i386.c (enum pta_flags): Move out of struct scope...
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "real.h"
38 #include "output.h"
39 #include "optabs.h"
40 #include "toplev.h"
41 #include "tm_p.h"
42 #include "cfgloop.h"
43 #include "target.h"
44 #include "timevar.h"
45 #include "tree-pass.h"
46 #include "vec.h"
47 #include "vecprim.h"
48
49
50 #ifndef HAVE_conditional_execution
51 #define HAVE_conditional_execution 0
52 #endif
53 #ifndef HAVE_conditional_move
54 #define HAVE_conditional_move 0
55 #endif
56 #ifndef HAVE_incscc
57 #define HAVE_incscc 0
58 #endif
59 #ifndef HAVE_decscc
60 #define HAVE_decscc 0
61 #endif
62 #ifndef HAVE_trap
63 #define HAVE_trap 0
64 #endif
65 #ifndef HAVE_conditional_trap
66 #define HAVE_conditional_trap 0
67 #endif
68
69 #ifndef MAX_CONDITIONAL_EXECUTE
70 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
71 #endif
72
73 #define NULL_BLOCK ((basic_block) NULL)
74
75 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
76 static int num_possible_if_blocks;
77
78 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
79 execution. */
80 static int num_updated_if_blocks;
81
82 /* # of changes made which require life information to be updated. */
83 static int num_true_changes;
84
85 /* Whether conditional execution changes were made. */
86 static int cond_exec_changed_p;
87
88 /* True if life data ok at present. */
89 static bool life_data_ok;
90
91 /* Forward references. */
92 static int count_bb_insns (basic_block);
93 static bool cheap_bb_rtx_cost_p (basic_block, int);
94 static rtx first_active_insn (basic_block);
95 static rtx last_active_insn (basic_block, int);
96 static basic_block block_fallthru (basic_block);
97 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
98 static rtx cond_exec_get_condition (rtx);
99 static rtx noce_get_condition (rtx, rtx *, bool);
100 static int noce_operand_ok (rtx);
101 static void merge_if_block (ce_if_block_t *);
102 static int find_cond_trap (basic_block, edge, edge);
103 static basic_block find_if_header (basic_block, int);
104 static int block_jumps_and_fallthru_p (basic_block, basic_block);
105 static int noce_find_if_block (basic_block, edge, edge, int);
106 static int cond_exec_find_if_block (ce_if_block_t *);
107 static int find_if_case_1 (basic_block, edge, edge);
108 static int find_if_case_2 (basic_block, edge, edge);
109 static int find_memory (rtx *, void *);
110 static int dead_or_predicable (basic_block, basic_block, basic_block,
111 basic_block, int);
112 static void noce_emit_move_insn (rtx, rtx);
113 static rtx block_has_only_trap (basic_block);
114 \f
115 /* Count the number of non-jump active insns in BB. */
116
117 static int
118 count_bb_insns (basic_block bb)
119 {
120 int count = 0;
121 rtx insn = BB_HEAD (bb);
122
123 while (1)
124 {
125 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
126 count++;
127
128 if (insn == BB_END (bb))
129 break;
130 insn = NEXT_INSN (insn);
131 }
132
133 return count;
134 }
135
136 /* Determine whether the total insn_rtx_cost on non-jump insns in
137 basic block BB is less than MAX_COST. This function returns
138 false if the cost of any instruction could not be estimated. */
139
140 static bool
141 cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
142 {
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
145
146 while (1)
147 {
148 if (NONJUMP_INSN_P (insn))
149 {
150 int cost = insn_rtx_cost (PATTERN (insn));
151 if (cost == 0)
152 return false;
153
154 /* If this instruction is the load or set of a "stack" register,
155 such as a floating point register on x87, then the cost of
156 speculatively executing this insn may need to include
157 the additional cost of popping its result off of the
158 register stack. Unfortunately, correctly recognizing and
159 accounting for this additional overhead is tricky, so for
160 now we simply prohibit such speculative execution. */
161 #ifdef STACK_REGS
162 {
163 rtx set = single_set (insn);
164 if (set && STACK_REG_P (SET_DEST (set)))
165 return false;
166 }
167 #endif
168
169 count += cost;
170 if (count >= max_cost)
171 return false;
172 }
173 else if (CALL_P (insn))
174 return false;
175
176 if (insn == BB_END (bb))
177 break;
178 insn = NEXT_INSN (insn);
179 }
180
181 return true;
182 }
183
184 /* Return the first non-jump active insn in the basic block. */
185
186 static rtx
187 first_active_insn (basic_block bb)
188 {
189 rtx insn = BB_HEAD (bb);
190
191 if (LABEL_P (insn))
192 {
193 if (insn == BB_END (bb))
194 return NULL_RTX;
195 insn = NEXT_INSN (insn);
196 }
197
198 while (NOTE_P (insn))
199 {
200 if (insn == BB_END (bb))
201 return NULL_RTX;
202 insn = NEXT_INSN (insn);
203 }
204
205 if (JUMP_P (insn))
206 return NULL_RTX;
207
208 return insn;
209 }
210
211 /* Return the last non-jump active (non-jump) insn in the basic block. */
212
213 static rtx
214 last_active_insn (basic_block bb, int skip_use_p)
215 {
216 rtx insn = BB_END (bb);
217 rtx head = BB_HEAD (bb);
218
219 while (NOTE_P (insn)
220 || JUMP_P (insn)
221 || (skip_use_p
222 && NONJUMP_INSN_P (insn)
223 && GET_CODE (PATTERN (insn)) == USE))
224 {
225 if (insn == head)
226 return NULL_RTX;
227 insn = PREV_INSN (insn);
228 }
229
230 if (LABEL_P (insn))
231 return NULL_RTX;
232
233 return insn;
234 }
235
236 /* Return the basic block reached by falling though the basic block BB. */
237
238 static basic_block
239 block_fallthru (basic_block bb)
240 {
241 edge e;
242 edge_iterator ei;
243
244 FOR_EACH_EDGE (e, ei, bb->succs)
245 if (e->flags & EDGE_FALLTHRU)
246 break;
247
248 return (e) ? e->dest : NULL_BLOCK;
249 }
250 \f
251 /* Go through a bunch of insns, converting them to conditional
252 execution format if possible. Return TRUE if all of the non-note
253 insns were processed. */
254
255 static int
256 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
257 /* if block information */rtx start,
258 /* first insn to look at */rtx end,
259 /* last insn to look at */rtx test,
260 /* conditional execution test */rtx prob_val,
261 /* probability of branch taken. */int mod_ok)
262 {
263 int must_be_last = FALSE;
264 rtx insn;
265 rtx xtest;
266 rtx pattern;
267
268 if (!start || !end)
269 return FALSE;
270
271 for (insn = start; ; insn = NEXT_INSN (insn))
272 {
273 if (NOTE_P (insn))
274 goto insn_done;
275
276 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
277
278 /* Remove USE insns that get in the way. */
279 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
280 {
281 /* ??? Ug. Actually unlinking the thing is problematic,
282 given what we'd have to coordinate with our callers. */
283 SET_INSN_DELETED (insn);
284 goto insn_done;
285 }
286
287 /* Last insn wasn't last? */
288 if (must_be_last)
289 return FALSE;
290
291 if (modified_in_p (test, insn))
292 {
293 if (!mod_ok)
294 return FALSE;
295 must_be_last = TRUE;
296 }
297
298 /* Now build the conditional form of the instruction. */
299 pattern = PATTERN (insn);
300 xtest = copy_rtx (test);
301
302 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
303 two conditions. */
304 if (GET_CODE (pattern) == COND_EXEC)
305 {
306 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
307 return FALSE;
308
309 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
310 COND_EXEC_TEST (pattern));
311 pattern = COND_EXEC_CODE (pattern);
312 }
313
314 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
315
316 /* If the machine needs to modify the insn being conditionally executed,
317 say for example to force a constant integer operand into a temp
318 register, do so here. */
319 #ifdef IFCVT_MODIFY_INSN
320 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
321 if (! pattern)
322 return FALSE;
323 #endif
324
325 validate_change (insn, &PATTERN (insn), pattern, 1);
326
327 if (CALL_P (insn) && prob_val)
328 validate_change (insn, &REG_NOTES (insn),
329 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
330 REG_NOTES (insn)), 1);
331
332 insn_done:
333 if (insn == end)
334 break;
335 }
336
337 return TRUE;
338 }
339
340 /* Return the condition for a jump. Do not do any special processing. */
341
342 static rtx
343 cond_exec_get_condition (rtx jump)
344 {
345 rtx test_if, cond;
346
347 if (any_condjump_p (jump))
348 test_if = SET_SRC (pc_set (jump));
349 else
350 return NULL_RTX;
351 cond = XEXP (test_if, 0);
352
353 /* If this branches to JUMP_LABEL when the condition is false,
354 reverse the condition. */
355 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
356 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
357 {
358 enum rtx_code rev = reversed_comparison_code (cond, jump);
359 if (rev == UNKNOWN)
360 return NULL_RTX;
361
362 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
363 XEXP (cond, 1));
364 }
365
366 return cond;
367 }
368
369 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
370 to conditional execution. Return TRUE if we were successful at
371 converting the block. */
372
373 static int
374 cond_exec_process_if_block (ce_if_block_t * ce_info,
375 /* if block information */int do_multiple_p)
376 {
377 basic_block test_bb = ce_info->test_bb; /* last test block */
378 basic_block then_bb = ce_info->then_bb; /* THEN */
379 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
380 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
381 rtx then_start; /* first insn in THEN block */
382 rtx then_end; /* last insn + 1 in THEN block */
383 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
384 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
385 int max; /* max # of insns to convert. */
386 int then_mod_ok; /* whether conditional mods are ok in THEN */
387 rtx true_expr; /* test for else block insns */
388 rtx false_expr; /* test for then block insns */
389 rtx true_prob_val; /* probability of else block */
390 rtx false_prob_val; /* probability of then block */
391 int n_insns;
392 enum rtx_code false_code;
393
394 /* If test is comprised of && or || elements, and we've failed at handling
395 all of them together, just use the last test if it is the special case of
396 && elements without an ELSE block. */
397 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
398 {
399 if (else_bb || ! ce_info->and_and_p)
400 return FALSE;
401
402 ce_info->test_bb = test_bb = ce_info->last_test_bb;
403 ce_info->num_multiple_test_blocks = 0;
404 ce_info->num_and_and_blocks = 0;
405 ce_info->num_or_or_blocks = 0;
406 }
407
408 /* Find the conditional jump to the ELSE or JOIN part, and isolate
409 the test. */
410 test_expr = cond_exec_get_condition (BB_END (test_bb));
411 if (! test_expr)
412 return FALSE;
413
414 /* If the conditional jump is more than just a conditional jump,
415 then we can not do conditional execution conversion on this block. */
416 if (! onlyjump_p (BB_END (test_bb)))
417 return FALSE;
418
419 /* Collect the bounds of where we're to search, skipping any labels, jumps
420 and notes at the beginning and end of the block. Then count the total
421 number of insns and see if it is small enough to convert. */
422 then_start = first_active_insn (then_bb);
423 then_end = last_active_insn (then_bb, TRUE);
424 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
425 max = MAX_CONDITIONAL_EXECUTE;
426
427 if (else_bb)
428 {
429 max *= 2;
430 else_start = first_active_insn (else_bb);
431 else_end = last_active_insn (else_bb, TRUE);
432 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
433 }
434
435 if (n_insns > max)
436 return FALSE;
437
438 /* Map test_expr/test_jump into the appropriate MD tests to use on
439 the conditionally executed code. */
440
441 true_expr = test_expr;
442
443 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
444 if (false_code != UNKNOWN)
445 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
446 XEXP (true_expr, 0), XEXP (true_expr, 1));
447 else
448 false_expr = NULL_RTX;
449
450 #ifdef IFCVT_MODIFY_TESTS
451 /* If the machine description needs to modify the tests, such as setting a
452 conditional execution register from a comparison, it can do so here. */
453 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
454
455 /* See if the conversion failed. */
456 if (!true_expr || !false_expr)
457 goto fail;
458 #endif
459
460 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
461 if (true_prob_val)
462 {
463 true_prob_val = XEXP (true_prob_val, 0);
464 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
465 }
466 else
467 false_prob_val = NULL_RTX;
468
469 /* If we have && or || tests, do them here. These tests are in the adjacent
470 blocks after the first block containing the test. */
471 if (ce_info->num_multiple_test_blocks > 0)
472 {
473 basic_block bb = test_bb;
474 basic_block last_test_bb = ce_info->last_test_bb;
475
476 if (! false_expr)
477 goto fail;
478
479 do
480 {
481 rtx start, end;
482 rtx t, f;
483 enum rtx_code f_code;
484
485 bb = block_fallthru (bb);
486 start = first_active_insn (bb);
487 end = last_active_insn (bb, TRUE);
488 if (start
489 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
490 false_prob_val, FALSE))
491 goto fail;
492
493 /* If the conditional jump is more than just a conditional jump, then
494 we can not do conditional execution conversion on this block. */
495 if (! onlyjump_p (BB_END (bb)))
496 goto fail;
497
498 /* Find the conditional jump and isolate the test. */
499 t = cond_exec_get_condition (BB_END (bb));
500 if (! t)
501 goto fail;
502
503 f_code = reversed_comparison_code (t, BB_END (bb));
504 if (f_code == UNKNOWN)
505 goto fail;
506
507 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
508 if (ce_info->and_and_p)
509 {
510 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
511 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
512 }
513 else
514 {
515 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
516 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
517 }
518
519 /* If the machine description needs to modify the tests, such as
520 setting a conditional execution register from a comparison, it can
521 do so here. */
522 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
523 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
524
525 /* See if the conversion failed. */
526 if (!t || !f)
527 goto fail;
528 #endif
529
530 true_expr = t;
531 false_expr = f;
532 }
533 while (bb != last_test_bb);
534 }
535
536 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
537 on then THEN block. */
538 then_mod_ok = (else_bb == NULL_BLOCK);
539
540 /* Go through the THEN and ELSE blocks converting the insns if possible
541 to conditional execution. */
542
543 if (then_end
544 && (! false_expr
545 || ! cond_exec_process_insns (ce_info, then_start, then_end,
546 false_expr, false_prob_val,
547 then_mod_ok)))
548 goto fail;
549
550 if (else_bb && else_end
551 && ! cond_exec_process_insns (ce_info, else_start, else_end,
552 true_expr, true_prob_val, TRUE))
553 goto fail;
554
555 /* If we cannot apply the changes, fail. Do not go through the normal fail
556 processing, since apply_change_group will call cancel_changes. */
557 if (! apply_change_group ())
558 {
559 #ifdef IFCVT_MODIFY_CANCEL
560 /* Cancel any machine dependent changes. */
561 IFCVT_MODIFY_CANCEL (ce_info);
562 #endif
563 return FALSE;
564 }
565
566 #ifdef IFCVT_MODIFY_FINAL
567 /* Do any machine dependent final modifications. */
568 IFCVT_MODIFY_FINAL (ce_info);
569 #endif
570
571 /* Conversion succeeded. */
572 if (dump_file)
573 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
574 n_insns, (n_insns == 1) ? " was" : "s were");
575
576 /* Merge the blocks! */
577 merge_if_block (ce_info);
578 cond_exec_changed_p = TRUE;
579 return TRUE;
580
581 fail:
582 #ifdef IFCVT_MODIFY_CANCEL
583 /* Cancel any machine dependent changes. */
584 IFCVT_MODIFY_CANCEL (ce_info);
585 #endif
586
587 cancel_changes (0);
588 return FALSE;
589 }
590 \f
591 /* Used by noce_process_if_block to communicate with its subroutines.
