loop_optimization7.adb: Remove dg-require-effective-target.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "output.h"
37 #include "optabs.h"
38 #include "diagnostic-core.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
49
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
62
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
68
69 #define IFCVT_MULTIPLE_DUMPS 1
70
71 #define NULL_BLOCK ((basic_block) NULL)
72
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
75
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
79
80 /* # of changes made. */
81 static int num_true_changes;
82
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
85
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block_t *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block_t *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int find_memory (rtx *, void *);
107 static int dead_or_predicable (basic_block, basic_block, basic_block,
108 basic_block, int);
109 static void noce_emit_move_insn (rtx, rtx);
110 static rtx block_has_only_trap (basic_block);
111 \f
112 /* Count the number of non-jump active insns in BB. */
113
114 static int
115 count_bb_insns (const_basic_block bb)
116 {
117 int count = 0;
118 rtx insn = BB_HEAD (bb);
119
120 while (1)
121 {
122 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
123 count++;
124
125 if (insn == BB_END (bb))
126 break;
127 insn = NEXT_INSN (insn);
128 }
129
130 return count;
131 }
132
133 /* Determine whether the total insn_rtx_cost on non-jump insns in
134 basic block BB is less than MAX_COST. This function returns
135 false if the cost of any instruction could not be estimated. */
136
137 static bool
138 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
139 {
140 int count = 0;
141 rtx insn = BB_HEAD (bb);
142 bool speed = optimize_bb_for_speed_p (bb);
143
144 while (1)
145 {
146 if (NONJUMP_INSN_P (insn))
147 {
148 int cost = insn_rtx_cost (PATTERN (insn), speed);
149 if (cost == 0)
150 return false;
151
152 /* If this instruction is the load or set of a "stack" register,
153 such as a floating point register on x87, then the cost of
154 speculatively executing this insn may need to include
155 the additional cost of popping its result off of the
156 register stack. Unfortunately, correctly recognizing and
157 accounting for this additional overhead is tricky, so for
158 now we simply prohibit such speculative execution. */
159 #ifdef STACK_REGS
160 {
161 rtx set = single_set (insn);
162 if (set && STACK_REG_P (SET_DEST (set)))
163 return false;
164 }
165 #endif
166
167 count += cost;
168 if (count >= max_cost)
169 return false;
170 }
171 else if (CALL_P (insn))
172 return false;
173
174 if (insn == BB_END (bb))
175 break;
176 insn = NEXT_INSN (insn);
177 }
178
179 return true;
180 }
181
182 /* Return the first non-jump active insn in the basic block. */
183
184 static rtx
185 first_active_insn (basic_block bb)
186 {
187 rtx insn = BB_HEAD (bb);
188
189 if (LABEL_P (insn))
190 {
191 if (insn == BB_END (bb))
192 return NULL_RTX;
193 insn = NEXT_INSN (insn);
194 }
195
196 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
197 {
198 if (insn == BB_END (bb))
199 return NULL_RTX;
200 insn = NEXT_INSN (insn);
201 }
202
203 if (JUMP_P (insn))
204 return NULL_RTX;
205
206 return insn;
207 }
208
209 /* Return the last non-jump active (non-jump) insn in the basic block. */
210
211 static rtx
212 last_active_insn (basic_block bb, int skip_use_p)
213 {
214 rtx insn = BB_END (bb);
215 rtx head = BB_HEAD (bb);
216
217 while (NOTE_P (insn)
218 || JUMP_P (insn)
219 || DEBUG_INSN_P (insn)
220 || (skip_use_p
221 && NONJUMP_INSN_P (insn)
222 && GET_CODE (PATTERN (insn)) == USE))
223 {
224 if (insn == head)
225 return NULL_RTX;
226 insn = PREV_INSN (insn);
227 }
228
229 if (LABEL_P (insn))
230 return NULL_RTX;
231
232 return insn;
233 }
234
235 /* Return the active insn before INSN inside basic block CURR_BB. */
236
237 static rtx
238 find_active_insn_before (basic_block curr_bb, rtx insn)
239 {
240 if (!insn || insn == BB_HEAD (curr_bb))
241 return NULL_RTX;
242
243 while ((insn = PREV_INSN (insn)) != NULL_RTX)
244 {
245 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
246 break;
247
248 /* No other active insn all the way to the start of the basic block. */
249 if (insn == BB_HEAD (curr_bb))
250 return NULL_RTX;
251 }
252
253 return insn;
254 }
255
256 /* Return the active insn after INSN inside basic block CURR_BB. */
257
258 static rtx
259 find_active_insn_after (basic_block curr_bb, rtx insn)
260 {
261 if (!insn || insn == BB_END (curr_bb))
262 return NULL_RTX;
263
264 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
265 {
266 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
267 break;
268
269 /* No other active insn all the way to the end of the basic block. */
270 if (insn == BB_END (curr_bb))
271 return NULL_RTX;
272 }
273
274 return insn;
275 }
276
277 /* Return the basic block reached by falling though the basic block BB. */
278
279 static basic_block
280 block_fallthru (basic_block bb)
281 {
282 edge e = find_fallthru_edge (bb->succs);
283
284 return (e) ? e->dest : NULL_BLOCK;
285 }
286 \f
287 /* Go through a bunch of insns, converting them to conditional
288 execution format if possible. Return TRUE if all of the non-note
289 insns were processed. */
290
291 static int
292 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
293 /* if block information */rtx start,
294 /* first insn to look at */rtx end,
295 /* last insn to look at */rtx test,
296 /* conditional execution test */rtx prob_val,
297 /* probability of branch taken. */int mod_ok)
298 {
299 int must_be_last = FALSE;
300 rtx insn;
301 rtx xtest;
302 rtx pattern;
303
304 if (!start || !end)
305 return FALSE;
306
307 for (insn = start; ; insn = NEXT_INSN (insn))
308 {
309 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
310 goto insn_done;
311
312 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
313
314 /* Remove USE insns that get in the way. */
315 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
316 {
317 /* ??? Ug. Actually unlinking the thing is problematic,
318 given what we'd have to coordinate with our callers. */
319 SET_INSN_DELETED (insn);
320 goto insn_done;
321 }
322
323 /* Last insn wasn't last? */
324 if (must_be_last)
325 return FALSE;
326
327 if (modified_in_p (test, insn))
328 {
329 if (!mod_ok)
330 return FALSE;
331 must_be_last = TRUE;
332 }
333
334 /* Now build the conditional form of the instruction. */
335 pattern = PATTERN (insn);
336 xtest = copy_rtx (test);
337
338 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
339 two conditions. */
340 if (GET_CODE (pattern) == COND_EXEC)
341 {
342 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
343 return FALSE;
344
345 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
346 COND_EXEC_TEST (pattern));
347 pattern = COND_EXEC_CODE (pattern);
348 }
349
350 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
351
352 /* If the machine needs to modify the insn being conditionally executed,
353 say for example to force a constant integer operand into a temp
354 register, do so here. */
355 #ifdef IFCVT_MODIFY_INSN
356 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
357 if (! pattern)
358 return FALSE;
359 #endif
360
361 validate_change (insn, &PATTERN (insn), pattern, 1);
362
363 if (CALL_P (insn) && prob_val)
364 validate_change (insn, &REG_NOTES (insn),
365 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
366 REG_NOTES (insn)), 1);
367
368 insn_done:
369 if (insn == end)
370 break;
371 }
372
373 return TRUE;
374 }
375
376 /* Return the condition for a jump. Do not do any special processing. */
377
378 static rtx
379 cond_exec_get_condition (rtx jump)
380 {
381 rtx test_if, cond;
382
383 if (any_condjump_p (jump))
384 test_if = SET_SRC (pc_set (jump));
385 else
386 return NULL_RTX;
387 cond = XEXP (test_if, 0);
388
389 /* If this branches to JUMP_LABEL when the condition is false,
390 reverse the condition. */
391 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
392 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
393 {
394 enum rtx_code rev = reversed_comparison_code (cond, jump);
395 if (rev == UNKNOWN)
396 return NULL_RTX;
397
398 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
399 XEXP (cond, 1));
400 }
401
402 return cond;
403 }
404
405 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
406 to conditional execution. Return TRUE if we were successful at
407 converting the block. */
408
409 static int
410 cond_exec_process_if_block (ce_if_block_t * ce_info,
411 /* if block information */int do_multiple_p)
412 {
413 basic_block test_bb = ce_info->test_bb; /* last test block */
414 basic_block then_bb = ce_info->then_bb; /* THEN */
415 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
416 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
417 rtx then_start; /* first insn in THEN block */
418 rtx then_end; /* last insn + 1 in THEN block */
419 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
420 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
421 int max; /* max # of insns to convert. */
422 int then_mod_ok; /* whether conditional mods are ok in THEN */
423 rtx true_expr; /* test for else block insns */
424 rtx false_expr; /* test for then block insns */
425 rtx true_prob_val; /* probability of else block */
426 rtx false_prob_val; /* probability of then block */
427 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
428 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
429 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
430 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
431 int then_n_insns, else_n_insns, n_insns;
432 enum rtx_code false_code;
433
434 /* If test is comprised of && or || elements, and we've failed at handling
435 all of them together, just use the last test if it is the special case of
436 && elements without an ELSE block. */
437 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
438 {
439 if (else_bb || ! ce_info->and_and_p)
440 return FALSE;
441
442 ce_info->test_bb = test_bb = ce_info->last_test_bb;
443 ce_info->num_multiple_test_blocks = 0;
444 ce_info->num_and_and_blocks = 0;
445 ce_info->num_or_or_blocks = 0;
446 }
447
448 /* Find the conditional jump to the ELSE or JOIN part, and isolate
449 the test. */
450 test_expr = cond_exec_get_condition (BB_END (test_bb));
451 if (! test_expr)
452 return FALSE;
453
454 /* If the conditional jump is more than just a conditional jump,
455 then we can not do conditional execution conversion on this block. */
456 if (! onlyjump_p (BB_END (test_bb)))
457 return FALSE;
458
459 /* Collect the bounds of where we're to search, skipping any labels, jumps
460 and notes at the beginning and end of the block. Then count the total
461 number of insns and see if it is small enough to convert. */
462 then_start = first_active_insn (then_bb);
463 then_end = last_active_insn (then_bb, TRUE);
464 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
465 n_insns = then_n_insns;
466 max = MAX_CONDITIONAL_EXECUTE;
467
468 if (else_bb)
469 {
470 int n_matching;
471
472 max *= 2;
473 else_start = first_active_insn (else_bb);
474 else_end = last_active_insn (else_bb, TRUE);
475 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
476 n_insns += else_n_insns;
477
478 /* Look for matching sequences at the head and tail of the two blocks,
479 and limit the range of insns to be converted if possible. */
480 n_matching = flow_find_cross_jump (then_bb, else_bb,
481 &then_first_tail, &else_first_tail);
482 if (then_first_tail == BB_HEAD (then_bb))
483 then_start = then_end = NULL_RTX;
484 if (else_first_tail == BB_HEAD (else_bb))
485 else_start = else_end = NULL_RTX;
486
487 if (n_matching > 0)
488 {
489 if (then_end)
490 then_end = find_active_insn_before (then_bb, then_first_tail);
491 if (else_end)
492 else_end = find_active_insn_before (else_bb, else_first_tail);
493 n_insns -= 2 * n_matching;
494 }
495
496 if (then_start && else_start)
497 {
498 int longest_match = MIN (then_n_insns - n_matching,
499 else_n_insns - n_matching);
500 n_matching
501 = flow_find_head_matching_sequence (then_bb, else_bb,
502 &then_last_head,
503 &else_last_head,
504 longest_match);
505
506 if (n_matching > 0)
507 {
508 rtx insn;
509
510 /* We won't pass the insns in the head sequence to
511 cond_exec_process_insns, so we need to test them here
512 to make sure that they don't clobber the condition. */
513 for (insn = BB_HEAD (then_bb);
514 insn != NEXT_INSN (then_last_head);
515 insn = NEXT_INSN (insn))
516 if (!LABEL_P (insn) && !NOTE_P (insn)
517 && !DEBUG_INSN_P (insn)
518 && modified_in_p (test_expr, insn))
519 return FALSE;
520 }
521
522 if (then_last_head == then_end)
523 then_start = then_end = NULL_RTX;
524 if (else_last_head == else_end)
525 else_start = else_end = NULL_RTX;
526
527 if (n_matching > 0)
528 {
529 if (then_start)
530 then_start = find_active_insn_after (then_bb, then_last_head);
531 if (else_start)
532 else_start = find_active_insn_after (else_bb, else_last_head);
533 n_insns -= 2 * n_matching;
534 }
535 }
536 }
537
538 if (n_insns > max)
539 return FALSE;
540
541 /* Map test_expr/test_jump into the appropriate MD tests to use on
542 the conditionally executed code. */
543
544 true_expr = test_expr;
545
546 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
547 if (false_code != UNKNOWN)
548 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
549 XEXP (true_expr, 0), XEXP (true_expr, 1));
550 else
551 false_expr = NULL_RTX;
552
553 #ifdef IFCVT_MODIFY_TESTS
554 /* If the machine description needs to modify the tests, such as setting a
555 conditional execution register from a comparison, it can do so here. */
556 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
557
558 /* See if the conversion failed. */
559 if (!true_expr || !false_expr)
560 goto fail;
561 #endif
562
563 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
564 if (true_prob_val)
565 {
566 true_prob_val = XEXP (true_prob_val, 0);
567 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
568 }
569 else
570 false_prob_val = NULL_RTX;
571
572 /* If we have && or || tests, do them here. These tests are in the adjacent
573 blocks after the first block containing the test. */
574 if (ce_info->num_multiple_test_blocks > 0)
575 {
576 basic_block bb = test_bb;
577 basic_block last_test_bb = ce_info->last_test_bb;
578
579 if (! false_expr)
580 goto fail;
581
582 do
583 {
584 rtx start, end;
585 rtx t, f;
586 enum rtx_code f_code;
587
588 bb = block_fallthru (bb);
589 start = first_active_insn (bb);
590 end = last_active_insn (bb, TRUE);
591 if (start
592 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
593 false_prob_val, FALSE))
594 goto fail;
595
596 /* If the conditional jump is more than just a conditional jump, then
597 we can not do conditional execution conversion on this block. */
598 if (! onlyjump_p (BB_END (bb)))
599 goto fail;
600
601 /* Find the conditional jump and isolate the test. */
602 t = cond_exec_get_condition (BB_END (bb));
603 if (! t)
604 goto fail;
605
606 f_code = reversed_comparison_code (t, BB_END (bb));
607 if (f_code == UNKNOWN)
608 goto fail;
609
610 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
611 if (ce_info->and_and_p)
612 {
613 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
614 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
615 }
616 else
617 {
618 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
619 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
620 }
621
622 /* If the machine description needs to modify the tests, such as
623 setting a conditional execution register from a comparison, it can
624 do so here. */
625 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
626 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
627
628 /* See if the conversion failed. */
629 if (!t || !f)
630 goto fail;
631 #endif
632
633 true_expr = t;
634 false_expr = f;
635 }
636 while (bb != last_test_bb);
637 }
638
639 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
640 on then THEN block. */
641 then_mod_ok = (else_bb == NULL_BLOCK);
642
643 /* Go through the THEN and ELSE blocks converting the insns if possible
644 to conditional execution. */
645
646 if (then_end
647 && (! false_expr
648 || ! cond_exec_process_insns (ce_info, then_start, then_end,
649 false_expr, false_prob_val,
650 then_mod_ok)))
651 goto fail;
652
653 if (else_bb && else_end
654 && ! cond_exec_process_insns (ce_info, else_start, else_end,
655 true_expr, true_prob_val, TRUE))
656 goto fail;
657
658 /* If we cannot apply the changes, fail. Do not go through the normal fail
659 processing, since apply_change_group will call cancel_changes. */
660 if (! apply_change_group ())
661 {
662 #ifdef IFCVT_MODIFY_CANCEL
663 /* Cancel any machine dependent changes. */
664 IFCVT_MODIFY_CANCEL (ce_info);
665 #endif
666 return FALSE;
667 }
668
669 #ifdef IFCVT_MODIFY_FINAL
670 /* Do any machine dependent final modifications. */
671 IFCVT_MODIFY_FINAL (ce_info);
672 #endif
673
674 /* Conversion succeeded. */
675 if (dump_file)
676 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
677 n_insns, (n_insns == 1) ? " was" : "s were");
678
679 /* Merge the blocks! If we had matching sequences, make sure to delete one
680 copy at the appropriate location first: delete the copy in the THEN branch
681 for a tail sequence so that the remaining one is executed last for both
682 branches, and delete the copy in the ELSE branch for a head sequence so
683 that the remaining one is executed first for both branches. */
684 if (then_first_tail)
685 {
686 rtx from = then_first_tail;
687 if (!INSN_P (from))
688 from = find_active_insn_after (then_bb, from);
689 delete_insn_chain (from, BB_END (then_bb), false);
690 }
691 if (else_last_head)
692 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
693
694 merge_if_block (ce_info);
695 cond_exec_changed_p = TRUE;
696 return TRUE;
697
698 fail:
699 #ifdef IFCVT_MODIFY_CANCEL
700 /* Cancel any machine dependent changes. */
701 IFCVT_MODIFY_CANCEL (ce_info);
702 #endif
703
704 cancel_changes (0);
705 return FALSE;
706 }
707 \f
708 /* Used by noce_process_if_block to communicate with its subroutines.
