[RTL-ifcvt] Improve conditional select ops on immediates
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28
29 #include "regs.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "cfgrtl.h"
35 #include "cfganal.h"
36 #include "cfgcleanup.h"
37 #include "alias.h"
38 #include "expmed.h"
39 #include "dojump.h"
40 #include "explow.h"
41 #include "calls.h"
42 #include "emit-rtl.h"
43 #include "varasm.h"
44 #include "stmt.h"
45 #include "expr.h"
46 #include "output.h"
47 #include "insn-codes.h"
48 #include "optabs.h"
49 #include "diagnostic-core.h"
50 #include "tm_p.h"
51 #include "cfgloop.h"
52 #include "target.h"
53 #include "tree-pass.h"
54 #include "dbgcnt.h"
55 #include "shrink-wrap.h"
56 #include "ifcvt.h"
57
58 #ifndef HAVE_incscc
59 #define HAVE_incscc 0
60 #endif
61 #ifndef HAVE_decscc
62 #define HAVE_decscc 0
63 #endif
64
65 #ifndef MAX_CONDITIONAL_EXECUTE
66 #define MAX_CONDITIONAL_EXECUTE \
67 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
68 + 1)
69 #endif
70
71 #ifndef HAVE_cbranchcc4
72 #define HAVE_cbranchcc4 0
73 #endif
74
75 #define IFCVT_MULTIPLE_DUMPS 1
76
77 #define NULL_BLOCK ((basic_block) NULL)
78
79 /* True if after combine pass. */
80 static bool ifcvt_after_combine;
81
82 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
83 static int num_possible_if_blocks;
84
85 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
86 execution. */
87 static int num_updated_if_blocks;
88
89 /* # of changes made. */
90 static int num_true_changes;
91
92 /* Whether conditional execution changes were made. */
93 static int cond_exec_changed_p;
94
95 /* Forward references. */
96 static int count_bb_insns (const_basic_block);
97 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
98 static rtx_insn *first_active_insn (basic_block);
99 static rtx_insn *last_active_insn (basic_block, int);
100 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
101 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
102 static basic_block block_fallthru (basic_block);
103 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
104 int);
105 static rtx cond_exec_get_condition (rtx_insn *);
106 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
107 static int noce_operand_ok (const_rtx);
108 static void merge_if_block (ce_if_block *);
109 static int find_cond_trap (basic_block, edge, edge);
110 static basic_block find_if_header (basic_block, int);
111 static int block_jumps_and_fallthru_p (basic_block, basic_block);
112 static int noce_find_if_block (basic_block, edge, edge, int);
113 static int cond_exec_find_if_block (ce_if_block *);
114 static int find_if_case_1 (basic_block, edge, edge);
115 static int find_if_case_2 (basic_block, edge, edge);
116 static int dead_or_predicable (basic_block, basic_block, basic_block,
117 edge, int);
118 static void noce_emit_move_insn (rtx, rtx);
119 static rtx_insn *block_has_only_trap (basic_block);
120 \f
121 /* Count the number of non-jump active insns in BB. */
122
123 static int
124 count_bb_insns (const_basic_block bb)
125 {
126 int count = 0;
127 rtx_insn *insn = BB_HEAD (bb);
128
129 while (1)
130 {
131 if (active_insn_p (insn) && !JUMP_P (insn))
132 count++;
133
134 if (insn == BB_END (bb))
135 break;
136 insn = NEXT_INSN (insn);
137 }
138
139 return count;
140 }
141
142 /* Determine whether the total insn_rtx_cost on non-jump insns in
143 basic block BB is less than MAX_COST. This function returns
144 false if the cost of any instruction could not be estimated.
145
146 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
147 as those insns are being speculated. MAX_COST is scaled with SCALE
148 plus a small fudge factor. */
149
150 static bool
151 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
152 {
153 int count = 0;
154 rtx_insn *insn = BB_HEAD (bb);
155 bool speed = optimize_bb_for_speed_p (bb);
156
157 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
158 applied to insn_rtx_cost when optimizing for size. Only do
159 this after combine because if-conversion might interfere with
160 passes before combine.
161
162 Use optimize_function_for_speed_p instead of the pre-defined
163 variable speed to make sure it is set to same value for all
164 basic blocks in one if-conversion transformation. */
165 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
166 scale = REG_BR_PROB_BASE;
167 /* Our branch probability/scaling factors are just estimates and don't
168 account for cases where we can get speculation for free and other
169 secondary benefits. So we fudge the scale factor to make speculating
170 appear a little more profitable when optimizing for performance. */
171 else
172 scale += REG_BR_PROB_BASE / 8;
173
174
175 max_cost *= scale;
176
177 while (1)
178 {
179 if (NONJUMP_INSN_P (insn))
180 {
181 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
182 if (cost == 0)
183 return false;
184
185 /* If this instruction is the load or set of a "stack" register,
186 such as a floating point register on x87, then the cost of
187 speculatively executing this insn may need to include
188 the additional cost of popping its result off of the
189 register stack. Unfortunately, correctly recognizing and
190 accounting for this additional overhead is tricky, so for
191 now we simply prohibit such speculative execution. */
192 #ifdef STACK_REGS
193 {
194 rtx set = single_set (insn);
195 if (set && STACK_REG_P (SET_DEST (set)))
196 return false;
197 }
198 #endif
199
200 count += cost;
201 if (count >= max_cost)
202 return false;
203 }
204 else if (CALL_P (insn))
205 return false;
206
207 if (insn == BB_END (bb))
208 break;
209 insn = NEXT_INSN (insn);
210 }
211
212 return true;
213 }
214
215 /* Return the first non-jump active insn in the basic block. */
216
217 static rtx_insn *
218 first_active_insn (basic_block bb)
219 {
220 rtx_insn *insn = BB_HEAD (bb);
221
222 if (LABEL_P (insn))
223 {
224 if (insn == BB_END (bb))
225 return NULL;
226 insn = NEXT_INSN (insn);
227 }
228
229 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
230 {
231 if (insn == BB_END (bb))
232 return NULL;
233 insn = NEXT_INSN (insn);
234 }
235
236 if (JUMP_P (insn))
237 return NULL;
238
239 return insn;
240 }
241
242 /* Return the last non-jump active (non-jump) insn in the basic block. */
243
244 static rtx_insn *
245 last_active_insn (basic_block bb, int skip_use_p)
246 {
247 rtx_insn *insn = BB_END (bb);
248 rtx_insn *head = BB_HEAD (bb);
249
250 while (NOTE_P (insn)
251 || JUMP_P (insn)
252 || DEBUG_INSN_P (insn)
253 || (skip_use_p
254 && NONJUMP_INSN_P (insn)
255 && GET_CODE (PATTERN (insn)) == USE))
256 {
257 if (insn == head)
258 return NULL;
259 insn = PREV_INSN (insn);
260 }
261
262 if (LABEL_P (insn))
263 return NULL;
264
265 return insn;
266 }
267
268 /* Return the active insn before INSN inside basic block CURR_BB. */
269
270 static rtx_insn *
271 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
272 {
273 if (!insn || insn == BB_HEAD (curr_bb))
274 return NULL;
275
276 while ((insn = PREV_INSN (insn)) != NULL_RTX)
277 {
278 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
279 break;
280
281 /* No other active insn all the way to the start of the basic block. */
282 if (insn == BB_HEAD (curr_bb))
283 return NULL;
284 }
285
286 return insn;
287 }
288
289 /* Return the active insn after INSN inside basic block CURR_BB. */
290
291 static rtx_insn *
292 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
293 {
294 if (!insn || insn == BB_END (curr_bb))
295 return NULL;
296
297 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
298 {
299 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
300 break;
301
302 /* No other active insn all the way to the end of the basic block. */
303 if (insn == BB_END (curr_bb))
304 return NULL;
305 }
306
307 return insn;
308 }
309
310 /* Return the basic block reached by falling though the basic block BB. */
311
312 static basic_block
313 block_fallthru (basic_block bb)
314 {
315 edge e = find_fallthru_edge (bb->succs);
316
317 return (e) ? e->dest : NULL_BLOCK;
318 }
319
320 /* Return true if RTXs A and B can be safely interchanged. */
321
322 static bool
323 rtx_interchangeable_p (const_rtx a, const_rtx b)
324 {
325 if (!rtx_equal_p (a, b))
326 return false;
327
328 if (GET_CODE (a) != MEM)
329 return true;
330
331 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
332 reference is not. Interchanging a dead type-unsafe memory reference with
333 a live type-safe one creates a live type-unsafe memory reference, in other
334 words, it makes the program illegal.
335 We check here conservatively whether the two memory references have equal
336 memory attributes. */
337
338 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
339 }
340
341 \f
342 /* Go through a bunch of insns, converting them to conditional
343 execution format if possible. Return TRUE if all of the non-note
344 insns were processed. */
345
346 static int
347 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
348 /* if block information */rtx_insn *start,
349 /* first insn to look at */rtx end,
350 /* last insn to look at */rtx test,
351 /* conditional execution test */int prob_val,
352 /* probability of branch taken. */int mod_ok)
353 {
354 int must_be_last = FALSE;
355 rtx_insn *insn;
356 rtx xtest;
357 rtx pattern;
358
359 if (!start || !end)
360 return FALSE;
361
362 for (insn = start; ; insn = NEXT_INSN (insn))
363 {
364 /* dwarf2out can't cope with conditional prologues. */
365 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
366 return FALSE;
367
368 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
369 goto insn_done;
370
371 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
372
373 /* dwarf2out can't cope with conditional unwind info. */
374 if (RTX_FRAME_RELATED_P (insn))
375 return FALSE;
376
377 /* Remove USE insns that get in the way. */
378 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
379 {
380 /* ??? Ug. Actually unlinking the thing is problematic,
381 given what we'd have to coordinate with our callers. */
382 SET_INSN_DELETED (insn);
383 goto insn_done;
384 }
385
386 /* Last insn wasn't last? */
387 if (must_be_last)
388 return FALSE;
389
390 if (modified_in_p (test, insn))
391 {
392 if (!mod_ok)
393 return FALSE;
394 must_be_last = TRUE;
395 }
396
397 /* Now build the conditional form of the instruction. */
398 pattern = PATTERN (insn);
399 xtest = copy_rtx (test);
400
401 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
402 two conditions. */
403 if (GET_CODE (pattern) == COND_EXEC)
404 {
405 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
406 return FALSE;
407
408 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
409 COND_EXEC_TEST (pattern));
410 pattern = COND_EXEC_CODE (pattern);
411 }
412
413 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
414
415 /* If the machine needs to modify the insn being conditionally executed,
416 say for example to force a constant integer operand into a temp
417 register, do so here. */
418 #ifdef IFCVT_MODIFY_INSN
419 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
420 if (! pattern)
421 return FALSE;
422 #endif
423
424 validate_change (insn, &PATTERN (insn), pattern, 1);
425
426 if (CALL_P (insn) && prob_val >= 0)
427 validate_change (insn, &REG_NOTES (insn),
428 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
429 prob_val, REG_NOTES (insn)), 1);
430
431 insn_done:
432 if (insn == end)
433 break;
434 }
435
436 return TRUE;
437 }
438
439 /* Return the condition for a jump. Do not do any special processing. */
440
441 static rtx
442 cond_exec_get_condition (rtx_insn *jump)
443 {
444 rtx test_if, cond;
445
446 if (any_condjump_p (jump))
447 test_if = SET_SRC (pc_set (jump));
448 else
449 return NULL_RTX;
450 cond = XEXP (test_if, 0);
451
452 /* If this branches to JUMP_LABEL when the condition is false,
453 reverse the condition. */
454 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
455 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
456 {
457 enum rtx_code rev = reversed_comparison_code (cond, jump);
458 if (rev == UNKNOWN)
459 return NULL_RTX;
460
461 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
462 XEXP (cond, 1));
463 }
464
465 return cond;
466 }
467
468 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
469 to conditional execution. Return TRUE if we were successful at
470 converting the block. */
471
472 static int
473 cond_exec_process_if_block (ce_if_block * ce_info,
474 /* if block information */int do_multiple_p)
475 {
476 basic_block test_bb = ce_info->test_bb; /* last test block */
477 basic_block then_bb = ce_info->then_bb; /* THEN */
478 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
479 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
480 rtx_insn *then_start; /* first insn in THEN block */
481 rtx_insn *then_end; /* last insn + 1 in THEN block */
482 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
483 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
484 int max; /* max # of insns to convert. */
485 int then_mod_ok; /* whether conditional mods are ok in THEN */
486 rtx true_expr; /* test for else block insns */
487 rtx false_expr; /* test for then block insns */
488 int true_prob_val; /* probability of else block */
489 int false_prob_val; /* probability of then block */
490 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
491 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
492 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
493 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
494 int then_n_insns, else_n_insns, n_insns;
495 enum rtx_code false_code;
496 rtx note;
497
498 /* If test is comprised of && or || elements, and we've failed at handling
499 all of them together, just use the last test if it is the special case of
500 && elements without an ELSE block. */
501 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
502 {
503 if (else_bb || ! ce_info->and_and_p)
504 return FALSE;
505
506 ce_info->test_bb = test_bb = ce_info->last_test_bb;
507 ce_info->num_multiple_test_blocks = 0;
508 ce_info->num_and_and_blocks = 0;
509 ce_info->num_or_or_blocks = 0;
510 }
511
512 /* Find the conditional jump to the ELSE or JOIN part, and isolate
513 the test. */
514 test_expr = cond_exec_get_condition (BB_END (test_bb));
515 if (! test_expr)
516 return FALSE;
517
518 /* If the conditional jump is more than just a conditional jump,
519 then we can not do conditional execution conversion on this block. */
520 if (! onlyjump_p (BB_END (test_bb)))
521 return FALSE;
522
523 /* Collect the bounds of where we're to search, skipping any labels, jumps
524 and notes at the beginning and end of the block. Then count the total
525 number of insns and see if it is small enough to convert. */
526 then_start = first_active_insn (then_bb);
527 then_end = last_active_insn (then_bb, TRUE);
528 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
529 n_insns = then_n_insns;
530 max = MAX_CONDITIONAL_EXECUTE;
531
532 if (else_bb)
533 {
534 int n_matching;
535
536 max *= 2;
537 else_start = first_active_insn (else_bb);
538 else_end = last_active_insn (else_bb, TRUE);
539 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
540 n_insns += else_n_insns;
541
542 /* Look for matching sequences at the head and tail of the two blocks,
543 and limit the range of insns to be converted if possible. */
544 n_matching = flow_find_cross_jump (then_bb, else_bb,
545 &then_first_tail, &else_first_tail,
546 NULL);
547 if (then_first_tail == BB_HEAD (then_bb))
548 then_start = then_end = NULL;
549 if (else_first_tail == BB_HEAD (else_bb))
550 else_start = else_end = NULL;
551
552 if (n_matching > 0)
553 {
554 if (then_end)
555 then_end = find_active_insn_before (then_bb, then_first_tail);
556 if (else_end)
557 else_end = find_active_insn_before (else_bb, else_first_tail);
558 n_insns -= 2 * n_matching;
559 }
560
561 if (then_start
562 && else_start
563 && then_n_insns > n_matching
564 && else_n_insns > n_matching)
565 {
566 int longest_match = MIN (then_n_insns - n_matching,
567 else_n_insns - n_matching);
568 n_matching
569 = flow_find_head_matching_sequence (then_bb, else_bb,
570 &then_last_head,
571 &else_last_head,
572 longest_match);
573
574 if (n_matching > 0)
575 {
576 rtx_insn *insn;
577
578 /* We won't pass the insns in the head sequence to
579 cond_exec_process_insns, so we need to test them here
580 to make sure that they don't clobber the condition. */
581 for (insn = BB_HEAD (then_bb);
582 insn != NEXT_INSN (then_last_head);
583 insn = NEXT_INSN (insn))
584 if (!LABEL_P (insn) && !NOTE_P (insn)
585 && !DEBUG_INSN_P (insn)
586 && modified_in_p (test_expr, insn))
587 return FALSE;
588 }
589
590 if (then_last_head == then_end)
591 then_start = then_end = NULL;
592 if (else_last_head == else_end)
593 else_start = else_end = NULL;
594
595 if (n_matching > 0)
596 {
597 if (then_start)
598 then_start = find_active_insn_after (then_bb, then_last_head);
599 if (else_start)
600 else_start = find_active_insn_after (else_bb, else_last_head);
601 n_insns -= 2 * n_matching;
602 }
603 }
604 }
605
606 if (n_insns > max)
607 return FALSE;
608
609 /* Map test_expr/test_jump into the appropriate MD tests to use on
610 the conditionally executed code. */
611
612 true_expr = test_expr;
613
614 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
615 if (false_code != UNKNOWN)
616 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
617 XEXP (true_expr, 0), XEXP (true_expr, 1));
618 else
619 false_expr = NULL_RTX;
620
621 #ifdef IFCVT_MODIFY_TESTS
622 /* If the machine description needs to modify the tests, such as setting a
623 conditional execution register from a comparison, it can do so here. */
624 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
625
626 /* See if the conversion failed. */
627 if (!true_expr || !false_expr)
628 goto fail;
629 #endif
630
631 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
632 if (note)
633 {
634 true_prob_val = XINT (note, 0);
635 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
636 }
637 else
638 {
639 true_prob_val = -1;
640 false_prob_val = -1;
641 }
642
643 /* If we have && or || tests, do them here. These tests are in the adjacent
644 blocks after the first block containing the test. */
645 if (ce_info->num_multiple_test_blocks > 0)
646 {
647 basic_block bb = test_bb;
648 basic_block last_test_bb = ce_info->last_test_bb;
649
650 if (! false_expr)
651 goto fail;
652
653 do
654 {
655 rtx_insn *start, *end;
656 rtx t, f;
657 enum rtx_code f_code;
658
659 bb = block_fallthru (bb);
660 start = first_active_insn (bb);
661 end = last_active_insn (bb, TRUE);
662 if (start
663 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
664 false_prob_val, FALSE))
665 goto fail;
666
667 /* If the conditional jump is more than just a conditional jump, then
668 we can not do conditional execution conversion on this block. */
669 if (! onlyjump_p (BB_END (bb)))
670 goto fail;
671
672 /* Find the conditional jump and isolate the test. */
673 t = cond_exec_get_condition (BB_END (bb));
674 if (! t)
675 goto fail;
676
677 f_code = reversed_comparison_code (t, BB_END (bb));
678 if (f_code == UNKNOWN)
679 goto fail;
680
681 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
682 if (ce_info->and_and_p)
683 {
684 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
685 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
686 }
687 else
688 {
689 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
690 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
691 }
692
693 /* If the machine description needs to modify the tests, such as
694 setting a conditional execution register from a comparison, it can
695 do so here. */
696 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
697 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
698
699 /* See if the conversion failed. */
700 if (!t || !f)
701 goto fail;
702 #endif
703
704 true_expr = t;
705 false_expr = f;
706 }
707 while (bb != last_test_bb);
708 }
709
710 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
711 on then THEN block. */
712 then_mod_ok = (else_bb == NULL_BLOCK);
713
714 /* Go through the THEN and ELSE blocks converting the insns if possible
715 to conditional execution. */
716
717 if (then_end
718 && (! false_expr
719 || ! cond_exec_process_insns (ce_info, then_start, then_end,
720 false_expr, false_prob_val,
721 then_mod_ok)))
722 goto fail;
723
724 if (else_bb && else_end
725 && ! cond_exec_process_insns (ce_info, else_start, else_end,
726 true_expr, true_prob_val, TRUE))
727 goto fail;
728
729 /* If we cannot apply the changes, fail. Do not go through the normal fail
730 processing, since apply_change_group will call cancel_changes. */
731 if (! apply_change_group ())
732 {
733 #ifdef IFCVT_MODIFY_CANCEL
734 /* Cancel any machine dependent changes. */
735 IFCVT_MODIFY_CANCEL (ce_info);
736 #endif
737 return FALSE;
738 }
739
740 #ifdef IFCVT_MODIFY_FINAL
741 /* Do any machine dependent final modifications. */
742 IFCVT_MODIFY_FINAL (ce_info);
743 #endif
744
745 /* Conversion succeeded. */
746 if (dump_file)
747 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
748 n_insns, (n_insns == 1) ? " was" : "s were");
749
750 /* Merge the blocks! If we had matching sequences, make sure to delete one
751 copy at the appropriate location first: delete the copy in the THEN branch
752 for a tail sequence so that the remaining one is executed last for both
753 branches, and delete the copy in the ELSE branch for a head sequence so
754 that the remaining one is executed first for both branches. */
755 if (then_first_tail)
756 {
757 rtx_insn *from = then_first_tail;
758 if (!INSN_P (from))
759 from = find_active_insn_after (then_bb, from);
760 delete_insn_chain (from, BB_END (then_bb), false);
761 }
762 if (else_last_head)
763 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
764
765 merge_if_block (ce_info);
766 cond_exec_changed_p = TRUE;
767 return TRUE;
768
769 fail:
770 #ifdef IFCVT_MODIFY_CANCEL
771 /* Cancel any machine dependent changes. */
772 IFCVT_MODIFY_CANCEL (ce_info);
773 #endif
774
775 cancel_changes (0);
776 return FALSE;
777 }
778 \f
779 /* Used by noce_process_if_block to communicate with its subroutines.
