re PR tree-optimization/67700 ([graphite] miscompile due to wrong codegen)
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28
29 #include "regs.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "cfgrtl.h"
35 #include "cfganal.h"
36 #include "cfgcleanup.h"
37 #include "alias.h"
38 #include "expmed.h"
39 #include "dojump.h"
40 #include "explow.h"
41 #include "calls.h"
42 #include "emit-rtl.h"
43 #include "varasm.h"
44 #include "stmt.h"
45 #include "expr.h"
46 #include "output.h"
47 #include "insn-codes.h"
48 #include "optabs.h"
49 #include "diagnostic-core.h"
50 #include "tm_p.h"
51 #include "cfgloop.h"
52 #include "target.h"
53 #include "tree-pass.h"
54 #include "dbgcnt.h"
55 #include "shrink-wrap.h"
56 #include "rtl-iter.h"
57 #include "ifcvt.h"
58
59 #ifndef MAX_CONDITIONAL_EXECUTE
60 #define MAX_CONDITIONAL_EXECUTE \
61 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
62 + 1)
63 #endif
64
65 #define IFCVT_MULTIPLE_DUMPS 1
66
67 #define NULL_BLOCK ((basic_block) NULL)
68
69 /* True if after combine pass. */
70 static bool ifcvt_after_combine;
71
72 /* True if the target has the cbranchcc4 optab. */
73 static bool have_cbranchcc4;
74
75 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
76 static int num_possible_if_blocks;
77
78 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
79 execution. */
80 static int num_updated_if_blocks;
81
82 /* # of changes made. */
83 static int num_true_changes;
84
85 /* Whether conditional execution changes were made. */
86 static int cond_exec_changed_p;
87
88 /* Forward references. */
89 static int count_bb_insns (const_basic_block);
90 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
91 static rtx_insn *first_active_insn (basic_block);
92 static rtx_insn *last_active_insn (basic_block, int);
93 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
94 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
95 static basic_block block_fallthru (basic_block);
96 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
97 int);
98 static rtx cond_exec_get_condition (rtx_insn *);
99 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
100 static int noce_operand_ok (const_rtx);
101 static void merge_if_block (ce_if_block *);
102 static int find_cond_trap (basic_block, edge, edge);
103 static basic_block find_if_header (basic_block, int);
104 static int block_jumps_and_fallthru_p (basic_block, basic_block);
105 static int noce_find_if_block (basic_block, edge, edge, int);
106 static int cond_exec_find_if_block (ce_if_block *);
107 static int find_if_case_1 (basic_block, edge, edge);
108 static int find_if_case_2 (basic_block, edge, edge);
109 static int dead_or_predicable (basic_block, basic_block, basic_block,
110 edge, int);
111 static void noce_emit_move_insn (rtx, rtx);
112 static rtx_insn *block_has_only_trap (basic_block);
113 \f
114 /* Count the number of non-jump active insns in BB. */
115
116 static int
117 count_bb_insns (const_basic_block bb)
118 {
119 int count = 0;
120 rtx_insn *insn = BB_HEAD (bb);
121
122 while (1)
123 {
124 if (active_insn_p (insn) && !JUMP_P (insn))
125 count++;
126
127 if (insn == BB_END (bb))
128 break;
129 insn = NEXT_INSN (insn);
130 }
131
132 return count;
133 }
134
135 /* Determine whether the total insn_rtx_cost on non-jump insns in
136 basic block BB is less than MAX_COST. This function returns
137 false if the cost of any instruction could not be estimated.
138
139 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
140 as those insns are being speculated. MAX_COST is scaled with SCALE
141 plus a small fudge factor. */
142
143 static bool
144 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
145 {
146 int count = 0;
147 rtx_insn *insn = BB_HEAD (bb);
148 bool speed = optimize_bb_for_speed_p (bb);
149
150 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
151 applied to insn_rtx_cost when optimizing for size. Only do
152 this after combine because if-conversion might interfere with
153 passes before combine.
154
155 Use optimize_function_for_speed_p instead of the pre-defined
156 variable speed to make sure it is set to same value for all
157 basic blocks in one if-conversion transformation. */
158 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
159 scale = REG_BR_PROB_BASE;
160 /* Our branch probability/scaling factors are just estimates and don't
161 account for cases where we can get speculation for free and other
162 secondary benefits. So we fudge the scale factor to make speculating
163 appear a little more profitable when optimizing for performance. */
164 else
165 scale += REG_BR_PROB_BASE / 8;
166
167
168 max_cost *= scale;
169
170 while (1)
171 {
172 if (NONJUMP_INSN_P (insn))
173 {
174 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
175 if (cost == 0)
176 return false;
177
178 /* If this instruction is the load or set of a "stack" register,
179 such as a floating point register on x87, then the cost of
180 speculatively executing this insn may need to include
181 the additional cost of popping its result off of the
182 register stack. Unfortunately, correctly recognizing and
183 accounting for this additional overhead is tricky, so for
184 now we simply prohibit such speculative execution. */
185 #ifdef STACK_REGS
186 {
187 rtx set = single_set (insn);
188 if (set && STACK_REG_P (SET_DEST (set)))
189 return false;
190 }
191 #endif
192
193 count += cost;
194 if (count >= max_cost)
195 return false;
196 }
197 else if (CALL_P (insn))
198 return false;
199
200 if (insn == BB_END (bb))
201 break;
202 insn = NEXT_INSN (insn);
203 }
204
205 return true;
206 }
207
208 /* Return the first non-jump active insn in the basic block. */
209
210 static rtx_insn *
211 first_active_insn (basic_block bb)
212 {
213 rtx_insn *insn = BB_HEAD (bb);
214
215 if (LABEL_P (insn))
216 {
217 if (insn == BB_END (bb))
218 return NULL;
219 insn = NEXT_INSN (insn);
220 }
221
222 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
223 {
224 if (insn == BB_END (bb))
225 return NULL;
226 insn = NEXT_INSN (insn);
227 }
228
229 if (JUMP_P (insn))
230 return NULL;
231
232 return insn;
233 }
234
235 /* Return the last non-jump active (non-jump) insn in the basic block. */
236
237 static rtx_insn *
238 last_active_insn (basic_block bb, int skip_use_p)
239 {
240 rtx_insn *insn = BB_END (bb);
241 rtx_insn *head = BB_HEAD (bb);
242
243 while (NOTE_P (insn)
244 || JUMP_P (insn)
245 || DEBUG_INSN_P (insn)
246 || (skip_use_p
247 && NONJUMP_INSN_P (insn)
248 && GET_CODE (PATTERN (insn)) == USE))
249 {
250 if (insn == head)
251 return NULL;
252 insn = PREV_INSN (insn);
253 }
254
255 if (LABEL_P (insn))
256 return NULL;
257
258 return insn;
259 }
260
261 /* Return the active insn before INSN inside basic block CURR_BB. */
262
263 static rtx_insn *
264 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
265 {
266 if (!insn || insn == BB_HEAD (curr_bb))
267 return NULL;
268
269 while ((insn = PREV_INSN (insn)) != NULL_RTX)
270 {
271 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
272 break;
273
274 /* No other active insn all the way to the start of the basic block. */
275 if (insn == BB_HEAD (curr_bb))
276 return NULL;
277 }
278
279 return insn;
280 }
281
282 /* Return the active insn after INSN inside basic block CURR_BB. */
283
284 static rtx_insn *
285 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
286 {
287 if (!insn || insn == BB_END (curr_bb))
288 return NULL;
289
290 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
291 {
292 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
293 break;
294
295 /* No other active insn all the way to the end of the basic block. */
296 if (insn == BB_END (curr_bb))
297 return NULL;
298 }
299
300 return insn;
301 }
302
303 /* Return the basic block reached by falling though the basic block BB. */
304
305 static basic_block
306 block_fallthru (basic_block bb)
307 {
308 edge e = find_fallthru_edge (bb->succs);
309
310 return (e) ? e->dest : NULL_BLOCK;
311 }
312
313 /* Return true if RTXs A and B can be safely interchanged. */
314
315 static bool
316 rtx_interchangeable_p (const_rtx a, const_rtx b)
317 {
318 if (!rtx_equal_p (a, b))
319 return false;
320
321 if (GET_CODE (a) != MEM)
322 return true;
323
324 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
325 reference is not. Interchanging a dead type-unsafe memory reference with
326 a live type-safe one creates a live type-unsafe memory reference, in other
327 words, it makes the program illegal.