709
710 The subroutines know that A and B may be evaluated freely. They
711 know that X is a register. They should insert new instructions
712 before cond_earliest. */
713
714 struct noce_if_info
715 {
716 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
717 basic_block test_bb, then_bb, else_bb, join_bb;
718
719 /* The jump that ends TEST_BB. */
720 rtx jump;
721
722 /* The jump condition. */
723 rtx cond;
724
725 /* New insns should be inserted before this one. */
726 rtx cond_earliest;
727
728 /* Insns in the THEN and ELSE block. There is always just this
729 one insns in those blocks. The insns are single_set insns.
730 If there was no ELSE block, INSN_B is the last insn before
731 COND_EARLIEST, or NULL_RTX. In the former case, the insn
732 operands are still valid, as if INSN_B was moved down below
733 the jump. */
734 rtx insn_a, insn_b;
735
736 /* The SET_SRC of INSN_A and INSN_B. */
737 rtx a, b;
738
739 /* The SET_DEST of INSN_A. */
740 rtx x;
741
742 /* True if this if block is not canonical. In the canonical form of
743 if blocks, the THEN_BB is the block reached via the fallthru edge
744 from TEST_BB. For the noce transformations, we allow the symmetric
745 form as well. */
746 bool then_else_reversed;
747
748 /* Estimated cost of the particular branch instruction. */
749 int branch_cost;
750 };
751
752 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
753 static int noce_try_move (struct noce_if_info *);
754 static int noce_try_store_flag (struct noce_if_info *);
755 static int noce_try_addcc (struct noce_if_info *);
756 static int noce_try_store_flag_constants (struct noce_if_info *);
757 static int noce_try_store_flag_mask (struct noce_if_info *);
758 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
759 rtx, rtx, rtx);
760 static int noce_try_cmove (struct noce_if_info *);
761 static int noce_try_cmove_arith (struct noce_if_info *);
762 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
763 static int noce_try_minmax (struct noce_if_info *);
764 static int noce_try_abs (struct noce_if_info *);
765 static int noce_try_sign_mask (struct noce_if_info *);
766
767 /* Helper function for noce_try_store_flag*. */
768
769 static rtx
770 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
771 int normalize)
772 {
773 rtx cond = if_info->cond;
774 int cond_complex;
775 enum rtx_code code;
776
777 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
778 || ! general_operand (XEXP (cond, 1), VOIDmode));
779
780 /* If earliest == jump, or when the condition is complex, try to
781 build the store_flag insn directly. */
782
783 if (cond_complex)
784 {
785 rtx set = pc_set (if_info->jump);
786 cond = XEXP (SET_SRC (set), 0);
787 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
788 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
789 reversep = !reversep;
790 if (if_info->then_else_reversed)
791 reversep = !reversep;
792 }
793
794 if (reversep)
795 code = reversed_comparison_code (cond, if_info->jump);
796 else
797 code = GET_CODE (cond);
798
799 if ((if_info->cond_earliest == if_info->jump || cond_complex)
800 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
801 {
802 rtx tmp;
803
804 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
805 XEXP (cond, 1));
806 tmp = gen_rtx_SET (VOIDmode, x, tmp);
807
808 start_sequence ();
809 tmp = emit_insn (tmp);
810
811 if (recog_memoized (tmp) >= 0)
812 {
813 tmp = get_insns ();
814 end_sequence ();
815 emit_insn (tmp);
816
817 if_info->cond_earliest = if_info->jump;
818
819 return x;
820 }
821
822 end_sequence ();
823 }
824
825 /* Don't even try if the comparison operands or the mode of X are weird. */
826 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
827 return NULL_RTX;
828
829 return emit_store_flag (x, code, XEXP (cond, 0),
830 XEXP (cond, 1), VOIDmode,
831 (code == LTU || code == LEU
832 || code == GEU || code == GTU), normalize);
833 }
834
835 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
836 X is the destination/target and Y is the value to copy. */
837
838 static void
839 noce_emit_move_insn (rtx x, rtx y)
840 {
841 enum machine_mode outmode;
842 rtx outer, inner;
843 int bitpos;
844
845 if (GET_CODE (x) != STRICT_LOW_PART)
846 {
847 rtx seq, insn, target;
848 optab ot;
849
850 start_sequence ();
851 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
852 otherwise construct a suitable SET pattern ourselves. */
853 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
854 ? emit_move_insn (x, y)
855 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
856 seq = get_insns ();
857 end_sequence ();
858
859 if (recog_memoized (insn) <= 0)
860 {
861 if (GET_CODE (x) == ZERO_EXTRACT)
862 {
863 rtx op = XEXP (x, 0);
864 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
865 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
866
867 /* store_bit_field expects START to be relative to
868 BYTES_BIG_ENDIAN and adjusts this value for machines with
869 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
870 invoke store_bit_field again it is necessary to have the START
871 value from the first call. */
872 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
873 {
874 if (MEM_P (op))
875 start = BITS_PER_UNIT - start - size;
876 else
877 {
878 gcc_assert (REG_P (op));
879 start = BITS_PER_WORD - start - size;
880 }
881 }
882
883 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
884 store_bit_field (op, size, start, GET_MODE (x), y);
885 return;
886 }
887
888 switch (GET_RTX_CLASS (GET_CODE (y)))
889 {
890 case RTX_UNARY:
891 ot = code_to_optab[GET_CODE (y)];
892 if (ot)
893 {
894 start_sequence ();
895 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
896 if (target != NULL_RTX)
897 {
898 if (target != x)
899 emit_move_insn (x, target);
900 seq = get_insns ();
901 }
902 end_sequence ();
903 }
904 break;
905
906 case RTX_BIN_ARITH:
907 case RTX_COMM_ARITH:
908 ot = code_to_optab[GET_CODE (y)];
909 if (ot)
910 {
911 start_sequence ();
912 target = expand_binop (GET_MODE (y), ot,
913 XEXP (y, 0), XEXP (y, 1),
914 x, 0, OPTAB_DIRECT);
915 if (target != NULL_RTX)
916 {
917 if (target != x)
918 emit_move_insn (x, target);
919 seq = get_insns ();
920 }
921 end_sequence ();
922 }
923 break;
924
925 default:
926 break;
927 }
928 }
929
930 emit_insn (seq);
931 return;
932 }
933
934 outer = XEXP (x, 0);
935 inner = XEXP (outer, 0);
936 outmode = GET_MODE (outer);
937 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
938 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
939 }
940
941 /* Return sequence of instructions generated by if conversion. This
942 function calls end_sequence() to end the current stream, ensures
943 that are instructions are unshared, recognizable non-jump insns.
944 On failure, this function returns a NULL_RTX. */
945
946 static rtx
947 end_ifcvt_sequence (struct noce_if_info *if_info)
948 {
949 rtx insn;
950 rtx seq = get_insns ();
951
952 set_used_flags (if_info->x);
953 set_used_flags (if_info->cond);
954 unshare_all_rtl_in_chain (seq);
955 end_sequence ();
956
957 /* Make sure that all of the instructions emitted are recognizable,
958 and that we haven't introduced a new jump instruction.
959 As an exercise for the reader, build a general mechanism that
960 allows proper placement of required clobbers. */
961 for (insn = seq; insn; insn = NEXT_INSN (insn))
962 if (JUMP_P (insn)
963 || recog_memoized (insn) == -1)
964 return NULL_RTX;
965
966 return seq;
967 }
968
969 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
970 "if (a == b) x = a; else x = b" into "x = b". */
971
972 static int
973 noce_try_move (struct noce_if_info *if_info)
974 {
975 rtx cond = if_info->cond;
976 enum rtx_code code = GET_CODE (cond);
977 rtx y, seq;
978
979 if (code != NE && code != EQ)
980 return FALSE;
981
982 /* This optimization isn't valid if either A or B could be a NaN
983 or a signed zero. */
984 if (HONOR_NANS (GET_MODE (if_info->x))
985 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
986 return FALSE;
987
988 /* Check whether the operands of the comparison are A and in
989 either order. */
990 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
991 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
992 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
993 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
994 {
995 y = (code == EQ) ? if_info->a : if_info->b;
996
997 /* Avoid generating the move if the source is the destination. */
998 if (! rtx_equal_p (if_info->x, y))
999 {
1000 start_sequence ();
1001 noce_emit_move_insn (if_info->x, y);
1002 seq = end_ifcvt_sequence (if_info);
1003 if (!seq)
1004 return FALSE;
1005
1006 emit_insn_before_setloc (seq, if_info->jump,
1007 INSN_LOCATOR (if_info->insn_a));
1008 }
1009 return TRUE;
1010 }
1011 return FALSE;
1012 }
1013
1014 /* Convert "if (test) x = 1; else x = 0".
1015
1016 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1017 tried in noce_try_store_flag_constants after noce_try_cmove has had
1018 a go at the conversion. */
1019
1020 static int
1021 noce_try_store_flag (struct noce_if_info *if_info)
1022 {
1023 int reversep;
1024 rtx target, seq;
1025
1026 if (CONST_INT_P (if_info->b)
1027 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1028 && if_info->a == const0_rtx)
1029 reversep = 0;
1030 else if (if_info->b == const0_rtx
1031 && CONST_INT_P (if_info->a)
1032 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1033 && (reversed_comparison_code (if_info->cond, if_info->jump)
1034 != UNKNOWN))
1035 reversep = 1;
1036 else
1037 return FALSE;
1038
1039 start_sequence ();
1040
1041 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1042 if (target)
1043 {
1044 if (target != if_info->x)
1045 noce_emit_move_insn (if_info->x, target);
1046
1047 seq = end_ifcvt_sequence (if_info);
1048 if (! seq)
1049 return FALSE;
1050
1051 emit_insn_before_setloc (seq, if_info->jump,
1052 INSN_LOCATOR (if_info->insn_a));
1053 return TRUE;
1054 }
1055 else
1056 {
1057 end_sequence ();
1058 return FALSE;
1059 }
1060 }
1061
1062 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1063
1064 static int
1065 noce_try_store_flag_constants (struct noce_if_info *if_info)
1066 {
1067 rtx target, seq;
1068 int reversep;
1069 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1070 int normalize, can_reverse;
1071 enum machine_mode mode;
1072
1073 if (CONST_INT_P (if_info->a)
1074 && CONST_INT_P (if_info->b))
1075 {
1076 mode = GET_MODE (if_info->x);
1077 ifalse = INTVAL (if_info->a);
1078 itrue = INTVAL (if_info->b);
1079
1080 /* Make sure we can represent the difference between the two values. */
1081 if ((itrue - ifalse > 0)
1082 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1083 return FALSE;
1084
1085 diff = trunc_int_for_mode (itrue - ifalse, mode);
1086
1087 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1088 != UNKNOWN);
1089
1090 reversep = 0;
1091 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1092 normalize = 0;
1093 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1094 && (STORE_FLAG_VALUE == 1
1095 || if_info->branch_cost >= 2))
1096 normalize = 1;
1097 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1098 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1099 normalize = 1, reversep = 1;
1100 else if (itrue == -1
1101 && (STORE_FLAG_VALUE == -1
1102 || if_info->branch_cost >= 2))
1103 normalize = -1;
1104 else if (ifalse == -1 && can_reverse
1105 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1106 normalize = -1, reversep = 1;
1107 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1108 || if_info->branch_cost >= 3)
1109 normalize = -1;
1110 else
1111 return FALSE;
1112
1113 if (reversep)
1114 {
1115 tmp = itrue; itrue = ifalse; ifalse = tmp;
1116 diff = trunc_int_for_mode (-diff, mode);
1117 }
1118
1119 start_sequence ();
1120 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1121 if (! target)
1122 {
1123 end_sequence ();
1124 return FALSE;
1125 }
1126
1127 /* if (test) x = 3; else x = 4;
1128 => x = 3 + (test == 0); */
1129 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1130 {
1131 target = expand_simple_binop (mode,
1132 (diff == STORE_FLAG_VALUE
1133 ? PLUS : MINUS),
1134 GEN_INT (ifalse), target, if_info->x, 0,
1135 OPTAB_WIDEN);
1136 }
1137
1138 /* if (test) x = 8; else x = 0;
1139 => x = (test != 0) << 3; */
1140 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1141 {
1142 target = expand_simple_binop (mode, ASHIFT,
1143 target, GEN_INT (tmp), if_info->x, 0,
1144 OPTAB_WIDEN);
1145 }
1146
1147 /* if (test) x = -1; else x = b;
1148 => x = -(test != 0) | b; */
1149 else if (itrue == -1)
1150 {
1151 target = expand_simple_binop (mode, IOR,
1152 target, GEN_INT (ifalse), if_info->x, 0,
1153 OPTAB_WIDEN);
1154 }
1155
1156 /* if (test) x = a; else x = b;
1157 => x = (-(test != 0) & (b - a)) + a; */
1158 else
1159 {
1160 target = expand_simple_binop (mode, AND,
1161 target, GEN_INT (diff), if_info->x, 0,
1162 OPTAB_WIDEN);
1163 if (target)
1164 target = expand_simple_binop (mode, PLUS,
1165 target, GEN_INT (ifalse),
1166 if_info->x, 0, OPTAB_WIDEN);
1167 }
1168
1169 if (! target)
1170 {
1171 end_sequence ();
1172 return FALSE;
1173 }
1174
1175 if (target != if_info->x)
1176 noce_emit_move_insn (if_info->x, target);
1177
1178 seq = end_ifcvt_sequence (if_info);
1179 if (!seq)
1180 return FALSE;
1181
1182 emit_insn_before_setloc (seq, if_info->jump,
1183 INSN_LOCATOR (if_info->insn_a));
1184 return TRUE;
1185 }
1186
1187 return FALSE;
1188 }
1189
1190 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1191 similarly for "foo--". */
1192
1193 static int
1194 noce_try_addcc (struct noce_if_info *if_info)
1195 {
1196 rtx target, seq;
1197 int subtract, normalize;
1198
1199 if (GET_CODE (if_info->a) == PLUS
1200 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1201 && (reversed_comparison_code (if_info->cond, if_info->jump)
1202 != UNKNOWN))
1203 {
1204 rtx cond = if_info->cond;
1205 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1206
1207 /* First try to use addcc pattern. */
1208 if (general_operand (XEXP (cond, 0), VOIDmode)
1209 && general_operand (XEXP (cond, 1), VOIDmode))
1210 {
1211 start_sequence ();
1212 target = emit_conditional_add (if_info->x, code,
1213 XEXP (cond, 0),
1214 XEXP (cond, 1),
1215 VOIDmode,
1216 if_info->b,
1217 XEXP (if_info->a, 1),
1218 GET_MODE (if_info->x),
1219 (code == LTU || code == GEU
1220 || code == LEU || code == GTU));
1221 if (target)
1222 {
1223 if (target != if_info->x)
1224 noce_emit_move_insn (if_info->x, target);
1225
1226 seq = end_ifcvt_sequence (if_info);
1227 if (!seq)
1228 return FALSE;
1229
1230 emit_insn_before_setloc (seq, if_info->jump,
1231 INSN_LOCATOR (if_info->insn_a));
1232 return TRUE;
1233 }
1234 end_sequence ();
1235 }
1236
1237 /* If that fails, construct conditional increment or decrement using
1238 setcc. */
1239 if (if_info->branch_cost >= 2
1240 && (XEXP (if_info->a, 1) == const1_rtx
1241 || XEXP (if_info->a, 1) == constm1_rtx))
1242 {
1243 start_sequence ();
1244 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1245 subtract = 0, normalize = 0;
1246 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1247 subtract = 1, normalize = 0;
1248 else
1249 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1250
1251
1252 target = noce_emit_store_flag (if_info,
1253 gen_reg_rtx (GET_MODE (if_info->x)),
1254 1, normalize);
1255
1256 if (target)
1257 target = expand_simple_binop (GET_MODE (if_info->x),
1258 subtract ? MINUS : PLUS,
1259 if_info->b, target, if_info->x,
1260 0, OPTAB_WIDEN);
1261 if (target)
1262 {
1263 if (target != if_info->x)
1264 noce_emit_move_insn (if_info->x, target);
1265
1266 seq = end_ifcvt_sequence (if_info);
1267 if (!seq)
1268 return FALSE;
1269
1270 emit_insn_before_setloc (seq, if_info->jump,
1271 INSN_LOCATOR (if_info->insn_a));
1272 return TRUE;
1273 }
1274 end_sequence ();
1275 }
1276 }
1277
1278 return FALSE;
1279 }
1280
1281 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1282
1283 static int
1284 noce_try_store_flag_mask (struct noce_if_info *if_info)
1285 {
1286 rtx target, seq;
1287 int reversep;
1288
1289 reversep = 0;
1290 if ((if_info->branch_cost >= 2
1291 || STORE_FLAG_VALUE == -1)
1292 && ((if_info->a == const0_rtx
1293 && rtx_equal_p (if_info->b, if_info->x))
1294 || ((reversep = (reversed_comparison_code (if_info->cond,
1295 if_info->jump)
1296 != UNKNOWN))
1297 && if_info->b == const0_rtx
1298 && rtx_equal_p (if_info->a, if_info->x))))
1299 {
1300 start_sequence ();
1301 target = noce_emit_store_flag (if_info,
1302 gen_reg_rtx (GET_MODE (if_info->x)),
1303 reversep, -1);
1304 if (target)
1305 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1306 if_info->x,
1307 target, if_info->x, 0,
1308 OPTAB_WIDEN);
1309
1310 if (target)
1311 {
1312 if (target != if_info->x)
1313 noce_emit_move_insn (if_info->x, target);
1314
1315 seq = end_ifcvt_sequence (if_info);
1316 if (!seq)
1317 return FALSE;
1318
1319 emit_insn_before_setloc (seq, if_info->jump,
1320 INSN_LOCATOR (if_info->insn_a));
1321 return TRUE;
1322 }
1323
1324 end_sequence ();
1325 }
1326
1327 return FALSE;
1328 }
1329
1330 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1331
1332 static rtx
1333 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1334 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1335 {
1336 rtx target ATTRIBUTE_UNUSED;
1337 int unsignedp ATTRIBUTE_UNUSED;
1338
1339 /* If earliest == jump, try to build the cmove insn directly.