780
781 The subroutines know that A and B may be evaluated freely. They
782 know that X is a register. They should insert new instructions
783 before cond_earliest. */
784
785 struct noce_if_info
786 {
787 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
788 basic_block test_bb, then_bb, else_bb, join_bb;
789
790 /* The jump that ends TEST_BB. */
791 rtx_insn *jump;
792
793 /* The jump condition. */
794 rtx cond;
795
796 /* New insns should be inserted before this one. */
797 rtx_insn *cond_earliest;
798
799 /* Insns in the THEN and ELSE block. There is always just this
800 one insns in those blocks. The insns are single_set insns.
801 If there was no ELSE block, INSN_B is the last insn before
802 COND_EARLIEST, or NULL_RTX. In the former case, the insn
803 operands are still valid, as if INSN_B was moved down below
804 the jump. */
805 rtx_insn *insn_a, *insn_b;
806
807 /* The SET_SRC of INSN_A and INSN_B. */
808 rtx a, b;
809
810 /* The SET_DEST of INSN_A. */
811 rtx x;
812
813 /* True if this if block is not canonical. In the canonical form of
814 if blocks, the THEN_BB is the block reached via the fallthru edge
815 from TEST_BB. For the noce transformations, we allow the symmetric
816 form as well. */
817 bool then_else_reversed;
818
819 /* Estimated cost of the particular branch instruction. */
820 int branch_cost;
821 };
822
823 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
824 static int noce_try_move (struct noce_if_info *);
825 static int noce_try_store_flag (struct noce_if_info *);
826 static int noce_try_addcc (struct noce_if_info *);
827 static int noce_try_store_flag_constants (struct noce_if_info *);
828 static int noce_try_store_flag_mask (struct noce_if_info *);
829 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
830 rtx, rtx, rtx);
831 static int noce_try_cmove (struct noce_if_info *);
832 static int noce_try_cmove_arith (struct noce_if_info *);
833 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
834 static int noce_try_minmax (struct noce_if_info *);
835 static int noce_try_abs (struct noce_if_info *);
836 static int noce_try_sign_mask (struct noce_if_info *);
837
838 /* Helper function for noce_try_store_flag*. */
839
840 static rtx
841 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
842 int normalize)
843 {
844 rtx cond = if_info->cond;
845 int cond_complex;
846 enum rtx_code code;
847
848 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
849 || ! general_operand (XEXP (cond, 1), VOIDmode));
850
851 /* If earliest == jump, or when the condition is complex, try to
852 build the store_flag insn directly. */
853
854 if (cond_complex)
855 {
856 rtx set = pc_set (if_info->jump);
857 cond = XEXP (SET_SRC (set), 0);
858 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
859 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
860 reversep = !reversep;
861 if (if_info->then_else_reversed)
862 reversep = !reversep;
863 }
864
865 if (reversep)
866 code = reversed_comparison_code (cond, if_info->jump);
867 else
868 code = GET_CODE (cond);
869
870 if ((if_info->cond_earliest == if_info->jump || cond_complex)
871 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
872 {
873 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
874 XEXP (cond, 1));
875 rtx set = gen_rtx_SET (x, src);
876
877 start_sequence ();
878 rtx_insn *insn = emit_insn (set);
879
880 if (recog_memoized (insn) >= 0)
881 {
882 rtx_insn *seq = get_insns ();
883 end_sequence ();
884 emit_insn (seq);
885
886 if_info->cond_earliest = if_info->jump;
887
888 return x;
889 }
890
891 end_sequence ();
892 }
893
894 /* Don't even try if the comparison operands or the mode of X are weird. */
895 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
896 return NULL_RTX;
897
898 return emit_store_flag (x, code, XEXP (cond, 0),
899 XEXP (cond, 1), VOIDmode,
900 (code == LTU || code == LEU
901 || code == GEU || code == GTU), normalize);
902 }
903
904 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
905 X is the destination/target and Y is the value to copy. */
906
907 static void
908 noce_emit_move_insn (rtx x, rtx y)
909 {
910 machine_mode outmode;
911 rtx outer, inner;
912 int bitpos;
913
914 if (GET_CODE (x) != STRICT_LOW_PART)
915 {
916 rtx_insn *seq, *insn;
917 rtx target;
918 optab ot;
919
920 start_sequence ();
921 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
922 otherwise construct a suitable SET pattern ourselves. */
923 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
924 ? emit_move_insn (x, y)
925 : emit_insn (gen_rtx_SET (x, y));
926 seq = get_insns ();
927 end_sequence ();
928
929 if (recog_memoized (insn) <= 0)
930 {
931 if (GET_CODE (x) == ZERO_EXTRACT)
932 {
933 rtx op = XEXP (x, 0);
934 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
935 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
936
937 /* store_bit_field expects START to be relative to
938 BYTES_BIG_ENDIAN and adjusts this value for machines with
939 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
940 invoke store_bit_field again it is necessary to have the START
941 value from the first call. */
942 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
943 {
944 if (MEM_P (op))
945 start = BITS_PER_UNIT - start - size;
946 else
947 {
948 gcc_assert (REG_P (op));
949 start = BITS_PER_WORD - start - size;
950 }
951 }
952
953 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
954 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
955 return;
956 }
957
958 switch (GET_RTX_CLASS (GET_CODE (y)))
959 {
960 case RTX_UNARY:
961 ot = code_to_optab (GET_CODE (y));
962 if (ot)
963 {
964 start_sequence ();
965 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
966 if (target != NULL_RTX)
967 {
968 if (target != x)
969 emit_move_insn (x, target);
970 seq = get_insns ();
971 }
972 end_sequence ();
973 }
974 break;
975
976 case RTX_BIN_ARITH:
977 case RTX_COMM_ARITH:
978 ot = code_to_optab (GET_CODE (y));
979 if (ot)
980 {
981 start_sequence ();
982 target = expand_binop (GET_MODE (y), ot,
983 XEXP (y, 0), XEXP (y, 1),
984 x, 0, OPTAB_DIRECT);
985 if (target != NULL_RTX)
986 {
987 if (target != x)
988 emit_move_insn (x, target);
989 seq = get_insns ();
990 }
991 end_sequence ();
992 }
993 break;
994
995 default:
996 break;
997 }
998 }
999
1000 emit_insn (seq);
1001 return;
1002 }
1003
1004 outer = XEXP (x, 0);
1005 inner = XEXP (outer, 0);
1006 outmode = GET_MODE (outer);
1007 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1008 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1009 0, 0, outmode, y);
1010 }
1011
1012 /* Return the CC reg if it is used in COND. */
1013
1014 static rtx
1015 cc_in_cond (rtx cond)
1016 {
1017 if (HAVE_cbranchcc4 && cond
1018 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1019 return XEXP (cond, 0);
1020
1021 return NULL_RTX;
1022 }
1023
1024 /* Return sequence of instructions generated by if conversion. This
1025 function calls end_sequence() to end the current stream, ensures
1026 that the instructions are unshared, recognizable non-jump insns.
1027 On failure, this function returns a NULL_RTX. */
1028
1029 static rtx_insn *
1030 end_ifcvt_sequence (struct noce_if_info *if_info)
1031 {
1032 rtx_insn *insn;
1033 rtx_insn *seq = get_insns ();
1034 rtx cc = cc_in_cond (if_info->cond);
1035
1036 set_used_flags (if_info->x);
1037 set_used_flags (if_info->cond);
1038 set_used_flags (if_info->a);
1039 set_used_flags (if_info->b);
1040 unshare_all_rtl_in_chain (seq);
1041 end_sequence ();
1042
1043 /* Make sure that all of the instructions emitted are recognizable,
1044 and that we haven't introduced a new jump instruction.
1045 As an exercise for the reader, build a general mechanism that
1046 allows proper placement of required clobbers. */
1047 for (insn = seq; insn; insn = NEXT_INSN (insn))
1048 if (JUMP_P (insn)
1049 || recog_memoized (insn) == -1
1050 /* Make sure new generated code does not clobber CC. */
1051 || (cc && set_of (cc, insn)))
1052 return NULL;
1053
1054 return seq;
1055 }
1056
1057 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1058 "if (a == b) x = a; else x = b" into "x = b". */
1059
1060 static int
1061 noce_try_move (struct noce_if_info *if_info)
1062 {
1063 rtx cond = if_info->cond;
1064 enum rtx_code code = GET_CODE (cond);
1065 rtx y;
1066 rtx_insn *seq;
1067
1068 if (code != NE && code != EQ)
1069 return FALSE;
1070
1071 /* This optimization isn't valid if either A or B could be a NaN
1072 or a signed zero. */
1073 if (HONOR_NANS (if_info->x)
1074 || HONOR_SIGNED_ZEROS (if_info->x))
1075 return FALSE;
1076
1077 /* Check whether the operands of the comparison are A and in
1078 either order. */
1079 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1080 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1081 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1082 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1083 {
1084 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1085 return FALSE;
1086
1087 y = (code == EQ) ? if_info->a : if_info->b;
1088
1089 /* Avoid generating the move if the source is the destination. */
1090 if (! rtx_equal_p (if_info->x, y))
1091 {
1092 start_sequence ();
1093 noce_emit_move_insn (if_info->x, y);
1094 seq = end_ifcvt_sequence (if_info);
1095 if (!seq)
1096 return FALSE;
1097
1098 emit_insn_before_setloc (seq, if_info->jump,
1099 INSN_LOCATION (if_info->insn_a));
1100 }
1101 return TRUE;
1102 }
1103 return FALSE;
1104 }
1105
1106 /* Convert "if (test) x = 1; else x = 0".
