re PR c++/34917 (ICE with const vector)
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "real.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48
49 #ifndef HAVE_conditional_execution
50 #define HAVE_conditional_execution 0
51 #endif
52 #ifndef HAVE_conditional_move
53 #define HAVE_conditional_move 0
54 #endif
55 #ifndef HAVE_incscc
56 #define HAVE_incscc 0
57 #endif
58 #ifndef HAVE_decscc
59 #define HAVE_decscc 0
60 #endif
61 #ifndef HAVE_trap
62 #define HAVE_trap 0
63 #endif
64 #ifndef HAVE_conditional_trap
65 #define HAVE_conditional_trap 0
66 #endif
67
68 #ifndef MAX_CONDITIONAL_EXECUTE
69 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
70 #endif
71
72 #define IFCVT_MULTIPLE_DUMPS 1
73
74 #define NULL_BLOCK ((basic_block) NULL)
75
76 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
77 static int num_possible_if_blocks;
78
79 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
80 execution. */
81 static int num_updated_if_blocks;
82
83 /* # of changes made. */
84 static int num_true_changes;
85
86 /* Whether conditional execution changes were made. */
87 static int cond_exec_changed_p;
88
89 /* Forward references. */
90 static int count_bb_insns (const_basic_block);
91 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
92 static rtx first_active_insn (basic_block);
93 static rtx last_active_insn (basic_block, int);
94 static basic_block block_fallthru (basic_block);
95 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
96 static rtx cond_exec_get_condition (rtx);
97 static rtx noce_get_condition (rtx, rtx *, bool);
98 static int noce_operand_ok (const_rtx);
99 static void merge_if_block (ce_if_block_t *);
100 static int find_cond_trap (basic_block, edge, edge);
101 static basic_block find_if_header (basic_block, int);
102 static int block_jumps_and_fallthru_p (basic_block, basic_block);
103 static int noce_find_if_block (basic_block, edge, edge, int);
104 static int cond_exec_find_if_block (ce_if_block_t *);
105 static int find_if_case_1 (basic_block, edge, edge);
106 static int find_if_case_2 (basic_block, edge, edge);
107 static int find_memory (rtx *, void *);
108 static int dead_or_predicable (basic_block, basic_block, basic_block,
109 basic_block, int);
110 static void noce_emit_move_insn (rtx, rtx);
111 static rtx block_has_only_trap (basic_block);
112 \f
113 /* Count the number of non-jump active insns in BB. */
114
115 static int
116 count_bb_insns (const_basic_block bb)
117 {
118 int count = 0;
119 rtx insn = BB_HEAD (bb);
120
121 while (1)
122 {
123 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
124 count++;
125
126 if (insn == BB_END (bb))
127 break;
128 insn = NEXT_INSN (insn);
129 }
130
131 return count;
132 }
133
134 /* Determine whether the total insn_rtx_cost on non-jump insns in
135 basic block BB is less than MAX_COST. This function returns
136 false if the cost of any instruction could not be estimated. */
137
138 static bool
139 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
140 {
141 int count = 0;
142 rtx insn = BB_HEAD (bb);
143
144 while (1)
145 {
146 if (NONJUMP_INSN_P (insn))
147 {
148 int cost = insn_rtx_cost (PATTERN (insn));
149 if (cost == 0)
150 return false;
151
152 /* If this instruction is the load or set of a "stack" register,
153 such as a floating point register on x87, then the cost of
154 speculatively executing this insn may need to include
155 the additional cost of popping its result off of the
156 register stack. Unfortunately, correctly recognizing and
157 accounting for this additional overhead is tricky, so for
158 now we simply prohibit such speculative execution. */
159 #ifdef STACK_REGS
160 {
161 rtx set = single_set (insn);
162 if (set && STACK_REG_P (SET_DEST (set)))
163 return false;
164 }
165 #endif
166
167 count += cost;
168 if (count >= max_cost)
169 return false;
170 }
171 else if (CALL_P (insn))
172 return false;
173
174 if (insn == BB_END (bb))
175 break;
176 insn = NEXT_INSN (insn);
177 }
178
179 return true;
180 }
181
182 /* Return the first non-jump active insn in the basic block. */
183
184 static rtx
185 first_active_insn (basic_block bb)
186 {
187 rtx insn = BB_HEAD (bb);
188
189 if (LABEL_P (insn))
190 {
191 if (insn == BB_END (bb))
192 return NULL_RTX;
193 insn = NEXT_INSN (insn);
194 }
195
196 while (NOTE_P (insn))
197 {
198 if (insn == BB_END (bb))
199 return NULL_RTX;
200 insn = NEXT_INSN (insn);
201 }
202
203 if (JUMP_P (insn))
204 return NULL_RTX;
205
206 return insn;
207 }
208
209 /* Return the last non-jump active (non-jump) insn in the basic block. */
210
211 static rtx
212 last_active_insn (basic_block bb, int skip_use_p)
213 {
214 rtx insn = BB_END (bb);
215 rtx head = BB_HEAD (bb);
216
217 while (NOTE_P (insn)
218 || JUMP_P (insn)
219 || (skip_use_p
220 && NONJUMP_INSN_P (insn)
221 && GET_CODE (PATTERN (insn)) == USE))
222 {
223 if (insn == head)
224 return NULL_RTX;
225 insn = PREV_INSN (insn);
226 }
227
228 if (LABEL_P (insn))
229 return NULL_RTX;
230
231 return insn;
232 }
233
234 /* Return the basic block reached by falling though the basic block BB. */
235
236 static basic_block
237 block_fallthru (basic_block bb)
238 {
239 edge e;
240 edge_iterator ei;
241
242 FOR_EACH_EDGE (e, ei, bb->succs)
243 if (e->flags & EDGE_FALLTHRU)
244 break;
245
246 return (e) ? e->dest : NULL_BLOCK;
247 }
248 \f
249 /* Go through a bunch of insns, converting them to conditional
250 execution format if possible. Return TRUE if all of the non-note
251 insns were processed. */
252
253 static int
254 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
255 /* if block information */rtx start,
256 /* first insn to look at */rtx end,
257 /* last insn to look at */rtx test,
258 /* conditional execution test */rtx prob_val,
259 /* probability of branch taken. */int mod_ok)
260 {
261 int must_be_last = FALSE;
262 rtx insn;
263 rtx xtest;
264 rtx pattern;
265
266 if (!start || !end)
267 return FALSE;
268
269 for (insn = start; ; insn = NEXT_INSN (insn))
270 {
271 if (NOTE_P (insn))
272 goto insn_done;
273
274 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
275
276 /* Remove USE insns that get in the way. */
277 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
278 {
279 /* ??? Ug. Actually unlinking the thing is problematic,
280 given what we'd have to coordinate with our callers. */
281 SET_INSN_DELETED (insn);
282 goto insn_done;
283 }
284
285 /* Last insn wasn't last? */
286 if (must_be_last)
287 return FALSE;
288
289 if (modified_in_p (test, insn))
290 {
291 if (!mod_ok)
292 return FALSE;
293 must_be_last = TRUE;
294 }
295
296 /* Now build the conditional form of the instruction. */
297 pattern = PATTERN (insn);
298 xtest = copy_rtx (test);
299
300 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
301 two conditions. */
302 if (GET_CODE (pattern) == COND_EXEC)
303 {
304 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
305 return FALSE;
306
307 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
308 COND_EXEC_TEST (pattern));
309 pattern = COND_EXEC_CODE (pattern);
310 }
311
312 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
313
314 /* If the machine needs to modify the insn being conditionally executed,
315 say for example to force a constant integer operand into a temp
316 register, do so here. */
317 #ifdef IFCVT_MODIFY_INSN
318 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
319 if (! pattern)
320 return FALSE;
321 #endif
322
323 validate_change (insn, &PATTERN (insn), pattern, 1);
324
325 if (CALL_P (insn) && prob_val)
326 validate_change (insn, &REG_NOTES (insn),
327 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
328 REG_NOTES (insn)), 1);
329
330 insn_done:
331 if (insn == end)
332 break;
333 }
334
335 return TRUE;
336 }
337
338 /* Return the condition for a jump. Do not do any special processing. */
339
340 static rtx
341 cond_exec_get_condition (rtx jump)
342 {
343 rtx test_if, cond;
344
345 if (any_condjump_p (jump))
346 test_if = SET_SRC (pc_set (jump));
347 else
348 return NULL_RTX;
349 cond = XEXP (test_if, 0);
350
351 /* If this branches to JUMP_LABEL when the condition is false,
352 reverse the condition. */
353 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
354 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
355 {
356 enum rtx_code rev = reversed_comparison_code (cond, jump);
357 if (rev == UNKNOWN)
358 return NULL_RTX;
359
360 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
361 XEXP (cond, 1));
362 }
363
364 return cond;
365 }
366
367 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
368 to conditional execution. Return TRUE if we were successful at
369 converting the block. */
370
371 static int
372 cond_exec_process_if_block (ce_if_block_t * ce_info,
373 /* if block information */int do_multiple_p)
374 {
375 basic_block test_bb = ce_info->test_bb; /* last test block */
376 basic_block then_bb = ce_info->then_bb; /* THEN */
377 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
378 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
379 rtx then_start; /* first insn in THEN block */
380 rtx then_end; /* last insn + 1 in THEN block */
381 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
382 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
383 int max; /* max # of insns to convert. */
384 int then_mod_ok; /* whether conditional mods are ok in THEN */
385 rtx true_expr; /* test for else block insns */
386 rtx false_expr; /* test for then block insns */
387 rtx true_prob_val; /* probability of else block */
388 rtx false_prob_val; /* probability of then block */
389 int n_insns;
390 enum rtx_code false_code;
391
392 /* If test is comprised of && or || elements, and we've failed at handling
393 all of them together, just use the last test if it is the special case of
394 && elements without an ELSE block. */
395 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
396 {
397 if (else_bb || ! ce_info->and_and_p)
398 return FALSE;
399
400 ce_info->test_bb = test_bb = ce_info->last_test_bb;
401 ce_info->num_multiple_test_blocks = 0;
402 ce_info->num_and_and_blocks = 0;
403 ce_info->num_or_or_blocks = 0;
404 }
405
406 /* Find the conditional jump to the ELSE or JOIN part, and isolate
407 the test. */
408 test_expr = cond_exec_get_condition (BB_END (test_bb));
409 if (! test_expr)
410 return FALSE;
411
412 /* If the conditional jump is more than just a conditional jump,
413 then we can not do conditional execution conversion on this block. */
414 if (! onlyjump_p (BB_END (test_bb)))
415 return FALSE;
416
417 /* Collect the bounds of where we're to search, skipping any labels, jumps
418 and notes at the beginning and end of the block. Then count the total
419 number of insns and see if it is small enough to convert. */
420 then_start = first_active_insn (then_bb);
421 then_end = last_active_insn (then_bb, TRUE);
422 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
423 max = MAX_CONDITIONAL_EXECUTE;
424
425 if (else_bb)
426 {
427 max *= 2;
428 else_start = first_active_insn (else_bb);
429 else_end = last_active_insn (else_bb, TRUE);
430 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
431 }
432
433 if (n_insns > max)
434 return FALSE;
435
436 /* Map test_expr/test_jump into the appropriate MD tests to use on
437 the conditionally executed code. */
438
439 true_expr = test_expr;
440
441 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
442 if (false_code != UNKNOWN)
443 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
444 XEXP (true_expr, 0), XEXP (true_expr, 1));
445 else
446 false_expr = NULL_RTX;
447
448 #ifdef IFCVT_MODIFY_TESTS
449 /* If the machine description needs to modify the tests, such as setting a
450 conditional execution register from a comparison, it can do so here. */
451 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
452
453 /* See if the conversion failed. */
454 if (!true_expr || !false_expr)
455 goto fail;
456 #endif
457
458 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
459 if (true_prob_val)
460 {
461 true_prob_val = XEXP (true_prob_val, 0);
462 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
463 }
464 else
465 false_prob_val = NULL_RTX;
466
467 /* If we have && or || tests, do them here. These tests are in the adjacent
468 blocks after the first block containing the test. */
469 if (ce_info->num_multiple_test_blocks > 0)
470 {
471 basic_block bb = test_bb;
472 basic_block last_test_bb = ce_info->last_test_bb;
473
474 if (! false_expr)
475 goto fail;
476
477 do
478 {
479 rtx start, end;
480 rtx t, f;
481 enum rtx_code f_code;
482
483 bb = block_fallthru (bb);
484 start = first_active_insn (bb);
485 end = last_active_insn (bb, TRUE);
486 if (start
487 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
488 false_prob_val, FALSE))
489 goto fail;
490
491 /* If the conditional jump is more than just a conditional jump, then
492 we can not do conditional execution conversion on this block. */
493 if (! onlyjump_p (BB_END (bb)))
494 goto fail;
495
496 /* Find the conditional jump and isolate the test. */
497 t = cond_exec_get_condition (BB_END (bb));
498 if (! t)
499 goto fail;
500
501 f_code = reversed_comparison_code (t, BB_END (bb));
502 if (f_code == UNKNOWN)
503 goto fail;
504
505 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
506 if (ce_info->and_and_p)
507 {
508 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
509 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
510 }
511 else
512 {
513 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
514 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
515 }
516
517 /* If the machine description needs to modify the tests, such as
518 setting a conditional execution register from a comparison, it can
519 do so here. */
520 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
521 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
522
523 /* See if the conversion failed. */
524 if (!t || !f)
525 goto fail;
526 #endif
527
528 true_expr = t;
529 false_expr = f;
530 }
531 while (bb != last_test_bb);
532 }
533
534 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
535 on then THEN block. */
536 then_mod_ok = (else_bb == NULL_BLOCK);
537
538 /* Go through the THEN and ELSE blocks converting the insns if possible
539 to conditional execution. */
540
541 if (then_end
542 && (! false_expr
543 || ! cond_exec_process_insns (ce_info, then_start, then_end,
544 false_expr, false_prob_val,
545 then_mod_ok)))
546 goto fail;
547
548 if (else_bb && else_end
549 && ! cond_exec_process_insns (ce_info, else_start, else_end,
550 true_expr, true_prob_val, TRUE))
551 goto fail;
552
553 /* If we cannot apply the changes, fail. Do not go through the normal fail
554 processing, since apply_change_group will call cancel_changes. */
555 if (! apply_change_group ())
556 {
557 #ifdef IFCVT_MODIFY_CANCEL
558 /* Cancel any machine dependent changes. */
559 IFCVT_MODIFY_CANCEL (ce_info);
560 #endif
561 return FALSE;
562 }
563
564 #ifdef IFCVT_MODIFY_FINAL
565 /* Do any machine dependent final modifications. */
566 IFCVT_MODIFY_FINAL (ce_info);
567 #endif
568
569 /* Conversion succeeded. */
570 if (dump_file)
571 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
572 n_insns, (n_insns == 1) ? " was" : "s were");
573
574 /* Merge the blocks! */
575 merge_if_block (ce_info);
576 cond_exec_changed_p = TRUE;
577 return TRUE;
578
579 fail:
580 #ifdef IFCVT_MODIFY_CANCEL
581 /* Cancel any machine dependent changes. */
582 IFCVT_MODIFY_CANCEL (ce_info);
583 #endif
584
585 cancel_changes (0);
586 return FALSE;
587 }
588 \f
589 /* Used by noce_process_if_block to communicate with its subroutines.
590
591 The subroutines know that A and B may be evaluated freely. They
592 know that X is a register. They should insert new instructions
593 before cond_earliest. */
594
595 struct noce_if_info
596 {
597 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
598 basic_block test_bb, then_bb, else_bb, join_bb;
599
600 /* The jump that ends TEST_BB. */
601 rtx jump;
602
603 /* The jump condition. */
604 rtx cond;
605
606 /* New insns should be inserted before this one. */
607 rtx cond_earliest;
608
609 /* Insns in the THEN and ELSE block. There is always just this
610 one insns in those blocks. The insns are single_set insns.
