gfortran.h (gfc_default_*_kind): Remove prototypes, add extern variable declaration...
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "real.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43
44
45 #ifndef HAVE_conditional_execution
46 #define HAVE_conditional_execution 0
47 #endif
48 #ifndef HAVE_conditional_move
49 #define HAVE_conditional_move 0
50 #endif
51 #ifndef HAVE_incscc
52 #define HAVE_incscc 0
53 #endif
54 #ifndef HAVE_decscc
55 #define HAVE_decscc 0
56 #endif
57 #ifndef HAVE_trap
58 #define HAVE_trap 0
59 #endif
60 #ifndef HAVE_conditional_trap
61 #define HAVE_conditional_trap 0
62 #endif
63
64 #ifndef MAX_CONDITIONAL_EXECUTE
65 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
66 #endif
67
68 #define NULL_EDGE ((struct edge_def *)NULL)
69 #define NULL_BLOCK ((struct basic_block_def *)NULL)
70
71 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
72 static int num_possible_if_blocks;
73
74 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
75 execution. */
76 static int num_updated_if_blocks;
77
78 /* # of changes made which require life information to be updated. */
79 static int num_true_changes;
80
81 /* Whether conditional execution changes were made. */
82 static int cond_exec_changed_p;
83
84 /* True if life data ok at present. */
85 static bool life_data_ok;
86
87 /* Forward references. */
88 static int count_bb_insns (basic_block);
89 static int total_bb_rtx_cost (basic_block);
90 static rtx first_active_insn (basic_block);
91 static rtx last_active_insn (basic_block, int);
92 static basic_block block_fallthru (basic_block);
93 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
94 static rtx cond_exec_get_condition (rtx);
95 static int cond_exec_process_if_block (ce_if_block_t *, int);
96 static rtx noce_get_condition (rtx, rtx *);
97 static int noce_operand_ok (rtx);
98 static int noce_process_if_block (ce_if_block_t *);
99 static int process_if_block (ce_if_block_t *);
100 static void merge_if_block (ce_if_block_t *);
101 static int find_cond_trap (basic_block, edge, edge);
102 static basic_block find_if_header (basic_block, int);
103 static int block_jumps_and_fallthru_p (basic_block, basic_block);
104 static int find_if_block (ce_if_block_t *);
105 static int find_if_case_1 (basic_block, edge, edge);
106 static int find_if_case_2 (basic_block, edge, edge);
107 static int find_memory (rtx *, void *);
108 static int dead_or_predicable (basic_block, basic_block, basic_block,
109 basic_block, int);
110 static void noce_emit_move_insn (rtx, rtx);
111 static rtx block_has_only_trap (basic_block);
112 static void mark_loop_exit_edges (void);
113 \f
114 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
115 static void
116 mark_loop_exit_edges (void)
117 {
118 struct loops loops;
119 basic_block bb;
120 edge e;
121
122 flow_loops_find (&loops, LOOP_TREE);
123 free_dominance_info (CDI_DOMINATORS);
124
125 if (loops.num > 1)
126 {
127 FOR_EACH_BB (bb)
128 {
129 for (e = bb->succ; e; e = e->succ_next)
130 {
131 if (find_common_loop (bb->loop_father, e->dest->loop_father)
132 != bb->loop_father)
133 e->flags |= EDGE_LOOP_EXIT;
134 else
135 e->flags &= ~EDGE_LOOP_EXIT;
136 }
137 }
138 }
139
140 flow_loops_free (&loops);
141 }
142
143 /* Count the number of non-jump active insns in BB. */
144
145 static int
146 count_bb_insns (basic_block bb)
147 {
148 int count = 0;
149 rtx insn = BB_HEAD (bb);
150
151 while (1)
152 {
153 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
154 count++;
155
156 if (insn == BB_END (bb))
157 break;
158 insn = NEXT_INSN (insn);
159 }
160
161 return count;
162 }
163
164 /* Count the total insn_rtx_cost of non-jump active insns in BB.
165 This function returns -1, if the cost of any instruction could
166 not be estimated. */
167
168 static int
169 total_bb_rtx_cost (basic_block bb)
170 {
171 int count = 0;
172 rtx insn = BB_HEAD (bb);
173
174 while (1)
175 {
176 if (NONJUMP_INSN_P (insn))
177 {
178 int cost = insn_rtx_cost (PATTERN (insn));
179 if (cost == 0)
180 return -1;
181 count += cost;
182 }
183 else if (CALL_P (insn))
184 return -1;
185
186 if (insn == BB_END (bb))
187 break;
188 insn = NEXT_INSN (insn);
189 }
190
191 return count;
192 }
193
194 /* Return the first non-jump active insn in the basic block. */
195
196 static rtx
197 first_active_insn (basic_block bb)
198 {
199 rtx insn = BB_HEAD (bb);
200
201 if (LABEL_P (insn))
202 {
203 if (insn == BB_END (bb))
204 return NULL_RTX;
205 insn = NEXT_INSN (insn);
206 }
207
208 while (NOTE_P (insn))
209 {
210 if (insn == BB_END (bb))
211 return NULL_RTX;
212 insn = NEXT_INSN (insn);
213 }
214
215 if (JUMP_P (insn))
216 return NULL_RTX;
217
218 return insn;
219 }
220
221 /* Return the last non-jump active (non-jump) insn in the basic block. */
222
223 static rtx
224 last_active_insn (basic_block bb, int skip_use_p)
225 {
226 rtx insn = BB_END (bb);
227 rtx head = BB_HEAD (bb);
228
229 while (NOTE_P (insn)
230 || JUMP_P (insn)
231 || (skip_use_p
232 && NONJUMP_INSN_P (insn)
233 && GET_CODE (PATTERN (insn)) == USE))
234 {
235 if (insn == head)
236 return NULL_RTX;
237 insn = PREV_INSN (insn);
238 }
239
240 if (LABEL_P (insn))
241 return NULL_RTX;
242
243 return insn;
244 }
245
246 /* Return the basic block reached by falling though the basic block BB. */
247
248 static basic_block
249 block_fallthru (basic_block bb)
250 {
251 edge e;
252
253 for (e = bb->succ;
254 e != NULL_EDGE && (e->flags & EDGE_FALLTHRU) == 0;
255 e = e->succ_next)
256 ;
257
258 return (e) ? e->dest : NULL_BLOCK;
259 }
260 \f
261 /* Go through a bunch of insns, converting them to conditional
262 execution format if possible. Return TRUE if all of the non-note
263 insns were processed. */
264
265 static int
266 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
267 /* if block information */rtx start,
268 /* first insn to look at */rtx end,
269 /* last insn to look at */rtx test,
270 /* conditional execution test */rtx prob_val,
271 /* probability of branch taken. */int mod_ok)
272 {
273 int must_be_last = FALSE;
274 rtx insn;
275 rtx xtest;
276 rtx pattern;
277
278 if (!start || !end)
279 return FALSE;
280
281 for (insn = start; ; insn = NEXT_INSN (insn))
282 {
283 if (NOTE_P (insn))
284 goto insn_done;
285
286 if (!NONJUMP_INSN_P (insn) && !CALL_P (insn))
287 abort ();
288
289 /* Remove USE insns that get in the way. */
290 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
291 {
292 /* ??? Ug. Actually unlinking the thing is problematic,
293 given what we'd have to coordinate with our callers. */
294 SET_INSN_DELETED (insn);
295 goto insn_done;
296 }
297
298 /* Last insn wasn't last? */
299 if (must_be_last)
300 return FALSE;
301
302 if (modified_in_p (test, insn))
303 {
304 if (!mod_ok)
305 return FALSE;
306 must_be_last = TRUE;
307 }
308
309 /* Now build the conditional form of the instruction. */
310 pattern = PATTERN (insn);
311 xtest = copy_rtx (test);
312
313 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
314 two conditions. */
315 if (GET_CODE (pattern) == COND_EXEC)
316 {
317 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
318 return FALSE;
319
320 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
321 COND_EXEC_TEST (pattern));
322 pattern = COND_EXEC_CODE (pattern);
323 }
324
325 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
326
327 /* If the machine needs to modify the insn being conditionally executed,
328 say for example to force a constant integer operand into a temp
329 register, do so here. */
330 #ifdef IFCVT_MODIFY_INSN
331 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
332 if (! pattern)
333 return FALSE;
334 #endif
335
336 validate_change (insn, &PATTERN (insn), pattern, 1);
337
338 if (CALL_P (insn) && prob_val)
339 validate_change (insn, &REG_NOTES (insn),
340 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
341 REG_NOTES (insn)), 1);
342
343 insn_done:
344 if (insn == end)
345 break;
346 }
347
348 return TRUE;
349 }
350
351 /* Return the condition for a jump. Do not do any special processing. */
352
353 static rtx
354 cond_exec_get_condition (rtx jump)
355 {
356 rtx test_if, cond;
357
358 if (any_condjump_p (jump))
359 test_if = SET_SRC (pc_set (jump));
360 else
361 return NULL_RTX;
362 cond = XEXP (test_if, 0);
363
364 /* If this branches to JUMP_LABEL when the condition is false,
365 reverse the condition. */
366 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
367 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
368 {
369 enum rtx_code rev = reversed_comparison_code (cond, jump);
370 if (rev == UNKNOWN)
371 return NULL_RTX;
372
373 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
374 XEXP (cond, 1));
375 }
376
377 return cond;
378 }
379
380 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
381 to conditional execution. Return TRUE if we were successful at
382 converting the block. */
383
384 static int
385 cond_exec_process_if_block (ce_if_block_t * ce_info,
386 /* if block information */int do_multiple_p)
387 {
388 basic_block test_bb = ce_info->test_bb; /* last test block */
389 basic_block then_bb = ce_info->then_bb; /* THEN */
390 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
391 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
392 rtx then_start; /* first insn in THEN block */
393 rtx then_end; /* last insn + 1 in THEN block */
394 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
395 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
396 int max; /* max # of insns to convert. */
397 int then_mod_ok; /* whether conditional mods are ok in THEN */
398 rtx true_expr; /* test for else block insns */
399 rtx false_expr; /* test for then block insns */
400 rtx true_prob_val; /* probability of else block */
401 rtx false_prob_val; /* probability of then block */
402 int n_insns;
403 enum rtx_code false_code;
404
405 /* If test is comprised of && or || elements, and we've failed at handling
406 all of them together, just use the last test if it is the special case of
407 && elements without an ELSE block. */
408 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
409 {
410 if (else_bb || ! ce_info->and_and_p)
411 return FALSE;
412
413 ce_info->test_bb = test_bb = ce_info->last_test_bb;
414 ce_info->num_multiple_test_blocks = 0;
415 ce_info->num_and_and_blocks = 0;
416 ce_info->num_or_or_blocks = 0;
417 }
418
419 /* Find the conditional jump to the ELSE or JOIN part, and isolate
420 the test. */
421 test_expr = cond_exec_get_condition (BB_END (test_bb));
422 if (! test_expr)
423 return FALSE;
424
425 /* If the conditional jump is more than just a conditional jump,
426 then we can not do conditional execution conversion on this block. */
427 if (! onlyjump_p (BB_END (test_bb)))
428 return FALSE;
429
430 /* Collect the bounds of where we're to search, skipping any labels, jumps
431 and notes at the beginning and end of the block. Then count the total
432 number of insns and see if it is small enough to convert. */
433 then_start = first_active_insn (then_bb);
434 then_end = last_active_insn (then_bb, TRUE);
435 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
436 max = MAX_CONDITIONAL_EXECUTE;
437
438 if (else_bb)
439 {
440 max *= 2;
441 else_start = first_active_insn (else_bb);
442 else_end = last_active_insn (else_bb, TRUE);
443 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
444 }
445
446 if (n_insns > max)
447 return FALSE;
448
449 /* Map test_expr/test_jump into the appropriate MD tests to use on
450 the conditionally executed code. */
451
452 true_expr = test_expr;
453
454 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
455 if (false_code != UNKNOWN)
456 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
457 XEXP (true_expr, 0), XEXP (true_expr, 1));
458 else
459 false_expr = NULL_RTX;
460
461 #ifdef IFCVT_MODIFY_TESTS
462 /* If the machine description needs to modify the tests, such as setting a
463 conditional execution register from a comparison, it can do so here. */
464 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
465
466 /* See if the conversion failed. */
467 if (!true_expr || !false_expr)
468 goto fail;
469 #endif
470
471 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
472 if (true_prob_val)
473 {
474 true_prob_val = XEXP (true_prob_val, 0);
475 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
476 }
477 else
478 false_prob_val = NULL_RTX;
479
480 /* If we have && or || tests, do them here. These tests are in the adjacent
481 blocks after the first block containing the test. */
482 if (ce_info->num_multiple_test_blocks > 0)
483 {
484 basic_block bb = test_bb;
485 basic_block last_test_bb = ce_info->last_test_bb;
486
487 if (! false_expr)
488 goto fail;
489
490 do
491 {
492 rtx start, end;
493 rtx t, f;
494
495 bb = block_fallthru (bb);
496 start = first_active_insn (bb);
497 end = last_active_insn (bb, TRUE);
498 if (start
499 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
500 false_prob_val, FALSE))
501 goto fail;
502
503 /* If the conditional jump is more than just a conditional jump, then
504 we can not do conditional execution conversion on this block. */
505 if (! onlyjump_p (BB_END (bb)))
506 goto fail;
507
508 /* Find the conditional jump and isolate the test. */
509 t = cond_exec_get_condition (BB_END (bb));
510 if (! t)
511 goto fail;
512
513 f = gen_rtx_fmt_ee (reverse_condition (GET_CODE (t)),
514 GET_MODE (t),
515 XEXP (t, 0),
516 XEXP (t, 1));
517
518 if (ce_info->and_and_p)
519 {
520 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
521 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
522 }
523 else
524 {
525 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
526 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
527 }
528
529 /* If the machine description needs to modify the tests, such as
530 setting a conditional execution register from a comparison, it can
531 do so here. */
532 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
533 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
534
535 /* See if the conversion failed. */
536 if (!t || !f)
537 goto fail;
538 #endif
539
540 true_expr = t;
541 false_expr = f;
542 }
543 while (bb != last_test_bb);
544 }
545
546 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
547 on then THEN block. */
548 then_mod_ok = (else_bb == NULL_BLOCK);
549
550 /* Go through the THEN and ELSE blocks converting the insns if possible
551 to conditional execution. */
552
553 if (then_end
554 && (! false_expr
555 || ! cond_exec_process_insns (ce_info, then_start, then_end,
556 false_expr, false_prob_val,
557 then_mod_ok)))
558 goto fail;
559
560 if (else_bb && else_end
561 && ! cond_exec_process_insns (ce_info, else_start, else_end,
562 true_expr, true_prob_val, TRUE))
563 goto fail;
564
565 /* If we cannot apply the changes, fail. Do not go through the normal fail
566 processing, since apply_change_group will call cancel_changes. */
567 if (! apply_change_group ())
568 {
569 #ifdef IFCVT_MODIFY_CANCEL
570 /* Cancel any machine dependent changes. */
571 IFCVT_MODIFY_CANCEL (ce_info);
572 #endif
573 return FALSE;
574 }
575
576 #ifdef IFCVT_MODIFY_FINAL
577 /* Do any machine dependent final modifications. */
578 IFCVT_MODIFY_FINAL (ce_info);
579 #endif
580
581 /* Conversion succeeded. */
582 if (dump_file)
583 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
584 n_insns, (n_insns == 1) ? " was" : "s were");
585
586 /* Merge the blocks! */
587 merge_if_block (ce_info);
588 cond_exec_changed_p = TRUE;
589 return TRUE;
590
591 fail:
592 #ifdef IFCVT_MODIFY_CANCEL
593 /* Cancel any machine dependent changes. */
594 IFCVT_MODIFY_CANCEL (ce_info);
595 #endif
596
597 cancel_changes (0);
598 return FALSE;
599 }
600 \f
601 /* Used by noce_process_if_block to communicate with its subroutines.