1107
1108 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1109 tried in noce_try_store_flag_constants after noce_try_cmove has had
1110 a go at the conversion. */
1111
1112 static int
1113 noce_try_store_flag (struct noce_if_info *if_info)
1114 {
1115 int reversep;
1116 rtx target;
1117 rtx_insn *seq;
1118
1119 if (CONST_INT_P (if_info->b)
1120 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1121 && if_info->a == const0_rtx)
1122 reversep = 0;
1123 else if (if_info->b == const0_rtx
1124 && CONST_INT_P (if_info->a)
1125 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1126 && (reversed_comparison_code (if_info->cond, if_info->jump)
1127 != UNKNOWN))
1128 reversep = 1;
1129 else
1130 return FALSE;
1131
1132 start_sequence ();
1133
1134 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1135 if (target)
1136 {
1137 if (target != if_info->x)
1138 noce_emit_move_insn (if_info->x, target);
1139
1140 seq = end_ifcvt_sequence (if_info);
1141 if (! seq)
1142 return FALSE;
1143
1144 emit_insn_before_setloc (seq, if_info->jump,
1145 INSN_LOCATION (if_info->insn_a));
1146 return TRUE;
1147 }
1148 else
1149 {
1150 end_sequence ();
1151 return FALSE;
1152 }
1153 }
1154
1155 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1156
1157 static int
1158 noce_try_store_flag_constants (struct noce_if_info *if_info)
1159 {
1160 rtx target;
1161 rtx_insn *seq;
1162 bool reversep;
1163 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1164 int normalize;
1165 bool can_reverse;
1166 machine_mode mode;
1167
1168 if (CONST_INT_P (if_info->a)
1169 && CONST_INT_P (if_info->b))
1170 {
1171 mode = GET_MODE (if_info->x);
1172 ifalse = INTVAL (if_info->a);
1173 itrue = INTVAL (if_info->b);
1174 bool subtract_flag_p = false;
1175
1176 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1177 /* Make sure we can represent the difference between the two values. */
1178 if ((diff > 0)
1179 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1180 return FALSE;
1181
1182 diff = trunc_int_for_mode (diff, mode);
1183
1184 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1185 != UNKNOWN);
1186
1187 reversep = false;
1188 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1189 {
1190 normalize = 0;
1191 /* We could collapse these cases but it is easier to follow the
1192 diff/STORE_FLAG_VALUE combinations when they are listed
1193 explicitly. */
1194
1195 /* test ? 3 : 4
1196 => 4 + (test != 0). */
1197 if (diff < 0 && STORE_FLAG_VALUE < 0)
1198 reversep = false;
1199 /* test ? 4 : 3
1200 => can_reverse | 4 + (test == 0)
1201 !can_reverse | 3 - (test != 0). */
1202 else if (diff > 0 && STORE_FLAG_VALUE < 0)
1203 {
1204 reversep = can_reverse;
1205 subtract_flag_p = !can_reverse;
1206 }
1207 /* test ? 3 : 4
1208 => can_reverse | 3 + (test == 0)
1209 !can_reverse | 4 - (test != 0). */
1210 else if (diff < 0 && STORE_FLAG_VALUE > 0)
1211 {
1212 reversep = can_reverse;
1213 subtract_flag_p = !can_reverse;
1214 }
1215 /* test ? 4 : 3
1216 => 4 + (test != 0). */
1217 else if (diff > 0 && STORE_FLAG_VALUE > 0)
1218 reversep = false;
1219 else
1220 gcc_unreachable ();
1221 }
1222 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1223 && (STORE_FLAG_VALUE == 1
1224 || if_info->branch_cost >= 2))
1225 normalize = 1;
1226 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1227 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1228 {
1229 normalize = 1;
1230 reversep = true;
1231 }
1232 else if (itrue == -1
1233 && (STORE_FLAG_VALUE == -1
1234 || if_info->branch_cost >= 2))
1235 normalize = -1;
1236 else if (ifalse == -1 && can_reverse
1237 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1238 {
1239 normalize = -1;
1240 reversep = true;
1241 }
1242 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1243 || if_info->branch_cost >= 3)
1244 normalize = -1;
1245 else
1246 return FALSE;
1247
1248 if (reversep)
1249 {
1250 std::swap (itrue, ifalse);
1251 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1252 }
1253
1254 start_sequence ();
1255 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1256 if (! target)
1257 {
1258 end_sequence ();
1259 return FALSE;
1260 }
1261
1262 /* if (test) x = 3; else x = 4;
1263 => x = 3 + (test == 0); */
1264 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1265 {
1266 /* Always use ifalse here. It should have been swapped with itrue
1267 when appropriate when reversep is true. */
1268 target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
1269 gen_int_mode (ifalse, mode), target,
1270 if_info->x, 0, OPTAB_WIDEN);
1271 }
1272
1273 /* if (test) x = 8; else x = 0;
1274 => x = (test != 0) << 3; */
1275 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1276 {
1277 target = expand_simple_binop (mode, ASHIFT,
1278 target, GEN_INT (tmp), if_info->x, 0,
1279 OPTAB_WIDEN);
1280 }
1281
1282 /* if (test) x = -1; else x = b;
1283 => x = -(test != 0) | b; */
1284 else if (itrue == -1)
1285 {
1286 target = expand_simple_binop (mode, IOR,
1287 target, gen_int_mode (ifalse, mode),
1288 if_info->x, 0, OPTAB_WIDEN);
1289 }
1290
1291 /* if (test) x = a; else x = b;
1292 => x = (-(test != 0) & (b - a)) + a; */
1293 else
1294 {
1295 target = expand_simple_binop (mode, AND,
1296 target, gen_int_mode (diff, mode),
1297 if_info->x, 0, OPTAB_WIDEN);
1298 if (target)
1299 target = expand_simple_binop (mode, PLUS,
1300 target, gen_int_mode (ifalse, mode),
1301 if_info->x, 0, OPTAB_WIDEN);
1302 }
1303
1304 if (! target)
1305 {
1306 end_sequence ();
1307 return FALSE;
1308 }
1309
1310 if (target != if_info->x)
1311 noce_emit_move_insn (if_info->x, target);
1312
1313 seq = end_ifcvt_sequence (if_info);
1314 if (!seq)
1315 return FALSE;
1316
1317 emit_insn_before_setloc (seq, if_info->jump,
1318 INSN_LOCATION (if_info->insn_a));
1319 return TRUE;
1320 }
1321
1322 return FALSE;
1323 }
1324
1325 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1326 similarly for "foo--". */
1327
1328 static int
1329 noce_try_addcc (struct noce_if_info *if_info)
1330 {
1331 rtx target;
1332 rtx_insn *seq;
1333 int subtract, normalize;
1334
1335 if (GET_CODE (if_info->a) == PLUS
1336 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1337 && (reversed_comparison_code (if_info->cond, if_info->jump)
1338 != UNKNOWN))
1339 {
1340 rtx cond = if_info->cond;
1341 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1342
1343 /* First try to use addcc pattern. */
1344 if (general_operand (XEXP (cond, 0), VOIDmode)
1345 && general_operand (XEXP (cond, 1), VOIDmode))
1346 {
1347 start_sequence ();
1348 target = emit_conditional_add (if_info->x, code,
1349 XEXP (cond, 0),
1350 XEXP (cond, 1),
1351 VOIDmode,
1352 if_info->b,
1353 XEXP (if_info->a, 1),
1354 GET_MODE (if_info->x),
1355 (code == LTU || code == GEU
1356 || code == LEU || code == GTU));
1357 if (target)
1358 {
1359 if (target != if_info->x)
1360 noce_emit_move_insn (if_info->x, target);
1361
1362 seq = end_ifcvt_sequence (if_info);
1363 if (!seq)
1364 return FALSE;
1365
1366 emit_insn_before_setloc (seq, if_info->jump,
1367 INSN_LOCATION (if_info->insn_a));
1368 return TRUE;
1369 }
1370 end_sequence ();
1371 }
1372
1373 /* If that fails, construct conditional increment or decrement using
1374 setcc. */
1375 if (if_info->branch_cost >= 2
1376 && (XEXP (if_info->a, 1) == const1_rtx
1377 || XEXP (if_info->a, 1) == constm1_rtx))
1378 {
1379 start_sequence ();
1380 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1381 subtract = 0, normalize = 0;
1382 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1383 subtract = 1, normalize = 0;
1384 else
1385 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1386
1387
1388 target = noce_emit_store_flag (if_info,
1389 gen_reg_rtx (GET_MODE (if_info->x)),
1390 1, normalize);
1391
1392 if (target)
1393 target = expand_simple_binop (GET_MODE (if_info->x),
1394 subtract ? MINUS : PLUS,
1395 if_info->b, target, if_info->x,
1396 0, OPTAB_WIDEN);
1397 if (target)
1398 {
1399 if (target != if_info->x)
1400 noce_emit_move_insn (if_info->x, target);
1401
1402 seq = end_ifcvt_sequence (if_info);
1403 if (!seq)
1404 return FALSE;
1405
1406 emit_insn_before_setloc (seq, if_info->jump,
1407 INSN_LOCATION (if_info->insn_a));
1408 return TRUE;
1409 }
1410 end_sequence ();
1411 }
1412 }
1413
1414 return FALSE;
1415 }
1416
1417 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1418
1419 static int
1420 noce_try_store_flag_mask (struct noce_if_info *if_info)
1421 {
1422 rtx target;
1423 rtx_insn *seq;
1424 int reversep;
1425
1426 reversep = 0;
1427 if ((if_info->branch_cost >= 2
1428 || STORE_FLAG_VALUE == -1)
1429 && ((if_info->a == const0_rtx
1430 && rtx_equal_p (if_info->b, if_info->x))
1431 || ((reversep = (reversed_comparison_code (if_info->cond,
1432 if_info->jump)
1433 != UNKNOWN))
1434 && if_info->b == const0_rtx
1435 && rtx_equal_p (if_info->a, if_info->x))))
1436 {
1437 start_sequence ();
1438 target = noce_emit_store_flag (if_info,
1439 gen_reg_rtx (GET_MODE (if_info->x)),
1440 reversep, -1);
1441 if (target)
1442 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1443 if_info->x,
1444 target, if_info->x, 0,
1445 OPTAB_WIDEN);
1446
1447 if (target)
1448 {
1449 int old_cost, new_cost, insn_cost;
1450 int speed_p;
1451
1452 if (target != if_info->x)
1453 noce_emit_move_insn (if_info->x, target);
1454
1455 seq = end_ifcvt_sequence (if_info);
1456 if (!seq)
1457 return FALSE;
1458
1459 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a));
1460 insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p);
1461 old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost;
1462 new_cost = seq_cost (seq, speed_p);
1463
1464 if (new_cost > old_cost)
1465 return FALSE;
1466
1467 emit_insn_before_setloc (seq, if_info->jump,
1468 INSN_LOCATION (if_info->insn_a));
1469 return TRUE;
1470 }
1471
1472 end_sequence ();
1473 }
1474
1475 return FALSE;
1476 }
1477
1478 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1479
1480 static rtx
1481 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1482 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1483 {
1484 rtx target ATTRIBUTE_UNUSED;
1485 int unsignedp ATTRIBUTE_UNUSED;
1486
1487 /* If earliest == jump, try to build the cmove insn directly.
1488 This is helpful when combine has created some complex condition
1489 (like for alpha's cmovlbs) that we can't hope to regenerate
1490 through the normal interface. */
1491
1492 if (if_info->cond_earliest == if_info->jump)
1493 {
1494 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1495 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1496 cond, vtrue, vfalse);
1497 rtx set = gen_rtx_SET (x, if_then_else);
1498
1499 start_sequence ();
1500 rtx_insn *insn = emit_insn (set);
1501
1502 if (recog_memoized (insn) >= 0)
1503 {
1504 rtx_insn *seq = get_insns ();
1505 end_sequence ();
1506 emit_insn (seq);
1507
1508 return x;
1509 }
1510
1511 end_sequence ();
1512 }
1513
1514 /* Don't even try if the comparison operands are weird
1515 except that the target supports cbranchcc4. */
1516 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1517 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1518 {
1519 if (!(HAVE_cbranchcc4)
1520 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1521 || cmp_b != const0_rtx)
1522 return NULL_RTX;
1523 }
1524
1525 unsignedp = (code == LTU || code == GEU
1526 || code == LEU || code == GTU);
1527
1528 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1529 vtrue, vfalse, GET_MODE (x),
1530 unsignedp);
1531 if (target)
1532 return target;
1533
1534 /* We might be faced with a situation like:
1535
1536 x = (reg:M TARGET)
1537 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1538 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1539
1540 We can't do a conditional move in mode M, but it's possible that we
1541 could do a conditional move in mode N instead and take a subreg of
1542 the result.
1543
1544 If we can't create new pseudos, though, don't bother. */
1545 if (reload_completed)
1546 return NULL_RTX;
1547
1548 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1549 {
1550 rtx reg_vtrue = SUBREG_REG (vtrue);
1551 rtx reg_vfalse = SUBREG_REG (vfalse);
1552 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1553 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1554 rtx promoted_target;
1555
1556 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1557 || byte_vtrue != byte_vfalse
1558 || (SUBREG_PROMOTED_VAR_P (vtrue)
1559 != SUBREG_PROMOTED_VAR_P (vfalse))
1560 || (SUBREG_PROMOTED_GET (vtrue)
1561 != SUBREG_PROMOTED_GET (vfalse)))
1562 return NULL_RTX;
1563
1564 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1565
1566 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1567 VOIDmode, reg_vtrue, reg_vfalse,
1568 GET_MODE (reg_vtrue), unsignedp);
1569 /* Nope, couldn't do it in that mode either. */
1570 if (!target)
1571 return NULL_RTX;
1572
1573 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1574 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1575 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1576 emit_move_insn (x, target);
1577 return x;
1578 }
1579 else
1580 return NULL_RTX;
1581 }
1582
1583 /* Try only simple constants and registers here. More complex cases
1584 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1585 has had a go at it. */
1586
1587 static int
1588 noce_try_cmove (struct noce_if_info *if_info)
1589 {
1590 enum rtx_code code;
1591 rtx target;
1592 rtx_insn *seq;
1593
1594 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1595 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1596 {
1597 start_sequence ();
1598
1599 code = GET_CODE (if_info->cond);
1600 target = noce_emit_cmove (if_info, if_info->x, code,
1601 XEXP (if_info->cond, 0),
1602 XEXP (if_info->cond, 1),
1603 if_info->a, if_info->b);
1604
1605 if (target)
1606 {
1607 if (target != if_info->x)
1608 noce_emit_move_insn (if_info->x, target);
1609
1610 seq = end_ifcvt_sequence (if_info);
1611 if (!seq)
1612 return FALSE;
1613
1614 emit_insn_before_setloc (seq, if_info->jump,
1615 INSN_LOCATION (if_info->insn_a));
1616 return TRUE;
1617 }
1618 else
1619 {
1620 end_sequence ();
1621 return FALSE;
1622 }
1623 }
1624
1625 return FALSE;
1626 }
1627
1628 /* Try more complex cases involving conditional_move. */
1629
1630 static int
1631 noce_try_cmove_arith (struct noce_if_info *if_info)
1632 {
1633 rtx a = if_info->a;
1634 rtx b = if_info->b;
1635 rtx x = if_info->x;
1636 rtx orig_a, orig_b;
1637 rtx_insn *insn_a, *insn_b;
1638 rtx target;
1639 int is_mem = 0;
1640 int insn_cost;
1641 enum rtx_code code;
1642 rtx_insn *ifcvt_seq;
1643
1644 /* A conditional move from two memory sources is equivalent to a
1645 conditional on their addresses followed by a load. Don't do this
1646 early because it'll screw alias analysis. Note that we've
1647 already checked for no side effects. */
1648 /* ??? FIXME: Magic number 5. */
1649 if (cse_not_expected
1650 && MEM_P (a) && MEM_P (b)
1651 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1652 && if_info->branch_cost >= 5)
1653 {
1654 machine_mode address_mode = get_address_mode (a);
1655
1656 a = XEXP (a, 0);
1657 b = XEXP (b, 0);
1658 x = gen_reg_rtx (address_mode);
1659 is_mem = 1;
1660 }
1661
1662 /* ??? We could handle this if we knew that a load from A or B could
1663 not trap or fault. This is also true if we've already loaded
1664 from the address along the path from ENTRY. */
1665 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1666 return FALSE;
1667
1668 /* if (test) x = a + b; else x = c - d;
1669 => y = a + b;
1670 x = c - d;
1671 if (test)
1672 x = y;
1673 */
1674
1675 code = GET_CODE (if_info->cond);
1676 insn_a = if_info->insn_a;
1677 insn_b = if_info->insn_b;
1678
1679 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1680 if insn_rtx_cost can't be estimated. */
1681 if (insn_a)
1682 {
1683 insn_cost
1684 = insn_rtx_cost (PATTERN (insn_a),
1685 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1686 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1687 return FALSE;
1688 }
1689 else
1690 insn_cost = 0;
1691
1692 if (insn_b)
1693 {
1694 insn_cost
1695 += insn_rtx_cost (PATTERN (insn_b),
1696 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1697 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1698 return FALSE;
1699 }
1700
1701 /* Possibly rearrange operands to make things come out more natural. */
1702 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1703 {
1704 int reversep = 0;
1705 if (rtx_equal_p (b, x))
1706 reversep = 1;
1707 else if (general_operand (b, GET_MODE (b)))
1708 reversep = 1;
1709
1710 if (reversep)
1711 {
1712 code = reversed_comparison_code (if_info->cond, if_info->jump);
1713 std::swap (a, b);
1714 std::swap (insn_a, insn_b);
1715 }
1716 }
1717
1718 start_sequence ();
1719
1720 orig_a = a;
1721 orig_b = b;
1722
1723 /* If either operand is complex, load it into a register first.
1724 The best way to do this is to copy the original insn. In this
1725 way we preserve any clobbers etc that the insn may have had.
1726 This is of course not possible in the IS_MEM case. */
1727 if (! general_operand (a, GET_MODE (a)))
1728 {
1729 rtx_insn *insn;
1730
1731 if (is_mem)
1732 {
1733 rtx reg = gen_reg_rtx (GET_MODE (a));
1734 insn = emit_insn (gen_rtx_SET (reg, a));
1735 }
1736 else if (! insn_a)
1737 goto end_seq_and_fail;
1738 else
1739 {
1740 a = gen_reg_rtx (GET_MODE (a));
1741 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
1742 rtx set = single_set (copy_of_a);
1743 SET_DEST (set) = a;
1744 insn = emit_insn (PATTERN (copy_of_a));
1745 }
1746 if (recog_memoized (insn) < 0)
1747 goto end_seq_and_fail;
1748 }
1749 if (! general_operand (b, GET_MODE (b)))
1750 {
1751 rtx pat;
1752 rtx_insn *last;
1753 rtx_insn *new_insn;
1754
1755 if (is_mem)
1756 {
1757 rtx reg = gen_reg_rtx (GET_MODE (b));
1758 pat = gen_rtx_SET (reg, b);
1759 }
1760 else if (! insn_b)
1761 goto end_seq_and_fail;
1762 else
1763 {
1764 b = gen_reg_rtx (GET_MODE (b));
1765 rtx_insn *copy_of_insn_b = as_a <rtx_insn *> (copy_rtx (insn_b));
1766 rtx set = single_set (copy_of_insn_b);
1767 SET_DEST (set) = b;
1768 pat = PATTERN (copy_of_insn_b);
1769 }
1770
1771 /* If insn to set up A clobbers any registers B depends on, try to
1772 swap insn that sets up A with the one that sets up B. If even
1773 that doesn't help, punt. */
1774 last = get_last_insn ();
1775 if (last && modified_in_p (orig_b, last))
1776 {
1777 new_insn = emit_insn_before (pat, get_insns ());
1778 if (modified_in_p (orig_a, new_insn))
1779 goto end_seq_and_fail;
1780 }
1781 else
1782 new_insn = emit_insn (pat);
1783
1784 if (recog_memoized (new_insn) < 0)
1785 goto end_seq_and_fail;
1786 }
1787
1788 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1789 XEXP (if_info->cond, 1), a, b);
1790
1791 if (! target)
1792 goto end_seq_and_fail;
1793
1794 /* If we're handling a memory for above, emit the load now. */
1795 if (is_mem)
1796 {
1797 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
1798
1799 /* Copy over flags as appropriate. */
1800 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1801 MEM_VOLATILE_P (mem) = 1;
1802 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1803 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
1804 set_mem_align (mem,
1805 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1806
1807 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1808 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
1809
1810 noce_emit_move_insn (if_info->x, mem);
1811 }
1812 else if (target != x)
1813 noce_emit_move_insn (x, target);
1814
1815 ifcvt_seq = end_ifcvt_sequence (if_info);
1816 if (!ifcvt_seq)
1817 return FALSE;
1818
1819 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
1820 INSN_LOCATION (if_info->insn_a));
1821 return TRUE;
1822
1823 end_seq_and_fail:
1824 end_sequence ();
1825 return FALSE;
1826 }
1827
1828 /* For most cases, the simplified condition we found is the best
1829 choice, but this is not the case for the min/max/abs transforms.
1830 For these we wish to know that it is A or B in the condition. */
1831
1832 static rtx
1833 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1834 rtx_insn **earliest)
1835 {
1836 rtx cond, set;
1837 rtx_insn *insn;
1838 int reverse;
1839
1840 /* If target is already mentioned in the known condition, return it. */
1841 if (reg_mentioned_p (target, if_info->cond))
1842 {
1843 *earliest = if_info->cond_earliest;
1844 return if_info->cond;
1845 }
1846
1847 set = pc_set (if_info->jump);
1848 cond = XEXP (SET_SRC (set), 0);
1849 reverse
1850 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1851 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
1852 if (if_info->then_else_reversed)
1853 reverse = !reverse;
1854
1855 /* If we're looking for a constant, try to make the conditional
1856 have that constant in it. There are two reasons why it may
1857 not have the constant we want:
1858
1859 1. GCC may have needed to put the constant in a register, because
1860 the target can't compare directly against that constant. For
1861 this case, we look for a SET immediately before the comparison
1862 that puts a constant in that register.