328 We check here conservatively whether the two memory references have equal
329 memory attributes. */
330
331 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
332 }
333
334 \f
335 /* Go through a bunch of insns, converting them to conditional
336 execution format if possible. Return TRUE if all of the non-note
337 insns were processed. */
338
339 static int
340 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
341 /* if block information */rtx_insn *start,
342 /* first insn to look at */rtx end,
343 /* last insn to look at */rtx test,
344 /* conditional execution test */int prob_val,
345 /* probability of branch taken. */int mod_ok)
346 {
347 int must_be_last = FALSE;
348 rtx_insn *insn;
349 rtx xtest;
350 rtx pattern;
351
352 if (!start || !end)
353 return FALSE;
354
355 for (insn = start; ; insn = NEXT_INSN (insn))
356 {
357 /* dwarf2out can't cope with conditional prologues. */
358 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
359 return FALSE;
360
361 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
362 goto insn_done;
363
364 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
365
366 /* dwarf2out can't cope with conditional unwind info. */
367 if (RTX_FRAME_RELATED_P (insn))
368 return FALSE;
369
370 /* Remove USE insns that get in the way. */
371 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
372 {
373 /* ??? Ug. Actually unlinking the thing is problematic,
374 given what we'd have to coordinate with our callers. */
375 SET_INSN_DELETED (insn);
376 goto insn_done;
377 }
378
379 /* Last insn wasn't last? */
380 if (must_be_last)
381 return FALSE;
382
383 if (modified_in_p (test, insn))
384 {
385 if (!mod_ok)
386 return FALSE;
387 must_be_last = TRUE;
388 }
389
390 /* Now build the conditional form of the instruction. */
391 pattern = PATTERN (insn);
392 xtest = copy_rtx (test);
393
394 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
395 two conditions. */
396 if (GET_CODE (pattern) == COND_EXEC)
397 {
398 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
399 return FALSE;
400
401 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
402 COND_EXEC_TEST (pattern));
403 pattern = COND_EXEC_CODE (pattern);
404 }
405
406 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
407
408 /* If the machine needs to modify the insn being conditionally executed,
409 say for example to force a constant integer operand into a temp
410 register, do so here. */
411 #ifdef IFCVT_MODIFY_INSN
412 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
413 if (! pattern)
414 return FALSE;
415 #endif
416
417 validate_change (insn, &PATTERN (insn), pattern, 1);
418
419 if (CALL_P (insn) && prob_val >= 0)
420 validate_change (insn, &REG_NOTES (insn),
421 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
422 prob_val, REG_NOTES (insn)), 1);
423
424 insn_done:
425 if (insn == end)
426 break;
427 }
428
429 return TRUE;
430 }
431
432 /* Return the condition for a jump. Do not do any special processing. */
433
434 static rtx
435 cond_exec_get_condition (rtx_insn *jump)
436 {
437 rtx test_if, cond;
438
439 if (any_condjump_p (jump))
440 test_if = SET_SRC (pc_set (jump));
441 else
442 return NULL_RTX;
443 cond = XEXP (test_if, 0);
444
445 /* If this branches to JUMP_LABEL when the condition is false,
446 reverse the condition. */
447 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
448 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
449 {
450 enum rtx_code rev = reversed_comparison_code (cond, jump);
451 if (rev == UNKNOWN)
452 return NULL_RTX;
453
454 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
455 XEXP (cond, 1));
456 }
457
458 return cond;
459 }
460
461 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
462 to conditional execution. Return TRUE if we were successful at
463 converting the block. */
464
465 static int
466 cond_exec_process_if_block (ce_if_block * ce_info,
467 /* if block information */int do_multiple_p)
468 {
469 basic_block test_bb = ce_info->test_bb; /* last test block */
470 basic_block then_bb = ce_info->then_bb; /* THEN */
471 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
472 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
473 rtx_insn *then_start; /* first insn in THEN block */
474 rtx_insn *then_end; /* last insn + 1 in THEN block */
475 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
476 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
477 int max; /* max # of insns to convert. */
478 int then_mod_ok; /* whether conditional mods are ok in THEN */
479 rtx true_expr; /* test for else block insns */
480 rtx false_expr; /* test for then block insns */
481 int true_prob_val; /* probability of else block */
482 int false_prob_val; /* probability of then block */
483 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
484 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
485 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
486 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
487 int then_n_insns, else_n_insns, n_insns;
488 enum rtx_code false_code;
489 rtx note;
490
491 /* If test is comprised of && or || elements, and we've failed at handling
492 all of them together, just use the last test if it is the special case of
493 && elements without an ELSE block. */
494 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
495 {
496 if (else_bb || ! ce_info->and_and_p)
497 return FALSE;
498
499 ce_info->test_bb = test_bb = ce_info->last_test_bb;
500 ce_info->num_multiple_test_blocks = 0;
501 ce_info->num_and_and_blocks = 0;
502 ce_info->num_or_or_blocks = 0;
503 }
504
505 /* Find the conditional jump to the ELSE or JOIN part, and isolate
506 the test. */
507 test_expr = cond_exec_get_condition (BB_END (test_bb));
508 if (! test_expr)
509 return FALSE;
510
511 /* If the conditional jump is more than just a conditional jump,
512 then we can not do conditional execution conversion on this block. */
513 if (! onlyjump_p (BB_END (test_bb)))
514 return FALSE;
515
516 /* Collect the bounds of where we're to search, skipping any labels, jumps
517 and notes at the beginning and end of the block. Then count the total
518 number of insns and see if it is small enough to convert. */
519 then_start = first_active_insn (then_bb);
520 then_end = last_active_insn (then_bb, TRUE);
521 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
522 n_insns = then_n_insns;
523 max = MAX_CONDITIONAL_EXECUTE;
524
525 if (else_bb)
526 {
527 int n_matching;
528
529 max *= 2;
530 else_start = first_active_insn (else_bb);
531 else_end = last_active_insn (else_bb, TRUE);
532 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
533 n_insns += else_n_insns;
534
535 /* Look for matching sequences at the head and tail of the two blocks,
536 and limit the range of insns to be converted if possible. */
537 n_matching = flow_find_cross_jump (then_bb, else_bb,
538 &then_first_tail, &else_first_tail,
539 NULL);
540 if (then_first_tail == BB_HEAD (then_bb))
541 then_start = then_end = NULL;
542 if (else_first_tail == BB_HEAD (else_bb))
543 else_start = else_end = NULL;
544
545 if (n_matching > 0)
546 {
547 if (then_end)