602
603 The subroutines know that A and B may be evaluated freely. They
604 know that X is a register. They should insert new instructions
605 before cond_earliest. */
606
607 struct noce_if_info
608 {
609 basic_block test_bb;
610 rtx insn_a, insn_b;
611 rtx x, a, b;
612 rtx jump, cond, cond_earliest;
613 /* True if "b" was originally evaluated unconditionally. */
614 bool b_unconditional;
615 };
616
617 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
618 static int noce_try_move (struct noce_if_info *);
619 static int noce_try_store_flag (struct noce_if_info *);
620 static int noce_try_addcc (struct noce_if_info *);
621 static int noce_try_store_flag_constants (struct noce_if_info *);
622 static int noce_try_store_flag_mask (struct noce_if_info *);
623 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
624 rtx, rtx, rtx);
625 static int noce_try_cmove (struct noce_if_info *);
626 static int noce_try_cmove_arith (struct noce_if_info *);
627 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
628 static int noce_try_minmax (struct noce_if_info *);
629 static int noce_try_abs (struct noce_if_info *);
630 static int noce_try_sign_mask (struct noce_if_info *);
631
632 /* Helper function for noce_try_store_flag*. */
633
634 static rtx
635 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
636 int normalize)
637 {
638 rtx cond = if_info->cond;
639 int cond_complex;
640 enum rtx_code code;
641
642 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
643 || ! general_operand (XEXP (cond, 1), VOIDmode));
644
645 /* If earliest == jump, or when the condition is complex, try to
646 build the store_flag insn directly. */
647
648 if (cond_complex)
649 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
650
651 if (reversep)
652 code = reversed_comparison_code (cond, if_info->jump);
653 else
654 code = GET_CODE (cond);
655
656 if ((if_info->cond_earliest == if_info->jump || cond_complex)
657 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
658 {
659 rtx tmp;
660
661 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
662 XEXP (cond, 1));
663 tmp = gen_rtx_SET (VOIDmode, x, tmp);
664
665 start_sequence ();
666 tmp = emit_insn (tmp);
667
668 if (recog_memoized (tmp) >= 0)
669 {
670 tmp = get_insns ();
671 end_sequence ();
672 emit_insn (tmp);
673
674 if_info->cond_earliest = if_info->jump;
675
676 return x;
677 }
678
679 end_sequence ();
680 }
681
682 /* Don't even try if the comparison operands or the mode of X are weird. */
683 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
684 return NULL_RTX;
685
686 return emit_store_flag (x, code, XEXP (cond, 0),
687 XEXP (cond, 1), VOIDmode,
688 (code == LTU || code == LEU
689 || code == GEU || code == GTU), normalize);
690 }
691
692 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
693 X is the destination/target and Y is the value to copy. */
694
695 static void
696 noce_emit_move_insn (rtx x, rtx y)
697 {
698 enum machine_mode outmode, inmode;
699 rtx outer, inner;
700 int bitpos;
701
702 if (GET_CODE (x) != STRICT_LOW_PART)
703 {
704 emit_move_insn (x, y);
705 return;
706 }
707
708 outer = XEXP (x, 0);
709 inner = XEXP (outer, 0);
710 outmode = GET_MODE (outer);
711 inmode = GET_MODE (inner);
712 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
713 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
714 }
715
716 /* Return sequence of instructions generated by if conversion. This
717 function calls end_sequence() to end the current stream, ensures
718 that are instructions are unshared, recognizable non-jump insns.
719 On failure, this function returns a NULL_RTX. */
720
721 static rtx
722 end_ifcvt_sequence (struct noce_if_info *if_info)
723 {
724 rtx insn;
725 rtx seq = get_insns ();
726
727 set_used_flags (if_info->x);
728 set_used_flags (if_info->cond);
729 unshare_all_rtl_in_chain (seq);
730 end_sequence ();
731
732 /* Make sure that all of the instructions emitted are recognizable,
733 and that we haven't introduced a new jump instruction.
734 As an exercise for the reader, build a general mechanism that
735 allows proper placement of required clobbers. */
736 for (insn = seq; insn; insn = NEXT_INSN (insn))
737 if (JUMP_P (insn)
738 || recog_memoized (insn) == -1)
739 return NULL_RTX;
740
741 return seq;
742 }
743
744 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
745 "if (a == b) x = a; else x = b" into "x = b". */
746
747 static int
748 noce_try_move (struct noce_if_info *if_info)
749 {
750 rtx cond = if_info->cond;
751 enum rtx_code code = GET_CODE (cond);
752 rtx y, seq;
753
754 if (code != NE && code != EQ)
755 return FALSE;
756
757 /* This optimization isn't valid if either A or B could be a NaN
758 or a signed zero. */
759 if (HONOR_NANS (GET_MODE (if_info->x))
760 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
761 return FALSE;
762
763 /* Check whether the operands of the comparison are A and in
764 either order. */
765 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
766 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
767 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
768 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
769 {
770 y = (code == EQ) ? if_info->a : if_info->b;
771
772 /* Avoid generating the move if the source is the destination. */
773 if (! rtx_equal_p (if_info->x, y))
774 {
775 start_sequence ();
776 noce_emit_move_insn (if_info->x, y);
777 seq = end_ifcvt_sequence (if_info);
778 if (!seq)
779 return FALSE;
780
781 emit_insn_before_setloc (seq, if_info->jump,
782 INSN_LOCATOR (if_info->insn_a));
783 }
784 return TRUE;
785 }
786 return FALSE;
787 }
788
789 /* Convert "if (test) x = 1; else x = 0".
790
791 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
792 tried in noce_try_store_flag_constants after noce_try_cmove has had
793 a go at the conversion. */
794
795 static int
796 noce_try_store_flag (struct noce_if_info *if_info)
797 {
798 int reversep;
799 rtx target, seq;
800
801 if (GET_CODE (if_info->b) == CONST_INT
802 && INTVAL (if_info->b) == STORE_FLAG_VALUE
803 && if_info->a == const0_rtx)
804 reversep = 0;
805 else if (if_info->b == const0_rtx
806 && GET_CODE (if_info->a) == CONST_INT
807 && INTVAL (if_info->a) == STORE_FLAG_VALUE
808 && (reversed_comparison_code (if_info->cond, if_info->jump)
809 != UNKNOWN))
810 reversep = 1;
811 else
812 return FALSE;
813
814 start_sequence ();
815
816 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
817 if (target)
818 {
819 if (target != if_info->x)
820 noce_emit_move_insn (if_info->x, target);
821
822 seq = end_ifcvt_sequence (if_info);
823 if (! seq)
824 return FALSE;
825
826 emit_insn_before_setloc (seq, if_info->jump,
827 INSN_LOCATOR (if_info->insn_a));
828 return TRUE;
829 }
830 else
831 {
832 end_sequence ();
833 return FALSE;
834 }
835 }
836
837 /* Convert "if (test) x = a; else x = b", for A and B constant. */
838
839 static int
840 noce_try_store_flag_constants (struct noce_if_info *if_info)
841 {
842 rtx target, seq;
843 int reversep;
844 HOST_WIDE_INT itrue, ifalse, diff, tmp;
845 int normalize, can_reverse;
846 enum machine_mode mode;
847
848 if (! no_new_pseudos
849 && GET_CODE (if_info->a) == CONST_INT
850 && GET_CODE (if_info->b) == CONST_INT)
851 {
852 mode = GET_MODE (if_info->x);
853 ifalse = INTVAL (if_info->a);
854 itrue = INTVAL (if_info->b);
855
856 /* Make sure we can represent the difference between the two values. */
857 if ((itrue - ifalse > 0)
858 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
859 return FALSE;
860
861 diff = trunc_int_for_mode (itrue - ifalse, mode);
862
863 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
864 != UNKNOWN);
865
866 reversep = 0;
867 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
868 normalize = 0;
869 else if (ifalse == 0 && exact_log2 (itrue) >= 0
870 && (STORE_FLAG_VALUE == 1
871 || BRANCH_COST >= 2))
872 normalize = 1;
873 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
874 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
875 normalize = 1, reversep = 1;
876 else if (itrue == -1
877 && (STORE_FLAG_VALUE == -1
878 || BRANCH_COST >= 2))
879 normalize = -1;
880 else if (ifalse == -1 && can_reverse
881 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
882 normalize = -1, reversep = 1;
883 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
884 || BRANCH_COST >= 3)
885 normalize = -1;
886 else
887 return FALSE;
888
889 if (reversep)
890 {
891 tmp = itrue; itrue = ifalse; ifalse = tmp;
892 diff = trunc_int_for_mode (-diff, mode);
893 }
894
895 start_sequence ();
896 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
897 if (! target)
898 {
899 end_sequence ();
900 return FALSE;
901 }
902
903 /* if (test) x = 3; else x = 4;
904 => x = 3 + (test == 0); */
905 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
906 {
907 target = expand_simple_binop (mode,
908 (diff == STORE_FLAG_VALUE
909 ? PLUS : MINUS),
910 GEN_INT (ifalse), target, if_info->x, 0,
911 OPTAB_WIDEN);
912 }
913
914 /* if (test) x = 8; else x = 0;
915 => x = (test != 0) << 3; */
916 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
917 {
918 target = expand_simple_binop (mode, ASHIFT,
919 target, GEN_INT (tmp), if_info->x, 0,
920 OPTAB_WIDEN);
921 }
922
923 /* if (test) x = -1; else x = b;
924 => x = -(test != 0) | b; */
925 else if (itrue == -1)
926 {
927 target = expand_simple_binop (mode, IOR,
928 target, GEN_INT (ifalse), if_info->x, 0,
929 OPTAB_WIDEN);
930 }
931
932 /* if (test) x = a; else x = b;
933 => x = (-(test != 0) & (b - a)) + a; */
934 else
935 {
936 target = expand_simple_binop (mode, AND,
937 target, GEN_INT (diff), if_info->x, 0,
938 OPTAB_WIDEN);
939 if (target)
940 target = expand_simple_binop (mode, PLUS,
941 target, GEN_INT (ifalse),
942 if_info->x, 0, OPTAB_WIDEN);
943 }
944
945 if (! target)
946 {
947 end_sequence ();
948 return FALSE;
949 }
950
951 if (target != if_info->x)
952 noce_emit_move_insn (if_info->x, target);
953
954 seq = end_ifcvt_sequence (if_info);
955 if (!seq)
956 return FALSE;
957
958 emit_insn_before_setloc (seq, if_info->jump,
959 INSN_LOCATOR (if_info->insn_a));
960 return TRUE;
961 }
962
963 return FALSE;
964 }
965
966 /* Convert "if (test) foo++" into "foo += (test != 0)", and
967 similarly for "foo--". */
968
969 static int
970 noce_try_addcc (struct noce_if_info *if_info)
971 {
972 rtx target, seq;
973 int subtract, normalize;
974
975 if (! no_new_pseudos
976 && GET_CODE (if_info->a) == PLUS
977 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