1863
1864 2. GCC may have canonicalized the conditional, for example
1865 replacing "if x < 4" with "if x <= 3". We can undo that (or
1866 make equivalent types of changes) to get the constants we need
1867 if they're off by one in the right direction. */
1868
1869 if (CONST_INT_P (target))
1870 {
1871 enum rtx_code code = GET_CODE (if_info->cond);
1872 rtx op_a = XEXP (if_info->cond, 0);
1873 rtx op_b = XEXP (if_info->cond, 1);
1874 rtx_insn *prev_insn;
1875
1876 /* First, look to see if we put a constant in a register. */
1877 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1878 if (prev_insn
1879 && BLOCK_FOR_INSN (prev_insn)
1880 == BLOCK_FOR_INSN (if_info->cond_earliest)
1881 && INSN_P (prev_insn)
1882 && GET_CODE (PATTERN (prev_insn)) == SET)
1883 {
1884 rtx src = find_reg_equal_equiv_note (prev_insn);
1885 if (!src)
1886 src = SET_SRC (PATTERN (prev_insn));
1887 if (CONST_INT_P (src))
1888 {
1889 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1890 op_a = src;
1891 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1892 op_b = src;
1893
1894 if (CONST_INT_P (op_a))
1895 {
1896 std::swap (op_a, op_b);
1897 code = swap_condition (code);
1898 }
1899 }
1900 }
1901
1902 /* Now, look to see if we can get the right constant by
1903 adjusting the conditional. */
1904 if (CONST_INT_P (op_b))
1905 {
1906 HOST_WIDE_INT desired_val = INTVAL (target);
1907 HOST_WIDE_INT actual_val = INTVAL (op_b);
1908
1909 switch (code)
1910 {
1911 case LT:
1912 if (actual_val == desired_val + 1)
1913 {
1914 code = LE;
1915 op_b = GEN_INT (desired_val);
1916 }
1917 break;
1918 case LE:
1919 if (actual_val == desired_val - 1)
1920 {
1921 code = LT;
1922 op_b = GEN_INT (desired_val);
1923 }
1924 break;
1925 case GT:
1926 if (actual_val == desired_val - 1)
1927 {
1928 code = GE;
1929 op_b = GEN_INT (desired_val);
1930 }
1931 break;
1932 case GE:
1933 if (actual_val == desired_val + 1)
1934 {
1935 code = GT;
1936 op_b = GEN_INT (desired_val);
1937 }
1938 break;
1939 default:
1940 break;
1941 }
1942 }
1943
1944 /* If we made any changes, generate a new conditional that is
1945 equivalent to what we started with, but has the right
1946 constants in it. */
1947 if (code != GET_CODE (if_info->cond)
1948 || op_a != XEXP (if_info->cond, 0)
1949 || op_b != XEXP (if_info->cond, 1))
1950 {
1951 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1952 *earliest = if_info->cond_earliest;
1953 return cond;
1954 }
1955 }
1956
1957 cond = canonicalize_condition (if_info->jump, cond, reverse,
1958 earliest, target, HAVE_cbranchcc4, true);
1959 if (! cond || ! reg_mentioned_p (target, cond))
1960 return NULL;
1961
1962 /* We almost certainly searched back to a different place.
1963 Need to re-verify correct lifetimes. */
1964
1965 /* X may not be mentioned in the range (cond_earliest, jump]. */
1966 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1967 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1968 return NULL;
1969
1970 /* A and B may not be modified in the range [cond_earliest, jump). */
1971 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1972 if (INSN_P (insn)
1973 && (modified_in_p (if_info->a, insn)
1974 || modified_in_p (if_info->b, insn)))
1975 return NULL;
1976
1977 return cond;
1978 }
1979
1980 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1981
1982 static int
1983 noce_try_minmax (struct noce_if_info *if_info)
1984 {
1985 rtx cond, target;
1986 rtx_insn *earliest, *seq;
1987 enum rtx_code code, op;
1988 int unsignedp;
1989
1990 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1991 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1992 to get the target to tell us... */
1993 if (HONOR_SIGNED_ZEROS (if_info->x)
1994 || HONOR_NANS (if_info->x))
1995 return FALSE;
1996
1997 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1998 if (!cond)
1999 return FALSE;
2000
2001 /* Verify the condition is of the form we expect, and canonicalize
2002 the comparison code. */
2003 code = GET_CODE (cond);
2004 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2005 {
2006 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2007 return FALSE;
2008 }
2009 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2010 {
2011 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2012 return FALSE;
2013 code = swap_condition (code);
2014 }
2015 else
2016 return FALSE;
2017
2018 /* Determine what sort of operation this is. Note that the code is for
2019 a taken branch, so the code->operation mapping appears backwards. */
2020 switch (code)
2021 {
2022 case LT:
2023 case LE:
2024 case UNLT:
2025 case UNLE:
2026 op = SMAX;
2027 unsignedp = 0;
2028 break;
2029 case GT:
2030 case GE:
2031 case UNGT:
2032 case UNGE:
2033 op = SMIN;
2034 unsignedp = 0;
2035 break;
2036 case LTU:
2037 case LEU:
2038 op = UMAX;
2039 unsignedp = 1;
2040 break;
2041 case GTU:
2042 case GEU:
2043 op = UMIN;
2044 unsignedp = 1;
2045 break;
2046 default:
2047 return FALSE;
2048 }
2049
2050 start_sequence ();
2051
2052 target = expand_simple_binop (GET_MODE (if_info->x), op,
2053 if_info->a, if_info->b,
2054 if_info->x, unsignedp, OPTAB_WIDEN);
2055 if (! target)
2056 {
2057 end_sequence ();
2058 return FALSE;
2059 }
2060 if (target != if_info->x)
2061 noce_emit_move_insn (if_info->x, target);
2062
2063 seq = end_ifcvt_sequence (if_info);
2064 if (!seq)
2065 return FALSE;
2066
2067 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2068 if_info->cond = cond;
2069 if_info->cond_earliest = earliest;
2070
2071 return TRUE;
2072 }
2073
2074 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2075 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2076 etc. */
2077
2078 static int
2079 noce_try_abs (struct noce_if_info *if_info)
2080 {
2081 rtx cond, target, a, b, c;
2082 rtx_insn *earliest, *seq;
2083 int negate;
2084 bool one_cmpl = false;
2085
2086 /* Reject modes with signed zeros. */
2087 if (HONOR_SIGNED_ZEROS (if_info->x))
2088 return FALSE;
2089
2090 /* Recognize A and B as constituting an ABS or NABS. The canonical
2091 form is a branch around the negation, taken when the object is the
2092 first operand of a comparison against 0 that evaluates to true. */
2093 a = if_info->a;
2094 b = if_info->b;
2095 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2096 negate = 0;
2097 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2098 {
2099 std::swap (a, b);
2100 negate = 1;
2101 }
2102 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2103 {
2104 negate = 0;
2105 one_cmpl = true;
2106 }
2107 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2108 {
2109 std::swap (a, b);
2110 negate = 1;
2111 one_cmpl = true;
2112 }
2113 else
2114 return FALSE;
2115
2116 cond = noce_get_alt_condition (if_info, b, &earliest);
2117 if (!cond)
2118 return FALSE;
2119
2120 /* Verify the condition is of the form we expect. */
2121 if (rtx_equal_p (XEXP (cond, 0), b))
2122 c = XEXP (cond, 1);
2123 else if (rtx_equal_p (XEXP (cond, 1), b))
2124 {
2125 c = XEXP (cond, 0);
2126 negate = !negate;
2127 }
2128 else
2129 return FALSE;
2130
2131 /* Verify that C is zero. Search one step backward for a
2132 REG_EQUAL note or a simple source if necessary. */
2133 if (REG_P (c))
2134 {
2135 rtx set;
2136 rtx_insn *insn = prev_nonnote_insn (earliest);
2137 if (insn
2138 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2139 && (set = single_set (insn))
2140 && rtx_equal_p (SET_DEST (set), c))
2141 {
2142 rtx note = find_reg_equal_equiv_note (insn);
2143 if (note)
2144 c = XEXP (note, 0);
2145 else
2146 c = SET_SRC (set);
2147 }
2148 else
2149 return FALSE;
2150 }
2151 if (MEM_P (c)
2152 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2153 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2154 c = get_pool_constant (XEXP (c, 0));
2155
2156 /* Work around funny ideas get_condition has wrt canonicalization.
2157 Note that these rtx constants are known to be CONST_INT, and
2158 therefore imply integer comparisons. */
2159 if (c == constm1_rtx && GET_CODE (cond) == GT)
2160 ;
2161 else if (c == const1_rtx && GET_CODE (cond) == LT)
2162 ;
2163 else if (c != CONST0_RTX (GET_MODE (b)))
2164 return FALSE;
2165
2166 /* Determine what sort of operation this is. */
2167 switch (GET_CODE (cond))
2168 {
2169 case LT:
2170 case LE:
2171 case UNLT:
2172 case UNLE:
2173 negate = !negate;
2174 break;
2175 case GT:
2176 case GE:
2177 case UNGT:
2178 case UNGE:
2179 break;
2180 default:
2181 return FALSE;
2182 }
2183
2184 start_sequence ();
2185 if (one_cmpl)
2186 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2187 if_info->x);
2188 else
2189 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2190
2191 /* ??? It's a quandary whether cmove would be better here, especially
2192 for integers. Perhaps combine will clean things up. */
2193 if (target && negate)
2194 {
2195 if (one_cmpl)
2196 target = expand_simple_unop (GET_MODE (target), NOT, target,
2197 if_info->x, 0);
2198 else
2199 target = expand_simple_unop (GET_MODE (target), NEG, target,
2200 if_info->x, 0);
2201 }
2202
2203 if (! target)
2204 {
2205 end_sequence ();
2206 return FALSE;
2207 }
2208
2209 if (target != if_info->x)
2210 noce_emit_move_insn (if_info->x, target);
2211
2212 seq = end_ifcvt_sequence (if_info);
2213 if (!seq)
2214 return FALSE;
2215
2216 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2217 if_info->cond = cond;
2218 if_info->cond_earliest = earliest;
2219
2220 return TRUE;
2221 }
2222
2223 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2224
2225 static int
2226 noce_try_sign_mask (struct noce_if_info *if_info)
2227 {
2228 rtx cond, t, m, c;
2229 rtx_insn *seq;
2230 machine_mode mode;
2231 enum rtx_code code;
2232 bool t_unconditional;
2233
2234 cond = if_info->cond;
2235 code = GET_CODE (cond);
2236 m = XEXP (cond, 0);
2237 c = XEXP (cond, 1);
2238
2239 t = NULL_RTX;
2240 if (if_info->a == const0_rtx)
2241 {
2242 if ((code == LT && c == const0_rtx)
2243 || (code == LE && c == constm1_rtx))
2244 t = if_info->b;
2245 }
2246 else if (if_info->b == const0_rtx)
2247 {
2248 if ((code == GE && c == const0_rtx)
2249 || (code == GT && c == constm1_rtx))
2250 t = if_info->a;
2251 }
2252
2253 if (! t || side_effects_p (t))
2254 return FALSE;
2255
2256 /* We currently don't handle different modes. */
2257 mode = GET_MODE (t);
2258 if (GET_MODE (m) != mode)
2259 return FALSE;
2260
2261 /* This is only profitable if T is unconditionally executed/evaluated in the
2262 original insn sequence or T is cheap. The former happens if B is the
2263 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2264 INSN_B which can happen for e.g. conditional stores to memory. For the
2265 cost computation use the block TEST_BB where the evaluation will end up
2266 after the transformation. */
2267 t_unconditional =
2268 (t == if_info->b
2269 && (if_info->insn_b == NULL_RTX
2270 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2271 if (!(t_unconditional
2272 || (set_src_cost (t, mode, optimize_bb_for_speed_p (if_info->test_bb))
2273 < COSTS_N_INSNS (2))))
2274 return FALSE;
2275
2276 start_sequence ();
2277 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2278 "(signed) m >> 31" directly. This benefits targets with specialized
2279 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2280 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2281 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2282 : NULL_RTX;
2283
2284 if (!t)
2285 {
2286 end_sequence ();
2287 return FALSE;
2288 }
2289
2290 noce_emit_move_insn (if_info->x, t);
2291
2292 seq = end_ifcvt_sequence (if_info);
2293 if (!seq)
2294 return FALSE;
2295
2296 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2297 return TRUE;
2298 }
2299
2300
2301 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2302 transformations. */
2303
2304 static int
2305 noce_try_bitop (struct noce_if_info *if_info)
2306 {
2307 rtx cond, x, a, result;
2308 rtx_insn *seq;
2309 machine_mode mode;
2310 enum rtx_code code;
2311 int bitnum;
2312
2313 x = if_info->x;
2314 cond = if_info->cond;
2315 code = GET_CODE (cond);
2316
2317 /* Check for no else condition. */
2318 if (! rtx_equal_p (x, if_info->b))
2319 return FALSE;
2320
2321 /* Check for a suitable condition. */
2322 if (code != NE && code != EQ)
2323 return FALSE;
2324 if (XEXP (cond, 1) != const0_rtx)
2325 return FALSE;
2326 cond = XEXP (cond, 0);
2327
2328 /* ??? We could also handle AND here. */
2329 if (GET_CODE (cond) == ZERO_EXTRACT)
2330 {
2331 if (XEXP (cond, 1) != const1_rtx
2332 || !CONST_INT_P (XEXP (cond, 2))
2333 || ! rtx_equal_p (x, XEXP (cond, 0)))
2334 return FALSE;
2335 bitnum = INTVAL (XEXP (cond, 2));
2336 mode = GET_MODE (x);
2337 if (BITS_BIG_ENDIAN)
2338 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2339 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2340 return FALSE;
2341 }
2342 else
2343 return FALSE;
2344
2345 a = if_info->a;
2346 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2347 {
2348 /* Check for "if (X & C) x = x op C". */
2349 if (! rtx_equal_p (x, XEXP (a, 0))
2350 || !CONST_INT_P (XEXP (a, 1))
2351 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2352 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2353 return FALSE;
2354
2355 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2356 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2357 if (GET_CODE (a) == IOR)
2358 result = (code == NE) ? a : NULL_RTX;
2359 else if (code == NE)
2360 {
2361 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2362 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2363 result = simplify_gen_binary (IOR, mode, x, result);
2364 }
2365 else
2366 {
2367 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2368 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2369 result = simplify_gen_binary (AND, mode, x, result);
2370 }
2371 }
2372 else if (GET_CODE (a) == AND)
2373 {
2374 /* Check for "if (X & C) x &= ~C". */
2375 if (! rtx_equal_p (x, XEXP (a, 0))
2376 || !CONST_INT_P (XEXP (a, 1))
2377 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2378 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2379 return FALSE;
2380
2381 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2382 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2383 result = (code == EQ) ? a : NULL_RTX;
2384 }
2385 else
2386 return FALSE;
2387
2388 if (result)
2389 {
2390 start_sequence ();
2391 noce_emit_move_insn (x, result);
2392 seq = end_ifcvt_sequence (if_info);
2393 if (!seq)
2394 return FALSE;
2395
2396 emit_insn_before_setloc (seq, if_info->jump,
2397 INSN_LOCATION (if_info->insn_a));
2398 }
2399 return TRUE;
2400 }
2401
2402
2403 /* Similar to get_condition, only the resulting condition must be
2404 valid at JUMP, instead of at EARLIEST.
2405
2406 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2407 THEN block of the caller, and we have to reverse the condition. */
2408
2409 static rtx
2410 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2411 {
2412 rtx cond, set, tmp;
2413 bool reverse;
2414
2415 if (! any_condjump_p (jump))
2416 return NULL_RTX;
2417
2418 set = pc_set (jump);
2419
2420 /* If this branches to JUMP_LABEL when the condition is false,
2421 reverse the condition. */
2422 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2423 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2424
2425 /* We may have to reverse because the caller's if block is not canonical,
2426 i.e. the THEN block isn't the fallthrough block for the TEST block
2427 (see find_if_header). */
2428 if (then_else_reversed)
2429 reverse = !reverse;
2430
2431 /* If the condition variable is a register and is MODE_INT, accept it. */
2432
2433 cond = XEXP (SET_SRC (set), 0);
2434 tmp = XEXP (cond, 0);
2435 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2436 && (GET_MODE (tmp) != BImode
2437 || !targetm.small_register_classes_for_mode_p (BImode)))
2438 {
2439 *earliest = jump;
2440
2441 if (reverse)
2442 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2443 GET_MODE (cond), tmp, XEXP (cond, 1));
2444 return cond;
2445 }
2446
2447 /* Otherwise, fall back on canonicalize_condition to do the dirty
2448 work of manipulating MODE_CC values and COMPARE rtx codes. */
2449 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2450 NULL_RTX, HAVE_cbranchcc4, true);
2451
2452 /* We don't handle side-effects in the condition, like handling
2453 REG_INC notes and making sure no duplicate conditions are emitted. */
2454 if (tmp != NULL_RTX && side_effects_p (tmp))
2455 return NULL_RTX;
2456
2457 return tmp;
2458 }
2459
2460 /* Return true if OP is ok for if-then-else processing. */
2461
2462 static int
2463 noce_operand_ok (const_rtx op)
2464 {
2465 if (side_effects_p (op))
2466 return FALSE;
2467
2468 /* We special-case memories, so handle any of them with
2469 no address side effects. */
2470 if (MEM_P (op))
2471 return ! side_effects_p (XEXP (op, 0));
2472
2473 return ! may_trap_p (op);
2474 }
2475
2476 /* Return true if a write into MEM may trap or fault. */
2477
2478 static bool
2479 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2480 {
2481 rtx addr;
2482
2483 if (MEM_READONLY_P (mem))
2484 return true;
2485
2486 if (may_trap_or_fault_p (mem))
2487 return true;
2488
2489 addr = XEXP (mem, 0);
2490
2491 /* Call target hook to avoid the effects of -fpic etc.... */
2492 addr = targetm.delegitimize_address (addr);
2493
2494 while (addr)
2495 switch (GET_CODE (addr))
2496 {
2497 case CONST:
2498 case PRE_DEC:
2499 case PRE_INC:
2500 case POST_DEC:
2501 case POST_INC:
2502 case POST_MODIFY:
2503 addr = XEXP (addr, 0);
2504 break;
2505 case LO_SUM:
2506 case PRE_MODIFY:
2507 addr = XEXP (addr, 1);
2508 break;
2509 case PLUS:
2510 if (CONST_INT_P (XEXP (addr, 1)))
2511 addr = XEXP (addr, 0);
2512 else
2513 return false;
2514 break;
2515 case LABEL_REF:
2516 return true;
2517 case SYMBOL_REF:
2518 if (SYMBOL_REF_DECL (addr)
2519 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2520 return true;
2521 return false;
2522 default:
2523 return false;
2524 }
2525
2526 return false;
2527 }
2528
2529 /* Return whether we can use store speculation for MEM. TOP_BB is the
2530 basic block above the conditional block where we are considering
2531 doing the speculative store. We look for whether MEM is set
2532 unconditionally later in the function. */
2533
2534 static bool
2535 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2536 {
2537 basic_block dominator;
2538
2539 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2540 dominator != NULL;
2541 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2542 {
2543 rtx_insn *insn;
2544
2545 FOR_BB_INSNS (dominator, insn)
2546 {
2547 /* If we see something that might be a memory barrier, we
2548 have to stop looking. Even if the MEM is set later in
2549 the function, we still don't want to set it
2550 unconditionally before the barrier. */
2551 if (INSN_P (insn)
2552 && (volatile_insn_p (PATTERN (insn))
2553 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2554 return false;
2555
2556 if (memory_must_be_modified_in_insn_p (mem, insn))
2557 return true;
2558 if (modified_in_p (XEXP (mem, 0), insn))
2559 return false;
2560
2561 }
2562 }
2563
2564 return false;
2565 }
2566
2567 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2568 it without using conditional execution. Return TRUE if we were successful
2569 at converting the block. */
2570
2571 static int
2572 noce_process_if_block (struct noce_if_info *if_info)
2573 {
2574 basic_block test_bb = if_info->test_bb; /* test block */
2575 basic_block then_bb = if_info->then_bb; /* THEN */
2576 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2577 basic_block join_bb = if_info->join_bb; /* JOIN */
2578 rtx_insn *jump = if_info->jump;
2579 rtx cond = if_info->cond;
2580 rtx_insn *insn_a, *insn_b;
2581 rtx set_a, set_b;
2582 rtx orig_x, x, a, b;
2583 rtx cc;
2584
2585 /* We're looking for patterns of the form
2586
2587 (1) if (...) x = a; else x = b;
2588 (2) x = b; if (...) x = a;
2589 (3) if (...) x = a; // as if with an initial x = x.
