97 {
98 return 1 + floor_log2 (x & -x);
99 }
100
101 #endif /* GCC_VERSION < 3004 */
102
103 /* Compute the absolute value of X. */
104
105 HOST_WIDE_INT
106 abs_hwi (HOST_WIDE_INT x)
107 {
108 gcc_checking_assert (x != HOST_WIDE_INT_MIN);
109 return x >= 0 ? x : -x;
110 }
111
112 /* Compute the greatest common divisor of two numbers A and B using
113 Euclid's algorithm. */
114
115 HOST_WIDE_INT
116 gcd (HOST_WIDE_INT a, HOST_WIDE_INT b)
117 {
118 HOST_WIDE_INT x, y, z;
119
120 x = abs_hwi (a);
121 y = abs_hwi (b);
122
123 while (x > 0)
124 {
125 z = y % x;
126 y = x;
127 x = z;
128 }
129
130 return y;
131 }
132
133 /* For X and Y positive integers, return X multiplied by Y and check
134 that the result does not overflow. */
135
136 HOST_WIDE_INT
137 pos_mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
138 {
139 if (x != 0)
140 gcc_checking_assert ((HOST_WIDE_INT_MAX) / x >= y);
141
142 return x * y;
143 }
144
145 /* Return X multiplied by Y and check that the result does not
146 overflow. */
147
148 HOST_WIDE_INT
149 mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
150 {
151 gcc_checking_assert (x != HOST_WIDE_INT_MIN
152 && y != HOST_WIDE_INT_MIN);
153
154 if (x >= 0)
155 {
156 if (y >= 0)
157 return pos_mul_hwi (x, y);
158
159 return -pos_mul_hwi (x, -y);
160 }
161
162 if (y >= 0)
163 return -pos_mul_hwi (-x, y);
164
165 return pos_mul_hwi (-x, -y);
166 }
167
168 /* Compute the least common multiple of two numbers A and B . */
169
170 HOST_WIDE_INT
171 least_common_multiple (HOST_WIDE_INT a, HOST_WIDE_INT b)
172 {
173 return mul_hwi (abs_hwi (a) / gcd (a, b), abs_hwi (b));
174 }