548 then_end = find_active_insn_before (then_bb, then_first_tail);
549 if (else_end)
550 else_end = find_active_insn_before (else_bb, else_first_tail);
551 n_insns -= 2 * n_matching;
552 }
553
554 if (then_start
555 && else_start
556 && then_n_insns > n_matching
557 && else_n_insns > n_matching)
558 {
559 int longest_match = MIN (then_n_insns - n_matching,
560 else_n_insns - n_matching);
561 n_matching
562 = flow_find_head_matching_sequence (then_bb, else_bb,
563 &then_last_head,
564 &else_last_head,
565 longest_match);
566
567 if (n_matching > 0)
568 {
569 rtx_insn *insn;
570
571 /* We won't pass the insns in the head sequence to
572 cond_exec_process_insns, so we need to test them here
573 to make sure that they don't clobber the condition. */
574 for (insn = BB_HEAD (then_bb);
575 insn != NEXT_INSN (then_last_head);
576 insn = NEXT_INSN (insn))
577 if (!LABEL_P (insn) && !NOTE_P (insn)
578 && !DEBUG_INSN_P (insn)
579 && modified_in_p (test_expr, insn))
580 return FALSE;
581 }
582
583 if (then_last_head == then_end)
584 then_start = then_end = NULL;
585 if (else_last_head == else_end)
586 else_start = else_end = NULL;
587
588 if (n_matching > 0)
589 {
590 if (then_start)
591 then_start = find_active_insn_after (then_bb, then_last_head);
592 if (else_start)
593 else_start = find_active_insn_after (else_bb, else_last_head);
594 n_insns -= 2 * n_matching;
595 }
596 }
597 }
598
599 if (n_insns > max)
600 return FALSE;
601
602 /* Map test_expr/test_jump into the appropriate MD tests to use on
603 the conditionally executed code. */
604
605 true_expr = test_expr;
606
607 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
608 if (false_code != UNKNOWN)
609 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
610 XEXP (true_expr, 0), XEXP (true_expr, 1));
611 else
612 false_expr = NULL_RTX;
613
614 #ifdef IFCVT_MODIFY_TESTS
615 /* If the machine description needs to modify the tests, such as setting a
616 conditional execution register from a comparison, it can do so here. */
617 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
618
619 /* See if the conversion failed. */
620 if (!true_expr || !false_expr)
621 goto fail;
622 #endif
623
624 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
625 if (note)
626 {
627 true_prob_val = XINT (note, 0);
628 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
629 }
630 else
631 {
632 true_prob_val = -1;
633 false_prob_val = -1;
634 }
635
636 /* If we have && or || tests, do them here. These tests are in the adjacent
637 blocks after the first block containing the test. */
638 if (ce_info->num_multiple_test_blocks > 0)
639 {
640 basic_block bb = test_bb;
641 basic_block last_test_bb = ce_info->last_test_bb;
642
643 if (! false_expr)
644 goto fail;
645
646 do
647 {
648 rtx_insn *start, *end;
649 rtx t, f;
650 enum rtx_code f_code;
651
652 bb = block_fallthru (bb);
653 start = first_active_insn (bb);
654 end = last_active_insn (bb, TRUE);
655 if (start
656 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
657 false_prob_val, FALSE))
658 goto fail;
659
660 /* If the conditional jump is more than just a conditional jump, then
661 we can not do conditional execution conversion on this block. */
662 if (! onlyjump_p (BB_END (bb)))
663 goto fail;
664
665 /* Find the conditional jump and isolate the test. */
666 t = cond_exec_get_condition (BB_END (bb));
667 if (! t)
668 goto fail;
669
670 f_code = reversed_comparison_code (t, BB_END (bb));
671 if (f_code == UNKNOWN)
672 goto fail;
673
674 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
675 if (ce_info->and_and_p)
676 {
677 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
678 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
679 }
680 else
681 {
682 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
683 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
684 }
685
686 /* If the machine description needs to modify the tests, such as
687 setting a conditional execution register from a comparison, it can
688 do so here. */
689 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
690 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
691
692 /* See if the conversion failed. */
693 if (!t || !f)
694 goto fail;
695 #endif
696
697 true_expr = t;
698 false_expr = f;
699 }
700 while (bb != last_test_bb);
701 }
702
703 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
704 on then THEN block. */
705 then_mod_ok = (else_bb == NULL_BLOCK);
706
707 /* Go through the THEN and ELSE blocks converting the insns if possible
708 to conditional execution. */
709
710 if (then_end
711 && (! false_expr
712 || ! cond_exec_process_insns (ce_info, then_start, then_end,
713 false_expr, false_prob_val,
714 then_mod_ok)))
715 goto fail;
716
717 if (else_bb && else_end
718 && ! cond_exec_process_insns (ce_info, else_start, else_end,
719 true_expr, true_prob_val, TRUE))
720 goto fail;
721
722 /* If we cannot apply the changes, fail. Do not go through the normal fail
723 processing, since apply_change_group will call cancel_changes. */
724 if (! apply_change_group ())
725 {
726 #ifdef IFCVT_MODIFY_CANCEL
727 /* Cancel any machine dependent changes. */
728 IFCVT_MODIFY_CANCEL (ce_info);
729 #endif
730 return FALSE;
731 }
732
733 #ifdef IFCVT_MODIFY_FINAL
734 /* Do any machine dependent final modifications. */
735 IFCVT_MODIFY_FINAL (ce_info);
736 #endif
737
738 /* Conversion succeeded. */
739 if (dump_file)
740 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
741 n_insns, (n_insns == 1) ? " was" : "s were");
742
743 /* Merge the blocks! If we had matching sequences, make sure to delete one
744 copy at the appropriate location first: delete the copy in the THEN branch
745 for a tail sequence so that the remaining one is executed last for both
746 branches, and delete the copy in the ELSE branch for a head sequence so
747 that the remaining one is executed first for both branches. */
748 if (then_first_tail)
749 {
750 rtx_insn *from = then_first_tail;
751 if (!INSN_P (from))
752 from = find_active_insn_after (then_bb, from);
753 delete_insn_chain (from, BB_END (then_bb), false);
754 }
755 if (else_last_head)
756 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
757
758 merge_if_block (ce_info);
759 cond_exec_changed_p = TRUE;
760 return TRUE;
761
762 fail:
763 #ifdef IFCVT_MODIFY_CANCEL
764 /* Cancel any machine dependent changes. */
765 IFCVT_MODIFY_CANCEL (ce_info);
766 #endif
767
768 cancel_changes (0);
769 return FALSE;
770 }
771 \f
772 /* Used by noce_process_if_block to communicate with its subroutines.
773
774 The subroutines know that A and B may be evaluated freely. They
775 know that X is a register. They should insert new instructions
776 before cond_earliest. */
777
778 struct noce_if_info
779 {
780 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
781 basic_block test_bb, then_bb, else_bb, join_bb;
782
783 /* The jump that ends TEST_BB. */
784 rtx_insn *jump;
785
786 /* The jump condition. */
787 rtx cond;
788
789 /* New insns should be inserted before this one. */
790 rtx_insn *cond_earliest;
791
792 /* Insns in the THEN and ELSE block. There is always just this
793 one insns in those blocks. The insns are single_set insns.