611 If there was no ELSE block, INSN_B is the last insn before
612 COND_EARLIEST, or NULL_RTX. In the former case, the insn
613 operands are still valid, as if INSN_B was moved down below
614 the jump. */
615 rtx insn_a, insn_b;
616
617 /* The SET_SRC of INSN_A and INSN_B. */
618 rtx a, b;
619
620 /* The SET_DEST of INSN_A. */
621 rtx x;
622
623 /* True if this if block is not canonical. In the canonical form of
624 if blocks, the THEN_BB is the block reached via the fallthru edge
625 from TEST_BB. For the noce transformations, we allow the symmetric
626 form as well. */
627 bool then_else_reversed;
628 };
629
630 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
631 static int noce_try_move (struct noce_if_info *);
632 static int noce_try_store_flag (struct noce_if_info *);
633 static int noce_try_addcc (struct noce_if_info *);
634 static int noce_try_store_flag_constants (struct noce_if_info *);
635 static int noce_try_store_flag_mask (struct noce_if_info *);
636 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
637 rtx, rtx, rtx);
638 static int noce_try_cmove (struct noce_if_info *);
639 static int noce_try_cmove_arith (struct noce_if_info *);
640 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
641 static int noce_try_minmax (struct noce_if_info *);
642 static int noce_try_abs (struct noce_if_info *);
643 static int noce_try_sign_mask (struct noce_if_info *);
644
645 /* Helper function for noce_try_store_flag*. */
646
647 static rtx
648 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
649 int normalize)
650 {
651 rtx cond = if_info->cond;
652 int cond_complex;
653 enum rtx_code code;
654
655 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
656 || ! general_operand (XEXP (cond, 1), VOIDmode));
657
658 /* If earliest == jump, or when the condition is complex, try to
659 build the store_flag insn directly. */
660
661 if (cond_complex)
662 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
663
664 if (reversep)
665 code = reversed_comparison_code (cond, if_info->jump);
666 else
667 code = GET_CODE (cond);
668
669 if ((if_info->cond_earliest == if_info->jump || cond_complex)
670 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
671 {
672 rtx tmp;
673
674 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
675 XEXP (cond, 1));
676 tmp = gen_rtx_SET (VOIDmode, x, tmp);
677
678 start_sequence ();
679 tmp = emit_insn (tmp);
680
681 if (recog_memoized (tmp) >= 0)
682 {
683 tmp = get_insns ();
684 end_sequence ();
685 emit_insn (tmp);
686
687 if_info->cond_earliest = if_info->jump;
688
689 return x;
690 }
691
692 end_sequence ();
693 }
694
695 /* Don't even try if the comparison operands or the mode of X are weird. */
696 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
697 return NULL_RTX;
698
699 return emit_store_flag (x, code, XEXP (cond, 0),
700 XEXP (cond, 1), VOIDmode,
701 (code == LTU || code == LEU
702 || code == GEU || code == GTU), normalize);
703 }
704
705 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
706 X is the destination/target and Y is the value to copy. */
707
708 static void
709 noce_emit_move_insn (rtx x, rtx y)
710 {
711 enum machine_mode outmode;
712 rtx outer, inner;
713 int bitpos;
714
715 if (GET_CODE (x) != STRICT_LOW_PART)
716 {
717 rtx seq, insn, target;
718 optab ot;
719
720 start_sequence ();
721 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
722 otherwise construct a suitable SET pattern ourselves. */
723 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
724 ? emit_move_insn (x, y)
725 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
726 seq = get_insns ();
727 end_sequence ();
728
729 if (recog_memoized (insn) <= 0)
730 {
731 if (GET_CODE (x) == ZERO_EXTRACT)
732 {
733 rtx op = XEXP (x, 0);
734 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
735 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
736
737 /* store_bit_field expects START to be relative to
738 BYTES_BIG_ENDIAN and adjusts this value for machines with
739 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
740 invoke store_bit_field again it is necessary to have the START
741 value from the first call. */
742 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
743 {
744 if (MEM_P (op))
745 start = BITS_PER_UNIT - start - size;
746 else
747 {
748 gcc_assert (REG_P (op));
749 start = BITS_PER_WORD - start - size;
750 }
751 }
752
753 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
754 store_bit_field (op, size, start, GET_MODE (x), y);
755 return;
756 }
757
758 switch (GET_RTX_CLASS (GET_CODE (y)))
759 {
760 case RTX_UNARY:
761 ot = code_to_optab[GET_CODE (y)];
762 if (ot)
763 {
764 start_sequence ();
765 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
766 if (target != NULL_RTX)
767 {
768 if (target != x)
769 emit_move_insn (x, target);
770 seq = get_insns ();
771 }
772 end_sequence ();
773 }
774 break;
775
776 case RTX_BIN_ARITH:
777 case RTX_COMM_ARITH:
778 ot = code_to_optab[GET_CODE (y)];
779 if (ot)
780 {
781 start_sequence ();
782 target = expand_binop (GET_MODE (y), ot,
783 XEXP (y, 0), XEXP (y, 1),
784 x, 0, OPTAB_DIRECT);
785 if (target != NULL_RTX)
786 {
787 if (target != x)
788 emit_move_insn (x, target);
789 seq = get_insns ();
790 }
791 end_sequence ();
792 }
793 break;
794
795 default:
796 break;
797 }
798 }
799
800 emit_insn (seq);
801 return;
802 }
803
804 outer = XEXP (x, 0);
805 inner = XEXP (outer, 0);
806 outmode = GET_MODE (outer);
807 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
808 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
809 }
810
811 /* Return sequence of instructions generated by if conversion. This
812 function calls end_sequence() to end the current stream, ensures
813 that are instructions are unshared, recognizable non-jump insns.
814 On failure, this function returns a NULL_RTX. */
815
816 static rtx
817 end_ifcvt_sequence (struct noce_if_info *if_info)
818 {
819 rtx insn;
820 rtx seq = get_insns ();
821
822 set_used_flags (if_info->x);
823 set_used_flags (if_info->cond);
824 unshare_all_rtl_in_chain (seq);
825 end_sequence ();
826
827 /* Make sure that all of the instructions emitted are recognizable,
828 and that we haven't introduced a new jump instruction.
829 As an exercise for the reader, build a general mechanism that
830 allows proper placement of required clobbers. */
831 for (insn = seq; insn; insn = NEXT_INSN (insn))
832 if (JUMP_P (insn)
833 || recog_memoized (insn) == -1)
834 return NULL_RTX;
835
836 return seq;
837 }
838
839 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
840 "if (a == b) x = a; else x = b" into "x = b". */
841
842 static int
843 noce_try_move (struct noce_if_info *if_info)
844 {
845 rtx cond = if_info->cond;
846 enum rtx_code code = GET_CODE (cond);
847 rtx y, seq;
848
849 if (code != NE && code != EQ)
850 return FALSE;
851
852 /* This optimization isn't valid if either A or B could be a NaN
853 or a signed zero. */
854 if (HONOR_NANS (GET_MODE (if_info->x))
855 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
856 return FALSE;
857
858 /* Check whether the operands of the comparison are A and in
859 either order. */
860 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
861 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
862 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
863 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
864 {
865 y = (code == EQ) ? if_info->a : if_info->b;
866
867 /* Avoid generating the move if the source is the destination. */
868 if (! rtx_equal_p (if_info->x, y))
869 {
870 start_sequence ();
871 noce_emit_move_insn (if_info->x, y);
872 seq = end_ifcvt_sequence (if_info);
873 if (!seq)
874 return FALSE;
875
876 emit_insn_before_setloc (seq, if_info->jump,
877 INSN_LOCATOR (if_info->insn_a));
878 }
879 return TRUE;
880 }
881 return FALSE;
882 }
883
884 /* Convert "if (test) x = 1; else x = 0".
885
886 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
887 tried in noce_try_store_flag_constants after noce_try_cmove has had
888 a go at the conversion. */
889
890 static int
891 noce_try_store_flag (struct noce_if_info *if_info)
892 {
893 int reversep;
894 rtx target, seq;
895
896 if (GET_CODE (if_info->b) == CONST_INT
897 && INTVAL (if_info->b) == STORE_FLAG_VALUE
898 && if_info->a == const0_rtx)
899 reversep = 0;
900 else if (if_info->b == const0_rtx
901 && GET_CODE (if_info->a) == CONST_INT
902 && INTVAL (if_info->a) == STORE_FLAG_VALUE
903 && (reversed_comparison_code (if_info->cond, if_info->jump)
904 != UNKNOWN))
905 reversep = 1;
906 else
907 return FALSE;
908
909 start_sequence ();
910
911 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
912 if (target)
913 {
914 if (target != if_info->x)
915 noce_emit_move_insn (if_info->x, target);
916
917 seq = end_ifcvt_sequence (if_info);
918 if (! seq)
919 return FALSE;
920
921 emit_insn_before_setloc (seq, if_info->jump,
922 INSN_LOCATOR (if_info->insn_a));
923 return TRUE;
924 }
925 else
926 {
927 end_sequence ();
928 return FALSE;
929 }
930 }
931
932 /* Convert "if (test) x = a; else x = b", for A and B constant. */
933
934 static int
935 noce_try_store_flag_constants (struct noce_if_info *if_info)
936 {
937 rtx target, seq;
938 int reversep;
939 HOST_WIDE_INT itrue, ifalse, diff, tmp;
940 int normalize, can_reverse;
941 enum machine_mode mode;
942
943 if (GET_CODE (if_info->a) == CONST_INT
944 && GET_CODE (if_info->b) == CONST_INT)
945 {
946 mode = GET_MODE (if_info->x);
947 ifalse = INTVAL (if_info->a);
948 itrue = INTVAL (if_info->b);
949
950 /* Make sure we can represent the difference between the two values. */
951 if ((itrue - ifalse > 0)
952 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
953 return FALSE;
954
955 diff = trunc_int_for_mode (itrue - ifalse, mode);
956
957 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
958 != UNKNOWN);
959
960 reversep = 0;
961 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
962 normalize = 0;
963 else if (ifalse == 0 && exact_log2 (itrue) >= 0
964 && (STORE_FLAG_VALUE == 1
965 || BRANCH_COST >= 2))
966 normalize = 1;
967 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
968 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
969 normalize = 1, reversep = 1;
970 else if (itrue == -1
971 && (STORE_FLAG_VALUE == -1
972 || BRANCH_COST >= 2))
973 normalize = -1;
974 else if (ifalse == -1 && can_reverse
975 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
976 normalize = -1, reversep = 1;
977 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
978 || BRANCH_COST >= 3)
979 normalize = -1;
980 else
981 return FALSE;
982
983 if (reversep)
984 {
985 tmp = itrue; itrue = ifalse; ifalse = tmp;
986 diff = trunc_int_for_mode (-diff, mode);
987 }
988
989 start_sequence ();
990 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
991 if (! target)
992 {
993 end_sequence ();
994 return FALSE;
995 }
996
997 /* if (test) x = 3; else x = 4;
998 => x = 3 + (test == 0); */
999 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1000 {
1001 target = expand_simple_binop (mode,
1002 (diff == STORE_FLAG_VALUE
1003 ? PLUS : MINUS),
1004 GEN_INT (ifalse), target, if_info->x, 0,
1005 OPTAB_WIDEN);
1006 }
1007
1008 /* if (test) x = 8; else x = 0;
1009 => x = (test != 0) << 3; */
1010 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1011 {
1012 target = expand_simple_binop (mode, ASHIFT,
1013 target, GEN_INT (tmp), if_info->x, 0,
1014 OPTAB_WIDEN);
1015 }
1016
1017 /* if (test) x = -1; else x = b;
1018 => x = -(test != 0) | b; */
1019 else if (itrue == -1)
1020 {
1021 target = expand_simple_binop (mode, IOR,
1022 target, GEN_INT (ifalse), if_info->x, 0,
1023 OPTAB_WIDEN);
1024 }
1025
1026 /* if (test) x = a; else x = b;
1027 => x = (-(test != 0) & (b - a)) + a; */
1028 else
1029 {
1030 target = expand_simple_binop (mode, AND,
1031 target, GEN_INT (diff), if_info->x, 0,
1032 OPTAB_WIDEN);
1033 if (target)
1034 target = expand_simple_binop (mode, PLUS,
1035 target, GEN_INT (ifalse),
1036 if_info->x, 0, OPTAB_WIDEN);
1037 }
1038
1039 if (! target)
1040 {
1041 end_sequence ();
1042 return FALSE;
1043 }
1044
1045 if (target != if_info->x)
1046 noce_emit_move_insn (if_info->x, target);
1047
1048 seq = end_ifcvt_sequence (if_info);
1049 if (!seq)
1050 return FALSE;
1051
1052 emit_insn_before_setloc (seq, if_info->jump,
1053 INSN_LOCATOR (if_info->insn_a));
1054 return TRUE;
1055 }
1056
1057 return FALSE;
1058 }
1059
1060 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1061 similarly for "foo--". */
1062
1063 static int
1064 noce_try_addcc (struct noce_if_info *if_info)
1065 {
1066 rtx target, seq;
1067 int subtract, normalize;
1068
1069 if (GET_CODE (if_info->a) == PLUS
1070 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1071 && (reversed_comparison_code (if_info->cond, if_info->jump)
1072 != UNKNOWN))
1073 {
1074 rtx cond = if_info->cond;
1075 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1076
1077 /* First try to use addcc pattern. */
1078 if (general_operand (XEXP (cond, 0), VOIDmode)
1079 && general_operand (XEXP (cond, 1), VOIDmode))
1080 {
1081 start_sequence ();
1082 target = emit_conditional_add (if_info->x, code,
1083 XEXP (cond, 0),
1084 XEXP (cond, 1),
1085 VOIDmode,
1086 if_info->b,
1087 XEXP (if_info->a, 1),
1088 GET_MODE (if_info->x),
1089 (code == LTU || code == GEU
1090 || code == LEU || code == GTU));
1091 if (target)
1092 {
1093 if (target != if_info->x)
1094 noce_emit_move_insn (if_info->x, target);
1095
1096 seq = end_ifcvt_sequence (if_info);
1097 if (!seq)
1098 return FALSE;
1099
1100 emit_insn_before_setloc (seq, if_info->jump,
1101 INSN_LOCATOR (if_info->insn_a));
1102 return TRUE;
1103 }
1104 end_sequence ();
1105 }
1106
1107 /* If that fails, construct conditional increment or decrement using
1108 setcc. */
1109 if (BRANCH_COST >= 2
1110 && (XEXP (if_info->a, 1) == const1_rtx
1111 || XEXP (if_info->a, 1) == constm1_rtx))
1112 {
1113 start_sequence ();
1114 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1115 subtract = 0, normalize = 0;
1116 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1117 subtract = 1, normalize = 0;
1118 else
1119 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1120
1121
1122 target = noce_emit_store_flag (if_info,
1123 gen_reg_rtx (GET_MODE (if_info->x)),
1124 1, normalize);
1125
1126 if (target)
1127 target = expand_simple_binop (GET_MODE (if_info->x),
1128 subtract ? MINUS : PLUS,
1129 if_info->b, target, if_info->x,
1130 0, OPTAB_WIDEN);
1131 if (target)
1132 {
1133 if (target != if_info->x)
1134 noce_emit_move_insn (if_info->x, target);
1135
1136 seq = end_ifcvt_sequence (if_info);
1137 if (!seq)
1138 return FALSE;
1139
1140 emit_insn_before_setloc (seq, if_info->jump,
1141 INSN_LOCATOR (if_info->insn_a));
1142 return TRUE;
1143 }
1144 end_sequence ();
1145 }
1146 }
1147
1148 return FALSE;
1149 }
1150
1151 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1152
1153 static int
1154 noce_try_store_flag_mask (struct noce_if_info *if_info)
1155 {
1156 rtx target, seq;
1157 int reversep;
1158
1159 reversep = 0;
1160 if ((BRANCH_COST >= 2
1161 || STORE_FLAG_VALUE == -1)
1162 && ((if_info->a == const0_rtx
1163 && rtx_equal_p (if_info->b, if_info->x))
1164 || ((reversep = (reversed_comparison_code (if_info->cond,
1165 if_info->jump)
1166 != UNKNOWN))
1167 && if_info->b == const0_rtx
1168 && rtx_equal_p (if_info->a, if_info->x))))
1169 {
1170 start_sequence ();
1171 target = noce_emit_store_flag (if_info,
1172 gen_reg_rtx (GET_MODE (if_info->x)),
1173 reversep, -1);
1174 if (target)
1175 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1176 if_info->x,
1177 target, if_info->x, 0,
1178 OPTAB_WIDEN);
1179
1180 if (target)
1181 {
1182 if (target != if_info->x)
1183 noce_emit_move_insn (if_info->x, target);
1184
1185 seq = end_ifcvt_sequence (if_info);
1186 if (!seq)
1187 return FALSE;
1188
1189 emit_insn_before_setloc (seq, if_info->jump,
1190 INSN_LOCATOR (if_info->insn_a));
1191 return TRUE;
1192 }
1193
1194 end_sequence ();
1195 }
1196
1197 return FALSE;
1198 }
1199
1200 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1201
1202 static rtx
1203 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1204 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1205 {
1206 /* If earliest == jump, try to build the cmove insn directly.