592
593 The subroutines know that A and B may be evaluated freely. They
594 know that X is a register. They should insert new instructions
595 before cond_earliest. */
596
597 struct noce_if_info
598 {
599 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
600 basic_block test_bb, then_bb, else_bb, join_bb;
601
602 /* The jump that ends TEST_BB. */
603 rtx jump;
604
605 /* The jump condition. */
606 rtx cond;
607
608 /* New insns should be inserted before this one. */
609 rtx cond_earliest;
610
611 /* Insns in the THEN and ELSE block. There is always just this
612 one insns in those blocks. The insns are single_set insns.
613 If there was no ELSE block, INSN_B is the last insn before
614 COND_EARLIEST, or NULL_RTX. In the former case, the insn
615 operands are still valid, as if INSN_B was moved down below
616 the jump. */
617 rtx insn_a, insn_b;
618
619 /* The SET_SRC of INSN_A and INSN_B. */
620 rtx a, b;
621
622 /* The SET_DEST of INSN_A. */
623 rtx x;
624
625 /* True if this if block is not canonical. In the canonical form of
626 if blocks, the THEN_BB is the block reached via the fallthru edge
627 from TEST_BB. For the noce transformations, we allow the symmetric
628 form as well. */
629 bool then_else_reversed;
630 };
631
632 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
633 static int noce_try_move (struct noce_if_info *);
634 static int noce_try_store_flag (struct noce_if_info *);
635 static int noce_try_addcc (struct noce_if_info *);
636 static int noce_try_store_flag_constants (struct noce_if_info *);
637 static int noce_try_store_flag_mask (struct noce_if_info *);
638 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
639 rtx, rtx, rtx);
640 static int noce_try_cmove (struct noce_if_info *);
641 static int noce_try_cmove_arith (struct noce_if_info *);
642 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
643 static int noce_try_minmax (struct noce_if_info *);
644 static int noce_try_abs (struct noce_if_info *);
645 static int noce_try_sign_mask (struct noce_if_info *);
646
647 /* Helper function for noce_try_store_flag*. */
648
649 static rtx
650 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
651 int normalize)
652 {
653 rtx cond = if_info->cond;
654 int cond_complex;
655 enum rtx_code code;
656
657 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
658 || ! general_operand (XEXP (cond, 1), VOIDmode));
659
660 /* If earliest == jump, or when the condition is complex, try to
661 build the store_flag insn directly. */
662
663 if (cond_complex)
664 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
665
666 if (reversep)
667 code = reversed_comparison_code (cond, if_info->jump);
668 else
669 code = GET_CODE (cond);
670
671 if ((if_info->cond_earliest == if_info->jump || cond_complex)
672 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
673 {
674 rtx tmp;
675
676 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
677 XEXP (cond, 1));
678 tmp = gen_rtx_SET (VOIDmode, x, tmp);
679
680 start_sequence ();
681 tmp = emit_insn (tmp);
682
683 if (recog_memoized (tmp) >= 0)
684 {
685 tmp = get_insns ();
686 end_sequence ();
687 emit_insn (tmp);
688
689 if_info->cond_earliest = if_info->jump;
690
691 return x;
692 }
693
694 end_sequence ();
695 }
696
697 /* Don't even try if the comparison operands or the mode of X are weird. */
698 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
699 return NULL_RTX;
700
701 return emit_store_flag (x, code, XEXP (cond, 0),
702 XEXP (cond, 1), VOIDmode,
703 (code == LTU || code == LEU
704 || code == GEU || code == GTU), normalize);
705 }
706
707 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
708 X is the destination/target and Y is the value to copy. */
709
710 static void
711 noce_emit_move_insn (rtx x, rtx y)
712 {
713 enum machine_mode outmode;
714 rtx outer, inner;
715 int bitpos;
716
717 if (GET_CODE (x) != STRICT_LOW_PART)
718 {
719 rtx seq, insn, target;
720 optab ot;
721
722 start_sequence ();
723 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
724 otherwise construct a suitable SET pattern ourselves. */
725 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
726 ? emit_move_insn (x, y)
727 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
728 seq = get_insns ();
729 end_sequence ();
730
731 if (recog_memoized (insn) <= 0)
732 {
733 if (GET_CODE (x) == ZERO_EXTRACT)
734 {
735 rtx op = XEXP (x, 0);
736 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
737 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
738
739 /* store_bit_field expects START to be relative to
740 BYTES_BIG_ENDIAN and adjusts this value for machines with
741 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
742 invoke store_bit_field again it is necessary to have the START
743 value from the first call. */
744 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
745 {
746 if (MEM_P (op))
747 start = BITS_PER_UNIT - start - size;
748 else
749 {
750 gcc_assert (REG_P (op));
751 start = BITS_PER_WORD - start - size;
752 }
753 }
754
755 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
756 store_bit_field (op, size, start, GET_MODE (x), y);
757 return;
758 }
759
760 switch (GET_RTX_CLASS (GET_CODE (y)))
761 {
762 case RTX_UNARY:
763 ot = code_to_optab[GET_CODE (y)];
764 if (ot)
765 {
766 start_sequence ();
767 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
768 if (target != NULL_RTX)
769 {
770 if (target != x)
771 emit_move_insn (x, target);
772 seq = get_insns ();
773 }
774 end_sequence ();
775 }
776 break;
777
778 case RTX_BIN_ARITH:
779 case RTX_COMM_ARITH:
780 ot = code_to_optab[GET_CODE (y)];
781 if (ot)
782 {
783 start_sequence ();
784 target = expand_binop (GET_MODE (y), ot,
785 XEXP (y, 0), XEXP (y, 1),
786 x, 0, OPTAB_DIRECT);
787 if (target != NULL_RTX)
788 {
789 if (target != x)
790 emit_move_insn (x, target);
791 seq = get_insns ();
792 }
793 end_sequence ();
794 }
795 break;
796
797 default:
798 break;
799 }
800 }
801
802 emit_insn (seq);
803 return;
804 }
805
806 outer = XEXP (x, 0);
807 inner = XEXP (outer, 0);
808 outmode = GET_MODE (outer);
809 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
810 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
811 }
812
813 /* Return sequence of instructions generated by if conversion. This
814 function calls end_sequence() to end the current stream, ensures
815 that are instructions are unshared, recognizable non-jump insns.
816 On failure, this function returns a NULL_RTX. */
817
818 static rtx
819 end_ifcvt_sequence (struct noce_if_info *if_info)
820 {
821 rtx insn;
822 rtx seq = get_insns ();
823
824 set_used_flags (if_info->x);
825 set_used_flags (if_info->cond);
826 unshare_all_rtl_in_chain (seq);
827 end_sequence ();
828
829 /* Make sure that all of the instructions emitted are recognizable,
830 and that we haven't introduced a new jump instruction.
831 As an exercise for the reader, build a general mechanism that
832 allows proper placement of required clobbers. */
833 for (insn = seq; insn; insn = NEXT_INSN (insn))
834 if (JUMP_P (insn)
835 || recog_memoized (insn) == -1)
836 return NULL_RTX;
837
838 return seq;
839 }
840
841 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
842 "if (a == b) x = a; else x = b" into "x = b". */
843
844 static int
845 noce_try_move (struct noce_if_info *if_info)
846 {
847 rtx cond = if_info->cond;
848 enum rtx_code code = GET_CODE (cond);
849 rtx y, seq;
850
851 if (code != NE && code != EQ)
852 return FALSE;
853
854 /* This optimization isn't valid if either A or B could be a NaN
855 or a signed zero. */
856 if (HONOR_NANS (GET_MODE (if_info->x))
857 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
858 return FALSE;
859
860 /* Check whether the operands of the comparison are A and in
861 either order. */
862 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
863 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
864 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
865 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
866 {
867 y = (code == EQ) ? if_info->a : if_info->b;
868
869 /* Avoid generating the move if the source is the destination. */
870 if (! rtx_equal_p (if_info->x, y))
871 {
872 start_sequence ();
873 noce_emit_move_insn (if_info->x, y);
874 seq = end_ifcvt_sequence (if_info);
875 if (!seq)
876 return FALSE;
877
878 emit_insn_before_setloc (seq, if_info->jump,
879 INSN_LOCATOR (if_info->insn_a));
880 }
881 return TRUE;
882 }
883 return FALSE;
884 }
885
886 /* Convert "if (test) x = 1; else x = 0".
887
888 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
889 tried in noce_try_store_flag_constants after noce_try_cmove has had
890 a go at the conversion. */
891
892 static int
893 noce_try_store_flag (struct noce_if_info *if_info)
894 {
895 int reversep;
896 rtx target, seq;
897
898 if (GET_CODE (if_info->b) == CONST_INT
899 && INTVAL (if_info->b) == STORE_FLAG_VALUE
900 && if_info->a == const0_rtx)
901 reversep = 0;
902 else if (if_info->b == const0_rtx
903 && GET_CODE (if_info->a) == CONST_INT
904 && INTVAL (if_info->a) == STORE_FLAG_VALUE
905 && (reversed_comparison_code (if_info->cond, if_info->jump)
906 != UNKNOWN))
907 reversep = 1;
908 else
909 return FALSE;
910
911 start_sequence ();
912
913 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
914 if (target)
915 {
916 if (target != if_info->x)
917 noce_emit_move_insn (if_info->x, target);
918
919 seq = end_ifcvt_sequence (if_info);
920 if (! seq)
921 return FALSE;
922
923 emit_insn_before_setloc (seq, if_info->jump,
924 INSN_LOCATOR (if_info->insn_a));
925 return TRUE;
926 }
927 else
928 {
929 end_sequence ();
930 return FALSE;
931 }
932 }
933
934 /* Convert "if (test) x = a; else x = b", for A and B constant. */
935
936 static int
937 noce_try_store_flag_constants (struct noce_if_info *if_info)
938 {
939 rtx target, seq;
940 int reversep;
941 HOST_WIDE_INT itrue, ifalse, diff, tmp;
942 int normalize, can_reverse;
943 enum machine_mode mode;
944
945 if (GET_CODE (if_info->a) == CONST_INT
946 && GET_CODE (if_info->b) == CONST_INT)
947 {
948 mode = GET_MODE (if_info->x);
949 ifalse = INTVAL (if_info->a);
950 itrue = INTVAL (if_info->b);
951
952 /* Make sure we can represent the difference between the two values. */
953 if ((itrue - ifalse > 0)
954 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
955 return FALSE;
956
957 diff = trunc_int_for_mode (itrue - ifalse, mode);
958
959 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
960 != UNKNOWN);
961
962 reversep = 0;
963 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
964 normalize = 0;
965 else if (ifalse == 0 && exact_log2 (itrue) >= 0
966 && (STORE_FLAG_VALUE == 1
967 || BRANCH_COST >= 2))
968 normalize = 1;
969 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
970 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
971 normalize = 1, reversep = 1;
972 else if (itrue == -1
973 && (STORE_FLAG_VALUE == -1
974 || BRANCH_COST >= 2))
975 normalize = -1;
976 else if (ifalse == -1 && can_reverse
977 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
978 normalize = -1, reversep = 1;
979 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
980 || BRANCH_COST >= 3)
981 normalize = -1;
982 else
983 return FALSE;
984
985 if (reversep)
986 {
987 tmp = itrue; itrue = ifalse; ifalse = tmp;
988 diff = trunc_int_for_mode (-diff, mode);
989 }
990
991 start_sequence ();
992 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
993 if (! target)
994 {
995 end_sequence ();
996 return FALSE;
997 }
998
999 /* if (test) x = 3; else x = 4;
1000 => x = 3 + (test == 0); */
1001 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1002 {
1003 target = expand_simple_binop (mode,
1004 (diff == STORE_FLAG_VALUE
1005 ? PLUS : MINUS),
1006 GEN_INT (ifalse), target, if_info->x, 0,
1007 OPTAB_WIDEN);
1008 }
1009
1010 /* if (test) x = 8; else x = 0;
1011 => x = (test != 0) << 3; */
1012 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1013 {
1014 target = expand_simple_binop (mode, ASHIFT,
1015 target, GEN_INT (tmp), if_info->x, 0,
1016 OPTAB_WIDEN);
1017 }
1018
1019 /* if (test) x = -1; else x = b;
1020 => x = -(test != 0) | b; */
1021 else if (itrue == -1)
1022 {
1023 target = expand_simple_binop (mode, IOR,
1024 target, GEN_INT (ifalse), if_info->x, 0,
1025 OPTAB_WIDEN);
1026 }
1027
1028 /* if (test) x = a; else x = b;
1029 => x = (-(test != 0) & (b - a)) + a; */
1030 else
1031 {
1032 target = expand_simple_binop (mode, AND,
1033 target, GEN_INT (diff), if_info->x, 0,
1034 OPTAB_WIDEN);
1035 if (target)
1036 target = expand_simple_binop (mode, PLUS,
1037 target, GEN_INT (ifalse),
1038 if_info->x, 0, OPTAB_WIDEN);
1039 }
1040
1041 if (! target)
1042 {
1043 end_sequence ();
1044 return FALSE;
1045 }
1046
1047 if (target != if_info->x)
1048 noce_emit_move_insn (if_info->x, target);
1049
1050 seq = end_ifcvt_sequence (if_info);
1051 if (!seq)
1052 return FALSE;
1053
1054 emit_insn_before_setloc (seq, if_info->jump,
1055 INSN_LOCATOR (if_info->insn_a));
1056 return TRUE;
1057 }
1058
1059 return FALSE;
1060 }
1061
1062 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1063 similarly for "foo--". */
1064
1065 static int
1066 noce_try_addcc (struct noce_if_info *if_info)
1067 {
1068 rtx target, seq;
1069 int subtract, normalize;
1070
1071 if (GET_CODE (if_info->a) == PLUS
1072 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1073 && (reversed_comparison_code (if_info->cond, if_info->jump)
1074 != UNKNOWN))
1075 {
1076 rtx cond = if_info->cond;
1077 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1078
1079 /* First try to use addcc pattern. */
1080 if (general_operand (XEXP (cond, 0), VOIDmode)
1081 && general_operand (XEXP (cond, 1), VOIDmode))
1082 {
1083 start_sequence ();
1084 target = emit_conditional_add (if_info->x, code,
1085 XEXP (cond, 0),
1086 XEXP (cond, 1),
1087 VOIDmode,
1088 if_info->b,
1089 XEXP (if_info->a, 1),
1090 GET_MODE (if_info->x),
1091 (code == LTU || code == GEU
1092 || code == LEU || code == GTU));
1093 if (target)
1094 {
1095 if (target != if_info->x)
1096 noce_emit_move_insn (if_info->x, target);
1097
1098 seq = end_ifcvt_sequence (if_info);
1099 if (!seq)
1100 return FALSE;
1101
1102 emit_insn_before_setloc (seq, if_info->jump,
1103 INSN_LOCATOR (if_info->insn_a));
1104 return TRUE;
1105 }
1106 end_sequence ();
1107 }
1108
1109 /* If that fails, construct conditional increment or decrement using
1110 setcc. */
1111 if (BRANCH_COST >= 2
1112 && (XEXP (if_info->a, 1) == const1_rtx
1113 || XEXP (if_info->a, 1) == constm1_rtx))
1114 {
1115 start_sequence ();
1116 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1117 subtract = 0, normalize = 0;
1118 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1119 subtract = 1, normalize = 0;
1120 else
1121 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1122
1123
1124 target = noce_emit_store_flag (if_info,
1125 gen_reg_rtx (GET_MODE (if_info->x)),
1126 1, normalize);
1127
1128 if (target)
1129 target = expand_simple_binop (GET_MODE (if_info->x),
1130 subtract ? MINUS : PLUS,
1131 if_info->b, target, if_info->x,
1132 0, OPTAB_WIDEN);
1133 if (target)
1134 {
1135 if (target != if_info->x)
1136 noce_emit_move_insn (if_info->x, target);
1137
1138 seq = end_ifcvt_sequence (if_info);
1139 if (!seq)
1140 return FALSE;
1141
1142 emit_insn_before_setloc (seq, if_info->jump,
1143 INSN_LOCATOR (if_info->insn_a));
1144 return TRUE;
1145 }
1146 end_sequence ();
1147 }
1148 }
1149
1150 return FALSE;
1151 }
1152
1153 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1154
1155 static int
1156 noce_try_store_flag_mask (struct noce_if_info *if_info)
1157 {
1158 rtx target, seq;
1159 int reversep;
1160
1161 reversep = 0;
1162 if ((BRANCH_COST >= 2
1163 || STORE_FLAG_VALUE == -1)
1164 && ((if_info->a == const0_rtx
1165 && rtx_equal_p (if_info->b, if_info->x))
1166 || ((reversep = (reversed_comparison_code (if_info->cond,
1167 if_info->jump)
1168 != UNKNOWN))
1169 && if_info->b == const0_rtx
1170 && rtx_equal_p (if_info->a, if_info->x))))
1171 {
1172 start_sequence ();
1173 target = noce_emit_store_flag (if_info,
1174 gen_reg_rtx (GET_MODE (if_info->x)),
1175 reversep, -1);
1176 if (target)
1177 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1178 if_info->x,
1179 target, if_info->x, 0,
1180 OPTAB_WIDEN);
1181
1182 if (target)
1183 {
1184 if (target != if_info->x)
1185 noce_emit_move_insn (if_info->x, target);
1186
1187 seq = end_ifcvt_sequence (if_info);
1188 if (!seq)
1189 return FALSE;
1190
1191 emit_insn_before_setloc (seq, if_info->jump,
1192 INSN_LOCATOR (if_info->insn_a));
1193 return TRUE;
1194 }
1195
1196 end_sequence ();
1197 }
1198
1199 return FALSE;
1200 }
1201
1202 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1203
1204 static rtx
1205 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1206 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1207 {
1208 /* If earliest == jump, try to build the cmove insn directly.