2590
2591 The later patterns require jumps to be more expensive.
2592
2593 ??? For future expansion, look for multiple X in such patterns. */
2594
2595 /* Look for one of the potential sets. */
2596 insn_a = first_active_insn (then_bb);
2597 if (! insn_a
2598 || insn_a != last_active_insn (then_bb, FALSE)
2599 || (set_a = single_set (insn_a)) == NULL_RTX)
2600 return FALSE;
2601
2602 x = SET_DEST (set_a);
2603 a = SET_SRC (set_a);
2604
2605 /* Look for the other potential set. Make sure we've got equivalent
2606 destinations. */
2607 /* ??? This is overconservative. Storing to two different mems is
2608 as easy as conditionally computing the address. Storing to a
2609 single mem merely requires a scratch memory to use as one of the
2610 destination addresses; often the memory immediately below the
2611 stack pointer is available for this. */
2612 set_b = NULL_RTX;
2613 if (else_bb)
2614 {
2615 insn_b = first_active_insn (else_bb);
2616 if (! insn_b
2617 || insn_b != last_active_insn (else_bb, FALSE)
2618 || (set_b = single_set (insn_b)) == NULL_RTX
2619 || ! rtx_interchangeable_p (x, SET_DEST (set_b)))
2620 return FALSE;
2621 }
2622 else
2623 {
2624 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2625 /* We're going to be moving the evaluation of B down from above
2626 COND_EARLIEST to JUMP. Make sure the relevant data is still
2627 intact. */
2628 if (! insn_b
2629 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2630 || !NONJUMP_INSN_P (insn_b)
2631 || (set_b = single_set (insn_b)) == NULL_RTX
2632 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
2633 || ! noce_operand_ok (SET_SRC (set_b))
2634 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2635 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2636 /* Avoid extending the lifetime of hard registers on small
2637 register class machines. */
2638 || (REG_P (SET_SRC (set_b))
2639 && HARD_REGISTER_P (SET_SRC (set_b))
2640 && targetm.small_register_classes_for_mode_p
2641 (GET_MODE (SET_SRC (set_b))))
2642 /* Likewise with X. In particular this can happen when
2643 noce_get_condition looks farther back in the instruction
2644 stream than one might expect. */
2645 || reg_overlap_mentioned_p (x, cond)
2646 || reg_overlap_mentioned_p (x, a)
2647 || modified_between_p (x, insn_b, jump))
2648 {
2649 insn_b = NULL;
2650 set_b = NULL_RTX;
2651 }
2652 }
2653
2654 /* If x has side effects then only the if-then-else form is safe to
2655 convert. But even in that case we would need to restore any notes
2656 (such as REG_INC) at then end. That can be tricky if
2657 noce_emit_move_insn expands to more than one insn, so disable the
2658 optimization entirely for now if there are side effects. */
2659 if (side_effects_p (x))
2660 return FALSE;
2661
2662 b = (set_b ? SET_SRC (set_b) : x);
2663
2664 /* Only operate on register destinations, and even then avoid extending
2665 the lifetime of hard registers on small register class machines. */
2666 orig_x = x;
2667 if (!REG_P (x)
2668 || (HARD_REGISTER_P (x)
2669 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2670 {
2671 if (GET_MODE (x) == BLKmode)
2672 return FALSE;
2673
2674 if (GET_CODE (x) == ZERO_EXTRACT
2675 && (!CONST_INT_P (XEXP (x, 1))
2676 || !CONST_INT_P (XEXP (x, 2))))
2677 return FALSE;
2678
2679 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2680 ? XEXP (x, 0) : x));
2681 }
2682
2683 /* Don't operate on sources that may trap or are volatile. */
2684 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2685 return FALSE;
2686
2687 retry:
2688 /* Set up the info block for our subroutines. */
2689 if_info->insn_a = insn_a;
2690 if_info->insn_b = insn_b;
2691 if_info->x = x;
2692 if_info->a = a;
2693 if_info->b = b;
2694
2695 /* Skip it if the instruction to be moved might clobber CC. */
2696 cc = cc_in_cond (cond);
2697 if (cc
2698 && (set_of (cc, insn_a)
2699 || (insn_b && set_of (cc, insn_b))))
2700 return FALSE;
2701
2702 /* Try optimizations in some approximation of a useful order. */
2703 /* ??? Should first look to see if X is live incoming at all. If it
2704 isn't, we don't need anything but an unconditional set. */
2705
2706 /* Look and see if A and B are really the same. Avoid creating silly
2707 cmove constructs that no one will fix up later. */
2708 if (rtx_interchangeable_p (a, b))
2709 {
2710 /* If we have an INSN_B, we don't have to create any new rtl. Just
2711 move the instruction that we already have. If we don't have an
2712 INSN_B, that means that A == X, and we've got a noop move. In
2713 that case don't do anything and let the code below delete INSN_A. */
2714 if (insn_b && else_bb)
2715 {
2716 rtx note;
2717
2718 if (else_bb && insn_b == BB_END (else_bb))
2719 BB_END (else_bb) = PREV_INSN (insn_b);
2720 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2721
2722 /* If there was a REG_EQUAL note, delete it since it may have been
2723 true due to this insn being after a jump. */
2724 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2725 remove_note (insn_b, note);
2726
2727 insn_b = NULL;
2728 }
2729 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2730 x must be executed twice. */
2731 else if (insn_b && side_effects_p (orig_x))
2732 return FALSE;
2733
2734 x = orig_x;
2735 goto success;
2736 }
2737
2738 if (!set_b && MEM_P (orig_x))
2739 {
2740 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2741 for optimizations if writing to x may trap or fault,
2742 i.e. it's a memory other than a static var or a stack slot,
2743 is misaligned on strict aligned machines or is read-only. If
2744 x is a read-only memory, then the program is valid only if we
2745 avoid the store into it. If there are stores on both the
2746 THEN and ELSE arms, then we can go ahead with the conversion;
2747 either the program is broken, or the condition is always
2748 false such that the other memory is selected. */
2749 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2750 return FALSE;
2751
2752 /* Avoid store speculation: given "if (...) x = a" where x is a
2753 MEM, we only want to do the store if x is always set
2754 somewhere in the function. This avoids cases like
2755 if (pthread_mutex_trylock(mutex))
2756 ++global_variable;
2757 where we only want global_variable to be changed if the mutex
2758 is held. FIXME: This should ideally be expressed directly in
2759 RTL somehow. */
2760 if (!noce_can_store_speculate_p (test_bb, orig_x))
2761 return FALSE;
2762 }
2763
2764 if (noce_try_move (if_info))
2765 goto success;
2766 if (noce_try_store_flag (if_info))
2767 goto success;
2768 if (noce_try_bitop (if_info))
2769 goto success;
2770 if (noce_try_minmax (if_info))
2771 goto success;
2772 if (noce_try_abs (if_info))
2773 goto success;
2774 if (!targetm.have_conditional_execution ()
2775 && noce_try_store_flag_constants (if_info))
2776 goto success;
2777 if (HAVE_conditional_move
2778 && noce_try_cmove (if_info))
2779 goto success;
2780 if (! targetm.have_conditional_execution ())
2781 {
2782 if (noce_try_addcc (if_info))
2783 goto success;
2784 if (noce_try_store_flag_mask (if_info))
2785 goto success;
2786 if (HAVE_conditional_move
2787 && noce_try_cmove_arith (if_info))
2788 goto success;
2789 if (noce_try_sign_mask (if_info))
2790 goto success;
2791 }
2792
2793 if (!else_bb && set_b)
2794 {
2795 insn_b = NULL;
2796 set_b = NULL_RTX;
2797 b = orig_x;
2798 goto retry;
2799 }
2800
2801 return FALSE;
2802
2803 success:
2804
2805 /* If we used a temporary, fix it up now. */
2806 if (orig_x != x)
2807 {
2808 rtx_insn *seq;
2809
2810 start_sequence ();
2811 noce_emit_move_insn (orig_x, x);
2812 seq = get_insns ();
2813 set_used_flags (orig_x);
2814 unshare_all_rtl_in_chain (seq);
2815 end_sequence ();
2816
2817 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2818 }
2819
2820 /* The original THEN and ELSE blocks may now be removed. The test block
2821 must now jump to the join block. If the test block and the join block
2822 can be merged, do so. */
2823 if (else_bb)
2824 {
2825 delete_basic_block (else_bb);
2826 num_true_changes++;
2827 }
2828 else
2829 remove_edge (find_edge (test_bb, join_bb));
2830
2831 remove_edge (find_edge (then_bb, join_bb));
2832 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2833 delete_basic_block (then_bb);
2834 num_true_changes++;
2835
2836 if (can_merge_blocks_p (test_bb, join_bb))
2837 {
2838 merge_blocks (test_bb, join_bb);
2839 num_true_changes++;
2840 }
2841
2842 num_updated_if_blocks++;
2843 return TRUE;
2844 }
2845
2846 /* Check whether a block is suitable for conditional move conversion.
2847 Every insn must be a simple set of a register to a constant or a
2848 register. For each assignment, store the value in the pointer map
2849 VALS, keyed indexed by register pointer, then store the register
2850 pointer in REGS. COND is the condition we will test. */
2851
2852 static int
2853 check_cond_move_block (basic_block bb,
2854 hash_map<rtx, rtx> *vals,
2855 vec<rtx> *regs,
2856 rtx cond)
2857 {
2858 rtx_insn *insn;
2859 rtx cc = cc_in_cond (cond);
2860
2861 /* We can only handle simple jumps at the end of the basic block.
2862 It is almost impossible to update the CFG otherwise. */
2863 insn = BB_END (bb);
2864 if (JUMP_P (insn) && !onlyjump_p (insn))
2865 return FALSE;
2866
2867 FOR_BB_INSNS (bb, insn)
2868 {
2869 rtx set, dest, src;
2870
2871 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2872 continue;
2873 set = single_set (insn);
2874 if (!set)
2875 return FALSE;
2876
2877 dest = SET_DEST (set);
2878 src = SET_SRC (set);
2879 if (!REG_P (dest)
2880 || (HARD_REGISTER_P (dest)
2881 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2882 return FALSE;
2883
2884 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2885 return FALSE;
2886
2887 if (side_effects_p (src) || side_effects_p (dest))
2888 return FALSE;
2889
2890 if (may_trap_p (src) || may_trap_p (dest))
2891 return FALSE;
2892
2893 /* Don't try to handle this if the source register was
2894 modified earlier in the block. */
2895 if ((REG_P (src)
2896 && vals->get (src))
2897 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2898 && vals->get (SUBREG_REG (src))))
2899 return FALSE;
2900
2901 /* Don't try to handle this if the destination register was
2902 modified earlier in the block. */
2903 if (vals->get (dest))
2904 return FALSE;
2905
2906 /* Don't try to handle this if the condition uses the
2907 destination register. */
2908 if (reg_overlap_mentioned_p (dest, cond))
2909 return FALSE;
2910
2911 /* Don't try to handle this if the source register is modified
2912 later in the block. */
2913 if (!CONSTANT_P (src)
2914 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2915 return FALSE;
2916
2917 /* Skip it if the instruction to be moved might clobber CC. */
2918 if (cc && set_of (cc, insn))
2919 return FALSE;
2920
2921 vals->put (dest, src);
2922
2923 regs->safe_push (dest);
2924 }
2925
2926 return TRUE;
2927 }
2928
2929 /* Given a basic block BB suitable for conditional move conversion,
2930 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2931 the register values depending on COND, emit the insns in the block as
2932 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2933 processed. The caller has started a sequence for the conversion.
2934 Return true if successful, false if something goes wrong. */
2935
2936 static bool
2937 cond_move_convert_if_block (struct noce_if_info *if_infop,
2938 basic_block bb, rtx cond,
2939 hash_map<rtx, rtx> *then_vals,
2940 hash_map<rtx, rtx> *else_vals,
2941 bool else_block_p)
2942 {
2943 enum rtx_code code;
2944 rtx_insn *insn;
2945 rtx cond_arg0, cond_arg1;
2946
2947 code = GET_CODE (cond);
2948 cond_arg0 = XEXP (cond, 0);
2949 cond_arg1 = XEXP (cond, 1);
2950
2951 FOR_BB_INSNS (bb, insn)
2952 {
2953 rtx set, target, dest, t, e;
2954
2955 /* ??? Maybe emit conditional debug insn? */
2956 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2957 continue;
2958 set = single_set (insn);
2959 gcc_assert (set && REG_P (SET_DEST (set)));
2960
2961 dest = SET_DEST (set);
2962
2963 rtx *then_slot = then_vals->get (dest);
2964 rtx *else_slot = else_vals->get (dest);
2965 t = then_slot ? *then_slot : NULL_RTX;
2966 e = else_slot ? *else_slot : NULL_RTX;
2967
2968 if (else_block_p)
2969 {
2970 /* If this register was set in the then block, we already
2971 handled this case there. */
2972 if (t)
2973 continue;
2974 t = dest;
2975 gcc_assert (e);
2976 }
2977 else
2978 {
2979 gcc_assert (t);
2980 if (!e)
2981 e = dest;
2982 }
2983
2984 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2985 t, e);
2986 if (!target)
2987 return false;
2988
2989 if (target != dest)
2990 noce_emit_move_insn (dest, target);
2991 }
2992
2993 return true;
2994 }
2995
2996 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2997 it using only conditional moves. Return TRUE if we were successful at
2998 converting the block. */
2999
3000 static int
3001 cond_move_process_if_block (struct noce_if_info *if_info)
3002 {
3003 basic_block test_bb = if_info->test_bb;
3004 basic_block then_bb = if_info->then_bb;
3005 basic_block else_bb = if_info->else_bb;
3006 basic_block join_bb = if_info->join_bb;
3007 rtx_insn *jump = if_info->jump;
3008 rtx cond = if_info->cond;
3009 rtx_insn *seq, *loc_insn;
3010 rtx reg;
3011 int c;
3012 vec<rtx> then_regs = vNULL;
3013 vec<rtx> else_regs = vNULL;
3014 unsigned int i;
3015 int success_p = FALSE;
3016
3017 /* Build a mapping for each block to the value used for each
3018 register. */
3019 hash_map<rtx, rtx> then_vals;
3020 hash_map<rtx, rtx> else_vals;
3021
3022 /* Make sure the blocks are suitable. */
3023 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
3024 || (else_bb
3025 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
3026 goto done;
3027
3028 /* Make sure the blocks can be used together. If the same register
3029 is set in both blocks, and is not set to a constant in both
3030 cases, then both blocks must set it to the same register. We
3031 have already verified that if it is set to a register, that the
3032 source register does not change after the assignment. Also count
3033 the number of registers set in only one of the blocks. */
3034 c = 0;
3035 FOR_EACH_VEC_ELT (then_regs, i, reg)
3036 {
3037 rtx *then_slot = then_vals.get (reg);
3038 rtx *else_slot = else_vals.get (reg);
3039
3040 gcc_checking_assert (then_slot);
3041 if (!else_slot)
3042 ++c;
3043 else
3044 {
3045 rtx then_val = *then_slot;
3046 rtx else_val = *else_slot;
3047 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3048 && !rtx_equal_p (then_val, else_val))
3049 goto done;
3050 }
3051 }
3052
3053 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3054 FOR_EACH_VEC_ELT (else_regs, i, reg)
3055 {
3056 gcc_checking_assert (else_vals.get (reg));
3057 if (!then_vals.get (reg))
3058 ++c;
3059 }
3060
3061 /* Make sure it is reasonable to convert this block. What matters
3062 is the number of assignments currently made in only one of the
3063 branches, since if we convert we are going to always execute
3064 them. */
3065 if (c > MAX_CONDITIONAL_EXECUTE)
3066 goto done;
3067
3068 /* Try to emit the conditional moves. First do the then block,
3069 then do anything left in the else blocks. */
3070 start_sequence ();
3071 if (!cond_move_convert_if_block (if_info, then_bb, cond,
3072 &then_vals, &else_vals, false)
3073 || (else_bb
3074 && !cond_move_convert_if_block (if_info, else_bb, cond,
3075 &then_vals, &else_vals, true)))
3076 {
3077 end_sequence ();
3078 goto done;
3079 }
3080 seq = end_ifcvt_sequence (if_info);
3081 if (!seq)
3082 goto done;
3083
3084 loc_insn = first_active_insn (then_bb);
3085 if (!loc_insn)
3086 {
3087 loc_insn = first_active_insn (else_bb);
3088 gcc_assert (loc_insn);
3089 }
3090 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3091
3092 if (else_bb)
3093 {
3094 delete_basic_block (else_bb);
3095 num_true_changes++;
3096 }
3097 else
3098 remove_edge (find_edge (test_bb, join_bb));
3099
3100 remove_edge (find_edge (then_bb, join_bb));
3101 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3102 delete_basic_block (then_bb);
3103 num_true_changes++;
3104
3105 if (can_merge_blocks_p (test_bb, join_bb))
3106 {
3107 merge_blocks (test_bb, join_bb);
3108 num_true_changes++;
3109 }
3110
3111 num_updated_if_blocks++;
3112
3113 success_p = TRUE;
3114
3115 done:
3116 then_regs.release ();
3117 else_regs.release ();
3118 return success_p;
3119 }
3120
3121 \f
3122 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3123 IF-THEN-ELSE-JOIN block.