978 && (reversed_comparison_code (if_info->cond, if_info->jump)
979 != UNKNOWN))
980 {
981 rtx cond = if_info->cond;
982 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
983
984 /* First try to use addcc pattern. */
985 if (general_operand (XEXP (cond, 0), VOIDmode)
986 && general_operand (XEXP (cond, 1), VOIDmode))
987 {
988 start_sequence ();
989 target = emit_conditional_add (if_info->x, code,
990 XEXP (cond, 0),
991 XEXP (cond, 1),
992 VOIDmode,
993 if_info->b,
994 XEXP (if_info->a, 1),
995 GET_MODE (if_info->x),
996 (code == LTU || code == GEU
997 || code == LEU || code == GTU));
998 if (target)
999 {
1000 if (target != if_info->x)
1001 noce_emit_move_insn (if_info->x, target);
1002
1003 seq = end_ifcvt_sequence (if_info);
1004 if (!seq)
1005 return FALSE;
1006
1007 emit_insn_before_setloc (seq, if_info->jump,
1008 INSN_LOCATOR (if_info->insn_a));
1009 return TRUE;
1010 }
1011 end_sequence ();
1012 }
1013
1014 /* If that fails, construct conditional increment or decrement using
1015 setcc. */
1016 if (BRANCH_COST >= 2
1017 && (XEXP (if_info->a, 1) == const1_rtx
1018 || XEXP (if_info->a, 1) == constm1_rtx))
1019 {
1020 start_sequence ();
1021 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1022 subtract = 0, normalize = 0;
1023 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1024 subtract = 1, normalize = 0;
1025 else
1026 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1027
1028
1029 target = noce_emit_store_flag (if_info,
1030 gen_reg_rtx (GET_MODE (if_info->x)),
1031 1, normalize);
1032
1033 if (target)
1034 target = expand_simple_binop (GET_MODE (if_info->x),
1035 subtract ? MINUS : PLUS,
1036 if_info->b, target, if_info->x,
1037 0, OPTAB_WIDEN);
1038 if (target)
1039 {
1040 if (target != if_info->x)
1041 noce_emit_move_insn (if_info->x, target);
1042
1043 seq = end_ifcvt_sequence (if_info);
1044 if (!seq)
1045 return FALSE;
1046
1047 emit_insn_before_setloc (seq, if_info->jump,
1048 INSN_LOCATOR (if_info->insn_a));
1049 return TRUE;
1050 }
1051 end_sequence ();
1052 }
1053 }
1054
1055 return FALSE;
1056 }
1057
1058 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1059
1060 static int
1061 noce_try_store_flag_mask (struct noce_if_info *if_info)
1062 {
1063 rtx target, seq;
1064 int reversep;
1065
1066 reversep = 0;
1067 if (! no_new_pseudos
1068 && (BRANCH_COST >= 2
1069 || STORE_FLAG_VALUE == -1)
1070 && ((if_info->a == const0_rtx
1071 && rtx_equal_p (if_info->b, if_info->x))
1072 || ((reversep = (reversed_comparison_code (if_info->cond,
1073 if_info->jump)
1074 != UNKNOWN))
1075 && if_info->b == const0_rtx
1076 && rtx_equal_p (if_info->a, if_info->x))))
1077 {
1078 start_sequence ();
1079 target = noce_emit_store_flag (if_info,
1080 gen_reg_rtx (GET_MODE (if_info->x)),
1081 reversep, -1);
1082 if (target)
1083 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1084 if_info->x,
1085 target, if_info->x, 0,
1086 OPTAB_WIDEN);
1087
1088 if (target)
1089 {
1090 if (target != if_info->x)
1091 noce_emit_move_insn (if_info->x, target);
1092
1093 seq = end_ifcvt_sequence (if_info);
1094 if (!seq)
1095 return FALSE;
1096
1097 emit_insn_before_setloc (seq, if_info->jump,
1098 INSN_LOCATOR (if_info->insn_a));
1099 return TRUE;
1100 }
1101
1102 end_sequence ();
1103 }
1104
1105 return FALSE;
1106 }
1107
1108 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1109
1110 static rtx
1111 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1112 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1113 {
1114 /* If earliest == jump, try to build the cmove insn directly.
1115 This is helpful when combine has created some complex condition
1116 (like for alpha's cmovlbs) that we can't hope to regenerate
1117 through the normal interface. */
1118
1119 if (if_info->cond_earliest == if_info->jump)
1120 {
1121 rtx tmp;
1122
1123 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1124 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1125 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1126
1127 start_sequence ();
1128 tmp = emit_insn (tmp);
1129
1130 if (recog_memoized (tmp) >= 0)
1131 {
1132 tmp = get_insns ();
1133 end_sequence ();
1134 emit_insn (tmp);
1135
1136 return x;
1137 }
1138
1139 end_sequence ();
1140 }
1141
1142 /* Don't even try if the comparison operands are weird. */
1143 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1144 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1145 return NULL_RTX;
1146
1147 #if HAVE_conditional_move
1148 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1149 vtrue, vfalse, GET_MODE (x),
1150 (code == LTU || code == GEU
1151 || code == LEU || code == GTU));
1152 #else
1153 /* We'll never get here, as noce_process_if_block doesn't call the
1154 functions involved. Ifdef code, however, should be discouraged
1155 because it leads to typos in the code not selected. However,
1156 emit_conditional_move won't exist either. */
1157 return NULL_RTX;
1158 #endif
1159 }
1160
1161 /* Try only simple constants and registers here. More complex cases
1162 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1163 has had a go at it. */
1164
1165 static int
1166 noce_try_cmove (struct noce_if_info *if_info)
1167 {
1168 enum rtx_code code;
1169 rtx target, seq;
1170
1171 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1172 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1173 {
1174 start_sequence ();
1175
1176 code = GET_CODE (if_info->cond);
1177 target = noce_emit_cmove (if_info, if_info->x, code,
1178 XEXP (if_info->cond, 0),
1179 XEXP (if_info->cond, 1),
1180 if_info->a, if_info->b);
1181
1182 if (target)
1183 {
1184 if (target != if_info->x)
1185 noce_emit_move_insn (if_info->x, target);
1186
1187 seq = end_ifcvt_sequence (if_info);
1188 if (!seq)
1189 return FALSE;
1190
1191 emit_insn_before_setloc (seq, if_info->jump,
1192 INSN_LOCATOR (if_info->insn_a));
1193 return TRUE;
1194 }
1195 else
1196 {
1197 end_sequence ();
1198 return FALSE;
1199 }
1200 }
1201
1202 return FALSE;
1203 }
1204
1205 /* Try more complex cases involving conditional_move. */
1206
1207 static int
1208 noce_try_cmove_arith (struct noce_if_info *if_info)
1209 {
1210 rtx a = if_info->a;
1211 rtx b = if_info->b;
1212 rtx x = if_info->x;
1213 rtx insn_a, insn_b;
1214 rtx tmp, target;
1215 int is_mem = 0;
1216 enum rtx_code code;
1217
1218 /* A conditional move from two memory sources is equivalent to a
1219 conditional on their addresses followed by a load. Don't do this
1220 early because it'll screw alias analysis. Note that we've
1221 already checked for no side effects. */
1222 if (! no_new_pseudos && cse_not_expected
1223 && MEM_P (a) && MEM_P (b)
1224 && BRANCH_COST >= 5)
1225 {
1226 a = XEXP (a, 0);
1227 b = XEXP (b, 0);
1228 x = gen_reg_rtx (Pmode);
1229 is_mem = 1;
1230 }
1231
1232 /* ??? We could handle this if we knew that a load from A or B could
1233 not fault. This is also true if we've already loaded
1234 from the address along the path from ENTRY. */
1235 else if (may_trap_p (a) || may_trap_p (b))
1236 return FALSE;
1237
1238 /* if (test) x = a + b; else x = c - d;
1239 => y = a + b;
1240 x = c - d;
1241 if (test)
1242 x = y;
1243 */
1244
1245 code = GET_CODE (if_info->cond);
1246 insn_a = if_info->insn_a;
1247 insn_b = if_info->insn_b;
1248
1249 /* Possibly rearrange operands to make things come out more natural. */
1250 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1251 {
1252 int reversep = 0;
1253 if (rtx_equal_p (b, x))
1254 reversep = 1;
1255 else if (general_operand (b, GET_MODE (b)))
1256 reversep = 1;
1257
1258 if (reversep)
1259 {
1260 code = reversed_comparison_code (if_info->cond, if_info->jump);
1261 tmp = a, a = b, b = tmp;
1262 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1263 }
1264 }
1265
1266 start_sequence ();
1267
1268 /* If either operand is complex, load it into a register first.
1269 The best way to do this is to copy the original insn. In this
1270 way we preserve any clobbers etc that the insn may have had.
1271 This is of course not possible in the IS_MEM case. */
1272 if (! general_operand (a, GET_MODE (a)))
1273 {
1274 rtx set;
1275
1276 if (no_new_pseudos)
1277 goto end_seq_and_fail;
1278
1279 if (is_mem)
1280 {
1281 tmp = gen_reg_rtx (GET_MODE (a));
1282 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1283 }
1284 else if (! insn_a)
1285 goto end_seq_and_fail;
1286 else
1287 {
1288 a = gen_reg_rtx (GET_MODE (a));
1289 tmp = copy_rtx (insn_a);
1290 set = single_set (tmp);
1291 SET_DEST (set) = a;
1292 tmp = emit_insn (PATTERN (tmp));
1293 }
1294 if (recog_memoized (tmp) < 0)
1295 goto end_seq_and_fail;
1296 }
1297 if (! general_operand (b, GET_MODE (b)))
1298 {
1299 rtx set;
1300
1301 if (no_new_pseudos)
1302 goto end_seq_and_fail;
1303
1304 if (is_mem)
1305 {
1306 tmp = gen_reg_rtx (GET_MODE (b));
1307 tmp = emit_insn (gen_rtx_SET (VOIDmode,
1308 tmp,
1309 b));
1310 }
1311 else if (! insn_b)
1312 goto end_seq_and_fail;
1313 else
1314 {
1315 b = gen_reg_rtx (GET_MODE (b));
1316 tmp = copy_rtx (insn_b);
1317 set = single_set (tmp);
1318 SET_DEST (set) = b;
1319 tmp = emit_insn (PATTERN (tmp));
1320 }
1321 if (recog_memoized (tmp) < 0)
1322 goto end_seq_and_fail;
1323 }
1324
1325 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1326 XEXP (if_info->cond, 1), a, b);
1327
1328 if (! target)
1329 goto end_seq_and_fail;
1330
1331 /* If we're handling a memory for above, emit the load now. */
1332 if (is_mem)
1333 {
1334 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1335
1336 /* Copy over flags as appropriate. */
1337 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1338 MEM_VOLATILE_P (tmp) = 1;
1339 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1340 MEM_IN_STRUCT_P (tmp) = 1;
1341 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1342 MEM_SCALAR_P (tmp) = 1;
1343 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1344 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1345 set_mem_align (tmp,
1346 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1347
1348 noce_emit_move_insn (if_info->x, tmp);
1349 }
1350 else if (target != x)
1351 noce_emit_move_insn (x, target);
1352
1353 tmp = end_ifcvt_sequence (if_info);
1354 if (!tmp)
1355 return FALSE;
1356
1357 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1358 return TRUE;
1359
1360 end_seq_and_fail:
1361 end_sequence ();
1362 return FALSE;
1363 }
1364
1365 /* For most cases, the simplified condition we found is the best
1366 choice, but this is not the case for the min/max/abs transforms.