1207 This is helpful when combine has created some complex condition
1208 (like for alpha's cmovlbs) that we can't hope to regenerate
1209 through the normal interface. */
1210
1211 if (if_info->cond_earliest == if_info->jump)
1212 {
1213 rtx tmp;
1214
1215 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1216 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1217 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1218
1219 start_sequence ();
1220 tmp = emit_insn (tmp);
1221
1222 if (recog_memoized (tmp) >= 0)
1223 {
1224 tmp = get_insns ();
1225 end_sequence ();
1226 emit_insn (tmp);
1227
1228 return x;
1229 }
1230
1231 end_sequence ();
1232 }
1233
1234 /* Don't even try if the comparison operands are weird. */
1235 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1236 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1237 return NULL_RTX;
1238
1239 #if HAVE_conditional_move
1240 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1241 vtrue, vfalse, GET_MODE (x),
1242 (code == LTU || code == GEU
1243 || code == LEU || code == GTU));
1244 #else
1245 /* We'll never get here, as noce_process_if_block doesn't call the
1246 functions involved. Ifdef code, however, should be discouraged
1247 because it leads to typos in the code not selected. However,
1248 emit_conditional_move won't exist either. */
1249 return NULL_RTX;
1250 #endif
1251 }
1252
1253 /* Try only simple constants and registers here. More complex cases
1254 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1255 has had a go at it. */
1256
1257 static int
1258 noce_try_cmove (struct noce_if_info *if_info)
1259 {
1260 enum rtx_code code;
1261 rtx target, seq;
1262
1263 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1264 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1265 {
1266 start_sequence ();
1267
1268 code = GET_CODE (if_info->cond);
1269 target = noce_emit_cmove (if_info, if_info->x, code,
1270 XEXP (if_info->cond, 0),
1271 XEXP (if_info->cond, 1),
1272 if_info->a, if_info->b);
1273
1274 if (target)
1275 {
1276 if (target != if_info->x)
1277 noce_emit_move_insn (if_info->x, target);
1278
1279 seq = end_ifcvt_sequence (if_info);
1280 if (!seq)
1281 return FALSE;
1282
1283 emit_insn_before_setloc (seq, if_info->jump,
1284 INSN_LOCATOR (if_info->insn_a));
1285 return TRUE;
1286 }
1287 else
1288 {
1289 end_sequence ();
1290 return FALSE;
1291 }
1292 }
1293
1294 return FALSE;
1295 }
1296
1297 /* Try more complex cases involving conditional_move. */
1298
1299 static int
1300 noce_try_cmove_arith (struct noce_if_info *if_info)
1301 {
1302 rtx a = if_info->a;
1303 rtx b = if_info->b;
1304 rtx x = if_info->x;
1305 rtx orig_a, orig_b;
1306 rtx insn_a, insn_b;
1307 rtx tmp, target;
1308 int is_mem = 0;
1309 int insn_cost;
1310 enum rtx_code code;
1311
1312 /* A conditional move from two memory sources is equivalent to a
1313 conditional on their addresses followed by a load. Don't do this
1314 early because it'll screw alias analysis. Note that we've
1315 already checked for no side effects. */
1316 /* ??? FIXME: Magic number 5. */
1317 if (cse_not_expected
1318 && MEM_P (a) && MEM_P (b)
1319 && BRANCH_COST >= 5)
1320 {
1321 a = XEXP (a, 0);
1322 b = XEXP (b, 0);
1323 x = gen_reg_rtx (Pmode);
1324 is_mem = 1;
1325 }
1326
1327 /* ??? We could handle this if we knew that a load from A or B could
1328 not fault. This is also true if we've already loaded
1329 from the address along the path from ENTRY. */
1330 else if (may_trap_p (a) || may_trap_p (b))
1331 return FALSE;
1332
1333 /* if (test) x = a + b; else x = c - d;
1334 => y = a + b;
1335 x = c - d;
1336 if (test)
1337 x = y;
1338 */
1339
1340 code = GET_CODE (if_info->cond);
1341 insn_a = if_info->insn_a;
1342 insn_b = if_info->insn_b;
1343
1344 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1345 if insn_rtx_cost can't be estimated. */
1346 if (insn_a)
1347 {
1348 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1349 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1350 return FALSE;
1351 }
1352 else
1353 insn_cost = 0;
1354
1355 if (insn_b)
1356 {
1357 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1358 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1359 return FALSE;
1360 }
1361
1362 /* Possibly rearrange operands to make things come out more natural. */
1363 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1364 {
1365 int reversep = 0;
1366 if (rtx_equal_p (b, x))
1367 reversep = 1;
1368 else if (general_operand (b, GET_MODE (b)))
1369 reversep = 1;
1370
1371 if (reversep)
1372 {
1373 code = reversed_comparison_code (if_info->cond, if_info->jump);
1374 tmp = a, a = b, b = tmp;
1375 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1376 }
1377 }
1378
1379 start_sequence ();
1380
1381 orig_a = a;
1382 orig_b = b;
1383
1384 /* If either operand is complex, load it into a register first.
1385 The best way to do this is to copy the original insn. In this
1386 way we preserve any clobbers etc that the insn may have had.
1387 This is of course not possible in the IS_MEM case. */
1388 if (! general_operand (a, GET_MODE (a)))
1389 {
1390 rtx set;
1391
1392 if (is_mem)
1393 {
1394 tmp = gen_reg_rtx (GET_MODE (a));
1395 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1396 }
1397 else if (! insn_a)
1398 goto end_seq_and_fail;
1399 else
1400 {
1401 a = gen_reg_rtx (GET_MODE (a));
1402 tmp = copy_rtx (insn_a);
1403 set = single_set (tmp);
1404 SET_DEST (set) = a;
1405 tmp = emit_insn (PATTERN (tmp));
1406 }
1407 if (recog_memoized (tmp) < 0)
1408 goto end_seq_and_fail;
1409 }
1410 if (! general_operand (b, GET_MODE (b)))
1411 {
1412 rtx set, last;
1413
1414 if (is_mem)
1415 {
1416 tmp = gen_reg_rtx (GET_MODE (b));
1417 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1418 }
1419 else if (! insn_b)
1420 goto end_seq_and_fail;
1421 else
1422 {
1423 b = gen_reg_rtx (GET_MODE (b));
1424 tmp = copy_rtx (insn_b);
1425 set = single_set (tmp);
1426 SET_DEST (set) = b;
1427 tmp = PATTERN (tmp);
1428 }
1429
1430 /* If insn to set up A clobbers any registers B depends on, try to
1431 swap insn that sets up A with the one that sets up B. If even
1432 that doesn't help, punt. */
1433 last = get_last_insn ();
1434 if (last && modified_in_p (orig_b, last))
1435 {
1436 tmp = emit_insn_before (tmp, get_insns ());
1437 if (modified_in_p (orig_a, tmp))
1438 goto end_seq_and_fail;
1439 }
1440 else
1441 tmp = emit_insn (tmp);
1442
1443 if (recog_memoized (tmp) < 0)
1444 goto end_seq_and_fail;
1445 }
1446
1447 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1448 XEXP (if_info->cond, 1), a, b);
1449
1450 if (! target)
1451 goto end_seq_and_fail;
1452
1453 /* If we're handling a memory for above, emit the load now. */
1454 if (is_mem)
1455 {
1456 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1457
1458 /* Copy over flags as appropriate. */
1459 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1460 MEM_VOLATILE_P (tmp) = 1;
1461 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1462 MEM_IN_STRUCT_P (tmp) = 1;
1463 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1464 MEM_SCALAR_P (tmp) = 1;
1465 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1466 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1467 set_mem_align (tmp,
1468 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1469
1470 noce_emit_move_insn (if_info->x, tmp);
1471 }
1472 else if (target != x)
1473 noce_emit_move_insn (x, target);
1474
1475 tmp = end_ifcvt_sequence (if_info);
1476 if (!tmp)
1477 return FALSE;
1478
1479 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1480 return TRUE;
1481
1482 end_seq_and_fail:
1483 end_sequence ();
1484 return FALSE;
1485 }
1486
1487 /* For most cases, the simplified condition we found is the best
1488 choice, but this is not the case for the min/max/abs transforms.
1489 For these we wish to know that it is A or B in the condition. */
1490
1491 static rtx
1492 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1493 rtx *earliest)
1494 {
1495 rtx cond, set, insn;
1496 int reverse;
1497
1498 /* If target is already mentioned in the known condition, return it. */
1499 if (reg_mentioned_p (target, if_info->cond))
1500 {
1501 *earliest = if_info->cond_earliest;
1502 return if_info->cond;
1503 }
1504
1505 set = pc_set (if_info->jump);
1506 cond = XEXP (SET_SRC (set), 0);
1507 reverse
1508 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1509 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1510 if (if_info->then_else_reversed)
1511 reverse = !reverse;
1512
1513 /* If we're looking for a constant, try to make the conditional
1514 have that constant in it. There are two reasons why it may
1515 not have the constant we want:
1516
1517 1. GCC may have needed to put the constant in a register, because
1518 the target can't compare directly against that constant. For
1519 this case, we look for a SET immediately before the comparison
1520 that puts a constant in that register.
1521
1522 2. GCC may have canonicalized the conditional, for example
1523 replacing "if x < 4" with "if x <= 3". We can undo that (or
1524 make equivalent types of changes) to get the constants we need
1525 if they're off by one in the right direction. */
1526
1527 if (GET_CODE (target) == CONST_INT)
1528 {
1529 enum rtx_code code = GET_CODE (if_info->cond);
1530 rtx op_a = XEXP (if_info->cond, 0);
1531 rtx op_b = XEXP (if_info->cond, 1);
1532 rtx prev_insn;
1533
1534 /* First, look to see if we put a constant in a register. */
1535 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1536 if (prev_insn
1537 && BLOCK_NUM (prev_insn) == BLOCK_NUM (if_info->cond_earliest)
1538 && INSN_P (prev_insn)
1539 && GET_CODE (PATTERN (prev_insn)) == SET)
1540 {
1541 rtx src = find_reg_equal_equiv_note (prev_insn);
1542 if (!src)
1543 src = SET_SRC (PATTERN (prev_insn));
1544 if (GET_CODE (src) == CONST_INT)
1545 {
1546 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1547 op_a = src;
1548 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1549 op_b = src;
1550
1551 if (GET_CODE (op_a) == CONST_INT)
1552 {
1553 rtx tmp = op_a;
1554 op_a = op_b;
1555 op_b = tmp;
1556 code = swap_condition (code);
1557 }
1558 }
1559 }
1560
1561 /* Now, look to see if we can get the right constant by
1562 adjusting the conditional. */
1563 if (GET_CODE (op_b) == CONST_INT)
1564 {
1565 HOST_WIDE_INT desired_val = INTVAL (target);
1566 HOST_WIDE_INT actual_val = INTVAL (op_b);
1567
1568 switch (code)
1569 {
1570 case LT:
1571 if (actual_val == desired_val + 1)
1572 {
1573 code = LE;
1574 op_b = GEN_INT (desired_val);
1575 }
1576 break;
1577 case LE:
1578 if (actual_val == desired_val - 1)
1579 {
1580 code = LT;
1581 op_b = GEN_INT (desired_val);
1582 }
1583 break;
1584 case GT:
1585 if (actual_val == desired_val - 1)
1586 {
1587 code = GE;
1588 op_b = GEN_INT (desired_val);
1589 }
1590 break;
1591 case GE:
1592 if (actual_val == desired_val + 1)
1593 {
1594 code = GT;
1595 op_b = GEN_INT (desired_val);
1596 }
1597 break;
1598 default:
1599 break;
1600 }
1601 }
1602
1603 /* If we made any changes, generate a new conditional that is
1604 equivalent to what we started with, but has the right
1605 constants in it. */
1606 if (code != GET_CODE (if_info->cond)
1607 || op_a != XEXP (if_info->cond, 0)
1608 || op_b != XEXP (if_info->cond, 1))
1609 {
1610 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1611 *earliest = if_info->cond_earliest;
1612 return cond;
1613 }
1614 }
1615
1616 cond = canonicalize_condition (if_info->jump, cond, reverse,
1617 earliest, target, false, true);
1618 if (! cond || ! reg_mentioned_p (target, cond))
1619 return NULL;
1620
1621 /* We almost certainly searched back to a different place.