794 If there was no ELSE block, INSN_B is the last insn before
795 COND_EARLIEST, or NULL_RTX. In the former case, the insn
796 operands are still valid, as if INSN_B was moved down below
797 the jump. */
798 rtx_insn *insn_a, *insn_b;
799
800 /* The SET_SRC of INSN_A and INSN_B. */
801 rtx a, b;
802
803 /* The SET_DEST of INSN_A. */
804 rtx x;
805
806 /* True if this if block is not canonical. In the canonical form of
807 if blocks, the THEN_BB is the block reached via the fallthru edge
808 from TEST_BB. For the noce transformations, we allow the symmetric
809 form as well. */
810 bool then_else_reversed;
811
812 /* True if the contents of then_bb and else_bb are a
813 simple single set instruction. */
814 bool then_simple;
815 bool else_simple;
816
817 /* The total rtx cost of the instructions in then_bb and else_bb. */
818 unsigned int then_cost;
819 unsigned int else_cost;
820
821 /* Estimated cost of the particular branch instruction. */
822 unsigned int branch_cost;
823 };
824
825 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
826 static int noce_try_move (struct noce_if_info *);
827 static int noce_try_store_flag (struct noce_if_info *);
828 static int noce_try_addcc (struct noce_if_info *);
829 static int noce_try_store_flag_constants (struct noce_if_info *);
830 static int noce_try_store_flag_mask (struct noce_if_info *);
831 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
832 rtx, rtx, rtx);
833 static int noce_try_cmove (struct noce_if_info *);
834 static int noce_try_cmove_arith (struct noce_if_info *);
835 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
836 static int noce_try_minmax (struct noce_if_info *);
837 static int noce_try_abs (struct noce_if_info *);
838 static int noce_try_sign_mask (struct noce_if_info *);
839
840 /* Helper function for noce_try_store_flag*. */
841
842 static rtx
843 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
844 int normalize)
845 {
846 rtx cond = if_info->cond;
847 int cond_complex;
848 enum rtx_code code;
849
850 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
851 || ! general_operand (XEXP (cond, 1), VOIDmode));
852
853 /* If earliest == jump, or when the condition is complex, try to
854 build the store_flag insn directly. */
855
856 if (cond_complex)
857 {
858 rtx set = pc_set (if_info->jump);
859 cond = XEXP (SET_SRC (set), 0);
860 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
861 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
862 reversep = !reversep;
863 if (if_info->then_else_reversed)
864 reversep = !reversep;
865 }
866
867 if (reversep)
868 code = reversed_comparison_code (cond, if_info->jump);
869 else
870 code = GET_CODE (cond);
871
872 if ((if_info->cond_earliest == if_info->jump || cond_complex)
873 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
874 {
875 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
876 XEXP (cond, 1));
877 rtx set = gen_rtx_SET (x, src);
878
879 start_sequence ();
880 rtx_insn *insn = emit_insn (set);
881
882 if (recog_memoized (insn) >= 0)
883 {
884 rtx_insn *seq = get_insns ();
885 end_sequence ();
886 emit_insn (seq);
887
888 if_info->cond_earliest = if_info->jump;
889
890 return x;
891 }
892
893 end_sequence ();
894 }
895
896 /* Don't even try if the comparison operands or the mode of X are weird. */
897 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
898 return NULL_RTX;
899
900 return emit_store_flag (x, code, XEXP (cond, 0),
901 XEXP (cond, 1), VOIDmode,
902 (code == LTU || code == LEU
903 || code == GEU || code == GTU), normalize);
904 }
905
906 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
907 X is the destination/target and Y is the value to copy. */
908
909 static void
910 noce_emit_move_insn (rtx x, rtx y)
911 {
912 machine_mode outmode;
913 rtx outer, inner;
914 int bitpos;
915
916 if (GET_CODE (x) != STRICT_LOW_PART)
917 {
918 rtx_insn *seq, *insn;
919 rtx target;
920 optab ot;
921
922 start_sequence ();
923 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
924 otherwise construct a suitable SET pattern ourselves. */
925 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
926 ? emit_move_insn (x, y)
927 : emit_insn (gen_rtx_SET (x, y));
928 seq = get_insns ();
929 end_sequence ();
930
931 if (recog_memoized (insn) <= 0)
932 {
933 if (GET_CODE (x) == ZERO_EXTRACT)
934 {
935 rtx op = XEXP (x, 0);
936 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
937 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
938
939 /* store_bit_field expects START to be relative to
940 BYTES_BIG_ENDIAN and adjusts this value for machines with
941 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
942 invoke store_bit_field again it is necessary to have the START
943 value from the first call. */
944 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
945 {
946 if (MEM_P (op))
947 start = BITS_PER_UNIT - start - size;
948 else
949 {
950 gcc_assert (REG_P (op));
951 start = BITS_PER_WORD - start - size;
952 }
953 }
954
955 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
956 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
957 return;
958 }
959
960 switch (GET_RTX_CLASS (GET_CODE (y)))
961 {
962 case RTX_UNARY:
963 ot = code_to_optab (GET_CODE (y));
964 if (ot)
965 {
966 start_sequence ();
967 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
968 if (target != NULL_RTX)
969 {
970 if (target != x)
971 emit_move_insn (x, target);
972 seq = get_insns ();
973 }
974 end_sequence ();
975 }
976 break;
977
978 case RTX_BIN_ARITH:
979 case RTX_COMM_ARITH:
980 ot = code_to_optab (GET_CODE (y));
981 if (ot)
982 {
983 start_sequence ();
984 target = expand_binop (GET_MODE (y), ot,
985 XEXP (y, 0), XEXP (y, 1),
986 x, 0, OPTAB_DIRECT);
987 if (target != NULL_RTX)
988 {
989 if (target != x)
990 emit_move_insn (x, target);
991 seq = get_insns ();
992 }
993 end_sequence ();
994 }
995 break;
996
997 default:
998 break;
999 }
1000 }
1001
1002 emit_insn (seq);
1003 return;
1004 }
1005
1006 outer = XEXP (x, 0);
1007 inner = XEXP (outer, 0);
1008 outmode = GET_MODE (outer);
1009 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1010 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1011 0, 0, outmode, y);
1012 }
1013
1014 /* Return the CC reg if it is used in COND. */
1015
1016 static rtx
1017 cc_in_cond (rtx cond)
1018 {
1019 if (have_cbranchcc4 && cond
1020 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1021 return XEXP (cond, 0);
1022
1023 return NULL_RTX;
1024 }
1025
1026 /* Return sequence of instructions generated by if conversion. This
1027 function calls end_sequence() to end the current stream, ensures
1028 that the instructions are unshared, recognizable non-jump insns.
1029 On failure, this function returns a NULL_RTX. */
1030
1031 static rtx_insn *
1032 end_ifcvt_sequence (struct noce_if_info *if_info)
1033 {
1034 rtx_insn *insn;
1035 rtx_insn *seq = get_insns ();
1036 rtx cc = cc_in_cond (if_info->cond);
1037
1038 set_used_flags (if_info->x);
1039 set_used_flags (if_info->cond);
1040 set_used_flags (if_info->a);
1041 set_used_flags (if_info->b);
1042
1043 for (insn = seq; insn; insn = NEXT_INSN (insn))
1044 set_used_flags (insn);
1045
1046 unshare_all_rtl_in_chain (seq);
1047 end_sequence ();
1048
1049 /* Make sure that all of the instructions emitted are recognizable,
1050 and that we haven't introduced a new jump instruction.
