basic-block.h (find_fallthru_edge): Define.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "output.h"
37 #include "optabs.h"
38 #include "diagnostic-core.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
49
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
62
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
68
69 #define IFCVT_MULTIPLE_DUMPS 1
70
71 #define NULL_BLOCK ((basic_block) NULL)
72
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
75
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
79
80 /* # of changes made. */
81 static int num_true_changes;
82
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
85
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block_t *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block_t *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int dead_or_predicable (basic_block, basic_block, basic_block,
107 basic_block, int);
108 static void noce_emit_move_insn (rtx, rtx);
109 static rtx block_has_only_trap (basic_block);
110 \f
111 /* Count the number of non-jump active insns in BB. */
112
113 static int
114 count_bb_insns (const_basic_block bb)
115 {
116 int count = 0;
117 rtx insn = BB_HEAD (bb);
118
119 while (1)
120 {
121 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
122 count++;
123
124 if (insn == BB_END (bb))
125 break;
126 insn = NEXT_INSN (insn);
127 }
128
129 return count;
130 }
131
132 /* Determine whether the total insn_rtx_cost on non-jump insns in
133 basic block BB is less than MAX_COST. This function returns
134 false if the cost of any instruction could not be estimated. */
135
136 static bool
137 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
138 {
139 int count = 0;
140 rtx insn = BB_HEAD (bb);
141 bool speed = optimize_bb_for_speed_p (bb);
142
143 while (1)
144 {
145 if (NONJUMP_INSN_P (insn))
146 {
147 int cost = insn_rtx_cost (PATTERN (insn), speed);
148 if (cost == 0)
149 return false;
150
151 /* If this instruction is the load or set of a "stack" register,
152 such as a floating point register on x87, then the cost of
153 speculatively executing this insn may need to include
154 the additional cost of popping its result off of the
155 register stack. Unfortunately, correctly recognizing and
156 accounting for this additional overhead is tricky, so for
157 now we simply prohibit such speculative execution. */
158 #ifdef STACK_REGS
159 {
160 rtx set = single_set (insn);
161 if (set && STACK_REG_P (SET_DEST (set)))
162 return false;
163 }
164 #endif
165
166 count += cost;
167 if (count >= max_cost)
168 return false;
169 }
170 else if (CALL_P (insn))
171 return false;
172
173 if (insn == BB_END (bb))
174 break;
175 insn = NEXT_INSN (insn);
176 }
177
178 return true;
179 }
180
181 /* Return the first non-jump active insn in the basic block. */
182
183 static rtx
184 first_active_insn (basic_block bb)
185 {
186 rtx insn = BB_HEAD (bb);
187
188 if (LABEL_P (insn))
189 {
190 if (insn == BB_END (bb))
191 return NULL_RTX;
192 insn = NEXT_INSN (insn);
193 }
194
195 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
196 {
197 if (insn == BB_END (bb))
198 return NULL_RTX;
199 insn = NEXT_INSN (insn);
200 }
201
202 if (JUMP_P (insn))
203 return NULL_RTX;
204
205 return insn;
206 }
207
208 /* Return the last non-jump active (non-jump) insn in the basic block. */
209
210 static rtx
211 last_active_insn (basic_block bb, int skip_use_p)
212 {
213 rtx insn = BB_END (bb);
214 rtx head = BB_HEAD (bb);
215
216 while (NOTE_P (insn)
217 || JUMP_P (insn)
218 || DEBUG_INSN_P (insn)
219 || (skip_use_p
220 && NONJUMP_INSN_P (insn)
221 && GET_CODE (PATTERN (insn)) == USE))
222 {
223 if (insn == head)
224 return NULL_RTX;
225 insn = PREV_INSN (insn);
226 }
227
228 if (LABEL_P (insn))
229 return NULL_RTX;
230
231 return insn;
232 }
233
234 /* Return the active insn before INSN inside basic block CURR_BB. */
235
236 static rtx
237 find_active_insn_before (basic_block curr_bb, rtx insn)
238 {
239 if (!insn || insn == BB_HEAD (curr_bb))
240 return NULL_RTX;
241
242 while ((insn = PREV_INSN (insn)) != NULL_RTX)
243 {
244 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
245 break;
246
247 /* No other active insn all the way to the start of the basic block. */
248 if (insn == BB_HEAD (curr_bb))
249 return NULL_RTX;
250 }
251
252 return insn;
253 }
254
255 /* Return the active insn after INSN inside basic block CURR_BB. */
256
257 static rtx
258 find_active_insn_after (basic_block curr_bb, rtx insn)
259 {
260 if (!insn || insn == BB_END (curr_bb))
261 return NULL_RTX;
262
263 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
264 {
265 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
266 break;
267
268 /* No other active insn all the way to the end of the basic block. */
269 if (insn == BB_END (curr_bb))
270 return NULL_RTX;
271 }
272
273 return insn;
274 }
275
276 /* Return the basic block reached by falling though the basic block BB. */
277
278 static basic_block
279 block_fallthru (basic_block bb)
280 {
281 edge e = find_fallthru_edge (bb->succs);
282
283 return (e) ? e->dest : NULL_BLOCK;
284 }
285 \f
286 /* Go through a bunch of insns, converting them to conditional
287 execution format if possible. Return TRUE if all of the non-note
288 insns were processed. */
289
290 static int
291 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
292 /* if block information */rtx start,
293 /* first insn to look at */rtx end,
294 /* last insn to look at */rtx test,
295 /* conditional execution test */rtx prob_val,
296 /* probability of branch taken. */int mod_ok)
297 {
298 int must_be_last = FALSE;
299 rtx insn;
300 rtx xtest;
301 rtx pattern;
302
303 if (!start || !end)
304 return FALSE;
305
306 for (insn = start; ; insn = NEXT_INSN (insn))
307 {
308 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
309 goto insn_done;
310
311 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
312
313 /* Remove USE insns that get in the way. */
314 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
315 {
316 /* ??? Ug. Actually unlinking the thing is problematic,
317 given what we'd have to coordinate with our callers. */
318 SET_INSN_DELETED (insn);
319 goto insn_done;
320 }
321
322 /* Last insn wasn't last? */
323 if (must_be_last)
324 return FALSE;
325
326 if (modified_in_p (test, insn))
327 {
328 if (!mod_ok)
329 return FALSE;
330 must_be_last = TRUE;
331 }
332
333 /* Now build the conditional form of the instruction. */
334 pattern = PATTERN (insn);
335 xtest = copy_rtx (test);
336
337 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
338 two conditions. */
339 if (GET_CODE (pattern) == COND_EXEC)
340 {
341 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
342 return FALSE;
343
344 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
345 COND_EXEC_TEST (pattern));
346 pattern = COND_EXEC_CODE (pattern);
347 }
348
349 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
350
351 /* If the machine needs to modify the insn being conditionally executed,
352 say for example to force a constant integer operand into a temp
353 register, do so here. */
354 #ifdef IFCVT_MODIFY_INSN
355 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
356 if (! pattern)
357 return FALSE;
358 #endif
359
360 validate_change (insn, &PATTERN (insn), pattern, 1);
361
362 if (CALL_P (insn) && prob_val)
363 validate_change (insn, &REG_NOTES (insn),
364 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
365 REG_NOTES (insn)), 1);
366
367 insn_done:
368 if (insn == end)
369 break;
370 }
371
372 return TRUE;
373 }
374
375 /* Return the condition for a jump. Do not do any special processing. */
376
377 static rtx
378 cond_exec_get_condition (rtx jump)
379 {
380 rtx test_if, cond;
381
382 if (any_condjump_p (jump))
383 test_if = SET_SRC (pc_set (jump));
384 else
385 return NULL_RTX;
386 cond = XEXP (test_if, 0);
387
388 /* If this branches to JUMP_LABEL when the condition is false,
389 reverse the condition. */
390 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
391 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
392 {
393 enum rtx_code rev = reversed_comparison_code (cond, jump);
394 if (rev == UNKNOWN)
395 return NULL_RTX;
396
397 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
398 XEXP (cond, 1));
399 }
400
401 return cond;
402 }
403
404 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
405 to conditional execution. Return TRUE if we were successful at
406 converting the block. */
407
408 static int
409 cond_exec_process_if_block (ce_if_block_t * ce_info,
410 /* if block information */int do_multiple_p)
411 {
412 basic_block test_bb = ce_info->test_bb; /* last test block */
413 basic_block then_bb = ce_info->then_bb; /* THEN */
414 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
415 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
416 rtx then_start; /* first insn in THEN block */
417 rtx then_end; /* last insn + 1 in THEN block */
418 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
419 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
420 int max; /* max # of insns to convert. */
421 int then_mod_ok; /* whether conditional mods are ok in THEN */
422 rtx true_expr; /* test for else block insns */
423 rtx false_expr; /* test for then block insns */
424 rtx true_prob_val; /* probability of else block */
425 rtx false_prob_val; /* probability of then block */
426 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
427 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
428 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
429 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
430 int then_n_insns, else_n_insns, n_insns;
431 enum rtx_code false_code;
432
433 /* If test is comprised of && or || elements, and we've failed at handling
434 all of them together, just use the last test if it is the special case of
435 && elements without an ELSE block. */
436 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
437 {
438 if (else_bb || ! ce_info->and_and_p)
439 return FALSE;
440
441 ce_info->test_bb = test_bb = ce_info->last_test_bb;
442 ce_info->num_multiple_test_blocks = 0;
443 ce_info->num_and_and_blocks = 0;
444 ce_info->num_or_or_blocks = 0;
445 }
446
447 /* Find the conditional jump to the ELSE or JOIN part, and isolate
448 the test. */
449 test_expr = cond_exec_get_condition (BB_END (test_bb));
450 if (! test_expr)
451 return FALSE;
452
453 /* If the conditional jump is more than just a conditional jump,
454 then we can not do conditional execution conversion on this block. */
455 if (! onlyjump_p (BB_END (test_bb)))
456 return FALSE;
457
458 /* Collect the bounds of where we're to search, skipping any labels, jumps
459 and notes at the beginning and end of the block. Then count the total
460 number of insns and see if it is small enough to convert. */
461 then_start = first_active_insn (then_bb);
462 then_end = last_active_insn (then_bb, TRUE);
463 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
464 n_insns = then_n_insns;
465 max = MAX_CONDITIONAL_EXECUTE;
466
467 if (else_bb)
468 {
469 int n_matching;
470
471 max *= 2;
472 else_start = first_active_insn (else_bb);
473 else_end = last_active_insn (else_bb, TRUE);
474 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
475 n_insns += else_n_insns;
476
477 /* Look for matching sequences at the head and tail of the two blocks,
478 and limit the range of insns to be converted if possible. */
479 n_matching = flow_find_cross_jump (then_bb, else_bb,
480 &then_first_tail, &else_first_tail);
481 if (then_first_tail == BB_HEAD (then_bb))
482 then_start = then_end = NULL_RTX;
483 if (else_first_tail == BB_HEAD (else_bb))
484 else_start = else_end = NULL_RTX;
485
486 if (n_matching > 0)
487 {
488 if (then_end)
489 then_end = find_active_insn_before (then_bb, then_first_tail);
490 if (else_end)
491 else_end = find_active_insn_before (else_bb, else_first_tail);
492 n_insns -= 2 * n_matching;
493 }
494
495 if (then_start && else_start)
496 {
497 int longest_match = MIN (then_n_insns - n_matching,
498 else_n_insns - n_matching);
499 n_matching
500 = flow_find_head_matching_sequence (then_bb, else_bb,
501 &then_last_head,
502 &else_last_head,
503 longest_match);
504
505 if (n_matching > 0)
506 {
507 rtx insn;
508
509 /* We won't pass the insns in the head sequence to
510 cond_exec_process_insns, so we need to test them here
511 to make sure that they don't clobber the condition. */
512 for (insn = BB_HEAD (then_bb);
513 insn != NEXT_INSN (then_last_head);
514 insn = NEXT_INSN (insn))
515 if (!LABEL_P (insn) && !NOTE_P (insn)
516 && !DEBUG_INSN_P (insn)
517 && modified_in_p (test_expr, insn))
518 return FALSE;
519 }
520
521 if (then_last_head == then_end)
522 then_start = then_end = NULL_RTX;
523 if (else_last_head == else_end)
524 else_start = else_end = NULL_RTX;
525
526 if (n_matching > 0)
527 {
528 if (then_start)
529 then_start = find_active_insn_after (then_bb, then_last_head);
530 if (else_start)
531 else_start = find_active_insn_after (else_bb, else_last_head);
532 n_insns -= 2 * n_matching;
533 }
534 }
535 }
536
537 if (n_insns > max)
538 return FALSE;
539
540 /* Map test_expr/test_jump into the appropriate MD tests to use on
541 the conditionally executed code. */
542
543 true_expr = test_expr;
544
545 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
546 if (false_code != UNKNOWN)
547 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
548 XEXP (true_expr, 0), XEXP (true_expr, 1));
549 else
550 false_expr = NULL_RTX;
551
552 #ifdef IFCVT_MODIFY_TESTS
553 /* If the machine description needs to modify the tests, such as setting a
554 conditional execution register from a comparison, it can do so here. */
555 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
556
557 /* See if the conversion failed. */
558 if (!true_expr || !false_expr)
559 goto fail;
560 #endif
561
562 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
563 if (true_prob_val)
564 {
565 true_prob_val = XEXP (true_prob_val, 0);
566 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
567 }
568 else
569 false_prob_val = NULL_RTX;
570
571 /* If we have && or || tests, do them here. These tests are in the adjacent
572 blocks after the first block containing the test. */
573 if (ce_info->num_multiple_test_blocks > 0)
574 {
575 basic_block bb = test_bb;
576 basic_block last_test_bb = ce_info->last_test_bb;
577
578 if (! false_expr)
579 goto fail;
580
581 do
582 {
583 rtx start, end;
584 rtx t, f;
585 enum rtx_code f_code;
586
587 bb = block_fallthru (bb);
588 start = first_active_insn (bb);
589 end = last_active_insn (bb, TRUE);
590 if (start
591 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
592 false_prob_val, FALSE))
593 goto fail;
594
595 /* If the conditional jump is more than just a conditional jump, then
596 we can not do conditional execution conversion on this block. */
597 if (! onlyjump_p (BB_END (bb)))
598 goto fail;
599
600 /* Find the conditional jump and isolate the test. */
601 t = cond_exec_get_condition (BB_END (bb));
602 if (! t)
603 goto fail;
604
605 f_code = reversed_comparison_code (t, BB_END (bb));
606 if (f_code == UNKNOWN)
607 goto fail;
608
609 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
610 if (ce_info->and_and_p)
611 {
612 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
613 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
614 }
615 else
616 {
617 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
618 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
619 }
620
621 /* If the machine description needs to modify the tests, such as
622 setting a conditional execution register from a comparison, it can
623 do so here. */
624 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
625 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
626
627 /* See if the conversion failed. */
628 if (!t || !f)
629 goto fail;
630 #endif
631
632 true_expr = t;
633 false_expr = f;
634 }
635 while (bb != last_test_bb);
636 }
637
638 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
639 on then THEN block. */
640 then_mod_ok = (else_bb == NULL_BLOCK);
641
642 /* Go through the THEN and ELSE blocks converting the insns if possible
643 to conditional execution. */
644
645 if (then_end
646 && (! false_expr
647 || ! cond_exec_process_insns (ce_info, then_start, then_end,
648 false_expr, false_prob_val,
649 then_mod_ok)))
650 goto fail;
651
652 if (else_bb && else_end
653 && ! cond_exec_process_insns (ce_info, else_start, else_end,
654 true_expr, true_prob_val, TRUE))
655 goto fail;
656
657 /* If we cannot apply the changes, fail. Do not go through the normal fail
658 processing, since apply_change_group will call cancel_changes. */
659 if (! apply_change_group ())
660 {
661 #ifdef IFCVT_MODIFY_CANCEL
662 /* Cancel any machine dependent changes. */
663 IFCVT_MODIFY_CANCEL (ce_info);
664 #endif
665 return FALSE;
666 }
667
668 #ifdef IFCVT_MODIFY_FINAL
669 /* Do any machine dependent final modifications. */
670 IFCVT_MODIFY_FINAL (ce_info);
671 #endif
672
673 /* Conversion succeeded. */
674 if (dump_file)
675 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
676 n_insns, (n_insns == 1) ? " was" : "s were");
677
678 /* Merge the blocks! If we had matching sequences, make sure to delete one
679 copy at the appropriate location first: delete the copy in the THEN branch
680 for a tail sequence so that the remaining one is executed last for both
681 branches, and delete the copy in the ELSE branch for a head sequence so
682 that the remaining one is executed first for both branches. */
683 if (then_first_tail)
684 {
685 rtx from = then_first_tail;
686 if (!INSN_P (from))
687 from = find_active_insn_after (then_bb, from);
688 delete_insn_chain (from, BB_END (then_bb), false);
689 }
690 if (else_last_head)
691 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
692
693 merge_if_block (ce_info);
694 cond_exec_changed_p = TRUE;
695 return TRUE;
696
697 fail:
698 #ifdef IFCVT_MODIFY_CANCEL
699 /* Cancel any machine dependent changes. */
700 IFCVT_MODIFY_CANCEL (ce_info);
701 #endif
702
703 cancel_changes (0);
704 return FALSE;
705 }
706 \f
707 /* Used by noce_process_if_block to communicate with its subroutines.