1340 This is helpful when combine has created some complex condition
1341 (like for alpha's cmovlbs) that we can't hope to regenerate
1342 through the normal interface. */
1343
1344 if (if_info->cond_earliest == if_info->jump)
1345 {
1346 rtx tmp;
1347
1348 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1349 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1350 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1351
1352 start_sequence ();
1353 tmp = emit_insn (tmp);
1354
1355 if (recog_memoized (tmp) >= 0)
1356 {
1357 tmp = get_insns ();
1358 end_sequence ();
1359 emit_insn (tmp);
1360
1361 return x;
1362 }
1363
1364 end_sequence ();
1365 }
1366
1367 /* Don't even try if the comparison operands are weird. */
1368 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1369 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1370 return NULL_RTX;
1371
1372 #if HAVE_conditional_move
1373 unsignedp = (code == LTU || code == GEU
1374 || code == LEU || code == GTU);
1375
1376 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1377 vtrue, vfalse, GET_MODE (x),
1378 unsignedp);
1379 if (target)
1380 return target;
1381
1382 /* We might be faced with a situation like:
1383
1384 x = (reg:M TARGET)
1385 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1386 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1387
1388 We can't do a conditional move in mode M, but it's possible that we
1389 could do a conditional move in mode N instead and take a subreg of
1390 the result.
1391
1392 If we can't create new pseudos, though, don't bother. */
1393 if (reload_completed)
1394 return NULL_RTX;
1395
1396 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1397 {
1398 rtx reg_vtrue = SUBREG_REG (vtrue);
1399 rtx reg_vfalse = SUBREG_REG (vfalse);
1400 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1401 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1402 rtx promoted_target;
1403
1404 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1405 || byte_vtrue != byte_vfalse
1406 || (SUBREG_PROMOTED_VAR_P (vtrue)
1407 != SUBREG_PROMOTED_VAR_P (vfalse))
1408 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1409 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1410 return NULL_RTX;
1411
1412 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1413
1414 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1415 VOIDmode, reg_vtrue, reg_vfalse,
1416 GET_MODE (reg_vtrue), unsignedp);
1417 /* Nope, couldn't do it in that mode either. */
1418 if (!target)
1419 return NULL_RTX;
1420
1421 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1422 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1423 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1424 emit_move_insn (x, target);
1425 return x;
1426 }
1427 else
1428 return NULL_RTX;
1429 #else
1430 /* We'll never get here, as noce_process_if_block doesn't call the
1431 functions involved. Ifdef code, however, should be discouraged
1432 because it leads to typos in the code not selected. However,
1433 emit_conditional_move won't exist either. */
1434 return NULL_RTX;
1435 #endif
1436 }
1437
1438 /* Try only simple constants and registers here. More complex cases
1439 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1440 has had a go at it. */
1441
1442 static int
1443 noce_try_cmove (struct noce_if_info *if_info)
1444 {
1445 enum rtx_code code;
1446 rtx target, seq;
1447
1448 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1449 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1450 {
1451 start_sequence ();
1452
1453 code = GET_CODE (if_info->cond);
1454 target = noce_emit_cmove (if_info, if_info->x, code,
1455 XEXP (if_info->cond, 0),
1456 XEXP (if_info->cond, 1),
1457 if_info->a, if_info->b);
1458
1459 if (target)
1460 {
1461 if (target != if_info->x)
1462 noce_emit_move_insn (if_info->x, target);
1463
1464 seq = end_ifcvt_sequence (if_info);
1465 if (!seq)
1466 return FALSE;
1467
1468 emit_insn_before_setloc (seq, if_info->jump,
1469 INSN_LOCATOR (if_info->insn_a));
1470 return TRUE;
1471 }
1472 else
1473 {
1474 end_sequence ();
1475 return FALSE;
1476 }
1477 }
1478
1479 return FALSE;
1480 }
1481
1482 /* Try more complex cases involving conditional_move. */
1483
1484 static int
1485 noce_try_cmove_arith (struct noce_if_info *if_info)
1486 {
1487 rtx a = if_info->a;
1488 rtx b = if_info->b;
1489 rtx x = if_info->x;
1490 rtx orig_a, orig_b;
1491 rtx insn_a, insn_b;
1492 rtx tmp, target;
1493 int is_mem = 0;
1494 int insn_cost;
1495 enum rtx_code code;
1496
1497 /* A conditional move from two memory sources is equivalent to a
1498 conditional on their addresses followed by a load. Don't do this
1499 early because it'll screw alias analysis. Note that we've
1500 already checked for no side effects. */
1501 /* ??? FIXME: Magic number 5. */
1502 if (cse_not_expected
1503 && MEM_P (a) && MEM_P (b)
1504 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1505 && if_info->branch_cost >= 5)
1506 {
1507 enum machine_mode address_mode
1508 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1509
1510 a = XEXP (a, 0);
1511 b = XEXP (b, 0);
1512 x = gen_reg_rtx (address_mode);
1513 is_mem = 1;
1514 }
1515
1516 /* ??? We could handle this if we knew that a load from A or B could
1517 not fault. This is also true if we've already loaded
1518 from the address along the path from ENTRY. */
1519 else if (may_trap_p (a) || may_trap_p (b))
1520 return FALSE;
1521
1522 /* if (test) x = a + b; else x = c - d;
1523 => y = a + b;
1524 x = c - d;
1525 if (test)
1526 x = y;
1527 */
1528
1529 code = GET_CODE (if_info->cond);
1530 insn_a = if_info->insn_a;
1531 insn_b = if_info->insn_b;
1532
1533 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1534 if insn_rtx_cost can't be estimated. */
1535 if (insn_a)
1536 {
1537 insn_cost
1538 = insn_rtx_cost (PATTERN (insn_a),
1539 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1540 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1541 return FALSE;
1542 }
1543 else
1544 insn_cost = 0;
1545
1546 if (insn_b)
1547 {
1548 insn_cost
1549 += insn_rtx_cost (PATTERN (insn_b),
1550 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1551 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1552 return FALSE;
1553 }
1554
1555 /* Possibly rearrange operands to make things come out more natural. */
1556 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1557 {
1558 int reversep = 0;
1559 if (rtx_equal_p (b, x))
1560 reversep = 1;
1561 else if (general_operand (b, GET_MODE (b)))
1562 reversep = 1;
1563
1564 if (reversep)
1565 {
1566 code = reversed_comparison_code (if_info->cond, if_info->jump);
1567 tmp = a, a = b, b = tmp;
1568 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1569 }
1570 }
1571
1572 start_sequence ();
1573
1574 orig_a = a;
1575 orig_b = b;
1576
1577 /* If either operand is complex, load it into a register first.
1578 The best way to do this is to copy the original insn. In this
1579 way we preserve any clobbers etc that the insn may have had.
1580 This is of course not possible in the IS_MEM case. */
1581 if (! general_operand (a, GET_MODE (a)))
1582 {
1583 rtx set;
1584
1585 if (is_mem)
1586 {
1587 tmp = gen_reg_rtx (GET_MODE (a));
1588 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1589 }
1590 else if (! insn_a)
1591 goto end_seq_and_fail;
1592 else
1593 {
1594 a = gen_reg_rtx (GET_MODE (a));
1595 tmp = copy_rtx (insn_a);
1596 set = single_set (tmp);
1597 SET_DEST (set) = a;
1598 tmp = emit_insn (PATTERN (tmp));
1599 }
1600 if (recog_memoized (tmp) < 0)
1601 goto end_seq_and_fail;
1602 }
1603 if (! general_operand (b, GET_MODE (b)))
1604 {
1605 rtx set, last;
1606
1607 if (is_mem)
1608 {
1609 tmp = gen_reg_rtx (GET_MODE (b));
1610 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1611 }
1612 else if (! insn_b)
1613 goto end_seq_and_fail;
1614 else
1615 {
1616 b = gen_reg_rtx (GET_MODE (b));
1617 tmp = copy_rtx (insn_b);
1618 set = single_set (tmp);
1619 SET_DEST (set) = b;
1620 tmp = PATTERN (tmp);
1621 }
1622
1623 /* If insn to set up A clobbers any registers B depends on, try to
1624 swap insn that sets up A with the one that sets up B. If even
1625 that doesn't help, punt. */
1626 last = get_last_insn ();
1627 if (last && modified_in_p (orig_b, last))
1628 {
1629 tmp = emit_insn_before (tmp, get_insns ());
1630 if (modified_in_p (orig_a, tmp))
1631 goto end_seq_and_fail;
1632 }
1633 else
1634 tmp = emit_insn (tmp);
1635
1636 if (recog_memoized (tmp) < 0)
1637 goto end_seq_and_fail;
1638 }
1639
1640 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1641 XEXP (if_info->cond, 1), a, b);
1642
1643 if (! target)
1644 goto end_seq_and_fail;
1645
1646 /* If we're handling a memory for above, emit the load now. */
1647 if (is_mem)
1648 {
1649 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1650
1651 /* Copy over flags as appropriate. */
1652 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1653 MEM_VOLATILE_P (tmp) = 1;
1654 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1655 MEM_IN_STRUCT_P (tmp) = 1;
1656 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1657 MEM_SCALAR_P (tmp) = 1;
1658 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1659 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1660 set_mem_align (tmp,
1661 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1662
1663 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1664 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1665
1666 noce_emit_move_insn (if_info->x, tmp);
1667 }
1668 else if (target != x)
1669 noce_emit_move_insn (x, target);
1670
1671 tmp = end_ifcvt_sequence (if_info);
1672 if (!tmp)
1673 return FALSE;
1674
1675 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1676 return TRUE;
1677
1678 end_seq_and_fail:
1679 end_sequence ();
1680 return FALSE;
1681 }
1682
1683 /* For most cases, the simplified condition we found is the best
1684 choice, but this is not the case for the min/max/abs transforms.
1685 For these we wish to know that it is A or B in the condition. */
1686
1687 static rtx
1688 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1689 rtx *earliest)
1690 {
1691 rtx cond, set, insn;
1692 int reverse;
1693
1694 /* If target is already mentioned in the known condition, return it. */
1695 if (reg_mentioned_p (target, if_info->cond))
1696 {
1697 *earliest = if_info->cond_earliest;
1698 return if_info->cond;
1699 }
1700
1701 set = pc_set (if_info->jump);
1702 cond = XEXP (SET_SRC (set), 0);
1703 reverse
1704 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1705 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1706 if (if_info->then_else_reversed)
1707 reverse = !reverse;
1708
1709 /* If we're looking for a constant, try to make the conditional
1710 have that constant in it. There are two reasons why it may
1711 not have the constant we want:
1712
1713 1. GCC may have needed to put the constant in a register, because
1714 the target can't compare directly against that constant. For
1715 this case, we look for a SET immediately before the comparison
1716 that puts a constant in that register.
1717
1718 2. GCC may have canonicalized the conditional, for example
1719 replacing "if x < 4" with "if x <= 3". We can undo that (or
1720 make equivalent types of changes) to get the constants we need
1721 if they're off by one in the right direction. */
1722
1723 if (CONST_INT_P (target))
1724 {
1725 enum rtx_code code = GET_CODE (if_info->cond);
1726 rtx op_a = XEXP (if_info->cond, 0);
1727 rtx op_b = XEXP (if_info->cond, 1);
1728 rtx prev_insn;
1729
1730 /* First, look to see if we put a constant in a register. */
1731 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1732 if (prev_insn
1733 && BLOCK_FOR_INSN (prev_insn)
1734 == BLOCK_FOR_INSN (if_info->cond_earliest)
1735 && INSN_P (prev_insn)
1736 && GET_CODE (PATTERN (prev_insn)) == SET)
1737 {
1738 rtx src = find_reg_equal_equiv_note (prev_insn);
1739 if (!src)
1740 src = SET_SRC (PATTERN (prev_insn));
1741 if (CONST_INT_P (src))
1742 {
1743 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1744 op_a = src;
1745 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1746 op_b = src;
1747
1748 if (CONST_INT_P (op_a))
1749 {
1750 rtx tmp = op_a;
1751 op_a = op_b;
1752 op_b = tmp;
1753 code = swap_condition (code);
1754 }
1755 }
1756 }
1757
1758 /* Now, look to see if we can get the right constant by
1759 adjusting the conditional. */
1760 if (CONST_INT_P (op_b))
1761 {
1762 HOST_WIDE_INT desired_val = INTVAL (target);
1763 HOST_WIDE_INT actual_val = INTVAL (op_b);
1764
1765 switch (code)
1766 {
1767 case LT:
1768 if (actual_val == desired_val + 1)
1769 {
1770 code = LE;
1771 op_b = GEN_INT (desired_val);
1772 }
1773 break;
1774 case LE:
1775 if (actual_val == desired_val - 1)
1776 {
1777 code = LT;
1778 op_b = GEN_INT (desired_val);
1779 }
1780 break;
1781 case GT:
1782 if (actual_val == desired_val - 1)
1783 {
1784 code = GE;
1785 op_b = GEN_INT (desired_val);
1786 }
1787 break;
1788 case GE:
1789 if (actual_val == desired_val + 1)
1790 {
1791 code = GT;
1792 op_b = GEN_INT (desired_val);
1793 }
1794 break;
1795 default:
1796 break;
1797 }
1798 }
1799
1800 /* If we made any changes, generate a new conditional that is
1801 equivalent to what we started with, but has the right
1802 constants in it. */
1803 if (code != GET_CODE (if_info->cond)
1804 || op_a != XEXP (if_info->cond, 0)
1805 || op_b != XEXP (if_info->cond, 1))
1806 {
1807 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1808 *earliest = if_info->cond_earliest;
1809 return cond;
1810 }
1811 }
1812
1813 cond = canonicalize_condition (if_info->jump, cond, reverse,
1814 earliest, target, false, true);
1815 if (! cond || ! reg_mentioned_p (target, cond))
1816 return NULL;
1817
1818 /* We almost certainly searched back to a different place.