1209 This is helpful when combine has created some complex condition
1210 (like for alpha's cmovlbs) that we can't hope to regenerate
1211 through the normal interface. */
1212
1213 if (if_info->cond_earliest == if_info->jump)
1214 {
1215 rtx tmp;
1216
1217 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1218 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1219 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1220
1221 start_sequence ();
1222 tmp = emit_insn (tmp);
1223
1224 if (recog_memoized (tmp) >= 0)
1225 {
1226 tmp = get_insns ();
1227 end_sequence ();
1228 emit_insn (tmp);
1229
1230 return x;
1231 }
1232
1233 end_sequence ();
1234 }
1235
1236 /* Don't even try if the comparison operands are weird. */
1237 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1238 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1239 return NULL_RTX;
1240
1241 #if HAVE_conditional_move
1242 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1243 vtrue, vfalse, GET_MODE (x),
1244 (code == LTU || code == GEU
1245 || code == LEU || code == GTU));
1246 #else
1247 /* We'll never get here, as noce_process_if_block doesn't call the
1248 functions involved. Ifdef code, however, should be discouraged
1249 because it leads to typos in the code not selected. However,
1250 emit_conditional_move won't exist either. */
1251 return NULL_RTX;
1252 #endif
1253 }
1254
1255 /* Try only simple constants and registers here. More complex cases
1256 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1257 has had a go at it. */
1258
1259 static int
1260 noce_try_cmove (struct noce_if_info *if_info)
1261 {
1262 enum rtx_code code;
1263 rtx target, seq;
1264
1265 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1266 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1267 {
1268 start_sequence ();
1269
1270 code = GET_CODE (if_info->cond);
1271 target = noce_emit_cmove (if_info, if_info->x, code,
1272 XEXP (if_info->cond, 0),
1273 XEXP (if_info->cond, 1),
1274 if_info->a, if_info->b);
1275
1276 if (target)
1277 {
1278 if (target != if_info->x)
1279 noce_emit_move_insn (if_info->x, target);
1280
1281 seq = end_ifcvt_sequence (if_info);
1282 if (!seq)
1283 return FALSE;
1284
1285 emit_insn_before_setloc (seq, if_info->jump,
1286 INSN_LOCATOR (if_info->insn_a));
1287 return TRUE;
1288 }
1289 else
1290 {
1291 end_sequence ();
1292 return FALSE;
1293 }
1294 }
1295
1296 return FALSE;
1297 }
1298
1299 /* Try more complex cases involving conditional_move. */
1300
1301 static int
1302 noce_try_cmove_arith (struct noce_if_info *if_info)
1303 {
1304 rtx a = if_info->a;
1305 rtx b = if_info->b;
1306 rtx x = if_info->x;
1307 rtx orig_a, orig_b;
1308 rtx insn_a, insn_b;
1309 rtx tmp, target;
1310 int is_mem = 0;
1311 int insn_cost;
1312 enum rtx_code code;
1313
1314 /* A conditional move from two memory sources is equivalent to a
1315 conditional on their addresses followed by a load. Don't do this
1316 early because it'll screw alias analysis. Note that we've
1317 already checked for no side effects. */
1318 /* ??? FIXME: Magic number 5. */
1319 if (cse_not_expected
1320 && MEM_P (a) && MEM_P (b)
1321 && BRANCH_COST >= 5)
1322 {
1323 a = XEXP (a, 0);
1324 b = XEXP (b, 0);
1325 x = gen_reg_rtx (Pmode);
1326 is_mem = 1;
1327 }
1328
1329 /* ??? We could handle this if we knew that a load from A or B could
1330 not fault. This is also true if we've already loaded
1331 from the address along the path from ENTRY. */
1332 else if (may_trap_p (a) || may_trap_p (b))
1333 return FALSE;
1334
1335 /* if (test) x = a + b; else x = c - d;
1336 => y = a + b;
1337 x = c - d;
1338 if (test)
1339 x = y;
1340 */
1341
1342 code = GET_CODE (if_info->cond);
1343 insn_a = if_info->insn_a;
1344 insn_b = if_info->insn_b;
1345
1346 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1347 if insn_rtx_cost can't be estimated. */
1348 if (insn_a)
1349 {
1350 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1351 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1352 return FALSE;
1353 }
1354 else
1355 insn_cost = 0;
1356
1357 if (insn_b)
1358 {
1359 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1360 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1361 return FALSE;
1362 }
1363
1364 /* Possibly rearrange operands to make things come out more natural. */
1365 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1366 {
1367 int reversep = 0;
1368 if (rtx_equal_p (b, x))
1369 reversep = 1;
1370 else if (general_operand (b, GET_MODE (b)))
1371 reversep = 1;
1372
1373 if (reversep)
1374 {
1375 code = reversed_comparison_code (if_info->cond, if_info->jump);
1376 tmp = a, a = b, b = tmp;
1377 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1378 }
1379 }
1380
1381 start_sequence ();
1382
1383 orig_a = a;
1384 orig_b = b;
1385
1386 /* If either operand is complex, load it into a register first.
1387 The best way to do this is to copy the original insn. In this
1388 way we preserve any clobbers etc that the insn may have had.
1389 This is of course not possible in the IS_MEM case. */
1390 if (! general_operand (a, GET_MODE (a)))
1391 {
1392 rtx set;
1393
1394 if (is_mem)
1395 {
1396 tmp = gen_reg_rtx (GET_MODE (a));
1397 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1398 }
1399 else if (! insn_a)
1400 goto end_seq_and_fail;
1401 else
1402 {
1403 a = gen_reg_rtx (GET_MODE (a));
1404 tmp = copy_rtx (insn_a);
1405 set = single_set (tmp);
1406 SET_DEST (set) = a;
1407 tmp = emit_insn (PATTERN (tmp));
1408 }
1409 if (recog_memoized (tmp) < 0)
1410 goto end_seq_and_fail;
1411 }
1412 if (! general_operand (b, GET_MODE (b)))
1413 {
1414 rtx set, last;
1415
1416 if (is_mem)
1417 {
1418 tmp = gen_reg_rtx (GET_MODE (b));
1419 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1420 }
1421 else if (! insn_b)
1422 goto end_seq_and_fail;
1423 else
1424 {
1425 b = gen_reg_rtx (GET_MODE (b));
1426 tmp = copy_rtx (insn_b);
1427 set = single_set (tmp);
1428 SET_DEST (set) = b;
1429 tmp = PATTERN (tmp);
1430 }
1431
1432 /* If insn to set up A clobbers any registers B depends on, try to
1433 swap insn that sets up A with the one that sets up B. If even
1434 that doesn't help, punt. */
1435 last = get_last_insn ();
1436 if (last && modified_in_p (orig_b, last))
1437 {
1438 tmp = emit_insn_before (tmp, get_insns ());
1439 if (modified_in_p (orig_a, tmp))
1440 goto end_seq_and_fail;
1441 }
1442 else
1443 tmp = emit_insn (tmp);
1444
1445 if (recog_memoized (tmp) < 0)
1446 goto end_seq_and_fail;
1447 }
1448
1449 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1450 XEXP (if_info->cond, 1), a, b);
1451
1452 if (! target)
1453 goto end_seq_and_fail;
1454
1455 /* If we're handling a memory for above, emit the load now. */
1456 if (is_mem)
1457 {
1458 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1459
1460 /* Copy over flags as appropriate. */
1461 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1462 MEM_VOLATILE_P (tmp) = 1;
1463 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1464 MEM_IN_STRUCT_P (tmp) = 1;
1465 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1466 MEM_SCALAR_P (tmp) = 1;
1467 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1468 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1469 set_mem_align (tmp,
1470 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1471
1472 noce_emit_move_insn (if_info->x, tmp);
1473 }
1474 else if (target != x)
1475 noce_emit_move_insn (x, target);
1476
1477 tmp = end_ifcvt_sequence (if_info);
1478 if (!tmp)
1479 return FALSE;
1480
1481 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1482 return TRUE;
1483
1484 end_seq_and_fail:
1485 end_sequence ();
1486 return FALSE;
1487 }
1488
1489 /* For most cases, the simplified condition we found is the best
1490 choice, but this is not the case for the min/max/abs transforms.
1491 For these we wish to know that it is A or B in the condition. */
1492
1493 static rtx
1494 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1495 rtx *earliest)
1496 {
1497 rtx cond, set, insn;
1498 int reverse;
1499
1500 /* If target is already mentioned in the known condition, return it. */
1501 if (reg_mentioned_p (target, if_info->cond))
1502 {
1503 *earliest = if_info->cond_earliest;
1504 return if_info->cond;
1505 }
1506
1507 set = pc_set (if_info->jump);
1508 cond = XEXP (SET_SRC (set), 0);
1509 reverse
1510 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1511 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1512 if (if_info->then_else_reversed)
1513 reverse = !reverse;
1514
1515 /* If we're looking for a constant, try to make the conditional
1516 have that constant in it. There are two reasons why it may
1517 not have the constant we want:
1518
1519 1. GCC may have needed to put the constant in a register, because
1520 the target can't compare directly against that constant. For
1521 this case, we look for a SET immediately before the comparison
1522 that puts a constant in that register.
1523
1524 2. GCC may have canonicalized the conditional, for example
1525 replacing "if x < 4" with "if x <= 3". We can undo that (or
1526 make equivalent types of changes) to get the constants we need
1527 if they're off by one in the right direction. */
1528
1529 if (GET_CODE (target) == CONST_INT)
1530 {
1531 enum rtx_code code = GET_CODE (if_info->cond);
1532 rtx op_a = XEXP (if_info->cond, 0);
1533 rtx op_b = XEXP (if_info->cond, 1);
1534 rtx prev_insn;
1535
1536 /* First, look to see if we put a constant in a register. */
1537 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1538 if (prev_insn
1539 && INSN_P (prev_insn)
1540 && GET_CODE (PATTERN (prev_insn)) == SET)
1541 {
1542 rtx src = find_reg_equal_equiv_note (prev_insn);
1543 if (!src)
1544 src = SET_SRC (PATTERN (prev_insn));
1545 if (GET_CODE (src) == CONST_INT)
1546 {
1547 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1548 op_a = src;
1549 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1550 op_b = src;
1551
1552 if (GET_CODE (op_a) == CONST_INT)
1553 {
1554 rtx tmp = op_a;
1555 op_a = op_b;
1556 op_b = tmp;
1557 code = swap_condition (code);
1558 }
1559 }
1560 }
1561
1562 /* Now, look to see if we can get the right constant by
1563 adjusting the conditional. */
1564 if (GET_CODE (op_b) == CONST_INT)
1565 {
1566 HOST_WIDE_INT desired_val = INTVAL (target);
1567 HOST_WIDE_INT actual_val = INTVAL (op_b);
1568
1569 switch (code)
1570 {
1571 case LT:
1572 if (actual_val == desired_val + 1)
1573 {
1574 code = LE;
1575 op_b = GEN_INT (desired_val);
1576 }
1577 break;
1578 case LE:
1579 if (actual_val == desired_val - 1)
1580 {
1581 code = LT;
1582 op_b = GEN_INT (desired_val);
1583 }
1584 break;
1585 case GT:
1586 if (actual_val == desired_val - 1)
1587 {
1588 code = GE;
1589 op_b = GEN_INT (desired_val);
1590 }
1591 break;
1592 case GE:
1593 if (actual_val == desired_val + 1)
1594 {
1595 code = GT;
1596 op_b = GEN_INT (desired_val);
1597 }
1598 break;
1599 default:
1600 break;
1601 }
1602 }
1603
1604 /* If we made any changes, generate a new conditional that is
1605 equivalent to what we started with, but has the right
1606 constants in it. */
1607 if (code != GET_CODE (if_info->cond)
1608 || op_a != XEXP (if_info->cond, 0)
1609 || op_b != XEXP (if_info->cond, 1))
1610 {
1611 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1612 *earliest = if_info->cond_earliest;
1613 return cond;
1614 }
1615 }
1616
1617 cond = canonicalize_condition (if_info->jump, cond, reverse,
1618 earliest, target, false, true);
1619 if (! cond || ! reg_mentioned_p (target, cond))
1620 return NULL;
1621
1622 /* We almost certainly searched back to a different place.