3124
3125 If so, we'll try to convert the insns to not require the branch,
3126 using only transformations that do not require conditional execution.
3127
3128 Return TRUE if we were successful at converting the block. */
3129
3130 static int
3131 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3132 int pass)
3133 {
3134 basic_block then_bb, else_bb, join_bb;
3135 bool then_else_reversed = false;
3136 rtx_insn *jump;
3137 rtx cond;
3138 rtx_insn *cond_earliest;
3139 struct noce_if_info if_info;
3140
3141 /* We only ever should get here before reload. */
3142 gcc_assert (!reload_completed);
3143
3144 /* Recognize an IF-THEN-ELSE-JOIN block. */
3145 if (single_pred_p (then_edge->dest)
3146 && single_succ_p (then_edge->dest)
3147 && single_pred_p (else_edge->dest)
3148 && single_succ_p (else_edge->dest)
3149 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3150 {
3151 then_bb = then_edge->dest;
3152 else_bb = else_edge->dest;
3153 join_bb = single_succ (then_bb);
3154 }
3155 /* Recognize an IF-THEN-JOIN block. */
3156 else if (single_pred_p (then_edge->dest)
3157 && single_succ_p (then_edge->dest)
3158 && single_succ (then_edge->dest) == else_edge->dest)
3159 {
3160 then_bb = then_edge->dest;
3161 else_bb = NULL_BLOCK;
3162 join_bb = else_edge->dest;
3163 }
3164 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3165 of basic blocks in cfglayout mode does not matter, so the fallthrough
3166 edge can go to any basic block (and not just to bb->next_bb, like in
3167 cfgrtl mode). */
3168 else if (single_pred_p (else_edge->dest)
3169 && single_succ_p (else_edge->dest)
3170 && single_succ (else_edge->dest) == then_edge->dest)
3171 {
3172 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3173 To make this work, we have to invert the THEN and ELSE blocks
3174 and reverse the jump condition. */
3175 then_bb = else_edge->dest;
3176 else_bb = NULL_BLOCK;
3177 join_bb = single_succ (then_bb);
3178 then_else_reversed = true;
3179 }
3180 else
3181 /* Not a form we can handle. */
3182 return FALSE;
3183
3184 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3185 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3186 return FALSE;
3187 if (else_bb
3188 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3189 return FALSE;
3190
3191 num_possible_if_blocks++;
3192
3193 if (dump_file)
3194 {
3195 fprintf (dump_file,
3196 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3197 (else_bb) ? "-ELSE" : "",
3198 pass, test_bb->index, then_bb->index);
3199
3200 if (else_bb)
3201 fprintf (dump_file, ", else %d", else_bb->index);
3202
3203 fprintf (dump_file, ", join %d\n", join_bb->index);
3204 }
3205
3206 /* If the conditional jump is more than just a conditional
3207 jump, then we can not do if-conversion on this block. */
3208 jump = BB_END (test_bb);
3209 if (! onlyjump_p (jump))
3210 return FALSE;
3211
3212 /* If this is not a standard conditional jump, we can't parse it. */
3213 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3214 if (!cond)
3215 return FALSE;
3216
3217 /* We must be comparing objects whose modes imply the size. */
3218 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3219 return FALSE;
3220
3221 /* Initialize an IF_INFO struct to pass around. */
3222 memset (&if_info, 0, sizeof if_info);
3223 if_info.test_bb = test_bb;
3224 if_info.then_bb = then_bb;
3225 if_info.else_bb = else_bb;
3226 if_info.join_bb = join_bb;
3227 if_info.cond = cond;
3228 if_info.cond_earliest = cond_earliest;
3229 if_info.jump = jump;
3230 if_info.then_else_reversed = then_else_reversed;
3231 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3232 predictable_edge_p (then_edge));
3233
3234 /* Do the real work. */
3235
3236 if (noce_process_if_block (&if_info))
3237 return TRUE;
3238
3239 if (HAVE_conditional_move
3240 && cond_move_process_if_block (&if_info))
3241 return TRUE;
3242
3243 return FALSE;
3244 }
3245 \f
3246
3247 /* Merge the blocks and mark for local life update. */
3248
3249 static void
3250 merge_if_block (struct ce_if_block * ce_info)
3251 {
3252 basic_block test_bb = ce_info->test_bb; /* last test block */
3253 basic_block then_bb = ce_info->then_bb; /* THEN */
3254 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3255 basic_block join_bb = ce_info->join_bb; /* join block */
3256 basic_block combo_bb;
3257
3258 /* All block merging is done into the lower block numbers. */
3259
3260 combo_bb = test_bb;
3261 df_set_bb_dirty (test_bb);
3262
3263 /* Merge any basic blocks to handle && and || subtests. Each of
3264 the blocks are on the fallthru path from the predecessor block. */
3265 if (ce_info->num_multiple_test_blocks > 0)
3266 {
3267 basic_block bb = test_bb;
3268 basic_block last_test_bb = ce_info->last_test_bb;
3269 basic_block fallthru = block_fallthru (bb);
3270
3271 do
3272 {
3273 bb = fallthru;
3274 fallthru = block_fallthru (bb);
3275 merge_blocks (combo_bb, bb);
3276 num_true_changes++;
3277 }
3278 while (bb != last_test_bb);
3279 }
3280
3281 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3282 label, but it might if there were || tests. That label's count should be
3283 zero, and it normally should be removed. */
3284
3285 if (then_bb)
3286 {
3287 /* If THEN_BB has no successors, then there's a BARRIER after it.
3288 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3289 is no longer needed, and in fact it is incorrect to leave it in
3290 the insn stream. */
3291 if (EDGE_COUNT (then_bb->succs) == 0
3292 && EDGE_COUNT (combo_bb->succs) > 1)
3293 {
3294 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
3295 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3296 end = NEXT_INSN (end);
3297
3298 if (end && BARRIER_P (end))
3299 delete_insn (end);
3300 }
3301 merge_blocks (combo_bb, then_bb);
3302 num_true_changes++;
3303 }
3304
3305 /* The ELSE block, if it existed, had a label. That label count
3306 will almost always be zero, but odd things can happen when labels
3307 get their addresses taken. */
3308 if (else_bb)
3309 {
3310 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3311 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3312 is no longer needed, and in fact it is incorrect to leave it in
3313 the insn stream. */
3314 if (EDGE_COUNT (else_bb->succs) == 0
3315 && EDGE_COUNT (combo_bb->succs) > 1)
3316 {
3317 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
3318 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3319 end = NEXT_INSN (end);
3320
3321 if (end && BARRIER_P (end))
3322 delete_insn (end);
3323 }
3324 merge_blocks (combo_bb, else_bb);
3325 num_true_changes++;
3326 }
3327
3328 /* If there was no join block reported, that means it was not adjacent
3329 to the others, and so we cannot merge them. */
3330
3331 if (! join_bb)
3332 {
3333 rtx_insn *last = BB_END (combo_bb);
3334
3335 /* The outgoing edge for the current COMBO block should already
3336 be correct. Verify this. */
3337 if (EDGE_COUNT (combo_bb->succs) == 0)
3338 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3339 || (NONJUMP_INSN_P (last)
3340 && GET_CODE (PATTERN (last)) == TRAP_IF
3341 && (TRAP_CONDITION (PATTERN (last))
3342 == const_true_rtx)));
3343
3344 else
3345 /* There should still be something at the end of the THEN or ELSE
3346 blocks taking us to our final destination. */
3347 gcc_assert (JUMP_P (last)
3348 || (EDGE_SUCC (combo_bb, 0)->dest
3349 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3350 && CALL_P (last)
3351 && SIBLING_CALL_P (last))
3352 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3353 && can_throw_internal (last)));
3354 }
3355
3356 /* The JOIN block may have had quite a number of other predecessors too.
3357 Since we've already merged the TEST, THEN and ELSE blocks, we should
3358 have only one remaining edge from our if-then-else diamond. If there
3359 is more than one remaining edge, it must come from elsewhere. There
3360 may be zero incoming edges if the THEN block didn't actually join
3361 back up (as with a call to a non-return function). */
3362 else if (EDGE_COUNT (join_bb->preds) < 2
3363 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3364 {
3365 /* We can merge the JOIN cleanly and update the dataflow try
3366 again on this pass.*/
3367 merge_blocks (combo_bb, join_bb);
3368 num_true_changes++;
3369 }
3370 else
3371 {
3372 /* We cannot merge the JOIN. */
3373
3374 /* The outgoing edge for the current COMBO block should already
3375 be correct. Verify this. */
3376 gcc_assert (single_succ_p (combo_bb)
3377 && single_succ (combo_bb) == join_bb);
3378
3379 /* Remove the jump and cruft from the end of the COMBO block. */
3380 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3381 tidy_fallthru_edge (single_succ_edge (combo_bb));
3382 }
3383
3384 num_updated_if_blocks++;
3385 }
3386 \f
3387 /* Find a block ending in a simple IF condition and try to transform it
3388 in some way. When converting a multi-block condition, put the new code
3389 in the first such block and delete the rest. Return a pointer to this
3390 first block if some transformation was done. Return NULL otherwise. */
3391
3392 static basic_block
3393 find_if_header (basic_block test_bb, int pass)
3394 {
3395 ce_if_block ce_info;
3396 edge then_edge;
3397 edge else_edge;
3398
3399 /* The kind of block we're looking for has exactly two successors. */
3400 if (EDGE_COUNT (test_bb->succs) != 2)
3401 return NULL;
3402
3403 then_edge = EDGE_SUCC (test_bb, 0);
3404 else_edge = EDGE_SUCC (test_bb, 1);
3405
3406 if (df_get_bb_dirty (then_edge->dest))
3407 return NULL;
3408 if (df_get_bb_dirty (else_edge->dest))
3409 return NULL;
3410
3411 /* Neither edge should be abnormal. */
3412 if ((then_edge->flags & EDGE_COMPLEX)
3413 || (else_edge->flags & EDGE_COMPLEX))
3414 return NULL;
3415
3416 /* Nor exit the loop. */
3417 if ((then_edge->flags & EDGE_LOOP_EXIT)
3418 || (else_edge->flags & EDGE_LOOP_EXIT))
3419 return NULL;
3420
3421 /* The THEN edge is canonically the one that falls through. */
3422 if (then_edge->flags & EDGE_FALLTHRU)
3423 ;
3424 else if (else_edge->flags & EDGE_FALLTHRU)
3425 std::swap (then_edge, else_edge);
3426 else
3427 /* Otherwise this must be a multiway branch of some sort. */
3428 return NULL;
3429
3430 memset (&ce_info, 0, sizeof (ce_info));
3431 ce_info.test_bb = test_bb;
3432 ce_info.then_bb = then_edge->dest;
3433 ce_info.else_bb = else_edge->dest;
3434 ce_info.pass = pass;
3435
3436 #ifdef IFCVT_MACHDEP_INIT
3437 IFCVT_MACHDEP_INIT (&ce_info);
3438 #endif
3439
3440 if (!reload_completed
3441 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3442 goto success;
3443
3444 if (reload_completed
3445 && targetm.have_conditional_execution ()
3446 && cond_exec_find_if_block (&ce_info))
3447 goto success;
3448
3449 if (targetm.have_trap ()
3450 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3451 && find_cond_trap (test_bb, then_edge, else_edge))
3452 goto success;
3453
3454 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3455 && (reload_completed || !targetm.have_conditional_execution ()))
3456 {
3457 if (find_if_case_1 (test_bb, then_edge, else_edge))
3458 goto success;
3459 if (find_if_case_2 (test_bb, then_edge, else_edge))
3460 goto success;
3461 }
3462
3463 return NULL;
3464
3465 success:
3466 if (dump_file)
3467 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3468 /* Set this so we continue looking. */
3469 cond_exec_changed_p = TRUE;
3470 return ce_info.test_bb;
3471 }
3472
3473 /* Return true if a block has two edges, one of which falls through to the next
3474 block, and the other jumps to a specific block, so that we can tell if the
3475 block is part of an && test or an || test. Returns either -1 or the number
3476 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3477
3478 static int
3479 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3480 {
3481 edge cur_edge;
3482 int fallthru_p = FALSE;
3483 int jump_p = FALSE;
3484 rtx_insn *insn;
3485 rtx_insn *end;
3486 int n_insns = 0;
3487 edge_iterator ei;
3488
3489 if (!cur_bb || !target_bb)
3490 return -1;
3491
3492 /* If no edges, obviously it doesn't jump or fallthru. */
3493 if (EDGE_COUNT (cur_bb->succs) == 0)
3494 return FALSE;
3495
3496 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3497 {
3498 if (cur_edge->flags & EDGE_COMPLEX)
3499 /* Anything complex isn't what we want. */
3500 return -1;
3501
3502 else if (cur_edge->flags & EDGE_FALLTHRU)
3503 fallthru_p = TRUE;
3504
3505 else if (cur_edge->dest == target_bb)
3506 jump_p = TRUE;
3507
3508 else
3509 return -1;
3510 }
3511
3512 if ((jump_p & fallthru_p) == 0)
3513 return -1;
3514
3515 /* Don't allow calls in the block, since this is used to group && and ||
3516 together for conditional execution support. ??? we should support
3517 conditional execution support across calls for IA-64 some day, but
3518 for now it makes the code simpler. */
3519 end = BB_END (cur_bb);
3520 insn = BB_HEAD (cur_bb);
3521
3522 while (insn != NULL_RTX)
3523 {
3524 if (CALL_P (insn))
3525 return -1;
3526
3527 if (INSN_P (insn)
3528 && !JUMP_P (insn)
3529 && !DEBUG_INSN_P (insn)
3530 && GET_CODE (PATTERN (insn)) != USE
3531 && GET_CODE (PATTERN (insn)) != CLOBBER)
3532 n_insns++;
3533
3534 if (insn == end)
3535 break;
3536
3537 insn = NEXT_INSN (insn);
3538 }
3539
3540 return n_insns;
3541 }
3542
3543 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3544 block. If so, we'll try to convert the insns to not require the branch.