1622 Need to re-verify correct lifetimes. */
1623
1624 /* X may not be mentioned in the range (cond_earliest, jump]. */
1625 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1626 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1627 return NULL;
1628
1629 /* A and B may not be modified in the range [cond_earliest, jump). */
1630 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1631 if (INSN_P (insn)
1632 && (modified_in_p (if_info->a, insn)
1633 || modified_in_p (if_info->b, insn)))
1634 return NULL;
1635
1636 return cond;
1637 }
1638
1639 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1640
1641 static int
1642 noce_try_minmax (struct noce_if_info *if_info)
1643 {
1644 rtx cond, earliest, target, seq;
1645 enum rtx_code code, op;
1646 int unsignedp;
1647
1648 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1649 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1650 to get the target to tell us... */
1651 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1652 || HONOR_NANS (GET_MODE (if_info->x)))
1653 return FALSE;
1654
1655 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1656 if (!cond)
1657 return FALSE;
1658
1659 /* Verify the condition is of the form we expect, and canonicalize
1660 the comparison code. */
1661 code = GET_CODE (cond);
1662 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1663 {
1664 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1665 return FALSE;
1666 }
1667 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1668 {
1669 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1670 return FALSE;
1671 code = swap_condition (code);
1672 }
1673 else
1674 return FALSE;
1675
1676 /* Determine what sort of operation this is. Note that the code is for
1677 a taken branch, so the code->operation mapping appears backwards. */
1678 switch (code)
1679 {
1680 case LT:
1681 case LE:
1682 case UNLT:
1683 case UNLE:
1684 op = SMAX;
1685 unsignedp = 0;
1686 break;
1687 case GT:
1688 case GE:
1689 case UNGT:
1690 case UNGE:
1691 op = SMIN;
1692 unsignedp = 0;
1693 break;
1694 case LTU:
1695 case LEU:
1696 op = UMAX;
1697 unsignedp = 1;
1698 break;
1699 case GTU:
1700 case GEU:
1701 op = UMIN;
1702 unsignedp = 1;
1703 break;
1704 default:
1705 return FALSE;
1706 }
1707
1708 start_sequence ();
1709
1710 target = expand_simple_binop (GET_MODE (if_info->x), op,
1711 if_info->a, if_info->b,
1712 if_info->x, unsignedp, OPTAB_WIDEN);
1713 if (! target)
1714 {
1715 end_sequence ();
1716 return FALSE;
1717 }
1718 if (target != if_info->x)
1719 noce_emit_move_insn (if_info->x, target);
1720
1721 seq = end_ifcvt_sequence (if_info);
1722 if (!seq)
1723 return FALSE;
1724
1725 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1726 if_info->cond = cond;
1727 if_info->cond_earliest = earliest;
1728
1729 return TRUE;
1730 }
1731
1732 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1733
1734 static int
1735 noce_try_abs (struct noce_if_info *if_info)
1736 {
1737 rtx cond, earliest, target, seq, a, b, c;
1738 int negate;
1739
1740 /* Recognize A and B as constituting an ABS or NABS. The canonical
1741 form is a branch around the negation, taken when the object is the
1742 first operand of a comparison against 0 that evaluates to true. */
1743 a = if_info->a;
1744 b = if_info->b;
1745 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1746 negate = 0;
1747 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1748 {
1749 c = a; a = b; b = c;
1750 negate = 1;
1751 }
1752 else
1753 return FALSE;
1754
1755 cond = noce_get_alt_condition (if_info, b, &earliest);
1756 if (!cond)
1757 return FALSE;
1758
1759 /* Verify the condition is of the form we expect. */
1760 if (rtx_equal_p (XEXP (cond, 0), b))
1761 c = XEXP (cond, 1);
1762 else if (rtx_equal_p (XEXP (cond, 1), b))
1763 {
1764 c = XEXP (cond, 0);
1765 negate = !negate;
1766 }
1767 else
1768 return FALSE;
1769
1770 /* Verify that C is zero. Search one step backward for a
1771 REG_EQUAL note or a simple source if necessary. */
1772 if (REG_P (c))
1773 {
1774 rtx set, insn = prev_nonnote_insn (earliest);
1775 if (insn
1776 && BLOCK_NUM (insn) == BLOCK_NUM (earliest)
1777 && (set = single_set (insn))
1778 && rtx_equal_p (SET_DEST (set), c))
1779 {
1780 rtx note = find_reg_equal_equiv_note (insn);
1781 if (note)
1782 c = XEXP (note, 0);
1783 else
1784 c = SET_SRC (set);
1785 }
1786 else
1787 return FALSE;
1788 }
1789 if (MEM_P (c)
1790 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1791 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1792 c = get_pool_constant (XEXP (c, 0));
1793
1794 /* Work around funny ideas get_condition has wrt canonicalization.
1795 Note that these rtx constants are known to be CONST_INT, and
1796 therefore imply integer comparisons. */
1797 if (c == constm1_rtx && GET_CODE (cond) == GT)
1798 ;
1799 else if (c == const1_rtx && GET_CODE (cond) == LT)
1800 ;
1801 else if (c != CONST0_RTX (GET_MODE (b)))
1802 return FALSE;
1803
1804 /* Determine what sort of operation this is. */
1805 switch (GET_CODE (cond))
1806 {
1807 case LT:
1808 case LE:
1809 case UNLT:
1810 case UNLE:
1811 negate = !negate;
1812 break;
1813 case GT:
1814 case GE:
1815 case UNGT:
1816 case UNGE:
1817 break;
1818 default:
1819 return FALSE;
1820 }
1821
1822 start_sequence ();
1823
1824 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1825
1826 /* ??? It's a quandary whether cmove would be better here, especially
1827 for integers. Perhaps combine will clean things up. */
1828 if (target && negate)
1829 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1830
1831 if (! target)
1832 {
1833 end_sequence ();
1834 return FALSE;
1835 }
1836
1837 if (target != if_info->x)
1838 noce_emit_move_insn (if_info->x, target);
1839
1840 seq = end_ifcvt_sequence (if_info);
1841 if (!seq)
1842 return FALSE;
1843
1844 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1845 if_info->cond = cond;
1846 if_info->cond_earliest = earliest;
1847
1848 return TRUE;
1849 }
1850
1851 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1852
1853 static int
1854 noce_try_sign_mask (struct noce_if_info *if_info)
1855 {
1856 rtx cond, t, m, c, seq;
1857 enum machine_mode mode;
1858 enum rtx_code code;
1859 bool b_unconditional;
1860
1861 cond = if_info->cond;
1862 code = GET_CODE (cond);
1863 m = XEXP (cond, 0);
1864 c = XEXP (cond, 1);
1865
1866 t = NULL_RTX;
1867 if (if_info->a == const0_rtx)
1868 {
1869 if ((code == LT && c == const0_rtx)
1870 || (code == LE && c == constm1_rtx))
1871 t = if_info->b;
1872 }
1873 else if (if_info->b == const0_rtx)
1874 {
1875 if ((code == GE && c == const0_rtx)
1876 || (code == GT && c == constm1_rtx))
1877 t = if_info->a;
1878 }
1879
1880 if (! t || side_effects_p (t))
1881 return FALSE;
1882
1883 /* We currently don't handle different modes. */
1884 mode = GET_MODE (t);
1885 if (GET_MODE (m) != mode)
1886 return FALSE;
1887
1888 /* This is only profitable if T is cheap, or T is unconditionally
1889 executed/evaluated in the original insn sequence. The latter
1890 happens if INSN_B was taken from TEST_BB, or if there was no
1891 INSN_B which can happen for e.g. conditional stores to memory. */
1892 b_unconditional = (if_info->insn_b == NULL_RTX
1893 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb);
1894 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1895 && (!b_unconditional
1896 || t != if_info->b))
1897 return FALSE;
1898
1899 start_sequence ();
1900 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1901 "(signed) m >> 31" directly. This benefits targets with specialized
1902 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1903 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1904 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1905 : NULL_RTX;
1906
1907 if (!t)
1908 {
1909 end_sequence ();
1910 return FALSE;
1911 }
1912
1913 noce_emit_move_insn (if_info->x, t);
1914
1915 seq = end_ifcvt_sequence (if_info);
1916 if (!seq)
1917 return FALSE;
1918
1919 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1920 return TRUE;
1921 }
1922
1923
1924 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1925 transformations. */
1926
1927 static int
1928 noce_try_bitop (struct noce_if_info *if_info)
1929 {
1930 rtx cond, x, a, result, seq;
1931 enum machine_mode mode;
1932 enum rtx_code code;
1933 int bitnum;
1934
1935 x = if_info->x;
1936 cond = if_info->cond;
1937 code = GET_CODE (cond);
1938
1939 /* Check for no else condition. */
1940 if (! rtx_equal_p (x, if_info->b))
1941 return FALSE;
1942
1943 /* Check for a suitable condition. */
1944 if (code != NE && code != EQ)
1945 return FALSE;
1946 if (XEXP (cond, 1) != const0_rtx)
1947 return FALSE;
1948 cond = XEXP (cond, 0);
1949
1950 /* ??? We could also handle AND here. */
1951 if (GET_CODE (cond) == ZERO_EXTRACT)
1952 {
1953 if (XEXP (cond, 1) != const1_rtx
1954 || GET_CODE (XEXP (cond, 2)) != CONST_INT
1955 || ! rtx_equal_p (x, XEXP (cond, 0)))
1956 return FALSE;
1957 bitnum = INTVAL (XEXP (cond, 2));
1958 mode = GET_MODE (x);
1959 if (BITS_BIG_ENDIAN)
1960 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
1961 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
1962 return FALSE;
1963 }
1964 else
1965 return FALSE;
1966
1967 a = if_info->a;
1968 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
1969 {
1970 /* Check for "if (X & C) x = x op C". */
1971 if (! rtx_equal_p (x, XEXP (a, 0))
1972 || GET_CODE (XEXP (a, 1)) != CONST_INT
1973 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1974 != (unsigned HOST_WIDE_INT) 1 << bitnum)
1975 return FALSE;
1976
1977 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
1978 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
1979 if (GET_CODE (a) == IOR)
1980 result = (code == NE) ? a : NULL_RTX;
1981 else if (code == NE)
1982 {
1983 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
1984 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
1985 result = simplify_gen_binary (IOR, mode, x, result);
1986 }
1987 else
1988 {
1989 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
1990 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
1991 result = simplify_gen_binary (AND, mode, x, result);
1992 }
1993 }
1994 else if (GET_CODE (a) == AND)
1995 {
1996 /* Check for "if (X & C) x &= ~C". */
1997 if (! rtx_equal_p (x, XEXP (a, 0))
1998 || GET_CODE (XEXP (a, 1)) != CONST_INT
1999 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2000 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2001 return FALSE;
2002
2003 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2004 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2005 result = (code == EQ) ? a : NULL_RTX;
2006 }
2007 else
2008 return FALSE;
2009
2010 if (result)
2011 {
2012 start_sequence ();
2013 noce_emit_move_insn (x, result);
2014 seq = end_ifcvt_sequence (if_info);
2015 if (!seq)
2016 return FALSE;
2017
2018 emit_insn_before_setloc (seq, if_info->jump,
2019 INSN_LOCATOR (if_info->insn_a));
2020 }
2021 return TRUE;
2022 }
2023
2024
2025 /* Similar to get_condition, only the resulting condition must be
2026 valid at JUMP, instead of at EARLIEST.
2027
2028 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2029 THEN block of the caller, and we have to reverse the condition. */
2030
2031 static rtx
2032 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2033 {
2034 rtx cond, set, tmp;
2035 bool reverse;
2036
2037 if (! any_condjump_p (jump))
2038 return NULL_RTX;
2039
2040 set = pc_set (jump);
2041
2042 /* If this branches to JUMP_LABEL when the condition is false,
2043 reverse the condition. */
2044 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2045 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2046
2047 /* We may have to reverse because the caller's if block is not canonical,
2048 i.e. the THEN block isn't the fallthrough block for the TEST block
2049 (see find_if_header). */
2050 if (then_else_reversed)
2051 reverse = !reverse;
2052
2053 /* If the condition variable is a register and is MODE_INT, accept it. */
2054
2055 cond = XEXP (SET_SRC (set), 0);
2056 tmp = XEXP (cond, 0);
2057 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2058 {
2059 *earliest = jump;
2060
2061 if (reverse)
2062 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2063 GET_MODE (cond), tmp, XEXP (cond, 1));
2064 return cond;
2065 }
2066
2067 /* Otherwise, fall back on canonicalize_condition to do the dirty
2068 work of manipulating MODE_CC values and COMPARE rtx codes. */
2069 return canonicalize_condition (jump, cond, reverse, earliest,
2070 NULL_RTX, false, true);
2071 }
2072
2073 /* Return true if OP is ok for if-then-else processing. */
2074
2075 static int
2076 noce_operand_ok (const_rtx op)
2077 {
2078 /* We special-case memories, so handle any of them with
2079 no address side effects. */
2080 if (MEM_P (op))
2081 return ! side_effects_p (XEXP (op, 0));
2082
2083 if (side_effects_p (op))
2084 return FALSE;
2085
2086 return ! may_trap_p (op);
2087 }
2088
2089 /* Return true if a write into MEM may trap or fault. */
2090
2091 static bool
2092 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2093 {
2094 rtx addr;
2095
2096 if (MEM_READONLY_P (mem))
2097 return true;
2098
2099 if (may_trap_or_fault_p (mem))
2100 return true;
2101
2102 addr = XEXP (mem, 0);
2103
2104 /* Call target hook to avoid the effects of -fpic etc.... */
2105 addr = targetm.delegitimize_address (addr);
2106
2107 while (addr)
2108 switch (GET_CODE (addr))
2109 {
2110 case CONST:
2111 case PRE_DEC:
2112 case PRE_INC:
2113 case POST_DEC:
2114 case POST_INC:
2115 case POST_MODIFY:
2116 addr = XEXP (addr, 0);
2117 break;
2118 case LO_SUM:
2119 case PRE_MODIFY:
2120 addr = XEXP (addr, 1);
2121 break;
2122 case PLUS:
2123 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2124 addr = XEXP (addr, 0);
2125 else
2126 return false;
2127 break;
2128 case LABEL_REF:
2129 return true;
2130 case SYMBOL_REF:
2131 if (SYMBOL_REF_DECL (addr)
2132 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2133 return true;
2134 return false;
2135 default:
2136 return false;
2137 }
2138
2139 return false;
2140 }
2141
2142 /* Return whether we can use store speculation for MEM. TOP_BB is the
2143 basic block above the conditional block where we are considering
2144 doing the speculative store. We look for whether MEM is set
2145 unconditionally later in the function. */
2146
2147 static bool
2148 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2149 {
2150 basic_block dominator;
2151
2152 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2153 dominator != NULL;
2154 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2155 {
2156 rtx insn;
2157
2158 FOR_BB_INSNS (dominator, insn)
2159 {
2160 /* If we see something that might be a memory barrier, we
2161 have to stop looking. Even if the MEM is set later in
2162 the function, we still don't want to set it
2163 unconditionally before the barrier. */
2164 if (INSN_P (insn)
2165 && (volatile_insn_p (PATTERN (insn))
2166 || (CALL_P (insn)
2167 && (!CONST_OR_PURE_CALL_P (insn)
2168 || pure_call_p (insn)))))
2169 return false;
2170
2171 if (memory_modified_in_insn_p (mem, insn))
2172 return true;
2173 if (modified_in_p (XEXP (mem, 0), insn))
2174 return false;
2175
2176 }
2177 }
2178
2179 return false;
2180 }
2181
2182 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2183 it without using conditional execution. Return TRUE if we were successful
2184 at converting the block. */
2185
2186 static int
2187 noce_process_if_block (struct noce_if_info *if_info)
2188 {
2189 basic_block test_bb = if_info->test_bb; /* test block */
2190 basic_block then_bb = if_info->then_bb; /* THEN */
2191 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2192 basic_block join_bb = if_info->join_bb; /* JOIN */
2193 rtx jump = if_info->jump;
2194 rtx cond = if_info->cond;
2195 rtx insn_a, insn_b;
2196 rtx set_a, set_b;
2197 rtx orig_x, x, a, b;
2198
2199 /* We're looking for patterns of the form
2200
2201 (1) if (...) x = a; else x = b;
2202 (2) x = b; if (...) x = a;
2203 (3) if (...) x = a; // as if with an initial x = x.