1051 As an exercise for the reader, build a general mechanism that
1052 allows proper placement of required clobbers. */
1053 for (insn = seq; insn; insn = NEXT_INSN (insn))
1054 if (JUMP_P (insn)
1055 || recog_memoized (insn) == -1
1056 /* Make sure new generated code does not clobber CC. */
1057 || (cc && set_of (cc, insn)))
1058 return NULL;
1059
1060 return seq;
1061 }
1062
1063 /* Return true iff the then and else basic block (if it exists)
1064 consist of a single simple set instruction. */
1065
1066 static bool
1067 noce_simple_bbs (struct noce_if_info *if_info)
1068 {
1069 if (!if_info->then_simple)
1070 return false;
1071
1072 if (if_info->else_bb)
1073 return if_info->else_simple;
1074
1075 return true;
1076 }
1077
1078 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1079 "if (a == b) x = a; else x = b" into "x = b". */
1080
1081 static int
1082 noce_try_move (struct noce_if_info *if_info)
1083 {
1084 rtx cond = if_info->cond;
1085 enum rtx_code code = GET_CODE (cond);
1086 rtx y;
1087 rtx_insn *seq;
1088
1089 if (code != NE && code != EQ)
1090 return FALSE;
1091
1092 if (!noce_simple_bbs (if_info))
1093 return FALSE;
1094
1095 /* This optimization isn't valid if either A or B could be a NaN
1096 or a signed zero. */
1097 if (HONOR_NANS (if_info->x)
1098 || HONOR_SIGNED_ZEROS (if_info->x))
1099 return FALSE;
1100
1101 /* Check whether the operands of the comparison are A and in
1102 either order. */
1103 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1104 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1105 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1106 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1107 {
1108 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1109 return FALSE;
1110
1111 y = (code == EQ) ? if_info->a : if_info->b;
1112
1113 /* Avoid generating the move if the source is the destination. */
1114 if (! rtx_equal_p (if_info->x, y))
1115 {
1116 start_sequence ();
1117 noce_emit_move_insn (if_info->x, y);
1118 seq = end_ifcvt_sequence (if_info);
1119 if (!seq)
1120 return FALSE;
1121
1122 emit_insn_before_setloc (seq, if_info->jump,
1123 INSN_LOCATION (if_info->insn_a));
1124 }
1125 return TRUE;
1126 }
1127 return FALSE;
1128 }
1129
1130 /* Convert "if (test) x = 1; else x = 0".
1131
1132 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1133 tried in noce_try_store_flag_constants after noce_try_cmove has had
1134 a go at the conversion. */
1135
1136 static int
1137 noce_try_store_flag (struct noce_if_info *if_info)
1138 {
1139 int reversep;
1140 rtx target;
1141 rtx_insn *seq;
1142
1143 if (!noce_simple_bbs (if_info))
1144 return FALSE;
1145
1146 if (CONST_INT_P (if_info->b)
1147 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1148 && if_info->a == const0_rtx)
1149 reversep = 0;
1150 else if (if_info->b == const0_rtx
1151 && CONST_INT_P (if_info->a)
1152 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1153 && (reversed_comparison_code (if_info->cond, if_info->jump)
1154 != UNKNOWN))
1155 reversep = 1;
1156 else
1157 return FALSE;
1158
1159 start_sequence ();
1160
1161 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1162 if (target)
1163 {
1164 if (target != if_info->x)
1165 noce_emit_move_insn (if_info->x, target);
1166
1167 seq = end_ifcvt_sequence (if_info);
1168 if (! seq)
1169 return FALSE;
1170
1171 emit_insn_before_setloc (seq, if_info->jump,
1172 INSN_LOCATION (if_info->insn_a));
1173 return TRUE;
1174 }
1175 else
1176 {
1177 end_sequence ();
1178 return FALSE;
1179 }
1180 }
1181
1182 /* Convert "if (test) x = a; else x = b", for A and B constant.
1183 Also allow A = y + c1, B = y + c2, with a common y between A
1184 and B. */
1185
1186 static int
1187 noce_try_store_flag_constants (struct noce_if_info *if_info)
1188 {
1189 rtx target;
1190 rtx_insn *seq;
1191 bool reversep;
1192 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1193 int normalize;
1194 bool can_reverse;
1195 machine_mode mode = GET_MODE (if_info->x);;
1196 rtx common = NULL_RTX;
1197
1198 rtx a = if_info->a;
1199 rtx b = if_info->b;
1200
1201 /* Handle cases like x := test ? y + 3 : y + 4. */
1202 if (GET_CODE (a) == PLUS
1203 && GET_CODE (b) == PLUS
1204 && CONST_INT_P (XEXP (a, 1))
1205 && CONST_INT_P (XEXP (b, 1))
1206 && rtx_equal_p (XEXP (a, 0), XEXP (b, 0))
1207 && noce_operand_ok (XEXP (a, 0))
1208 && if_info->branch_cost >= 2)
1209 {
1210 common = XEXP (a, 0);
1211 a = XEXP (a, 1);
1212 b = XEXP (b, 1);
1213 }
1214
1215 if (!noce_simple_bbs (if_info))
1216 return FALSE;
1217
1218 if (CONST_INT_P (a)
1219 && CONST_INT_P (b))
1220 {
1221 ifalse = INTVAL (a);
1222 itrue = INTVAL (b);
1223 bool subtract_flag_p = false;
1224
1225 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1226 /* Make sure we can represent the difference between the two values. */
1227 if ((diff > 0)
1228 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1229 return FALSE;
1230
1231 diff = trunc_int_for_mode (diff, mode);
1232
1233 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1234 != UNKNOWN);
1235
1236 reversep = false;
1237 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1238 {
1239 normalize = 0;
1240 /* We could collapse these cases but it is easier to follow the
1241 diff/STORE_FLAG_VALUE combinations when they are listed
1242 explicitly. */
1243
1244 /* test ? 3 : 4
1245 => 4 + (test != 0). */
1246 if (diff < 0 && STORE_FLAG_VALUE < 0)
1247 reversep = false;
1248 /* test ? 4 : 3
1249 => can_reverse | 4 + (test == 0)
1250 !can_reverse | 3 - (test != 0). */
1251 else if (diff > 0 && STORE_FLAG_VALUE < 0)
1252 {
1253 reversep = can_reverse;
1254 subtract_flag_p = !can_reverse;
1255 /* If we need to subtract the flag and we have PLUS-immediate
1256 A and B then it is unlikely to be beneficial to play tricks
1257 here. */
1258 if (subtract_flag_p && common)
1259 return FALSE;
1260 }
1261 /* test ? 3 : 4
1262 => can_reverse | 3 + (test == 0)
1263 !can_reverse | 4 - (test != 0). */
1264 else if (diff < 0 && STORE_FLAG_VALUE > 0)
1265 {
1266 reversep = can_reverse;
1267 subtract_flag_p = !can_reverse;
1268 /* If we need to subtract the flag and we have PLUS-immediate
1269 A and B then it is unlikely to be beneficial to play tricks
1270 here. */
1271 if (subtract_flag_p && common)
1272 return FALSE;
1273 }
1274 /* test ? 4 : 3
1275 => 4 + (test != 0). */
1276 else if (diff > 0 && STORE_FLAG_VALUE > 0)
1277 reversep = false;
1278 else
1279 gcc_unreachable ();
1280 }
1281 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1282 && (STORE_FLAG_VALUE == 1
1283 || if_info->branch_cost >= 2))
1284 normalize = 1;
1285 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1286 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1287 {
1288 normalize = 1;
1289 reversep = true;
1290 }
1291 else if (itrue == -1
1292 && (STORE_FLAG_VALUE == -1
1293 || if_info->branch_cost >= 2))
1294 normalize = -1;
1295 else if (ifalse == -1 && can_reverse
1296 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1297 {