1623 Need to re-verify correct lifetimes. */
1624
1625 /* X may not be mentioned in the range (cond_earliest, jump]. */
1626 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1627 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1628 return NULL;
1629
1630 /* A and B may not be modified in the range [cond_earliest, jump). */
1631 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1632 if (INSN_P (insn)
1633 && (modified_in_p (if_info->a, insn)
1634 || modified_in_p (if_info->b, insn)))
1635 return NULL;
1636
1637 return cond;
1638 }
1639
1640 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1641
1642 static int
1643 noce_try_minmax (struct noce_if_info *if_info)
1644 {
1645 rtx cond, earliest, target, seq;
1646 enum rtx_code code, op;
1647 int unsignedp;
1648
1649 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1650 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1651 to get the target to tell us... */
1652 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1653 || HONOR_NANS (GET_MODE (if_info->x)))
1654 return FALSE;
1655
1656 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1657 if (!cond)
1658 return FALSE;
1659
1660 /* Verify the condition is of the form we expect, and canonicalize
1661 the comparison code. */
1662 code = GET_CODE (cond);
1663 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1664 {
1665 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1666 return FALSE;
1667 }
1668 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1669 {
1670 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1671 return FALSE;
1672 code = swap_condition (code);
1673 }
1674 else
1675 return FALSE;
1676
1677 /* Determine what sort of operation this is. Note that the code is for
1678 a taken branch, so the code->operation mapping appears backwards. */
1679 switch (code)
1680 {
1681 case LT:
1682 case LE:
1683 case UNLT:
1684 case UNLE:
1685 op = SMAX;
1686 unsignedp = 0;
1687 break;
1688 case GT:
1689 case GE:
1690 case UNGT:
1691 case UNGE:
1692 op = SMIN;
1693 unsignedp = 0;
1694 break;
1695 case LTU:
1696 case LEU:
1697 op = UMAX;
1698 unsignedp = 1;
1699 break;
1700 case GTU:
1701 case GEU:
1702 op = UMIN;
1703 unsignedp = 1;
1704 break;
1705 default:
1706 return FALSE;
1707 }
1708
1709 start_sequence ();
1710
1711 target = expand_simple_binop (GET_MODE (if_info->x), op,
1712 if_info->a, if_info->b,
1713 if_info->x, unsignedp, OPTAB_WIDEN);
1714 if (! target)
1715 {
1716 end_sequence ();
1717 return FALSE;
1718 }
1719 if (target != if_info->x)
1720 noce_emit_move_insn (if_info->x, target);
1721
1722 seq = end_ifcvt_sequence (if_info);
1723 if (!seq)
1724 return FALSE;
1725
1726 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1727 if_info->cond = cond;
1728 if_info->cond_earliest = earliest;
1729
1730 return TRUE;
1731 }
1732
1733 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1734
1735 static int
1736 noce_try_abs (struct noce_if_info *if_info)
1737 {
1738 rtx cond, earliest, target, seq, a, b, c;
1739 int negate;
1740
1741 /* Recognize A and B as constituting an ABS or NABS. The canonical
1742 form is a branch around the negation, taken when the object is the
1743 first operand of a comparison against 0 that evaluates to true. */
1744 a = if_info->a;
1745 b = if_info->b;
1746 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1747 negate = 0;
1748 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1749 {
1750 c = a; a = b; b = c;
1751 negate = 1;
1752 }
1753 else
1754 return FALSE;
1755
1756 cond = noce_get_alt_condition (if_info, b, &earliest);
1757 if (!cond)
1758 return FALSE;
1759
1760 /* Verify the condition is of the form we expect. */
1761 if (rtx_equal_p (XEXP (cond, 0), b))
1762 c = XEXP (cond, 1);
1763 else if (rtx_equal_p (XEXP (cond, 1), b))
1764 {
1765 c = XEXP (cond, 0);
1766 negate = !negate;
1767 }
1768 else
1769 return FALSE;
1770
1771 /* Verify that C is zero. Search one step backward for a
1772 REG_EQUAL note or a simple source if necessary. */
1773 if (REG_P (c))
1774 {
1775 rtx set, insn = prev_nonnote_insn (earliest);
1776 if (insn
1777 && (set = single_set (insn))
1778 && rtx_equal_p (SET_DEST (set), c))
1779 {
1780 rtx note = find_reg_equal_equiv_note (insn);
1781 if (note)
1782 c = XEXP (note, 0);
1783 else
1784 c = SET_SRC (set);
1785 }
1786 else
1787 return FALSE;
1788 }
1789 if (MEM_P (c)
1790 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1791 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1792 c = get_pool_constant (XEXP (c, 0));
1793
1794 /* Work around funny ideas get_condition has wrt canonicalization.
1795 Note that these rtx constants are known to be CONST_INT, and
1796 therefore imply integer comparisons. */
1797 if (c == constm1_rtx && GET_CODE (cond) == GT)
1798 ;
1799 else if (c == const1_rtx && GET_CODE (cond) == LT)
1800 ;
1801 else if (c != CONST0_RTX (GET_MODE (b)))
1802 return FALSE;
1803
1804 /* Determine what sort of operation this is. */
1805 switch (GET_CODE (cond))
1806 {
1807 case LT:
1808 case LE:
1809 case UNLT:
1810 case UNLE:
1811 negate = !negate;
1812 break;
1813 case GT:
1814 case GE:
1815 case UNGT:
1816 case UNGE:
1817 break;
1818 default:
1819 return FALSE;
1820 }
1821
1822 start_sequence ();
1823
1824 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1825
1826 /* ??? It's a quandary whether cmove would be better here, especially
1827 for integers. Perhaps combine will clean things up. */
1828 if (target && negate)
1829 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1830
1831 if (! target)
1832 {
1833 end_sequence ();
1834 return FALSE;
1835 }
1836
1837 if (target != if_info->x)
1838 noce_emit_move_insn (if_info->x, target);
1839
1840 seq = end_ifcvt_sequence (if_info);
1841 if (!seq)
1842 return FALSE;
1843
1844 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1845 if_info->cond = cond;
1846 if_info->cond_earliest = earliest;
1847
1848 return TRUE;
1849 }
1850
1851 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1852
1853 static int
1854 noce_try_sign_mask (struct noce_if_info *if_info)
1855 {
1856 rtx cond, t, m, c, seq;
1857 enum machine_mode mode;
1858 enum rtx_code code;
1859 bool b_unconditional;
1860
1861 cond = if_info->cond;
1862 code = GET_CODE (cond);
1863 m = XEXP (cond, 0);
1864 c = XEXP (cond, 1);
1865
1866 t = NULL_RTX;
1867 if (if_info->a == const0_rtx)
1868 {
1869 if ((code == LT && c == const0_rtx)
1870 || (code == LE && c == constm1_rtx))
1871 t = if_info->b;
1872 }
1873 else if (if_info->b == const0_rtx)
1874 {
1875 if ((code == GE && c == const0_rtx)
1876 || (code == GT && c == constm1_rtx))
1877 t = if_info->a;
1878 }
1879
1880 if (! t || side_effects_p (t))
1881 return FALSE;
1882
1883 /* We currently don't handle different modes. */
1884 mode = GET_MODE (t);
1885 if (GET_MODE (m) != mode)
1886 return FALSE;
1887
1888 /* This is only profitable if T is cheap, or T is unconditionally
1889 executed/evaluated in the original insn sequence. The latter
1890 happens if INSN_B was taken from TEST_BB, or if there was no
1891 INSN_B which can happen for e.g. conditional stores to memory. */
1892 b_unconditional = (if_info->insn_b == NULL_RTX
1893 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb);
1894 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1895 && (!b_unconditional
1896 || t != if_info->b))
1897 return FALSE;
1898
1899 start_sequence ();
1900 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1901 "(signed) m >> 31" directly. This benefits targets with specialized
1902 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1903 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1904 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1905 : NULL_RTX;
1906
1907 if (!t)
1908 {
1909 end_sequence ();
1910 return FALSE;
1911 }
1912
1913 noce_emit_move_insn (if_info->x, t);
1914
1915 seq = end_ifcvt_sequence (if_info);
1916 if (!seq)
1917 return FALSE;
1918
1919 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1920 return TRUE;
1921 }
1922
1923
1924 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1925 transformations. */
1926
1927 static int
1928 noce_try_bitop (struct noce_if_info *if_info)
1929 {
1930 rtx cond, x, a, result, seq;
1931 enum machine_mode mode;
1932 enum rtx_code code;
1933 int bitnum;
1934
1935 x = if_info->x;
1936 cond = if_info->cond;
1937 code = GET_CODE (cond);
1938
1939 /* Check for no else condition. */
1940 if (! rtx_equal_p (x, if_info->b))
1941 return FALSE;
1942
1943 /* Check for a suitable condition. */
1944 if (code != NE && code != EQ)
1945 return FALSE;
1946 if (XEXP (cond, 1) != const0_rtx)
1947 return FALSE;
1948 cond = XEXP (cond, 0);
1949
1950 /* ??? We could also handle AND here. */
1951 if (GET_CODE (cond) == ZERO_EXTRACT)
1952 {
1953 if (XEXP (cond, 1) != const1_rtx
1954 || GET_CODE (XEXP (cond, 2)) != CONST_INT
1955 || ! rtx_equal_p (x, XEXP (cond, 0)))
1956 return FALSE;
1957 bitnum = INTVAL (XEXP (cond, 2));
1958 mode = GET_MODE (x);
1959 if (BITS_BIG_ENDIAN)
1960 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
1961 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
1962 return FALSE;
1963 }
1964 else
1965 return FALSE;
1966
1967 a = if_info->a;
1968 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
1969 {
1970 /* Check for "if (X & C) x = x op C". */
1971 if (! rtx_equal_p (x, XEXP (a, 0))
1972 || GET_CODE (XEXP (a, 1)) != CONST_INT
1973 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1974 != (unsigned HOST_WIDE_INT) 1 << bitnum)
1975 return FALSE;
1976
1977 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
1978 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
1979 if (GET_CODE (a) == IOR)
1980 result = (code == NE) ? a : NULL_RTX;
1981 else if (code == NE)
1982 {
1983 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
1984 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
1985 result = simplify_gen_binary (IOR, mode, x, result);
1986 }
1987 else
1988 {
1989 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
1990 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
1991 result = simplify_gen_binary (AND, mode, x, result);
1992 }
1993 }
1994 else if (GET_CODE (a) == AND)
1995 {
1996 /* Check for "if (X & C) x &= ~C". */
1997 if (! rtx_equal_p (x, XEXP (a, 0))
1998 || GET_CODE (XEXP (a, 1)) != CONST_INT
1999 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2000 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2001 return FALSE;
2002
2003 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2004 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2005 result = (code == EQ) ? a : NULL_RTX;
2006 }
2007 else
2008 return FALSE;
2009
2010 if (result)
2011 {
2012 start_sequence ();
2013 noce_emit_move_insn (x, result);
2014 seq = end_ifcvt_sequence (if_info);
2015 if (!seq)
2016 return FALSE;
2017
2018 emit_insn_before_setloc (seq, if_info->jump,
2019 INSN_LOCATOR (if_info->insn_a));
2020 }
2021 return TRUE;
2022 }
2023
2024
2025 /* Similar to get_condition, only the resulting condition must be
2026 valid at JUMP, instead of at EARLIEST.
2027
2028 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2029 THEN block of the caller, and we have to reverse the condition. */
2030
2031 static rtx
2032 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2033 {
2034 rtx cond, set, tmp;
2035 bool reverse;
2036
2037 if (! any_condjump_p (jump))
2038 return NULL_RTX;
2039
2040 set = pc_set (jump);
2041
2042 /* If this branches to JUMP_LABEL when the condition is false,
2043 reverse the condition. */
2044 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2045 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2046
2047 /* We may have to reverse because the caller's if block is not canonical,
2048 i.e. the THEN block isn't the fallthrough block for the TEST block
2049 (see find_if_header). */
2050 if (then_else_reversed)
2051 reverse = !reverse;
2052
2053 /* If the condition variable is a register and is MODE_INT, accept it. */
2054
2055 cond = XEXP (SET_SRC (set), 0);
2056 tmp = XEXP (cond, 0);
2057 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2058 {
2059 *earliest = jump;
2060
2061 if (reverse)
2062 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2063 GET_MODE (cond), tmp, XEXP (cond, 1));
2064 return cond;
2065 }
2066
2067 /* Otherwise, fall back on canonicalize_condition to do the dirty
2068 work of manipulating MODE_CC values and COMPARE rtx codes. */
2069 return canonicalize_condition (jump, cond, reverse, earliest,
2070 NULL_RTX, false, true);
2071 }
2072
2073 /* Return true if OP is ok for if-then-else processing. */
2074
2075 static int
2076 noce_operand_ok (rtx op)
2077 {
2078 /* We special-case memories, so handle any of them with
2079 no address side effects. */
2080 if (MEM_P (op))
2081 return ! side_effects_p (XEXP (op, 0));
2082
2083 if (side_effects_p (op))
2084 return FALSE;
2085
2086 return ! may_trap_p (op);
2087 }
2088
2089 /* Return true if a write into MEM may trap or fault. */
2090
2091 static bool
2092 noce_mem_write_may_trap_or_fault_p (rtx mem)
2093 {
2094 rtx addr;
2095
2096 if (MEM_READONLY_P (mem))
2097 return true;
2098
2099 if (may_trap_or_fault_p (mem))
2100 return true;
2101
2102 addr = XEXP (mem, 0);
2103
2104 /* Call target hook to avoid the effects of -fpic etc.... */
2105 addr = targetm.delegitimize_address (addr);
2106
2107 while (addr)
2108 switch (GET_CODE (addr))
2109 {
2110 case CONST:
2111 case PRE_DEC:
2112 case PRE_INC:
2113 case POST_DEC:
2114 case POST_INC:
2115 case POST_MODIFY:
2116 addr = XEXP (addr, 0);
2117 break;
2118 case LO_SUM:
2119 case PRE_MODIFY:
2120 addr = XEXP (addr, 1);
2121 break;
2122 case PLUS:
2123 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2124 addr = XEXP (addr, 0);
2125 else
2126 return false;
2127 break;
2128 case LABEL_REF:
2129 return true;
2130 case SYMBOL_REF:
2131 if (SYMBOL_REF_DECL (addr)
2132 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2133 return true;
2134 return false;
2135 default:
2136 return false;
2137 }
2138
2139 return false;
2140 }
2141
2142 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2143 it without using conditional execution. Return TRUE if we were successful
2144 at converting the block. */
2145
2146 static int
2147 noce_process_if_block (struct noce_if_info *if_info)
2148 {
2149 basic_block test_bb = if_info->test_bb; /* test block */
2150 basic_block then_bb = if_info->then_bb; /* THEN */
2151 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2152 basic_block join_bb = if_info->join_bb; /* JOIN */
2153 rtx jump = if_info->jump;
2154 rtx cond = if_info->cond;
2155 rtx insn_a, insn_b;
2156 rtx set_a, set_b;
2157 rtx orig_x, x, a, b;
2158
2159 /* We're looking for patterns of the form
2160
2161 (1) if (...) x = a; else x = b;
2162 (2) x = b; if (...) x = a;
2163 (3) if (...) x = a; // as if with an initial x = x.