1367 For these we wish to know that it is A or B in the condition. */
1368
1369 static rtx
1370 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1371 rtx *earliest)
1372 {
1373 rtx cond, set, insn;
1374 int reverse;
1375
1376 /* If target is already mentioned in the known condition, return it. */
1377 if (reg_mentioned_p (target, if_info->cond))
1378 {
1379 *earliest = if_info->cond_earliest;
1380 return if_info->cond;
1381 }
1382
1383 set = pc_set (if_info->jump);
1384 cond = XEXP (SET_SRC (set), 0);
1385 reverse
1386 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1387 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1388
1389 /* If we're looking for a constant, try to make the conditional
1390 have that constant in it. There are two reasons why it may
1391 not have the constant we want:
1392
1393 1. GCC may have needed to put the constant in a register, because
1394 the target can't compare directly against that constant. For
1395 this case, we look for a SET immediately before the comparison
1396 that puts a constant in that register.
1397
1398 2. GCC may have canonicalized the conditional, for example
1399 replacing "if x < 4" with "if x <= 3". We can undo that (or
1400 make equivalent types of changes) to get the constants we need
1401 if they're off by one in the right direction. */
1402
1403 if (GET_CODE (target) == CONST_INT)
1404 {
1405 enum rtx_code code = GET_CODE (if_info->cond);
1406 rtx op_a = XEXP (if_info->cond, 0);
1407 rtx op_b = XEXP (if_info->cond, 1);
1408 rtx prev_insn;
1409
1410 /* First, look to see if we put a constant in a register. */
1411 prev_insn = PREV_INSN (if_info->cond_earliest);
1412 if (prev_insn
1413 && INSN_P (prev_insn)
1414 && GET_CODE (PATTERN (prev_insn)) == SET)
1415 {
1416 rtx src = find_reg_equal_equiv_note (prev_insn);
1417 if (!src)
1418 src = SET_SRC (PATTERN (prev_insn));
1419 if (GET_CODE (src) == CONST_INT)
1420 {
1421 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1422 op_a = src;
1423 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1424 op_b = src;
1425
1426 if (GET_CODE (op_a) == CONST_INT)
1427 {
1428 rtx tmp = op_a;
1429 op_a = op_b;
1430 op_b = tmp;
1431 code = swap_condition (code);
1432 }
1433 }
1434 }
1435
1436 /* Now, look to see if we can get the right constant by
1437 adjusting the conditional. */
1438 if (GET_CODE (op_b) == CONST_INT)
1439 {
1440 HOST_WIDE_INT desired_val = INTVAL (target);
1441 HOST_WIDE_INT actual_val = INTVAL (op_b);
1442
1443 switch (code)
1444 {
1445 case LT:
1446 if (actual_val == desired_val + 1)
1447 {
1448 code = LE;
1449 op_b = GEN_INT (desired_val);
1450 }
1451 break;
1452 case LE:
1453 if (actual_val == desired_val - 1)
1454 {
1455 code = LT;
1456 op_b = GEN_INT (desired_val);
1457 }
1458 break;
1459 case GT:
1460 if (actual_val == desired_val - 1)
1461 {
1462 code = GE;
1463 op_b = GEN_INT (desired_val);
1464 }
1465 break;
1466 case GE:
1467 if (actual_val == desired_val + 1)
1468 {
1469 code = GT;
1470 op_b = GEN_INT (desired_val);
1471 }
1472 break;
1473 default:
1474 break;
1475 }
1476 }
1477
1478 /* If we made any changes, generate a new conditional that is
1479 equivalent to what we started with, but has the right
1480 constants in it. */
1481 if (code != GET_CODE (if_info->cond)
1482 || op_a != XEXP (if_info->cond, 0)
1483 || op_b != XEXP (if_info->cond, 1))
1484 {
1485 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1486 *earliest = if_info->cond_earliest;
1487 return cond;
1488 }
1489 }
1490
1491 cond = canonicalize_condition (if_info->jump, cond, reverse,
1492 earliest, target, false, true);
1493 if (! cond || ! reg_mentioned_p (target, cond))
1494 return NULL;
1495
1496 /* We almost certainly searched back to a different place.
1497 Need to re-verify correct lifetimes. */
1498
1499 /* X may not be mentioned in the range (cond_earliest, jump]. */
1500 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1501 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1502 return NULL;
1503
1504 /* A and B may not be modified in the range [cond_earliest, jump). */
1505 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1506 if (INSN_P (insn)
1507 && (modified_in_p (if_info->a, insn)
1508 || modified_in_p (if_info->b, insn)))
1509 return NULL;
1510
1511 return cond;
1512 }
1513
1514 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1515
1516 static int
1517 noce_try_minmax (struct noce_if_info *if_info)
1518 {
1519 rtx cond, earliest, target, seq;
1520 enum rtx_code code, op;
1521 int unsignedp;
1522
1523 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1524 if (no_new_pseudos)
1525 return FALSE;
1526
1527 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1528 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1529 to get the target to tell us... */
1530 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1531 || HONOR_NANS (GET_MODE (if_info->x)))
1532 return FALSE;
1533
1534 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1535 if (!cond)
1536 return FALSE;
1537
1538 /* Verify the condition is of the form we expect, and canonicalize
1539 the comparison code. */
1540 code = GET_CODE (cond);
1541 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1542 {
1543 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1544 return FALSE;
1545 }
1546 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1547 {
1548 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1549 return FALSE;
1550 code = swap_condition (code);
1551 }
1552 else
1553 return FALSE;
1554
1555 /* Determine what sort of operation this is. Note that the code is for
1556 a taken branch, so the code->operation mapping appears backwards. */
1557 switch (code)
1558 {
1559 case LT:
1560 case LE:
1561 case UNLT:
1562 case UNLE:
1563 op = SMAX;
1564 unsignedp = 0;
1565 break;
1566 case GT:
1567 case GE:
1568 case UNGT:
1569 case UNGE:
1570 op = SMIN;
1571 unsignedp = 0;
1572 break;
1573 case LTU:
1574 case LEU:
1575 op = UMAX;
1576 unsignedp = 1;
1577 break;
1578 case GTU:
1579 case GEU:
1580 op = UMIN;
1581 unsignedp = 1;
1582 break;
1583 default:
1584 return FALSE;
1585 }
1586
1587 start_sequence ();
1588
1589 target = expand_simple_binop (GET_MODE (if_info->x), op,
1590 if_info->a, if_info->b,
1591 if_info->x, unsignedp, OPTAB_WIDEN);
1592 if (! target)
1593 {
1594 end_sequence ();
1595 return FALSE;
1596 }
1597 if (target != if_info->x)
1598 noce_emit_move_insn (if_info->x, target);
1599
1600 seq = end_ifcvt_sequence (if_info);
1601 if (!seq)
1602 return FALSE;
1603
1604 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1605 if_info->cond = cond;
1606 if_info->cond_earliest = earliest;
1607
1608 return TRUE;
1609 }
1610
1611 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1612
1613 static int
1614 noce_try_abs (struct noce_if_info *if_info)
1615 {
1616 rtx cond, earliest, target, seq, a, b, c;
1617 int negate;
1618
1619 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1620 if (no_new_pseudos)
1621 return FALSE;
1622
1623 /* Recognize A and B as constituting an ABS or NABS. */
1624 a = if_info->a;
1625 b = if_info->b;
1626 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1627 negate = 0;
1628 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1629 {
1630 c = a; a = b; b = c;
1631 negate = 1;
1632 }
1633 else
1634 return FALSE;
1635
1636 cond = noce_get_alt_condition (if_info, b, &earliest);
1637 if (!cond)
1638 return FALSE;
1639
1640 /* Verify the condition is of the form we expect. */
1641 if (rtx_equal_p (XEXP (cond, 0), b))
1642 c = XEXP (cond, 1);
1643 else if (rtx_equal_p (XEXP (cond, 1), b))
1644 c = XEXP (cond, 0);
1645 else
1646 return FALSE;
1647
1648 /* Verify that C is zero. Search backward through the block for
1649 a REG_EQUAL note if necessary. */
1650 if (REG_P (c))
1651 {
1652 rtx insn, note = NULL;
1653 for (insn = earliest;
1654 insn != BB_HEAD (if_info->test_bb);
1655 insn = PREV_INSN (insn))
1656 if (INSN_P (insn)
1657 && ((note = find_reg_note (insn, REG_EQUAL, c))
1658 || (note = find_reg_note (insn, REG_EQUIV, c))))
1659 break;
1660 if (! note)
1661 return FALSE;
1662 c = XEXP (note, 0);
1663 }
1664 if (MEM_P (c)
1665 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1666 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1667 c = get_pool_constant (XEXP (c, 0));
1668
1669 /* Work around funny ideas get_condition has wrt canonicalization.
1670 Note that these rtx constants are known to be CONST_INT, and
1671 therefore imply integer comparisons. */
1672 if (c == constm1_rtx && GET_CODE (cond) == GT)
1673 ;
1674 else if (c == const1_rtx && GET_CODE (cond) == LT)
1675 ;
1676 else if (c != CONST0_RTX (GET_MODE (b)))
1677 return FALSE;
1678
1679 /* Determine what sort of operation this is. */
1680 switch (GET_CODE (cond))
1681 {
1682 case LT:
1683 case LE:
1684 case UNLT:
1685 case UNLE:
1686 negate = !negate;
1687 break;
1688 case GT:
1689 case GE:
1690 case UNGT:
1691 case UNGE:
1692 break;
1693 default:
1694 return FALSE;
1695 }
1696
1697 start_sequence ();
1698
1699 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1700
1701 /* ??? It's a quandary whether cmove would be better here, especially
1702 for integers. Perhaps combine will clean things up. */
1703 if (target && negate)
1704 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1705
1706 if (! target)
1707 {
1708 end_sequence ();
1709 return FALSE;
1710 }
1711
1712 if (target != if_info->x)
1713 noce_emit_move_insn (if_info->x, target);
1714
1715 seq = end_ifcvt_sequence (if_info);
1716 if (!seq)
1717 return FALSE;
1718
1719 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1720 if_info->cond = cond;
1721 if_info->cond_earliest = earliest;
1722
1723 return TRUE;
1724 }
1725
1726 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1727
1728 static int
1729 noce_try_sign_mask (struct noce_if_info *if_info)
1730 {
1731 rtx cond, t, m, c, seq;
1732 enum machine_mode mode;
1733 enum rtx_code code;
1734
1735 if (no_new_pseudos)
1736 return FALSE;
1737
1738 cond = if_info->cond;
1739 code = GET_CODE (cond);
1740 m = XEXP (cond, 0);
1741 c = XEXP (cond, 1);
1742
1743 t = NULL_RTX;
1744 if (if_info->a == const0_rtx)
1745 {
1746 if ((code == LT && c == const0_rtx)
1747 || (code == LE && c == constm1_rtx))
1748 t = if_info->b;
1749 }
1750 else if (if_info->b == const0_rtx)
1751 {
1752 if ((code == GE && c == const0_rtx)
1753 || (code == GT && c == constm1_rtx))
1754 t = if_info->a;
1755 }
1756
1757 if (! t || side_effects_p (t))
1758 return FALSE;
1759
1760 /* We currently don't handle different modes. */
1761 mode = GET_MODE (t);
1762 if (GET_MODE (m) != mode)
1763 return FALSE;
1764
1765 /* This is only profitable if T is cheap, or T is unconditionally
1766 executed/evaluated in the original insn sequence. */
1767 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1768 && (!if_info->b_unconditional
1769 || t != if_info->b))
1770 return FALSE;
1771
1772 start_sequence ();
1773 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1774 "(signed) m >> 31" directly. This benefits targets with specialized
1775 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1776 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1777 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1778 : NULL_RTX;
1779
1780 if (!t)
1781 {
1782 end_sequence ();
1783 return FALSE;
1784 }
1785
1786 noce_emit_move_insn (if_info->x, t);
1787
1788 seq = end_ifcvt_sequence (if_info);
1789 if (!seq)
1790 return FALSE;
1791
1792 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1793 return TRUE;
1794 }
1795
1796
1797 /* Similar to get_condition, only the resulting condition must be
1798 valid at JUMP, instead of at EARLIEST. */
1799
1800 static rtx
1801 noce_get_condition (rtx jump, rtx *earliest)
1802 {
1803 rtx cond, set, tmp;
1804 bool reverse;
1805
1806 if (! any_condjump_p (jump))
1807 return NULL_RTX;
1808
1809 set = pc_set (jump);
1810
1811 /* If this branches to JUMP_LABEL when the condition is false,
1812 reverse the condition. */
1813 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1814 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
1815
1816 /* If the condition variable is a register and is MODE_INT, accept it. */
1817
1818 cond = XEXP (SET_SRC (set), 0);
1819 tmp = XEXP (cond, 0);
1820 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
1821 {
1822 *earliest = jump;
1823
1824 if (reverse)
1825 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
1826 GET_MODE (cond), tmp, XEXP (cond, 1));
1827 return cond;
1828 }
1829
1830 /* Otherwise, fall back on canonicalize_condition to do the dirty
1831 work of manipulating MODE_CC values and COMPARE rtx codes. */
1832 return canonicalize_condition (jump, cond, reverse, earliest,
1833 NULL_RTX, false, true);
1834 }
1835
1836 /* Return true if OP is ok for if-then-else processing. */
1837
1838 static int
1839 noce_operand_ok (rtx op)
1840 {
1841 /* We special-case memories, so handle any of them with
1842 no address side effects. */
1843 if (MEM_P (op))
1844 return ! side_effects_p (XEXP (op, 0));
1845
1846 if (side_effects_p (op))
1847 return FALSE;
1848
1849 return ! may_trap_p (op);
1850 }
1851
1852 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
1853 without using conditional execution. Return TRUE if we were
1854 successful at converting the block. */
1855
1856 static int
1857 noce_process_if_block (struct ce_if_block * ce_info)
1858 {
1859 basic_block test_bb = ce_info->test_bb; /* test block */
1860 basic_block then_bb = ce_info->then_bb; /* THEN */
1861 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
1862 struct noce_if_info if_info;
1863 rtx insn_a, insn_b;
1864 rtx set_a, set_b;
1865 rtx orig_x, x, a, b;
1866 rtx jump, cond;
1867
1868 /* We're looking for patterns of the form
1869
1870 (1) if (...) x = a; else x = b;
1871 (2) x = b; if (...) x = a;
1872 (3) if (...) x = a; // as if with an initial x = x.