1298 normalize = -1;
1299 reversep = true;
1300 }
1301 else
1302 return FALSE;
1303
1304 if (reversep)
1305 {
1306 std::swap (itrue, ifalse);
1307 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1308 }
1309
1310 start_sequence ();
1311
1312 /* If we have x := test ? x + 3 : x + 4 then move the original
1313 x out of the way while we store flags. */
1314 if (common && rtx_equal_p (common, if_info->x))
1315 {
1316 common = gen_reg_rtx (mode);
1317 noce_emit_move_insn (common, if_info->x);
1318 }
1319
1320 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1321 if (! target)
1322 {
1323 end_sequence ();
1324 return FALSE;
1325 }
1326
1327 /* if (test) x = 3; else x = 4;
1328 => x = 3 + (test == 0); */
1329 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1330 {
1331 /* Add the common part now. This may allow combine to merge this
1332 with the store flag operation earlier into some sort of conditional
1333 increment/decrement if the target allows it. */
1334 if (common)
1335 target = expand_simple_binop (mode, PLUS,
1336 target, common,
1337 target, 0, OPTAB_WIDEN);
1338
1339 /* Always use ifalse here. It should have been swapped with itrue
1340 when appropriate when reversep is true. */
1341 target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
1342 gen_int_mode (ifalse, mode), target,
1343 if_info->x, 0, OPTAB_WIDEN);
1344 }
1345 /* Other cases are not beneficial when the original A and B are PLUS
1346 expressions. */
1347 else if (common)
1348 {
1349 end_sequence ();
1350 return FALSE;
1351 }
1352 /* if (test) x = 8; else x = 0;
1353 => x = (test != 0) << 3; */
1354 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1355 {
1356 target = expand_simple_binop (mode, ASHIFT,
1357 target, GEN_INT (tmp), if_info->x, 0,
1358 OPTAB_WIDEN);
1359 }
1360
1361 /* if (test) x = -1; else x = b;
1362 => x = -(test != 0) | b; */
1363 else if (itrue == -1)
1364 {
1365 target = expand_simple_binop (mode, IOR,
1366 target, gen_int_mode (ifalse, mode),
1367 if_info->x, 0, OPTAB_WIDEN);
1368 }
1369 else
1370 {
1371 end_sequence ();
1372 return FALSE;
1373 }
1374
1375 if (! target)
1376 {
1377 end_sequence ();
1378 return FALSE;
1379 }
1380
1381 if (target != if_info->x)
1382 noce_emit_move_insn (if_info->x, target);
1383
1384 seq = end_ifcvt_sequence (if_info);
1385 if (!seq)
1386 return FALSE;
1387
1388 emit_insn_before_setloc (seq, if_info->jump,
1389 INSN_LOCATION (if_info->insn_a));
1390 return TRUE;
1391 }
1392
1393 return FALSE;
1394 }
1395
1396 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1397 similarly for "foo--". */
1398
1399 static int
1400 noce_try_addcc (struct noce_if_info *if_info)
1401 {
1402 rtx target;
1403 rtx_insn *seq;
1404 int subtract, normalize;
1405
1406 if (!noce_simple_bbs (if_info))
1407 return FALSE;
1408
1409 if (GET_CODE (if_info->a) == PLUS
1410 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1411 && (reversed_comparison_code (if_info->cond, if_info->jump)
1412 != UNKNOWN))
1413 {
1414 rtx cond = if_info->cond;
1415 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1416
1417 /* First try to use addcc pattern. */
1418 if (general_operand (XEXP (cond, 0), VOIDmode)
1419 && general_operand (XEXP (cond, 1), VOIDmode))
1420 {
1421 start_sequence ();
1422 target = emit_conditional_add (if_info->x, code,
1423 XEXP (cond, 0),
1424 XEXP (cond, 1),
1425 VOIDmode,
1426 if_info->b,
1427 XEXP (if_info->a, 1),
1428 GET_MODE (if_info->x),
1429 (code == LTU || code == GEU
1430 || code == LEU || code == GTU));
1431 if (target)
1432 {
1433 if (target != if_info->x)
1434 noce_emit_move_insn (if_info->x, target);
1435
1436 seq = end_ifcvt_sequence (if_info);
1437 if (!seq)
1438 return FALSE;
1439
1440 emit_insn_before_setloc (seq, if_info->jump,
1441 INSN_LOCATION (if_info->insn_a));
1442 return TRUE;
1443 }
1444 end_sequence ();
1445 }
1446
1447 /* If that fails, construct conditional increment or decrement using
1448 setcc. */
1449 if (if_info->branch_cost >= 2
1450 && (XEXP (if_info->a, 1) == const1_rtx
1451 || XEXP (if_info->a, 1) == constm1_rtx))
1452 {
1453 start_sequence ();
1454 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1455 subtract = 0, normalize = 0;
1456 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1457 subtract = 1, normalize = 0;
1458 else
1459 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1460
1461
1462 target = noce_emit_store_flag (if_info,
1463 gen_reg_rtx (GET_MODE (if_info->x)),
1464 1, normalize);
1465
1466 if (target)
1467 target = expand_simple_binop (GET_MODE (if_info->x),
1468 subtract ? MINUS : PLUS,
1469 if_info->b, target, if_info->x,
1470 0, OPTAB_WIDEN);
1471 if (target)
1472 {
1473 if (target != if_info->x)
1474 noce_emit_move_insn (if_info->x, target);
1475
1476 seq = end_ifcvt_sequence (if_info);
1477 if (!seq)
1478 return FALSE;
1479
1480 emit_insn_before_setloc (seq, if_info->jump,
1481 INSN_LOCATION (if_info->insn_a));
1482 return TRUE;
1483 }
1484 end_sequence ();
1485 }
1486 }
1487
1488 return FALSE;
1489 }
1490
1491 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1492
1493 static int
1494 noce_try_store_flag_mask (struct noce_if_info *if_info)
1495 {
1496 rtx target;
1497 rtx_insn *seq;
1498 int reversep;
1499
1500 if (!noce_simple_bbs (if_info))
1501 return FALSE;
1502
1503 reversep = 0;
1504 if ((if_info->branch_cost >= 2
1505 || STORE_FLAG_VALUE == -1)
1506 && ((if_info->a == const0_rtx
1507 && rtx_equal_p (if_info->b, if_info->x))
1508 || ((reversep = (reversed_comparison_code (if_info->cond,
1509 if_info->jump)
1510 != UNKNOWN))
1511 && if_info->b == const0_rtx
1512 && rtx_equal_p (if_info->a, if_info->x))))
1513 {
1514 start_sequence ();
1515 target = noce_emit_store_flag (if_info,
1516 gen_reg_rtx (GET_MODE (if_info->x)),
1517 reversep, -1);
1518 if (target)
1519 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1520 if_info->x,
1521 target, if_info->x, 0,
1522 OPTAB_WIDEN);
1523
1524 if (target)
1525 {
1526 int old_cost, new_cost, insn_cost;
1527 int speed_p;
1528
1529 if (target != if_info->x)
1530 noce_emit_move_insn (if_info->x, target);
1531
1532 seq = end_ifcvt_sequence (if_info);
1533 if (!seq)
1534 return FALSE;
1535
1536 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a));
1537 insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p);
1538 old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost;
1539 new_cost = seq_cost (seq, speed_p);
1540
1541 if (new_cost > old_cost)
1542 return FALSE;
1543
1544 emit_insn_before_setloc (seq, if_info->jump,
1545 INSN_LOCATION (if_info->insn_a));
1546 return TRUE;
1547 }
1548
1549 end_sequence ();
1550 }
1551
1552 return FALSE;
1553 }
1554
1555 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1556
1557 static rtx
1558 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1559 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1560 {
1561 rtx target ATTRIBUTE_UNUSED;
1562 int unsignedp ATTRIBUTE_UNUSED;
1563
1564 /* If earliest == jump, try to build the cmove insn directly.