2164
2165 The later patterns require jumps to be more expensive.
2166
2167 ??? For future expansion, look for multiple X in such patterns. */
2168
2169 /* Look for one of the potential sets. */
2170 insn_a = first_active_insn (then_bb);
2171 if (! insn_a
2172 || insn_a != last_active_insn (then_bb, FALSE)
2173 || (set_a = single_set (insn_a)) == NULL_RTX)
2174 return FALSE;
2175
2176 x = SET_DEST (set_a);
2177 a = SET_SRC (set_a);
2178
2179 /* Look for the other potential set. Make sure we've got equivalent
2180 destinations. */
2181 /* ??? This is overconservative. Storing to two different mems is
2182 as easy as conditionally computing the address. Storing to a
2183 single mem merely requires a scratch memory to use as one of the
2184 destination addresses; often the memory immediately below the
2185 stack pointer is available for this. */
2186 set_b = NULL_RTX;
2187 if (else_bb)
2188 {
2189 insn_b = first_active_insn (else_bb);
2190 if (! insn_b
2191 || insn_b != last_active_insn (else_bb, FALSE)
2192 || (set_b = single_set (insn_b)) == NULL_RTX
2193 || ! rtx_equal_p (x, SET_DEST (set_b)))
2194 return FALSE;
2195 }
2196 else
2197 {
2198 insn_b = prev_nonnote_insn (if_info->cond_earliest);
2199 /* We're going to be moving the evaluation of B down from above
2200 COND_EARLIEST to JUMP. Make sure the relevant data is still
2201 intact. */
2202 if (! insn_b
2203 || !NONJUMP_INSN_P (insn_b)
2204 || (set_b = single_set (insn_b)) == NULL_RTX
2205 || ! rtx_equal_p (x, SET_DEST (set_b))
2206 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2207 || modified_between_p (SET_SRC (set_b),
2208 PREV_INSN (if_info->cond_earliest), jump)
2209 /* Likewise with X. In particular this can happen when
2210 noce_get_condition looks farther back in the instruction
2211 stream than one might expect. */
2212 || reg_overlap_mentioned_p (x, cond)
2213 || reg_overlap_mentioned_p (x, a)
2214 || modified_between_p (x, PREV_INSN (if_info->cond_earliest), jump))
2215 insn_b = set_b = NULL_RTX;
2216 }
2217
2218 /* If x has side effects then only the if-then-else form is safe to
2219 convert. But even in that case we would need to restore any notes
2220 (such as REG_INC) at then end. That can be tricky if
2221 noce_emit_move_insn expands to more than one insn, so disable the
2222 optimization entirely for now if there are side effects. */
2223 if (side_effects_p (x))
2224 return FALSE;
2225
2226 b = (set_b ? SET_SRC (set_b) : x);
2227
2228 /* Only operate on register destinations, and even then avoid extending
2229 the lifetime of hard registers on small register class machines. */
2230 orig_x = x;
2231 if (!REG_P (x)
2232 || (SMALL_REGISTER_CLASSES
2233 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2234 {
2235 if (GET_MODE (x) == BLKmode)
2236 return FALSE;
2237
2238 if (GET_MODE (x) == ZERO_EXTRACT
2239 && (GET_CODE (XEXP (x, 1)) != CONST_INT
2240 || GET_CODE (XEXP (x, 2)) != CONST_INT))
2241 return FALSE;
2242
2243 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2244 ? XEXP (x, 0) : x));
2245 }
2246
2247 /* Don't operate on sources that may trap or are volatile. */
2248 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2249 return FALSE;
2250
2251 /* Set up the info block for our subroutines. */
2252 if_info->insn_a = insn_a;
2253 if_info->insn_b = insn_b;
2254 if_info->x = x;
2255 if_info->a = a;
2256 if_info->b = b;
2257
2258 /* Try optimizations in some approximation of a useful order. */
2259 /* ??? Should first look to see if X is live incoming at all. If it
2260 isn't, we don't need anything but an unconditional set. */
2261
2262 /* Look and see if A and B are really the same. Avoid creating silly
2263 cmove constructs that no one will fix up later. */
2264 if (rtx_equal_p (a, b))
2265 {
2266 /* If we have an INSN_B, we don't have to create any new rtl. Just
2267 move the instruction that we already have. If we don't have an
2268 INSN_B, that means that A == X, and we've got a noop move. In
2269 that case don't do anything and let the code below delete INSN_A. */
2270 if (insn_b && else_bb)
2271 {
2272 rtx note;
2273
2274 if (else_bb && insn_b == BB_END (else_bb))
2275 BB_END (else_bb) = PREV_INSN (insn_b);
2276 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2277
2278 /* If there was a REG_EQUAL note, delete it since it may have been
2279 true due to this insn being after a jump. */
2280 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2281 remove_note (insn_b, note);
2282
2283 insn_b = NULL_RTX;
2284 }
2285 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2286 x must be executed twice. */
2287 else if (insn_b && side_effects_p (orig_x))
2288 return FALSE;
2289
2290 x = orig_x;
2291 goto success;
2292 }
2293
2294 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2295 for optimizations if writing to x may trap or fault, i.e. it's a memory
2296 other than a static var or a stack slot, is misaligned on strict
2297 aligned machines or is read-only.
2298 If x is a read-only memory, then the program is valid only if we
2299 avoid the store into it. If there are stores on both the THEN and
2300 ELSE arms, then we can go ahead with the conversion; either the
2301 program is broken, or the condition is always false such that the
2302 other memory is selected. */
2303 if (!set_b && MEM_P (orig_x) && noce_mem_write_may_trap_or_fault_p (orig_x))
2304 return FALSE;
2305
2306 if (noce_try_move (if_info))
2307 goto success;
2308 if (noce_try_store_flag (if_info))
2309 goto success;
2310 if (noce_try_bitop (if_info))
2311 goto success;
2312 if (noce_try_minmax (if_info))
2313 goto success;
2314 if (noce_try_abs (if_info))
2315 goto success;
2316 if (HAVE_conditional_move
2317 && noce_try_cmove (if_info))
2318 goto success;
2319 if (! HAVE_conditional_execution)
2320 {
2321 if (noce_try_store_flag_constants (if_info))
2322 goto success;
2323 if (noce_try_addcc (if_info))
2324 goto success;
2325 if (noce_try_store_flag_mask (if_info))
2326 goto success;
2327 if (HAVE_conditional_move
2328 && noce_try_cmove_arith (if_info))
2329 goto success;
2330 if (noce_try_sign_mask (if_info))
2331 goto success;
2332 }
2333
2334 return FALSE;
2335
2336 success:
2337
2338 /* If we used a temporary, fix it up now. */
2339 if (orig_x != x)
2340 {
2341 rtx seq;
2342
2343 start_sequence ();
2344 noce_emit_move_insn (orig_x, x);
2345 seq = get_insns ();
2346 set_used_flags (orig_x);
2347 unshare_all_rtl_in_chain (seq);
2348 end_sequence ();
2349
2350 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2351 }
2352
2353 /* The original THEN and ELSE blocks may now be removed. The test block
2354 must now jump to the join block. If the test block and the join block
2355 can be merged, do so. */
2356 if (else_bb)
2357 {
2358 delete_basic_block (else_bb);
2359 num_true_changes++;
2360 }
2361 else
2362 remove_edge (find_edge (test_bb, join_bb));
2363
2364 remove_edge (find_edge (then_bb, join_bb));
2365 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2366 delete_basic_block (then_bb);
2367 num_true_changes++;
2368
2369 if (can_merge_blocks_p (test_bb, join_bb))
2370 {
2371 merge_blocks (test_bb, join_bb);
2372 num_true_changes++;
2373 }
2374
2375 num_updated_if_blocks++;
2376 return TRUE;
2377 }
2378
2379 /* Check whether a block is suitable for conditional move conversion.
2380 Every insn must be a simple set of a register to a constant or a
2381 register. For each assignment, store the value in the array VALS,
2382 indexed by register number, then store the register number in
2383 REGS. COND is the condition we will test. */
2384
2385 static int
2386 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) *regs, rtx cond)
2387 {
2388 rtx insn;
2389
2390 /* We can only handle simple jumps at the end of the basic block.
2391 It is almost impossible to update the CFG otherwise. */
2392 insn = BB_END (bb);
2393 if (JUMP_P (insn) && !onlyjump_p (insn))
2394 return FALSE;
2395
2396 FOR_BB_INSNS (bb, insn)
2397 {
2398 rtx set, dest, src;
2399
2400 if (!INSN_P (insn) || JUMP_P (insn))
2401 continue;
2402 set = single_set (insn);
2403 if (!set)
2404 return FALSE;
2405
2406 dest = SET_DEST (set);
2407 src = SET_SRC (set);
2408 if (!REG_P (dest)
2409 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2410 return FALSE;
2411
2412 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2413 return FALSE;
2414
2415 if (side_effects_p (src) || side_effects_p (dest))
2416 return FALSE;
2417
2418 if (may_trap_p (src) || may_trap_p (dest))
2419 return FALSE;
2420
2421 /* Don't try to handle this if the source register was
2422 modified earlier in the block. */
2423 if ((REG_P (src)
2424 && vals[REGNO (src)] != NULL)
2425 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2426 && vals[REGNO (SUBREG_REG (src))] != NULL))
2427 return FALSE;
2428
2429 /* Don't try to handle this if the destination register was
2430 modified earlier in the block. */
2431 if (vals[REGNO (dest)] != NULL)
2432 return FALSE;
2433
2434 /* Don't try to handle this if the condition uses the
2435 destination register. */
2436 if (reg_overlap_mentioned_p (dest, cond))
2437 return FALSE;
2438
2439 /* Don't try to handle this if the source register is modified
2440 later in the block. */
2441 if (!CONSTANT_P (src)
2442 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2443 return FALSE;
2444
2445 vals[REGNO (dest)] = src;
2446
2447 VEC_safe_push (int, heap, regs, REGNO (dest));
2448 }
2449
2450 return TRUE;
2451 }
2452
2453 /* Given a basic block BB suitable for conditional move conversion,
2454 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2455 register values depending on COND, emit the insns in the block as
2456 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2457 processed. The caller has started a sequence for the conversion.
2458 Return true if successful, false if something goes wrong. */
2459
2460 static bool
2461 cond_move_convert_if_block (struct noce_if_info *if_infop,
2462 basic_block bb, rtx cond,
2463 rtx *then_vals, rtx *else_vals,
2464 bool else_block_p)
2465 {
2466 enum rtx_code code;
2467 rtx insn, cond_arg0, cond_arg1;
2468
2469 code = GET_CODE (cond);
2470 cond_arg0 = XEXP (cond, 0);
2471 cond_arg1 = XEXP (cond, 1);
2472
2473 FOR_BB_INSNS (bb, insn)
2474 {
2475 rtx set, target, dest, t, e;
2476 unsigned int regno;
2477
2478 if (!INSN_P (insn) || JUMP_P (insn))
2479 continue;
2480 set = single_set (insn);
2481 gcc_assert (set && REG_P (SET_DEST (set)));
2482
2483 dest = SET_DEST (set);
2484 regno = REGNO (dest);
2485
2486 t = then_vals[regno];
2487 e = else_vals[regno];
2488
2489 if (else_block_p)
2490 {
2491 /* If this register was set in the then block, we already
2492 handled this case there. */
2493 if (t)
2494 continue;
2495 t = dest;
2496 gcc_assert (e);
2497 }
2498 else
2499 {
2500 gcc_assert (t);
2501 if (!e)
2502 e = dest;
2503 }
2504
2505 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2506 t, e);
2507 if (!target)
2508 return false;
2509
2510 if (target != dest)
2511 noce_emit_move_insn (dest, target);
2512 }
2513
2514 return true;
2515 }
2516
2517 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2518 it using only conditional moves. Return TRUE if we were successful at
2519 converting the block. */
2520
2521 static int
2522 cond_move_process_if_block (struct noce_if_info *if_info)
2523 {
2524 basic_block test_bb = if_info->test_bb;
2525 basic_block then_bb = if_info->then_bb;
2526 basic_block else_bb = if_info->else_bb;
2527 basic_block join_bb = if_info->join_bb;
2528 rtx jump = if_info->jump;
2529 rtx cond = if_info->cond;
2530 rtx seq, loc_insn;
2531 int max_reg, size, c, reg;
2532 rtx *then_vals;
2533 rtx *else_vals;
2534 VEC (int, heap) *then_regs = NULL;
2535 VEC (int, heap) *else_regs = NULL;
2536 unsigned int i;
2537
2538 /* Build a mapping for each block to the value used for each
2539 register. */
2540 max_reg = max_reg_num ();
2541 size = (max_reg + 1) * sizeof (rtx);
2542 then_vals = (rtx *) alloca (size);
2543 else_vals = (rtx *) alloca (size);
2544 memset (then_vals, 0, size);
2545 memset (else_vals, 0, size);
2546
2547 /* Make sure the blocks are suitable. */
2548 if (!check_cond_move_block (then_bb, then_vals, then_regs, cond)
2549 || (else_bb && !check_cond_move_block (else_bb, else_vals, else_regs, cond)))
2550 return FALSE;
2551
2552 /* Make sure the blocks can be used together. If the same register
2553 is set in both blocks, and is not set to a constant in both
2554 cases, then both blocks must set it to the same register. We
2555 have already verified that if it is set to a register, that the
2556 source register does not change after the assignment. Also count
2557 the number of registers set in only one of the blocks. */
2558 c = 0;
2559 for (i = 0; VEC_iterate (int, then_regs, i, reg); i++)
2560 {
2561 if (!then_vals[reg] && !else_vals[reg])
2562 continue;
2563
2564 if (!else_vals[reg])
2565 ++c;
2566 else
2567 {
2568 if (!CONSTANT_P (then_vals[reg])
2569 && !CONSTANT_P (else_vals[reg])
2570 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2571 return FALSE;
2572 }
2573 }
2574
2575 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2576 for (i = 0; VEC_iterate (int, else_regs, i, reg); ++i)
2577 if (!then_vals[reg])
2578 ++c;
2579
2580 /* Make sure it is reasonable to convert this block. What matters
2581 is the number of assignments currently made in only one of the
2582 branches, since if we convert we are going to always execute
2583 them. */
2584 if (c > MAX_CONDITIONAL_EXECUTE)
2585 return FALSE;
2586
2587 /* Try to emit the conditional moves. First do the then block,
2588 then do anything left in the else blocks. */
2589 start_sequence ();
2590 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2591 then_vals, else_vals, false)
2592 || (else_bb
2593 && !cond_move_convert_if_block (if_info, else_bb, cond,
2594 then_vals, else_vals, true)))
2595 {
2596 end_sequence ();
2597 return FALSE;
2598 }
2599 seq = end_ifcvt_sequence (if_info);
2600 if (!seq)
2601 return FALSE;
2602
2603 loc_insn = first_active_insn (then_bb);
2604 if (!loc_insn)
2605 {
2606 loc_insn = first_active_insn (else_bb);
2607 gcc_assert (loc_insn);
2608 }
2609 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2610
2611 if (else_bb)
2612 {
2613 delete_basic_block (else_bb);
2614 num_true_changes++;
2615 }
2616 else
2617 remove_edge (find_edge (test_bb, join_bb));
2618
2619 remove_edge (find_edge (then_bb, join_bb));
2620 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2621 delete_basic_block (then_bb);
2622 num_true_changes++;
2623
2624 if (can_merge_blocks_p (test_bb, join_bb))
2625 {
2626 merge_blocks (test_bb, join_bb);
2627 num_true_changes++;
2628 }
2629
2630 num_updated_if_blocks++;
2631
2632 VEC_free (int, heap, then_regs);
2633 VEC_free (int, heap, else_regs);
2634
2635 return TRUE;
2636 }
2637
2638 \f
2639 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2640 IF-THEN-ELSE-JOIN block.
2641
2642 If so, we'll try to convert the insns to not require the branch,
2643 using only transformations that do not require conditional execution.