1873
1874 The later patterns require jumps to be more expensive.
1875
1876 ??? For future expansion, look for multiple X in such patterns. */
1877
1878 /* If test is comprised of && or || elements, don't handle it unless it is
1879 the special case of && elements without an ELSE block. */
1880 if (ce_info->num_multiple_test_blocks)
1881 {
1882 if (else_bb || ! ce_info->and_and_p)
1883 return FALSE;
1884
1885 ce_info->test_bb = test_bb = ce_info->last_test_bb;
1886 ce_info->num_multiple_test_blocks = 0;
1887 ce_info->num_and_and_blocks = 0;
1888 ce_info->num_or_or_blocks = 0;
1889 }
1890
1891 /* If this is not a standard conditional jump, we can't parse it. */
1892 jump = BB_END (test_bb);
1893 cond = noce_get_condition (jump, &if_info.cond_earliest);
1894 if (! cond)
1895 return FALSE;
1896
1897 /* If the conditional jump is more than just a conditional
1898 jump, then we can not do if-conversion on this block. */
1899 if (! onlyjump_p (jump))
1900 return FALSE;
1901
1902 /* We must be comparing objects whose modes imply the size. */
1903 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
1904 return FALSE;
1905
1906 /* Look for one of the potential sets. */
1907 insn_a = first_active_insn (then_bb);
1908 if (! insn_a
1909 || insn_a != last_active_insn (then_bb, FALSE)
1910 || (set_a = single_set (insn_a)) == NULL_RTX)
1911 return FALSE;
1912
1913 x = SET_DEST (set_a);
1914 a = SET_SRC (set_a);
1915
1916 /* Look for the other potential set. Make sure we've got equivalent
1917 destinations. */
1918 /* ??? This is overconservative. Storing to two different mems is
1919 as easy as conditionally computing the address. Storing to a
1920 single mem merely requires a scratch memory to use as one of the
1921 destination addresses; often the memory immediately below the
1922 stack pointer is available for this. */
1923 set_b = NULL_RTX;
1924 if (else_bb)
1925 {
1926 insn_b = first_active_insn (else_bb);
1927 if (! insn_b
1928 || insn_b != last_active_insn (else_bb, FALSE)
1929 || (set_b = single_set (insn_b)) == NULL_RTX
1930 || ! rtx_equal_p (x, SET_DEST (set_b)))
1931 return FALSE;
1932 }
1933 else
1934 {
1935 insn_b = prev_nonnote_insn (if_info.cond_earliest);
1936 /* We're going to be moving the evaluation of B down from above
1937 COND_EARLIEST to JUMP. Make sure the relevant data is still
1938 intact. */
1939 if (! insn_b
1940 || !NONJUMP_INSN_P (insn_b)
1941 || (set_b = single_set (insn_b)) == NULL_RTX
1942 || ! rtx_equal_p (x, SET_DEST (set_b))
1943 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
1944 || modified_between_p (SET_SRC (set_b),
1945 PREV_INSN (if_info.cond_earliest), jump)
1946 /* Likewise with X. In particular this can happen when
1947 noce_get_condition looks farther back in the instruction
1948 stream than one might expect. */
1949 || reg_overlap_mentioned_p (x, cond)
1950 || reg_overlap_mentioned_p (x, a)
1951 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
1952 insn_b = set_b = NULL_RTX;
1953 }
1954
1955 /* If x has side effects then only the if-then-else form is safe to
1956 convert. But even in that case we would need to restore any notes
1957 (such as REG_INC) at then end. That can be tricky if
1958 noce_emit_move_insn expands to more than one insn, so disable the
1959 optimization entirely for now if there are side effects. */
1960 if (side_effects_p (x))
1961 return FALSE;
1962
1963 b = (set_b ? SET_SRC (set_b) : x);
1964
1965 /* Only operate on register destinations, and even then avoid extending
1966 the lifetime of hard registers on small register class machines. */
1967 orig_x = x;
1968 if (!REG_P (x)
1969 || (SMALL_REGISTER_CLASSES
1970 && REGNO (x) < FIRST_PSEUDO_REGISTER))
1971 {
1972 if (no_new_pseudos || GET_MODE (x) == BLKmode)
1973 return FALSE;
1974 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
1975 ? XEXP (x, 0) : x));
1976 }
1977
1978 /* Don't operate on sources that may trap or are volatile. */
1979 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
1980 return FALSE;
1981
1982 /* Set up the info block for our subroutines. */
1983 if_info.test_bb = test_bb;
1984 if_info.cond = cond;
1985 if_info.jump = jump;
1986 if_info.insn_a = insn_a;
1987 if_info.insn_b = insn_b;
1988 if_info.x = x;
1989 if_info.a = a;
1990 if_info.b = b;
1991 if_info.b_unconditional = else_bb == 0;
1992
1993 /* Try optimizations in some approximation of a useful order. */
1994 /* ??? Should first look to see if X is live incoming at all. If it
1995 isn't, we don't need anything but an unconditional set. */
1996
1997 /* Look and see if A and B are really the same. Avoid creating silly
1998 cmove constructs that no one will fix up later. */
1999 if (rtx_equal_p (a, b))
2000 {
2001 /* If we have an INSN_B, we don't have to create any new rtl. Just
2002 move the instruction that we already have. If we don't have an
2003 INSN_B, that means that A == X, and we've got a noop move. In
2004 that case don't do anything and let the code below delete INSN_A. */
2005 if (insn_b && else_bb)
2006 {
2007 rtx note;
2008
2009 if (else_bb && insn_b == BB_END (else_bb))
2010 BB_END (else_bb) = PREV_INSN (insn_b);
2011 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2012
2013 /* If there was a REG_EQUAL note, delete it since it may have been
2014 true due to this insn being after a jump. */
2015 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2016 remove_note (insn_b, note);
2017
2018 insn_b = NULL_RTX;
2019 }
2020 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2021 x must be executed twice. */
2022 else if (insn_b && side_effects_p (orig_x))
2023 return FALSE;
2024
2025 x = orig_x;
2026 goto success;
2027 }
2028
2029 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2030 for most optimizations if writing to x may trap, i.e. it's a memory
2031 other than a static var or a stack slot. */
2032 if (! set_b
2033 && MEM_P (orig_x)
2034 && ! MEM_NOTRAP_P (orig_x)
2035 && rtx_addr_can_trap_p (XEXP (orig_x, 0)))
2036 {
2037 if (HAVE_conditional_move)
2038 {
2039 if (noce_try_cmove (&if_info))
2040 goto success;
2041 if (! HAVE_conditional_execution
2042 && noce_try_cmove_arith (&if_info))
2043 goto success;
2044 }
2045 return FALSE;
2046 }
2047
2048 if (noce_try_move (&if_info))
2049 goto success;
2050 if (noce_try_store_flag (&if_info))
2051 goto success;
2052 if (noce_try_minmax (&if_info))
2053 goto success;
2054 if (noce_try_abs (&if_info))
2055 goto success;
2056 if (HAVE_conditional_move
2057 && noce_try_cmove (&if_info))
2058 goto success;
2059 if (! HAVE_conditional_execution)
2060 {
2061 if (noce_try_store_flag_constants (&if_info))
2062 goto success;
2063 if (noce_try_addcc (&if_info))
2064 goto success;
2065 if (noce_try_store_flag_mask (&if_info))
2066 goto success;
2067 if (HAVE_conditional_move
2068 && noce_try_cmove_arith (&if_info))
2069 goto success;
2070 if (noce_try_sign_mask (&if_info))
2071 goto success;
2072 }
2073
2074 return FALSE;
2075
2076 success:
2077 /* The original sets may now be killed. */
2078 delete_insn (insn_a);
2079
2080 /* Several special cases here: First, we may have reused insn_b above,
2081 in which case insn_b is now NULL. Second, we want to delete insn_b
2082 if it came from the ELSE block, because follows the now correct
2083 write that appears in the TEST block. However, if we got insn_b from
2084 the TEST block, it may in fact be loading data needed for the comparison.
2085 We'll let life_analysis remove the insn if it's really dead. */
2086 if (insn_b && else_bb)
2087 delete_insn (insn_b);
2088
2089 /* The new insns will have been inserted immediately before the jump. We
2090 should be able to remove the jump with impunity, but the condition itself
2091 may have been modified by gcse to be shared across basic blocks. */
2092 delete_insn (jump);
2093
2094 /* If we used a temporary, fix it up now. */
2095 if (orig_x != x)
2096 {
2097 start_sequence ();
2098 noce_emit_move_insn (orig_x, x);
2099 insn_b = get_insns ();
2100 set_used_flags (orig_x);
2101 unshare_all_rtl_in_chain (insn_b);
2102 end_sequence ();
2103
2104 emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2105 }
2106
2107 /* Merge the blocks! */
2108 merge_if_block (ce_info);
2109
2110 return TRUE;
2111 }
2112 \f
2113 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2114 straight line code. Return true if successful. */
2115
2116 static int
2117 process_if_block (struct ce_if_block * ce_info)
2118 {
2119 if (! reload_completed
2120 && noce_process_if_block (ce_info))
2121 return TRUE;
2122
2123 if (HAVE_conditional_execution && reload_completed)
2124 {
2125 /* If we have && and || tests, try to first handle combining the && and
2126 || tests into the conditional code, and if that fails, go back and
2127 handle it without the && and ||, which at present handles the && case
2128 if there was no ELSE block. */
2129 if (cond_exec_process_if_block (ce_info, TRUE))
2130 return TRUE;
2131
2132 if (ce_info->num_multiple_test_blocks)
2133 {
2134 cancel_changes (0);
2135
2136 if (cond_exec_process_if_block (ce_info, FALSE))
2137 return TRUE;
2138 }
2139 }
2140
2141 return FALSE;
2142 }
2143
2144 /* Merge the blocks and mark for local life update. */
2145
2146 static void
2147 merge_if_block (struct ce_if_block * ce_info)
2148 {
2149 basic_block test_bb = ce_info->test_bb; /* last test block */
2150 basic_block then_bb = ce_info->then_bb; /* THEN */
2151 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2152 basic_block join_bb = ce_info->join_bb; /* join block */
2153 basic_block combo_bb;
2154
2155 /* All block merging is done into the lower block numbers. */
2156
2157 combo_bb = test_bb;
2158
2159 /* Merge any basic blocks to handle && and || subtests. Each of
2160 the blocks are on the fallthru path from the predecessor block. */
2161 if (ce_info->num_multiple_test_blocks > 0)
2162 {
2163 basic_block bb = test_bb;
2164 basic_block last_test_bb = ce_info->last_test_bb;
2165 basic_block fallthru = block_fallthru (bb);
2166
2167 do
2168 {
2169 bb = fallthru;
2170 fallthru = block_fallthru (bb);
2171 merge_blocks (combo_bb, bb);
2172 num_true_changes++;
2173 }
2174 while (bb != last_test_bb);
2175 }
2176
2177 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2178 label, but it might if there were || tests. That label's count should be
2179 zero, and it normally should be removed. */
2180
2181 if (then_bb)
2182 {
2183 if (combo_bb->global_live_at_end)
2184 COPY_REG_SET (combo_bb->global_live_at_end,
2185 then_bb->global_live_at_end);
2186 merge_blocks (combo_bb, then_bb);
2187 num_true_changes++;
2188 }
2189
2190 /* The ELSE block, if it existed, had a label. That label count
2191 will almost always be zero, but odd things can happen when labels
2192 get their addresses taken. */
2193 if (else_bb)
2194 {
2195 merge_blocks (combo_bb, else_bb);
2196 num_true_changes++;
2197 }
2198
2199 /* If there was no join block reported, that means it was not adjacent
2200 to the others, and so we cannot merge them. */
2201
2202 if (! join_bb)
2203 {
2204 rtx last = BB_END (combo_bb);
2205
2206 /* The outgoing edge for the current COMBO block should already
2207 be correct. Verify this. */
2208 if (combo_bb->succ == NULL_EDGE)
2209 {
2210 if (find_reg_note (last, REG_NORETURN, NULL))
2211 ;
2212 else if (NONJUMP_INSN_P (last)
2213 && GET_CODE (PATTERN (last)) == TRAP_IF
2214 && TRAP_CONDITION (PATTERN (last)) == const_true_rtx)
2215 ;
2216 else
2217 abort ();
2218 }
2219
2220 /* There should still be something at the end of the THEN or ELSE
2221 blocks taking us to our final destination. */
2222 else if (JUMP_P (last))
2223 ;
2224 else if (combo_bb->succ->dest == EXIT_BLOCK_PTR
2225 && CALL_P (last)
2226 && SIBLING_CALL_P (last))
2227 ;
2228 else if ((combo_bb->succ->flags & EDGE_EH)
2229 && can_throw_internal (last))
2230 ;
2231 else
2232 abort ();
2233 }
2234
2235 /* The JOIN block may have had quite a number of other predecessors too.