708
709 The subroutines know that A and B may be evaluated freely. They
710 know that X is a register. They should insert new instructions
711 before cond_earliest. */
712
713 struct noce_if_info
714 {
715 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
716 basic_block test_bb, then_bb, else_bb, join_bb;
717
718 /* The jump that ends TEST_BB. */
719 rtx jump;
720
721 /* The jump condition. */
722 rtx cond;
723
724 /* New insns should be inserted before this one. */
725 rtx cond_earliest;
726
727 /* Insns in the THEN and ELSE block. There is always just this
728 one insns in those blocks. The insns are single_set insns.
729 If there was no ELSE block, INSN_B is the last insn before
730 COND_EARLIEST, or NULL_RTX. In the former case, the insn
731 operands are still valid, as if INSN_B was moved down below
732 the jump. */
733 rtx insn_a, insn_b;
734
735 /* The SET_SRC of INSN_A and INSN_B. */
736 rtx a, b;
737
738 /* The SET_DEST of INSN_A. */
739 rtx x;
740
741 /* True if this if block is not canonical. In the canonical form of
742 if blocks, the THEN_BB is the block reached via the fallthru edge
743 from TEST_BB. For the noce transformations, we allow the symmetric
744 form as well. */
745 bool then_else_reversed;
746
747 /* Estimated cost of the particular branch instruction. */
748 int branch_cost;
749 };
750
751 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
752 static int noce_try_move (struct noce_if_info *);
753 static int noce_try_store_flag (struct noce_if_info *);
754 static int noce_try_addcc (struct noce_if_info *);
755 static int noce_try_store_flag_constants (struct noce_if_info *);
756 static int noce_try_store_flag_mask (struct noce_if_info *);
757 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
758 rtx, rtx, rtx);
759 static int noce_try_cmove (struct noce_if_info *);
760 static int noce_try_cmove_arith (struct noce_if_info *);
761 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
762 static int noce_try_minmax (struct noce_if_info *);
763 static int noce_try_abs (struct noce_if_info *);
764 static int noce_try_sign_mask (struct noce_if_info *);
765
766 /* Helper function for noce_try_store_flag*. */
767
768 static rtx
769 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
770 int normalize)
771 {
772 rtx cond = if_info->cond;
773 int cond_complex;
774 enum rtx_code code;
775
776 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
777 || ! general_operand (XEXP (cond, 1), VOIDmode));
778
779 /* If earliest == jump, or when the condition is complex, try to
780 build the store_flag insn directly. */
781
782 if (cond_complex)
783 {
784 rtx set = pc_set (if_info->jump);
785 cond = XEXP (SET_SRC (set), 0);
786 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
787 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
788 reversep = !reversep;
789 if (if_info->then_else_reversed)
790 reversep = !reversep;
791 }
792
793 if (reversep)
794 code = reversed_comparison_code (cond, if_info->jump);
795 else
796 code = GET_CODE (cond);
797
798 if ((if_info->cond_earliest == if_info->jump || cond_complex)
799 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
800 {
801 rtx tmp;
802
803 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
804 XEXP (cond, 1));
805 tmp = gen_rtx_SET (VOIDmode, x, tmp);
806
807 start_sequence ();
808 tmp = emit_insn (tmp);
809
810 if (recog_memoized (tmp) >= 0)
811 {
812 tmp = get_insns ();
813 end_sequence ();
814 emit_insn (tmp);
815
816 if_info->cond_earliest = if_info->jump;
817
818 return x;
819 }
820
821 end_sequence ();
822 }
823
824 /* Don't even try if the comparison operands or the mode of X are weird. */
825 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
826 return NULL_RTX;
827
828 return emit_store_flag (x, code, XEXP (cond, 0),
829 XEXP (cond, 1), VOIDmode,
830 (code == LTU || code == LEU
831 || code == GEU || code == GTU), normalize);
832 }
833
834 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
835 X is the destination/target and Y is the value to copy. */
836
837 static void
838 noce_emit_move_insn (rtx x, rtx y)
839 {
840 enum machine_mode outmode;
841 rtx outer, inner;
842 int bitpos;
843
844 if (GET_CODE (x) != STRICT_LOW_PART)
845 {
846 rtx seq, insn, target;
847 optab ot;
848
849 start_sequence ();
850 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
851 otherwise construct a suitable SET pattern ourselves. */
852 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
853 ? emit_move_insn (x, y)
854 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
855 seq = get_insns ();
856 end_sequence ();
857
858 if (recog_memoized (insn) <= 0)
859 {
860 if (GET_CODE (x) == ZERO_EXTRACT)
861 {
862 rtx op = XEXP (x, 0);
863 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
864 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
865
866 /* store_bit_field expects START to be relative to
867 BYTES_BIG_ENDIAN and adjusts this value for machines with
868 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
869 invoke store_bit_field again it is necessary to have the START
870 value from the first call. */
871 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
872 {
873 if (MEM_P (op))
874 start = BITS_PER_UNIT - start - size;
875 else
876 {
877 gcc_assert (REG_P (op));
878 start = BITS_PER_WORD - start - size;
879 }
880 }
881
882 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
883 store_bit_field (op, size, start, GET_MODE (x), y);
884 return;
885 }
886
887 switch (GET_RTX_CLASS (GET_CODE (y)))
888 {
889 case RTX_UNARY:
890 ot = code_to_optab[GET_CODE (y)];
891 if (ot)
892 {
893 start_sequence ();
894 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
895 if (target != NULL_RTX)
896 {
897 if (target != x)
898 emit_move_insn (x, target);
899 seq = get_insns ();
900 }
901 end_sequence ();
902 }
903 break;
904
905 case RTX_BIN_ARITH:
906 case RTX_COMM_ARITH:
907 ot = code_to_optab[GET_CODE (y)];
908 if (ot)
909 {
910 start_sequence ();
911 target = expand_binop (GET_MODE (y), ot,
912 XEXP (y, 0), XEXP (y, 1),
913 x, 0, OPTAB_DIRECT);
914 if (target != NULL_RTX)
915 {
916 if (target != x)
917 emit_move_insn (x, target);
918 seq = get_insns ();
919 }
920 end_sequence ();
921 }
922 break;
923
924 default:
925 break;
926 }
927 }
928
929 emit_insn (seq);
930 return;
931 }
932
933 outer = XEXP (x, 0);
934 inner = XEXP (outer, 0);
935 outmode = GET_MODE (outer);
936 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
937 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
938 }
939
940 /* Return sequence of instructions generated by if conversion. This
941 function calls end_sequence() to end the current stream, ensures
942 that are instructions are unshared, recognizable non-jump insns.
943 On failure, this function returns a NULL_RTX. */
944
945 static rtx
946 end_ifcvt_sequence (struct noce_if_info *if_info)
947 {
948 rtx insn;
949 rtx seq = get_insns ();
950
951 set_used_flags (if_info->x);
952 set_used_flags (if_info->cond);
953 unshare_all_rtl_in_chain (seq);
954 end_sequence ();
955
956 /* Make sure that all of the instructions emitted are recognizable,
957 and that we haven't introduced a new jump instruction.
958 As an exercise for the reader, build a general mechanism that
959 allows proper placement of required clobbers. */
960 for (insn = seq; insn; insn = NEXT_INSN (insn))
961 if (JUMP_P (insn)
962 || recog_memoized (insn) == -1)
963 return NULL_RTX;
964
965 return seq;
966 }
967
968 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
969 "if (a == b) x = a; else x = b" into "x = b". */
970
971 static int
972 noce_try_move (struct noce_if_info *if_info)
973 {
974 rtx cond = if_info->cond;
975 enum rtx_code code = GET_CODE (cond);
976 rtx y, seq;
977
978 if (code != NE && code != EQ)
979 return FALSE;
980
981 /* This optimization isn't valid if either A or B could be a NaN
982 or a signed zero. */
983 if (HONOR_NANS (GET_MODE (if_info->x))
984 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
985 return FALSE;
986
987 /* Check whether the operands of the comparison are A and in
988 either order. */
989 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
990 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
991 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
992 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
993 {
994 y = (code == EQ) ? if_info->a : if_info->b;
995
996 /* Avoid generating the move if the source is the destination. */
997 if (! rtx_equal_p (if_info->x, y))
998 {
999 start_sequence ();
1000 noce_emit_move_insn (if_info->x, y);
1001 seq = end_ifcvt_sequence (if_info);
1002 if (!seq)
1003 return FALSE;
1004
1005 emit_insn_before_setloc (seq, if_info->jump,
1006 INSN_LOCATOR (if_info->insn_a));
1007 }
1008 return TRUE;
1009 }
1010 return FALSE;
1011 }
1012
1013 /* Convert "if (test) x = 1; else x = 0".
1014
1015 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1016 tried in noce_try_store_flag_constants after noce_try_cmove has had
1017 a go at the conversion. */
1018
1019 static int
1020 noce_try_store_flag (struct noce_if_info *if_info)
1021 {
1022 int reversep;
1023 rtx target, seq;
1024
1025 if (CONST_INT_P (if_info->b)
1026 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1027 && if_info->a == const0_rtx)
1028 reversep = 0;
1029 else if (if_info->b == const0_rtx
1030 && CONST_INT_P (if_info->a)
1031 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1032 && (reversed_comparison_code (if_info->cond, if_info->jump)
1033 != UNKNOWN))
1034 reversep = 1;
1035 else
1036 return FALSE;
1037
1038 start_sequence ();
1039
1040 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1041 if (target)
1042 {
1043 if (target != if_info->x)
1044 noce_emit_move_insn (if_info->x, target);
1045
1046 seq = end_ifcvt_sequence (if_info);
1047 if (! seq)
1048 return FALSE;
1049
1050 emit_insn_before_setloc (seq, if_info->jump,
1051 INSN_LOCATOR (if_info->insn_a));
1052 return TRUE;
1053 }
1054 else
1055 {
1056 end_sequence ();
1057 return FALSE;
1058 }
1059 }
1060
1061 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1062
1063 static int
1064 noce_try_store_flag_constants (struct noce_if_info *if_info)
1065 {
1066 rtx target, seq;
1067 int reversep;
1068 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1069 int normalize, can_reverse;
1070 enum machine_mode mode;
1071
1072 if (CONST_INT_P (if_info->a)
1073 && CONST_INT_P (if_info->b))
1074 {
1075 mode = GET_MODE (if_info->x);
1076 ifalse = INTVAL (if_info->a);
1077 itrue = INTVAL (if_info->b);
1078
1079 /* Make sure we can represent the difference between the two values. */
1080 if ((itrue - ifalse > 0)
1081 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1082 return FALSE;
1083
1084 diff = trunc_int_for_mode (itrue - ifalse, mode);
1085
1086 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1087 != UNKNOWN);
1088
1089 reversep = 0;
1090 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1091 normalize = 0;
1092 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1093 && (STORE_FLAG_VALUE == 1
1094 || if_info->branch_cost >= 2))
1095 normalize = 1;
1096 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1097 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1098 normalize = 1, reversep = 1;
1099 else if (itrue == -1
1100 && (STORE_FLAG_VALUE == -1
1101 || if_info->branch_cost >= 2))
1102 normalize = -1;
1103 else if (ifalse == -1 && can_reverse
1104 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1105 normalize = -1, reversep = 1;
1106 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1107 || if_info->branch_cost >= 3)
1108 normalize = -1;
1109 else
1110 return FALSE;
1111
1112 if (reversep)
1113 {
1114 tmp = itrue; itrue = ifalse; ifalse = tmp;
1115 diff = trunc_int_for_mode (-diff, mode);
1116 }
1117
1118 start_sequence ();
1119 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1120 if (! target)
1121 {
1122 end_sequence ();
1123 return FALSE;
1124 }
1125
1126 /* if (test) x = 3; else x = 4;
1127 => x = 3 + (test == 0); */
1128 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1129 {
1130 target = expand_simple_binop (mode,
1131 (diff == STORE_FLAG_VALUE
1132 ? PLUS : MINUS),
1133 GEN_INT (ifalse), target, if_info->x, 0,
1134 OPTAB_WIDEN);
1135 }
1136
1137 /* if (test) x = 8; else x = 0;
1138 => x = (test != 0) << 3; */
1139 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1140 {
1141 target = expand_simple_binop (mode, ASHIFT,
1142 target, GEN_INT (tmp), if_info->x, 0,
1143 OPTAB_WIDEN);
1144 }
1145
1146 /* if (test) x = -1; else x = b;
1147 => x = -(test != 0) | b; */
1148 else if (itrue == -1)
1149 {
1150 target = expand_simple_binop (mode, IOR,
1151 target, GEN_INT (ifalse), if_info->x, 0,
1152 OPTAB_WIDEN);
1153 }
1154
1155 /* if (test) x = a; else x = b;
1156 => x = (-(test != 0) & (b - a)) + a; */
1157 else
1158 {
1159 target = expand_simple_binop (mode, AND,
1160 target, GEN_INT (diff), if_info->x, 0,
1161 OPTAB_WIDEN);
1162 if (target)
1163 target = expand_simple_binop (mode, PLUS,
1164 target, GEN_INT (ifalse),
1165 if_info->x, 0, OPTAB_WIDEN);
1166 }
1167
1168 if (! target)
1169 {
1170 end_sequence ();
1171 return FALSE;
1172 }
1173
1174 if (target != if_info->x)
1175 noce_emit_move_insn (if_info->x, target);
1176
1177 seq = end_ifcvt_sequence (if_info);
1178 if (!seq)
1179 return FALSE;
1180
1181 emit_insn_before_setloc (seq, if_info->jump,
1182 INSN_LOCATOR (if_info->insn_a));
1183 return TRUE;
1184 }
1185
1186 return FALSE;
1187 }
1188
1189 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1190 similarly for "foo--". */
1191
1192 static int
1193 noce_try_addcc (struct noce_if_info *if_info)
1194 {
1195 rtx target, seq;
1196 int subtract, normalize;
1197
1198 if (GET_CODE (if_info->a) == PLUS
1199 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1200 && (reversed_comparison_code (if_info->cond, if_info->jump)
1201 != UNKNOWN))
1202 {
1203 rtx cond = if_info->cond;
1204 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1205
1206 /* First try to use addcc pattern. */
1207 if (general_operand (XEXP (cond, 0), VOIDmode)
1208 && general_operand (XEXP (cond, 1), VOIDmode))
1209 {
1210 start_sequence ();
1211 target = emit_conditional_add (if_info->x, code,
1212 XEXP (cond, 0),
1213 XEXP (cond, 1),
1214 VOIDmode,
1215 if_info->b,
1216 XEXP (if_info->a, 1),
1217 GET_MODE (if_info->x),
1218 (code == LTU || code == GEU
1219 || code == LEU || code == GTU));
1220 if (target)
1221 {
1222 if (target != if_info->x)
1223 noce_emit_move_insn (if_info->x, target);
1224
1225 seq = end_ifcvt_sequence (if_info);
1226 if (!seq)
1227 return FALSE;
1228
1229 emit_insn_before_setloc (seq, if_info->jump,
1230 INSN_LOCATOR (if_info->insn_a));
1231 return TRUE;
1232 }
1233 end_sequence ();
1234 }
1235
1236 /* If that fails, construct conditional increment or decrement using
1237 setcc. */
1238 if (if_info->branch_cost >= 2
1239 && (XEXP (if_info->a, 1) == const1_rtx
1240 || XEXP (if_info->a, 1) == constm1_rtx))
1241 {
1242 start_sequence ();
1243 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1244 subtract = 0, normalize = 0;
1245 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1246 subtract = 1, normalize = 0;
1247 else
1248 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1249
1250
1251 target = noce_emit_store_flag (if_info,
1252 gen_reg_rtx (GET_MODE (if_info->x)),
1253 1, normalize);
1254
1255 if (target)
1256 target = expand_simple_binop (GET_MODE (if_info->x),
1257 subtract ? MINUS : PLUS,
1258 if_info->b, target, if_info->x,
1259 0, OPTAB_WIDEN);
1260 if (target)
1261 {
1262 if (target != if_info->x)
1263 noce_emit_move_insn (if_info->x, target);
1264
1265 seq = end_ifcvt_sequence (if_info);
1266 if (!seq)
1267 return FALSE;
1268
1269 emit_insn_before_setloc (seq, if_info->jump,
1270 INSN_LOCATOR (if_info->insn_a));
1271 return TRUE;
1272 }
1273 end_sequence ();
1274 }
1275 }
1276
1277 return FALSE;
1278 }
1279
1280 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1281
1282 static int
1283 noce_try_store_flag_mask (struct noce_if_info *if_info)
1284 {
1285 rtx target, seq;
1286 int reversep;
1287
1288 reversep = 0;
1289 if ((if_info->branch_cost >= 2
1290 || STORE_FLAG_VALUE == -1)
1291 && ((if_info->a == const0_rtx
1292 && rtx_equal_p (if_info->b, if_info->x))
1293 || ((reversep = (reversed_comparison_code (if_info->cond,
1294 if_info->jump)
1295 != UNKNOWN))
1296 && if_info->b == const0_rtx
1297 && rtx_equal_p (if_info->a, if_info->x))))
1298 {
1299 start_sequence ();
1300 target = noce_emit_store_flag (if_info,
1301 gen_reg_rtx (GET_MODE (if_info->x)),
1302 reversep, -1);
1303 if (target)
1304 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1305 if_info->x,
1306 target, if_info->x, 0,
1307 OPTAB_WIDEN);
1308
1309 if (target)
1310 {
1311 if (target != if_info->x)
1312 noce_emit_move_insn (if_info->x, target);
1313
1314 seq = end_ifcvt_sequence (if_info);
1315 if (!seq)
1316 return FALSE;
1317
1318 emit_insn_before_setloc (seq, if_info->jump,
1319 INSN_LOCATOR (if_info->insn_a));
1320 return TRUE;
1321 }
1322
1323 end_sequence ();
1324 }
1325
1326 return FALSE;
1327 }
1328
1329 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1330
1331 static rtx
1332 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1333 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1334 {
1335 rtx target;
1336 int unsignedp;
1337
1338 /* If earliest == jump, try to build the cmove insn directly.