1819 Need to re-verify correct lifetimes. */
1820
1821 /* X may not be mentioned in the range (cond_earliest, jump]. */
1822 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1823 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1824 return NULL;
1825
1826 /* A and B may not be modified in the range [cond_earliest, jump). */
1827 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1828 if (INSN_P (insn)
1829 && (modified_in_p (if_info->a, insn)
1830 || modified_in_p (if_info->b, insn)))
1831 return NULL;
1832
1833 return cond;
1834 }
1835
1836 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1837
1838 static int
1839 noce_try_minmax (struct noce_if_info *if_info)
1840 {
1841 rtx cond, earliest, target, seq;
1842 enum rtx_code code, op;
1843 int unsignedp;
1844
1845 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1846 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1847 to get the target to tell us... */
1848 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1849 || HONOR_NANS (GET_MODE (if_info->x)))
1850 return FALSE;
1851
1852 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1853 if (!cond)
1854 return FALSE;
1855
1856 /* Verify the condition is of the form we expect, and canonicalize
1857 the comparison code. */
1858 code = GET_CODE (cond);
1859 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1860 {
1861 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1862 return FALSE;
1863 }
1864 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1865 {
1866 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1867 return FALSE;
1868 code = swap_condition (code);
1869 }
1870 else
1871 return FALSE;
1872
1873 /* Determine what sort of operation this is. Note that the code is for
1874 a taken branch, so the code->operation mapping appears backwards. */
1875 switch (code)
1876 {
1877 case LT:
1878 case LE:
1879 case UNLT:
1880 case UNLE:
1881 op = SMAX;
1882 unsignedp = 0;
1883 break;
1884 case GT:
1885 case GE:
1886 case UNGT:
1887 case UNGE:
1888 op = SMIN;
1889 unsignedp = 0;
1890 break;
1891 case LTU:
1892 case LEU:
1893 op = UMAX;
1894 unsignedp = 1;
1895 break;
1896 case GTU:
1897 case GEU:
1898 op = UMIN;
1899 unsignedp = 1;
1900 break;
1901 default:
1902 return FALSE;
1903 }
1904
1905 start_sequence ();
1906
1907 target = expand_simple_binop (GET_MODE (if_info->x), op,
1908 if_info->a, if_info->b,
1909 if_info->x, unsignedp, OPTAB_WIDEN);
1910 if (! target)
1911 {
1912 end_sequence ();
1913 return FALSE;
1914 }
1915 if (target != if_info->x)
1916 noce_emit_move_insn (if_info->x, target);
1917
1918 seq = end_ifcvt_sequence (if_info);
1919 if (!seq)
1920 return FALSE;
1921
1922 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1923 if_info->cond = cond;
1924 if_info->cond_earliest = earliest;
1925
1926 return TRUE;
1927 }
1928
1929 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1930 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1931 etc. */
1932
1933 static int
1934 noce_try_abs (struct noce_if_info *if_info)
1935 {
1936 rtx cond, earliest, target, seq, a, b, c;
1937 int negate;
1938 bool one_cmpl = false;
1939
1940 /* Reject modes with signed zeros. */
1941 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1942 return FALSE;
1943
1944 /* Recognize A and B as constituting an ABS or NABS. The canonical
1945 form is a branch around the negation, taken when the object is the
1946 first operand of a comparison against 0 that evaluates to true. */
1947 a = if_info->a;
1948 b = if_info->b;
1949 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1950 negate = 0;
1951 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1952 {
1953 c = a; a = b; b = c;
1954 negate = 1;
1955 }
1956 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1957 {
1958 negate = 0;
1959 one_cmpl = true;
1960 }
1961 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1962 {
1963 c = a; a = b; b = c;
1964 negate = 1;
1965 one_cmpl = true;
1966 }
1967 else
1968 return FALSE;
1969
1970 cond = noce_get_alt_condition (if_info, b, &earliest);
1971 if (!cond)
1972 return FALSE;
1973
1974 /* Verify the condition is of the form we expect. */
1975 if (rtx_equal_p (XEXP (cond, 0), b))
1976 c = XEXP (cond, 1);
1977 else if (rtx_equal_p (XEXP (cond, 1), b))
1978 {
1979 c = XEXP (cond, 0);
1980 negate = !negate;
1981 }
1982 else
1983 return FALSE;
1984
1985 /* Verify that C is zero. Search one step backward for a
1986 REG_EQUAL note or a simple source if necessary. */
1987 if (REG_P (c))
1988 {
1989 rtx set, insn = prev_nonnote_insn (earliest);
1990 if (insn
1991 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
1992 && (set = single_set (insn))
1993 && rtx_equal_p (SET_DEST (set), c))
1994 {
1995 rtx note = find_reg_equal_equiv_note (insn);
1996 if (note)
1997 c = XEXP (note, 0);
1998 else
1999 c = SET_SRC (set);
2000 }
2001 else
2002 return FALSE;
2003 }
2004 if (MEM_P (c)
2005 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2006 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2007 c = get_pool_constant (XEXP (c, 0));
2008
2009 /* Work around funny ideas get_condition has wrt canonicalization.
2010 Note that these rtx constants are known to be CONST_INT, and
2011 therefore imply integer comparisons. */
2012 if (c == constm1_rtx && GET_CODE (cond) == GT)
2013 ;
2014 else if (c == const1_rtx && GET_CODE (cond) == LT)
2015 ;
2016 else if (c != CONST0_RTX (GET_MODE (b)))
2017 return FALSE;
2018
2019 /* Determine what sort of operation this is. */
2020 switch (GET_CODE (cond))
2021 {
2022 case LT:
2023 case LE:
2024 case UNLT:
2025 case UNLE:
2026 negate = !negate;
2027 break;
2028 case GT:
2029 case GE:
2030 case UNGT:
2031 case UNGE:
2032 break;
2033 default:
2034 return FALSE;
2035 }
2036
2037 start_sequence ();
2038 if (one_cmpl)
2039 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2040 if_info->x);
2041 else
2042 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2043
2044 /* ??? It's a quandary whether cmove would be better here, especially
2045 for integers. Perhaps combine will clean things up. */
2046 if (target && negate)
2047 {
2048 if (one_cmpl)
2049 target = expand_simple_unop (GET_MODE (target), NOT, target,
2050 if_info->x, 0);
2051 else
2052 target = expand_simple_unop (GET_MODE (target), NEG, target,
2053 if_info->x, 0);
2054 }
2055
2056 if (! target)
2057 {
2058 end_sequence ();
2059 return FALSE;
2060 }
2061
2062 if (target != if_info->x)
2063 noce_emit_move_insn (if_info->x, target);
2064
2065 seq = end_ifcvt_sequence (if_info);
2066 if (!seq)
2067 return FALSE;
2068
2069 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2070 if_info->cond = cond;
2071 if_info->cond_earliest = earliest;
2072
2073 return TRUE;
2074 }
2075
2076 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2077
2078 static int
2079 noce_try_sign_mask (struct noce_if_info *if_info)
2080 {
2081 rtx cond, t, m, c, seq;
2082 enum machine_mode mode;
2083 enum rtx_code code;
2084 bool t_unconditional;
2085
2086 cond = if_info->cond;
2087 code = GET_CODE (cond);
2088 m = XEXP (cond, 0);
2089 c = XEXP (cond, 1);
2090
2091 t = NULL_RTX;
2092 if (if_info->a == const0_rtx)
2093 {
2094 if ((code == LT && c == const0_rtx)
2095 || (code == LE && c == constm1_rtx))
2096 t = if_info->b;
2097 }
2098 else if (if_info->b == const0_rtx)
2099 {
2100 if ((code == GE && c == const0_rtx)
2101 || (code == GT && c == constm1_rtx))
2102 t = if_info->a;
2103 }
2104
2105 if (! t || side_effects_p (t))
2106 return FALSE;
2107
2108 /* We currently don't handle different modes. */
2109 mode = GET_MODE (t);
2110 if (GET_MODE (m) != mode)
2111 return FALSE;
2112
2113 /* This is only profitable if T is unconditionally executed/evaluated in the
2114 original insn sequence or T is cheap. The former happens if B is the
2115 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2116 INSN_B which can happen for e.g. conditional stores to memory. For the
2117 cost computation use the block TEST_BB where the evaluation will end up
2118 after the transformation. */
2119 t_unconditional =
2120 (t == if_info->b
2121 && (if_info->insn_b == NULL_RTX
2122 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2123 if (!(t_unconditional
2124 || (rtx_cost (t, SET, optimize_bb_for_speed_p (if_info->test_bb))
2125 < COSTS_N_INSNS (2))))
2126 return FALSE;
2127
2128 start_sequence ();
2129 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2130 "(signed) m >> 31" directly. This benefits targets with specialized
2131 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2132 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2133 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2134 : NULL_RTX;
2135
2136 if (!t)
2137 {
2138 end_sequence ();
2139 return FALSE;
2140 }
2141
2142 noce_emit_move_insn (if_info->x, t);
2143
2144 seq = end_ifcvt_sequence (if_info);
2145 if (!seq)
2146 return FALSE;
2147
2148 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2149 return TRUE;
2150 }
2151
2152
2153 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2154 transformations. */
2155
2156 static int
2157 noce_try_bitop (struct noce_if_info *if_info)
2158 {
2159 rtx cond, x, a, result, seq;
2160 enum machine_mode mode;
2161 enum rtx_code code;
2162 int bitnum;
2163
2164 x = if_info->x;
2165 cond = if_info->cond;
2166 code = GET_CODE (cond);
2167
2168 /* Check for no else condition. */
2169 if (! rtx_equal_p (x, if_info->b))
2170 return FALSE;
2171
2172 /* Check for a suitable condition. */
2173 if (code != NE && code != EQ)
2174 return FALSE;
2175 if (XEXP (cond, 1) != const0_rtx)
2176 return FALSE;
2177 cond = XEXP (cond, 0);
2178
2179 /* ??? We could also handle AND here. */
2180 if (GET_CODE (cond) == ZERO_EXTRACT)
2181 {
2182 if (XEXP (cond, 1) != const1_rtx
2183 || !CONST_INT_P (XEXP (cond, 2))
2184 || ! rtx_equal_p (x, XEXP (cond, 0)))
2185 return FALSE;
2186 bitnum = INTVAL (XEXP (cond, 2));
2187 mode = GET_MODE (x);
2188 if (BITS_BIG_ENDIAN)
2189 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2190 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2191 return FALSE;
2192 }
2193 else
2194 return FALSE;
2195
2196 a = if_info->a;
2197 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2198 {
2199 /* Check for "if (X & C) x = x op C". */
2200 if (! rtx_equal_p (x, XEXP (a, 0))
2201 || !CONST_INT_P (XEXP (a, 1))
2202 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2203 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2204 return FALSE;
2205
2206 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2207 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2208 if (GET_CODE (a) == IOR)
2209 result = (code == NE) ? a : NULL_RTX;
2210 else if (code == NE)
2211 {
2212 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2213 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2214 result = simplify_gen_binary (IOR, mode, x, result);
2215 }
2216 else
2217 {
2218 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2219 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2220 result = simplify_gen_binary (AND, mode, x, result);
2221 }
2222 }
2223 else if (GET_CODE (a) == AND)
2224 {
2225 /* Check for "if (X & C) x &= ~C". */
2226 if (! rtx_equal_p (x, XEXP (a, 0))
2227 || !CONST_INT_P (XEXP (a, 1))
2228 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2229 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2230 return FALSE;
2231
2232 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2233 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2234 result = (code == EQ) ? a : NULL_RTX;
2235 }
2236 else
2237 return FALSE;
2238
2239 if (result)
2240 {
2241 start_sequence ();
2242 noce_emit_move_insn (x, result);
2243 seq = end_ifcvt_sequence (if_info);
2244 if (!seq)
2245 return FALSE;
2246
2247 emit_insn_before_setloc (seq, if_info->jump,
2248 INSN_LOCATOR (if_info->insn_a));
2249 }
2250 return TRUE;
2251 }
2252
2253
2254 /* Similar to get_condition, only the resulting condition must be
2255 valid at JUMP, instead of at EARLIEST.
2256
2257 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2258 THEN block of the caller, and we have to reverse the condition. */
2259
2260 static rtx
2261 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2262 {
2263 rtx cond, set, tmp;
2264 bool reverse;
2265
2266 if (! any_condjump_p (jump))
2267 return NULL_RTX;
2268
2269 set = pc_set (jump);
2270
2271 /* If this branches to JUMP_LABEL when the condition is false,
2272 reverse the condition. */
2273 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2274 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2275
2276 /* We may have to reverse because the caller's if block is not canonical,
2277 i.e. the THEN block isn't the fallthrough block for the TEST block
2278 (see find_if_header). */
2279 if (then_else_reversed)
2280 reverse = !reverse;
2281
2282 /* If the condition variable is a register and is MODE_INT, accept it. */
2283
2284 cond = XEXP (SET_SRC (set), 0);
2285 tmp = XEXP (cond, 0);
2286 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2287 {
2288 *earliest = jump;
2289
2290 if (reverse)
2291 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2292 GET_MODE (cond), tmp, XEXP (cond, 1));
2293 return cond;
2294 }
2295
2296 /* Otherwise, fall back on canonicalize_condition to do the dirty
2297 work of manipulating MODE_CC values and COMPARE rtx codes. */
2298 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2299 NULL_RTX, false, true);
2300
2301 /* We don't handle side-effects in the condition, like handling
2302 REG_INC notes and making sure no duplicate conditions are emitted. */
2303 if (tmp != NULL_RTX && side_effects_p (tmp))
2304 return NULL_RTX;
2305
2306 return tmp;
2307 }
2308
2309 /* Return true if OP is ok for if-then-else processing. */
2310
2311 static int
2312 noce_operand_ok (const_rtx op)
2313 {
2314 /* We special-case memories, so handle any of them with
2315 no address side effects. */
2316 if (MEM_P (op))
2317 return ! side_effects_p (XEXP (op, 0));
2318
2319 if (side_effects_p (op))
2320 return FALSE;
2321
2322 return ! may_trap_p (op);
2323 }
2324
2325 /* Return true if a write into MEM may trap or fault. */
2326
2327 static bool
2328 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2329 {
2330 rtx addr;
2331
2332 if (MEM_READONLY_P (mem))
2333 return true;
2334
2335 if (may_trap_or_fault_p (mem))
2336 return true;
2337
2338 addr = XEXP (mem, 0);
2339
2340 /* Call target hook to avoid the effects of -fpic etc.... */
2341 addr = targetm.delegitimize_address (addr);
2342
2343 while (addr)
2344 switch (GET_CODE (addr))
2345 {
2346 case CONST:
2347 case PRE_DEC:
2348 case PRE_INC:
2349 case POST_DEC:
2350 case POST_INC:
2351 case POST_MODIFY:
2352 addr = XEXP (addr, 0);
2353 break;
2354 case LO_SUM:
2355 case PRE_MODIFY:
2356 addr = XEXP (addr, 1);
2357 break;
2358 case PLUS:
2359 if (CONST_INT_P (XEXP (addr, 1)))
2360 addr = XEXP (addr, 0);
2361 else
2362 return false;
2363 break;
2364 case LABEL_REF:
2365 return true;
2366 case SYMBOL_REF:
2367 if (SYMBOL_REF_DECL (addr)
2368 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2369 return true;
2370 return false;
2371 default:
2372 return false;
2373 }
2374
2375 return false;
2376 }
2377
2378 /* Return whether we can use store speculation for MEM. TOP_BB is the
2379 basic block above the conditional block where we are considering
2380 doing the speculative store. We look for whether MEM is set
2381 unconditionally later in the function. */
2382
2383 static bool
2384 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2385 {
2386 basic_block dominator;
2387
2388 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2389 dominator != NULL;
2390 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2391 {
2392 rtx insn;
2393
2394 FOR_BB_INSNS (dominator, insn)
2395 {
2396 /* If we see something that might be a memory barrier, we
2397 have to stop looking. Even if the MEM is set later in
2398 the function, we still don't want to set it
2399 unconditionally before the barrier. */
2400 if (INSN_P (insn)
2401 && (volatile_insn_p (PATTERN (insn))
2402 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2403 return false;
2404
2405 if (memory_modified_in_insn_p (mem, insn))
2406 return true;
2407 if (modified_in_p (XEXP (mem, 0), insn))
2408 return false;
2409
2410 }
2411 }
2412
2413 return false;
2414 }
2415
2416 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2417 it without using conditional execution. Return TRUE if we were successful
2418 at converting the block. */
2419
2420 static int
2421 noce_process_if_block (struct noce_if_info *if_info)
2422 {
2423 basic_block test_bb = if_info->test_bb; /* test block */
2424 basic_block then_bb = if_info->then_bb; /* THEN */
2425 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2426 basic_block join_bb = if_info->join_bb; /* JOIN */
2427 rtx jump = if_info->jump;
2428 rtx cond = if_info->cond;
2429 rtx insn_a, insn_b;
2430 rtx set_a, set_b;
2431 rtx orig_x, x, a, b;
2432
2433 /* We're looking for patterns of the form
2434
2435 (1) if (...) x = a; else x = b;
2436 (2) x = b; if (...) x = a;
2437 (3) if (...) x = a; // as if with an initial x = x.