2204
2205 The later patterns require jumps to be more expensive.
2206
2207 ??? For future expansion, look for multiple X in such patterns. */
2208
2209 /* Look for one of the potential sets. */
2210 insn_a = first_active_insn (then_bb);
2211 if (! insn_a
2212 || insn_a != last_active_insn (then_bb, FALSE)
2213 || (set_a = single_set (insn_a)) == NULL_RTX)
2214 return FALSE;
2215
2216 x = SET_DEST (set_a);
2217 a = SET_SRC (set_a);
2218
2219 /* Look for the other potential set. Make sure we've got equivalent
2220 destinations. */
2221 /* ??? This is overconservative. Storing to two different mems is
2222 as easy as conditionally computing the address. Storing to a
2223 single mem merely requires a scratch memory to use as one of the
2224 destination addresses; often the memory immediately below the
2225 stack pointer is available for this. */
2226 set_b = NULL_RTX;
2227 if (else_bb)
2228 {
2229 insn_b = first_active_insn (else_bb);
2230 if (! insn_b
2231 || insn_b != last_active_insn (else_bb, FALSE)
2232 || (set_b = single_set (insn_b)) == NULL_RTX
2233 || ! rtx_equal_p (x, SET_DEST (set_b)))
2234 return FALSE;
2235 }
2236 else
2237 {
2238 insn_b = prev_nonnote_insn (if_info->cond_earliest);
2239 /* We're going to be moving the evaluation of B down from above
2240 COND_EARLIEST to JUMP. Make sure the relevant data is still
2241 intact. */
2242 if (! insn_b
2243 || BLOCK_NUM (insn_b) != BLOCK_NUM (if_info->cond_earliest)
2244 || !NONJUMP_INSN_P (insn_b)
2245 || (set_b = single_set (insn_b)) == NULL_RTX
2246 || ! rtx_equal_p (x, SET_DEST (set_b))
2247 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2248 || modified_between_p (SET_SRC (set_b),
2249 PREV_INSN (if_info->cond_earliest), jump)
2250 /* Likewise with X. In particular this can happen when
2251 noce_get_condition looks farther back in the instruction
2252 stream than one might expect. */
2253 || reg_overlap_mentioned_p (x, cond)
2254 || reg_overlap_mentioned_p (x, a)
2255 || modified_between_p (x, PREV_INSN (if_info->cond_earliest), jump))
2256 insn_b = set_b = NULL_RTX;
2257 }
2258
2259 /* If x has side effects then only the if-then-else form is safe to
2260 convert. But even in that case we would need to restore any notes
2261 (such as REG_INC) at then end. That can be tricky if
2262 noce_emit_move_insn expands to more than one insn, so disable the
2263 optimization entirely for now if there are side effects. */
2264 if (side_effects_p (x))
2265 return FALSE;
2266
2267 b = (set_b ? SET_SRC (set_b) : x);
2268
2269 /* Only operate on register destinations, and even then avoid extending
2270 the lifetime of hard registers on small register class machines. */
2271 orig_x = x;
2272 if (!REG_P (x)
2273 || (SMALL_REGISTER_CLASSES
2274 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2275 {
2276 if (GET_MODE (x) == BLKmode)
2277 return FALSE;
2278
2279 if (GET_MODE (x) == ZERO_EXTRACT
2280 && (GET_CODE (XEXP (x, 1)) != CONST_INT
2281 || GET_CODE (XEXP (x, 2)) != CONST_INT))
2282 return FALSE;
2283
2284 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2285 ? XEXP (x, 0) : x));
2286 }
2287
2288 /* Don't operate on sources that may trap or are volatile. */
2289 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2290 return FALSE;
2291
2292 /* Set up the info block for our subroutines. */
2293 if_info->insn_a = insn_a;
2294 if_info->insn_b = insn_b;
2295 if_info->x = x;
2296 if_info->a = a;
2297 if_info->b = b;
2298
2299 /* Try optimizations in some approximation of a useful order. */
2300 /* ??? Should first look to see if X is live incoming at all. If it
2301 isn't, we don't need anything but an unconditional set. */
2302
2303 /* Look and see if A and B are really the same. Avoid creating silly
2304 cmove constructs that no one will fix up later. */
2305 if (rtx_equal_p (a, b))
2306 {
2307 /* If we have an INSN_B, we don't have to create any new rtl. Just
2308 move the instruction that we already have. If we don't have an
2309 INSN_B, that means that A == X, and we've got a noop move. In
2310 that case don't do anything and let the code below delete INSN_A. */
2311 if (insn_b && else_bb)
2312 {
2313 rtx note;
2314
2315 if (else_bb && insn_b == BB_END (else_bb))
2316 BB_END (else_bb) = PREV_INSN (insn_b);
2317 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2318
2319 /* If there was a REG_EQUAL note, delete it since it may have been
2320 true due to this insn being after a jump. */
2321 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2322 remove_note (insn_b, note);
2323
2324 insn_b = NULL_RTX;
2325 }
2326 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2327 x must be executed twice. */
2328 else if (insn_b && side_effects_p (orig_x))
2329 return FALSE;
2330
2331 x = orig_x;
2332 goto success;
2333 }
2334
2335 if (!set_b && MEM_P (orig_x))
2336 {
2337 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2338 for optimizations if writing to x may trap or fault,
2339 i.e. it's a memory other than a static var or a stack slot,
2340 is misaligned on strict aligned machines or is read-only. If
2341 x is a read-only memory, then the program is valid only if we
2342 avoid the store into it. If there are stores on both the
2343 THEN and ELSE arms, then we can go ahead with the conversion;
2344 either the program is broken, or the condition is always
2345 false such that the other memory is selected. */
2346 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2347 return FALSE;
2348
2349 /* Avoid store speculation: given "if (...) x = a" where x is a
2350 MEM, we only want to do the store if x is always set
2351 somewhere in the function. This avoids cases like
2352 if (pthread_mutex_trylock(mutex))
2353 ++global_variable;
2354 where we only want global_variable to be changed if the mutex
2355 is held. FIXME: This should ideally be expressed directly in
2356 RTL somehow. */
2357 if (!noce_can_store_speculate_p (test_bb, orig_x))
2358 return FALSE;
2359 }
2360
2361 if (noce_try_move (if_info))
2362 goto success;
2363 if (noce_try_store_flag (if_info))
2364 goto success;
2365 if (noce_try_bitop (if_info))
2366 goto success;
2367 if (noce_try_minmax (if_info))
2368 goto success;
2369 if (noce_try_abs (if_info))
2370 goto success;
2371 if (HAVE_conditional_move
2372 && noce_try_cmove (if_info))
2373 goto success;
2374 if (! HAVE_conditional_execution)
2375 {
2376 if (noce_try_store_flag_constants (if_info))
2377 goto success;
2378 if (noce_try_addcc (if_info))
2379 goto success;
2380 if (noce_try_store_flag_mask (if_info))
2381 goto success;
2382 if (HAVE_conditional_move
2383 && noce_try_cmove_arith (if_info))
2384 goto success;
2385 if (noce_try_sign_mask (if_info))
2386 goto success;
2387 }
2388
2389 return FALSE;
2390
2391 success:
2392
2393 /* If we used a temporary, fix it up now. */
2394 if (orig_x != x)
2395 {
2396 rtx seq;
2397
2398 start_sequence ();
2399 noce_emit_move_insn (orig_x, x);
2400 seq = get_insns ();
2401 set_used_flags (orig_x);
2402 unshare_all_rtl_in_chain (seq);
2403 end_sequence ();
2404
2405 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2406 }
2407
2408 /* The original THEN and ELSE blocks may now be removed. The test block
2409 must now jump to the join block. If the test block and the join block
2410 can be merged, do so. */
2411 if (else_bb)
2412 {
2413 delete_basic_block (else_bb);
2414 num_true_changes++;
2415 }
2416 else
2417 remove_edge (find_edge (test_bb, join_bb));
2418
2419 remove_edge (find_edge (then_bb, join_bb));
2420 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2421 delete_basic_block (then_bb);
2422 num_true_changes++;
2423
2424 if (can_merge_blocks_p (test_bb, join_bb))
2425 {
2426 merge_blocks (test_bb, join_bb);
2427 num_true_changes++;
2428 }
2429
2430 num_updated_if_blocks++;
2431 return TRUE;
2432 }
2433
2434 /* Check whether a block is suitable for conditional move conversion.
2435 Every insn must be a simple set of a register to a constant or a
2436 register. For each assignment, store the value in the array VALS,
2437 indexed by register number, then store the register number in
2438 REGS. COND is the condition we will test. */
2439
2440 static int
2441 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) *regs, rtx cond)
2442 {
2443 rtx insn;
2444
2445 /* We can only handle simple jumps at the end of the basic block.
2446 It is almost impossible to update the CFG otherwise. */
2447 insn = BB_END (bb);
2448 if (JUMP_P (insn) && !onlyjump_p (insn))
2449 return FALSE;
2450
2451 FOR_BB_INSNS (bb, insn)
2452 {
2453 rtx set, dest, src;
2454
2455 if (!INSN_P (insn) || JUMP_P (insn))
2456 continue;
2457 set = single_set (insn);
2458 if (!set)
2459 return FALSE;
2460
2461 dest = SET_DEST (set);
2462 src = SET_SRC (set);
2463 if (!REG_P (dest)
2464 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2465 return FALSE;
2466
2467 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2468 return FALSE;
2469
2470 if (side_effects_p (src) || side_effects_p (dest))
2471 return FALSE;
2472
2473 if (may_trap_p (src) || may_trap_p (dest))
2474 return FALSE;
2475
2476 /* Don't try to handle this if the source register was
2477 modified earlier in the block. */
2478 if ((REG_P (src)
2479 && vals[REGNO (src)] != NULL)
2480 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2481 && vals[REGNO (SUBREG_REG (src))] != NULL))
2482 return FALSE;
2483
2484 /* Don't try to handle this if the destination register was
2485 modified earlier in the block. */
2486 if (vals[REGNO (dest)] != NULL)
2487 return FALSE;
2488
2489 /* Don't try to handle this if the condition uses the
2490 destination register. */
2491 if (reg_overlap_mentioned_p (dest, cond))
2492 return FALSE;
2493
2494 /* Don't try to handle this if the source register is modified
2495 later in the block. */
2496 if (!CONSTANT_P (src)
2497 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2498 return FALSE;
2499
2500 vals[REGNO (dest)] = src;
2501
2502 VEC_safe_push (int, heap, regs, REGNO (dest));
2503 }
2504
2505 return TRUE;
2506 }
2507
2508 /* Given a basic block BB suitable for conditional move conversion,
2509 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2510 register values depending on COND, emit the insns in the block as
2511 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2512 processed. The caller has started a sequence for the conversion.
2513 Return true if successful, false if something goes wrong. */
2514
2515 static bool
2516 cond_move_convert_if_block (struct noce_if_info *if_infop,
2517 basic_block bb, rtx cond,
2518 rtx *then_vals, rtx *else_vals,
2519 bool else_block_p)
2520 {
2521 enum rtx_code code;
2522 rtx insn, cond_arg0, cond_arg1;
2523
2524 code = GET_CODE (cond);
2525 cond_arg0 = XEXP (cond, 0);
2526 cond_arg1 = XEXP (cond, 1);
2527
2528 FOR_BB_INSNS (bb, insn)
2529 {
2530 rtx set, target, dest, t, e;
2531 unsigned int regno;
2532
2533 if (!INSN_P (insn) || JUMP_P (insn))
2534 continue;
2535 set = single_set (insn);
2536 gcc_assert (set && REG_P (SET_DEST (set)));
2537
2538 dest = SET_DEST (set);
2539 regno = REGNO (dest);
2540
2541 t = then_vals[regno];
2542 e = else_vals[regno];
2543
2544 if (else_block_p)
2545 {
2546 /* If this register was set in the then block, we already
2547 handled this case there. */
2548 if (t)
2549 continue;
2550 t = dest;
2551 gcc_assert (e);
2552 }
2553 else
2554 {
2555 gcc_assert (t);
2556 if (!e)
2557 e = dest;
2558 }
2559
2560 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2561 t, e);
2562 if (!target)
2563 return false;
2564
2565 if (target != dest)
2566 noce_emit_move_insn (dest, target);
2567 }
2568
2569 return true;
2570 }
2571
2572 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2573 it using only conditional moves. Return TRUE if we were successful at
2574 converting the block. */
2575
2576 static int
2577 cond_move_process_if_block (struct noce_if_info *if_info)
2578 {
2579 basic_block test_bb = if_info->test_bb;
2580 basic_block then_bb = if_info->then_bb;
2581 basic_block else_bb = if_info->else_bb;
2582 basic_block join_bb = if_info->join_bb;
2583 rtx jump = if_info->jump;
2584 rtx cond = if_info->cond;
2585 rtx seq, loc_insn;
2586 int max_reg, size, c, reg;
2587 rtx *then_vals;
2588 rtx *else_vals;
2589 VEC (int, heap) *then_regs = NULL;
2590 VEC (int, heap) *else_regs = NULL;
2591 unsigned int i;
2592
2593 /* Build a mapping for each block to the value used for each
2594 register. */
2595 max_reg = max_reg_num ();
2596 size = (max_reg + 1) * sizeof (rtx);
2597 then_vals = (rtx *) alloca (size);
2598 else_vals = (rtx *) alloca (size);
2599 memset (then_vals, 0, size);
2600 memset (else_vals, 0, size);
2601
2602 /* Make sure the blocks are suitable. */
2603 if (!check_cond_move_block (then_bb, then_vals, then_regs, cond)
2604 || (else_bb && !check_cond_move_block (else_bb, else_vals, else_regs, cond)))
2605 return FALSE;
2606
2607 /* Make sure the blocks can be used together. If the same register
2608 is set in both blocks, and is not set to a constant in both
2609 cases, then both blocks must set it to the same register. We
2610 have already verified that if it is set to a register, that the
2611 source register does not change after the assignment. Also count
2612 the number of registers set in only one of the blocks. */
2613 c = 0;
2614 for (i = 0; VEC_iterate (int, then_regs, i, reg); i++)
2615 {
2616 if (!then_vals[reg] && !else_vals[reg])
2617 continue;
2618
2619 if (!else_vals[reg])
2620 ++c;
2621 else
2622 {
2623 if (!CONSTANT_P (then_vals[reg])
2624 && !CONSTANT_P (else_vals[reg])
2625 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2626 return FALSE;
2627 }
2628 }
2629
2630 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2631 for (i = 0; VEC_iterate (int, else_regs, i, reg); ++i)
2632 if (!then_vals[reg])
2633 ++c;
2634
2635 /* Make sure it is reasonable to convert this block. What matters
2636 is the number of assignments currently made in only one of the
2637 branches, since if we convert we are going to always execute
2638 them. */
2639 if (c > MAX_CONDITIONAL_EXECUTE)
2640 return FALSE;
2641
2642 /* Try to emit the conditional moves. First do the then block,
2643 then do anything left in the else blocks. */
2644 start_sequence ();
2645 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2646 then_vals, else_vals, false)
2647 || (else_bb
2648 && !cond_move_convert_if_block (if_info, else_bb, cond,
2649 then_vals, else_vals, true)))
2650 {
2651 end_sequence ();
2652 return FALSE;
2653 }
2654 seq = end_ifcvt_sequence (if_info);
2655 if (!seq)
2656 return FALSE;
2657
2658 loc_insn = first_active_insn (then_bb);
2659 if (!loc_insn)
2660 {
2661 loc_insn = first_active_insn (else_bb);
2662 gcc_assert (loc_insn);
2663 }
2664 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2665
2666 if (else_bb)
2667 {
2668 delete_basic_block (else_bb);
2669 num_true_changes++;
2670 }
2671 else
2672 remove_edge (find_edge (test_bb, join_bb));
2673
2674 remove_edge (find_edge (then_bb, join_bb));
2675 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2676 delete_basic_block (then_bb);
2677 num_true_changes++;
2678
2679 if (can_merge_blocks_p (test_bb, join_bb))
2680 {
2681 merge_blocks (test_bb, join_bb);
2682 num_true_changes++;
2683 }
2684
2685 num_updated_if_blocks++;
2686
2687 VEC_free (int, heap, then_regs);
2688 VEC_free (int, heap, else_regs);
2689
2690 return TRUE;
2691 }
2692
2693 \f
2694 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2695 IF-THEN-ELSE-JOIN block.
2696
2697 If so, we'll try to convert the insns to not require the branch,
2698 using only transformations that do not require conditional execution.