1339 This is helpful when combine has created some complex condition
1340 (like for alpha's cmovlbs) that we can't hope to regenerate
1341 through the normal interface. */
1342
1343 if (if_info->cond_earliest == if_info->jump)
1344 {
1345 rtx tmp;
1346
1347 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1348 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1349 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1350
1351 start_sequence ();
1352 tmp = emit_insn (tmp);
1353
1354 if (recog_memoized (tmp) >= 0)
1355 {
1356 tmp = get_insns ();
1357 end_sequence ();
1358 emit_insn (tmp);
1359
1360 return x;
1361 }
1362
1363 end_sequence ();
1364 }
1365
1366 /* Don't even try if the comparison operands are weird. */
1367 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1368 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1369 return NULL_RTX;
1370
1371 #if HAVE_conditional_move
1372 unsignedp = (code == LTU || code == GEU
1373 || code == LEU || code == GTU);
1374
1375 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1376 vtrue, vfalse, GET_MODE (x),
1377 unsignedp);
1378 if (target)
1379 return target;
1380
1381 /* We might be faced with a situation like:
1382
1383 x = (reg:M TARGET)
1384 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1385 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1386
1387 We can't do a conditional move in mode M, but it's possible that we
1388 could do a conditional move in mode N instead and take a subreg of
1389 the result.
1390
1391 If we can't create new pseudos, though, don't bother. */
1392 if (reload_completed)
1393 return NULL_RTX;
1394
1395 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1396 {
1397 rtx reg_vtrue = SUBREG_REG (vtrue);
1398 rtx reg_vfalse = SUBREG_REG (vfalse);
1399 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1400 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1401 rtx promoted_target;
1402
1403 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1404 || byte_vtrue != byte_vfalse
1405 || (SUBREG_PROMOTED_VAR_P (vtrue)
1406 != SUBREG_PROMOTED_VAR_P (vfalse))
1407 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1408 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1409 return NULL_RTX;
1410
1411 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1412
1413 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1414 VOIDmode, reg_vtrue, reg_vfalse,
1415 GET_MODE (reg_vtrue), unsignedp);
1416 /* Nope, couldn't do it in that mode either. */
1417 if (!target)
1418 return NULL_RTX;
1419
1420 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1421 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1422 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1423 emit_move_insn (x, target);
1424 return x;
1425 }
1426 else
1427 return NULL_RTX;
1428 #else
1429 /* We'll never get here, as noce_process_if_block doesn't call the
1430 functions involved. Ifdef code, however, should be discouraged
1431 because it leads to typos in the code not selected. However,
1432 emit_conditional_move won't exist either. */
1433 return NULL_RTX;
1434 #endif
1435 }
1436
1437 /* Try only simple constants and registers here. More complex cases
1438 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1439 has had a go at it. */
1440
1441 static int
1442 noce_try_cmove (struct noce_if_info *if_info)
1443 {
1444 enum rtx_code code;
1445 rtx target, seq;
1446
1447 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1448 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1449 {
1450 start_sequence ();
1451
1452 code = GET_CODE (if_info->cond);
1453 target = noce_emit_cmove (if_info, if_info->x, code,
1454 XEXP (if_info->cond, 0),
1455 XEXP (if_info->cond, 1),
1456 if_info->a, if_info->b);
1457
1458 if (target)
1459 {
1460 if (target != if_info->x)
1461 noce_emit_move_insn (if_info->x, target);
1462
1463 seq = end_ifcvt_sequence (if_info);
1464 if (!seq)
1465 return FALSE;
1466
1467 emit_insn_before_setloc (seq, if_info->jump,
1468 INSN_LOCATOR (if_info->insn_a));
1469 return TRUE;
1470 }
1471 else
1472 {
1473 end_sequence ();
1474 return FALSE;
1475 }
1476 }
1477
1478 return FALSE;
1479 }
1480
1481 /* Try more complex cases involving conditional_move. */
1482
1483 static int
1484 noce_try_cmove_arith (struct noce_if_info *if_info)
1485 {
1486 rtx a = if_info->a;
1487 rtx b = if_info->b;
1488 rtx x = if_info->x;
1489 rtx orig_a, orig_b;
1490 rtx insn_a, insn_b;
1491 rtx tmp, target;
1492 int is_mem = 0;
1493 int insn_cost;
1494 enum rtx_code code;
1495
1496 /* A conditional move from two memory sources is equivalent to a
1497 conditional on their addresses followed by a load. Don't do this
1498 early because it'll screw alias analysis. Note that we've
1499 already checked for no side effects. */
1500 /* ??? FIXME: Magic number 5. */
1501 if (cse_not_expected
1502 && MEM_P (a) && MEM_P (b)
1503 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1504 && if_info->branch_cost >= 5)
1505 {
1506 enum machine_mode address_mode
1507 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1508
1509 a = XEXP (a, 0);
1510 b = XEXP (b, 0);
1511 x = gen_reg_rtx (address_mode);
1512 is_mem = 1;
1513 }
1514
1515 /* ??? We could handle this if we knew that a load from A or B could
1516 not fault. This is also true if we've already loaded
1517 from the address along the path from ENTRY. */
1518 else if (may_trap_p (a) || may_trap_p (b))
1519 return FALSE;
1520
1521 /* if (test) x = a + b; else x = c - d;
1522 => y = a + b;
1523 x = c - d;
1524 if (test)
1525 x = y;
1526 */
1527
1528 code = GET_CODE (if_info->cond);
1529 insn_a = if_info->insn_a;
1530 insn_b = if_info->insn_b;
1531
1532 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1533 if insn_rtx_cost can't be estimated. */
1534 if (insn_a)
1535 {
1536 insn_cost
1537 = insn_rtx_cost (PATTERN (insn_a),
1538 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1539 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1540 return FALSE;
1541 }
1542 else
1543 insn_cost = 0;
1544
1545 if (insn_b)
1546 {
1547 insn_cost
1548 += insn_rtx_cost (PATTERN (insn_b),
1549 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1550 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1551 return FALSE;
1552 }
1553
1554 /* Possibly rearrange operands to make things come out more natural. */
1555 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1556 {
1557 int reversep = 0;
1558 if (rtx_equal_p (b, x))
1559 reversep = 1;
1560 else if (general_operand (b, GET_MODE (b)))
1561 reversep = 1;
1562
1563 if (reversep)
1564 {
1565 code = reversed_comparison_code (if_info->cond, if_info->jump);
1566 tmp = a, a = b, b = tmp;
1567 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1568 }
1569 }
1570
1571 start_sequence ();
1572
1573 orig_a = a;
1574 orig_b = b;
1575
1576 /* If either operand is complex, load it into a register first.
1577 The best way to do this is to copy the original insn. In this
1578 way we preserve any clobbers etc that the insn may have had.
1579 This is of course not possible in the IS_MEM case. */
1580 if (! general_operand (a, GET_MODE (a)))
1581 {
1582 rtx set;
1583
1584 if (is_mem)
1585 {
1586 tmp = gen_reg_rtx (GET_MODE (a));
1587 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1588 }
1589 else if (! insn_a)
1590 goto end_seq_and_fail;
1591 else
1592 {
1593 a = gen_reg_rtx (GET_MODE (a));
1594 tmp = copy_rtx (insn_a);
1595 set = single_set (tmp);
1596 SET_DEST (set) = a;
1597 tmp = emit_insn (PATTERN (tmp));
1598 }
1599 if (recog_memoized (tmp) < 0)
1600 goto end_seq_and_fail;
1601 }
1602 if (! general_operand (b, GET_MODE (b)))
1603 {
1604 rtx set, last;
1605
1606 if (is_mem)
1607 {
1608 tmp = gen_reg_rtx (GET_MODE (b));
1609 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1610 }
1611 else if (! insn_b)
1612 goto end_seq_and_fail;
1613 else
1614 {
1615 b = gen_reg_rtx (GET_MODE (b));
1616 tmp = copy_rtx (insn_b);
1617 set = single_set (tmp);
1618 SET_DEST (set) = b;
1619 tmp = PATTERN (tmp);
1620 }
1621
1622 /* If insn to set up A clobbers any registers B depends on, try to
1623 swap insn that sets up A with the one that sets up B. If even
1624 that doesn't help, punt. */
1625 last = get_last_insn ();
1626 if (last && modified_in_p (orig_b, last))
1627 {
1628 tmp = emit_insn_before (tmp, get_insns ());
1629 if (modified_in_p (orig_a, tmp))
1630 goto end_seq_and_fail;
1631 }
1632 else
1633 tmp = emit_insn (tmp);
1634
1635 if (recog_memoized (tmp) < 0)
1636 goto end_seq_and_fail;
1637 }
1638
1639 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1640 XEXP (if_info->cond, 1), a, b);
1641
1642 if (! target)
1643 goto end_seq_and_fail;
1644
1645 /* If we're handling a memory for above, emit the load now. */
1646 if (is_mem)
1647 {
1648 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1649
1650 /* Copy over flags as appropriate. */
1651 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1652 MEM_VOLATILE_P (tmp) = 1;
1653 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1654 MEM_IN_STRUCT_P (tmp) = 1;
1655 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1656 MEM_SCALAR_P (tmp) = 1;
1657 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1658 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1659 set_mem_align (tmp,
1660 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1661
1662 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1663 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1664
1665 noce_emit_move_insn (if_info->x, tmp);
1666 }
1667 else if (target != x)
1668 noce_emit_move_insn (x, target);
1669
1670 tmp = end_ifcvt_sequence (if_info);
1671 if (!tmp)
1672 return FALSE;
1673
1674 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1675 return TRUE;
1676
1677 end_seq_and_fail:
1678 end_sequence ();
1679 return FALSE;
1680 }
1681
1682 /* For most cases, the simplified condition we found is the best
1683 choice, but this is not the case for the min/max/abs transforms.
1684 For these we wish to know that it is A or B in the condition. */
1685
1686 static rtx
1687 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1688 rtx *earliest)
1689 {
1690 rtx cond, set, insn;
1691 int reverse;
1692
1693 /* If target is already mentioned in the known condition, return it. */
1694 if (reg_mentioned_p (target, if_info->cond))
1695 {
1696 *earliest = if_info->cond_earliest;
1697 return if_info->cond;
1698 }
1699
1700 set = pc_set (if_info->jump);
1701 cond = XEXP (SET_SRC (set), 0);
1702 reverse
1703 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1704 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1705 if (if_info->then_else_reversed)
1706 reverse = !reverse;
1707
1708 /* If we're looking for a constant, try to make the conditional
1709 have that constant in it. There are two reasons why it may
1710 not have the constant we want:
1711
1712 1. GCC may have needed to put the constant in a register, because
1713 the target can't compare directly against that constant. For
1714 this case, we look for a SET immediately before the comparison
1715 that puts a constant in that register.
1716
1717 2. GCC may have canonicalized the conditional, for example
1718 replacing "if x < 4" with "if x <= 3". We can undo that (or
1719 make equivalent types of changes) to get the constants we need
1720 if they're off by one in the right direction. */
1721
1722 if (CONST_INT_P (target))
1723 {
1724 enum rtx_code code = GET_CODE (if_info->cond);
1725 rtx op_a = XEXP (if_info->cond, 0);
1726 rtx op_b = XEXP (if_info->cond, 1);
1727 rtx prev_insn;
1728
1729 /* First, look to see if we put a constant in a register. */
1730 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1731 if (prev_insn
1732 && BLOCK_FOR_INSN (prev_insn)
1733 == BLOCK_FOR_INSN (if_info->cond_earliest)
1734 && INSN_P (prev_insn)
1735 && GET_CODE (PATTERN (prev_insn)) == SET)
1736 {
1737 rtx src = find_reg_equal_equiv_note (prev_insn);
1738 if (!src)
1739 src = SET_SRC (PATTERN (prev_insn));
1740 if (CONST_INT_P (src))
1741 {
1742 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1743 op_a = src;
1744 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1745 op_b = src;
1746
1747 if (CONST_INT_P (op_a))
1748 {
1749 rtx tmp = op_a;
1750 op_a = op_b;
1751 op_b = tmp;
1752 code = swap_condition (code);
1753 }
1754 }
1755 }
1756
1757 /* Now, look to see if we can get the right constant by
1758 adjusting the conditional. */
1759 if (CONST_INT_P (op_b))
1760 {
1761 HOST_WIDE_INT desired_val = INTVAL (target);
1762 HOST_WIDE_INT actual_val = INTVAL (op_b);
1763
1764 switch (code)
1765 {
1766 case LT:
1767 if (actual_val == desired_val + 1)
1768 {
1769 code = LE;
1770 op_b = GEN_INT (desired_val);
1771 }
1772 break;
1773 case LE:
1774 if (actual_val == desired_val - 1)
1775 {
1776 code = LT;
1777 op_b = GEN_INT (desired_val);
1778 }
1779 break;
1780 case GT:
1781 if (actual_val == desired_val - 1)
1782 {
1783 code = GE;
1784 op_b = GEN_INT (desired_val);
1785 }
1786 break;
1787 case GE:
1788 if (actual_val == desired_val + 1)
1789 {
1790 code = GT;
1791 op_b = GEN_INT (desired_val);
1792 }
1793 break;
1794 default:
1795 break;
1796 }
1797 }
1798
1799 /* If we made any changes, generate a new conditional that is
1800 equivalent to what we started with, but has the right
1801 constants in it. */
1802 if (code != GET_CODE (if_info->cond)
1803 || op_a != XEXP (if_info->cond, 0)
1804 || op_b != XEXP (if_info->cond, 1))
1805 {
1806 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1807 *earliest = if_info->cond_earliest;
1808 return cond;
1809 }
1810 }
1811
1812 cond = canonicalize_condition (if_info->jump, cond, reverse,
1813 earliest, target, false, true);
1814 if (! cond || ! reg_mentioned_p (target, cond))
1815 return NULL;
1816
1817 /* We almost certainly searched back to a different place.