2438
2439 The later patterns require jumps to be more expensive.
2440
2441 ??? For future expansion, look for multiple X in such patterns. */
2442
2443 /* Look for one of the potential sets. */
2444 insn_a = first_active_insn (then_bb);
2445 if (! insn_a
2446 || insn_a != last_active_insn (then_bb, FALSE)
2447 || (set_a = single_set (insn_a)) == NULL_RTX)
2448 return FALSE;
2449
2450 x = SET_DEST (set_a);
2451 a = SET_SRC (set_a);
2452
2453 /* Look for the other potential set. Make sure we've got equivalent
2454 destinations. */
2455 /* ??? This is overconservative. Storing to two different mems is
2456 as easy as conditionally computing the address. Storing to a
2457 single mem merely requires a scratch memory to use as one of the
2458 destination addresses; often the memory immediately below the
2459 stack pointer is available for this. */
2460 set_b = NULL_RTX;
2461 if (else_bb)
2462 {
2463 insn_b = first_active_insn (else_bb);
2464 if (! insn_b
2465 || insn_b != last_active_insn (else_bb, FALSE)
2466 || (set_b = single_set (insn_b)) == NULL_RTX
2467 || ! rtx_equal_p (x, SET_DEST (set_b)))
2468 return FALSE;
2469 }
2470 else
2471 {
2472 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2473 /* We're going to be moving the evaluation of B down from above
2474 COND_EARLIEST to JUMP. Make sure the relevant data is still
2475 intact. */
2476 if (! insn_b
2477 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2478 || !NONJUMP_INSN_P (insn_b)
2479 || (set_b = single_set (insn_b)) == NULL_RTX
2480 || ! rtx_equal_p (x, SET_DEST (set_b))
2481 || ! noce_operand_ok (SET_SRC (set_b))
2482 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2483 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2484 /* Likewise with X. In particular this can happen when
2485 noce_get_condition looks farther back in the instruction
2486 stream than one might expect. */
2487 || reg_overlap_mentioned_p (x, cond)
2488 || reg_overlap_mentioned_p (x, a)
2489 || modified_between_p (x, insn_b, jump))
2490 insn_b = set_b = NULL_RTX;
2491 }
2492
2493 /* If x has side effects then only the if-then-else form is safe to
2494 convert. But even in that case we would need to restore any notes
2495 (such as REG_INC) at then end. That can be tricky if
2496 noce_emit_move_insn expands to more than one insn, so disable the
2497 optimization entirely for now if there are side effects. */
2498 if (side_effects_p (x))
2499 return FALSE;
2500
2501 b = (set_b ? SET_SRC (set_b) : x);
2502
2503 /* Only operate on register destinations, and even then avoid extending
2504 the lifetime of hard registers on small register class machines. */
2505 orig_x = x;
2506 if (!REG_P (x)
2507 || (HARD_REGISTER_P (x)
2508 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2509 {
2510 if (GET_MODE (x) == BLKmode)
2511 return FALSE;
2512
2513 if (GET_CODE (x) == ZERO_EXTRACT
2514 && (!CONST_INT_P (XEXP (x, 1))
2515 || !CONST_INT_P (XEXP (x, 2))))
2516 return FALSE;
2517
2518 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2519 ? XEXP (x, 0) : x));
2520 }
2521
2522 /* Don't operate on sources that may trap or are volatile. */
2523 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2524 return FALSE;
2525
2526 retry:
2527 /* Set up the info block for our subroutines. */
2528 if_info->insn_a = insn_a;
2529 if_info->insn_b = insn_b;
2530 if_info->x = x;
2531 if_info->a = a;
2532 if_info->b = b;
2533
2534 /* Try optimizations in some approximation of a useful order. */
2535 /* ??? Should first look to see if X is live incoming at all. If it
2536 isn't, we don't need anything but an unconditional set. */
2537
2538 /* Look and see if A and B are really the same. Avoid creating silly
2539 cmove constructs that no one will fix up later. */
2540 if (rtx_equal_p (a, b))
2541 {
2542 /* If we have an INSN_B, we don't have to create any new rtl. Just
2543 move the instruction that we already have. If we don't have an
2544 INSN_B, that means that A == X, and we've got a noop move. In
2545 that case don't do anything and let the code below delete INSN_A. */
2546 if (insn_b && else_bb)
2547 {
2548 rtx note;
2549
2550 if (else_bb && insn_b == BB_END (else_bb))
2551 BB_END (else_bb) = PREV_INSN (insn_b);
2552 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2553
2554 /* If there was a REG_EQUAL note, delete it since it may have been
2555 true due to this insn being after a jump. */
2556 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2557 remove_note (insn_b, note);
2558
2559 insn_b = NULL_RTX;
2560 }
2561 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2562 x must be executed twice. */
2563 else if (insn_b && side_effects_p (orig_x))
2564 return FALSE;
2565
2566 x = orig_x;
2567 goto success;
2568 }
2569
2570 if (!set_b && MEM_P (orig_x))
2571 {
2572 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2573 for optimizations if writing to x may trap or fault,
2574 i.e. it's a memory other than a static var or a stack slot,
2575 is misaligned on strict aligned machines or is read-only. If
2576 x is a read-only memory, then the program is valid only if we
2577 avoid the store into it. If there are stores on both the
2578 THEN and ELSE arms, then we can go ahead with the conversion;
2579 either the program is broken, or the condition is always
2580 false such that the other memory is selected. */
2581 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2582 return FALSE;
2583
2584 /* Avoid store speculation: given "if (...) x = a" where x is a
2585 MEM, we only want to do the store if x is always set
2586 somewhere in the function. This avoids cases like
2587 if (pthread_mutex_trylock(mutex))
2588 ++global_variable;
2589 where we only want global_variable to be changed if the mutex
2590 is held. FIXME: This should ideally be expressed directly in
2591 RTL somehow. */
2592 if (!noce_can_store_speculate_p (test_bb, orig_x))
2593 return FALSE;
2594 }
2595
2596 if (noce_try_move (if_info))
2597 goto success;
2598 if (noce_try_store_flag (if_info))
2599 goto success;
2600 if (noce_try_bitop (if_info))
2601 goto success;
2602 if (noce_try_minmax (if_info))
2603 goto success;
2604 if (noce_try_abs (if_info))
2605 goto success;
2606 if (HAVE_conditional_move
2607 && noce_try_cmove (if_info))
2608 goto success;
2609 if (! targetm.have_conditional_execution ())
2610 {
2611 if (noce_try_store_flag_constants (if_info))
2612 goto success;
2613 if (noce_try_addcc (if_info))
2614 goto success;
2615 if (noce_try_store_flag_mask (if_info))
2616 goto success;
2617 if (HAVE_conditional_move
2618 && noce_try_cmove_arith (if_info))
2619 goto success;
2620 if (noce_try_sign_mask (if_info))
2621 goto success;
2622 }
2623
2624 if (!else_bb && set_b)
2625 {
2626 insn_b = set_b = NULL_RTX;
2627 b = orig_x;
2628 goto retry;
2629 }
2630
2631 return FALSE;
2632
2633 success:
2634
2635 /* If we used a temporary, fix it up now. */
2636 if (orig_x != x)
2637 {
2638 rtx seq;
2639
2640 start_sequence ();
2641 noce_emit_move_insn (orig_x, x);
2642 seq = get_insns ();
2643 set_used_flags (orig_x);
2644 unshare_all_rtl_in_chain (seq);
2645 end_sequence ();
2646
2647 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2648 }
2649
2650 /* The original THEN and ELSE blocks may now be removed. The test block
2651 must now jump to the join block. If the test block and the join block
2652 can be merged, do so. */
2653 if (else_bb)
2654 {
2655 delete_basic_block (else_bb);
2656 num_true_changes++;
2657 }
2658 else
2659 remove_edge (find_edge (test_bb, join_bb));
2660
2661 remove_edge (find_edge (then_bb, join_bb));
2662 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2663 delete_basic_block (then_bb);
2664 num_true_changes++;
2665
2666 if (can_merge_blocks_p (test_bb, join_bb))
2667 {
2668 merge_blocks (test_bb, join_bb);
2669 num_true_changes++;
2670 }
2671
2672 num_updated_if_blocks++;
2673 return TRUE;
2674 }
2675
2676 /* Check whether a block is suitable for conditional move conversion.
2677 Every insn must be a simple set of a register to a constant or a
2678 register. For each assignment, store the value in the array VALS,
2679 indexed by register number, then store the register number in
2680 REGS. COND is the condition we will test. */
2681
2682 static int
2683 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs,
2684 rtx cond)
2685 {
2686 rtx insn;
2687
2688 /* We can only handle simple jumps at the end of the basic block.
2689 It is almost impossible to update the CFG otherwise. */
2690 insn = BB_END (bb);
2691 if (JUMP_P (insn) && !onlyjump_p (insn))
2692 return FALSE;
2693
2694 FOR_BB_INSNS (bb, insn)
2695 {
2696 rtx set, dest, src;
2697
2698 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2699 continue;
2700 set = single_set (insn);
2701 if (!set)
2702 return FALSE;
2703
2704 dest = SET_DEST (set);
2705 src = SET_SRC (set);
2706 if (!REG_P (dest)
2707 || (HARD_REGISTER_P (dest)
2708 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2709 return FALSE;
2710
2711 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2712 return FALSE;
2713
2714 if (side_effects_p (src) || side_effects_p (dest))
2715 return FALSE;
2716
2717 if (may_trap_p (src) || may_trap_p (dest))
2718 return FALSE;
2719
2720 /* Don't try to handle this if the source register was
2721 modified earlier in the block. */
2722 if ((REG_P (src)
2723 && vals[REGNO (src)] != NULL)
2724 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2725 && vals[REGNO (SUBREG_REG (src))] != NULL))
2726 return FALSE;
2727
2728 /* Don't try to handle this if the destination register was
2729 modified earlier in the block. */
2730 if (vals[REGNO (dest)] != NULL)
2731 return FALSE;
2732
2733 /* Don't try to handle this if the condition uses the
2734 destination register. */
2735 if (reg_overlap_mentioned_p (dest, cond))
2736 return FALSE;
2737
2738 /* Don't try to handle this if the source register is modified
2739 later in the block. */
2740 if (!CONSTANT_P (src)
2741 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2742 return FALSE;
2743
2744 vals[REGNO (dest)] = src;
2745
2746 VEC_safe_push (int, heap, *regs, REGNO (dest));
2747 }
2748
2749 return TRUE;
2750 }
2751
2752 /* Given a basic block BB suitable for conditional move conversion,
2753 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2754 register values depending on COND, emit the insns in the block as
2755 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2756 processed. The caller has started a sequence for the conversion.
2757 Return true if successful, false if something goes wrong. */
2758
2759 static bool
2760 cond_move_convert_if_block (struct noce_if_info *if_infop,
2761 basic_block bb, rtx cond,
2762 rtx *then_vals, rtx *else_vals,
2763 bool else_block_p)
2764 {
2765 enum rtx_code code;
2766 rtx insn, cond_arg0, cond_arg1;
2767
2768 code = GET_CODE (cond);
2769 cond_arg0 = XEXP (cond, 0);
2770 cond_arg1 = XEXP (cond, 1);
2771
2772 FOR_BB_INSNS (bb, insn)
2773 {
2774 rtx set, target, dest, t, e;
2775 unsigned int regno;
2776
2777 /* ??? Maybe emit conditional debug insn? */
2778 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2779 continue;
2780 set = single_set (insn);
2781 gcc_assert (set && REG_P (SET_DEST (set)));
2782
2783 dest = SET_DEST (set);
2784 regno = REGNO (dest);
2785
2786 t = then_vals[regno];
2787 e = else_vals[regno];
2788
2789 if (else_block_p)
2790 {
2791 /* If this register was set in the then block, we already
2792 handled this case there. */
2793 if (t)
2794 continue;
2795 t = dest;
2796 gcc_assert (e);
2797 }
2798 else
2799 {
2800 gcc_assert (t);
2801 if (!e)
2802 e = dest;
2803 }
2804
2805 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2806 t, e);
2807 if (!target)
2808 return false;
2809
2810 if (target != dest)
2811 noce_emit_move_insn (dest, target);
2812 }
2813
2814 return true;
2815 }
2816
2817 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2818 it using only conditional moves. Return TRUE if we were successful at
2819 converting the block. */
2820
2821 static int
2822 cond_move_process_if_block (struct noce_if_info *if_info)
2823 {
2824 basic_block test_bb = if_info->test_bb;
2825 basic_block then_bb = if_info->then_bb;
2826 basic_block else_bb = if_info->else_bb;
2827 basic_block join_bb = if_info->join_bb;
2828 rtx jump = if_info->jump;
2829 rtx cond = if_info->cond;
2830 rtx seq, loc_insn;
2831 int max_reg, size, c, reg;
2832 rtx *then_vals;
2833 rtx *else_vals;
2834 VEC (int, heap) *then_regs = NULL;
2835 VEC (int, heap) *else_regs = NULL;
2836 unsigned int i;
2837
2838 /* Build a mapping for each block to the value used for each
2839 register. */
2840 max_reg = max_reg_num ();
2841 size = (max_reg + 1) * sizeof (rtx);
2842 then_vals = (rtx *) alloca (size);
2843 else_vals = (rtx *) alloca (size);
2844 memset (then_vals, 0, size);
2845 memset (else_vals, 0, size);
2846
2847 /* Make sure the blocks are suitable. */
2848 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2849 || (else_bb
2850 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2851 {
2852 VEC_free (int, heap, then_regs);
2853 VEC_free (int, heap, else_regs);
2854 return FALSE;
2855 }
2856
2857 /* Make sure the blocks can be used together. If the same register
2858 is set in both blocks, and is not set to a constant in both
2859 cases, then both blocks must set it to the same register. We
2860 have already verified that if it is set to a register, that the
2861 source register does not change after the assignment. Also count
2862 the number of registers set in only one of the blocks. */
2863 c = 0;
2864 FOR_EACH_VEC_ELT (int, then_regs, i, reg)
2865 {
2866 if (!then_vals[reg] && !else_vals[reg])
2867 continue;
2868
2869 if (!else_vals[reg])
2870 ++c;
2871 else
2872 {
2873 if (!CONSTANT_P (then_vals[reg])
2874 && !CONSTANT_P (else_vals[reg])
2875 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2876 {
2877 VEC_free (int, heap, then_regs);
2878 VEC_free (int, heap, else_regs);
2879 return FALSE;
2880 }
2881 }
2882 }
2883
2884 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2885 FOR_EACH_VEC_ELT (int, else_regs, i, reg)
2886 if (!then_vals[reg])
2887 ++c;
2888
2889 /* Make sure it is reasonable to convert this block. What matters
2890 is the number of assignments currently made in only one of the
2891 branches, since if we convert we are going to always execute
2892 them. */
2893 if (c > MAX_CONDITIONAL_EXECUTE)
2894 {
2895 VEC_free (int, heap, then_regs);
2896 VEC_free (int, heap, else_regs);
2897 return FALSE;
2898 }
2899
2900 /* Try to emit the conditional moves. First do the then block,
2901 then do anything left in the else blocks. */
2902 start_sequence ();
2903 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2904 then_vals, else_vals, false)
2905 || (else_bb
2906 && !cond_move_convert_if_block (if_info, else_bb, cond,
2907 then_vals, else_vals, true)))
2908 {
2909 end_sequence ();
2910 VEC_free (int, heap, then_regs);
2911 VEC_free (int, heap, else_regs);
2912 return FALSE;
2913 }
2914 seq = end_ifcvt_sequence (if_info);
2915 if (!seq)
2916 {
2917 VEC_free (int, heap, then_regs);
2918 VEC_free (int, heap, else_regs);
2919 return FALSE;
2920 }
2921
2922 loc_insn = first_active_insn (then_bb);
2923 if (!loc_insn)
2924 {
2925 loc_insn = first_active_insn (else_bb);
2926 gcc_assert (loc_insn);
2927 }
2928 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2929
2930 if (else_bb)
2931 {
2932 delete_basic_block (else_bb);
2933 num_true_changes++;
2934 }
2935 else
2936 remove_edge (find_edge (test_bb, join_bb));
2937
2938 remove_edge (find_edge (then_bb, join_bb));
2939 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2940 delete_basic_block (then_bb);
2941 num_true_changes++;
2942
2943 if (can_merge_blocks_p (test_bb, join_bb))
2944 {
2945 merge_blocks (test_bb, join_bb);
2946 num_true_changes++;
2947 }
2948
2949 num_updated_if_blocks++;
2950
2951 VEC_free (int, heap, then_regs);
2952 VEC_free (int, heap, else_regs);
2953 return TRUE;
2954 }
2955
2956 \f
2957 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2958 IF-THEN-ELSE-JOIN block.