1565 This is helpful when combine has created some complex condition
1566 (like for alpha's cmovlbs) that we can't hope to regenerate
1567 through the normal interface. */
1568
1569 if (if_info->cond_earliest == if_info->jump)
1570 {
1571 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1572 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1573 cond, vtrue, vfalse);
1574 rtx set = gen_rtx_SET (x, if_then_else);
1575
1576 start_sequence ();
1577 rtx_insn *insn = emit_insn (set);
1578
1579 if (recog_memoized (insn) >= 0)
1580 {
1581 rtx_insn *seq = get_insns ();
1582 end_sequence ();
1583 emit_insn (seq);
1584
1585 return x;
1586 }
1587
1588 end_sequence ();
1589 }
1590
1591 /* Don't even try if the comparison operands are weird
1592 except that the target supports cbranchcc4. */
1593 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1594 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1595 {
1596 if (!have_cbranchcc4
1597 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1598 || cmp_b != const0_rtx)
1599 return NULL_RTX;
1600 }
1601
1602 unsignedp = (code == LTU || code == GEU
1603 || code == LEU || code == GTU);
1604
1605 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1606 vtrue, vfalse, GET_MODE (x),
1607 unsignedp);
1608 if (target)
1609 return target;
1610
1611 /* We might be faced with a situation like:
1612
1613 x = (reg:M TARGET)
1614 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1615 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1616
1617 We can't do a conditional move in mode M, but it's possible that we
1618 could do a conditional move in mode N instead and take a subreg of
1619 the result.
1620
1621 If we can't create new pseudos, though, don't bother. */
1622 if (reload_completed)
1623 return NULL_RTX;
1624
1625 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1626 {
1627 rtx reg_vtrue = SUBREG_REG (vtrue);
1628 rtx reg_vfalse = SUBREG_REG (vfalse);
1629 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1630 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1631 rtx promoted_target;
1632
1633 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1634 || byte_vtrue != byte_vfalse
1635 || (SUBREG_PROMOTED_VAR_P (vtrue)
1636 != SUBREG_PROMOTED_VAR_P (vfalse))
1637 || (SUBREG_PROMOTED_GET (vtrue)
1638 != SUBREG_PROMOTED_GET (vfalse)))
1639 return NULL_RTX;
1640
1641 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1642
1643 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1644 VOIDmode, reg_vtrue, reg_vfalse,
1645 GET_MODE (reg_vtrue), unsignedp);
1646 /* Nope, couldn't do it in that mode either. */
1647 if (!target)
1648 return NULL_RTX;
1649
1650 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1651 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1652 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1653 emit_move_insn (x, target);
1654 return x;
1655 }
1656 else
1657 return NULL_RTX;
1658 }
1659
1660 /* Try only simple constants and registers here. More complex cases
1661 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1662 has had a go at it. */
1663
1664 static int
1665 noce_try_cmove (struct noce_if_info *if_info)
1666 {
1667 enum rtx_code code;
1668 rtx target;
1669 rtx_insn *seq;
1670
1671 if (!noce_simple_bbs (if_info))
1672 return FALSE;
1673
1674 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1675 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1676 {
1677 start_sequence ();
1678
1679 code = GET_CODE (if_info->cond);
1680 target = noce_emit_cmove (if_info, if_info->x, code,
1681 XEXP (if_info->cond, 0),
1682 XEXP (if_info->cond, 1),
1683 if_info->a, if_info->b);
1684
1685 if (target)
1686 {
1687 if (target != if_info->x)
1688 noce_emit_move_insn (if_info->x, target);
1689
1690 seq = end_ifcvt_sequence (if_info);
1691 if (!seq)
1692 return FALSE;
1693
1694 emit_insn_before_setloc (seq, if_info->jump,
1695 INSN_LOCATION (if_info->insn_a));
1696 return TRUE;
1697 }
1698 /* If both a and b are constants try a last-ditch transformation:
1699 if (test) x = a; else x = b;
1700 => x = (-(test != 0) & (b - a)) + a;
1701 Try this only if the target-specific expansion above has failed.
1702 The target-specific expander may want to generate sequences that
1703 we don't know about, so give them a chance before trying this
1704 approach. */
1705 else if (!targetm.have_conditional_execution ()
1706 && CONST_INT_P (if_info->a) && CONST_INT_P (if_info->b)
1707 && ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1708 || if_info->branch_cost >= 3))
1709 {
1710 machine_mode mode = GET_MODE (if_info->x);
1711 HOST_WIDE_INT ifalse = INTVAL (if_info->a);
1712 HOST_WIDE_INT itrue = INTVAL (if_info->b);
1713 rtx target = noce_emit_store_flag (if_info, if_info->x, false, -1);
1714 if (!target)
1715 {
1716 end_sequence ();
1717 return FALSE;
1718 }
1719
1720 HOST_WIDE_INT diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1721 /* Make sure we can represent the difference
1722 between the two values. */
1723 if ((diff > 0)
1724 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1725 {
1726 end_sequence ();
1727 return FALSE;
1728 }
1729
1730 diff = trunc_int_for_mode (diff, mode);
1731 target = expand_simple_binop (mode, AND,
1732 target, gen_int_mode (diff, mode),
1733 if_info->x, 0, OPTAB_WIDEN);
1734 if (target)
1735 target = expand_simple_binop (mode, PLUS,
1736 target, gen_int_mode (ifalse, mode),
1737 if_info->x, 0, OPTAB_WIDEN);
1738 if (target)
1739 {
1740 if (target != if_info->x)
1741 noce_emit_move_insn (if_info->x, target);
1742
1743 seq = end_ifcvt_sequence (if_info);
1744 if (!seq)
1745 return FALSE;
1746
1747 emit_insn_before_setloc (seq, if_info->jump,
1748 INSN_LOCATION (if_info->insn_a));
1749 return TRUE;
1750 }
1751 else
1752 {
1753 end_sequence ();
1754 return FALSE;
1755 }
1756 }
1757 else
1758 end_sequence ();
1759 }
1760
1761 return FALSE;
1762 }
1763
1764 /* Return true if X contains a conditional code mode rtx. */
1765
1766 static bool
1767 contains_ccmode_rtx_p (rtx x)
1768 {
1769 subrtx_iterator::array_type array;
1770 FOR_EACH_SUBRTX (iter, array, x, ALL)
1771 if (GET_MODE_CLASS (GET_MODE (*iter)) == MODE_CC)
1772 return true;
1773
1774 return false;
1775 }
1776
1777 /* Helper for bb_valid_for_noce_process_p. Validate that
1778 the rtx insn INSN is a single set that does not set
1779 the conditional register CC and is in general valid for
1780 if-conversion. */
1781
1782 static bool
1783 insn_valid_noce_process_p (rtx_insn *insn, rtx cc)
1784 {
1785 if (!insn
1786 || !NONJUMP_INSN_P (insn)
1787 || (cc && set_of (cc, insn)))
1788 return false;
1789
1790 rtx sset = single_set (insn);
1791
1792 /* Currently support only simple single sets in test_bb. */
1793 if (!sset
1794 || !noce_operand_ok (SET_DEST (sset))
1795 || contains_ccmode_rtx_p (SET_DEST (sset))
1796 || !noce_operand_ok (SET_SRC (sset)))
1797 return false;
1798
1799 return true;
1800 }
1801
1802
1803 /* Return true iff the registers that the insns in BB_A set do not
1804 get used in BB_B. */
1805
1806 static bool
1807 bbs_ok_for_cmove_arith (basic_block bb_a, basic_block bb_b)
1808 {
1809 rtx_insn *a_insn;
1810 bitmap bba_sets = BITMAP_ALLOC (&reg_obstack);
1811
1812 df_ref def;
1813 df_ref use;
1814
1815 FOR_BB_INSNS (bb_a, a_insn)
1816 {
1817 if (!active_insn_p (a_insn))
1818 continue;
1819
1820 rtx sset_a = single_set (a_insn);
1821
1822 if (!sset_a)
1823 {
1824 BITMAP_FREE (bba_sets);
1825 return false;
1826 }
1827
1828 /* Record all registers that BB_A sets. */
1829 FOR_EACH_INSN_DEF (def, a_insn)
1830 bitmap_set_bit (bba_sets, DF_REF_REGNO (def));
1831 }
1832
1833 rtx_insn *b_insn;
1834
1835 FOR_BB_INSNS (bb_b, b_insn)
1836 {
1837 if (!active_insn_p (b_insn))
1838 continue;
1839
1840 rtx sset_b = single_set (b_insn);
1841
1842 if (!sset_b)
1843 {
1844 BITMAP_FREE (bba_sets);
1845 return false;
1846 }
1847
1848 /* Make sure this is a REG and not some instance
1849 of ZERO_EXTRACT or SUBREG or other dangerous stuff. */
1850 if (!REG_P (SET_DEST (sset_b)))
1851 {
1852 BITMAP_FREE (bba_sets);
1853 return false;
1854 }
1855
1856 /* If the insn uses a reg set in BB_A return false. */
1857 FOR_EACH_INSN_USE (use, b_insn)
1858 {
1859 if (bitmap_bit_p (bba_sets, DF_REF_REGNO (use)))
1860 {
1861 BITMAP_FREE (bba_sets);
1862 return false;
1863 }
1864 }
1865
1866 }
1867
1868 BITMAP_FREE (bba_sets);
1869 return true;
1870 }
1871
1872 /* Emit copies of all the active instructions in BB except the last.