1818 Need to re-verify correct lifetimes. */
1819
1820 /* X may not be mentioned in the range (cond_earliest, jump]. */
1821 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1822 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1823 return NULL;
1824
1825 /* A and B may not be modified in the range [cond_earliest, jump). */
1826 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1827 if (INSN_P (insn)
1828 && (modified_in_p (if_info->a, insn)
1829 || modified_in_p (if_info->b, insn)))
1830 return NULL;
1831
1832 return cond;
1833 }
1834
1835 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1836
1837 static int
1838 noce_try_minmax (struct noce_if_info *if_info)
1839 {
1840 rtx cond, earliest, target, seq;
1841 enum rtx_code code, op;
1842 int unsignedp;
1843
1844 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1845 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1846 to get the target to tell us... */
1847 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1848 || HONOR_NANS (GET_MODE (if_info->x)))
1849 return FALSE;
1850
1851 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1852 if (!cond)
1853 return FALSE;
1854
1855 /* Verify the condition is of the form we expect, and canonicalize
1856 the comparison code. */
1857 code = GET_CODE (cond);
1858 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1859 {
1860 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1861 return FALSE;
1862 }
1863 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1864 {
1865 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1866 return FALSE;
1867 code = swap_condition (code);
1868 }
1869 else
1870 return FALSE;
1871
1872 /* Determine what sort of operation this is. Note that the code is for
1873 a taken branch, so the code->operation mapping appears backwards. */
1874 switch (code)
1875 {
1876 case LT:
1877 case LE:
1878 case UNLT:
1879 case UNLE:
1880 op = SMAX;
1881 unsignedp = 0;
1882 break;
1883 case GT:
1884 case GE:
1885 case UNGT:
1886 case UNGE:
1887 op = SMIN;
1888 unsignedp = 0;
1889 break;
1890 case LTU:
1891 case LEU:
1892 op = UMAX;
1893 unsignedp = 1;
1894 break;
1895 case GTU:
1896 case GEU:
1897 op = UMIN;
1898 unsignedp = 1;
1899 break;
1900 default:
1901 return FALSE;
1902 }
1903
1904 start_sequence ();
1905
1906 target = expand_simple_binop (GET_MODE (if_info->x), op,
1907 if_info->a, if_info->b,
1908 if_info->x, unsignedp, OPTAB_WIDEN);
1909 if (! target)
1910 {
1911 end_sequence ();
1912 return FALSE;
1913 }
1914 if (target != if_info->x)
1915 noce_emit_move_insn (if_info->x, target);
1916
1917 seq = end_ifcvt_sequence (if_info);
1918 if (!seq)
1919 return FALSE;
1920
1921 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1922 if_info->cond = cond;
1923 if_info->cond_earliest = earliest;
1924
1925 return TRUE;
1926 }
1927
1928 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1929 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1930 etc. */
1931
1932 static int
1933 noce_try_abs (struct noce_if_info *if_info)
1934 {
1935 rtx cond, earliest, target, seq, a, b, c;
1936 int negate;
1937 bool one_cmpl = false;
1938
1939 /* Reject modes with signed zeros. */
1940 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1941 return FALSE;
1942
1943 /* Recognize A and B as constituting an ABS or NABS. The canonical
1944 form is a branch around the negation, taken when the object is the
1945 first operand of a comparison against 0 that evaluates to true. */
1946 a = if_info->a;
1947 b = if_info->b;
1948 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1949 negate = 0;
1950 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1951 {
1952 c = a; a = b; b = c;
1953 negate = 1;
1954 }
1955 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1956 {
1957 negate = 0;
1958 one_cmpl = true;
1959 }
1960 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1961 {
1962 c = a; a = b; b = c;
1963 negate = 1;
1964 one_cmpl = true;
1965 }
1966 else
1967 return FALSE;
1968
1969 cond = noce_get_alt_condition (if_info, b, &earliest);
1970 if (!cond)
1971 return FALSE;
1972
1973 /* Verify the condition is of the form we expect. */
1974 if (rtx_equal_p (XEXP (cond, 0), b))
1975 c = XEXP (cond, 1);
1976 else if (rtx_equal_p (XEXP (cond, 1), b))
1977 {
1978 c = XEXP (cond, 0);
1979 negate = !negate;
1980 }
1981 else
1982 return FALSE;
1983
1984 /* Verify that C is zero. Search one step backward for a
1985 REG_EQUAL note or a simple source if necessary. */
1986 if (REG_P (c))
1987 {
1988 rtx set, insn = prev_nonnote_insn (earliest);
1989 if (insn
1990 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
1991 && (set = single_set (insn))
1992 && rtx_equal_p (SET_DEST (set), c))
1993 {
1994 rtx note = find_reg_equal_equiv_note (insn);
1995 if (note)
1996 c = XEXP (note, 0);
1997 else
1998 c = SET_SRC (set);
1999 }
2000 else
2001 return FALSE;
2002 }
2003 if (MEM_P (c)
2004 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2005 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2006 c = get_pool_constant (XEXP (c, 0));
2007
2008 /* Work around funny ideas get_condition has wrt canonicalization.
2009 Note that these rtx constants are known to be CONST_INT, and
2010 therefore imply integer comparisons. */
2011 if (c == constm1_rtx && GET_CODE (cond) == GT)
2012 ;
2013 else if (c == const1_rtx && GET_CODE (cond) == LT)
2014 ;
2015 else if (c != CONST0_RTX (GET_MODE (b)))
2016 return FALSE;
2017
2018 /* Determine what sort of operation this is. */
2019 switch (GET_CODE (cond))
2020 {
2021 case LT:
2022 case LE:
2023 case UNLT:
2024 case UNLE:
2025 negate = !negate;
2026 break;
2027 case GT:
2028 case GE:
2029 case UNGT:
2030 case UNGE:
2031 break;
2032 default:
2033 return FALSE;
2034 }
2035
2036 start_sequence ();
2037 if (one_cmpl)
2038 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2039 if_info->x);
2040 else
2041 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2042
2043 /* ??? It's a quandary whether cmove would be better here, especially
2044 for integers. Perhaps combine will clean things up. */
2045 if (target && negate)
2046 {
2047 if (one_cmpl)
2048 target = expand_simple_unop (GET_MODE (target), NOT, target,
2049 if_info->x, 0);
2050 else
2051 target = expand_simple_unop (GET_MODE (target), NEG, target,
2052 if_info->x, 0);
2053 }
2054
2055 if (! target)
2056 {
2057 end_sequence ();
2058 return FALSE;
2059 }
2060
2061 if (target != if_info->x)
2062 noce_emit_move_insn (if_info->x, target);
2063
2064 seq = end_ifcvt_sequence (if_info);
2065 if (!seq)
2066 return FALSE;
2067
2068 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2069 if_info->cond = cond;
2070 if_info->cond_earliest = earliest;
2071
2072 return TRUE;
2073 }
2074
2075 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2076
2077 static int
2078 noce_try_sign_mask (struct noce_if_info *if_info)
2079 {
2080 rtx cond, t, m, c, seq;
2081 enum machine_mode mode;
2082 enum rtx_code code;
2083 bool t_unconditional;
2084
2085 cond = if_info->cond;
2086 code = GET_CODE (cond);
2087 m = XEXP (cond, 0);
2088 c = XEXP (cond, 1);
2089
2090 t = NULL_RTX;
2091 if (if_info->a == const0_rtx)
2092 {
2093 if ((code == LT && c == const0_rtx)
2094 || (code == LE && c == constm1_rtx))
2095 t = if_info->b;
2096 }
2097 else if (if_info->b == const0_rtx)
2098 {
2099 if ((code == GE && c == const0_rtx)
2100 || (code == GT && c == constm1_rtx))
2101 t = if_info->a;
2102 }
2103
2104 if (! t || side_effects_p (t))
2105 return FALSE;
2106
2107 /* We currently don't handle different modes. */
2108 mode = GET_MODE (t);
2109 if (GET_MODE (m) != mode)
2110 return FALSE;
2111
2112 /* This is only profitable if T is unconditionally executed/evaluated in the
2113 original insn sequence or T is cheap. The former happens if B is the
2114 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2115 INSN_B which can happen for e.g. conditional stores to memory. For the
2116 cost computation use the block TEST_BB where the evaluation will end up
2117 after the transformation. */
2118 t_unconditional =
2119 (t == if_info->b
2120 && (if_info->insn_b == NULL_RTX
2121 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2122 if (!(t_unconditional
2123 || (rtx_cost (t, SET, optimize_bb_for_speed_p (if_info->test_bb))
2124 < COSTS_N_INSNS (2))))
2125 return FALSE;
2126
2127 start_sequence ();
2128 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2129 "(signed) m >> 31" directly. This benefits targets with specialized
2130 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2131 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2132 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2133 : NULL_RTX;
2134
2135 if (!t)
2136 {
2137 end_sequence ();
2138 return FALSE;
2139 }
2140
2141 noce_emit_move_insn (if_info->x, t);
2142
2143 seq = end_ifcvt_sequence (if_info);
2144 if (!seq)
2145 return FALSE;
2146
2147 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2148 return TRUE;
2149 }
2150
2151
2152 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2153 transformations. */
2154
2155 static int
2156 noce_try_bitop (struct noce_if_info *if_info)
2157 {
2158 rtx cond, x, a, result, seq;
2159 enum machine_mode mode;
2160 enum rtx_code code;
2161 int bitnum;
2162
2163 x = if_info->x;
2164 cond = if_info->cond;
2165 code = GET_CODE (cond);
2166
2167 /* Check for no else condition. */
2168 if (! rtx_equal_p (x, if_info->b))
2169 return FALSE;
2170
2171 /* Check for a suitable condition. */
2172 if (code != NE && code != EQ)
2173 return FALSE;
2174 if (XEXP (cond, 1) != const0_rtx)
2175 return FALSE;
2176 cond = XEXP (cond, 0);
2177
2178 /* ??? We could also handle AND here. */
2179 if (GET_CODE (cond) == ZERO_EXTRACT)
2180 {
2181 if (XEXP (cond, 1) != const1_rtx
2182 || !CONST_INT_P (XEXP (cond, 2))
2183 || ! rtx_equal_p (x, XEXP (cond, 0)))
2184 return FALSE;
2185 bitnum = INTVAL (XEXP (cond, 2));
2186 mode = GET_MODE (x);
2187 if (BITS_BIG_ENDIAN)
2188 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2189 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2190 return FALSE;
2191 }
2192 else
2193 return FALSE;
2194
2195 a = if_info->a;
2196 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2197 {
2198 /* Check for "if (X & C) x = x op C". */
2199 if (! rtx_equal_p (x, XEXP (a, 0))
2200 || !CONST_INT_P (XEXP (a, 1))
2201 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2202 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2203 return FALSE;
2204
2205 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2206 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2207 if (GET_CODE (a) == IOR)
2208 result = (code == NE) ? a : NULL_RTX;
2209 else if (code == NE)
2210 {
2211 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2212 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2213 result = simplify_gen_binary (IOR, mode, x, result);
2214 }
2215 else
2216 {
2217 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2218 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2219 result = simplify_gen_binary (AND, mode, x, result);
2220 }
2221 }
2222 else if (GET_CODE (a) == AND)
2223 {
2224 /* Check for "if (X & C) x &= ~C". */
2225 if (! rtx_equal_p (x, XEXP (a, 0))
2226 || !CONST_INT_P (XEXP (a, 1))
2227 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2228 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2229 return FALSE;
2230
2231 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2232 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2233 result = (code == EQ) ? a : NULL_RTX;
2234 }
2235 else
2236 return FALSE;
2237
2238 if (result)
2239 {
2240 start_sequence ();
2241 noce_emit_move_insn (x, result);
2242 seq = end_ifcvt_sequence (if_info);
2243 if (!seq)
2244 return FALSE;
2245
2246 emit_insn_before_setloc (seq, if_info->jump,
2247 INSN_LOCATOR (if_info->insn_a));
2248 }
2249 return TRUE;
2250 }
2251
2252
2253 /* Similar to get_condition, only the resulting condition must be
2254 valid at JUMP, instead of at EARLIEST.
2255
2256 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2257 THEN block of the caller, and we have to reverse the condition. */
2258
2259 static rtx
2260 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2261 {
2262 rtx cond, set, tmp;
2263 bool reverse;
2264
2265 if (! any_condjump_p (jump))
2266 return NULL_RTX;
2267
2268 set = pc_set (jump);
2269
2270 /* If this branches to JUMP_LABEL when the condition is false,
2271 reverse the condition. */
2272 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2273 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2274
2275 /* We may have to reverse because the caller's if block is not canonical,
2276 i.e. the THEN block isn't the fallthrough block for the TEST block
2277 (see find_if_header). */
2278 if (then_else_reversed)
2279 reverse = !reverse;
2280
2281 /* If the condition variable is a register and is MODE_INT, accept it. */
2282
2283 cond = XEXP (SET_SRC (set), 0);
2284 tmp = XEXP (cond, 0);
2285 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2286 {
2287 *earliest = jump;
2288
2289 if (reverse)
2290 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2291 GET_MODE (cond), tmp, XEXP (cond, 1));
2292 return cond;
2293 }
2294
2295 /* Otherwise, fall back on canonicalize_condition to do the dirty
2296 work of manipulating MODE_CC values and COMPARE rtx codes. */
2297 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2298 NULL_RTX, false, true);
2299
2300 /* We don't handle side-effects in the condition, like handling
2301 REG_INC notes and making sure no duplicate conditions are emitted. */
2302 if (tmp != NULL_RTX && side_effects_p (tmp))
2303 return NULL_RTX;
2304
2305 return tmp;
2306 }
2307
2308 /* Return true if OP is ok for if-then-else processing. */
2309
2310 static int
2311 noce_operand_ok (const_rtx op)
2312 {
2313 /* We special-case memories, so handle any of them with
2314 no address side effects. */
2315 if (MEM_P (op))
2316 return ! side_effects_p (XEXP (op, 0));
2317
2318 if (side_effects_p (op))
2319 return FALSE;
2320
2321 return ! may_trap_p (op);
2322 }
2323
2324 /* Return true if a write into MEM may trap or fault. */
2325
2326 static bool
2327 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2328 {
2329 rtx addr;
2330
2331 if (MEM_READONLY_P (mem))
2332 return true;
2333
2334 if (may_trap_or_fault_p (mem))
2335 return true;
2336
2337 addr = XEXP (mem, 0);
2338
2339 /* Call target hook to avoid the effects of -fpic etc.... */
2340 addr = targetm.delegitimize_address (addr);
2341
2342 while (addr)
2343 switch (GET_CODE (addr))
2344 {
2345 case CONST:
2346 case PRE_DEC:
2347 case PRE_INC:
2348 case POST_DEC:
2349 case POST_INC:
2350 case POST_MODIFY:
2351 addr = XEXP (addr, 0);
2352 break;
2353 case LO_SUM:
2354 case PRE_MODIFY:
2355 addr = XEXP (addr, 1);
2356 break;
2357 case PLUS:
2358 if (CONST_INT_P (XEXP (addr, 1)))
2359 addr = XEXP (addr, 0);
2360 else
2361 return false;
2362 break;
2363 case LABEL_REF:
2364 return true;
2365 case SYMBOL_REF:
2366 if (SYMBOL_REF_DECL (addr)
2367 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2368 return true;
2369 return false;
2370 default:
2371 return false;
2372 }
2373
2374 return false;
2375 }
2376
2377 /* Return whether we can use store speculation for MEM. TOP_BB is the
2378 basic block above the conditional block where we are considering
2379 doing the speculative store. We look for whether MEM is set
2380 unconditionally later in the function. */
2381
2382 static bool
2383 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2384 {
2385 basic_block dominator;
2386
2387 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2388 dominator != NULL;
2389 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2390 {
2391 rtx insn;
2392
2393 FOR_BB_INSNS (dominator, insn)
2394 {
2395 /* If we see something that might be a memory barrier, we
2396 have to stop looking. Even if the MEM is set later in
2397 the function, we still don't want to set it
2398 unconditionally before the barrier. */
2399 if (INSN_P (insn)
2400 && (volatile_insn_p (PATTERN (insn))
2401 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2402 return false;
2403
2404 if (memory_modified_in_insn_p (mem, insn))
2405 return true;
2406 if (modified_in_p (XEXP (mem, 0), insn))
2407 return false;
2408
2409 }
2410 }
2411
2412 return false;
2413 }
2414
2415 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2416 it without using conditional execution. Return TRUE if we were successful
2417 at converting the block. */
2418
2419 static int
2420 noce_process_if_block (struct noce_if_info *if_info)
2421 {
2422 basic_block test_bb = if_info->test_bb; /* test block */
2423 basic_block then_bb = if_info->then_bb; /* THEN */
2424 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2425 basic_block join_bb = if_info->join_bb; /* JOIN */
2426 rtx jump = if_info->jump;
2427 rtx cond = if_info->cond;
2428 rtx insn_a, insn_b;
2429 rtx set_a, set_b;
2430 rtx orig_x, x, a, b;
2431
2432 /* We're looking for patterns of the form
2433
2434 (1) if (...) x = a; else x = b;
2435 (2) x = b; if (...) x = a;
2436 (3) if (...) x = a; // as if with an initial x = x.