2699
2700 Return TRUE if we were successful at converting the block. */
2701
2702 static int
2703 noce_find_if_block (basic_block test_bb,
2704 edge then_edge, edge else_edge,
2705 int pass)
2706 {
2707 basic_block then_bb, else_bb, join_bb;
2708 bool then_else_reversed = false;
2709 rtx jump, cond;
2710 rtx cond_earliest;
2711 struct noce_if_info if_info;
2712
2713 /* We only ever should get here before reload. */
2714 gcc_assert (!reload_completed);
2715
2716 /* Recognize an IF-THEN-ELSE-JOIN block. */
2717 if (single_pred_p (then_edge->dest)
2718 && single_succ_p (then_edge->dest)
2719 && single_pred_p (else_edge->dest)
2720 && single_succ_p (else_edge->dest)
2721 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2722 {
2723 then_bb = then_edge->dest;
2724 else_bb = else_edge->dest;
2725 join_bb = single_succ (then_bb);
2726 }
2727 /* Recognize an IF-THEN-JOIN block. */
2728 else if (single_pred_p (then_edge->dest)
2729 && single_succ_p (then_edge->dest)
2730 && single_succ (then_edge->dest) == else_edge->dest)
2731 {
2732 then_bb = then_edge->dest;
2733 else_bb = NULL_BLOCK;
2734 join_bb = else_edge->dest;
2735 }
2736 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2737 of basic blocks in cfglayout mode does not matter, so the fallthrough
2738 edge can go to any basic block (and not just to bb->next_bb, like in
2739 cfgrtl mode). */
2740 else if (single_pred_p (else_edge->dest)
2741 && single_succ_p (else_edge->dest)
2742 && single_succ (else_edge->dest) == then_edge->dest)
2743 {
2744 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
2745 To make this work, we have to invert the THEN and ELSE blocks
2746 and reverse the jump condition. */
2747 then_bb = else_edge->dest;
2748 else_bb = NULL_BLOCK;
2749 join_bb = single_succ (then_bb);
2750 then_else_reversed = true;
2751 }
2752 else
2753 /* Not a form we can handle. */
2754 return FALSE;
2755
2756 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2757 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2758 return FALSE;
2759 if (else_bb
2760 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2761 return FALSE;
2762
2763 num_possible_if_blocks++;
2764
2765 if (dump_file)
2766 {
2767 fprintf (dump_file,
2768 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
2769 (else_bb) ? "-ELSE" : "",
2770 pass, test_bb->index, then_bb->index);
2771
2772 if (else_bb)
2773 fprintf (dump_file, ", else %d", else_bb->index);
2774
2775 fprintf (dump_file, ", join %d\n", join_bb->index);
2776 }
2777
2778 /* If the conditional jump is more than just a conditional
2779 jump, then we can not do if-conversion on this block. */
2780 jump = BB_END (test_bb);
2781 if (! onlyjump_p (jump))
2782 return FALSE;
2783
2784 /* If this is not a standard conditional jump, we can't parse it. */
2785 cond = noce_get_condition (jump,
2786 &cond_earliest,
2787 then_else_reversed);
2788 if (!cond)
2789 return FALSE;
2790
2791 /* We must be comparing objects whose modes imply the size. */
2792 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2793 return FALSE;
2794
2795 /* Initialize an IF_INFO struct to pass around. */
2796 memset (&if_info, 0, sizeof if_info);
2797 if_info.test_bb = test_bb;
2798 if_info.then_bb = then_bb;
2799 if_info.else_bb = else_bb;
2800 if_info.join_bb = join_bb;
2801 if_info.cond = cond;
2802 if_info.cond_earliest = cond_earliest;
2803 if_info.jump = jump;
2804 if_info.then_else_reversed = then_else_reversed;
2805
2806 /* Do the real work. */
2807
2808 if (noce_process_if_block (&if_info))
2809 return TRUE;
2810
2811 if (HAVE_conditional_move
2812 && cond_move_process_if_block (&if_info))
2813 return TRUE;
2814
2815 return FALSE;
2816 }
2817 \f
2818
2819 /* Merge the blocks and mark for local life update. */
2820
2821 static void
2822 merge_if_block (struct ce_if_block * ce_info)
2823 {
2824 basic_block test_bb = ce_info->test_bb; /* last test block */
2825 basic_block then_bb = ce_info->then_bb; /* THEN */
2826 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2827 basic_block join_bb = ce_info->join_bb; /* join block */
2828 basic_block combo_bb;
2829
2830 /* All block merging is done into the lower block numbers. */
2831
2832 combo_bb = test_bb;
2833 df_set_bb_dirty (test_bb);
2834
2835 /* Merge any basic blocks to handle && and || subtests. Each of
2836 the blocks are on the fallthru path from the predecessor block. */
2837 if (ce_info->num_multiple_test_blocks > 0)
2838 {
2839 basic_block bb = test_bb;
2840 basic_block last_test_bb = ce_info->last_test_bb;
2841 basic_block fallthru = block_fallthru (bb);
2842
2843 do
2844 {
2845 bb = fallthru;
2846 fallthru = block_fallthru (bb);
2847 merge_blocks (combo_bb, bb);
2848 num_true_changes++;
2849 }
2850 while (bb != last_test_bb);
2851 }
2852
2853 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2854 label, but it might if there were || tests. That label's count should be
2855 zero, and it normally should be removed. */
2856
2857 if (then_bb)
2858 {
2859 merge_blocks (combo_bb, then_bb);
2860 num_true_changes++;
2861 }
2862
2863 /* The ELSE block, if it existed, had a label. That label count
2864 will almost always be zero, but odd things can happen when labels
2865 get their addresses taken. */
2866 if (else_bb)
2867 {
2868 merge_blocks (combo_bb, else_bb);
2869 num_true_changes++;
2870 }
2871
2872 /* If there was no join block reported, that means it was not adjacent
2873 to the others, and so we cannot merge them. */
2874
2875 if (! join_bb)
2876 {
2877 rtx last = BB_END (combo_bb);
2878
2879 /* The outgoing edge for the current COMBO block should already
2880 be correct. Verify this. */
2881 if (EDGE_COUNT (combo_bb->succs) == 0)
2882 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2883 || (NONJUMP_INSN_P (last)
2884 && GET_CODE (PATTERN (last)) == TRAP_IF
2885 && (TRAP_CONDITION (PATTERN (last))
2886 == const_true_rtx)));
2887
2888 else
2889 /* There should still be something at the end of the THEN or ELSE
2890 blocks taking us to our final destination. */
2891 gcc_assert (JUMP_P (last)
2892 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2893 && CALL_P (last)
2894 && SIBLING_CALL_P (last))
2895 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2896 && can_throw_internal (last)));
2897 }
2898
2899 /* The JOIN block may have had quite a number of other predecessors too.
2900 Since we've already merged the TEST, THEN and ELSE blocks, we should
2901 have only one remaining edge from our if-then-else diamond. If there
2902 is more than one remaining edge, it must come from elsewhere. There
2903 may be zero incoming edges if the THEN block didn't actually join
2904 back up (as with a call to a non-return function). */
2905 else if (EDGE_COUNT (join_bb->preds) < 2
2906 && join_bb != EXIT_BLOCK_PTR)
2907 {
2908 /* We can merge the JOIN cleanly and update the dataflow try
2909 again on this pass.*/
2910 merge_blocks (combo_bb, join_bb);
2911 num_true_changes++;
2912 }
2913 else
2914 {
2915 /* We cannot merge the JOIN. */
2916
2917 /* The outgoing edge for the current COMBO block should already
2918 be correct. Verify this. */
2919 gcc_assert (single_succ_p (combo_bb)
2920 && single_succ (combo_bb) == join_bb);
2921
2922 /* Remove the jump and cruft from the end of the COMBO block. */
2923 if (join_bb != EXIT_BLOCK_PTR)
2924 tidy_fallthru_edge (single_succ_edge (combo_bb));
2925 }
2926
2927 num_updated_if_blocks++;
2928 }
2929 \f
2930 /* Find a block ending in a simple IF condition and try to transform it
2931 in some way. When converting a multi-block condition, put the new code
2932 in the first such block and delete the rest. Return a pointer to this
2933 first block if some transformation was done. Return NULL otherwise. */
2934
2935 static basic_block
2936 find_if_header (basic_block test_bb, int pass)
2937 {
2938 ce_if_block_t ce_info;
2939 edge then_edge;
2940 edge else_edge;
2941
2942 /* The kind of block we're looking for has exactly two successors. */
2943 if (EDGE_COUNT (test_bb->succs) != 2)
2944 return NULL;
2945
2946 then_edge = EDGE_SUCC (test_bb, 0);
2947 else_edge = EDGE_SUCC (test_bb, 1);
2948
2949 if (df_get_bb_dirty (then_edge->dest))
2950 return NULL;
2951 if (df_get_bb_dirty (else_edge->dest))
2952 return NULL;
2953
2954 /* Neither edge should be abnormal. */
2955 if ((then_edge->flags & EDGE_COMPLEX)
2956 || (else_edge->flags & EDGE_COMPLEX))
2957 return NULL;
2958
2959 /* Nor exit the loop. */
2960 if ((then_edge->flags & EDGE_LOOP_EXIT)
2961 || (else_edge->flags & EDGE_LOOP_EXIT))
2962 return NULL;
2963
2964 /* The THEN edge is canonically the one that falls through. */
2965 if (then_edge->flags & EDGE_FALLTHRU)
2966 ;
2967 else if (else_edge->flags & EDGE_FALLTHRU)
2968 {
2969 edge e = else_edge;
2970 else_edge = then_edge;
2971 then_edge = e;
2972 }
2973 else
2974 /* Otherwise this must be a multiway branch of some sort. */
2975 return NULL;
2976
2977 memset (&ce_info, '\0', sizeof (ce_info));
2978 ce_info.test_bb = test_bb;
2979 ce_info.then_bb = then_edge->dest;
2980 ce_info.else_bb = else_edge->dest;
2981 ce_info.pass = pass;
2982
2983 #ifdef IFCVT_INIT_EXTRA_FIELDS
2984 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2985 #endif
2986
2987 if (! reload_completed
2988 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
2989 goto success;
2990
2991 if (HAVE_conditional_execution && reload_completed
2992 && cond_exec_find_if_block (&ce_info))
2993 goto success;
2994
2995 if (HAVE_trap && HAVE_conditional_trap
2996 && find_cond_trap (test_bb, then_edge, else_edge))
2997 goto success;
2998
2999 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3000 && (! HAVE_conditional_execution || reload_completed))
3001 {
3002 if (find_if_case_1 (test_bb, then_edge, else_edge))
3003 goto success;
3004 if (find_if_case_2 (test_bb, then_edge, else_edge))
3005 goto success;
3006 }
3007
3008 return NULL;
3009
3010 success:
3011 if (dump_file)
3012 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3013 /* Set this so we continue looking. */
3014 cond_exec_changed_p = TRUE;
3015 return ce_info.test_bb;
3016 }
3017
3018 /* Return true if a block has two edges, one of which falls through to the next
3019 block, and the other jumps to a specific block, so that we can tell if the
3020 block is part of an && test or an || test. Returns either -1 or the number
3021 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3022
3023 static int
3024 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3025 {
3026 edge cur_edge;
3027 int fallthru_p = FALSE;
3028 int jump_p = FALSE;
3029 rtx insn;
3030 rtx end;
3031 int n_insns = 0;
3032 edge_iterator ei;
3033
3034 if (!cur_bb || !target_bb)
3035 return -1;
3036
3037 /* If no edges, obviously it doesn't jump or fallthru. */
3038 if (EDGE_COUNT (cur_bb->succs) == 0)
3039 return FALSE;
3040
3041 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3042 {
3043 if (cur_edge->flags & EDGE_COMPLEX)
3044 /* Anything complex isn't what we want. */
3045 return -1;
3046
3047 else if (cur_edge->flags & EDGE_FALLTHRU)
3048 fallthru_p = TRUE;
3049
3050 else if (cur_edge->dest == target_bb)
3051 jump_p = TRUE;
3052
3053 else
3054 return -1;
3055 }
3056
3057 if ((jump_p & fallthru_p) == 0)
3058 return -1;
3059
3060 /* Don't allow calls in the block, since this is used to group && and ||
3061 together for conditional execution support. ??? we should support
3062 conditional execution support across calls for IA-64 some day, but
3063 for now it makes the code simpler. */
3064 end = BB_END (cur_bb);
3065 insn = BB_HEAD (cur_bb);
3066
3067 while (insn != NULL_RTX)
3068 {
3069 if (CALL_P (insn))
3070 return -1;
3071
3072 if (INSN_P (insn)
3073 && !JUMP_P (insn)
3074 && GET_CODE (PATTERN (insn)) != USE
3075 && GET_CODE (PATTERN (insn)) != CLOBBER)
3076 n_insns++;
3077
3078 if (insn == end)
3079 break;
3080
3081 insn = NEXT_INSN (insn);
3082 }
3083
3084 return n_insns;
3085 }
3086
3087 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3088 block. If so, we'll try to convert the insns to not require the branch.