2644
2645 Return TRUE if we were successful at converting the block. */
2646
2647 static int
2648 noce_find_if_block (basic_block test_bb,
2649 edge then_edge, edge else_edge,
2650 int pass)
2651 {
2652 basic_block then_bb, else_bb, join_bb;
2653 bool then_else_reversed = false;
2654 rtx jump, cond;
2655 struct noce_if_info if_info;
2656
2657 /* We only ever should get here before reload. */
2658 gcc_assert (!reload_completed);
2659
2660 /* Recognize an IF-THEN-ELSE-JOIN block. */
2661 if (single_pred_p (then_edge->dest)
2662 && single_succ_p (then_edge->dest)
2663 && single_pred_p (else_edge->dest)
2664 && single_succ_p (else_edge->dest)
2665 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2666 {
2667 then_bb = then_edge->dest;
2668 else_bb = else_edge->dest;
2669 join_bb = single_succ (then_bb);
2670 }
2671 /* Recognize an IF-THEN-JOIN block. */
2672 else if (single_pred_p (then_edge->dest)
2673 && single_succ_p (then_edge->dest)
2674 && single_succ (then_edge->dest) == else_edge->dest)
2675 {
2676 then_bb = then_edge->dest;
2677 else_bb = NULL_BLOCK;
2678 join_bb = else_edge->dest;
2679 }
2680 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2681 of basic blocks in cfglayout mode does not matter, so the fallthrough
2682 edge can go to any basic block (and not just to bb->next_bb, like in
2683 cfgrtl mode). */
2684 else if (single_pred_p (else_edge->dest)
2685 && single_succ_p (else_edge->dest)
2686 && single_succ (else_edge->dest) == then_edge->dest)
2687 {
2688 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
2689 To make this work, we have to invert the THEN and ELSE blocks
2690 and reverse the jump condition. */
2691 then_bb = else_edge->dest;
2692 else_bb = NULL_BLOCK;
2693 join_bb = single_succ (then_bb);
2694 then_else_reversed = true;
2695 }
2696 else
2697 /* Not a form we can handle. */
2698 return FALSE;
2699
2700 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2701 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2702 return FALSE;
2703 if (else_bb
2704 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2705 return FALSE;
2706
2707 num_possible_if_blocks++;
2708
2709 if (dump_file)
2710 {
2711 fprintf (dump_file,
2712 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
2713 (else_bb) ? "-ELSE" : "",
2714 pass, test_bb->index, then_bb->index);
2715
2716 if (else_bb)
2717 fprintf (dump_file, ", else %d", else_bb->index);
2718
2719 fprintf (dump_file, ", join %d\n", join_bb->index);
2720 }
2721
2722 /* If the conditional jump is more than just a conditional
2723 jump, then we can not do if-conversion on this block. */
2724 jump = BB_END (test_bb);
2725 if (! onlyjump_p (jump))
2726 return FALSE;
2727
2728 /* If this is not a standard conditional jump, we can't parse it. */
2729 cond = noce_get_condition (jump,
2730 &if_info.cond_earliest,
2731 then_else_reversed);
2732 if (!cond)
2733 return FALSE;
2734
2735 /* We must be comparing objects whose modes imply the size. */
2736 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2737 return FALSE;
2738
2739 /* Initialize an IF_INFO struct to pass around. */
2740 memset (&if_info, 0, sizeof if_info);
2741 if_info.test_bb = test_bb;
2742 if_info.then_bb = then_bb;
2743 if_info.else_bb = else_bb;
2744 if_info.join_bb = join_bb;
2745 if_info.cond = cond;
2746 if_info.jump = jump;
2747 if_info.then_else_reversed = then_else_reversed;
2748
2749 /* Do the real work. */
2750
2751 if (noce_process_if_block (&if_info))
2752 return TRUE;
2753
2754 if (HAVE_conditional_move
2755 && cond_move_process_if_block (&if_info))
2756 return TRUE;
2757
2758 return FALSE;
2759 }
2760 \f
2761
2762 /* Merge the blocks and mark for local life update. */
2763
2764 static void
2765 merge_if_block (struct ce_if_block * ce_info)
2766 {
2767 basic_block test_bb = ce_info->test_bb; /* last test block */
2768 basic_block then_bb = ce_info->then_bb; /* THEN */
2769 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2770 basic_block join_bb = ce_info->join_bb; /* join block */
2771 basic_block combo_bb;
2772
2773 /* All block merging is done into the lower block numbers. */
2774
2775 combo_bb = test_bb;
2776
2777 /* Merge any basic blocks to handle && and || subtests. Each of
2778 the blocks are on the fallthru path from the predecessor block. */
2779 if (ce_info->num_multiple_test_blocks > 0)
2780 {
2781 basic_block bb = test_bb;
2782 basic_block last_test_bb = ce_info->last_test_bb;
2783 basic_block fallthru = block_fallthru (bb);
2784
2785 do
2786 {
2787 bb = fallthru;
2788 fallthru = block_fallthru (bb);
2789 merge_blocks (combo_bb, bb);
2790 num_true_changes++;
2791 }
2792 while (bb != last_test_bb);
2793 }
2794
2795 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2796 label, but it might if there were || tests. That label's count should be
2797 zero, and it normally should be removed. */
2798
2799 if (then_bb)
2800 {
2801 merge_blocks (combo_bb, then_bb);
2802 num_true_changes++;
2803 }
2804
2805 /* The ELSE block, if it existed, had a label. That label count
2806 will almost always be zero, but odd things can happen when labels
2807 get their addresses taken. */
2808 if (else_bb)
2809 {
2810 merge_blocks (combo_bb, else_bb);
2811 num_true_changes++;
2812 }
2813
2814 /* If there was no join block reported, that means it was not adjacent
2815 to the others, and so we cannot merge them. */
2816
2817 if (! join_bb)
2818 {
2819 rtx last = BB_END (combo_bb);
2820
2821 /* The outgoing edge for the current COMBO block should already
2822 be correct. Verify this. */
2823 if (EDGE_COUNT (combo_bb->succs) == 0)
2824 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2825 || (NONJUMP_INSN_P (last)
2826 && GET_CODE (PATTERN (last)) == TRAP_IF
2827 && (TRAP_CONDITION (PATTERN (last))
2828 == const_true_rtx)));
2829
2830 else
2831 /* There should still be something at the end of the THEN or ELSE
2832 blocks taking us to our final destination. */
2833 gcc_assert (JUMP_P (last)
2834 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2835 && CALL_P (last)
2836 && SIBLING_CALL_P (last))
2837 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2838 && can_throw_internal (last)));
2839 }
2840
2841 /* The JOIN block may have had quite a number of other predecessors too.
2842 Since we've already merged the TEST, THEN and ELSE blocks, we should
2843 have only one remaining edge from our if-then-else diamond. If there
2844 is more than one remaining edge, it must come from elsewhere. There
2845 may be zero incoming edges if the THEN block didn't actually join
2846 back up (as with a call to a non-return function). */
2847 else if (EDGE_COUNT (join_bb->preds) < 2
2848 && join_bb != EXIT_BLOCK_PTR)
2849 {
2850 /* We can merge the JOIN. */
2851 merge_blocks (combo_bb, join_bb);
2852 num_true_changes++;
2853 }
2854 else
2855 {
2856 /* We cannot merge the JOIN. */
2857
2858 /* The outgoing edge for the current COMBO block should already
2859 be correct. Verify this. */
2860 gcc_assert (single_succ_p (combo_bb)
2861 && single_succ (combo_bb) == join_bb);
2862
2863 /* Remove the jump and cruft from the end of the COMBO block. */
2864 if (join_bb != EXIT_BLOCK_PTR)
2865 tidy_fallthru_edge (single_succ_edge (combo_bb));
2866 }
2867
2868 num_updated_if_blocks++;
2869 }
2870 \f
2871 /* Find a block ending in a simple IF condition and try to transform it
2872 in some way. When converting a multi-block condition, put the new code
2873 in the first such block and delete the rest. Return a pointer to this
2874 first block if some transformation was done. Return NULL otherwise. */
2875
2876 static basic_block
2877 find_if_header (basic_block test_bb, int pass)
2878 {
2879 ce_if_block_t ce_info;
2880 edge then_edge;
2881 edge else_edge;
2882
2883 /* The kind of block we're looking for has exactly two successors. */
2884 if (EDGE_COUNT (test_bb->succs) != 2)
2885 return NULL;
2886
2887 then_edge = EDGE_SUCC (test_bb, 0);
2888 else_edge = EDGE_SUCC (test_bb, 1);
2889
2890 /* Neither edge should be abnormal. */
2891 if ((then_edge->flags & EDGE_COMPLEX)
2892 || (else_edge->flags & EDGE_COMPLEX))
2893 return NULL;
2894
2895 /* Nor exit the loop. */
2896 if ((then_edge->flags & EDGE_LOOP_EXIT)
2897 || (else_edge->flags & EDGE_LOOP_EXIT))
2898 return NULL;
2899
2900 /* The THEN edge is canonically the one that falls through. */
2901 if (then_edge->flags & EDGE_FALLTHRU)
2902 ;
2903 else if (else_edge->flags & EDGE_FALLTHRU)
2904 {
2905 edge e = else_edge;
2906 else_edge = then_edge;
2907 then_edge = e;
2908 }
2909 else
2910 /* Otherwise this must be a multiway branch of some sort. */
2911 return NULL;
2912
2913 memset (&ce_info, '\0', sizeof (ce_info));
2914 ce_info.test_bb = test_bb;
2915 ce_info.then_bb = then_edge->dest;
2916 ce_info.else_bb = else_edge->dest;
2917 ce_info.pass = pass;
2918
2919 #ifdef IFCVT_INIT_EXTRA_FIELDS
2920 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2921 #endif
2922
2923 if (! reload_completed
2924 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
2925 goto success;
2926
2927 if (HAVE_conditional_execution && reload_completed
2928 && cond_exec_find_if_block (&ce_info))
2929 goto success;
2930
2931 if (HAVE_trap && HAVE_conditional_trap
2932 && find_cond_trap (test_bb, then_edge, else_edge))
2933 goto success;
2934
2935 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
2936 && (! HAVE_conditional_execution || reload_completed))
2937 {
2938 if (find_if_case_1 (test_bb, then_edge, else_edge))
2939 goto success;
2940 if (find_if_case_2 (test_bb, then_edge, else_edge))
2941 goto success;
2942 }
2943
2944 return NULL;
2945
2946 success:
2947 if (dump_file)
2948 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2949 return ce_info.test_bb;
2950 }
2951
2952 /* Return true if a block has two edges, one of which falls through to the next
2953 block, and the other jumps to a specific block, so that we can tell if the
2954 block is part of an && test or an || test. Returns either -1 or the number
2955 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2956
2957 static int
2958 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2959 {
2960 edge cur_edge;
2961 int fallthru_p = FALSE;
2962 int jump_p = FALSE;
2963 rtx insn;
2964 rtx end;
2965 int n_insns = 0;
2966 edge_iterator ei;
2967
2968 if (!cur_bb || !target_bb)
2969 return -1;
2970
2971 /* If no edges, obviously it doesn't jump or fallthru. */
2972 if (EDGE_COUNT (cur_bb->succs) == 0)
2973 return FALSE;
2974
2975 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2976 {
2977 if (cur_edge->flags & EDGE_COMPLEX)
2978 /* Anything complex isn't what we want. */
2979 return -1;
2980
2981 else if (cur_edge->flags & EDGE_FALLTHRU)
2982 fallthru_p = TRUE;
2983
2984 else if (cur_edge->dest == target_bb)
2985 jump_p = TRUE;
2986
2987 else
2988 return -1;
2989 }
2990
2991 if ((jump_p & fallthru_p) == 0)
2992 return -1;
2993
2994 /* Don't allow calls in the block, since this is used to group && and ||
2995 together for conditional execution support. ??? we should support
2996 conditional execution support across calls for IA-64 some day, but
2997 for now it makes the code simpler. */
2998 end = BB_END (cur_bb);
2999 insn = BB_HEAD (cur_bb);
3000
3001 while (insn != NULL_RTX)
3002 {
3003 if (CALL_P (insn))
3004 return -1;
3005
3006 if (INSN_P (insn)
3007 && !JUMP_P (insn)
3008 && GET_CODE (PATTERN (insn)) != USE
3009 && GET_CODE (PATTERN (insn)) != CLOBBER)
3010 n_insns++;
3011
3012 if (insn == end)
3013 break;
3014
3015 insn = NEXT_INSN (insn);
3016 }
3017
3018 return n_insns;
3019 }
3020
3021 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3022 block. If so, we'll try to convert the insns to not require the branch.