3545 Return TRUE if we were successful at converting the block. */
3546
3547 static int
3548 cond_exec_find_if_block (struct ce_if_block * ce_info)
3549 {
3550 basic_block test_bb = ce_info->test_bb;
3551 basic_block then_bb = ce_info->then_bb;
3552 basic_block else_bb = ce_info->else_bb;
3553 basic_block join_bb = NULL_BLOCK;
3554 edge cur_edge;
3555 basic_block next;
3556 edge_iterator ei;
3557
3558 ce_info->last_test_bb = test_bb;
3559
3560 /* We only ever should get here after reload,
3561 and if we have conditional execution. */
3562 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3563
3564 /* Discover if any fall through predecessors of the current test basic block
3565 were && tests (which jump to the else block) or || tests (which jump to
3566 the then block). */
3567 if (single_pred_p (test_bb)
3568 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3569 {
3570 basic_block bb = single_pred (test_bb);
3571 basic_block target_bb;
3572 int max_insns = MAX_CONDITIONAL_EXECUTE;
3573 int n_insns;
3574
3575 /* Determine if the preceding block is an && or || block. */
3576 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3577 {
3578 ce_info->and_and_p = TRUE;
3579 target_bb = else_bb;
3580 }
3581 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3582 {
3583 ce_info->and_and_p = FALSE;
3584 target_bb = then_bb;
3585 }
3586 else
3587 target_bb = NULL_BLOCK;
3588
3589 if (target_bb && n_insns <= max_insns)
3590 {
3591 int total_insns = 0;
3592 int blocks = 0;
3593
3594 ce_info->last_test_bb = test_bb;
3595
3596 /* Found at least one && or || block, look for more. */
3597 do
3598 {
3599 ce_info->test_bb = test_bb = bb;
3600 total_insns += n_insns;
3601 blocks++;
3602
3603 if (!single_pred_p (bb))
3604 break;
3605
3606 bb = single_pred (bb);
3607 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3608 }
3609 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3610
3611 ce_info->num_multiple_test_blocks = blocks;
3612 ce_info->num_multiple_test_insns = total_insns;
3613
3614 if (ce_info->and_and_p)
3615 ce_info->num_and_and_blocks = blocks;
3616 else
3617 ce_info->num_or_or_blocks = blocks;
3618 }
3619 }
3620
3621 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3622 other than any || blocks which jump to the THEN block. */
3623 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3624 return FALSE;
3625
3626 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3627 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3628 {
3629 if (cur_edge->flags & EDGE_COMPLEX)
3630 return FALSE;
3631 }
3632
3633 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3634 {
3635 if (cur_edge->flags & EDGE_COMPLEX)
3636 return FALSE;
3637 }
3638
3639 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3640 if (EDGE_COUNT (then_bb->succs) > 0
3641 && (!single_succ_p (then_bb)
3642 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3643 || (epilogue_completed
3644 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3645 return FALSE;
3646
3647 /* If the THEN block has no successors, conditional execution can still
3648 make a conditional call. Don't do this unless the ELSE block has
3649 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3650 Check for the last insn of the THEN block being an indirect jump, which
3651 is listed as not having any successors, but confuses the rest of the CE
3652 code processing. ??? we should fix this in the future. */
3653 if (EDGE_COUNT (then_bb->succs) == 0)
3654 {
3655 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3656 {
3657 rtx_insn *last_insn = BB_END (then_bb);
3658
3659 while (last_insn
3660 && NOTE_P (last_insn)
3661 && last_insn != BB_HEAD (then_bb))
3662 last_insn = PREV_INSN (last_insn);
3663
3664 if (last_insn
3665 && JUMP_P (last_insn)
3666 && ! simplejump_p (last_insn))
3667 return FALSE;
3668
3669 join_bb = else_bb;
3670 else_bb = NULL_BLOCK;
3671 }
3672 else
3673 return FALSE;
3674 }
3675
3676 /* If the THEN block's successor is the other edge out of the TEST block,
3677 then we have an IF-THEN combo without an ELSE. */
3678 else if (single_succ (then_bb) == else_bb)
3679 {
3680 join_bb = else_bb;
3681 else_bb = NULL_BLOCK;
3682 }
3683
3684 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3685 has exactly one predecessor and one successor, and the outgoing edge
3686 is not complex, then we have an IF-THEN-ELSE combo. */
3687 else if (single_succ_p (else_bb)
3688 && single_succ (then_bb) == single_succ (else_bb)
3689 && single_pred_p (else_bb)
3690 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3691 && !(epilogue_completed
3692 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3693 join_bb = single_succ (else_bb);
3694
3695 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3696 else
3697 return FALSE;
3698
3699 num_possible_if_blocks++;
3700
3701 if (dump_file)
3702 {
3703 fprintf (dump_file,
3704 "\nIF-THEN%s block found, pass %d, start block %d "
3705 "[insn %d], then %d [%d]",
3706 (else_bb) ? "-ELSE" : "",
3707 ce_info->pass,
3708 test_bb->index,
3709 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3710 then_bb->index,
3711 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3712
3713 if (else_bb)
3714 fprintf (dump_file, ", else %d [%d]",
3715 else_bb->index,
3716 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3717
3718 fprintf (dump_file, ", join %d [%d]",
3719 join_bb->index,
3720 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3721
3722 if (ce_info->num_multiple_test_blocks > 0)
3723 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3724 ce_info->num_multiple_test_blocks,
3725 (ce_info->and_and_p) ? "&&" : "||",
3726 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3727 ce_info->last_test_bb->index,
3728 ((BB_HEAD (ce_info->last_test_bb))
3729 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3730 : -1));
3731
3732 fputc ('\n', dump_file);
3733 }
3734
3735 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3736 first condition for free, since we've already asserted that there's a
3737 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3738 we checked the FALLTHRU flag, those are already adjacent to the last IF
3739 block. */
3740 /* ??? As an enhancement, move the ELSE block. Have to deal with
3741 BLOCK notes, if by no other means than backing out the merge if they
3742 exist. Sticky enough I don't want to think about it now. */
3743 next = then_bb;
3744 if (else_bb && (next = next->next_bb) != else_bb)
3745 return FALSE;
3746 if ((next = next->next_bb) != join_bb
3747 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3748 {
3749 if (else_bb)
3750 join_bb = NULL;
3751 else
3752 return FALSE;
3753 }
3754
3755 /* Do the real work. */
3756
3757 ce_info->else_bb = else_bb;
3758 ce_info->join_bb = join_bb;
3759
3760 /* If we have && and || tests, try to first handle combining the && and ||
3761 tests into the conditional code, and if that fails, go back and handle
3762 it without the && and ||, which at present handles the && case if there
3763 was no ELSE block. */
3764 if (cond_exec_process_if_block (ce_info, TRUE))
3765 return TRUE;
3766
3767 if (ce_info->num_multiple_test_blocks)
3768 {
3769 cancel_changes (0);
3770
3771 if (cond_exec_process_if_block (ce_info, FALSE))
3772 return TRUE;
3773 }
3774
3775 return FALSE;
3776 }
3777
3778 /* Convert a branch over a trap, or a branch
3779 to a trap, into a conditional trap. */
3780
3781 static int
3782 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3783 {
3784 basic_block then_bb = then_edge->dest;
3785 basic_block else_bb = else_edge->dest;
3786 basic_block other_bb, trap_bb;
3787 rtx_insn *trap, *jump;
3788 rtx cond;
3789 rtx_insn *cond_earliest;
3790 enum rtx_code code;
3791
3792 /* Locate the block with the trap instruction. */
3793 /* ??? While we look for no successors, we really ought to allow
3794 EH successors. Need to fix merge_if_block for that to work. */
3795 if ((trap = block_has_only_trap (then_bb)) != NULL)
3796 trap_bb = then_bb, other_bb = else_bb;
3797 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3798 trap_bb = else_bb, other_bb = then_bb;
3799 else
3800 return FALSE;
3801
3802 if (dump_file)
3803 {
3804 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3805 test_bb->index, trap_bb->index);
3806 }
3807
3808 /* If this is not a standard conditional jump, we can't parse it. */
3809 jump = BB_END (test_bb);
3810 cond = noce_get_condition (jump, &cond_earliest, false);
3811 if (! cond)
3812 return FALSE;
3813
3814 /* If the conditional jump is more than just a conditional jump, then
3815 we can not do if-conversion on this block. */
3816 if (! onlyjump_p (jump))
3817 return FALSE;
3818
3819 /* We must be comparing objects whose modes imply the size. */
3820 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3821 return FALSE;
3822
3823 /* Reverse the comparison code, if necessary. */
3824 code = GET_CODE (cond);
3825 if (then_bb == trap_bb)
3826 {
3827 code = reversed_comparison_code (cond, jump);
3828 if (code == UNKNOWN)
3829 return FALSE;
3830 }
3831
3832 /* Attempt to generate the conditional trap. */
3833 rtx_insn *seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3834 copy_rtx (XEXP (cond, 1)),
3835 TRAP_CODE (PATTERN (trap)));
3836 if (seq == NULL)
3837 return FALSE;
3838
3839 /* Emit the new insns before cond_earliest. */
3840 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3841
3842 /* Delete the trap block if possible. */
3843 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3844 df_set_bb_dirty (test_bb);
3845 df_set_bb_dirty (then_bb);
3846 df_set_bb_dirty (else_bb);
3847
3848 if (EDGE_COUNT (trap_bb->preds) == 0)
3849 {
3850 delete_basic_block (trap_bb);
3851 num_true_changes++;
3852 }
3853
3854 /* Wire together the blocks again. */
3855 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3856 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3857 else if (trap_bb == then_bb)
3858 {
3859 rtx lab = JUMP_LABEL (jump);
3860 rtx_insn *seq = targetm.gen_jump (lab);
3861 rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
3862 LABEL_NUSES (lab) += 1;
3863 JUMP_LABEL (newjump) = lab;
3864 emit_barrier_after (newjump);
3865 }
3866 delete_insn (jump);
3867
3868 if (can_merge_blocks_p (test_bb, other_bb))
3869 {
3870 merge_blocks (test_bb, other_bb);
3871 num_true_changes++;
3872 }
3873
3874 num_updated_if_blocks++;
3875 return TRUE;
3876 }
3877
3878 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3879 return it. */
3880
3881 static rtx_insn *
3882 block_has_only_trap (basic_block bb)
3883 {
3884 rtx_insn *trap;
3885
3886 /* We're not the exit block. */
3887 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3888 return NULL;
3889
3890 /* The block must have no successors. */
3891 if (EDGE_COUNT (bb->succs) > 0)
3892 return NULL;
3893
3894 /* The only instruction in the THEN block must be the trap. */
3895 trap = first_active_insn (bb);
3896 if (! (trap == BB_END (bb)
3897 && GET_CODE (PATTERN (trap)) == TRAP_IF
3898 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3899 return NULL;
3900
3901 return trap;
3902 }
3903
3904 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3905 transformable, but not necessarily the other. There need be no
3906 JOIN block.
3907
3908 Return TRUE if we were successful at converting the block.
3909
3910 Cases we'd like to look at:
3911
3912 (1)
3913 if (test) goto over; // x not live
3914 x = a;
3915 goto label;
3916 over:
3917
3918 becomes
3919
3920 x = a;
3921 if (! test) goto label;
3922
3923 (2)
3924 if (test) goto E; // x not live
3925 x = big();
3926 goto L;
3927 E:
3928 x = b;
3929 goto M;
3930
3931 becomes
3932
3933 x = b;
3934 if (test) goto M;
3935 x = big();
3936 goto L;
3937
3938 (3) // This one's really only interesting for targets that can do
3939 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3940 // it results in multiple branches on a cache line, which often
3941 // does not sit well with predictors.
3942
3943 if (test1) goto E; // predicted not taken
3944 x = a;
3945 if (test2) goto F;
3946 ...
3947 E:
3948 x = b;
3949 J:
3950
3951 becomes
3952
3953 x = a;
3954 if (test1) goto E;
3955 if (test2) goto F;
3956
3957 Notes:
3958
3959 (A) Don't do (2) if the branch is predicted against the block we're
3960 eliminating. Do it anyway if we can eliminate a branch; this requires
3961 that the sole successor of the eliminated block postdominate the other
3962 side of the if.
3963
3964 (B) With CE, on (3) we can steal from both sides of the if, creating
3965
3966 if (test1) x = a;
3967 if (!test1) x = b;
3968 if (test1) goto J;
3969 if (test2) goto F;
3970 ...
3971 J:
3972
3973 Again, this is most useful if J postdominates.
3974
3975 (C) CE substitutes for helpful life information.
3976
3977 (D) These heuristics need a lot of work. */
3978
3979 /* Tests for case 1 above. */
3980
3981 static int
3982 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3983 {
3984 basic_block then_bb = then_edge->dest;
3985 basic_block else_bb = else_edge->dest;
3986 basic_block new_bb;
3987 int then_bb_index, then_prob;
3988 rtx else_target = NULL_RTX;
3989
3990 /* If we are partitioning hot/cold basic blocks, we don't want to
3991 mess up unconditional or indirect jumps that cross between hot
3992 and cold sections.
3993
3994 Basic block partitioning may result in some jumps that appear to
3995 be optimizable (or blocks that appear to be mergeable), but which really
3996 must be left untouched (they are required to make it safely across
3997 partition boundaries). See the comments at the top of
3998 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3999
4000 if ((BB_END (then_bb)
4001 && JUMP_P (BB_END (then_bb))
4002 && CROSSING_JUMP_P (BB_END (then_bb)))
4003 || (BB_END (test_bb)
4004 && JUMP_P (BB_END (test_bb))
4005 && CROSSING_JUMP_P (BB_END (test_bb)))
4006 || (BB_END (else_bb)
4007 && JUMP_P (BB_END (else_bb))
4008 && CROSSING_JUMP_P (BB_END (else_bb))))
4009 return FALSE;
4010
4011 /* THEN has one successor. */
4012 if (!single_succ_p (then_bb))
4013 return FALSE;
4014
4015 /* THEN does not fall through, but is not strange either. */
4016 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
4017 return FALSE;
4018
4019 /* THEN has one predecessor. */
4020 if (!single_pred_p (then_bb))
4021 return FALSE;
4022
4023 /* THEN must do something. */
4024 if (forwarder_block_p (then_bb))
4025 return FALSE;
4026
4027 num_possible_if_blocks++;
4028 if (dump_file)
4029 fprintf (dump_file,
4030 "\nIF-CASE-1 found, start %d, then %d\n",
4031 test_bb->index, then_bb->index);
4032
4033 if (then_edge->probability)
4034 then_prob = REG_BR_PROB_BASE - then_edge->probability;
4035 else
4036 then_prob = REG_BR_PROB_BASE / 2;
4037
4038 /* We're speculating from the THEN path, we want to make sure the cost
4039 of speculation is within reason. */
4040 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4041 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4042 predictable_edge_p (then_edge)))))
4043 return FALSE;
4044
4045 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4046 {
4047 rtx_insn *jump = BB_END (else_edge->src);
4048 gcc_assert (JUMP_P (jump));
4049 else_target = JUMP_LABEL (jump);
4050 }
4051
4052 /* Registers set are dead, or are predicable. */
4053 if (! dead_or_predicable (test_bb, then_bb, else_bb,
4054 single_succ_edge (then_bb), 1))
4055 return FALSE;
4056
4057 /* Conversion went ok, including moving the insns and fixing up the
4058 jump. Adjust the CFG to match. */
4059
4060 /* We can avoid creating a new basic block if then_bb is immediately
4061 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4062 through to else_bb. */
4063
4064 if (then_bb->next_bb == else_bb
4065 && then_bb->prev_bb == test_bb
4066 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4067 {
4068 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4069 new_bb = 0;
4070 }
4071 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4072 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4073 else_bb, else_target);
4074 else
4075 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4076 else_bb);
4077
4078 df_set_bb_dirty (test_bb);
4079 df_set_bb_dirty (else_bb);
4080
4081 then_bb_index = then_bb->index;
4082 delete_basic_block (then_bb);
4083
4084 /* Make rest of code believe that the newly created block is the THEN_BB
4085 block we removed. */
4086 if (new_bb)
4087 {
4088 df_bb_replace (then_bb_index, new_bb);
4089 /* This should have been done above via force_nonfallthru_and_redirect
4090 (possibly called from redirect_edge_and_branch_force). */
4091 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4092 }
4093
4094 num_true_changes++;
4095 num_updated_if_blocks++;
4096
4097 return TRUE;
4098 }
4099
4100 /* Test for case 2 above. */
4101
4102 static int
4103 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4104 {
4105 basic_block then_bb = then_edge->dest;
4106 basic_block else_bb = else_edge->dest;
4107 edge else_succ;
4108 int then_prob, else_prob;
4109
4110 /* We do not want to speculate (empty) loop latches. */
4111 if (current_loops
4112 && else_bb->loop_father->latch == else_bb)
4113 return FALSE;
4114
4115 /* If we are partitioning hot/cold basic blocks, we don't want to
4116 mess up unconditional or indirect jumps that cross between hot
4117 and cold sections.
4118
4119 Basic block partitioning may result in some jumps that appear to
4120 be optimizable (or blocks that appear to be mergeable), but which really
4121 must be left untouched (they are required to make it safely across
4122 partition boundaries). See the comments at the top of
4123 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4124
4125 if ((BB_END (then_bb)
4126 && JUMP_P (BB_END (then_bb))
4127 && CROSSING_JUMP_P (BB_END (then_bb)))
4128 || (BB_END (test_bb)
4129 && JUMP_P (BB_END (test_bb))
4130 && CROSSING_JUMP_P (BB_END (test_bb)))
4131 || (BB_END (else_bb)
4132 && JUMP_P (BB_END (else_bb))
4133 && CROSSING_JUMP_P (BB_END (else_bb))))
4134 return FALSE;
4135
4136 /* ELSE has one successor. */
4137 if (!single_succ_p (else_bb))
4138 return FALSE;
4139 else
4140 else_succ = single_succ_edge (else_bb);
4141
4142 /* ELSE outgoing edge is not complex. */
4143 if (else_succ->flags & EDGE_COMPLEX)
4144 return FALSE;
4145
4146 /* ELSE has one predecessor. */
4147 if (!single_pred_p (else_bb))
4148 return FALSE;
4149
4150 /* THEN is not EXIT. */
4151 if (then_bb->index < NUM_FIXED_BLOCKS)
4152 return FALSE;
4153
4154 if (else_edge->probability)
4155 {
4156 else_prob = else_edge->probability;
4157 then_prob = REG_BR_PROB_BASE - else_prob;
4158 }
4159 else
4160 {
4161 else_prob = REG_BR_PROB_BASE / 2;
4162 then_prob = REG_BR_PROB_BASE / 2;
4163 }
4164
4165 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4166 if (else_prob > then_prob)
4167 ;
4168 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4169 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4170 else_succ->dest))
4171 ;
4172 else
4173 return FALSE;
4174
4175 num_possible_if_blocks++;
4176 if (dump_file)
4177 fprintf (dump_file,
4178 "\nIF-CASE-2 found, start %d, else %d\n",
4179 test_bb->index, else_bb->index);
4180
4181 /* We're speculating from the ELSE path, we want to make sure the cost
4182 of speculation is within reason. */
4183 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4184 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4185 predictable_edge_p (else_edge)))))
4186 return FALSE;
4187
4188 /* Registers set are dead, or are predicable. */
4189 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4190 return FALSE;
4191
4192 /* Conversion went ok, including moving the insns and fixing up the
4193 jump. Adjust the CFG to match. */
4194
4195 df_set_bb_dirty (test_bb);
4196 df_set_bb_dirty (then_bb);
4197 delete_basic_block (else_bb);
4198
4199 num_true_changes++;
4200 num_updated_if_blocks++;
4201
4202 /* ??? We may now fallthru from one of THEN's successors into a join
4203 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4204
4205 return TRUE;
4206 }
4207
4208 /* Used by the code above to perform the actual rtl transformations.