2437
2438 The later patterns require jumps to be more expensive.
2439
2440 ??? For future expansion, look for multiple X in such patterns. */
2441
2442 /* Look for one of the potential sets. */
2443 insn_a = first_active_insn (then_bb);
2444 if (! insn_a
2445 || insn_a != last_active_insn (then_bb, FALSE)
2446 || (set_a = single_set (insn_a)) == NULL_RTX)
2447 return FALSE;
2448
2449 x = SET_DEST (set_a);
2450 a = SET_SRC (set_a);
2451
2452 /* Look for the other potential set. Make sure we've got equivalent
2453 destinations. */
2454 /* ??? This is overconservative. Storing to two different mems is
2455 as easy as conditionally computing the address. Storing to a
2456 single mem merely requires a scratch memory to use as one of the
2457 destination addresses; often the memory immediately below the
2458 stack pointer is available for this. */
2459 set_b = NULL_RTX;
2460 if (else_bb)
2461 {
2462 insn_b = first_active_insn (else_bb);
2463 if (! insn_b
2464 || insn_b != last_active_insn (else_bb, FALSE)
2465 || (set_b = single_set (insn_b)) == NULL_RTX
2466 || ! rtx_equal_p (x, SET_DEST (set_b)))
2467 return FALSE;
2468 }
2469 else
2470 {
2471 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2472 /* We're going to be moving the evaluation of B down from above
2473 COND_EARLIEST to JUMP. Make sure the relevant data is still
2474 intact. */
2475 if (! insn_b
2476 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2477 || !NONJUMP_INSN_P (insn_b)
2478 || (set_b = single_set (insn_b)) == NULL_RTX
2479 || ! rtx_equal_p (x, SET_DEST (set_b))
2480 || ! noce_operand_ok (SET_SRC (set_b))
2481 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2482 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2483 /* Likewise with X. In particular this can happen when
2484 noce_get_condition looks farther back in the instruction
2485 stream than one might expect. */
2486 || reg_overlap_mentioned_p (x, cond)
2487 || reg_overlap_mentioned_p (x, a)
2488 || modified_between_p (x, insn_b, jump))
2489 insn_b = set_b = NULL_RTX;
2490 }
2491
2492 /* If x has side effects then only the if-then-else form is safe to
2493 convert. But even in that case we would need to restore any notes
2494 (such as REG_INC) at then end. That can be tricky if
2495 noce_emit_move_insn expands to more than one insn, so disable the
2496 optimization entirely for now if there are side effects. */
2497 if (side_effects_p (x))
2498 return FALSE;
2499
2500 b = (set_b ? SET_SRC (set_b) : x);
2501
2502 /* Only operate on register destinations, and even then avoid extending
2503 the lifetime of hard registers on small register class machines. */
2504 orig_x = x;
2505 if (!REG_P (x)
2506 || (HARD_REGISTER_P (x)
2507 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2508 {
2509 if (GET_MODE (x) == BLKmode)
2510 return FALSE;
2511
2512 if (GET_CODE (x) == ZERO_EXTRACT
2513 && (!CONST_INT_P (XEXP (x, 1))
2514 || !CONST_INT_P (XEXP (x, 2))))
2515 return FALSE;
2516
2517 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2518 ? XEXP (x, 0) : x));
2519 }
2520
2521 /* Don't operate on sources that may trap or are volatile. */
2522 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2523 return FALSE;
2524
2525 retry:
2526 /* Set up the info block for our subroutines. */
2527 if_info->insn_a = insn_a;
2528 if_info->insn_b = insn_b;
2529 if_info->x = x;
2530 if_info->a = a;
2531 if_info->b = b;
2532
2533 /* Try optimizations in some approximation of a useful order. */
2534 /* ??? Should first look to see if X is live incoming at all. If it
2535 isn't, we don't need anything but an unconditional set. */
2536
2537 /* Look and see if A and B are really the same. Avoid creating silly
2538 cmove constructs that no one will fix up later. */
2539 if (rtx_equal_p (a, b))
2540 {
2541 /* If we have an INSN_B, we don't have to create any new rtl. Just
2542 move the instruction that we already have. If we don't have an
2543 INSN_B, that means that A == X, and we've got a noop move. In
2544 that case don't do anything and let the code below delete INSN_A. */
2545 if (insn_b && else_bb)
2546 {
2547 rtx note;
2548
2549 if (else_bb && insn_b == BB_END (else_bb))
2550 BB_END (else_bb) = PREV_INSN (insn_b);
2551 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2552
2553 /* If there was a REG_EQUAL note, delete it since it may have been
2554 true due to this insn being after a jump. */
2555 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2556 remove_note (insn_b, note);
2557
2558 insn_b = NULL_RTX;
2559 }
2560 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2561 x must be executed twice. */
2562 else if (insn_b && side_effects_p (orig_x))
2563 return FALSE;
2564
2565 x = orig_x;
2566 goto success;
2567 }
2568
2569 if (!set_b && MEM_P (orig_x))
2570 {
2571 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2572 for optimizations if writing to x may trap or fault,
2573 i.e. it's a memory other than a static var or a stack slot,
2574 is misaligned on strict aligned machines or is read-only. If
2575 x is a read-only memory, then the program is valid only if we
2576 avoid the store into it. If there are stores on both the
2577 THEN and ELSE arms, then we can go ahead with the conversion;
2578 either the program is broken, or the condition is always
2579 false such that the other memory is selected. */
2580 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2581 return FALSE;
2582
2583 /* Avoid store speculation: given "if (...) x = a" where x is a
2584 MEM, we only want to do the store if x is always set
2585 somewhere in the function. This avoids cases like
2586 if (pthread_mutex_trylock(mutex))
2587 ++global_variable;
2588 where we only want global_variable to be changed if the mutex
2589 is held. FIXME: This should ideally be expressed directly in
2590 RTL somehow. */
2591 if (!noce_can_store_speculate_p (test_bb, orig_x))
2592 return FALSE;
2593 }
2594
2595 if (noce_try_move (if_info))
2596 goto success;
2597 if (noce_try_store_flag (if_info))
2598 goto success;
2599 if (noce_try_bitop (if_info))
2600 goto success;
2601 if (noce_try_minmax (if_info))
2602 goto success;
2603 if (noce_try_abs (if_info))
2604 goto success;
2605 if (HAVE_conditional_move
2606 && noce_try_cmove (if_info))
2607 goto success;
2608 if (! targetm.have_conditional_execution ())
2609 {
2610 if (noce_try_store_flag_constants (if_info))
2611 goto success;
2612 if (noce_try_addcc (if_info))
2613 goto success;
2614 if (noce_try_store_flag_mask (if_info))
2615 goto success;
2616 if (HAVE_conditional_move
2617 && noce_try_cmove_arith (if_info))
2618 goto success;
2619 if (noce_try_sign_mask (if_info))
2620 goto success;
2621 }
2622
2623 if (!else_bb && set_b)
2624 {
2625 insn_b = set_b = NULL_RTX;
2626 b = orig_x;
2627 goto retry;
2628 }
2629
2630 return FALSE;
2631
2632 success:
2633
2634 /* If we used a temporary, fix it up now. */
2635 if (orig_x != x)
2636 {
2637 rtx seq;
2638
2639 start_sequence ();
2640 noce_emit_move_insn (orig_x, x);
2641 seq = get_insns ();
2642 set_used_flags (orig_x);
2643 unshare_all_rtl_in_chain (seq);
2644 end_sequence ();
2645
2646 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2647 }
2648
2649 /* The original THEN and ELSE blocks may now be removed. The test block
2650 must now jump to the join block. If the test block and the join block
2651 can be merged, do so. */
2652 if (else_bb)
2653 {
2654 delete_basic_block (else_bb);
2655 num_true_changes++;
2656 }
2657 else
2658 remove_edge (find_edge (test_bb, join_bb));
2659
2660 remove_edge (find_edge (then_bb, join_bb));
2661 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2662 delete_basic_block (then_bb);
2663 num_true_changes++;
2664
2665 if (can_merge_blocks_p (test_bb, join_bb))
2666 {
2667 merge_blocks (test_bb, join_bb);
2668 num_true_changes++;
2669 }
2670
2671 num_updated_if_blocks++;
2672 return TRUE;
2673 }
2674
2675 /* Check whether a block is suitable for conditional move conversion.
2676 Every insn must be a simple set of a register to a constant or a
2677 register. For each assignment, store the value in the array VALS,
2678 indexed by register number, then store the register number in
2679 REGS. COND is the condition we will test. */
2680
2681 static int
2682 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs,
2683 rtx cond)
2684 {
2685 rtx insn;
2686
2687 /* We can only handle simple jumps at the end of the basic block.
2688 It is almost impossible to update the CFG otherwise. */
2689 insn = BB_END (bb);
2690 if (JUMP_P (insn) && !onlyjump_p (insn))
2691 return FALSE;
2692
2693 FOR_BB_INSNS (bb, insn)
2694 {
2695 rtx set, dest, src;
2696
2697 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2698 continue;
2699 set = single_set (insn);
2700 if (!set)
2701 return FALSE;
2702
2703 dest = SET_DEST (set);
2704 src = SET_SRC (set);
2705 if (!REG_P (dest)
2706 || (HARD_REGISTER_P (dest)
2707 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2708 return FALSE;
2709
2710 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2711 return FALSE;
2712
2713 if (side_effects_p (src) || side_effects_p (dest))
2714 return FALSE;
2715
2716 if (may_trap_p (src) || may_trap_p (dest))
2717 return FALSE;
2718
2719 /* Don't try to handle this if the source register was
2720 modified earlier in the block. */
2721 if ((REG_P (src)
2722 && vals[REGNO (src)] != NULL)
2723 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2724 && vals[REGNO (SUBREG_REG (src))] != NULL))
2725 return FALSE;
2726
2727 /* Don't try to handle this if the destination register was
2728 modified earlier in the block. */
2729 if (vals[REGNO (dest)] != NULL)
2730 return FALSE;
2731
2732 /* Don't try to handle this if the condition uses the
2733 destination register. */
2734 if (reg_overlap_mentioned_p (dest, cond))
2735 return FALSE;
2736
2737 /* Don't try to handle this if the source register is modified
2738 later in the block. */
2739 if (!CONSTANT_P (src)
2740 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2741 return FALSE;
2742
2743 vals[REGNO (dest)] = src;
2744
2745 VEC_safe_push (int, heap, *regs, REGNO (dest));
2746 }
2747
2748 return TRUE;
2749 }
2750
2751 /* Given a basic block BB suitable for conditional move conversion,
2752 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2753 register values depending on COND, emit the insns in the block as
2754 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2755 processed. The caller has started a sequence for the conversion.
2756 Return true if successful, false if something goes wrong. */
2757
2758 static bool
2759 cond_move_convert_if_block (struct noce_if_info *if_infop,
2760 basic_block bb, rtx cond,
2761 rtx *then_vals, rtx *else_vals,
2762 bool else_block_p)
2763 {
2764 enum rtx_code code;
2765 rtx insn, cond_arg0, cond_arg1;
2766
2767 code = GET_CODE (cond);
2768 cond_arg0 = XEXP (cond, 0);
2769 cond_arg1 = XEXP (cond, 1);
2770
2771 FOR_BB_INSNS (bb, insn)
2772 {
2773 rtx set, target, dest, t, e;
2774 unsigned int regno;
2775
2776 /* ??? Maybe emit conditional debug insn? */
2777 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2778 continue;
2779 set = single_set (insn);
2780 gcc_assert (set && REG_P (SET_DEST (set)));
2781
2782 dest = SET_DEST (set);
2783 regno = REGNO (dest);
2784
2785 t = then_vals[regno];
2786 e = else_vals[regno];
2787
2788 if (else_block_p)
2789 {
2790 /* If this register was set in the then block, we already
2791 handled this case there. */
2792 if (t)
2793 continue;
2794 t = dest;
2795 gcc_assert (e);
2796 }
2797 else
2798 {
2799 gcc_assert (t);
2800 if (!e)
2801 e = dest;
2802 }
2803
2804 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2805 t, e);
2806 if (!target)
2807 return false;
2808
2809 if (target != dest)
2810 noce_emit_move_insn (dest, target);
2811 }
2812
2813 return true;
2814 }
2815
2816 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2817 it using only conditional moves. Return TRUE if we were successful at
2818 converting the block. */
2819
2820 static int
2821 cond_move_process_if_block (struct noce_if_info *if_info)
2822 {
2823 basic_block test_bb = if_info->test_bb;
2824 basic_block then_bb = if_info->then_bb;
2825 basic_block else_bb = if_info->else_bb;
2826 basic_block join_bb = if_info->join_bb;
2827 rtx jump = if_info->jump;
2828 rtx cond = if_info->cond;
2829 rtx seq, loc_insn;
2830 int max_reg, size, c, reg;
2831 rtx *then_vals;
2832 rtx *else_vals;
2833 VEC (int, heap) *then_regs = NULL;
2834 VEC (int, heap) *else_regs = NULL;
2835 unsigned int i;
2836
2837 /* Build a mapping for each block to the value used for each
2838 register. */
2839 max_reg = max_reg_num ();
2840 size = (max_reg + 1) * sizeof (rtx);
2841 then_vals = (rtx *) alloca (size);
2842 else_vals = (rtx *) alloca (size);
2843 memset (then_vals, 0, size);
2844 memset (else_vals, 0, size);
2845
2846 /* Make sure the blocks are suitable. */
2847 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2848 || (else_bb
2849 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2850 {
2851 VEC_free (int, heap, then_regs);
2852 VEC_free (int, heap, else_regs);
2853 return FALSE;
2854 }
2855
2856 /* Make sure the blocks can be used together. If the same register
2857 is set in both blocks, and is not set to a constant in both
2858 cases, then both blocks must set it to the same register. We
2859 have already verified that if it is set to a register, that the
2860 source register does not change after the assignment. Also count
2861 the number of registers set in only one of the blocks. */
2862 c = 0;
2863 FOR_EACH_VEC_ELT (int, then_regs, i, reg)
2864 {
2865 if (!then_vals[reg] && !else_vals[reg])
2866 continue;
2867
2868 if (!else_vals[reg])
2869 ++c;
2870 else
2871 {
2872 if (!CONSTANT_P (then_vals[reg])
2873 && !CONSTANT_P (else_vals[reg])
2874 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2875 {
2876 VEC_free (int, heap, then_regs);
2877 VEC_free (int, heap, else_regs);
2878 return FALSE;
2879 }
2880 }
2881 }
2882
2883 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2884 FOR_EACH_VEC_ELT (int, else_regs, i, reg)
2885 if (!then_vals[reg])
2886 ++c;
2887
2888 /* Make sure it is reasonable to convert this block. What matters
2889 is the number of assignments currently made in only one of the
2890 branches, since if we convert we are going to always execute
2891 them. */
2892 if (c > MAX_CONDITIONAL_EXECUTE)
2893 {
2894 VEC_free (int, heap, then_regs);
2895 VEC_free (int, heap, else_regs);
2896 return FALSE;
2897 }
2898
2899 /* Try to emit the conditional moves. First do the then block,
2900 then do anything left in the else blocks. */
2901 start_sequence ();
2902 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2903 then_vals, else_vals, false)
2904 || (else_bb
2905 && !cond_move_convert_if_block (if_info, else_bb, cond,
2906 then_vals, else_vals, true)))
2907 {
2908 end_sequence ();
2909 VEC_free (int, heap, then_regs);
2910 VEC_free (int, heap, else_regs);
2911 return FALSE;
2912 }
2913 seq = end_ifcvt_sequence (if_info);
2914 if (!seq)
2915 {
2916 VEC_free (int, heap, then_regs);
2917 VEC_free (int, heap, else_regs);
2918 return FALSE;
2919 }
2920
2921 loc_insn = first_active_insn (then_bb);
2922 if (!loc_insn)
2923 {
2924 loc_insn = first_active_insn (else_bb);
2925 gcc_assert (loc_insn);
2926 }
2927 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2928
2929 if (else_bb)
2930 {
2931 delete_basic_block (else_bb);
2932 num_true_changes++;
2933 }
2934 else
2935 remove_edge (find_edge (test_bb, join_bb));
2936
2937 remove_edge (find_edge (then_bb, join_bb));
2938 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2939 delete_basic_block (then_bb);
2940 num_true_changes++;
2941
2942 if (can_merge_blocks_p (test_bb, join_bb))
2943 {
2944 merge_blocks (test_bb, join_bb);
2945 num_true_changes++;
2946 }
2947
2948 num_updated_if_blocks++;
2949
2950 VEC_free (int, heap, then_regs);
2951 VEC_free (int, heap, else_regs);
2952 return TRUE;
2953 }
2954
2955 \f
2956 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2957 IF-THEN-ELSE-JOIN block.