3023 Return TRUE if we were successful at converting the block. */
3024
3025 static int
3026 cond_exec_find_if_block (struct ce_if_block * ce_info)
3027 {
3028 basic_block test_bb = ce_info->test_bb;
3029 basic_block then_bb = ce_info->then_bb;
3030 basic_block else_bb = ce_info->else_bb;
3031 basic_block join_bb = NULL_BLOCK;
3032 edge cur_edge;
3033 basic_block next;
3034 edge_iterator ei;
3035
3036 ce_info->last_test_bb = test_bb;
3037
3038 /* We only ever should get here after reload,
3039 and only if we have conditional execution. */
3040 gcc_assert (HAVE_conditional_execution && reload_completed);
3041
3042 /* Discover if any fall through predecessors of the current test basic block
3043 were && tests (which jump to the else block) or || tests (which jump to
3044 the then block). */
3045 if (single_pred_p (test_bb)
3046 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3047 {
3048 basic_block bb = single_pred (test_bb);
3049 basic_block target_bb;
3050 int max_insns = MAX_CONDITIONAL_EXECUTE;
3051 int n_insns;
3052
3053 /* Determine if the preceding block is an && or || block. */
3054 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3055 {
3056 ce_info->and_and_p = TRUE;
3057 target_bb = else_bb;
3058 }
3059 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3060 {
3061 ce_info->and_and_p = FALSE;
3062 target_bb = then_bb;
3063 }
3064 else
3065 target_bb = NULL_BLOCK;
3066
3067 if (target_bb && n_insns <= max_insns)
3068 {
3069 int total_insns = 0;
3070 int blocks = 0;
3071
3072 ce_info->last_test_bb = test_bb;
3073
3074 /* Found at least one && or || block, look for more. */
3075 do
3076 {
3077 ce_info->test_bb = test_bb = bb;
3078 total_insns += n_insns;
3079 blocks++;
3080
3081 if (!single_pred_p (bb))
3082 break;
3083
3084 bb = single_pred (bb);
3085 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3086 }
3087 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3088
3089 ce_info->num_multiple_test_blocks = blocks;
3090 ce_info->num_multiple_test_insns = total_insns;
3091
3092 if (ce_info->and_and_p)
3093 ce_info->num_and_and_blocks = blocks;
3094 else
3095 ce_info->num_or_or_blocks = blocks;
3096 }
3097 }
3098
3099 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3100 other than any || blocks which jump to the THEN block. */
3101 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3102 return FALSE;
3103
3104 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3105 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3106 {
3107 if (cur_edge->flags & EDGE_COMPLEX)
3108 return FALSE;
3109 }
3110
3111 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3112 {
3113 if (cur_edge->flags & EDGE_COMPLEX)
3114 return FALSE;
3115 }
3116
3117 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3118 if (EDGE_COUNT (then_bb->succs) > 0
3119 && (!single_succ_p (then_bb)
3120 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3121 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3122 return FALSE;
3123
3124 /* If the THEN block has no successors, conditional execution can still
3125 make a conditional call. Don't do this unless the ELSE block has
3126 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3127 Check for the last insn of the THEN block being an indirect jump, which
3128 is listed as not having any successors, but confuses the rest of the CE
3129 code processing. ??? we should fix this in the future. */
3130 if (EDGE_COUNT (then_bb->succs) == 0)
3131 {
3132 if (single_pred_p (else_bb))
3133 {
3134 rtx last_insn = BB_END (then_bb);
3135
3136 while (last_insn
3137 && NOTE_P (last_insn)
3138 && last_insn != BB_HEAD (then_bb))
3139 last_insn = PREV_INSN (last_insn);
3140
3141 if (last_insn
3142 && JUMP_P (last_insn)
3143 && ! simplejump_p (last_insn))
3144 return FALSE;
3145
3146 join_bb = else_bb;
3147 else_bb = NULL_BLOCK;
3148 }
3149 else
3150 return FALSE;
3151 }
3152
3153 /* If the THEN block's successor is the other edge out of the TEST block,
3154 then we have an IF-THEN combo without an ELSE. */
3155 else if (single_succ (then_bb) == else_bb)
3156 {
3157 join_bb = else_bb;
3158 else_bb = NULL_BLOCK;
3159 }
3160
3161 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3162 has exactly one predecessor and one successor, and the outgoing edge
3163 is not complex, then we have an IF-THEN-ELSE combo. */
3164 else if (single_succ_p (else_bb)
3165 && single_succ (then_bb) == single_succ (else_bb)
3166 && single_pred_p (else_bb)
3167 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3168 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3169 join_bb = single_succ (else_bb);
3170
3171 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3172 else
3173 return FALSE;
3174
3175 num_possible_if_blocks++;
3176
3177 if (dump_file)
3178 {
3179 fprintf (dump_file,
3180 "\nIF-THEN%s block found, pass %d, start block %d "
3181 "[insn %d], then %d [%d]",
3182 (else_bb) ? "-ELSE" : "",
3183 ce_info->pass,
3184 test_bb->index,
3185 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3186 then_bb->index,
3187 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3188
3189 if (else_bb)
3190 fprintf (dump_file, ", else %d [%d]",
3191 else_bb->index,
3192 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3193
3194 fprintf (dump_file, ", join %d [%d]",
3195 join_bb->index,
3196 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3197
3198 if (ce_info->num_multiple_test_blocks > 0)
3199 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3200 ce_info->num_multiple_test_blocks,
3201 (ce_info->and_and_p) ? "&&" : "||",
3202 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3203 ce_info->last_test_bb->index,
3204 ((BB_HEAD (ce_info->last_test_bb))
3205 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3206 : -1));
3207
3208 fputc ('\n', dump_file);
3209 }
3210
3211 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3212 first condition for free, since we've already asserted that there's a
3213 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3214 we checked the FALLTHRU flag, those are already adjacent to the last IF
3215 block. */
3216 /* ??? As an enhancement, move the ELSE block. Have to deal with
3217 BLOCK notes, if by no other means than backing out the merge if they
3218 exist. Sticky enough I don't want to think about it now. */
3219 next = then_bb;
3220 if (else_bb && (next = next->next_bb) != else_bb)
3221 return FALSE;
3222 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3223 {
3224 if (else_bb)
3225 join_bb = NULL;
3226 else
3227 return FALSE;
3228 }
3229
3230 /* Do the real work. */
3231
3232 ce_info->else_bb = else_bb;
3233 ce_info->join_bb = join_bb;
3234
3235 /* If we have && and || tests, try to first handle combining the && and ||
3236 tests into the conditional code, and if that fails, go back and handle
3237 it without the && and ||, which at present handles the && case if there
3238 was no ELSE block. */
3239 if (cond_exec_process_if_block (ce_info, TRUE))
3240 return TRUE;
3241
3242 if (ce_info->num_multiple_test_blocks)
3243 {
3244 cancel_changes (0);
3245
3246 if (cond_exec_process_if_block (ce_info, FALSE))
3247 return TRUE;
3248 }
3249
3250 return FALSE;
3251 }
3252
3253 /* Convert a branch over a trap, or a branch
3254 to a trap, into a conditional trap. */
3255
3256 static int
3257 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3258 {
3259 basic_block then_bb = then_edge->dest;
3260 basic_block else_bb = else_edge->dest;
3261 basic_block other_bb, trap_bb;
3262 rtx trap, jump, cond, cond_earliest, seq;
3263 enum rtx_code code;
3264
3265 /* Locate the block with the trap instruction. */
3266 /* ??? While we look for no successors, we really ought to allow
3267 EH successors. Need to fix merge_if_block for that to work. */
3268 if ((trap = block_has_only_trap (then_bb)) != NULL)
3269 trap_bb = then_bb, other_bb = else_bb;
3270 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3271 trap_bb = else_bb, other_bb = then_bb;
3272 else
3273 return FALSE;
3274
3275 if (dump_file)
3276 {
3277 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3278 test_bb->index, trap_bb->index);
3279 }
3280
3281 /* If this is not a standard conditional jump, we can't parse it. */
3282 jump = BB_END (test_bb);
3283 cond = noce_get_condition (jump, &cond_earliest, false);
3284 if (! cond)
3285 return FALSE;
3286
3287 /* If the conditional jump is more than just a conditional jump, then
3288 we can not do if-conversion on this block. */
3289 if (! onlyjump_p (jump))
3290 return FALSE;
3291
3292 /* We must be comparing objects whose modes imply the size. */
3293 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3294 return FALSE;
3295
3296 /* Reverse the comparison code, if necessary. */
3297 code = GET_CODE (cond);
3298 if (then_bb == trap_bb)
3299 {
3300 code = reversed_comparison_code (cond, jump);
3301 if (code == UNKNOWN)
3302 return FALSE;
3303 }
3304
3305 /* Attempt to generate the conditional trap. */
3306 seq = gen_cond_trap (code, XEXP (cond, 0),
3307 XEXP (cond, 1),
3308 TRAP_CODE (PATTERN (trap)));
3309 if (seq == NULL)
3310 return FALSE;
3311
3312 /* Emit the new insns before cond_earliest. */
3313 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3314
3315 /* Delete the trap block if possible. */
3316 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3317 if (EDGE_COUNT (trap_bb->preds) == 0)
3318 {
3319 delete_basic_block (trap_bb);
3320 num_true_changes++;
3321 }
3322
3323 /* Wire together the blocks again. */
3324 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3325 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3326 else
3327 {
3328 rtx lab, newjump;
3329
3330 lab = JUMP_LABEL (jump);
3331 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3332 LABEL_NUSES (lab) += 1;
3333 JUMP_LABEL (newjump) = lab;
3334 emit_barrier_after (newjump);
3335 }
3336 delete_insn (jump);
3337
3338 if (can_merge_blocks_p (test_bb, other_bb))
3339 {
3340 merge_blocks (test_bb, other_bb);
3341 num_true_changes++;
3342 }
3343
3344 num_updated_if_blocks++;
3345 return TRUE;
3346 }
3347
3348 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3349 return it. */
3350
3351 static rtx
3352 block_has_only_trap (basic_block bb)
3353 {
3354 rtx trap;
3355
3356 /* We're not the exit block. */
3357 if (bb == EXIT_BLOCK_PTR)
3358 return NULL_RTX;
3359
3360 /* The block must have no successors. */
3361 if (EDGE_COUNT (bb->succs) > 0)
3362 return NULL_RTX;
3363
3364 /* The only instruction in the THEN block must be the trap. */
3365 trap = first_active_insn (bb);
3366 if (! (trap == BB_END (bb)
3367 && GET_CODE (PATTERN (trap)) == TRAP_IF
3368 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3369 return NULL_RTX;
3370
3371 return trap;
3372 }
3373
3374 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3375 transformable, but not necessarily the other. There need be no
3376 JOIN block.
3377
3378 Return TRUE if we were successful at converting the block.
3379
3380 Cases we'd like to look at:
3381
3382 (1)
3383 if (test) goto over; // x not live
3384 x = a;
3385 goto label;
3386 over:
3387
3388 becomes
3389
3390 x = a;
3391 if (! test) goto label;
3392
3393 (2)
3394 if (test) goto E; // x not live
3395 x = big();
3396 goto L;
3397 E:
3398 x = b;
3399 goto M;
3400
3401 becomes
3402
3403 x = b;
3404 if (test) goto M;
3405 x = big();
3406 goto L;
3407
3408 (3) // This one's really only interesting for targets that can do
3409 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3410 // it results in multiple branches on a cache line, which often
3411 // does not sit well with predictors.
3412
3413 if (test1) goto E; // predicted not taken
3414 x = a;
3415 if (test2) goto F;
3416 ...
3417 E:
3418 x = b;
3419 J:
3420
3421 becomes
3422
3423 x = a;
3424 if (test1) goto E;
3425 if (test2) goto F;
3426
3427 Notes:
3428
3429 (A) Don't do (2) if the branch is predicted against the block we're
3430 eliminating. Do it anyway if we can eliminate a branch; this requires
3431 that the sole successor of the eliminated block postdominate the other
3432 side of the if.
3433
3434 (B) With CE, on (3) we can steal from both sides of the if, creating
3435
3436 if (test1) x = a;
3437 if (!test1) x = b;
3438 if (test1) goto J;
3439 if (test2) goto F;
3440 ...
3441 J:
3442
3443 Again, this is most useful if J postdominates.
3444
3445 (C) CE substitutes for helpful life information.
3446
3447 (D) These heuristics need a lot of work. */
3448
3449 /* Tests for case 1 above. */
3450
3451 static int
3452 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3453 {
3454 basic_block then_bb = then_edge->dest;
3455 basic_block else_bb = else_edge->dest, new_bb;
3456 int then_bb_index;
3457
3458 /* If we are partitioning hot/cold basic blocks, we don't want to
3459 mess up unconditional or indirect jumps that cross between hot
3460 and cold sections.
3461
3462 Basic block partitioning may result in some jumps that appear to
3463 be optimizable (or blocks that appear to be mergeable), but which really
3464 must be left untouched (they are required to make it safely across
3465 partition boundaries). See the comments at the top of
3466 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3467
3468 if ((BB_END (then_bb)
3469 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3470 || (BB_END (test_bb)
3471 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3472 || (BB_END (else_bb)
3473 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3474 NULL_RTX)))
3475 return FALSE;
3476
3477 /* THEN has one successor. */
3478 if (!single_succ_p (then_bb))
3479 return FALSE;
3480
3481 /* THEN does not fall through, but is not strange either. */
3482 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3483 return FALSE;
3484
3485 /* THEN has one predecessor. */
3486 if (!single_pred_p (then_bb))
3487 return FALSE;
3488
3489 /* THEN must do something. */
3490 if (forwarder_block_p (then_bb))
3491 return FALSE;
3492
3493 num_possible_if_blocks++;
3494 if (dump_file)
3495 fprintf (dump_file,
3496 "\nIF-CASE-1 found, start %d, then %d\n",
3497 test_bb->index, then_bb->index);
3498
3499 /* THEN is small. */
3500 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
3501 return FALSE;
3502
3503 /* Registers set are dead, or are predicable. */
3504 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3505 single_succ (then_bb), 1))
3506 return FALSE;
3507
3508 /* Conversion went ok, including moving the insns and fixing up the
3509 jump. Adjust the CFG to match. */
3510
3511 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3512 else_bb->il.rtl->global_live_at_start,
3513 then_bb->il.rtl->global_live_at_end);
3514
3515
3516 /* We can avoid creating a new basic block if then_bb is immediately
3517 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3518 thru to else_bb. */
3519
3520 if (then_bb->next_bb == else_bb
3521 && then_bb->prev_bb == test_bb
3522 && else_bb != EXIT_BLOCK_PTR)
3523 {
3524 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3525 new_bb = 0;
3526 }
3527 else
3528 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3529 else_bb);
3530
3531 then_bb_index = then_bb->index;
3532 delete_basic_block (then_bb);
3533
3534 /* Make rest of code believe that the newly created block is the THEN_BB
3535 block we removed. */
3536 if (new_bb)
3537 {
3538 new_bb->index = then_bb_index;
3539 SET_BASIC_BLOCK (then_bb_index, new_bb);
3540 /* Since the fallthru edge was redirected from test_bb to new_bb,
3541 we need to ensure that new_bb is in the same partition as
3542 test bb (you can not fall through across section boundaries). */
3543 BB_COPY_PARTITION (new_bb, test_bb);
3544 }
3545 /* We've possibly created jump to next insn, cleanup_cfg will solve that
3546 later. */
3547
3548 num_true_changes++;
3549 num_updated_if_blocks++;
3550
3551 return TRUE;
3552 }
3553
3554 /* Test for case 2 above. */
3555
3556 static int
3557 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3558 {
3559 basic_block then_bb = then_edge->dest;
3560 basic_block else_bb = else_edge->dest;
3561 edge else_succ;
3562 rtx note;
3563
3564 /* If we are partitioning hot/cold basic blocks, we don't want to
3565 mess up unconditional or indirect jumps that cross between hot
3566 and cold sections.
3567
3568 Basic block partitioning may result in some jumps that appear to
3569 be optimizable (or blocks that appear to be mergeable), but which really
3570 must be left untouched (they are required to make it safely across
3571 partition boundaries). See the comments at the top of
3572 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3573
3574 if ((BB_END (then_bb)
3575 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3576 || (BB_END (test_bb)
3577 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3578 || (BB_END (else_bb)
3579 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3580 NULL_RTX)))
3581 return FALSE;
3582
3583 /* ELSE has one successor. */
3584 if (!single_succ_p (else_bb))
3585 return FALSE;
3586 else
3587 else_succ = single_succ_edge (else_bb);
3588
3589 /* ELSE outgoing edge is not complex. */
3590 if (else_succ->flags & EDGE_COMPLEX)
3591 return FALSE;
3592
3593 /* ELSE has one predecessor. */
3594 if (!single_pred_p (else_bb))
3595 return FALSE;
3596
3597 /* THEN is not EXIT. */
3598 if (then_bb->index < NUM_FIXED_BLOCKS)
3599 return FALSE;
3600
3601 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3602 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3603 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3604 ;
3605 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3606 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3607 else_succ->dest))
3608 ;
3609 else
3610 return FALSE;
3611
3612 num_possible_if_blocks++;
3613 if (dump_file)
3614 fprintf (dump_file,
3615 "\nIF-CASE-2 found, start %d, else %d\n",
3616 test_bb->index, else_bb->index);
3617
3618 /* ELSE is small. */
3619 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3620 return FALSE;
3621
3622 /* Registers set are dead, or are predicable. */
3623 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3624 return FALSE;
3625
3626 /* Conversion went ok, including moving the insns and fixing up the
3627 jump. Adjust the CFG to match. */
3628
3629 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3630 then_bb->il.rtl->global_live_at_start,
3631 else_bb->il.rtl->global_live_at_end);
3632
3633 delete_basic_block (else_bb);
3634
3635 num_true_changes++;
3636 num_updated_if_blocks++;
3637
3638 /* ??? We may now fallthru from one of THEN's successors into a join
3639 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3640
3641 return TRUE;
3642 }
3643
3644 /* A subroutine of dead_or_predicable called through for_each_rtx.
3645 Return 1 if a memory is found. */
3646
3647 static int
3648 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3649 {
3650 return MEM_P (*px);
3651 }
3652
3653 /* Used by the code above to perform the actual rtl transformations.
3654 Return TRUE if successful.
3655
3656 TEST_BB is the block containing the conditional branch. MERGE_BB
3657 is the block containing the code to manipulate. NEW_DEST is the
3658 label TEST_BB should be branching to after the conversion.