2236 Since we've already merged the TEST, THEN and ELSE blocks, we should
2237 have only one remaining edge from our if-then-else diamond. If there
2238 is more than one remaining edge, it must come from elsewhere. There
2239 may be zero incoming edges if the THEN block didn't actually join
2240 back up (as with a call to abort). */
2241 else if ((join_bb->pred == NULL
2242 || join_bb->pred->pred_next == NULL)
2243 && join_bb != EXIT_BLOCK_PTR)
2244 {
2245 /* We can merge the JOIN. */
2246 if (combo_bb->global_live_at_end)
2247 COPY_REG_SET (combo_bb->global_live_at_end,
2248 join_bb->global_live_at_end);
2249
2250 merge_blocks (combo_bb, join_bb);
2251 num_true_changes++;
2252 }
2253 else
2254 {
2255 /* We cannot merge the JOIN. */
2256
2257 /* The outgoing edge for the current COMBO block should already
2258 be correct. Verify this. */
2259 if (combo_bb->succ->succ_next != NULL_EDGE
2260 || combo_bb->succ->dest != join_bb)
2261 abort ();
2262
2263 /* Remove the jump and cruft from the end of the COMBO block. */
2264 if (join_bb != EXIT_BLOCK_PTR)
2265 tidy_fallthru_edge (combo_bb->succ);
2266 }
2267
2268 num_updated_if_blocks++;
2269 }
2270 \f
2271 /* Find a block ending in a simple IF condition and try to transform it
2272 in some way. When converting a multi-block condition, put the new code
2273 in the first such block and delete the rest. Return a pointer to this
2274 first block if some transformation was done. Return NULL otherwise. */
2275
2276 static basic_block
2277 find_if_header (basic_block test_bb, int pass)
2278 {
2279 ce_if_block_t ce_info;
2280 edge then_edge;
2281 edge else_edge;
2282
2283 /* The kind of block we're looking for has exactly two successors. */
2284 if ((then_edge = test_bb->succ) == NULL_EDGE
2285 || (else_edge = then_edge->succ_next) == NULL_EDGE
2286 || else_edge->succ_next != NULL_EDGE)
2287 return NULL;
2288
2289 /* Neither edge should be abnormal. */
2290 if ((then_edge->flags & EDGE_COMPLEX)
2291 || (else_edge->flags & EDGE_COMPLEX))
2292 return NULL;
2293
2294 /* Nor exit the loop. */
2295 if ((then_edge->flags & EDGE_LOOP_EXIT)
2296 || (else_edge->flags & EDGE_LOOP_EXIT))
2297 return NULL;
2298
2299 /* The THEN edge is canonically the one that falls through. */
2300 if (then_edge->flags & EDGE_FALLTHRU)
2301 ;
2302 else if (else_edge->flags & EDGE_FALLTHRU)
2303 {
2304 edge e = else_edge;
2305 else_edge = then_edge;
2306 then_edge = e;
2307 }
2308 else
2309 /* Otherwise this must be a multiway branch of some sort. */
2310 return NULL;
2311
2312 memset (&ce_info, '\0', sizeof (ce_info));
2313 ce_info.test_bb = test_bb;
2314 ce_info.then_bb = then_edge->dest;
2315 ce_info.else_bb = else_edge->dest;
2316 ce_info.pass = pass;
2317
2318 #ifdef IFCVT_INIT_EXTRA_FIELDS
2319 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2320 #endif
2321
2322 if (find_if_block (&ce_info))
2323 goto success;
2324
2325 if (HAVE_trap && HAVE_conditional_trap
2326 && find_cond_trap (test_bb, then_edge, else_edge))
2327 goto success;
2328
2329 if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2330 && (! HAVE_conditional_execution || reload_completed))
2331 {
2332 if (find_if_case_1 (test_bb, then_edge, else_edge))
2333 goto success;
2334 if (find_if_case_2 (test_bb, then_edge, else_edge))
2335 goto success;
2336 }
2337
2338 return NULL;
2339
2340 success:
2341 if (dump_file)
2342 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2343 return ce_info.test_bb;
2344 }
2345
2346 /* Return true if a block has two edges, one of which falls through to the next
2347 block, and the other jumps to a specific block, so that we can tell if the
2348 block is part of an && test or an || test. Returns either -1 or the number
2349 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2350
2351 static int
2352 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2353 {
2354 edge cur_edge;
2355 int fallthru_p = FALSE;
2356 int jump_p = FALSE;
2357 rtx insn;
2358 rtx end;
2359 int n_insns = 0;
2360
2361 if (!cur_bb || !target_bb)
2362 return -1;
2363
2364 /* If no edges, obviously it doesn't jump or fallthru. */
2365 if (cur_bb->succ == NULL_EDGE)
2366 return FALSE;
2367
2368 for (cur_edge = cur_bb->succ;
2369 cur_edge != NULL_EDGE;
2370 cur_edge = cur_edge->succ_next)
2371 {
2372 if (cur_edge->flags & EDGE_COMPLEX)
2373 /* Anything complex isn't what we want. */
2374 return -1;
2375
2376 else if (cur_edge->flags & EDGE_FALLTHRU)
2377 fallthru_p = TRUE;
2378
2379 else if (cur_edge->dest == target_bb)
2380 jump_p = TRUE;
2381
2382 else
2383 return -1;
2384 }
2385
2386 if ((jump_p & fallthru_p) == 0)
2387 return -1;
2388
2389 /* Don't allow calls in the block, since this is used to group && and ||
2390 together for conditional execution support. ??? we should support
2391 conditional execution support across calls for IA-64 some day, but
2392 for now it makes the code simpler. */
2393 end = BB_END (cur_bb);
2394 insn = BB_HEAD (cur_bb);
2395
2396 while (insn != NULL_RTX)
2397 {
2398 if (CALL_P (insn))
2399 return -1;
2400
2401 if (INSN_P (insn)
2402 && !JUMP_P (insn)
2403 && GET_CODE (PATTERN (insn)) != USE
2404 && GET_CODE (PATTERN (insn)) != CLOBBER)
2405 n_insns++;
2406
2407 if (insn == end)
2408 break;
2409
2410 insn = NEXT_INSN (insn);
2411 }
2412
2413 return n_insns;
2414 }
2415
2416 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2417 block. If so, we'll try to convert the insns to not require the branch.
2418 Return TRUE if we were successful at converting the block. */
2419
2420 static int
2421 find_if_block (struct ce_if_block * ce_info)
2422 {
2423 basic_block test_bb = ce_info->test_bb;
2424 basic_block then_bb = ce_info->then_bb;
2425 basic_block else_bb = ce_info->else_bb;
2426 basic_block join_bb = NULL_BLOCK;
2427 edge then_succ = then_bb->succ;
2428 edge else_succ = else_bb->succ;
2429 int then_predecessors;
2430 int else_predecessors;
2431 edge cur_edge;
2432 basic_block next;
2433
2434 ce_info->last_test_bb = test_bb;
2435
2436 /* Discover if any fall through predecessors of the current test basic block
2437 were && tests (which jump to the else block) or || tests (which jump to
2438 the then block). */
2439 if (HAVE_conditional_execution && reload_completed
2440 && test_bb->pred != NULL_EDGE
2441 && test_bb->pred->pred_next == NULL_EDGE
2442 && test_bb->pred->flags == EDGE_FALLTHRU)
2443 {
2444 basic_block bb = test_bb->pred->src;
2445 basic_block target_bb;
2446 int max_insns = MAX_CONDITIONAL_EXECUTE;
2447 int n_insns;
2448
2449 /* Determine if the preceding block is an && or || block. */
2450 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
2451 {
2452 ce_info->and_and_p = TRUE;
2453 target_bb = else_bb;
2454 }
2455 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
2456 {
2457 ce_info->and_and_p = FALSE;
2458 target_bb = then_bb;
2459 }
2460 else
2461 target_bb = NULL_BLOCK;
2462
2463 if (target_bb && n_insns <= max_insns)
2464 {
2465 int total_insns = 0;
2466 int blocks = 0;
2467
2468 ce_info->last_test_bb = test_bb;
2469
2470 /* Found at least one && or || block, look for more. */
2471 do
2472 {
2473 ce_info->test_bb = test_bb = bb;
2474 total_insns += n_insns;
2475 blocks++;
2476
2477 if (bb->pred == NULL_EDGE || bb->pred->pred_next != NULL_EDGE)
2478 break;
2479
2480 bb = bb->pred->src;
2481 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
2482 }
2483 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
2484
2485 ce_info->num_multiple_test_blocks = blocks;
2486 ce_info->num_multiple_test_insns = total_insns;
2487
2488 if (ce_info->and_and_p)
2489 ce_info->num_and_and_blocks = blocks;
2490 else
2491 ce_info->num_or_or_blocks = blocks;
2492 }
2493 }
2494
2495 /* Count the number of edges the THEN and ELSE blocks have. */
2496 then_predecessors = 0;
2497 for (cur_edge = then_bb->pred;
2498 cur_edge != NULL_EDGE;
2499 cur_edge = cur_edge->pred_next)
2500 {
2501 then_predecessors++;
2502 if (cur_edge->flags & EDGE_COMPLEX)
2503 return FALSE;
2504 }
2505
2506 else_predecessors = 0;
2507 for (cur_edge = else_bb->pred;
2508 cur_edge != NULL_EDGE;
2509 cur_edge = cur_edge->pred_next)
2510 {
2511 else_predecessors++;
2512 if (cur_edge->flags & EDGE_COMPLEX)
2513 return FALSE;
2514 }
2515
2516 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
2517 other than any || blocks which jump to the THEN block. */
2518 if ((then_predecessors - ce_info->num_or_or_blocks) != 1)
2519 return FALSE;
2520
2521 /* The THEN block of an IF-THEN combo must have zero or one successors. */
2522 if (then_succ != NULL_EDGE
2523 && (then_succ->succ_next != NULL_EDGE
2524 || (then_succ->flags & EDGE_COMPLEX)
2525 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
2526 return FALSE;
2527
2528 /* If the THEN block has no successors, conditional execution can still
2529 make a conditional call. Don't do this unless the ELSE block has
2530 only one incoming edge -- the CFG manipulation is too ugly otherwise.