2958
2959 If so, we'll try to convert the insns to not require the branch,
2960 using only transformations that do not require conditional execution.
2961
2962 Return TRUE if we were successful at converting the block. */
2963
2964 static int
2965 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2966 int pass)
2967 {
2968 basic_block then_bb, else_bb, join_bb;
2969 bool then_else_reversed = false;
2970 rtx jump, cond;
2971 rtx cond_earliest;
2972 struct noce_if_info if_info;
2973
2974 /* We only ever should get here before reload. */
2975 gcc_assert (!reload_completed);
2976
2977 /* Recognize an IF-THEN-ELSE-JOIN block. */
2978 if (single_pred_p (then_edge->dest)
2979 && single_succ_p (then_edge->dest)
2980 && single_pred_p (else_edge->dest)
2981 && single_succ_p (else_edge->dest)
2982 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2983 {
2984 then_bb = then_edge->dest;
2985 else_bb = else_edge->dest;
2986 join_bb = single_succ (then_bb);
2987 }
2988 /* Recognize an IF-THEN-JOIN block. */
2989 else if (single_pred_p (then_edge->dest)
2990 && single_succ_p (then_edge->dest)
2991 && single_succ (then_edge->dest) == else_edge->dest)
2992 {
2993 then_bb = then_edge->dest;
2994 else_bb = NULL_BLOCK;
2995 join_bb = else_edge->dest;
2996 }
2997 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2998 of basic blocks in cfglayout mode does not matter, so the fallthrough
2999 edge can go to any basic block (and not just to bb->next_bb, like in
3000 cfgrtl mode). */
3001 else if (single_pred_p (else_edge->dest)
3002 && single_succ_p (else_edge->dest)
3003 && single_succ (else_edge->dest) == then_edge->dest)
3004 {
3005 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3006 To make this work, we have to invert the THEN and ELSE blocks
3007 and reverse the jump condition. */
3008 then_bb = else_edge->dest;
3009 else_bb = NULL_BLOCK;
3010 join_bb = single_succ (then_bb);
3011 then_else_reversed = true;
3012 }
3013 else
3014 /* Not a form we can handle. */
3015 return FALSE;
3016
3017 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3018 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3019 return FALSE;
3020 if (else_bb
3021 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3022 return FALSE;
3023
3024 num_possible_if_blocks++;
3025
3026 if (dump_file)
3027 {
3028 fprintf (dump_file,
3029 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3030 (else_bb) ? "-ELSE" : "",
3031 pass, test_bb->index, then_bb->index);
3032
3033 if (else_bb)
3034 fprintf (dump_file, ", else %d", else_bb->index);
3035
3036 fprintf (dump_file, ", join %d\n", join_bb->index);
3037 }
3038
3039 /* If the conditional jump is more than just a conditional
3040 jump, then we can not do if-conversion on this block. */
3041 jump = BB_END (test_bb);
3042 if (! onlyjump_p (jump))
3043 return FALSE;
3044
3045 /* If this is not a standard conditional jump, we can't parse it. */
3046 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3047 if (!cond)
3048 return FALSE;
3049
3050 /* We must be comparing objects whose modes imply the size. */
3051 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3052 return FALSE;
3053
3054 /* Initialize an IF_INFO struct to pass around. */
3055 memset (&if_info, 0, sizeof if_info);
3056 if_info.test_bb = test_bb;
3057 if_info.then_bb = then_bb;
3058 if_info.else_bb = else_bb;
3059 if_info.join_bb = join_bb;
3060 if_info.cond = cond;
3061 if_info.cond_earliest = cond_earliest;
3062 if_info.jump = jump;
3063 if_info.then_else_reversed = then_else_reversed;
3064 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3065 predictable_edge_p (then_edge));
3066
3067 /* Do the real work. */
3068
3069 if (noce_process_if_block (&if_info))
3070 return TRUE;
3071
3072 if (HAVE_conditional_move
3073 && cond_move_process_if_block (&if_info))
3074 return TRUE;
3075
3076 return FALSE;
3077 }
3078 \f
3079
3080 /* Merge the blocks and mark for local life update. */
3081
3082 static void
3083 merge_if_block (struct ce_if_block * ce_info)
3084 {
3085 basic_block test_bb = ce_info->test_bb; /* last test block */
3086 basic_block then_bb = ce_info->then_bb; /* THEN */
3087 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3088 basic_block join_bb = ce_info->join_bb; /* join block */
3089 basic_block combo_bb;
3090
3091 /* All block merging is done into the lower block numbers. */
3092
3093 combo_bb = test_bb;
3094 df_set_bb_dirty (test_bb);
3095
3096 /* Merge any basic blocks to handle && and || subtests. Each of
3097 the blocks are on the fallthru path from the predecessor block. */
3098 if (ce_info->num_multiple_test_blocks > 0)
3099 {
3100 basic_block bb = test_bb;
3101 basic_block last_test_bb = ce_info->last_test_bb;
3102 basic_block fallthru = block_fallthru (bb);
3103
3104 do
3105 {
3106 bb = fallthru;
3107 fallthru = block_fallthru (bb);
3108 merge_blocks (combo_bb, bb);
3109 num_true_changes++;
3110 }
3111 while (bb != last_test_bb);
3112 }
3113
3114 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3115 label, but it might if there were || tests. That label's count should be
3116 zero, and it normally should be removed. */
3117
3118 if (then_bb)
3119 {
3120 merge_blocks (combo_bb, then_bb);
3121 num_true_changes++;
3122 }
3123
3124 /* The ELSE block, if it existed, had a label. That label count
3125 will almost always be zero, but odd things can happen when labels
3126 get their addresses taken. */
3127 if (else_bb)
3128 {
3129 merge_blocks (combo_bb, else_bb);
3130 num_true_changes++;
3131 }
3132
3133 /* If there was no join block reported, that means it was not adjacent
3134 to the others, and so we cannot merge them. */
3135
3136 if (! join_bb)
3137 {
3138 rtx last = BB_END (combo_bb);
3139
3140 /* The outgoing edge for the current COMBO block should already
3141 be correct. Verify this. */
3142 if (EDGE_COUNT (combo_bb->succs) == 0)
3143 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3144 || (NONJUMP_INSN_P (last)
3145 && GET_CODE (PATTERN (last)) == TRAP_IF
3146 && (TRAP_CONDITION (PATTERN (last))
3147 == const_true_rtx)));
3148
3149 else
3150 /* There should still be something at the end of the THEN or ELSE
3151 blocks taking us to our final destination. */
3152 gcc_assert (JUMP_P (last)
3153 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3154 && CALL_P (last)
3155 && SIBLING_CALL_P (last))
3156 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3157 && can_throw_internal (last)));
3158 }
3159
3160 /* The JOIN block may have had quite a number of other predecessors too.
3161 Since we've already merged the TEST, THEN and ELSE blocks, we should
3162 have only one remaining edge from our if-then-else diamond. If there
3163 is more than one remaining edge, it must come from elsewhere. There
3164 may be zero incoming edges if the THEN block didn't actually join
3165 back up (as with a call to a non-return function). */
3166 else if (EDGE_COUNT (join_bb->preds) < 2
3167 && join_bb != EXIT_BLOCK_PTR)
3168 {
3169 /* We can merge the JOIN cleanly and update the dataflow try
3170 again on this pass.*/
3171 merge_blocks (combo_bb, join_bb);
3172 num_true_changes++;
3173 }
3174 else
3175 {
3176 /* We cannot merge the JOIN. */
3177
3178 /* The outgoing edge for the current COMBO block should already
3179 be correct. Verify this. */
3180 gcc_assert (single_succ_p (combo_bb)
3181 && single_succ (combo_bb) == join_bb);
3182
3183 /* Remove the jump and cruft from the end of the COMBO block. */
3184 if (join_bb != EXIT_BLOCK_PTR)
3185 tidy_fallthru_edge (single_succ_edge (combo_bb));
3186 }
3187
3188 num_updated_if_blocks++;
3189 }
3190 \f
3191 /* Find a block ending in a simple IF condition and try to transform it
3192 in some way. When converting a multi-block condition, put the new code
3193 in the first such block and delete the rest. Return a pointer to this
3194 first block if some transformation was done. Return NULL otherwise. */
3195
3196 static basic_block
3197 find_if_header (basic_block test_bb, int pass)
3198 {
3199 ce_if_block_t ce_info;
3200 edge then_edge;
3201 edge else_edge;
3202
3203 /* The kind of block we're looking for has exactly two successors. */
3204 if (EDGE_COUNT (test_bb->succs) != 2)
3205 return NULL;
3206
3207 then_edge = EDGE_SUCC (test_bb, 0);
3208 else_edge = EDGE_SUCC (test_bb, 1);
3209
3210 if (df_get_bb_dirty (then_edge->dest))
3211 return NULL;
3212 if (df_get_bb_dirty (else_edge->dest))
3213 return NULL;
3214
3215 /* Neither edge should be abnormal. */
3216 if ((then_edge->flags & EDGE_COMPLEX)
3217 || (else_edge->flags & EDGE_COMPLEX))
3218 return NULL;
3219
3220 /* Nor exit the loop. */
3221 if ((then_edge->flags & EDGE_LOOP_EXIT)
3222 || (else_edge->flags & EDGE_LOOP_EXIT))
3223 return NULL;
3224
3225 /* The THEN edge is canonically the one that falls through. */
3226 if (then_edge->flags & EDGE_FALLTHRU)
3227 ;
3228 else if (else_edge->flags & EDGE_FALLTHRU)
3229 {
3230 edge e = else_edge;
3231 else_edge = then_edge;
3232 then_edge = e;
3233 }
3234 else
3235 /* Otherwise this must be a multiway branch of some sort. */
3236 return NULL;
3237
3238 memset (&ce_info, 0, sizeof (ce_info));
3239 ce_info.test_bb = test_bb;
3240 ce_info.then_bb = then_edge->dest;
3241 ce_info.else_bb = else_edge->dest;
3242 ce_info.pass = pass;
3243
3244 #ifdef IFCVT_INIT_EXTRA_FIELDS
3245 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3246 #endif
3247
3248 if (!reload_completed
3249 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3250 goto success;
3251
3252 if (reload_completed
3253 && targetm.have_conditional_execution ()
3254 && cond_exec_find_if_block (&ce_info))
3255 goto success;
3256
3257 if (HAVE_trap
3258 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3259 && find_cond_trap (test_bb, then_edge, else_edge))
3260 goto success;
3261
3262 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3263 && (reload_completed || !targetm.have_conditional_execution ()))
3264 {
3265 if (find_if_case_1 (test_bb, then_edge, else_edge))
3266 goto success;
3267 if (find_if_case_2 (test_bb, then_edge, else_edge))
3268 goto success;
3269 }
3270
3271 return NULL;
3272
3273 success:
3274 if (dump_file)
3275 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3276 /* Set this so we continue looking. */
3277 cond_exec_changed_p = TRUE;
3278 return ce_info.test_bb;
3279 }
3280
3281 /* Return true if a block has two edges, one of which falls through to the next
3282 block, and the other jumps to a specific block, so that we can tell if the
3283 block is part of an && test or an || test. Returns either -1 or the number
3284 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3285
3286 static int
3287 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3288 {
3289 edge cur_edge;
3290 int fallthru_p = FALSE;
3291 int jump_p = FALSE;
3292 rtx insn;
3293 rtx end;
3294 int n_insns = 0;
3295 edge_iterator ei;
3296
3297 if (!cur_bb || !target_bb)
3298 return -1;
3299
3300 /* If no edges, obviously it doesn't jump or fallthru. */
3301 if (EDGE_COUNT (cur_bb->succs) == 0)
3302 return FALSE;
3303
3304 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3305 {
3306 if (cur_edge->flags & EDGE_COMPLEX)
3307 /* Anything complex isn't what we want. */
3308 return -1;
3309
3310 else if (cur_edge->flags & EDGE_FALLTHRU)
3311 fallthru_p = TRUE;
3312
3313 else if (cur_edge->dest == target_bb)
3314 jump_p = TRUE;
3315
3316 else
3317 return -1;
3318 }
3319
3320 if ((jump_p & fallthru_p) == 0)
3321 return -1;
3322
3323 /* Don't allow calls in the block, since this is used to group && and ||
3324 together for conditional execution support. ??? we should support
3325 conditional execution support across calls for IA-64 some day, but
3326 for now it makes the code simpler. */
3327 end = BB_END (cur_bb);
3328 insn = BB_HEAD (cur_bb);
3329
3330 while (insn != NULL_RTX)
3331 {
3332 if (CALL_P (insn))
3333 return -1;
3334
3335 if (INSN_P (insn)
3336 && !JUMP_P (insn)
3337 && !DEBUG_INSN_P (insn)
3338 && GET_CODE (PATTERN (insn)) != USE
3339 && GET_CODE (PATTERN (insn)) != CLOBBER)
3340 n_insns++;
3341
3342 if (insn == end)
3343 break;
3344
3345 insn = NEXT_INSN (insn);
3346 }
3347
3348 return n_insns;
3349 }
3350
3351 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3352 block. If so, we'll try to convert the insns to not require the branch.