2959
2960 If so, we'll try to convert the insns to not require the branch,
2961 using only transformations that do not require conditional execution.
2962
2963 Return TRUE if we were successful at converting the block. */
2964
2965 static int
2966 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2967 int pass)
2968 {
2969 basic_block then_bb, else_bb, join_bb;
2970 bool then_else_reversed = false;
2971 rtx jump, cond;
2972 rtx cond_earliest;
2973 struct noce_if_info if_info;
2974
2975 /* We only ever should get here before reload. */
2976 gcc_assert (!reload_completed);
2977
2978 /* Recognize an IF-THEN-ELSE-JOIN block. */
2979 if (single_pred_p (then_edge->dest)
2980 && single_succ_p (then_edge->dest)
2981 && single_pred_p (else_edge->dest)
2982 && single_succ_p (else_edge->dest)
2983 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2984 {
2985 then_bb = then_edge->dest;
2986 else_bb = else_edge->dest;
2987 join_bb = single_succ (then_bb);
2988 }
2989 /* Recognize an IF-THEN-JOIN block. */
2990 else if (single_pred_p (then_edge->dest)
2991 && single_succ_p (then_edge->dest)
2992 && single_succ (then_edge->dest) == else_edge->dest)
2993 {
2994 then_bb = then_edge->dest;
2995 else_bb = NULL_BLOCK;
2996 join_bb = else_edge->dest;
2997 }
2998 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2999 of basic blocks in cfglayout mode does not matter, so the fallthrough
3000 edge can go to any basic block (and not just to bb->next_bb, like in
3001 cfgrtl mode). */
3002 else if (single_pred_p (else_edge->dest)
3003 && single_succ_p (else_edge->dest)
3004 && single_succ (else_edge->dest) == then_edge->dest)
3005 {
3006 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3007 To make this work, we have to invert the THEN and ELSE blocks
3008 and reverse the jump condition. */
3009 then_bb = else_edge->dest;
3010 else_bb = NULL_BLOCK;
3011 join_bb = single_succ (then_bb);
3012 then_else_reversed = true;
3013 }
3014 else
3015 /* Not a form we can handle. */
3016 return FALSE;
3017
3018 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3019 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3020 return FALSE;
3021 if (else_bb
3022 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3023 return FALSE;
3024
3025 num_possible_if_blocks++;
3026
3027 if (dump_file)
3028 {
3029 fprintf (dump_file,
3030 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3031 (else_bb) ? "-ELSE" : "",
3032 pass, test_bb->index, then_bb->index);
3033
3034 if (else_bb)
3035 fprintf (dump_file, ", else %d", else_bb->index);
3036
3037 fprintf (dump_file, ", join %d\n", join_bb->index);
3038 }
3039
3040 /* If the conditional jump is more than just a conditional
3041 jump, then we can not do if-conversion on this block. */
3042 jump = BB_END (test_bb);
3043 if (! onlyjump_p (jump))
3044 return FALSE;
3045
3046 /* If this is not a standard conditional jump, we can't parse it. */
3047 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3048 if (!cond)
3049 return FALSE;
3050
3051 /* We must be comparing objects whose modes imply the size. */
3052 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3053 return FALSE;
3054
3055 /* Initialize an IF_INFO struct to pass around. */
3056 memset (&if_info, 0, sizeof if_info);
3057 if_info.test_bb = test_bb;
3058 if_info.then_bb = then_bb;
3059 if_info.else_bb = else_bb;
3060 if_info.join_bb = join_bb;
3061 if_info.cond = cond;
3062 if_info.cond_earliest = cond_earliest;
3063 if_info.jump = jump;
3064 if_info.then_else_reversed = then_else_reversed;
3065 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3066 predictable_edge_p (then_edge));
3067
3068 /* Do the real work. */
3069
3070 if (noce_process_if_block (&if_info))
3071 return TRUE;
3072
3073 if (HAVE_conditional_move
3074 && cond_move_process_if_block (&if_info))
3075 return TRUE;
3076
3077 return FALSE;
3078 }
3079 \f
3080
3081 /* Merge the blocks and mark for local life update. */
3082
3083 static void
3084 merge_if_block (struct ce_if_block * ce_info)
3085 {
3086 basic_block test_bb = ce_info->test_bb; /* last test block */
3087 basic_block then_bb = ce_info->then_bb; /* THEN */
3088 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3089 basic_block join_bb = ce_info->join_bb; /* join block */
3090 basic_block combo_bb;
3091
3092 /* All block merging is done into the lower block numbers. */
3093
3094 combo_bb = test_bb;
3095 df_set_bb_dirty (test_bb);
3096
3097 /* Merge any basic blocks to handle && and || subtests. Each of
3098 the blocks are on the fallthru path from the predecessor block. */
3099 if (ce_info->num_multiple_test_blocks > 0)
3100 {
3101 basic_block bb = test_bb;
3102 basic_block last_test_bb = ce_info->last_test_bb;
3103 basic_block fallthru = block_fallthru (bb);
3104
3105 do
3106 {
3107 bb = fallthru;
3108 fallthru = block_fallthru (bb);
3109 merge_blocks (combo_bb, bb);
3110 num_true_changes++;
3111 }
3112 while (bb != last_test_bb);
3113 }
3114
3115 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3116 label, but it might if there were || tests. That label's count should be
3117 zero, and it normally should be removed. */
3118
3119 if (then_bb)
3120 {
3121 merge_blocks (combo_bb, then_bb);
3122 num_true_changes++;
3123 }
3124
3125 /* The ELSE block, if it existed, had a label. That label count
3126 will almost always be zero, but odd things can happen when labels
3127 get their addresses taken. */
3128 if (else_bb)
3129 {
3130 merge_blocks (combo_bb, else_bb);
3131 num_true_changes++;
3132 }
3133
3134 /* If there was no join block reported, that means it was not adjacent
3135 to the others, and so we cannot merge them. */
3136
3137 if (! join_bb)
3138 {
3139 rtx last = BB_END (combo_bb);
3140
3141 /* The outgoing edge for the current COMBO block should already
3142 be correct. Verify this. */
3143 if (EDGE_COUNT (combo_bb->succs) == 0)
3144 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3145 || (NONJUMP_INSN_P (last)
3146 && GET_CODE (PATTERN (last)) == TRAP_IF
3147 && (TRAP_CONDITION (PATTERN (last))
3148 == const_true_rtx)));
3149
3150 else
3151 /* There should still be something at the end of the THEN or ELSE
3152 blocks taking us to our final destination. */
3153 gcc_assert (JUMP_P (last)
3154 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3155 && CALL_P (last)
3156 && SIBLING_CALL_P (last))
3157 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3158 && can_throw_internal (last)));
3159 }
3160
3161 /* The JOIN block may have had quite a number of other predecessors too.
3162 Since we've already merged the TEST, THEN and ELSE blocks, we should
3163 have only one remaining edge from our if-then-else diamond. If there
3164 is more than one remaining edge, it must come from elsewhere. There
3165 may be zero incoming edges if the THEN block didn't actually join
3166 back up (as with a call to a non-return function). */
3167 else if (EDGE_COUNT (join_bb->preds) < 2
3168 && join_bb != EXIT_BLOCK_PTR)
3169 {
3170 /* We can merge the JOIN cleanly and update the dataflow try
3171 again on this pass.*/
3172 merge_blocks (combo_bb, join_bb);
3173 num_true_changes++;
3174 }
3175 else
3176 {
3177 /* We cannot merge the JOIN. */
3178
3179 /* The outgoing edge for the current COMBO block should already
3180 be correct. Verify this. */
3181 gcc_assert (single_succ_p (combo_bb)
3182 && single_succ (combo_bb) == join_bb);
3183
3184 /* Remove the jump and cruft from the end of the COMBO block. */
3185 if (join_bb != EXIT_BLOCK_PTR)
3186 tidy_fallthru_edge (single_succ_edge (combo_bb));
3187 }
3188
3189 num_updated_if_blocks++;
3190 }
3191 \f
3192 /* Find a block ending in a simple IF condition and try to transform it
3193 in some way. When converting a multi-block condition, put the new code
3194 in the first such block and delete the rest. Return a pointer to this
3195 first block if some transformation was done. Return NULL otherwise. */
3196
3197 static basic_block
3198 find_if_header (basic_block test_bb, int pass)
3199 {
3200 ce_if_block_t ce_info;
3201 edge then_edge;
3202 edge else_edge;
3203
3204 /* The kind of block we're looking for has exactly two successors. */
3205 if (EDGE_COUNT (test_bb->succs) != 2)
3206 return NULL;
3207
3208 then_edge = EDGE_SUCC (test_bb, 0);
3209 else_edge = EDGE_SUCC (test_bb, 1);
3210
3211 if (df_get_bb_dirty (then_edge->dest))
3212 return NULL;
3213 if (df_get_bb_dirty (else_edge->dest))
3214 return NULL;
3215
3216 /* Neither edge should be abnormal. */
3217 if ((then_edge->flags & EDGE_COMPLEX)
3218 || (else_edge->flags & EDGE_COMPLEX))
3219 return NULL;
3220
3221 /* Nor exit the loop. */
3222 if ((then_edge->flags & EDGE_LOOP_EXIT)
3223 || (else_edge->flags & EDGE_LOOP_EXIT))
3224 return NULL;
3225
3226 /* The THEN edge is canonically the one that falls through. */
3227 if (then_edge->flags & EDGE_FALLTHRU)
3228 ;
3229 else if (else_edge->flags & EDGE_FALLTHRU)
3230 {
3231 edge e = else_edge;
3232 else_edge = then_edge;
3233 then_edge = e;
3234 }
3235 else
3236 /* Otherwise this must be a multiway branch of some sort. */
3237 return NULL;
3238
3239 memset (&ce_info, 0, sizeof (ce_info));
3240 ce_info.test_bb = test_bb;
3241 ce_info.then_bb = then_edge->dest;
3242 ce_info.else_bb = else_edge->dest;
3243 ce_info.pass = pass;
3244
3245 #ifdef IFCVT_INIT_EXTRA_FIELDS
3246 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3247 #endif
3248
3249 if (!reload_completed
3250 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3251 goto success;
3252
3253 if (reload_completed
3254 && targetm.have_conditional_execution ()
3255 && cond_exec_find_if_block (&ce_info))
3256 goto success;
3257
3258 if (HAVE_trap
3259 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3260 && find_cond_trap (test_bb, then_edge, else_edge))
3261 goto success;
3262
3263 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3264 && (reload_completed || !targetm.have_conditional_execution ()))
3265 {
3266 if (find_if_case_1 (test_bb, then_edge, else_edge))
3267 goto success;
3268 if (find_if_case_2 (test_bb, then_edge, else_edge))
3269 goto success;
3270 }
3271
3272 return NULL;
3273
3274 success:
3275 if (dump_file)
3276 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3277 /* Set this so we continue looking. */
3278 cond_exec_changed_p = TRUE;
3279 return ce_info.test_bb;
3280 }
3281
3282 /* Return true if a block has two edges, one of which falls through to the next
3283 block, and the other jumps to a specific block, so that we can tell if the
3284 block is part of an && test or an || test. Returns either -1 or the number
3285 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3286
3287 static int
3288 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3289 {
3290 edge cur_edge;
3291 int fallthru_p = FALSE;
3292 int jump_p = FALSE;
3293 rtx insn;
3294 rtx end;
3295 int n_insns = 0;
3296 edge_iterator ei;
3297
3298 if (!cur_bb || !target_bb)
3299 return -1;
3300
3301 /* If no edges, obviously it doesn't jump or fallthru. */
3302 if (EDGE_COUNT (cur_bb->succs) == 0)
3303 return FALSE;
3304
3305 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3306 {
3307 if (cur_edge->flags & EDGE_COMPLEX)
3308 /* Anything complex isn't what we want. */
3309 return -1;
3310
3311 else if (cur_edge->flags & EDGE_FALLTHRU)
3312 fallthru_p = TRUE;
3313
3314 else if (cur_edge->dest == target_bb)
3315 jump_p = TRUE;
3316
3317 else
3318 return -1;
3319 }
3320
3321 if ((jump_p & fallthru_p) == 0)
3322 return -1;
3323
3324 /* Don't allow calls in the block, since this is used to group && and ||
3325 together for conditional execution support. ??? we should support
3326 conditional execution support across calls for IA-64 some day, but
3327 for now it makes the code simpler. */
3328 end = BB_END (cur_bb);
3329 insn = BB_HEAD (cur_bb);
3330
3331 while (insn != NULL_RTX)
3332 {
3333 if (CALL_P (insn))
3334 return -1;
3335
3336 if (INSN_P (insn)
3337 && !JUMP_P (insn)
3338 && !DEBUG_INSN_P (insn)
3339 && GET_CODE (PATTERN (insn)) != USE
3340 && GET_CODE (PATTERN (insn)) != CLOBBER)
3341 n_insns++;
3342
3343 if (insn == end)
3344 break;
3345
3346 insn = NEXT_INSN (insn);
3347 }
3348
3349 return n_insns;
3350 }
3351
3352 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3353 block. If so, we'll try to convert the insns to not require the branch.