3089 Return TRUE if we were successful at converting the block. */
3090
3091 static int
3092 cond_exec_find_if_block (struct ce_if_block * ce_info)
3093 {
3094 basic_block test_bb = ce_info->test_bb;
3095 basic_block then_bb = ce_info->then_bb;
3096 basic_block else_bb = ce_info->else_bb;
3097 basic_block join_bb = NULL_BLOCK;
3098 edge cur_edge;
3099 basic_block next;
3100 edge_iterator ei;
3101
3102 ce_info->last_test_bb = test_bb;
3103
3104 /* We only ever should get here after reload,
3105 and only if we have conditional execution. */
3106 gcc_assert (HAVE_conditional_execution && reload_completed);
3107
3108 /* Discover if any fall through predecessors of the current test basic block
3109 were && tests (which jump to the else block) or || tests (which jump to
3110 the then block). */
3111 if (single_pred_p (test_bb)
3112 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3113 {
3114 basic_block bb = single_pred (test_bb);
3115 basic_block target_bb;
3116 int max_insns = MAX_CONDITIONAL_EXECUTE;
3117 int n_insns;
3118
3119 /* Determine if the preceding block is an && or || block. */
3120 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3121 {
3122 ce_info->and_and_p = TRUE;
3123 target_bb = else_bb;
3124 }
3125 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3126 {
3127 ce_info->and_and_p = FALSE;
3128 target_bb = then_bb;
3129 }
3130 else
3131 target_bb = NULL_BLOCK;
3132
3133 if (target_bb && n_insns <= max_insns)
3134 {
3135 int total_insns = 0;
3136 int blocks = 0;
3137
3138 ce_info->last_test_bb = test_bb;
3139
3140 /* Found at least one && or || block, look for more. */
3141 do
3142 {
3143 ce_info->test_bb = test_bb = bb;
3144 total_insns += n_insns;
3145 blocks++;
3146
3147 if (!single_pred_p (bb))
3148 break;
3149
3150 bb = single_pred (bb);
3151 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3152 }
3153 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3154
3155 ce_info->num_multiple_test_blocks = blocks;
3156 ce_info->num_multiple_test_insns = total_insns;
3157
3158 if (ce_info->and_and_p)
3159 ce_info->num_and_and_blocks = blocks;
3160 else
3161 ce_info->num_or_or_blocks = blocks;
3162 }
3163 }
3164
3165 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3166 other than any || blocks which jump to the THEN block. */
3167 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3168 return FALSE;
3169
3170 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3171 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3172 {
3173 if (cur_edge->flags & EDGE_COMPLEX)
3174 return FALSE;
3175 }
3176
3177 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3178 {
3179 if (cur_edge->flags & EDGE_COMPLEX)
3180 return FALSE;
3181 }
3182
3183 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3184 if (EDGE_COUNT (then_bb->succs) > 0
3185 && (!single_succ_p (then_bb)
3186 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3187 || (epilogue_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3188 return FALSE;
3189
3190 /* If the THEN block has no successors, conditional execution can still
3191 make a conditional call. Don't do this unless the ELSE block has
3192 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3193 Check for the last insn of the THEN block being an indirect jump, which
3194 is listed as not having any successors, but confuses the rest of the CE
3195 code processing. ??? we should fix this in the future. */
3196 if (EDGE_COUNT (then_bb->succs) == 0)
3197 {
3198 if (single_pred_p (else_bb))
3199 {
3200 rtx last_insn = BB_END (then_bb);
3201
3202 while (last_insn
3203 && NOTE_P (last_insn)
3204 && last_insn != BB_HEAD (then_bb))
3205 last_insn = PREV_INSN (last_insn);
3206
3207 if (last_insn
3208 && JUMP_P (last_insn)
3209 && ! simplejump_p (last_insn))
3210 return FALSE;
3211
3212 join_bb = else_bb;
3213 else_bb = NULL_BLOCK;
3214 }
3215 else
3216 return FALSE;
3217 }
3218
3219 /* If the THEN block's successor is the other edge out of the TEST block,
3220 then we have an IF-THEN combo without an ELSE. */
3221 else if (single_succ (then_bb) == else_bb)
3222 {
3223 join_bb = else_bb;
3224 else_bb = NULL_BLOCK;
3225 }
3226
3227 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3228 has exactly one predecessor and one successor, and the outgoing edge
3229 is not complex, then we have an IF-THEN-ELSE combo. */
3230 else if (single_succ_p (else_bb)
3231 && single_succ (then_bb) == single_succ (else_bb)
3232 && single_pred_p (else_bb)
3233 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3234 && ! (epilogue_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3235 join_bb = single_succ (else_bb);
3236
3237 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3238 else
3239 return FALSE;
3240
3241 num_possible_if_blocks++;
3242
3243 if (dump_file)
3244 {
3245 fprintf (dump_file,
3246 "\nIF-THEN%s block found, pass %d, start block %d "
3247 "[insn %d], then %d [%d]",
3248 (else_bb) ? "-ELSE" : "",
3249 ce_info->pass,
3250 test_bb->index,
3251 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3252 then_bb->index,
3253 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3254
3255 if (else_bb)
3256 fprintf (dump_file, ", else %d [%d]",
3257 else_bb->index,
3258 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3259
3260 fprintf (dump_file, ", join %d [%d]",
3261 join_bb->index,
3262 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3263
3264 if (ce_info->num_multiple_test_blocks > 0)
3265 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3266 ce_info->num_multiple_test_blocks,
3267 (ce_info->and_and_p) ? "&&" : "||",
3268 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3269 ce_info->last_test_bb->index,
3270 ((BB_HEAD (ce_info->last_test_bb))
3271 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3272 : -1));
3273
3274 fputc ('\n', dump_file);
3275 }
3276
3277 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3278 first condition for free, since we've already asserted that there's a
3279 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3280 we checked the FALLTHRU flag, those are already adjacent to the last IF
3281 block. */
3282 /* ??? As an enhancement, move the ELSE block. Have to deal with
3283 BLOCK notes, if by no other means than backing out the merge if they
3284 exist. Sticky enough I don't want to think about it now. */
3285 next = then_bb;
3286 if (else_bb && (next = next->next_bb) != else_bb)
3287 return FALSE;
3288 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3289 {
3290 if (else_bb)
3291 join_bb = NULL;
3292 else
3293 return FALSE;
3294 }
3295
3296 /* Do the real work. */
3297
3298 ce_info->else_bb = else_bb;
3299 ce_info->join_bb = join_bb;
3300
3301 /* If we have && and || tests, try to first handle combining the && and ||
3302 tests into the conditional code, and if that fails, go back and handle
3303 it without the && and ||, which at present handles the && case if there
3304 was no ELSE block. */
3305 if (cond_exec_process_if_block (ce_info, TRUE))
3306 return TRUE;
3307
3308 if (ce_info->num_multiple_test_blocks)
3309 {
3310 cancel_changes (0);
3311
3312 if (cond_exec_process_if_block (ce_info, FALSE))
3313 return TRUE;
3314 }
3315
3316 return FALSE;
3317 }
3318
3319 /* Convert a branch over a trap, or a branch
3320 to a trap, into a conditional trap. */
3321
3322 static int
3323 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3324 {
3325 basic_block then_bb = then_edge->dest;
3326 basic_block else_bb = else_edge->dest;
3327 basic_block other_bb, trap_bb;
3328 rtx trap, jump, cond, cond_earliest, seq;
3329 enum rtx_code code;
3330
3331 /* Locate the block with the trap instruction. */
3332 /* ??? While we look for no successors, we really ought to allow
3333 EH successors. Need to fix merge_if_block for that to work. */
3334 if ((trap = block_has_only_trap (then_bb)) != NULL)
3335 trap_bb = then_bb, other_bb = else_bb;
3336 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3337 trap_bb = else_bb, other_bb = then_bb;
3338 else
3339 return FALSE;
3340
3341 if (dump_file)
3342 {
3343 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3344 test_bb->index, trap_bb->index);
3345 }
3346
3347 /* If this is not a standard conditional jump, we can't parse it. */
3348 jump = BB_END (test_bb);
3349 cond = noce_get_condition (jump, &cond_earliest, false);
3350 if (! cond)
3351 return FALSE;
3352
3353 /* If the conditional jump is more than just a conditional jump, then
3354 we can not do if-conversion on this block. */
3355 if (! onlyjump_p (jump))
3356 return FALSE;
3357
3358 /* We must be comparing objects whose modes imply the size. */
3359 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3360 return FALSE;
3361
3362 /* Reverse the comparison code, if necessary. */
3363 code = GET_CODE (cond);
3364 if (then_bb == trap_bb)
3365 {
3366 code = reversed_comparison_code (cond, jump);
3367 if (code == UNKNOWN)
3368 return FALSE;
3369 }
3370
3371 /* Attempt to generate the conditional trap. */
3372 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3373 copy_rtx (XEXP (cond, 1)),
3374 TRAP_CODE (PATTERN (trap)));
3375 if (seq == NULL)
3376 return FALSE;
3377
3378 /* Emit the new insns before cond_earliest. */
3379 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3380
3381 /* Delete the trap block if possible. */
3382 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3383 df_set_bb_dirty (test_bb);
3384 df_set_bb_dirty (then_bb);
3385 df_set_bb_dirty (else_bb);
3386
3387 if (EDGE_COUNT (trap_bb->preds) == 0)
3388 {
3389 delete_basic_block (trap_bb);
3390 num_true_changes++;
3391 }
3392
3393 /* Wire together the blocks again. */
3394 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3395 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3396 else
3397 {
3398 rtx lab, newjump;
3399
3400 lab = JUMP_LABEL (jump);
3401 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3402 LABEL_NUSES (lab) += 1;
3403 JUMP_LABEL (newjump) = lab;
3404 emit_barrier_after (newjump);
3405 }
3406 delete_insn (jump);
3407
3408 if (can_merge_blocks_p (test_bb, other_bb))
3409 {
3410 merge_blocks (test_bb, other_bb);
3411 num_true_changes++;
3412 }
3413
3414 num_updated_if_blocks++;
3415 return TRUE;
3416 }
3417
3418 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3419 return it. */
3420
3421 static rtx
3422 block_has_only_trap (basic_block bb)
3423 {
3424 rtx trap;
3425
3426 /* We're not the exit block. */
3427 if (bb == EXIT_BLOCK_PTR)
3428 return NULL_RTX;
3429
3430 /* The block must have no successors. */
3431 if (EDGE_COUNT (bb->succs) > 0)
3432 return NULL_RTX;
3433
3434 /* The only instruction in the THEN block must be the trap. */
3435 trap = first_active_insn (bb);
3436 if (! (trap == BB_END (bb)
3437 && GET_CODE (PATTERN (trap)) == TRAP_IF
3438 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3439 return NULL_RTX;
3440
3441 return trap;
3442 }
3443
3444 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3445 transformable, but not necessarily the other. There need be no
3446 JOIN block.
3447
3448 Return TRUE if we were successful at converting the block.
3449
3450 Cases we'd like to look at:
3451
3452 (1)
3453 if (test) goto over; // x not live
3454 x = a;
3455 goto label;
3456 over:
3457
3458 becomes
3459
3460 x = a;
3461 if (! test) goto label;
3462
3463 (2)
3464 if (test) goto E; // x not live
3465 x = big();
3466 goto L;
3467 E:
3468 x = b;
3469 goto M;
3470
3471 becomes
3472
3473 x = b;
3474 if (test) goto M;
3475 x = big();
3476 goto L;
3477
3478 (3) // This one's really only interesting for targets that can do
3479 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3480 // it results in multiple branches on a cache line, which often
3481 // does not sit well with predictors.
3482
3483 if (test1) goto E; // predicted not taken
3484 x = a;
3485 if (test2) goto F;
3486 ...
3487 E:
3488 x = b;
3489 J:
3490
3491 becomes
3492
3493 x = a;
3494 if (test1) goto E;
3495 if (test2) goto F;
3496
3497 Notes:
3498
3499 (A) Don't do (2) if the branch is predicted against the block we're
3500 eliminating. Do it anyway if we can eliminate a branch; this requires
3501 that the sole successor of the eliminated block postdominate the other
3502 side of the if.
3503
3504 (B) With CE, on (3) we can steal from both sides of the if, creating
3505
3506 if (test1) x = a;
3507 if (!test1) x = b;
3508 if (test1) goto J;
3509 if (test2) goto F;
3510 ...
3511 J:
3512
3513 Again, this is most useful if J postdominates.
3514
3515 (C) CE substitutes for helpful life information.
3516
3517 (D) These heuristics need a lot of work. */
3518
3519 /* Tests for case 1 above. */
3520
3521 static int
3522 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3523 {
3524 basic_block then_bb = then_edge->dest;
3525 basic_block else_bb = else_edge->dest;
3526 basic_block new_bb;
3527 int then_bb_index;
3528
3529 /* If we are partitioning hot/cold basic blocks, we don't want to
3530 mess up unconditional or indirect jumps that cross between hot
3531 and cold sections.
3532
3533 Basic block partitioning may result in some jumps that appear to
3534 be optimizable (or blocks that appear to be mergeable), but which really
3535 must be left untouched (they are required to make it safely across
3536 partition boundaries). See the comments at the top of
3537 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3538
3539 if ((BB_END (then_bb)
3540 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3541 || (BB_END (test_bb)
3542 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3543 || (BB_END (else_bb)
3544 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3545 NULL_RTX)))
3546 return FALSE;
3547
3548 /* THEN has one successor. */
3549 if (!single_succ_p (then_bb))
3550 return FALSE;
3551
3552 /* THEN does not fall through, but is not strange either. */
3553 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3554 return FALSE;
3555
3556 /* THEN has one predecessor. */
3557 if (!single_pred_p (then_bb))
3558 return FALSE;
3559
3560 /* THEN must do something. */
3561 if (forwarder_block_p (then_bb))
3562 return FALSE;
3563
3564 num_possible_if_blocks++;
3565 if (dump_file)
3566 fprintf (dump_file,
3567 "\nIF-CASE-1 found, start %d, then %d\n",
3568 test_bb->index, then_bb->index);
3569
3570 /* THEN is small. */
3571 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
3572 return FALSE;
3573
3574 /* Registers set are dead, or are predicable. */
3575 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3576 single_succ (then_bb), 1))
3577 return FALSE;
3578
3579 /* Conversion went ok, including moving the insns and fixing up the
3580 jump. Adjust the CFG to match. */
3581
3582 /* We can avoid creating a new basic block if then_bb is immediately
3583 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3584 thru to else_bb. */
3585
3586 if (then_bb->next_bb == else_bb
3587 && then_bb->prev_bb == test_bb
3588 && else_bb != EXIT_BLOCK_PTR)
3589 {
3590 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3591 new_bb = 0;
3592 }
3593 else
3594 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3595 else_bb);
3596
3597 df_set_bb_dirty (test_bb);
3598 df_set_bb_dirty (else_bb);
3599
3600 then_bb_index = then_bb->index;
3601 delete_basic_block (then_bb);
3602
3603 /* Make rest of code believe that the newly created block is the THEN_BB
3604 block we removed. */
3605 if (new_bb)
3606 {
3607 df_bb_replace (then_bb_index, new_bb);
3608 /* Since the fallthru edge was redirected from test_bb to new_bb,
3609 we need to ensure that new_bb is in the same partition as
3610 test bb (you can not fall through across section boundaries). */
3611 BB_COPY_PARTITION (new_bb, test_bb);
3612 }
3613
3614 num_true_changes++;
3615 num_updated_if_blocks++;
3616
3617 return TRUE;
3618 }
3619
3620 /* Test for case 2 above. */
3621
3622 static int
3623 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3624 {
3625 basic_block then_bb = then_edge->dest;
3626 basic_block else_bb = else_edge->dest;
3627 edge else_succ;
3628 rtx note;
3629
3630 /* If we are partitioning hot/cold basic blocks, we don't want to
3631 mess up unconditional or indirect jumps that cross between hot
3632 and cold sections.
3633
3634 Basic block partitioning may result in some jumps that appear to
3635 be optimizable (or blocks that appear to be mergeable), but which really
3636 must be left untouched (they are required to make it safely across
3637 partition boundaries). See the comments at the top of
3638 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3639
3640 if ((BB_END (then_bb)
3641 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3642 || (BB_END (test_bb)
3643 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3644 || (BB_END (else_bb)
3645 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3646 NULL_RTX)))
3647 return FALSE;
3648
3649 /* ELSE has one successor. */
3650 if (!single_succ_p (else_bb))
3651 return FALSE;
3652 else
3653 else_succ = single_succ_edge (else_bb);
3654
3655 /* ELSE outgoing edge is not complex. */
3656 if (else_succ->flags & EDGE_COMPLEX)
3657 return FALSE;
3658
3659 /* ELSE has one predecessor. */
3660 if (!single_pred_p (else_bb))
3661 return FALSE;
3662
3663 /* THEN is not EXIT. */
3664 if (then_bb->index < NUM_FIXED_BLOCKS)
3665 return FALSE;
3666
3667 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3668 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3669 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3670 ;
3671 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3672 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3673 else_succ->dest))
3674 ;
3675 else
3676 return FALSE;
3677
3678 num_possible_if_blocks++;
3679 if (dump_file)
3680 fprintf (dump_file,
3681 "\nIF-CASE-2 found, start %d, else %d\n",
3682 test_bb->index, else_bb->index);
3683
3684 /* ELSE is small. */
3685 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3686 return FALSE;
3687
3688 /* Registers set are dead, or are predicable. */
3689 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3690 return FALSE;
3691
3692 /* Conversion went ok, including moving the insns and fixing up the
3693 jump. Adjust the CFG to match. */
3694
3695 df_set_bb_dirty (test_bb);
3696 df_set_bb_dirty (then_bb);
3697 delete_basic_block (else_bb);
3698
3699 num_true_changes++;
3700 num_updated_if_blocks++;
3701
3702 /* ??? We may now fallthru from one of THEN's successors into a join
3703 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3704
3705 return TRUE;
3706 }
3707
3708 /* A subroutine of dead_or_predicable called through for_each_rtx.
3709 Return 1 if a memory is found. */
3710
3711 static int
3712 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3713 {
3714 return MEM_P (*px);
3715 }
3716
3717 /* Used by the code above to perform the actual rtl transformations.