3353 Return TRUE if we were successful at converting the block. */
3354
3355 static int
3356 cond_exec_find_if_block (struct ce_if_block * ce_info)
3357 {
3358 basic_block test_bb = ce_info->test_bb;
3359 basic_block then_bb = ce_info->then_bb;
3360 basic_block else_bb = ce_info->else_bb;
3361 basic_block join_bb = NULL_BLOCK;
3362 edge cur_edge;
3363 basic_block next;
3364 edge_iterator ei;
3365
3366 ce_info->last_test_bb = test_bb;
3367
3368 /* We only ever should get here after reload,
3369 and if we have conditional execution. */
3370 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3371
3372 /* Discover if any fall through predecessors of the current test basic block
3373 were && tests (which jump to the else block) or || tests (which jump to
3374 the then block). */
3375 if (single_pred_p (test_bb)
3376 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3377 {
3378 basic_block bb = single_pred (test_bb);
3379 basic_block target_bb;
3380 int max_insns = MAX_CONDITIONAL_EXECUTE;
3381 int n_insns;
3382
3383 /* Determine if the preceding block is an && or || block. */
3384 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3385 {
3386 ce_info->and_and_p = TRUE;
3387 target_bb = else_bb;
3388 }
3389 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3390 {
3391 ce_info->and_and_p = FALSE;
3392 target_bb = then_bb;
3393 }
3394 else
3395 target_bb = NULL_BLOCK;
3396
3397 if (target_bb && n_insns <= max_insns)
3398 {
3399 int total_insns = 0;
3400 int blocks = 0;
3401
3402 ce_info->last_test_bb = test_bb;
3403
3404 /* Found at least one && or || block, look for more. */
3405 do
3406 {
3407 ce_info->test_bb = test_bb = bb;
3408 total_insns += n_insns;
3409 blocks++;
3410
3411 if (!single_pred_p (bb))
3412 break;
3413
3414 bb = single_pred (bb);
3415 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3416 }
3417 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3418
3419 ce_info->num_multiple_test_blocks = blocks;
3420 ce_info->num_multiple_test_insns = total_insns;
3421
3422 if (ce_info->and_and_p)
3423 ce_info->num_and_and_blocks = blocks;
3424 else
3425 ce_info->num_or_or_blocks = blocks;
3426 }
3427 }
3428
3429 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3430 other than any || blocks which jump to the THEN block. */
3431 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3432 return FALSE;
3433
3434 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3435 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3436 {
3437 if (cur_edge->flags & EDGE_COMPLEX)
3438 return FALSE;
3439 }
3440
3441 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3442 {
3443 if (cur_edge->flags & EDGE_COMPLEX)
3444 return FALSE;
3445 }
3446
3447 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3448 if (EDGE_COUNT (then_bb->succs) > 0
3449 && (!single_succ_p (then_bb)
3450 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3451 || (epilogue_completed
3452 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3453 return FALSE;
3454
3455 /* If the THEN block has no successors, conditional execution can still
3456 make a conditional call. Don't do this unless the ELSE block has
3457 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3458 Check for the last insn of the THEN block being an indirect jump, which
3459 is listed as not having any successors, but confuses the rest of the CE
3460 code processing. ??? we should fix this in the future. */
3461 if (EDGE_COUNT (then_bb->succs) == 0)
3462 {
3463 if (single_pred_p (else_bb))
3464 {
3465 rtx last_insn = BB_END (then_bb);
3466
3467 while (last_insn
3468 && NOTE_P (last_insn)
3469 && last_insn != BB_HEAD (then_bb))
3470 last_insn = PREV_INSN (last_insn);
3471
3472 if (last_insn
3473 && JUMP_P (last_insn)
3474 && ! simplejump_p (last_insn))
3475 return FALSE;
3476
3477 join_bb = else_bb;
3478 else_bb = NULL_BLOCK;
3479 }
3480 else
3481 return FALSE;
3482 }
3483
3484 /* If the THEN block's successor is the other edge out of the TEST block,
3485 then we have an IF-THEN combo without an ELSE. */
3486 else if (single_succ (then_bb) == else_bb)
3487 {
3488 join_bb = else_bb;
3489 else_bb = NULL_BLOCK;
3490 }
3491
3492 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3493 has exactly one predecessor and one successor, and the outgoing edge
3494 is not complex, then we have an IF-THEN-ELSE combo. */
3495 else if (single_succ_p (else_bb)
3496 && single_succ (then_bb) == single_succ (else_bb)
3497 && single_pred_p (else_bb)
3498 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3499 && !(epilogue_completed
3500 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3501 join_bb = single_succ (else_bb);
3502
3503 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3504 else
3505 return FALSE;
3506
3507 num_possible_if_blocks++;
3508
3509 if (dump_file)
3510 {
3511 fprintf (dump_file,
3512 "\nIF-THEN%s block found, pass %d, start block %d "
3513 "[insn %d], then %d [%d]",
3514 (else_bb) ? "-ELSE" : "",
3515 ce_info->pass,
3516 test_bb->index,
3517 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3518 then_bb->index,
3519 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3520
3521 if (else_bb)
3522 fprintf (dump_file, ", else %d [%d]",
3523 else_bb->index,
3524 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3525
3526 fprintf (dump_file, ", join %d [%d]",
3527 join_bb->index,
3528 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3529
3530 if (ce_info->num_multiple_test_blocks > 0)
3531 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3532 ce_info->num_multiple_test_blocks,
3533 (ce_info->and_and_p) ? "&&" : "||",
3534 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3535 ce_info->last_test_bb->index,
3536 ((BB_HEAD (ce_info->last_test_bb))
3537 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3538 : -1));
3539
3540 fputc ('\n', dump_file);
3541 }
3542
3543 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3544 first condition for free, since we've already asserted that there's a
3545 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3546 we checked the FALLTHRU flag, those are already adjacent to the last IF
3547 block. */
3548 /* ??? As an enhancement, move the ELSE block. Have to deal with
3549 BLOCK notes, if by no other means than backing out the merge if they
3550 exist. Sticky enough I don't want to think about it now. */
3551 next = then_bb;
3552 if (else_bb && (next = next->next_bb) != else_bb)
3553 return FALSE;
3554 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3555 {
3556 if (else_bb)
3557 join_bb = NULL;
3558 else
3559 return FALSE;
3560 }
3561
3562 /* Do the real work. */
3563
3564 ce_info->else_bb = else_bb;
3565 ce_info->join_bb = join_bb;
3566
3567 /* If we have && and || tests, try to first handle combining the && and ||
3568 tests into the conditional code, and if that fails, go back and handle
3569 it without the && and ||, which at present handles the && case if there
3570 was no ELSE block. */
3571 if (cond_exec_process_if_block (ce_info, TRUE))
3572 return TRUE;
3573
3574 if (ce_info->num_multiple_test_blocks)
3575 {
3576 cancel_changes (0);
3577
3578 if (cond_exec_process_if_block (ce_info, FALSE))
3579 return TRUE;
3580 }
3581
3582 return FALSE;
3583 }
3584
3585 /* Convert a branch over a trap, or a branch
3586 to a trap, into a conditional trap. */
3587
3588 static int
3589 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3590 {
3591 basic_block then_bb = then_edge->dest;
3592 basic_block else_bb = else_edge->dest;
3593 basic_block other_bb, trap_bb;
3594 rtx trap, jump, cond, cond_earliest, seq;
3595 enum rtx_code code;
3596
3597 /* Locate the block with the trap instruction. */
3598 /* ??? While we look for no successors, we really ought to allow
3599 EH successors. Need to fix merge_if_block for that to work. */
3600 if ((trap = block_has_only_trap (then_bb)) != NULL)
3601 trap_bb = then_bb, other_bb = else_bb;
3602 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3603 trap_bb = else_bb, other_bb = then_bb;
3604 else
3605 return FALSE;
3606
3607 if (dump_file)
3608 {
3609 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3610 test_bb->index, trap_bb->index);
3611 }
3612
3613 /* If this is not a standard conditional jump, we can't parse it. */
3614 jump = BB_END (test_bb);
3615 cond = noce_get_condition (jump, &cond_earliest, false);
3616 if (! cond)
3617 return FALSE;
3618
3619 /* If the conditional jump is more than just a conditional jump, then
3620 we can not do if-conversion on this block. */
3621 if (! onlyjump_p (jump))
3622 return FALSE;
3623
3624 /* We must be comparing objects whose modes imply the size. */
3625 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3626 return FALSE;
3627
3628 /* Reverse the comparison code, if necessary. */
3629 code = GET_CODE (cond);
3630 if (then_bb == trap_bb)
3631 {
3632 code = reversed_comparison_code (cond, jump);
3633 if (code == UNKNOWN)
3634 return FALSE;
3635 }
3636
3637 /* Attempt to generate the conditional trap. */
3638 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3639 copy_rtx (XEXP (cond, 1)),
3640 TRAP_CODE (PATTERN (trap)));
3641 if (seq == NULL)
3642 return FALSE;
3643
3644 /* Emit the new insns before cond_earliest. */
3645 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3646
3647 /* Delete the trap block if possible. */
3648 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3649 df_set_bb_dirty (test_bb);
3650 df_set_bb_dirty (then_bb);
3651 df_set_bb_dirty (else_bb);
3652
3653 if (EDGE_COUNT (trap_bb->preds) == 0)
3654 {
3655 delete_basic_block (trap_bb);
3656 num_true_changes++;
3657 }
3658
3659 /* Wire together the blocks again. */
3660 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3661 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3662 else
3663 {
3664 rtx lab, newjump;
3665
3666 lab = JUMP_LABEL (jump);
3667 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3668 LABEL_NUSES (lab) += 1;
3669 JUMP_LABEL (newjump) = lab;
3670 emit_barrier_after (newjump);
3671 }
3672 delete_insn (jump);
3673
3674 if (can_merge_blocks_p (test_bb, other_bb))
3675 {
3676 merge_blocks (test_bb, other_bb);
3677 num_true_changes++;
3678 }
3679
3680 num_updated_if_blocks++;
3681 return TRUE;
3682 }
3683
3684 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3685 return it. */
3686
3687 static rtx
3688 block_has_only_trap (basic_block bb)
3689 {
3690 rtx trap;
3691
3692 /* We're not the exit block. */
3693 if (bb == EXIT_BLOCK_PTR)
3694 return NULL_RTX;
3695
3696 /* The block must have no successors. */
3697 if (EDGE_COUNT (bb->succs) > 0)
3698 return NULL_RTX;
3699
3700 /* The only instruction in the THEN block must be the trap. */
3701 trap = first_active_insn (bb);
3702 if (! (trap == BB_END (bb)
3703 && GET_CODE (PATTERN (trap)) == TRAP_IF
3704 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3705 return NULL_RTX;
3706
3707 return trap;
3708 }
3709
3710 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3711 transformable, but not necessarily the other. There need be no
3712 JOIN block.
3713
3714 Return TRUE if we were successful at converting the block.
3715
3716 Cases we'd like to look at:
3717
3718 (1)
3719 if (test) goto over; // x not live
3720 x = a;
3721 goto label;
3722 over:
3723
3724 becomes
3725
3726 x = a;
3727 if (! test) goto label;
3728
3729 (2)
3730 if (test) goto E; // x not live
3731 x = big();
3732 goto L;
3733 E:
3734 x = b;
3735 goto M;
3736
3737 becomes
3738
3739 x = b;
3740 if (test) goto M;
3741 x = big();
3742 goto L;
3743
3744 (3) // This one's really only interesting for targets that can do
3745 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3746 // it results in multiple branches on a cache line, which often
3747 // does not sit well with predictors.
3748
3749 if (test1) goto E; // predicted not taken
3750 x = a;
3751 if (test2) goto F;
3752 ...
3753 E:
3754 x = b;
3755 J:
3756
3757 becomes
3758
3759 x = a;
3760 if (test1) goto E;
3761 if (test2) goto F;
3762
3763 Notes:
3764
3765 (A) Don't do (2) if the branch is predicted against the block we're
3766 eliminating. Do it anyway if we can eliminate a branch; this requires
3767 that the sole successor of the eliminated block postdominate the other
3768 side of the if.
3769
3770 (B) With CE, on (3) we can steal from both sides of the if, creating
3771
3772 if (test1) x = a;
3773 if (!test1) x = b;
3774 if (test1) goto J;
3775 if (test2) goto F;
3776 ...
3777 J:
3778
3779 Again, this is most useful if J postdominates.
3780
3781 (C) CE substitutes for helpful life information.
3782
3783 (D) These heuristics need a lot of work. */
3784
3785 /* Tests for case 1 above. */
3786
3787 static int
3788 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3789 {
3790 basic_block then_bb = then_edge->dest;
3791 basic_block else_bb = else_edge->dest;
3792 basic_block new_bb;
3793 int then_bb_index;
3794
3795 /* If we are partitioning hot/cold basic blocks, we don't want to
3796 mess up unconditional or indirect jumps that cross between hot
3797 and cold sections.
3798
3799 Basic block partitioning may result in some jumps that appear to
3800 be optimizable (or blocks that appear to be mergeable), but which really
3801 must be left untouched (they are required to make it safely across
3802 partition boundaries). See the comments at the top of
3803 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3804
3805 if ((BB_END (then_bb)
3806 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3807 || (BB_END (test_bb)
3808 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3809 || (BB_END (else_bb)
3810 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3811 NULL_RTX)))
3812 return FALSE;
3813
3814 /* THEN has one successor. */
3815 if (!single_succ_p (then_bb))
3816 return FALSE;
3817
3818 /* THEN does not fall through, but is not strange either. */
3819 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3820 return FALSE;
3821
3822 /* THEN has one predecessor. */
3823 if (!single_pred_p (then_bb))
3824 return FALSE;
3825
3826 /* THEN must do something. */
3827 if (forwarder_block_p (then_bb))
3828 return FALSE;
3829
3830 num_possible_if_blocks++;
3831 if (dump_file)
3832 fprintf (dump_file,
3833 "\nIF-CASE-1 found, start %d, then %d\n",
3834 test_bb->index, then_bb->index);
3835
3836 /* THEN is small. */
3837 if (! cheap_bb_rtx_cost_p (then_bb,
3838 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3839 predictable_edge_p (then_edge)))))
3840 return FALSE;
3841
3842 /* Registers set are dead, or are predicable. */
3843 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3844 single_succ (then_bb), 1))
3845 return FALSE;
3846
3847 /* Conversion went ok, including moving the insns and fixing up the
3848 jump. Adjust the CFG to match. */
3849
3850 /* We can avoid creating a new basic block if then_bb is immediately
3851 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3852 thru to else_bb. */
3853
3854 if (then_bb->next_bb == else_bb
3855 && then_bb->prev_bb == test_bb
3856 && else_bb != EXIT_BLOCK_PTR)
3857 {
3858 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3859 new_bb = 0;
3860 }
3861 else
3862 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3863 else_bb);
3864
3865 df_set_bb_dirty (test_bb);
3866 df_set_bb_dirty (else_bb);
3867
3868 then_bb_index = then_bb->index;
3869 delete_basic_block (then_bb);
3870
3871 /* Make rest of code believe that the newly created block is the THEN_BB
3872 block we removed. */
3873 if (new_bb)
3874 {
3875 df_bb_replace (then_bb_index, new_bb);
3876 /* Since the fallthru edge was redirected from test_bb to new_bb,
3877 we need to ensure that new_bb is in the same partition as
3878 test bb (you can not fall through across section boundaries). */
3879 BB_COPY_PARTITION (new_bb, test_bb);
3880 }
3881
3882 num_true_changes++;
3883 num_updated_if_blocks++;
3884
3885 return TRUE;
3886 }
3887
3888 /* Test for case 2 above. */
3889
3890 static int
3891 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3892 {
3893 basic_block then_bb = then_edge->dest;
3894 basic_block else_bb = else_edge->dest;
3895 edge else_succ;
3896 rtx note;
3897
3898 /* If we are partitioning hot/cold basic blocks, we don't want to
3899 mess up unconditional or indirect jumps that cross between hot
3900 and cold sections.