3354 Return TRUE if we were successful at converting the block. */
3355
3356 static int
3357 cond_exec_find_if_block (struct ce_if_block * ce_info)
3358 {
3359 basic_block test_bb = ce_info->test_bb;
3360 basic_block then_bb = ce_info->then_bb;
3361 basic_block else_bb = ce_info->else_bb;
3362 basic_block join_bb = NULL_BLOCK;
3363 edge cur_edge;
3364 basic_block next;
3365 edge_iterator ei;
3366
3367 ce_info->last_test_bb = test_bb;
3368
3369 /* We only ever should get here after reload,
3370 and if we have conditional execution. */
3371 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3372
3373 /* Discover if any fall through predecessors of the current test basic block
3374 were && tests (which jump to the else block) or || tests (which jump to
3375 the then block). */
3376 if (single_pred_p (test_bb)
3377 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3378 {
3379 basic_block bb = single_pred (test_bb);
3380 basic_block target_bb;
3381 int max_insns = MAX_CONDITIONAL_EXECUTE;
3382 int n_insns;
3383
3384 /* Determine if the preceding block is an && or || block. */
3385 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3386 {
3387 ce_info->and_and_p = TRUE;
3388 target_bb = else_bb;
3389 }
3390 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3391 {
3392 ce_info->and_and_p = FALSE;
3393 target_bb = then_bb;
3394 }
3395 else
3396 target_bb = NULL_BLOCK;
3397
3398 if (target_bb && n_insns <= max_insns)
3399 {
3400 int total_insns = 0;
3401 int blocks = 0;
3402
3403 ce_info->last_test_bb = test_bb;
3404
3405 /* Found at least one && or || block, look for more. */
3406 do
3407 {
3408 ce_info->test_bb = test_bb = bb;
3409 total_insns += n_insns;
3410 blocks++;
3411
3412 if (!single_pred_p (bb))
3413 break;
3414
3415 bb = single_pred (bb);
3416 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3417 }
3418 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3419
3420 ce_info->num_multiple_test_blocks = blocks;
3421 ce_info->num_multiple_test_insns = total_insns;
3422
3423 if (ce_info->and_and_p)
3424 ce_info->num_and_and_blocks = blocks;
3425 else
3426 ce_info->num_or_or_blocks = blocks;
3427 }
3428 }
3429
3430 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3431 other than any || blocks which jump to the THEN block. */
3432 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3433 return FALSE;
3434
3435 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3436 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3437 {
3438 if (cur_edge->flags & EDGE_COMPLEX)
3439 return FALSE;
3440 }
3441
3442 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3443 {
3444 if (cur_edge->flags & EDGE_COMPLEX)
3445 return FALSE;
3446 }
3447
3448 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3449 if (EDGE_COUNT (then_bb->succs) > 0
3450 && (!single_succ_p (then_bb)
3451 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3452 || (epilogue_completed
3453 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3454 return FALSE;
3455
3456 /* If the THEN block has no successors, conditional execution can still
3457 make a conditional call. Don't do this unless the ELSE block has
3458 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3459 Check for the last insn of the THEN block being an indirect jump, which
3460 is listed as not having any successors, but confuses the rest of the CE
3461 code processing. ??? we should fix this in the future. */
3462 if (EDGE_COUNT (then_bb->succs) == 0)
3463 {
3464 if (single_pred_p (else_bb))
3465 {
3466 rtx last_insn = BB_END (then_bb);
3467
3468 while (last_insn
3469 && NOTE_P (last_insn)
3470 && last_insn != BB_HEAD (then_bb))
3471 last_insn = PREV_INSN (last_insn);
3472
3473 if (last_insn
3474 && JUMP_P (last_insn)
3475 && ! simplejump_p (last_insn))
3476 return FALSE;
3477
3478 join_bb = else_bb;
3479 else_bb = NULL_BLOCK;
3480 }
3481 else
3482 return FALSE;
3483 }
3484
3485 /* If the THEN block's successor is the other edge out of the TEST block,
3486 then we have an IF-THEN combo without an ELSE. */
3487 else if (single_succ (then_bb) == else_bb)
3488 {
3489 join_bb = else_bb;
3490 else_bb = NULL_BLOCK;
3491 }
3492
3493 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3494 has exactly one predecessor and one successor, and the outgoing edge
3495 is not complex, then we have an IF-THEN-ELSE combo. */
3496 else if (single_succ_p (else_bb)
3497 && single_succ (then_bb) == single_succ (else_bb)
3498 && single_pred_p (else_bb)
3499 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3500 && !(epilogue_completed
3501 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3502 join_bb = single_succ (else_bb);
3503
3504 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3505 else
3506 return FALSE;
3507
3508 num_possible_if_blocks++;
3509
3510 if (dump_file)
3511 {
3512 fprintf (dump_file,
3513 "\nIF-THEN%s block found, pass %d, start block %d "
3514 "[insn %d], then %d [%d]",
3515 (else_bb) ? "-ELSE" : "",
3516 ce_info->pass,
3517 test_bb->index,
3518 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3519 then_bb->index,
3520 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3521
3522 if (else_bb)
3523 fprintf (dump_file, ", else %d [%d]",
3524 else_bb->index,
3525 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3526
3527 fprintf (dump_file, ", join %d [%d]",
3528 join_bb->index,
3529 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3530
3531 if (ce_info->num_multiple_test_blocks > 0)
3532 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3533 ce_info->num_multiple_test_blocks,
3534 (ce_info->and_and_p) ? "&&" : "||",
3535 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3536 ce_info->last_test_bb->index,
3537 ((BB_HEAD (ce_info->last_test_bb))
3538 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3539 : -1));
3540
3541 fputc ('\n', dump_file);
3542 }
3543
3544 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3545 first condition for free, since we've already asserted that there's a
3546 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3547 we checked the FALLTHRU flag, those are already adjacent to the last IF
3548 block. */
3549 /* ??? As an enhancement, move the ELSE block. Have to deal with
3550 BLOCK notes, if by no other means than backing out the merge if they
3551 exist. Sticky enough I don't want to think about it now. */
3552 next = then_bb;
3553 if (else_bb && (next = next->next_bb) != else_bb)
3554 return FALSE;
3555 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3556 {
3557 if (else_bb)
3558 join_bb = NULL;
3559 else
3560 return FALSE;
3561 }
3562
3563 /* Do the real work. */
3564
3565 ce_info->else_bb = else_bb;
3566 ce_info->join_bb = join_bb;
3567
3568 /* If we have && and || tests, try to first handle combining the && and ||
3569 tests into the conditional code, and if that fails, go back and handle
3570 it without the && and ||, which at present handles the && case if there
3571 was no ELSE block. */
3572 if (cond_exec_process_if_block (ce_info, TRUE))
3573 return TRUE;
3574
3575 if (ce_info->num_multiple_test_blocks)
3576 {
3577 cancel_changes (0);
3578
3579 if (cond_exec_process_if_block (ce_info, FALSE))
3580 return TRUE;
3581 }
3582
3583 return FALSE;
3584 }
3585
3586 /* Convert a branch over a trap, or a branch
3587 to a trap, into a conditional trap. */
3588
3589 static int
3590 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3591 {
3592 basic_block then_bb = then_edge->dest;
3593 basic_block else_bb = else_edge->dest;
3594 basic_block other_bb, trap_bb;
3595 rtx trap, jump, cond, cond_earliest, seq;
3596 enum rtx_code code;
3597
3598 /* Locate the block with the trap instruction. */
3599 /* ??? While we look for no successors, we really ought to allow
3600 EH successors. Need to fix merge_if_block for that to work. */
3601 if ((trap = block_has_only_trap (then_bb)) != NULL)
3602 trap_bb = then_bb, other_bb = else_bb;
3603 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3604 trap_bb = else_bb, other_bb = then_bb;
3605 else
3606 return FALSE;
3607
3608 if (dump_file)
3609 {
3610 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3611 test_bb->index, trap_bb->index);
3612 }
3613
3614 /* If this is not a standard conditional jump, we can't parse it. */
3615 jump = BB_END (test_bb);
3616 cond = noce_get_condition (jump, &cond_earliest, false);
3617 if (! cond)
3618 return FALSE;
3619
3620 /* If the conditional jump is more than just a conditional jump, then
3621 we can not do if-conversion on this block. */
3622 if (! onlyjump_p (jump))
3623 return FALSE;
3624
3625 /* We must be comparing objects whose modes imply the size. */
3626 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3627 return FALSE;
3628
3629 /* Reverse the comparison code, if necessary. */
3630 code = GET_CODE (cond);
3631 if (then_bb == trap_bb)
3632 {
3633 code = reversed_comparison_code (cond, jump);
3634 if (code == UNKNOWN)
3635 return FALSE;
3636 }
3637
3638 /* Attempt to generate the conditional trap. */
3639 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3640 copy_rtx (XEXP (cond, 1)),
3641 TRAP_CODE (PATTERN (trap)));
3642 if (seq == NULL)
3643 return FALSE;
3644
3645 /* Emit the new insns before cond_earliest. */
3646 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3647
3648 /* Delete the trap block if possible. */
3649 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3650 df_set_bb_dirty (test_bb);
3651 df_set_bb_dirty (then_bb);
3652 df_set_bb_dirty (else_bb);
3653
3654 if (EDGE_COUNT (trap_bb->preds) == 0)
3655 {
3656 delete_basic_block (trap_bb);
3657 num_true_changes++;
3658 }
3659
3660 /* Wire together the blocks again. */
3661 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3662 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3663 else
3664 {
3665 rtx lab, newjump;
3666
3667 lab = JUMP_LABEL (jump);
3668 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3669 LABEL_NUSES (lab) += 1;
3670 JUMP_LABEL (newjump) = lab;
3671 emit_barrier_after (newjump);
3672 }
3673 delete_insn (jump);
3674
3675 if (can_merge_blocks_p (test_bb, other_bb))
3676 {
3677 merge_blocks (test_bb, other_bb);
3678 num_true_changes++;
3679 }
3680
3681 num_updated_if_blocks++;
3682 return TRUE;
3683 }
3684
3685 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3686 return it. */
3687
3688 static rtx
3689 block_has_only_trap (basic_block bb)
3690 {
3691 rtx trap;
3692
3693 /* We're not the exit block. */
3694 if (bb == EXIT_BLOCK_PTR)
3695 return NULL_RTX;
3696
3697 /* The block must have no successors. */
3698 if (EDGE_COUNT (bb->succs) > 0)
3699 return NULL_RTX;
3700
3701 /* The only instruction in the THEN block must be the trap. */
3702 trap = first_active_insn (bb);
3703 if (! (trap == BB_END (bb)
3704 && GET_CODE (PATTERN (trap)) == TRAP_IF
3705 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3706 return NULL_RTX;
3707
3708 return trap;
3709 }
3710
3711 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3712 transformable, but not necessarily the other. There need be no
3713 JOIN block.
3714
3715 Return TRUE if we were successful at converting the block.
3716
3717 Cases we'd like to look at:
3718
3719 (1)
3720 if (test) goto over; // x not live
3721 x = a;
3722 goto label;
3723 over:
3724
3725 becomes
3726
3727 x = a;
3728 if (! test) goto label;
3729
3730 (2)
3731 if (test) goto E; // x not live
3732 x = big();
3733 goto L;
3734 E:
3735 x = b;
3736 goto M;
3737
3738 becomes
3739
3740 x = b;
3741 if (test) goto M;
3742 x = big();
3743 goto L;
3744
3745 (3) // This one's really only interesting for targets that can do
3746 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3747 // it results in multiple branches on a cache line, which often
3748 // does not sit well with predictors.
3749
3750 if (test1) goto E; // predicted not taken
3751 x = a;
3752 if (test2) goto F;
3753 ...
3754 E:
3755 x = b;
3756 J:
3757
3758 becomes
3759
3760 x = a;
3761 if (test1) goto E;
3762 if (test2) goto F;
3763
3764 Notes:
3765
3766 (A) Don't do (2) if the branch is predicted against the block we're
3767 eliminating. Do it anyway if we can eliminate a branch; this requires
3768 that the sole successor of the eliminated block postdominate the other
3769 side of the if.
3770
3771 (B) With CE, on (3) we can steal from both sides of the if, creating
3772
3773 if (test1) x = a;
3774 if (!test1) x = b;
3775 if (test1) goto J;
3776 if (test2) goto F;
3777 ...
3778 J:
3779
3780 Again, this is most useful if J postdominates.
3781
3782 (C) CE substitutes for helpful life information.
3783
3784 (D) These heuristics need a lot of work. */
3785
3786 /* Tests for case 1 above. */
3787
3788 static int
3789 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3790 {
3791 basic_block then_bb = then_edge->dest;
3792 basic_block else_bb = else_edge->dest;
3793 basic_block new_bb;
3794 int then_bb_index;
3795
3796 /* If we are partitioning hot/cold basic blocks, we don't want to
3797 mess up unconditional or indirect jumps that cross between hot
3798 and cold sections.
3799
3800 Basic block partitioning may result in some jumps that appear to
3801 be optimizable (or blocks that appear to be mergeable), but which really
3802 must be left untouched (they are required to make it safely across
3803 partition boundaries). See the comments at the top of
3804 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3805
3806 if ((BB_END (then_bb)
3807 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3808 || (BB_END (test_bb)
3809 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3810 || (BB_END (else_bb)
3811 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3812 NULL_RTX)))
3813 return FALSE;
3814
3815 /* THEN has one successor. */
3816 if (!single_succ_p (then_bb))
3817 return FALSE;
3818
3819 /* THEN does not fall through, but is not strange either. */
3820 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3821 return FALSE;
3822
3823 /* THEN has one predecessor. */
3824 if (!single_pred_p (then_bb))
3825 return FALSE;
3826
3827 /* THEN must do something. */
3828 if (forwarder_block_p (then_bb))
3829 return FALSE;
3830
3831 num_possible_if_blocks++;
3832 if (dump_file)
3833 fprintf (dump_file,
3834 "\nIF-CASE-1 found, start %d, then %d\n",
3835 test_bb->index, then_bb->index);
3836
3837 /* THEN is small. */
3838 if (! cheap_bb_rtx_cost_p (then_bb,
3839 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3840 predictable_edge_p (then_edge)))))
3841 return FALSE;
3842
3843 /* Registers set are dead, or are predicable. */
3844 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3845 single_succ (then_bb), 1))
3846 return FALSE;
3847
3848 /* Conversion went ok, including moving the insns and fixing up the
3849 jump. Adjust the CFG to match. */
3850
3851 /* We can avoid creating a new basic block if then_bb is immediately
3852 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3853 thru to else_bb. */
3854
3855 if (then_bb->next_bb == else_bb
3856 && then_bb->prev_bb == test_bb
3857 && else_bb != EXIT_BLOCK_PTR)
3858 {
3859 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3860 new_bb = 0;
3861 }
3862 else
3863 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3864 else_bb);
3865
3866 df_set_bb_dirty (test_bb);
3867 df_set_bb_dirty (else_bb);
3868
3869 then_bb_index = then_bb->index;
3870 delete_basic_block (then_bb);
3871
3872 /* Make rest of code believe that the newly created block is the THEN_BB
3873 block we removed. */
3874 if (new_bb)
3875 {
3876 df_bb_replace (then_bb_index, new_bb);
3877 /* Since the fallthru edge was redirected from test_bb to new_bb,
3878 we need to ensure that new_bb is in the same partition as
3879 test bb (you can not fall through across section boundaries). */
3880 BB_COPY_PARTITION (new_bb, test_bb);
3881 }
3882
3883 num_true_changes++;
3884 num_updated_if_blocks++;
3885
3886 return TRUE;
3887 }
3888
3889 /* Test for case 2 above. */
3890
3891 static int
3892 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3893 {
3894 basic_block then_bb = then_edge->dest;
3895 basic_block else_bb = else_edge->dest;
3896 edge else_succ;
3897 rtx note;
3898
3899 /* If we are partitioning hot/cold basic blocks, we don't want to
3900 mess up unconditional or indirect jumps that cross between hot
3901 and cold sections.
3902
3903 Basic block partitioning may result in some jumps that appear to
3904 be optimizable (or blocks that appear to be mergeable), but which really
3905 must be left untouched (they are required to make it safely across
3906 partition boundaries). See the comments at the top of
3907 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3908
3909 if ((BB_END (then_bb)
3910 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3911 || (BB_END (test_bb)
3912 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3913 || (BB_END (else_bb)
3914 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3915 NULL_RTX)))
3916 return FALSE;
3917
3918 /* ELSE has one successor. */
3919 if (!single_succ_p (else_bb))
3920 return FALSE;
3921 else
3922 else_succ = single_succ_edge (else_bb);
3923
3924 /* ELSE outgoing edge is not complex. */
3925 if (else_succ->flags & EDGE_COMPLEX)
3926 return FALSE;
3927
3928 /* ELSE has one predecessor. */
3929 if (!single_pred_p (else_bb))
3930 return FALSE;
3931
3932 /* THEN is not EXIT. */
3933 if (then_bb->index < NUM_FIXED_BLOCKS)
3934 return FALSE;
3935
3936 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3937 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3938 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3939 ;
3940 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3941 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3942 else_succ->dest))
3943 ;
3944 else
3945 return FALSE;
3946
3947 num_possible_if_blocks++;
3948 if (dump_file)
3949 fprintf (dump_file,
3950 "\nIF-CASE-2 found, start %d, else %d\n",
3951 test_bb->index, else_bb->index);
3952
3953 /* ELSE is small. */
3954 if (! cheap_bb_rtx_cost_p (else_bb,
3955 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3956 predictable_edge_p (else_edge)))))
3957 return FALSE;
3958
3959 /* Registers set are dead, or are predicable. */
3960 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3961 return FALSE;
3962
3963 /* Conversion went ok, including moving the insns and fixing up the
3964 jump. Adjust the CFG to match. */
3965
3966 df_set_bb_dirty (test_bb);
3967 df_set_bb_dirty (then_bb);
3968 delete_basic_block (else_bb);
3969
3970 num_true_changes++;
3971 num_updated_if_blocks++;
3972
3973 /* ??? We may now fallthru from one of THEN's successors into a join
3974 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3975
3976 return TRUE;
3977 }
3978
3979 /* A subroutine of dead_or_predicable called through for_each_rtx.
3980 Return 1 if a memory is found. */
3981
3982 static int
3983 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3984 {
3985 return MEM_P (*px);
3986 }
3987
3988 /* Used by the code above to perform the actual rtl transformations.
3989 Return TRUE if successful.
3990
3991 TEST_BB is the block containing the conditional branch. MERGE_BB
3992 is the block containing the code to manipulate. NEW_DEST is the
3993 label TEST_BB should be branching to after the conversion.