3718 Return TRUE if successful.
3719
3720 TEST_BB is the block containing the conditional branch. MERGE_BB
3721 is the block containing the code to manipulate. NEW_DEST is the
3722 label TEST_BB should be branching to after the conversion.
3723 REVERSEP is true if the sense of the branch should be reversed. */
3724
3725 static int
3726 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3727 basic_block other_bb, basic_block new_dest, int reversep)
3728 {
3729 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3730
3731 jump = BB_END (test_bb);
3732
3733 /* Find the extent of the real code in the merge block. */
3734 head = BB_HEAD (merge_bb);
3735 end = BB_END (merge_bb);
3736
3737 /* If merge_bb ends with a tablejump, predicating/moving insn's
3738 into test_bb and then deleting merge_bb will result in the jumptable
3739 that follows merge_bb being removed along with merge_bb and then we
3740 get an unresolved reference to the jumptable. */
3741 if (tablejump_p (end, NULL, NULL))
3742 return FALSE;
3743
3744 if (LABEL_P (head))
3745 head = NEXT_INSN (head);
3746 if (NOTE_P (head))
3747 {
3748 if (head == end)
3749 {
3750 head = end = NULL_RTX;
3751 goto no_body;
3752 }
3753 head = NEXT_INSN (head);
3754 }
3755
3756 if (JUMP_P (end))
3757 {
3758 if (head == end)
3759 {
3760 head = end = NULL_RTX;
3761 goto no_body;
3762 }
3763 end = PREV_INSN (end);
3764 }
3765
3766 /* Disable handling dead code by conditional execution if the machine needs
3767 to do anything funny with the tests, etc. */
3768 #ifndef IFCVT_MODIFY_TESTS
3769 if (HAVE_conditional_execution)
3770 {
3771 /* In the conditional execution case, we have things easy. We know
3772 the condition is reversible. We don't have to check life info
3773 because we're going to conditionally execute the code anyway.
3774 All that's left is making sure the insns involved can actually
3775 be predicated. */
3776
3777 rtx cond, prob_val;
3778
3779 cond = cond_exec_get_condition (jump);
3780 if (! cond)
3781 return FALSE;
3782
3783 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3784 if (prob_val)
3785 prob_val = XEXP (prob_val, 0);
3786
3787 if (reversep)
3788 {
3789 enum rtx_code rev = reversed_comparison_code (cond, jump);
3790 if (rev == UNKNOWN)
3791 return FALSE;
3792 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3793 XEXP (cond, 1));
3794 if (prob_val)
3795 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3796 }
3797
3798 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3799 prob_val, 0))
3800 goto cancel;
3801
3802 earliest = jump;
3803 }
3804 else
3805 #endif
3806 {
3807 /* In the non-conditional execution case, we have to verify that there
3808 are no trapping operations, no calls, no references to memory, and
3809 that any registers modified are dead at the branch site. */
3810
3811 rtx insn, cond, prev;
3812 bitmap merge_set, test_live, test_set;
3813 unsigned i, fail = 0;
3814 bitmap_iterator bi;
3815
3816 /* Check for no calls or trapping operations. */
3817 for (insn = head; ; insn = NEXT_INSN (insn))
3818 {
3819 if (CALL_P (insn))
3820 return FALSE;
3821 if (INSN_P (insn))
3822 {
3823 if (may_trap_p (PATTERN (insn)))
3824 return FALSE;
3825
3826 /* ??? Even non-trapping memories such as stack frame
3827 references must be avoided. For stores, we collect
3828 no lifetime info; for reads, we'd have to assert
3829 true_dependence false against every store in the
3830 TEST range. */
3831 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3832 return FALSE;
3833 }
3834 if (insn == end)
3835 break;
3836 }
3837
3838 if (! any_condjump_p (jump))
3839 return FALSE;
3840
3841 /* Find the extent of the conditional. */
3842 cond = noce_get_condition (jump, &earliest, false);
3843 if (! cond)
3844 return FALSE;
3845
3846 /* Collect:
3847 MERGE_SET = set of registers set in MERGE_BB
3848 TEST_LIVE = set of registers live at EARLIEST
3849 TEST_SET = set of registers set between EARLIEST and the
3850 end of the block. */
3851
3852 merge_set = BITMAP_ALLOC (&reg_obstack);
3853 test_live = BITMAP_ALLOC (&reg_obstack);
3854 test_set = BITMAP_ALLOC (&reg_obstack);
3855
3856 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3857 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3858 since we've already asserted that MERGE_BB is small. */
3859 /* If we allocated new pseudos (e.g. in the conditional move
3860 expander called from noce_emit_cmove), we must resize the
3861 array first. */
3862 if (max_regno < max_reg_num ())
3863 max_regno = max_reg_num ();
3864
3865 FOR_BB_INSNS (merge_bb, insn)
3866 {
3867 if (INSN_P (insn))
3868 {
3869 unsigned int uid = INSN_UID (insn);
3870 struct df_ref **def_rec;
3871 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3872 {
3873 struct df_ref *def = *def_rec;
3874 bitmap_set_bit (merge_set, DF_REF_REGNO (def));
3875 }
3876 }
3877 }
3878
3879 /* For small register class machines, don't lengthen lifetimes of
3880 hard registers before reload. */
3881 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3882 {
3883 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3884 {
3885 if (i < FIRST_PSEUDO_REGISTER
3886 && ! fixed_regs[i]
3887 && ! global_regs[i])
3888 fail = 1;
3889 }
3890 }
3891
3892 /* For TEST, we're interested in a range of insns, not a whole block.
3893 Moreover, we're interested in the insns live from OTHER_BB. */
3894
3895 /* The loop below takes the set of live registers
3896 after JUMP, and calculates the live set before EARLIEST. */
3897 bitmap_copy (test_live, df_get_live_in (other_bb));
3898 df_simulate_artificial_refs_at_end (test_bb, test_live);
3899 for (insn = jump; ; insn = prev)
3900 {
3901 if (INSN_P (insn))
3902 {
3903 df_simulate_find_defs (insn, test_set);
3904 df_simulate_one_insn_backwards (test_bb, insn, test_live);
3905 }
3906 prev = PREV_INSN (insn);
3907 if (insn == earliest)
3908 break;
3909 }
3910
3911 /* We can perform the transformation if
3912 MERGE_SET & (TEST_SET | TEST_LIVE)
3913 and
3914 TEST_SET & DF_LIVE_IN (merge_bb)
3915 are empty. */
3916
3917 if (bitmap_intersect_p (test_set, merge_set)
3918 || bitmap_intersect_p (test_live, merge_set)
3919 || bitmap_intersect_p (test_set, df_get_live_in (merge_bb)))
3920 fail = 1;
3921
3922 BITMAP_FREE (merge_set);
3923 BITMAP_FREE (test_live);
3924 BITMAP_FREE (test_set);
3925
3926 if (fail)
3927 return FALSE;
3928 }
3929
3930 no_body:
3931 /* We don't want to use normal invert_jump or redirect_jump because
3932 we don't want to delete_insn called. Also, we want to do our own
3933 change group management. */
3934
3935 old_dest = JUMP_LABEL (jump);
3936 if (other_bb != new_dest)
3937 {
3938 new_label = block_label (new_dest);
3939 if (reversep
3940 ? ! invert_jump_1 (jump, new_label)
3941 : ! redirect_jump_1 (jump, new_label))
3942 goto cancel;
3943 }
3944
3945 if (! apply_change_group ())
3946 return FALSE;
3947
3948 if (other_bb != new_dest)
3949 {
3950 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
3951
3952 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3953 if (reversep)
3954 {
3955 gcov_type count, probability;
3956 count = BRANCH_EDGE (test_bb)->count;
3957 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3958 FALLTHRU_EDGE (test_bb)->count = count;
3959 probability = BRANCH_EDGE (test_bb)->probability;
3960 BRANCH_EDGE (test_bb)->probability
3961 = FALLTHRU_EDGE (test_bb)->probability;
3962 FALLTHRU_EDGE (test_bb)->probability = probability;
3963 update_br_prob_note (test_bb);
3964 }
3965 }
3966
3967 /* Move the insns out of MERGE_BB to before the branch. */
3968 if (head != NULL)
3969 {
3970 rtx insn;
3971
3972 if (end == BB_END (merge_bb))
3973 BB_END (merge_bb) = PREV_INSN (head);
3974
3975 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
3976 notes might become invalid. */
3977 insn = head;
3978 do
3979 {
3980 rtx note, set;
3981
3982 if (! INSN_P (insn))
3983 continue;
3984 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3985 if (! note)
3986 continue;
3987 set = single_set (insn);
3988 if (!set || !function_invariant_p (SET_SRC (set)))
3989 remove_note (insn, note);
3990 } while (insn != end && (insn = NEXT_INSN (insn)));
3991
3992 reorder_insns (head, end, PREV_INSN (earliest));
3993 }
3994
3995 /* Remove the jump and edge if we can. */
3996 if (other_bb == new_dest)
3997 {
3998 delete_insn (jump);
3999 remove_edge (BRANCH_EDGE (test_bb));
4000 /* ??? Can't merge blocks here, as then_bb is still in use.
4001 At minimum, the merge will get done just before bb-reorder. */
4002 }
4003
4004 return TRUE;
4005
4006 cancel:
4007 cancel_changes (0);
4008 return FALSE;
4009 }
4010 \f
4011 /* Main entry point for all if-conversion. */
4012
4013 static void
4014 if_convert (void)
4015 {
4016 basic_block bb;
4017 int pass;
4018
4019 if (optimize == 1)
4020 {
4021 df_live_add_problem ();
4022 df_live_set_all_dirty ();
4023 }
4024
4025 num_possible_if_blocks = 0;
4026 num_updated_if_blocks = 0;
4027 num_true_changes = 0;
4028
4029 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4030 mark_loop_exit_edges ();
4031 loop_optimizer_finalize ();
4032 free_dominance_info (CDI_DOMINATORS);
4033
4034 /* Compute postdominators. */
4035 calculate_dominance_info (CDI_POST_DOMINATORS);
4036
4037 df_set_flags (DF_LR_RUN_DCE);
4038
4039 /* Go through each of the basic blocks looking for things to convert. If we
4040 have conditional execution, we make multiple passes to allow us to handle
4041 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4042 pass = 0;
4043 do
4044 {
4045 df_analyze ();
4046 /* Only need to do dce on the first pass. */
4047 df_clear_flags (DF_LR_RUN_DCE);
4048 cond_exec_changed_p = FALSE;
4049 pass++;
4050
4051 #ifdef IFCVT_MULTIPLE_DUMPS
4052 if (dump_file && pass > 1)
4053 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4054 #endif
4055
4056 FOR_EACH_BB (bb)
4057 {
4058 basic_block new_bb;
4059 while (!df_get_bb_dirty (bb)
4060 && (new_bb = find_if_header (bb, pass)) != NULL)
4061 bb = new_bb;
4062 }
4063
4064 #ifdef IFCVT_MULTIPLE_DUMPS
4065 if (dump_file && cond_exec_changed_p)
4066 print_rtl_with_bb (dump_file, get_insns ());
4067 #endif
4068 }
4069 while (cond_exec_changed_p);
4070
4071 #ifdef IFCVT_MULTIPLE_DUMPS
4072 if (dump_file)
4073 fprintf (dump_file, "\n\n========== no more changes\n");
4074 #endif
4075
4076 free_dominance_info (CDI_POST_DOMINATORS);
4077
4078 if (dump_file)
4079 fflush (dump_file);
4080
4081 clear_aux_for_blocks ();
4082
4083 /* If we allocated new pseudos, we must resize the array for sched1. */
4084 if (max_regno < max_reg_num ())
4085 max_regno = max_reg_num ();
4086
4087 /* Write the final stats. */
4088 if (dump_file && num_possible_if_blocks > 0)
4089 {
4090 fprintf (dump_file,
4091 "\n%d possible IF blocks searched.\n",
4092 num_possible_if_blocks);
4093 fprintf (dump_file,
4094 "%d IF blocks converted.\n",
4095 num_updated_if_blocks);
4096 fprintf (dump_file,
4097 "%d true changes made.\n\n\n",
4098 num_true_changes);
4099 }
4100
4101 if (optimize == 1)
4102 df_remove_problem (df_live);
4103
4104 #ifdef ENABLE_CHECKING
4105 verify_flow_info ();
4106 #endif
4107 }
4108 \f
4109 static bool
4110 gate_handle_if_conversion (void)
4111 {
4112 return (optimize > 0);
4113 }
4114
4115 /* If-conversion and CFG cleanup. */
4116 static unsigned int
4117 rest_of_handle_if_conversion (void)
4118 {
4119 if (flag_if_conversion)
4120 {
4121 if (dump_file)
4122 dump_flow_info (dump_file, dump_flags);
4123 cleanup_cfg (CLEANUP_EXPENSIVE);
4124 if_convert ();
4125 }
4126
4127 cleanup_cfg (0);
4128 return 0;
4129 }
4130
4131 struct tree_opt_pass pass_rtl_ifcvt =
4132 {
4133 "ce1", /* name */
4134 gate_handle_if_conversion, /* gate */
4135 rest_of_handle_if_conversion, /* execute */
4136 NULL, /* sub */
4137 NULL, /* next */
4138 0, /* static_pass_number */
4139 TV_IFCVT, /* tv_id */
4140 0, /* properties_required */
4141 0, /* properties_provided */
4142 0, /* properties_destroyed */
4143 0, /* todo_flags_start */
4144 TODO_df_finish | TODO_verify_rtl_sharing |
4145 TODO_dump_func, /* todo_flags_finish */
4146 'C' /* letter */
4147 };
4148
4149 static bool
4150 gate_handle_if_after_combine (void)
4151 {
4152 return (optimize > 0 && flag_if_conversion);
4153 }
4154
4155
4156 /* Rerun if-conversion, as combine may have simplified things enough
4157 to now meet sequence length restrictions. */
4158 static unsigned int
4159 rest_of_handle_if_after_combine (void)
4160 {
4161 if_convert ();
4162 return 0;
4163 }
4164
4165 struct tree_opt_pass pass_if_after_combine =
4166 {
4167 "ce2", /* name */
4168 gate_handle_if_after_combine, /* gate */
4169 rest_of_handle_if_after_combine, /* execute */
4170 NULL, /* sub */
4171 NULL, /* next */
4172 0, /* static_pass_number */
4173 TV_IFCVT, /* tv_id */
4174 0, /* properties_required */
4175 0, /* properties_provided */
4176 0, /* properties_destroyed */
4177 0, /* todo_flags_start */
4178 TODO_df_finish | TODO_verify_rtl_sharing |
4179 TODO_dump_func |
4180 TODO_ggc_collect, /* todo_flags_finish */
4181 'C' /* letter */
4182 };
4183
4184
4185 static bool
4186 gate_handle_if_after_reload (void)
4187 {
4188 return (optimize > 0 && flag_if_conversion2);
4189 }
4190
4191 static unsigned int
4192 rest_of_handle_if_after_reload (void)
4193 {
4194 if_convert ();
4195 return 0;
4196 }
4197
4198
4199 struct tree_opt_pass pass_if_after_reload =
4200 {
4201 "ce3", /* name */
4202 gate_handle_if_after_reload, /* gate */
4203 rest_of_handle_if_after_reload, /* execute */
4204 NULL, /* sub */
4205 NULL, /* next */
4206 0, /* static_pass_number */
4207 TV_IFCVT2, /* tv_id */
4208 0, /* properties_required */
4209 0, /* properties_provided */
4210 0, /* properties_destroyed */
4211 0, /* todo_flags_start */
4212 TODO_df_finish | TODO_verify_rtl_sharing |
4213 TODO_dump_func |
4214 TODO_ggc_collect, /* todo_flags_finish */
4215 'E' /* letter */
4216 };