3901
3902 Basic block partitioning may result in some jumps that appear to
3903 be optimizable (or blocks that appear to be mergeable), but which really
3904 must be left untouched (they are required to make it safely across
3905 partition boundaries). See the comments at the top of
3906 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3907
3908 if ((BB_END (then_bb)
3909 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3910 || (BB_END (test_bb)
3911 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3912 || (BB_END (else_bb)
3913 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3914 NULL_RTX)))
3915 return FALSE;
3916
3917 /* ELSE has one successor. */
3918 if (!single_succ_p (else_bb))
3919 return FALSE;
3920 else
3921 else_succ = single_succ_edge (else_bb);
3922
3923 /* ELSE outgoing edge is not complex. */
3924 if (else_succ->flags & EDGE_COMPLEX)
3925 return FALSE;
3926
3927 /* ELSE has one predecessor. */
3928 if (!single_pred_p (else_bb))
3929 return FALSE;
3930
3931 /* THEN is not EXIT. */
3932 if (then_bb->index < NUM_FIXED_BLOCKS)
3933 return FALSE;
3934
3935 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3936 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3937 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3938 ;
3939 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3940 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3941 else_succ->dest))
3942 ;
3943 else
3944 return FALSE;
3945
3946 num_possible_if_blocks++;
3947 if (dump_file)
3948 fprintf (dump_file,
3949 "\nIF-CASE-2 found, start %d, else %d\n",
3950 test_bb->index, else_bb->index);
3951
3952 /* ELSE is small. */
3953 if (! cheap_bb_rtx_cost_p (else_bb,
3954 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3955 predictable_edge_p (else_edge)))))
3956 return FALSE;
3957
3958 /* Registers set are dead, or are predicable. */
3959 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3960 return FALSE;
3961
3962 /* Conversion went ok, including moving the insns and fixing up the
3963 jump. Adjust the CFG to match. */
3964
3965 df_set_bb_dirty (test_bb);
3966 df_set_bb_dirty (then_bb);
3967 delete_basic_block (else_bb);
3968
3969 num_true_changes++;
3970 num_updated_if_blocks++;
3971
3972 /* ??? We may now fallthru from one of THEN's successors into a join
3973 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3974
3975 return TRUE;
3976 }
3977
3978 /* Used by the code above to perform the actual rtl transformations.
3979 Return TRUE if successful.
3980
3981 TEST_BB is the block containing the conditional branch. MERGE_BB
3982 is the block containing the code to manipulate. NEW_DEST is the
3983 label TEST_BB should be branching to after the conversion.
3984 REVERSEP is true if the sense of the branch should be reversed. */
3985
3986 static int
3987 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3988 basic_block other_bb, basic_block new_dest, int reversep)
3989 {
3990 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3991 /* Number of pending changes. */
3992 int n_validated_changes = 0;
3993
3994 jump = BB_END (test_bb);
3995
3996 /* Find the extent of the real code in the merge block. */
3997 head = BB_HEAD (merge_bb);
3998 end = BB_END (merge_bb);
3999
4000 while (DEBUG_INSN_P (end) && end != head)
4001 end = PREV_INSN (end);
4002
4003 /* If merge_bb ends with a tablejump, predicating/moving insn's
4004 into test_bb and then deleting merge_bb will result in the jumptable
4005 that follows merge_bb being removed along with merge_bb and then we
4006 get an unresolved reference to the jumptable. */
4007 if (tablejump_p (end, NULL, NULL))
4008 return FALSE;
4009
4010 if (LABEL_P (head))
4011 head = NEXT_INSN (head);
4012 while (DEBUG_INSN_P (head) && head != end)
4013 head = NEXT_INSN (head);
4014 if (NOTE_P (head))
4015 {
4016 if (head == end)
4017 {
4018 head = end = NULL_RTX;
4019 goto no_body;
4020 }
4021 head = NEXT_INSN (head);
4022 while (DEBUG_INSN_P (head) && head != end)
4023 head = NEXT_INSN (head);
4024 }
4025
4026 if (JUMP_P (end))
4027 {
4028 if (head == end)
4029 {
4030 head = end = NULL_RTX;
4031 goto no_body;
4032 }
4033 end = PREV_INSN (end);
4034 while (DEBUG_INSN_P (end) && end != head)
4035 end = PREV_INSN (end);
4036 }
4037
4038 /* Disable handling dead code by conditional execution if the machine needs
4039 to do anything funny with the tests, etc. */
4040 #ifndef IFCVT_MODIFY_TESTS
4041 if (targetm.have_conditional_execution ())
4042 {
4043 /* In the conditional execution case, we have things easy. We know
4044 the condition is reversible. We don't have to check life info
4045 because we're going to conditionally execute the code anyway.
4046 All that's left is making sure the insns involved can actually
4047 be predicated. */
4048
4049 rtx cond, prob_val;
4050
4051 cond = cond_exec_get_condition (jump);
4052 if (! cond)
4053 return FALSE;
4054
4055 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4056 if (prob_val)
4057 prob_val = XEXP (prob_val, 0);
4058
4059 if (reversep)
4060 {
4061 enum rtx_code rev = reversed_comparison_code (cond, jump);
4062 if (rev == UNKNOWN)
4063 return FALSE;
4064 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4065 XEXP (cond, 1));
4066 if (prob_val)
4067 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4068 }
4069
4070 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4071 && verify_changes (0))
4072 n_validated_changes = num_validated_changes ();
4073 else
4074 cancel_changes (0);
4075
4076 earliest = jump;
4077 }
4078 #endif
4079 /* If we allocated new pseudos (e.g. in the conditional move
4080 expander called from noce_emit_cmove), we must resize the
4081 array first. */
4082 if (max_regno < max_reg_num ())
4083 max_regno = max_reg_num ();
4084
4085 /* Try the NCE path if the CE path did not result in any changes. */
4086 if (n_validated_changes == 0)
4087 {
4088 rtx cond;
4089 regset live;
4090 bool success;
4091
4092 /* In the non-conditional execution case, we have to verify that there
4093 are no trapping operations, no calls, no references to memory, and
4094 that any registers modified are dead at the branch site. */
4095
4096 if (!any_condjump_p (jump))
4097 return FALSE;
4098
4099 /* Find the extent of the conditional. */
4100 cond = noce_get_condition (jump, &earliest, false);
4101 if (!cond)
4102 return FALSE;
4103
4104 live = BITMAP_ALLOC (&reg_obstack);
4105 simulate_backwards_to_point (merge_bb, live, end);
4106 success = can_move_insns_across (head, end, earliest, jump,
4107 merge_bb, live,
4108 df_get_live_in (other_bb), NULL);
4109 BITMAP_FREE (live);
4110 if (!success)
4111 return FALSE;
4112 }
4113
4114 no_body:
4115 /* We don't want to use normal invert_jump or redirect_jump because
4116 we don't want to delete_insn called. Also, we want to do our own
4117 change group management. */
4118
4119 old_dest = JUMP_LABEL (jump);
4120 if (other_bb != new_dest)
4121 {
4122 new_label = block_label (new_dest);
4123 if (reversep
4124 ? ! invert_jump_1 (jump, new_label)
4125 : ! redirect_jump_1 (jump, new_label))
4126 goto cancel;
4127 }
4128
4129 if (verify_changes (n_validated_changes))
4130 confirm_change_group ();
4131 else
4132 goto cancel;
4133
4134 if (other_bb != new_dest)
4135 {
4136 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
4137
4138 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4139 if (reversep)
4140 {
4141 gcov_type count, probability;
4142 count = BRANCH_EDGE (test_bb)->count;
4143 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4144 FALLTHRU_EDGE (test_bb)->count = count;
4145 probability = BRANCH_EDGE (test_bb)->probability;
4146 BRANCH_EDGE (test_bb)->probability
4147 = FALLTHRU_EDGE (test_bb)->probability;
4148 FALLTHRU_EDGE (test_bb)->probability = probability;
4149 update_br_prob_note (test_bb);
4150 }
4151 }
4152
4153 /* Move the insns out of MERGE_BB to before the branch. */
4154 if (head != NULL)
4155 {
4156 rtx insn;
4157
4158 if (end == BB_END (merge_bb))
4159 BB_END (merge_bb) = PREV_INSN (head);
4160
4161 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
4162 notes might become invalid. */
4163 insn = head;
4164 do
4165 {
4166 rtx note, set;
4167
4168 if (! INSN_P (insn))
4169 continue;
4170 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4171 if (! note)
4172 continue;
4173 set = single_set (insn);
4174 if (!set || !function_invariant_p (SET_SRC (set))
4175 || !function_invariant_p (XEXP (note, 0)))
4176 remove_note (insn, note);
4177 } while (insn != end && (insn = NEXT_INSN (insn)));
4178
4179 reorder_insns (head, end, PREV_INSN (earliest));
4180 }
4181
4182 /* Remove the jump and edge if we can. */
4183 if (other_bb == new_dest)
4184 {
4185 delete_insn (jump);
4186 remove_edge (BRANCH_EDGE (test_bb));
4187 /* ??? Can't merge blocks here, as then_bb is still in use.
4188 At minimum, the merge will get done just before bb-reorder. */
4189 }
4190
4191 return TRUE;
4192
4193 cancel:
4194 cancel_changes (0);
4195 return FALSE;
4196 }
4197 \f
4198 /* Main entry point for all if-conversion. */
4199
4200 static void
4201 if_convert (void)
4202 {
4203 basic_block bb;
4204 int pass;
4205
4206 if (optimize == 1)
4207 {
4208 df_live_add_problem ();
4209 df_live_set_all_dirty ();
4210 }
4211
4212 num_possible_if_blocks = 0;
4213 num_updated_if_blocks = 0;
4214 num_true_changes = 0;
4215
4216 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4217 mark_loop_exit_edges ();
4218 loop_optimizer_finalize ();
4219 free_dominance_info (CDI_DOMINATORS);
4220
4221 /* Compute postdominators. */
4222 calculate_dominance_info (CDI_POST_DOMINATORS);
4223
4224 df_set_flags (DF_LR_RUN_DCE);
4225
4226 /* Go through each of the basic blocks looking for things to convert. If we
4227 have conditional execution, we make multiple passes to allow us to handle
4228 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4229 pass = 0;
4230 do
4231 {
4232 df_analyze ();
4233 /* Only need to do dce on the first pass. */
4234 df_clear_flags (DF_LR_RUN_DCE);
4235 cond_exec_changed_p = FALSE;
4236 pass++;
4237
4238 #ifdef IFCVT_MULTIPLE_DUMPS
4239 if (dump_file && pass > 1)
4240 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4241 #endif
4242
4243 FOR_EACH_BB (bb)
4244 {
4245 basic_block new_bb;
4246 while (!df_get_bb_dirty (bb)
4247 && (new_bb = find_if_header (bb, pass)) != NULL)
4248 bb = new_bb;
4249 }
4250
4251 #ifdef IFCVT_MULTIPLE_DUMPS
4252 if (dump_file && cond_exec_changed_p)
4253 {
4254 if (dump_flags & TDF_SLIM)
4255 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4256 else
4257 print_rtl_with_bb (dump_file, get_insns ());
4258 }
4259 #endif
4260 }
4261 while (cond_exec_changed_p);
4262
4263 #ifdef IFCVT_MULTIPLE_DUMPS
4264 if (dump_file)
4265 fprintf (dump_file, "\n\n========== no more changes\n");
4266 #endif
4267
4268 free_dominance_info (CDI_POST_DOMINATORS);
4269
4270 if (dump_file)
4271 fflush (dump_file);
4272
4273 clear_aux_for_blocks ();
4274
4275 /* If we allocated new pseudos, we must resize the array for sched1. */
4276 if (max_regno < max_reg_num ())
4277 max_regno = max_reg_num ();
4278
4279 /* Write the final stats. */
4280 if (dump_file && num_possible_if_blocks > 0)
4281 {
4282 fprintf (dump_file,
4283 "\n%d possible IF blocks searched.\n",
4284 num_possible_if_blocks);
4285 fprintf (dump_file,
4286 "%d IF blocks converted.\n",
4287 num_updated_if_blocks);
4288 fprintf (dump_file,
4289 "%d true changes made.\n\n\n",
4290 num_true_changes);
4291 }
4292
4293 if (optimize == 1)
4294 df_remove_problem (df_live);
4295
4296 #ifdef ENABLE_CHECKING
4297 verify_flow_info ();
4298 #endif
4299 }
4300 \f
4301 static bool
4302 gate_handle_if_conversion (void)
4303 {
4304 return (optimize > 0)
4305 && dbg_cnt (if_conversion);
4306 }
4307
4308 /* If-conversion and CFG cleanup. */
4309 static unsigned int
4310 rest_of_handle_if_conversion (void)
4311 {
4312 if (flag_if_conversion)
4313 {
4314 if (dump_file)
4315 dump_flow_info (dump_file, dump_flags);
4316 cleanup_cfg (CLEANUP_EXPENSIVE);
4317 if_convert ();
4318 }
4319
4320 cleanup_cfg (0);
4321 return 0;
4322 }
4323
4324 struct rtl_opt_pass pass_rtl_ifcvt =
4325 {
4326 {
4327 RTL_PASS,
4328 "ce1", /* name */
4329 gate_handle_if_conversion, /* gate */
4330 rest_of_handle_if_conversion, /* execute */
4331 NULL, /* sub */
4332 NULL, /* next */
4333 0, /* static_pass_number */
4334 TV_IFCVT, /* tv_id */
4335 0, /* properties_required */
4336 0, /* properties_provided */
4337 0, /* properties_destroyed */
4338 0, /* todo_flags_start */
4339 TODO_df_finish | TODO_verify_rtl_sharing |
4340 TODO_dump_func /* todo_flags_finish */
4341 }
4342 };
4343
4344 static bool
4345 gate_handle_if_after_combine (void)
4346 {
4347 return optimize > 0 && flag_if_conversion
4348 && dbg_cnt (if_after_combine);
4349 }
4350
4351
4352 /* Rerun if-conversion, as combine may have simplified things enough
4353 to now meet sequence length restrictions. */
4354 static unsigned int
4355 rest_of_handle_if_after_combine (void)
4356 {
4357 if_convert ();
4358 return 0;
4359 }
4360
4361 struct rtl_opt_pass pass_if_after_combine =
4362 {
4363 {
4364 RTL_PASS,
4365 "ce2", /* name */
4366 gate_handle_if_after_combine, /* gate */
4367 rest_of_handle_if_after_combine, /* execute */
4368 NULL, /* sub */
4369 NULL, /* next */
4370 0, /* static_pass_number */
4371 TV_IFCVT, /* tv_id */
4372 0, /* properties_required */
4373 0, /* properties_provided */
4374 0, /* properties_destroyed */
4375 0, /* todo_flags_start */
4376 TODO_df_finish | TODO_verify_rtl_sharing |
4377 TODO_dump_func |
4378 TODO_ggc_collect /* todo_flags_finish */
4379 }
4380 };
4381
4382
4383 static bool
4384 gate_handle_if_after_reload (void)
4385 {
4386 return optimize > 0 && flag_if_conversion2
4387 && dbg_cnt (if_after_reload);
4388 }
4389
4390 static unsigned int
4391 rest_of_handle_if_after_reload (void)
4392 {
4393 if_convert ();
4394 return 0;
4395 }
4396
4397
4398 struct rtl_opt_pass pass_if_after_reload =
4399 {
4400 {
4401 RTL_PASS,
4402 "ce3", /* name */
4403 gate_handle_if_after_reload, /* gate */
4404 rest_of_handle_if_after_reload, /* execute */
4405 NULL, /* sub */
4406 NULL, /* next */
4407 0, /* static_pass_number */
4408 TV_IFCVT2, /* tv_id */
4409 0, /* properties_required */
4410 0, /* properties_provided */
4411 0, /* properties_destroyed */
4412 0, /* todo_flags_start */
4413 TODO_df_finish | TODO_verify_rtl_sharing |
4414 TODO_dump_func |
4415 TODO_ggc_collect /* todo_flags_finish */
4416 }
4417 };