3659 REVERSEP is true if the sense of the branch should be reversed. */
3660
3661 static int
3662 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3663 basic_block other_bb, basic_block new_dest, int reversep)
3664 {
3665 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3666
3667 jump = BB_END (test_bb);
3668
3669 /* Find the extent of the real code in the merge block. */
3670 head = BB_HEAD (merge_bb);
3671 end = BB_END (merge_bb);
3672
3673 /* If merge_bb ends with a tablejump, predicating/moving insn's
3674 into test_bb and then deleting merge_bb will result in the jumptable
3675 that follows merge_bb being removed along with merge_bb and then we
3676 get an unresolved reference to the jumptable. */
3677 if (tablejump_p (end, NULL, NULL))
3678 return FALSE;
3679
3680 if (LABEL_P (head))
3681 head = NEXT_INSN (head);
3682 if (NOTE_P (head))
3683 {
3684 if (head == end)
3685 {
3686 head = end = NULL_RTX;
3687 goto no_body;
3688 }
3689 head = NEXT_INSN (head);
3690 }
3691
3692 if (JUMP_P (end))
3693 {
3694 if (head == end)
3695 {
3696 head = end = NULL_RTX;
3697 goto no_body;
3698 }
3699 end = PREV_INSN (end);
3700 }
3701
3702 /* Disable handling dead code by conditional execution if the machine needs
3703 to do anything funny with the tests, etc. */
3704 #ifndef IFCVT_MODIFY_TESTS
3705 if (HAVE_conditional_execution)
3706 {
3707 /* In the conditional execution case, we have things easy. We know
3708 the condition is reversible. We don't have to check life info
3709 because we're going to conditionally execute the code anyway.
3710 All that's left is making sure the insns involved can actually
3711 be predicated. */
3712
3713 rtx cond, prob_val;
3714
3715 cond = cond_exec_get_condition (jump);
3716 if (! cond)
3717 return FALSE;
3718
3719 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3720 if (prob_val)
3721 prob_val = XEXP (prob_val, 0);
3722
3723 if (reversep)
3724 {
3725 enum rtx_code rev = reversed_comparison_code (cond, jump);
3726 if (rev == UNKNOWN)
3727 return FALSE;
3728 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3729 XEXP (cond, 1));
3730 if (prob_val)
3731 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3732 }
3733
3734 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3735 prob_val, 0))
3736 goto cancel;
3737
3738 earliest = jump;
3739 }
3740 else
3741 #endif
3742 {
3743 /* In the non-conditional execution case, we have to verify that there
3744 are no trapping operations, no calls, no references to memory, and
3745 that any registers modified are dead at the branch site. */
3746
3747 rtx insn, cond, prev;
3748 regset merge_set, tmp, test_live, test_set;
3749 struct propagate_block_info *pbi;
3750 unsigned i, fail = 0;
3751 bitmap_iterator bi;
3752
3753 /* Check for no calls or trapping operations. */
3754 for (insn = head; ; insn = NEXT_INSN (insn))
3755 {
3756 if (CALL_P (insn))
3757 return FALSE;
3758 if (INSN_P (insn))
3759 {
3760 if (may_trap_p (PATTERN (insn)))
3761 return FALSE;
3762
3763 /* ??? Even non-trapping memories such as stack frame
3764 references must be avoided. For stores, we collect
3765 no lifetime info; for reads, we'd have to assert
3766 true_dependence false against every store in the
3767 TEST range. */
3768 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3769 return FALSE;
3770 }
3771 if (insn == end)
3772 break;
3773 }
3774
3775 if (! any_condjump_p (jump))
3776 return FALSE;
3777
3778 /* Find the extent of the conditional. */
3779 cond = noce_get_condition (jump, &earliest, false);
3780 if (! cond)
3781 return FALSE;
3782
3783 /* Collect:
3784 MERGE_SET = set of registers set in MERGE_BB
3785 TEST_LIVE = set of registers live at EARLIEST
3786 TEST_SET = set of registers set between EARLIEST and the
3787 end of the block. */
3788
3789 tmp = ALLOC_REG_SET (&reg_obstack);
3790 merge_set = ALLOC_REG_SET (&reg_obstack);
3791 test_live = ALLOC_REG_SET (&reg_obstack);
3792 test_set = ALLOC_REG_SET (&reg_obstack);
3793
3794 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3795 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3796 since we've already asserted that MERGE_BB is small. */
3797 /* If we allocated new pseudos (e.g. in the conditional move
3798 expander called from noce_emit_cmove), we must resize the
3799 array first. */
3800 if (max_regno < max_reg_num ())
3801 {
3802 max_regno = max_reg_num ();
3803 allocate_reg_info (max_regno, FALSE, FALSE);
3804 }
3805 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3806
3807 /* For small register class machines, don't lengthen lifetimes of
3808 hard registers before reload. */
3809 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3810 {
3811 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3812 {
3813 if (i < FIRST_PSEUDO_REGISTER
3814 && ! fixed_regs[i]
3815 && ! global_regs[i])
3816 fail = 1;
3817 }
3818 }
3819
3820 /* For TEST, we're interested in a range of insns, not a whole block.
3821 Moreover, we're interested in the insns live from OTHER_BB. */
3822
3823 COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start);
3824 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3825 0);
3826
3827 for (insn = jump; ; insn = prev)
3828 {
3829 prev = propagate_one_insn (pbi, insn);
3830 if (insn == earliest)
3831 break;
3832 }
3833
3834 free_propagate_block_info (pbi);
3835
3836 /* We can perform the transformation if
3837 MERGE_SET & (TEST_SET | TEST_LIVE)
3838 and
3839 TEST_SET & merge_bb->il.rtl->global_live_at_start
3840 are empty. */
3841
3842 if (bitmap_intersect_p (test_set, merge_set)
3843 || bitmap_intersect_p (test_live, merge_set)
3844 || bitmap_intersect_p (test_set,
3845 merge_bb->il.rtl->global_live_at_start))
3846 fail = 1;
3847
3848 FREE_REG_SET (tmp);
3849 FREE_REG_SET (merge_set);
3850 FREE_REG_SET (test_live);
3851 FREE_REG_SET (test_set);
3852
3853 if (fail)
3854 return FALSE;
3855 }
3856
3857 no_body:
3858 /* We don't want to use normal invert_jump or redirect_jump because
3859 we don't want to delete_insn called. Also, we want to do our own
3860 change group management. */
3861
3862 old_dest = JUMP_LABEL (jump);
3863 if (other_bb != new_dest)
3864 {
3865 new_label = block_label (new_dest);
3866 if (reversep
3867 ? ! invert_jump_1 (jump, new_label)
3868 : ! redirect_jump_1 (jump, new_label))
3869 goto cancel;
3870 }
3871
3872 if (! apply_change_group ())
3873 return FALSE;
3874
3875 if (other_bb != new_dest)
3876 {
3877 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
3878
3879 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3880 if (reversep)
3881 {
3882 gcov_type count, probability;
3883 count = BRANCH_EDGE (test_bb)->count;
3884 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3885 FALLTHRU_EDGE (test_bb)->count = count;
3886 probability = BRANCH_EDGE (test_bb)->probability;
3887 BRANCH_EDGE (test_bb)->probability
3888 = FALLTHRU_EDGE (test_bb)->probability;
3889 FALLTHRU_EDGE (test_bb)->probability = probability;
3890 update_br_prob_note (test_bb);
3891 }
3892 }
3893
3894 /* Move the insns out of MERGE_BB to before the branch. */
3895 if (head != NULL)
3896 {
3897 rtx insn;
3898
3899 if (end == BB_END (merge_bb))
3900 BB_END (merge_bb) = PREV_INSN (head);
3901
3902 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
3903 notes might become invalid. */
3904 insn = head;
3905 do
3906 {
3907 rtx note, set;
3908
3909 if (! INSN_P (insn))
3910 continue;
3911 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3912 if (! note)
3913 continue;
3914 set = single_set (insn);
3915 if (!set || !function_invariant_p (SET_SRC (set)))
3916 remove_note (insn, note);
3917 } while (insn != end && (insn = NEXT_INSN (insn)));
3918
3919 reorder_insns (head, end, PREV_INSN (earliest));
3920 }
3921
3922 /* Remove the jump and edge if we can. */
3923 if (other_bb == new_dest)
3924 {
3925 delete_insn (jump);
3926 remove_edge (BRANCH_EDGE (test_bb));
3927 /* ??? Can't merge blocks here, as then_bb is still in use.
3928 At minimum, the merge will get done just before bb-reorder. */
3929 }
3930
3931 return TRUE;
3932
3933 cancel:
3934 cancel_changes (0);
3935 return FALSE;
3936 }
3937 \f
3938 /* Main entry point for all if-conversion. */
3939
3940 static void
3941 if_convert (int x_life_data_ok)
3942 {
3943 basic_block bb;
3944 int pass;
3945
3946 num_possible_if_blocks = 0;
3947 num_updated_if_blocks = 0;
3948 num_true_changes = 0;
3949 life_data_ok = (x_life_data_ok != 0);
3950
3951 /* Some transformations in this pass can create new pseudos,
3952 if the pass runs before reload. Make sure we can do so. */
3953 gcc_assert (! no_new_pseudos || reload_completed);
3954
3955 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
3956 mark_loop_exit_edges ();
3957 loop_optimizer_finalize ();
3958 free_dominance_info (CDI_DOMINATORS);
3959
3960 /* Compute postdominators if we think we'll use them. */
3961 if (HAVE_conditional_execution || life_data_ok)
3962 calculate_dominance_info (CDI_POST_DOMINATORS);
3963
3964 if (life_data_ok)
3965 clear_bb_flags ();
3966
3967 /* Go through each of the basic blocks looking for things to convert. If we
3968 have conditional execution, we make multiple passes to allow us to handle
3969 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3970 pass = 0;
3971 do
3972 {
3973 cond_exec_changed_p = FALSE;
3974 pass++;
3975
3976 #ifdef IFCVT_MULTIPLE_DUMPS
3977 if (dump_file && pass > 1)
3978 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3979 #endif
3980
3981 FOR_EACH_BB (bb)
3982 {
3983 basic_block new_bb;
3984 while ((new_bb = find_if_header (bb, pass)))
3985 bb = new_bb;
3986 }
3987
3988 #ifdef IFCVT_MULTIPLE_DUMPS
3989 if (dump_file && cond_exec_changed_p)
3990 print_rtl_with_bb (dump_file, get_insns ());
3991 #endif
3992 }
3993 while (cond_exec_changed_p);
3994
3995 #ifdef IFCVT_MULTIPLE_DUMPS
3996 if (dump_file)
3997 fprintf (dump_file, "\n\n========== no more changes\n");
3998 #endif
3999
4000 free_dominance_info (CDI_POST_DOMINATORS);
4001
4002 if (dump_file)
4003 fflush (dump_file);
4004
4005 clear_aux_for_blocks ();
4006
4007 /* Rebuild life info for basic blocks that require it. */
4008 if (num_true_changes && life_data_ok)
4009 {
4010 /* If we allocated new pseudos, we must resize the array for sched1. */
4011 if (max_regno < max_reg_num ())
4012 {
4013 max_regno = max_reg_num ();
4014 allocate_reg_info (max_regno, FALSE, FALSE);
4015 }
4016 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
4017 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
4018 | PROP_KILL_DEAD_CODE);
4019 }
4020
4021 /* Write the final stats. */
4022 if (dump_file && num_possible_if_blocks > 0)
4023 {
4024 fprintf (dump_file,
4025 "\n%d possible IF blocks searched.\n",
4026 num_possible_if_blocks);
4027 fprintf (dump_file,
4028 "%d IF blocks converted.\n",
4029 num_updated_if_blocks);
4030 fprintf (dump_file,
4031 "%d true changes made.\n\n\n",
4032 num_true_changes);
4033 }
4034
4035 #ifdef ENABLE_CHECKING
4036 verify_flow_info ();
4037 #endif
4038 }
4039 \f
4040 static bool
4041 gate_handle_if_conversion (void)
4042 {
4043 return (optimize > 0);
4044 }
4045
4046 /* If-conversion and CFG cleanup. */
4047 static unsigned int
4048 rest_of_handle_if_conversion (void)
4049 {
4050 if (flag_if_conversion)
4051 {
4052 if (dump_file)
4053 dump_flow_info (dump_file, dump_flags);
4054 cleanup_cfg (CLEANUP_EXPENSIVE);
4055 reg_scan (get_insns (), max_reg_num ());
4056 if_convert (0);
4057 }
4058
4059 timevar_push (TV_JUMP);
4060 cleanup_cfg (CLEANUP_EXPENSIVE);
4061 reg_scan (get_insns (), max_reg_num ());
4062 timevar_pop (TV_JUMP);
4063 return 0;
4064 }
4065
4066 struct tree_opt_pass pass_rtl_ifcvt =
4067 {
4068 "ce1", /* name */
4069 gate_handle_if_conversion, /* gate */
4070 rest_of_handle_if_conversion, /* execute */
4071 NULL, /* sub */
4072 NULL, /* next */
4073 0, /* static_pass_number */
4074 TV_IFCVT, /* tv_id */
4075 0, /* properties_required */
4076 0, /* properties_provided */
4077 0, /* properties_destroyed */
4078 0, /* todo_flags_start */
4079 TODO_dump_func, /* todo_flags_finish */
4080 'C' /* letter */
4081 };
4082
4083 static bool
4084 gate_handle_if_after_combine (void)
4085 {
4086 return (optimize > 0 && flag_if_conversion);
4087 }
4088
4089
4090 /* Rerun if-conversion, as combine may have simplified things enough
4091 to now meet sequence length restrictions. */
4092 static unsigned int
4093 rest_of_handle_if_after_combine (void)
4094 {
4095 no_new_pseudos = 0;
4096 if_convert (1);
4097 no_new_pseudos = 1;
4098 return 0;
4099 }
4100
4101 struct tree_opt_pass pass_if_after_combine =
4102 {
4103 "ce2", /* name */
4104 gate_handle_if_after_combine, /* gate */
4105 rest_of_handle_if_after_combine, /* execute */
4106 NULL, /* sub */
4107 NULL, /* next */
4108 0, /* static_pass_number */
4109 TV_IFCVT, /* tv_id */
4110 0, /* properties_required */
4111 0, /* properties_provided */
4112 0, /* properties_destroyed */
4113 0, /* todo_flags_start */
4114 TODO_dump_func |
4115 TODO_ggc_collect, /* todo_flags_finish */
4116 'C' /* letter */
4117 };
4118
4119
4120 static bool
4121 gate_handle_if_after_reload (void)
4122 {
4123 return (optimize > 0);
4124 }
4125
4126 static unsigned int
4127 rest_of_handle_if_after_reload (void)
4128 {
4129 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
4130 splitting possibly introduced more crossjumping opportunities. */
4131 cleanup_cfg (CLEANUP_EXPENSIVE
4132 | CLEANUP_UPDATE_LIFE
4133 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
4134 if (flag_if_conversion2)
4135 if_convert (1);
4136 return 0;
4137 }
4138
4139
4140 struct tree_opt_pass pass_if_after_reload =
4141 {
4142 "ce3", /* name */
4143 gate_handle_if_after_reload, /* gate */
4144 rest_of_handle_if_after_reload, /* execute */
4145 NULL, /* sub */
4146 NULL, /* next */
4147 0, /* static_pass_number */
4148 TV_IFCVT2, /* tv_id */
4149 0, /* properties_required */
4150 0, /* properties_provided */
4151 0, /* properties_destroyed */
4152 0, /* todo_flags_start */
4153 TODO_dump_func |
4154 TODO_ggc_collect, /* todo_flags_finish */
4155 'E' /* letter */
4156 };