2531 Check for the last insn of the THEN block being an indirect jump, which
2532 is listed as not having any successors, but confuses the rest of the CE
2533 code processing. ??? we should fix this in the future. */
2534 if (then_succ == NULL)
2535 {
2536 if (else_bb->pred->pred_next == NULL_EDGE)
2537 {
2538 rtx last_insn = BB_END (then_bb);
2539
2540 while (last_insn
2541 && NOTE_P (last_insn)
2542 && last_insn != BB_HEAD (then_bb))
2543 last_insn = PREV_INSN (last_insn);
2544
2545 if (last_insn
2546 && JUMP_P (last_insn)
2547 && ! simplejump_p (last_insn))
2548 return FALSE;
2549
2550 join_bb = else_bb;
2551 else_bb = NULL_BLOCK;
2552 }
2553 else
2554 return FALSE;
2555 }
2556
2557 /* If the THEN block's successor is the other edge out of the TEST block,
2558 then we have an IF-THEN combo without an ELSE. */
2559 else if (then_succ->dest == else_bb)
2560 {
2561 join_bb = else_bb;
2562 else_bb = NULL_BLOCK;
2563 }
2564
2565 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
2566 has exactly one predecessor and one successor, and the outgoing edge
2567 is not complex, then we have an IF-THEN-ELSE combo. */
2568 else if (else_succ != NULL_EDGE
2569 && then_succ->dest == else_succ->dest
2570 && else_bb->pred->pred_next == NULL_EDGE
2571 && else_succ->succ_next == NULL_EDGE
2572 && ! (else_succ->flags & EDGE_COMPLEX)
2573 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
2574 join_bb = else_succ->dest;
2575
2576 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
2577 else
2578 return FALSE;
2579
2580 num_possible_if_blocks++;
2581
2582 if (dump_file)
2583 {
2584 fprintf (dump_file,
2585 "\nIF-THEN%s block found, pass %d, start block %d "
2586 "[insn %d], then %d [%d]",
2587 (else_bb) ? "-ELSE" : "",
2588 ce_info->pass,
2589 test_bb->index,
2590 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
2591 then_bb->index,
2592 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
2593
2594 if (else_bb)
2595 fprintf (dump_file, ", else %d [%d]",
2596 else_bb->index,
2597 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
2598
2599 fprintf (dump_file, ", join %d [%d]",
2600 join_bb->index,
2601 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
2602
2603 if (ce_info->num_multiple_test_blocks > 0)
2604 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
2605 ce_info->num_multiple_test_blocks,
2606 (ce_info->and_and_p) ? "&&" : "||",
2607 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
2608 ce_info->last_test_bb->index,
2609 ((BB_HEAD (ce_info->last_test_bb))
2610 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
2611 : -1));
2612
2613 fputc ('\n', dump_file);
2614 }
2615
2616 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
2617 first condition for free, since we've already asserted that there's a
2618 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
2619 we checked the FALLTHRU flag, those are already adjacent to the last IF
2620 block. */
2621 /* ??? As an enhancement, move the ELSE block. Have to deal with
2622 BLOCK notes, if by no other means than aborting the merge if they
2623 exist. Sticky enough I don't want to think about it now. */
2624 next = then_bb;
2625 if (else_bb && (next = next->next_bb) != else_bb)
2626 return FALSE;
2627 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
2628 {
2629 if (else_bb)
2630 join_bb = NULL;
2631 else
2632 return FALSE;
2633 }
2634
2635 /* Do the real work. */
2636 ce_info->else_bb = else_bb;
2637 ce_info->join_bb = join_bb;
2638
2639 return process_if_block (ce_info);
2640 }
2641
2642 /* Convert a branch over a trap, or a branch
2643 to a trap, into a conditional trap. */
2644
2645 static int
2646 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
2647 {
2648 basic_block then_bb = then_edge->dest;
2649 basic_block else_bb = else_edge->dest;
2650 basic_block other_bb, trap_bb;
2651 rtx trap, jump, cond, cond_earliest, seq;
2652 enum rtx_code code;
2653
2654 /* Locate the block with the trap instruction. */
2655 /* ??? While we look for no successors, we really ought to allow
2656 EH successors. Need to fix merge_if_block for that to work. */
2657 if ((trap = block_has_only_trap (then_bb)) != NULL)
2658 trap_bb = then_bb, other_bb = else_bb;
2659 else if ((trap = block_has_only_trap (else_bb)) != NULL)
2660 trap_bb = else_bb, other_bb = then_bb;
2661 else
2662 return FALSE;
2663
2664 if (dump_file)
2665 {
2666 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
2667 test_bb->index, trap_bb->index);
2668 }
2669
2670 /* If this is not a standard conditional jump, we can't parse it. */
2671 jump = BB_END (test_bb);
2672 cond = noce_get_condition (jump, &cond_earliest);
2673 if (! cond)
2674 return FALSE;
2675
2676 /* If the conditional jump is more than just a conditional jump, then
2677 we can not do if-conversion on this block. */
2678 if (! onlyjump_p (jump))
2679 return FALSE;
2680
2681 /* We must be comparing objects whose modes imply the size. */
2682 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2683 return FALSE;
2684
2685 /* Reverse the comparison code, if necessary. */
2686 code = GET_CODE (cond);
2687 if (then_bb == trap_bb)
2688 {
2689 code = reversed_comparison_code (cond, jump);
2690 if (code == UNKNOWN)
2691 return FALSE;
2692 }
2693
2694 /* Attempt to generate the conditional trap. */
2695 seq = gen_cond_trap (code, XEXP (cond, 0),
2696 XEXP (cond, 1),
2697 TRAP_CODE (PATTERN (trap)));
2698 if (seq == NULL)
2699 return FALSE;
2700
2701 num_true_changes++;
2702
2703 /* Emit the new insns before cond_earliest. */
2704 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
2705
2706 /* Delete the trap block if possible. */
2707 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
2708 if (trap_bb->pred == NULL)
2709 delete_basic_block (trap_bb);
2710
2711 /* If the non-trap block and the test are now adjacent, merge them.
2712 Otherwise we must insert a direct branch. */
2713 if (test_bb->next_bb == other_bb)
2714 {
2715 struct ce_if_block new_ce_info;
2716 delete_insn (jump);
2717 memset (&new_ce_info, '\0', sizeof (new_ce_info));
2718 new_ce_info.test_bb = test_bb;
2719 new_ce_info.then_bb = NULL;
2720 new_ce_info.else_bb = NULL;
2721 new_ce_info.join_bb = other_bb;
2722 merge_if_block (&new_ce_info);
2723 }
2724 else
2725 {
2726 rtx lab, newjump;
2727
2728 lab = JUMP_LABEL (jump);
2729 newjump = emit_jump_insn_after (gen_jump (lab), jump);
2730 LABEL_NUSES (lab) += 1;
2731 JUMP_LABEL (newjump) = lab;
2732 emit_barrier_after (newjump);
2733
2734 delete_insn (jump);
2735 }
2736
2737 return TRUE;
2738 }
2739
2740 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
2741 return it. */
2742
2743 static rtx
2744 block_has_only_trap (basic_block bb)
2745 {
2746 rtx trap;
2747
2748 /* We're not the exit block. */
2749 if (bb == EXIT_BLOCK_PTR)
2750 return NULL_RTX;
2751
2752 /* The block must have no successors. */
2753 if (bb->succ)
2754 return NULL_RTX;
2755
2756 /* The only instruction in the THEN block must be the trap. */
2757 trap = first_active_insn (bb);
2758 if (! (trap == BB_END (bb)
2759 && GET_CODE (PATTERN (trap)) == TRAP_IF
2760 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
2761 return NULL_RTX;
2762
2763 return trap;
2764 }
2765
2766 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
2767 transformable, but not necessarily the other. There need be no
2768 JOIN block.
2769
2770 Return TRUE if we were successful at converting the block.
2771
2772 Cases we'd like to look at:
2773
2774 (1)
2775 if (test) goto over; // x not live
2776 x = a;
2777 goto label;
2778 over:
2779
2780 becomes
2781
2782 x = a;
2783 if (! test) goto label;
2784
2785 (2)
2786 if (test) goto E; // x not live
2787 x = big();
2788 goto L;
2789 E:
2790 x = b;
2791 goto M;
2792
2793 becomes
2794
2795 x = b;
2796 if (test) goto M;
2797 x = big();
2798 goto L;
2799
2800 (3) // This one's really only interesting for targets that can do
2801 // multiway branching, e.g. IA-64 BBB bundles. For other targets
2802 // it results in multiple branches on a cache line, which often
2803 // does not sit well with predictors.
2804
2805 if (test1) goto E; // predicted not taken
2806 x = a;
2807 if (test2) goto F;
2808 ...
2809 E:
2810 x = b;
2811 J:
2812
2813 becomes
2814
2815 x = a;
2816 if (test1) goto E;
2817 if (test2) goto F;
2818
2819 Notes:
2820
2821 (A) Don't do (2) if the branch is predicted against the block we're
2822 eliminating. Do it anyway if we can eliminate a branch; this requires
2823 that the sole successor of the eliminated block postdominate the other
2824 side of the if.
2825
2826 (B) With CE, on (3) we can steal from both sides of the if, creating
2827
2828 if (test1) x = a;
2829 if (!test1) x = b;
2830 if (test1) goto J;
2831 if (test2) goto F;
2832 ...
2833 J:
2834
2835 Again, this is most useful if J postdominates.
2836
2837 (C) CE substitutes for helpful life information.
2838
2839 (D) These heuristics need a lot of work. */
2840
2841 /* Tests for case 1 above. */
2842
2843 static int
2844 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
2845 {
2846 basic_block then_bb = then_edge->dest;
2847 basic_block else_bb = else_edge->dest, new_bb;
2848 edge then_succ = then_bb->succ;
2849 int then_bb_index, bb_cost;
2850
2851 /* If we are partitioning hot/cold basic blocks, we don't want to
2852 mess up unconditional or indirect jumps that cross between hot
2853 and cold sections.
2854
2855 Basic block partitioning may result in some jumps that appear to
2856 be optimizable (or blocks that appear to be mergeable), but which really
2857 must be left untouched (they are required to make it safely across
2858 partition boundaries). See the comments at the top of
2859 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2860
2861 if (flag_reorder_blocks_and_partition
2862 && ((BB_END (then_bb)
2863 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2864 || (BB_END (else_bb)
2865 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2866 NULL_RTX))))
2867 return FALSE;
2868
2869 /* THEN has one successor. */
2870 if (!then_succ || then_succ->succ_next != NULL)
2871 return FALSE;
2872
2873 /* THEN does not fall through, but is not strange either. */
2874 if (then_succ->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
2875 return FALSE;
2876
2877 /* THEN has one predecessor. */
2878 if (then_bb->pred->pred_next != NULL)
2879 return FALSE;
2880
2881 /* THEN must do something. */
2882 if (forwarder_block_p (then_bb))
2883 return FALSE;
2884
2885 num_possible_if_blocks++;
2886 if (dump_file)
2887 fprintf (dump_file,
2888 "\nIF-CASE-1 found, start %d, then %d\n",
2889 test_bb->index, then_bb->index);
2890
2891 /* THEN is small. */
2892 bb_cost = total_bb_rtx_cost (then_bb);
2893 if (bb_cost < 0 || bb_cost >= COSTS_N_INSNS (BRANCH_COST))
2894 return FALSE;
2895
2896 /* Registers set are dead, or are predicable. */
2897 if (! dead_or_predicable (test_bb, then_bb, else_bb,
2898 then_bb->succ->dest, 1))
2899 return FALSE;
2900
2901 /* Conversion went ok, including moving the insns and fixing up the
2902 jump. Adjust the CFG to match. */
2903
2904 bitmap_operation (test_bb->global_live_at_end,
2905 else_bb->global_live_at_start,
2906 then_bb->global_live_at_end, BITMAP_IOR);
2907
2908 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb), else_bb);
2909 then_bb_index = then_bb->index;
2910 delete_basic_block (then_bb);
2911
2912 /* Make rest of code believe that the newly created block is the THEN_BB
2913 block we removed. */
2914 if (new_bb)
2915 {
2916 new_bb->index = then_bb_index;
2917 BASIC_BLOCK (then_bb_index) = new_bb;
2918 /* Since the fallthru edge was redirected from test_bb to new_bb,
2919 we need to ensure that new_bb is in the same partition as
2920 test bb (you can not fall through across section boundaries). */
2921 BB_COPY_PARTITION (new_bb, test_bb);
2922 }
2923 /* We've possibly created jump to next insn, cleanup_cfg will solve that
2924 later. */
2925
2926 num_true_changes++;
2927 num_updated_if_blocks++;
2928
2929 return TRUE;
2930 }
2931
2932 /* Test for case 2 above. */
2933
2934 static int
2935 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
2936 {
2937 basic_block then_bb = then_edge->dest;
2938 basic_block else_bb = else_edge->dest;
2939 edge else_succ = else_bb->succ;
2940 int bb_cost;
2941 rtx note;
2942
2943 /* If we are partitioning hot/cold basic blocks, we don't want to
2944 mess up unconditional or indirect jumps that cross between hot
2945 and cold sections.
2946
2947 Basic block partitioning may result in some jumps that appear to
2948 be optimizable (or blocks that appear to be mergeable), but which really
2949 must be left untouched (they are required to make it safely across
2950 partition boundaries). See the comments at the top of
2951 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2952
2953 if (flag_reorder_blocks_and_partition
2954 && ((BB_END (then_bb)
2955 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2956 || (BB_END (else_bb)
2957 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2958 NULL_RTX))))
2959 return FALSE;
2960
2961 /* ELSE has one successor. */
2962 if (!else_succ || else_succ->succ_next != NULL)
2963 return FALSE;
2964
2965 /* ELSE outgoing edge is not complex. */
2966 if (else_succ->flags & EDGE_COMPLEX)
2967 return FALSE;
2968
2969 /* ELSE has one predecessor. */
2970 if (else_bb->pred->pred_next != NULL)
2971 return FALSE;
2972
2973 /* THEN is not EXIT. */
2974 if (then_bb->index < 0)
2975 return FALSE;
2976
2977 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
2978 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
2979 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
2980 ;
2981 else if (else_succ->dest->index < 0
2982 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
2983 else_succ->dest))
2984 ;
2985 else
2986 return FALSE;
2987
2988 num_possible_if_blocks++;
2989 if (dump_file)
2990 fprintf (dump_file,
2991 "\nIF-CASE-2 found, start %d, else %d\n",
2992 test_bb->index, else_bb->index);
2993
2994 /* ELSE is small. */
2995 bb_cost = total_bb_rtx_cost (else_bb);
2996 if (bb_cost < 0 || bb_cost >= COSTS_N_INSNS (BRANCH_COST))
2997 return FALSE;
2998
2999 /* Registers set are dead, or are predicable. */
3000 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3001 return FALSE;
3002
3003 /* Conversion went ok, including moving the insns and fixing up the
3004 jump. Adjust the CFG to match. */
3005
3006 bitmap_operation (test_bb->global_live_at_end,
3007 then_bb->global_live_at_start,
3008 else_bb->global_live_at_end, BITMAP_IOR);
3009
3010 delete_basic_block (else_bb);
3011
3012 num_true_changes++;
3013 num_updated_if_blocks++;
3014
3015 /* ??? We may now fallthru from one of THEN's successors into a join
3016 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3017
3018 return TRUE;
3019 }
3020
3021 /* A subroutine of dead_or_predicable called through for_each_rtx.