4209 Return TRUE if successful.
4210
4211 TEST_BB is the block containing the conditional branch. MERGE_BB
4212 is the block containing the code to manipulate. DEST_EDGE is an
4213 edge representing a jump to the join block; after the conversion,
4214 TEST_BB should be branching to its destination.
4215 REVERSEP is true if the sense of the branch should be reversed. */
4216
4217 static int
4218 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4219 basic_block other_bb, edge dest_edge, int reversep)
4220 {
4221 basic_block new_dest = dest_edge->dest;
4222 rtx_insn *head, *end, *jump;
4223 rtx_insn *earliest = NULL;
4224 rtx old_dest;
4225 bitmap merge_set = NULL;
4226 /* Number of pending changes. */
4227 int n_validated_changes = 0;
4228 rtx new_dest_label = NULL_RTX;
4229
4230 jump = BB_END (test_bb);
4231
4232 /* Find the extent of the real code in the merge block. */
4233 head = BB_HEAD (merge_bb);
4234 end = BB_END (merge_bb);
4235
4236 while (DEBUG_INSN_P (end) && end != head)
4237 end = PREV_INSN (end);
4238
4239 /* If merge_bb ends with a tablejump, predicating/moving insn's
4240 into test_bb and then deleting merge_bb will result in the jumptable
4241 that follows merge_bb being removed along with merge_bb and then we
4242 get an unresolved reference to the jumptable. */
4243 if (tablejump_p (end, NULL, NULL))
4244 return FALSE;
4245
4246 if (LABEL_P (head))
4247 head = NEXT_INSN (head);
4248 while (DEBUG_INSN_P (head) && head != end)
4249 head = NEXT_INSN (head);
4250 if (NOTE_P (head))
4251 {
4252 if (head == end)
4253 {
4254 head = end = NULL;
4255 goto no_body;
4256 }
4257 head = NEXT_INSN (head);
4258 while (DEBUG_INSN_P (head) && head != end)
4259 head = NEXT_INSN (head);
4260 }
4261
4262 if (JUMP_P (end))
4263 {
4264 if (!onlyjump_p (end))
4265 return FALSE;
4266 if (head == end)
4267 {
4268 head = end = NULL;
4269 goto no_body;
4270 }
4271 end = PREV_INSN (end);
4272 while (DEBUG_INSN_P (end) && end != head)
4273 end = PREV_INSN (end);
4274 }
4275
4276 /* Don't move frame-related insn across the conditional branch. This
4277 can lead to one of the paths of the branch having wrong unwind info. */
4278 if (epilogue_completed)
4279 {
4280 rtx_insn *insn = head;
4281 while (1)
4282 {
4283 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
4284 return FALSE;
4285 if (insn == end)
4286 break;
4287 insn = NEXT_INSN (insn);
4288 }
4289 }
4290
4291 /* Disable handling dead code by conditional execution if the machine needs
4292 to do anything funny with the tests, etc. */
4293 #ifndef IFCVT_MODIFY_TESTS
4294 if (targetm.have_conditional_execution ())
4295 {
4296 /* In the conditional execution case, we have things easy. We know
4297 the condition is reversible. We don't have to check life info
4298 because we're going to conditionally execute the code anyway.
4299 All that's left is making sure the insns involved can actually
4300 be predicated. */
4301
4302 rtx cond;
4303
4304 cond = cond_exec_get_condition (jump);
4305 if (! cond)
4306 return FALSE;
4307
4308 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4309 int prob_val = (note ? XINT (note, 0) : -1);
4310
4311 if (reversep)
4312 {
4313 enum rtx_code rev = reversed_comparison_code (cond, jump);
4314 if (rev == UNKNOWN)
4315 return FALSE;
4316 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4317 XEXP (cond, 1));
4318 if (prob_val >= 0)
4319 prob_val = REG_BR_PROB_BASE - prob_val;
4320 }
4321
4322 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4323 && verify_changes (0))
4324 n_validated_changes = num_validated_changes ();
4325 else
4326 cancel_changes (0);
4327
4328 earliest = jump;
4329 }
4330 #endif
4331
4332 /* If we allocated new pseudos (e.g. in the conditional move
4333 expander called from noce_emit_cmove), we must resize the
4334 array first. */
4335 if (max_regno < max_reg_num ())
4336 max_regno = max_reg_num ();
4337
4338 /* Try the NCE path if the CE path did not result in any changes. */
4339 if (n_validated_changes == 0)
4340 {
4341 rtx cond;
4342 rtx_insn *insn;
4343 regset live;
4344 bool success;
4345
4346 /* In the non-conditional execution case, we have to verify that there
4347 are no trapping operations, no calls, no references to memory, and
4348 that any registers modified are dead at the branch site. */
4349
4350 if (!any_condjump_p (jump))
4351 return FALSE;
4352
4353 /* Find the extent of the conditional. */
4354 cond = noce_get_condition (jump, &earliest, false);
4355 if (!cond)
4356 return FALSE;
4357
4358 live = BITMAP_ALLOC (&reg_obstack);
4359 simulate_backwards_to_point (merge_bb, live, end);
4360 success = can_move_insns_across (head, end, earliest, jump,
4361 merge_bb, live,
4362 df_get_live_in (other_bb), NULL);
4363 BITMAP_FREE (live);
4364 if (!success)
4365 return FALSE;
4366
4367 /* Collect the set of registers set in MERGE_BB. */
4368 merge_set = BITMAP_ALLOC (&reg_obstack);
4369
4370 FOR_BB_INSNS (merge_bb, insn)
4371 if (NONDEBUG_INSN_P (insn))
4372 df_simulate_find_defs (insn, merge_set);
4373
4374 /* If shrink-wrapping, disable this optimization when test_bb is
4375 the first basic block and merge_bb exits. The idea is to not
4376 move code setting up a return register as that may clobber a
4377 register used to pass function parameters, which then must be
4378 saved in caller-saved regs. A caller-saved reg requires the
4379 prologue, killing a shrink-wrap opportunity. */
4380 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
4381 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4382 && single_succ_p (new_dest)
4383 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4384 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4385 {
4386 regset return_regs;
4387 unsigned int i;
4388
4389 return_regs = BITMAP_ALLOC (&reg_obstack);
4390
4391 /* Start off with the intersection of regs used to pass
4392 params and regs used to return values. */
4393 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4394 if (FUNCTION_ARG_REGNO_P (i)
4395 && targetm.calls.function_value_regno_p (i))
4396 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4397
4398 bitmap_and_into (return_regs,
4399 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4400 bitmap_and_into (return_regs,
4401 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4402 if (!bitmap_empty_p (return_regs))
4403 {
4404 FOR_BB_INSNS_REVERSE (new_dest, insn)
4405 if (NONDEBUG_INSN_P (insn))
4406 {
4407 df_ref def;
4408
4409 /* If this insn sets any reg in return_regs, add all
4410 reg uses to the set of regs we're interested in. */
4411 FOR_EACH_INSN_DEF (def, insn)
4412 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
4413 {
4414 df_simulate_uses (insn, return_regs);
4415 break;
4416 }
4417 }
4418 if (bitmap_intersect_p (merge_set, return_regs))
4419 {
4420 BITMAP_FREE (return_regs);
4421 BITMAP_FREE (merge_set);
4422 return FALSE;
4423 }
4424 }
4425 BITMAP_FREE (return_regs);
4426 }
4427 }
4428
4429 no_body:
4430 /* We don't want to use normal invert_jump or redirect_jump because
4431 we don't want to delete_insn called. Also, we want to do our own
4432 change group management. */
4433
4434 old_dest = JUMP_LABEL (jump);
4435 if (other_bb != new_dest)
4436 {
4437 if (!any_condjump_p (jump))
4438 goto cancel;
4439
4440 if (JUMP_P (BB_END (dest_edge->src)))
4441 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4442 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4443 new_dest_label = ret_rtx;
4444 else
4445 new_dest_label = block_label (new_dest);
4446
4447 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
4448 if (reversep
4449 ? ! invert_jump_1 (jump_insn, new_dest_label)
4450 : ! redirect_jump_1 (jump_insn, new_dest_label))
4451 goto cancel;
4452 }
4453
4454 if (verify_changes (n_validated_changes))
4455 confirm_change_group ();
4456 else
4457 goto cancel;
4458
4459 if (other_bb != new_dest)
4460 {
4461 redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
4462 0, reversep);
4463
4464 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4465 if (reversep)
4466 {
4467 std::swap (BRANCH_EDGE (test_bb)->count,
4468 FALLTHRU_EDGE (test_bb)->count);
4469 std::swap (BRANCH_EDGE (test_bb)->probability,
4470 FALLTHRU_EDGE (test_bb)->probability);
4471 update_br_prob_note (test_bb);
4472 }
4473 }
4474
4475 /* Move the insns out of MERGE_BB to before the branch. */
4476 if (head != NULL)
4477 {
4478 rtx_insn *insn;
4479
4480 if (end == BB_END (merge_bb))
4481 BB_END (merge_bb) = PREV_INSN (head);
4482
4483 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4484 notes being moved might become invalid. */
4485 insn = head;
4486 do
4487 {
4488 rtx note;
4489
4490 if (! INSN_P (insn))
4491 continue;
4492 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4493 if (! note)
4494 continue;
4495 remove_note (insn, note);
4496 } while (insn != end && (insn = NEXT_INSN (insn)));
4497
4498 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4499 notes referring to the registers being set might become invalid. */
4500 if (merge_set)
4501 {
4502 unsigned i;
4503 bitmap_iterator bi;
4504
4505 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4506 remove_reg_equal_equiv_notes_for_regno (i);
4507
4508 BITMAP_FREE (merge_set);
4509 }
4510
4511 reorder_insns (head, end, PREV_INSN (earliest));
4512 }
4513
4514 /* Remove the jump and edge if we can. */
4515 if (other_bb == new_dest)
4516 {
4517 delete_insn (jump);
4518 remove_edge (BRANCH_EDGE (test_bb));
4519 /* ??? Can't merge blocks here, as then_bb is still in use.
4520 At minimum, the merge will get done just before bb-reorder. */
4521 }
4522
4523 return TRUE;
4524
4525 cancel:
4526 cancel_changes (0);
4527
4528 if (merge_set)
4529 BITMAP_FREE (merge_set);
4530
4531 return FALSE;
4532 }
4533 \f
4534 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4535 we are after combine pass. */
4536
4537 static void
4538 if_convert (bool after_combine)
4539 {
4540 basic_block bb;
4541 int pass;
4542
4543 if (optimize == 1)
4544 {
4545 df_live_add_problem ();
4546 df_live_set_all_dirty ();
4547 }
4548
4549 /* Record whether we are after combine pass. */
4550 ifcvt_after_combine = after_combine;
4551 num_possible_if_blocks = 0;
4552 num_updated_if_blocks = 0;
4553 num_true_changes = 0;
4554
4555 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4556 mark_loop_exit_edges ();
4557 loop_optimizer_finalize ();
4558 free_dominance_info (CDI_DOMINATORS);
4559
4560 /* Compute postdominators. */
4561 calculate_dominance_info (CDI_POST_DOMINATORS);
4562
4563 df_set_flags (DF_LR_RUN_DCE);
4564
4565 /* Go through each of the basic blocks looking for things to convert. If we
4566 have conditional execution, we make multiple passes to allow us to handle
4567 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4568 pass = 0;
4569 do
4570 {
4571 df_analyze ();
4572 /* Only need to do dce on the first pass. */
4573 df_clear_flags (DF_LR_RUN_DCE);
4574 cond_exec_changed_p = FALSE;
4575 pass++;
4576
4577 #ifdef IFCVT_MULTIPLE_DUMPS
4578 if (dump_file && pass > 1)
4579 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4580 #endif
4581
4582 FOR_EACH_BB_FN (bb, cfun)
4583 {
4584 basic_block new_bb;
4585 while (!df_get_bb_dirty (bb)
4586 && (new_bb = find_if_header (bb, pass)) != NULL)
4587 bb = new_bb;
4588 }
4589
4590 #ifdef IFCVT_MULTIPLE_DUMPS
4591 if (dump_file && cond_exec_changed_p)
4592 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4593 #endif
4594 }
4595 while (cond_exec_changed_p);
4596
4597 #ifdef IFCVT_MULTIPLE_DUMPS
4598 if (dump_file)
4599 fprintf (dump_file, "\n\n========== no more changes\n");
4600 #endif
4601
4602 free_dominance_info (CDI_POST_DOMINATORS);
4603
4604 if (dump_file)
4605 fflush (dump_file);
4606
4607 clear_aux_for_blocks ();
4608
4609 /* If we allocated new pseudos, we must resize the array for sched1. */
4610 if (max_regno < max_reg_num ())
4611 max_regno = max_reg_num ();
4612
4613 /* Write the final stats. */
4614 if (dump_file && num_possible_if_blocks > 0)
4615 {
4616 fprintf (dump_file,
4617 "\n%d possible IF blocks searched.\n",
4618 num_possible_if_blocks);
4619 fprintf (dump_file,
4620 "%d IF blocks converted.\n",
4621 num_updated_if_blocks);
4622 fprintf (dump_file,
4623 "%d true changes made.\n\n\n",
4624 num_true_changes);
4625 }
4626
4627 if (optimize == 1)
4628 df_remove_problem (df_live);
4629
4630 #ifdef ENABLE_CHECKING
4631 verify_flow_info ();
4632 #endif
4633 }
4634 \f
4635 /* If-conversion and CFG cleanup. */
4636 static unsigned int
4637 rest_of_handle_if_conversion (void)
4638 {
4639 if (flag_if_conversion)
4640 {
4641 if (dump_file)
4642 {
4643 dump_reg_info (dump_file);
4644 dump_flow_info (dump_file, dump_flags);
4645 }
4646 cleanup_cfg (CLEANUP_EXPENSIVE);
4647 if_convert (false);
4648 }
4649
4650 cleanup_cfg (0);
4651 return 0;
4652 }
4653
4654 namespace {
4655
4656 const pass_data pass_data_rtl_ifcvt =
4657 {
4658 RTL_PASS, /* type */
4659 "ce1", /* name */
4660 OPTGROUP_NONE, /* optinfo_flags */
4661 TV_IFCVT, /* tv_id */
4662 0, /* properties_required */
4663 0, /* properties_provided */
4664 0, /* properties_destroyed */
4665 0, /* todo_flags_start */
4666 TODO_df_finish, /* todo_flags_finish */
4667 };
4668
4669 class pass_rtl_ifcvt : public rtl_opt_pass
4670 {
4671 public:
4672 pass_rtl_ifcvt (gcc::context *ctxt)
4673 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4674 {}
4675
4676 /* opt_pass methods: */
4677 virtual bool gate (function *)
4678 {
4679 return (optimize > 0) && dbg_cnt (if_conversion);
4680 }
4681
4682 virtual unsigned int execute (function *)
4683 {
4684 return rest_of_handle_if_conversion ();
4685 }
4686
4687 }; // class pass_rtl_ifcvt
4688
4689 } // anon namespace
4690
4691 rtl_opt_pass *
4692 make_pass_rtl_ifcvt (gcc::context *ctxt)
4693 {
4694 return new pass_rtl_ifcvt (ctxt);
4695 }
4696
4697
4698 /* Rerun if-conversion, as combine may have simplified things enough
4699 to now meet sequence length restrictions. */
4700
4701 namespace {
4702
4703 const pass_data pass_data_if_after_combine =
4704 {
4705 RTL_PASS, /* type */
4706 "ce2", /* name */
4707 OPTGROUP_NONE, /* optinfo_flags */
4708 TV_IFCVT, /* tv_id */
4709 0, /* properties_required */
4710 0, /* properties_provided */
4711 0, /* properties_destroyed */
4712 0, /* todo_flags_start */
4713 TODO_df_finish, /* todo_flags_finish */
4714 };
4715
4716 class pass_if_after_combine : public rtl_opt_pass
4717 {
4718 public:
4719 pass_if_after_combine (gcc::context *ctxt)
4720 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4721 {}
4722
4723 /* opt_pass methods: */
4724 virtual bool gate (function *)
4725 {
4726 return optimize > 0 && flag_if_conversion
4727 && dbg_cnt (if_after_combine);
4728 }
4729
4730 virtual unsigned int execute (function *)
4731 {
4732 if_convert (true);
4733 return 0;
4734 }
4735
4736 }; // class pass_if_after_combine
4737
4738 } // anon namespace
4739
4740 rtl_opt_pass *
4741 make_pass_if_after_combine (gcc::context *ctxt)
4742 {
4743 return new pass_if_after_combine (ctxt);
4744 }
4745
4746
4747 namespace {
4748
4749 const pass_data pass_data_if_after_reload =
4750 {
4751 RTL_PASS, /* type */
4752 "ce3", /* name */
4753 OPTGROUP_NONE, /* optinfo_flags */
4754 TV_IFCVT2, /* tv_id */
4755 0, /* properties_required */
4756 0, /* properties_provided */
4757 0, /* properties_destroyed */
4758 0, /* todo_flags_start */
4759 TODO_df_finish, /* todo_flags_finish */
4760 };
4761
4762 class pass_if_after_reload : public rtl_opt_pass
4763 {
4764 public:
4765 pass_if_after_reload (gcc::context *ctxt)
4766 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4767 {}
4768
4769 /* opt_pass methods: */
4770 virtual bool gate (function *)
4771 {
4772 return optimize > 0 && flag_if_conversion2
4773 && dbg_cnt (if_after_reload);
4774 }
4775
4776 virtual unsigned int execute (function *)
4777 {
4778 if_convert (true);
4779 return 0;
4780 }
4781
4782 }; // class pass_if_after_reload
4783
4784 } // anon namespace
4785
4786 rtl_opt_pass *
4787 make_pass_if_after_reload (gcc::context *ctxt)
4788 {
4789 return new pass_if_after_reload (ctxt);
4790 }