3994 REVERSEP is true if the sense of the branch should be reversed. */
3995
3996 static int
3997 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3998 basic_block other_bb, basic_block new_dest, int reversep)
3999 {
4000 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
4001 bitmap merge_set = NULL, merge_set_noclobber = NULL;
4002 /* Number of pending changes. */
4003 int n_validated_changes = 0;
4004
4005 jump = BB_END (test_bb);
4006
4007 /* Find the extent of the real code in the merge block. */
4008 head = BB_HEAD (merge_bb);
4009 end = BB_END (merge_bb);
4010
4011 while (DEBUG_INSN_P (end) && end != head)
4012 end = PREV_INSN (end);
4013
4014 /* If merge_bb ends with a tablejump, predicating/moving insn's
4015 into test_bb and then deleting merge_bb will result in the jumptable
4016 that follows merge_bb being removed along with merge_bb and then we
4017 get an unresolved reference to the jumptable. */
4018 if (tablejump_p (end, NULL, NULL))
4019 return FALSE;
4020
4021 if (LABEL_P (head))
4022 head = NEXT_INSN (head);
4023 while (DEBUG_INSN_P (head) && head != end)
4024 head = NEXT_INSN (head);
4025 if (NOTE_P (head))
4026 {
4027 if (head == end)
4028 {
4029 head = end = NULL_RTX;
4030 goto no_body;
4031 }
4032 head = NEXT_INSN (head);
4033 while (DEBUG_INSN_P (head) && head != end)
4034 head = NEXT_INSN (head);
4035 }
4036
4037 if (JUMP_P (end))
4038 {
4039 if (head == end)
4040 {
4041 head = end = NULL_RTX;
4042 goto no_body;
4043 }
4044 end = PREV_INSN (end);
4045 while (DEBUG_INSN_P (end) && end != head)
4046 end = PREV_INSN (end);
4047 }
4048
4049 /* Disable handling dead code by conditional execution if the machine needs
4050 to do anything funny with the tests, etc. */
4051 #ifndef IFCVT_MODIFY_TESTS
4052 if (targetm.have_conditional_execution ())
4053 {
4054 /* In the conditional execution case, we have things easy. We know
4055 the condition is reversible. We don't have to check life info
4056 because we're going to conditionally execute the code anyway.
4057 All that's left is making sure the insns involved can actually
4058 be predicated. */
4059
4060 rtx cond, prob_val;
4061
4062 cond = cond_exec_get_condition (jump);
4063 if (! cond)
4064 return FALSE;
4065
4066 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4067 if (prob_val)
4068 prob_val = XEXP (prob_val, 0);
4069
4070 if (reversep)
4071 {
4072 enum rtx_code rev = reversed_comparison_code (cond, jump);
4073 if (rev == UNKNOWN)
4074 return FALSE;
4075 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4076 XEXP (cond, 1));
4077 if (prob_val)
4078 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4079 }
4080
4081 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4082 && verify_changes (0))
4083 n_validated_changes = num_validated_changes ();
4084 else
4085 cancel_changes (0);
4086
4087 earliest = jump;
4088 }
4089 #endif
4090
4091 /* Try the NCE path if the CE path did not result in any changes. */
4092 if (n_validated_changes == 0)
4093 {
4094 /* In the non-conditional execution case, we have to verify that there
4095 are no trapping operations, no calls, no references to memory, and
4096 that any registers modified are dead at the branch site. */
4097
4098 rtx insn, cond, prev;
4099 bitmap test_live, test_set;
4100 bool intersect = false;
4101
4102 /* Check for no calls or trapping operations. */
4103 for (insn = head; ; insn = NEXT_INSN (insn))
4104 {
4105 if (CALL_P (insn))
4106 return FALSE;
4107 if (NONDEBUG_INSN_P (insn))
4108 {
4109 if (may_trap_p (PATTERN (insn)))
4110 return FALSE;
4111
4112 /* ??? Even non-trapping memories such as stack frame
4113 references must be avoided. For stores, we collect
4114 no lifetime info; for reads, we'd have to assert
4115 true_dependence false against every store in the
4116 TEST range. */
4117 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
4118 return FALSE;
4119 }
4120 if (insn == end)
4121 break;
4122 }
4123
4124 if (! any_condjump_p (jump))
4125 return FALSE;
4126
4127 /* Find the extent of the conditional. */
4128 cond = noce_get_condition (jump, &earliest, false);
4129 if (! cond)
4130 return FALSE;
4131
4132 /* Collect:
4133 MERGE_SET = set of registers set in MERGE_BB
4134 MERGE_SET_NOCLOBBER = like MERGE_SET, but only includes registers
4135 that are really set, not just clobbered.
4136 TEST_LIVE = set of registers live at EARLIEST
4137 TEST_SET = set of registers set between EARLIEST and the
4138 end of the block. */
4139
4140 merge_set = BITMAP_ALLOC (&reg_obstack);
4141 merge_set_noclobber = BITMAP_ALLOC (&reg_obstack);
4142
4143 /* If we allocated new pseudos (e.g. in the conditional move
4144 expander called from noce_emit_cmove), we must resize the
4145 array first. */
4146 if (max_regno < max_reg_num ())
4147 max_regno = max_reg_num ();
4148
4149 FOR_BB_INSNS (merge_bb, insn)
4150 {
4151 if (NONDEBUG_INSN_P (insn))
4152 {
4153 df_simulate_find_defs (insn, merge_set);
4154 df_simulate_find_noclobber_defs (insn, merge_set_noclobber);
4155 }
4156 }
4157
4158 /* For small register class machines, don't lengthen lifetimes of
4159 hard registers before reload. */
4160 if (! reload_completed
4161 && targetm.small_register_classes_for_mode_p (VOIDmode))
4162 {
4163 unsigned i;
4164 bitmap_iterator bi;
4165
4166 EXECUTE_IF_SET_IN_BITMAP (merge_set_noclobber, 0, i, bi)
4167 {
4168 if (i < FIRST_PSEUDO_REGISTER
4169 && ! fixed_regs[i]
4170 && ! global_regs[i])
4171 goto fail;
4172 }
4173 }
4174
4175 /* For TEST, we're interested in a range of insns, not a whole block.
4176 Moreover, we're interested in the insns live from OTHER_BB. */
4177 test_live = BITMAP_ALLOC (&reg_obstack);
4178 test_set = BITMAP_ALLOC (&reg_obstack);
4179
4180 /* The loop below takes the set of live registers
4181 after JUMP, and calculates the live set before EARLIEST. */
4182 bitmap_copy (test_live, df_get_live_in (other_bb));
4183 df_simulate_initialize_backwards (test_bb, test_live);
4184 for (insn = jump; ; insn = prev)
4185 {
4186 if (INSN_P (insn))
4187 {
4188 df_simulate_find_defs (insn, test_set);
4189 df_simulate_one_insn_backwards (test_bb, insn, test_live);
4190 }
4191 prev = PREV_INSN (insn);
4192 if (insn == earliest)
4193 break;
4194 }
4195
4196 /* We can perform the transformation if
4197 MERGE_SET_NOCLOBBER & TEST_SET
4198 and
4199 MERGE_SET & TEST_LIVE
4200 and
4201 TEST_SET & DF_LIVE_IN (merge_bb)
4202 are empty. */
4203
4204 if (bitmap_intersect_p (merge_set_noclobber, test_set)
4205 || bitmap_intersect_p (merge_set, test_live)
4206 || bitmap_intersect_p (test_set, df_get_live_in (merge_bb)))
4207 intersect = true;
4208
4209 BITMAP_FREE (test_live);
4210 BITMAP_FREE (test_set);
4211
4212 if (intersect)
4213 goto fail;
4214 }
4215
4216 no_body:
4217 /* We don't want to use normal invert_jump or redirect_jump because
4218 we don't want to delete_insn called. Also, we want to do our own
4219 change group management. */
4220
4221 old_dest = JUMP_LABEL (jump);
4222 if (other_bb != new_dest)
4223 {
4224 new_label = block_label (new_dest);
4225 if (reversep
4226 ? ! invert_jump_1 (jump, new_label)
4227 : ! redirect_jump_1 (jump, new_label))
4228 goto cancel;
4229 }
4230
4231 if (verify_changes (n_validated_changes))
4232 confirm_change_group ();
4233 else
4234 goto cancel;
4235
4236 if (other_bb != new_dest)
4237 {
4238 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
4239
4240 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4241 if (reversep)
4242 {
4243 gcov_type count, probability;
4244 count = BRANCH_EDGE (test_bb)->count;
4245 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4246 FALLTHRU_EDGE (test_bb)->count = count;
4247 probability = BRANCH_EDGE (test_bb)->probability;
4248 BRANCH_EDGE (test_bb)->probability
4249 = FALLTHRU_EDGE (test_bb)->probability;
4250 FALLTHRU_EDGE (test_bb)->probability = probability;
4251 update_br_prob_note (test_bb);
4252 }
4253 }
4254
4255 /* Move the insns out of MERGE_BB to before the branch. */
4256 if (head != NULL)
4257 {
4258 rtx insn;
4259
4260 if (end == BB_END (merge_bb))
4261 BB_END (merge_bb) = PREV_INSN (head);
4262
4263 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4264 notes being moved might become invalid. */
4265 insn = head;
4266 do
4267 {
4268 rtx note, set;
4269
4270 if (! INSN_P (insn))
4271 continue;
4272 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4273 if (! note)
4274 continue;
4275 set = single_set (insn);
4276 if (!set || !function_invariant_p (SET_SRC (set))
4277 || !function_invariant_p (XEXP (note, 0)))
4278 remove_note (insn, note);
4279 } while (insn != end && (insn = NEXT_INSN (insn)));
4280
4281 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4282 notes referring to the registers being set might become invalid. */
4283 if (merge_set)
4284 {
4285 unsigned i;
4286 bitmap_iterator bi;
4287
4288 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4289 remove_reg_equal_equiv_notes_for_regno (i);
4290
4291 BITMAP_FREE (merge_set);
4292 BITMAP_FREE (merge_set_noclobber);
4293 }
4294
4295 reorder_insns (head, end, PREV_INSN (earliest));
4296 }
4297
4298 /* Remove the jump and edge if we can. */
4299 if (other_bb == new_dest)
4300 {
4301 delete_insn (jump);
4302 remove_edge (BRANCH_EDGE (test_bb));
4303 /* ??? Can't merge blocks here, as then_bb is still in use.
4304 At minimum, the merge will get done just before bb-reorder. */
4305 }
4306
4307 return TRUE;
4308
4309 cancel:
4310 cancel_changes (0);
4311 fail:
4312 if (merge_set)
4313 {
4314 BITMAP_FREE (merge_set);
4315 BITMAP_FREE (merge_set_noclobber);
4316 }
4317 return FALSE;
4318 }
4319 \f
4320 /* Main entry point for all if-conversion. */
4321
4322 static void
4323 if_convert (void)
4324 {
4325 basic_block bb;
4326 int pass;
4327
4328 if (optimize == 1)
4329 {
4330 df_live_add_problem ();
4331 df_live_set_all_dirty ();
4332 }
4333
4334 num_possible_if_blocks = 0;
4335 num_updated_if_blocks = 0;
4336 num_true_changes = 0;
4337
4338 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4339 mark_loop_exit_edges ();
4340 loop_optimizer_finalize ();
4341 free_dominance_info (CDI_DOMINATORS);
4342
4343 /* Compute postdominators. */
4344 calculate_dominance_info (CDI_POST_DOMINATORS);
4345
4346 df_set_flags (DF_LR_RUN_DCE);
4347
4348 /* Go through each of the basic blocks looking for things to convert. If we
4349 have conditional execution, we make multiple passes to allow us to handle
4350 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4351 pass = 0;
4352 do
4353 {
4354 df_analyze ();
4355 /* Only need to do dce on the first pass. */
4356 df_clear_flags (DF_LR_RUN_DCE);
4357 cond_exec_changed_p = FALSE;
4358 pass++;
4359
4360 #ifdef IFCVT_MULTIPLE_DUMPS
4361 if (dump_file && pass > 1)
4362 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4363 #endif
4364
4365 FOR_EACH_BB (bb)
4366 {
4367 basic_block new_bb;
4368 while (!df_get_bb_dirty (bb)
4369 && (new_bb = find_if_header (bb, pass)) != NULL)
4370 bb = new_bb;
4371 }
4372
4373 #ifdef IFCVT_MULTIPLE_DUMPS
4374 if (dump_file && cond_exec_changed_p)
4375 {
4376 if (dump_flags & TDF_SLIM)
4377 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4378 else
4379 print_rtl_with_bb (dump_file, get_insns ());
4380 }
4381 #endif
4382 }
4383 while (cond_exec_changed_p);
4384
4385 #ifdef IFCVT_MULTIPLE_DUMPS
4386 if (dump_file)
4387 fprintf (dump_file, "\n\n========== no more changes\n");
4388 #endif
4389
4390 free_dominance_info (CDI_POST_DOMINATORS);
4391
4392 if (dump_file)
4393 fflush (dump_file);
4394
4395 clear_aux_for_blocks ();
4396
4397 /* If we allocated new pseudos, we must resize the array for sched1. */
4398 if (max_regno < max_reg_num ())
4399 max_regno = max_reg_num ();
4400
4401 /* Write the final stats. */
4402 if (dump_file && num_possible_if_blocks > 0)
4403 {
4404 fprintf (dump_file,
4405 "\n%d possible IF blocks searched.\n",
4406 num_possible_if_blocks);
4407 fprintf (dump_file,
4408 "%d IF blocks converted.\n",
4409 num_updated_if_blocks);
4410 fprintf (dump_file,
4411 "%d true changes made.\n\n\n",
4412 num_true_changes);
4413 }
4414
4415 if (optimize == 1)
4416 df_remove_problem (df_live);
4417
4418 #ifdef ENABLE_CHECKING
4419 verify_flow_info ();
4420 #endif
4421 }
4422 \f
4423 static bool
4424 gate_handle_if_conversion (void)
4425 {
4426 return (optimize > 0)
4427 && dbg_cnt (if_conversion);
4428 }
4429
4430 /* If-conversion and CFG cleanup. */
4431 static unsigned int
4432 rest_of_handle_if_conversion (void)
4433 {
4434 if (flag_if_conversion)
4435 {
4436 if (dump_file)
4437 dump_flow_info (dump_file, dump_flags);
4438 cleanup_cfg (CLEANUP_EXPENSIVE);
4439 if_convert ();
4440 }
4441
4442 cleanup_cfg (0);
4443 return 0;
4444 }
4445
4446 struct rtl_opt_pass pass_rtl_ifcvt =
4447 {
4448 {
4449 RTL_PASS,
4450 "ce1", /* name */
4451 gate_handle_if_conversion, /* gate */
4452 rest_of_handle_if_conversion, /* execute */
4453 NULL, /* sub */
4454 NULL, /* next */
4455 0, /* static_pass_number */
4456 TV_IFCVT, /* tv_id */
4457 0, /* properties_required */
4458 0, /* properties_provided */
4459 0, /* properties_destroyed */
4460 0, /* todo_flags_start */
4461 TODO_df_finish | TODO_verify_rtl_sharing |
4462 TODO_dump_func /* todo_flags_finish */
4463 }
4464 };
4465
4466 static bool
4467 gate_handle_if_after_combine (void)
4468 {
4469 return optimize > 0 && flag_if_conversion
4470 && dbg_cnt (if_after_combine);
4471 }
4472
4473
4474 /* Rerun if-conversion, as combine may have simplified things enough
4475 to now meet sequence length restrictions. */
4476 static unsigned int
4477 rest_of_handle_if_after_combine (void)
4478 {
4479 if_convert ();
4480 return 0;
4481 }
4482
4483 struct rtl_opt_pass pass_if_after_combine =
4484 {
4485 {
4486 RTL_PASS,
4487 "ce2", /* name */
4488 gate_handle_if_after_combine, /* gate */
4489 rest_of_handle_if_after_combine, /* execute */
4490 NULL, /* sub */
4491 NULL, /* next */
4492 0, /* static_pass_number */
4493 TV_IFCVT, /* tv_id */
4494 0, /* properties_required */
4495 0, /* properties_provided */
4496 0, /* properties_destroyed */
4497 0, /* todo_flags_start */
4498 TODO_df_finish | TODO_verify_rtl_sharing |
4499 TODO_dump_func |
4500 TODO_ggc_collect /* todo_flags_finish */
4501 }
4502 };
4503
4504
4505 static bool
4506 gate_handle_if_after_reload (void)
4507 {
4508 return optimize > 0 && flag_if_conversion2
4509 && dbg_cnt (if_after_reload);
4510 }
4511
4512 static unsigned int
4513 rest_of_handle_if_after_reload (void)
4514 {
4515 if_convert ();
4516 return 0;
4517 }
4518
4519
4520 struct rtl_opt_pass pass_if_after_reload =
4521 {
4522 {
4523 RTL_PASS,
4524 "ce3", /* name */
4525 gate_handle_if_after_reload, /* gate */
4526 rest_of_handle_if_after_reload, /* execute */
4527 NULL, /* sub */
4528 NULL, /* next */
4529 0, /* static_pass_number */
4530 TV_IFCVT2, /* tv_id */
4531 0, /* properties_required */
4532 0, /* properties_provided */
4533 0, /* properties_destroyed */
4534 0, /* todo_flags_start */
4535 TODO_df_finish | TODO_verify_rtl_sharing |
4536 TODO_dump_func |
4537 TODO_ggc_collect /* todo_flags_finish */
4538 }
4539 };