3022 Return 1 if a memory is found. */
3023
3024 static int
3025 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3026 {
3027 return MEM_P (*px);
3028 }
3029
3030 /* Used by the code above to perform the actual rtl transformations.
3031 Return TRUE if successful.
3032
3033 TEST_BB is the block containing the conditional branch. MERGE_BB
3034 is the block containing the code to manipulate. NEW_DEST is the
3035 label TEST_BB should be branching to after the conversion.
3036 REVERSEP is true if the sense of the branch should be reversed. */
3037
3038 static int
3039 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3040 basic_block other_bb, basic_block new_dest, int reversep)
3041 {
3042 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3043
3044 jump = BB_END (test_bb);
3045
3046 /* Find the extent of the real code in the merge block. */
3047 head = BB_HEAD (merge_bb);
3048 end = BB_END (merge_bb);
3049
3050 if (LABEL_P (head))
3051 head = NEXT_INSN (head);
3052 if (NOTE_P (head))
3053 {
3054 if (head == end)
3055 {
3056 head = end = NULL_RTX;
3057 goto no_body;
3058 }
3059 head = NEXT_INSN (head);
3060 }
3061
3062 if (JUMP_P (end))
3063 {
3064 if (head == end)
3065 {
3066 head = end = NULL_RTX;
3067 goto no_body;
3068 }
3069 end = PREV_INSN (end);
3070 }
3071
3072 /* Disable handling dead code by conditional execution if the machine needs
3073 to do anything funny with the tests, etc. */
3074 #ifndef IFCVT_MODIFY_TESTS
3075 if (HAVE_conditional_execution)
3076 {
3077 /* In the conditional execution case, we have things easy. We know
3078 the condition is reversible. We don't have to check life info
3079 because we're going to conditionally execute the code anyway.
3080 All that's left is making sure the insns involved can actually
3081 be predicated. */
3082
3083 rtx cond, prob_val;
3084
3085 cond = cond_exec_get_condition (jump);
3086 if (! cond)
3087 return FALSE;
3088
3089 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3090 if (prob_val)
3091 prob_val = XEXP (prob_val, 0);
3092
3093 if (reversep)
3094 {
3095 enum rtx_code rev = reversed_comparison_code (cond, jump);
3096 if (rev == UNKNOWN)
3097 return FALSE;
3098 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3099 XEXP (cond, 1));
3100 if (prob_val)
3101 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3102 }
3103
3104 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3105 prob_val, 0))
3106 goto cancel;
3107
3108 earliest = jump;
3109 }
3110 else
3111 #endif
3112 {
3113 /* In the non-conditional execution case, we have to verify that there
3114 are no trapping operations, no calls, no references to memory, and
3115 that any registers modified are dead at the branch site. */
3116
3117 rtx insn, cond, prev;
3118 regset_head merge_set_head, tmp_head, test_live_head, test_set_head;
3119 regset merge_set, tmp, test_live, test_set;
3120 struct propagate_block_info *pbi;
3121 int i, fail = 0;
3122
3123 /* Check for no calls or trapping operations. */
3124 for (insn = head; ; insn = NEXT_INSN (insn))
3125 {
3126 if (CALL_P (insn))
3127 return FALSE;
3128 if (INSN_P (insn))
3129 {
3130 if (may_trap_p (PATTERN (insn)))
3131 return FALSE;
3132
3133 /* ??? Even non-trapping memories such as stack frame
3134 references must be avoided. For stores, we collect
3135 no lifetime info; for reads, we'd have to assert
3136 true_dependence false against every store in the
3137 TEST range. */
3138 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3139 return FALSE;
3140 }
3141 if (insn == end)
3142 break;
3143 }
3144
3145 if (! any_condjump_p (jump))
3146 return FALSE;
3147
3148 /* Find the extent of the conditional. */
3149 cond = noce_get_condition (jump, &earliest);
3150 if (! cond)
3151 return FALSE;
3152
3153 /* Collect:
3154 MERGE_SET = set of registers set in MERGE_BB
3155 TEST_LIVE = set of registers live at EARLIEST
3156 TEST_SET = set of registers set between EARLIEST and the
3157 end of the block. */
3158
3159 tmp = INITIALIZE_REG_SET (tmp_head);
3160 merge_set = INITIALIZE_REG_SET (merge_set_head);
3161 test_live = INITIALIZE_REG_SET (test_live_head);
3162 test_set = INITIALIZE_REG_SET (test_set_head);
3163
3164 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3165 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3166 since we've already asserted that MERGE_BB is small. */
3167 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3168
3169 /* For small register class machines, don't lengthen lifetimes of
3170 hard registers before reload. */
3171 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3172 {
3173 EXECUTE_IF_SET_IN_BITMAP
3174 (merge_set, 0, i,
3175 {
3176 if (i < FIRST_PSEUDO_REGISTER
3177 && ! fixed_regs[i]
3178 && ! global_regs[i])
3179 fail = 1;
3180 });
3181 }
3182
3183 /* For TEST, we're interested in a range of insns, not a whole block.
3184 Moreover, we're interested in the insns live from OTHER_BB. */
3185
3186 COPY_REG_SET (test_live, other_bb->global_live_at_start);
3187 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3188 0);
3189
3190 for (insn = jump; ; insn = prev)
3191 {
3192 prev = propagate_one_insn (pbi, insn);
3193 if (insn == earliest)
3194 break;
3195 }
3196
3197 free_propagate_block_info (pbi);
3198
3199 /* We can perform the transformation if
3200 MERGE_SET & (TEST_SET | TEST_LIVE)
3201 and
3202 TEST_SET & merge_bb->global_live_at_start
3203 are empty. */
3204
3205 bitmap_operation (tmp, test_set, test_live, BITMAP_IOR);
3206 bitmap_operation (tmp, tmp, merge_set, BITMAP_AND);
3207 EXECUTE_IF_SET_IN_BITMAP(tmp, 0, i, fail = 1);
3208
3209 bitmap_operation (tmp, test_set, merge_bb->global_live_at_start,
3210 BITMAP_AND);
3211 EXECUTE_IF_SET_IN_BITMAP(tmp, 0, i, fail = 1);
3212
3213 FREE_REG_SET (tmp);
3214 FREE_REG_SET (merge_set);
3215 FREE_REG_SET (test_live);
3216 FREE_REG_SET (test_set);
3217
3218 if (fail)
3219 return FALSE;
3220 }
3221
3222 no_body:
3223 /* We don't want to use normal invert_jump or redirect_jump because
3224 we don't want to delete_insn called. Also, we want to do our own
3225 change group management. */
3226
3227 old_dest = JUMP_LABEL (jump);
3228 if (other_bb != new_dest)
3229 {
3230 new_label = block_label (new_dest);
3231 if (reversep
3232 ? ! invert_jump_1 (jump, new_label)
3233 : ! redirect_jump_1 (jump, new_label))
3234 goto cancel;
3235 }
3236
3237 if (! apply_change_group ())
3238 return FALSE;
3239
3240 if (other_bb != new_dest)
3241 {
3242 if (old_dest)
3243 LABEL_NUSES (old_dest) -= 1;
3244 if (new_label)
3245 LABEL_NUSES (new_label) += 1;
3246 JUMP_LABEL (jump) = new_label;
3247 if (reversep)
3248 invert_br_probabilities (jump);
3249
3250 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3251 if (reversep)
3252 {
3253 gcov_type count, probability;
3254 count = BRANCH_EDGE (test_bb)->count;
3255 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3256 FALLTHRU_EDGE (test_bb)->count = count;
3257 probability = BRANCH_EDGE (test_bb)->probability;
3258 BRANCH_EDGE (test_bb)->probability
3259 = FALLTHRU_EDGE (test_bb)->probability;
3260 FALLTHRU_EDGE (test_bb)->probability = probability;
3261 update_br_prob_note (test_bb);
3262 }
3263 }
3264
3265 /* Move the insns out of MERGE_BB to before the branch. */
3266 if (head != NULL)
3267 {
3268 if (end == BB_END (merge_bb))
3269 BB_END (merge_bb) = PREV_INSN (head);
3270
3271 if (squeeze_notes (&head, &end))
3272 return TRUE;
3273
3274 reorder_insns (head, end, PREV_INSN (earliest));
3275 }
3276
3277 /* Remove the jump and edge if we can. */
3278 if (other_bb == new_dest)
3279 {
3280 delete_insn (jump);
3281 remove_edge (BRANCH_EDGE (test_bb));
3282 /* ??? Can't merge blocks here, as then_bb is still in use.
3283 At minimum, the merge will get done just before bb-reorder. */
3284 }
3285
3286 return TRUE;
3287
3288 cancel:
3289 cancel_changes (0);
3290 return FALSE;
3291 }
3292 \f
3293 /* Main entry point for all if-conversion. */
3294
3295 void
3296 if_convert (int x_life_data_ok)
3297 {
3298 basic_block bb;
3299 int pass;
3300
3301 num_possible_if_blocks = 0;
3302 num_updated_if_blocks = 0;
3303 num_true_changes = 0;
3304 life_data_ok = (x_life_data_ok != 0);
3305
3306 if ((! targetm.cannot_modify_jumps_p ())
3307 && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3308 || !targetm.have_named_sections))
3309 mark_loop_exit_edges ();
3310
3311 /* Compute postdominators if we think we'll use them. */
3312 if (HAVE_conditional_execution || life_data_ok)
3313 calculate_dominance_info (CDI_POST_DOMINATORS);
3314
3315 if (life_data_ok)
3316 clear_bb_flags ();
3317
3318 /* Go through each of the basic blocks looking for things to convert. If we
3319 have conditional execution, we make multiple passes to allow us to handle
3320 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3321 pass = 0;
3322 do
3323 {
3324 cond_exec_changed_p = FALSE;
3325 pass++;
3326
3327 #ifdef IFCVT_MULTIPLE_DUMPS
3328 if (dump_file && pass > 1)
3329 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3330 #endif
3331
3332 FOR_EACH_BB (bb)
3333 {
3334 basic_block new_bb;
3335 while ((new_bb = find_if_header (bb, pass)))
3336 bb = new_bb;
3337 }
3338
3339 #ifdef IFCVT_MULTIPLE_DUMPS
3340 if (dump_file && cond_exec_changed_p)
3341 print_rtl_with_bb (dump_file, get_insns ());
3342 #endif
3343 }
3344 while (cond_exec_changed_p);
3345
3346 #ifdef IFCVT_MULTIPLE_DUMPS
3347 if (dump_file)
3348 fprintf (dump_file, "\n\n========== no more changes\n");
3349 #endif
3350
3351 free_dominance_info (CDI_POST_DOMINATORS);
3352
3353 if (dump_file)
3354 fflush (dump_file);
3355
3356 clear_aux_for_blocks ();
3357
3358 /* Rebuild life info for basic blocks that require it. */
3359 if (num_true_changes && life_data_ok)
3360 {
3361 /* If we allocated new pseudos, we must resize the array for sched1. */
3362 if (max_regno < max_reg_num ())
3363 {
3364 max_regno = max_reg_num ();
3365 allocate_reg_info (max_regno, FALSE, FALSE);
3366 }
3367 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3368 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3369 | PROP_KILL_DEAD_CODE);
3370 }
3371
3372 /* Write the final stats. */
3373 if (dump_file && num_possible_if_blocks > 0)
3374 {
3375 fprintf (dump_file,
3376 "\n%d possible IF blocks searched.\n",
3377 num_possible_if_blocks);
3378 fprintf (dump_file,
3379 "%d IF blocks converted.\n",
3380 num_updated_if_blocks);
3381 fprintf (dump_file,
3382 "%d true changes made.\n\n\n",
3383 num_true_changes);
3384 }
3385
3386 #ifdef ENABLE_CHECKING
3387 verify_flow_info ();
3388 #endif
3389 }