1873 This is a helper for noce_try_cmove_arith. */
1874
1875 static void
1876 noce_emit_all_but_last (basic_block bb)
1877 {
1878 rtx_insn *last = last_active_insn (bb, FALSE);
1879 rtx_insn *insn;
1880 FOR_BB_INSNS (bb, insn)
1881 {
1882 if (insn != last && active_insn_p (insn))
1883 {
1884 rtx_insn *to_emit = as_a <rtx_insn *> (copy_rtx (insn));
1885
1886 emit_insn (PATTERN (to_emit));
1887 }
1888 }
1889 }
1890
1891 /* Helper for noce_try_cmove_arith. Emit the pattern TO_EMIT and return
1892 the resulting insn or NULL if it's not a valid insn. */
1893
1894 static rtx_insn *
1895 noce_emit_insn (rtx to_emit)
1896 {
1897 gcc_assert (to_emit);
1898 rtx_insn *insn = emit_insn (to_emit);
1899
1900 if (recog_memoized (insn) < 0)
1901 return NULL;
1902
1903 return insn;
1904 }
1905
1906 /* Helper for noce_try_cmove_arith. Emit a copy of the insns up to
1907 and including the penultimate one in BB if it is not simple
1908 (as indicated by SIMPLE). Then emit LAST_INSN as the last
1909 insn in the block. The reason for that is that LAST_INSN may
1910 have been modified by the preparation in noce_try_cmove_arith. */
1911
1912 static bool
1913 noce_emit_bb (rtx last_insn, basic_block bb, bool simple)
1914 {
1915 if (bb && !simple)
1916 noce_emit_all_but_last (bb);
1917
1918 if (last_insn && !noce_emit_insn (last_insn))
1919 return false;
1920
1921 return true;
1922 }
1923
1924 /* Try more complex cases involving conditional_move. */
1925
1926 static int
1927 noce_try_cmove_arith (struct noce_if_info *if_info)
1928 {
1929 rtx a = if_info->a;
1930 rtx b = if_info->b;
1931 rtx x = if_info->x;
1932 rtx orig_a, orig_b;
1933 rtx_insn *insn_a, *insn_b;
1934 bool a_simple = if_info->then_simple;
1935 bool b_simple = if_info->else_simple;
1936 basic_block then_bb = if_info->then_bb;
1937 basic_block else_bb = if_info->else_bb;
1938 rtx target;
1939 int is_mem = 0;
1940 enum rtx_code code;
1941 rtx_insn *ifcvt_seq;
1942
1943 /* A conditional move from two memory sources is equivalent to a
1944 conditional on their addresses followed by a load. Don't do this
1945 early because it'll screw alias analysis. Note that we've
1946 already checked for no side effects. */
1947 /* ??? FIXME: Magic number 5. */
1948 if (cse_not_expected
1949 && MEM_P (a) && MEM_P (b)
1950 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1951 && if_info->branch_cost >= 5)
1952 {
1953 machine_mode address_mode = get_address_mode (a);
1954
1955 a = XEXP (a, 0);
1956 b = XEXP (b, 0);
1957 x = gen_reg_rtx (address_mode);
1958 is_mem = 1;
1959 }
1960
1961 /* ??? We could handle this if we knew that a load from A or B could
1962 not trap or fault. This is also true if we've already loaded
1963 from the address along the path from ENTRY. */
1964 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1965 return FALSE;
1966
1967 /* if (test) x = a + b; else x = c - d;
1968 => y = a + b;
1969 x = c - d;
1970 if (test)
1971 x = y;
1972 */
1973
1974 code = GET_CODE (if_info->cond);
1975 insn_a = if_info->insn_a;
1976 insn_b = if_info->insn_b;
1977
1978 machine_mode x_mode = GET_MODE (x);
1979
1980 if (!can_conditionally_move_p (x_mode))
1981 return FALSE;
1982
1983 unsigned int then_cost;
1984 unsigned int else_cost;
1985 if (insn_a)
1986 then_cost = if_info->then_cost;
1987 else
1988 then_cost = 0;
1989
1990 if (insn_b)
1991 else_cost = if_info->else_cost;
1992 else
1993 else_cost = 0;
1994
1995 /* We're going to execute one of the basic blocks anyway, so
1996 bail out if the most expensive of the two blocks is unacceptable. */
1997 if (MAX (then_cost, else_cost) > COSTS_N_INSNS (if_info->branch_cost))
1998 return FALSE;
1999
2000 /* Possibly rearrange operands to make things come out more natural. */
2001 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
2002 {
2003 int reversep = 0;
2004 if (rtx_equal_p (b, x))
2005 reversep = 1;
2006 else if (general_operand (b, GET_MODE (b)))
2007 reversep = 1;
2008
2009 if (reversep)
2010 {
2011 code = reversed_comparison_code (if_info->cond, if_info->jump);
2012 std::swap (a, b);
2013 std::swap (insn_a, insn_b);
2014 std::swap (a_simple, b_simple);
2015 std::swap (then_bb, else_bb);
2016 }
2017 }
2018
2019 if (then_bb && else_bb && !a_simple && !b_simple
2020 && (!bbs_ok_for_cmove_arith (then_bb, else_bb)
2021 || !bbs_ok_for_cmove_arith (else_bb, then_bb)))
2022 return FALSE;
2023
2024 start_sequence ();
2025
2026 /* If one of the blocks is empty then the corresponding B or A value
2027 came from the test block. The non-empty complex block that we will
2028 emit might clobber the register used by B or A, so move it to a pseudo
2029 first. */
2030
2031 if (b_simple || !else_bb)
2032 {
2033 rtx tmp_b = gen_reg_rtx (x_mode);
2034 /* Perform the simplest kind of set. The register allocator
2035 should remove it if it's not actually needed. If this set is not
2036 a valid insn (can happen on the is_mem path) then end_ifcvt_sequence
2037 will cancel the whole sequence. Don't try any of the fallback paths
2038 from noce_emit_move_insn since we want this to be the simplest kind
2039 of move. */
2040 emit_insn (gen_rtx_SET (tmp_b, b));
2041 b = tmp_b;
2042 }
2043
2044 if (a_simple || !then_bb)
2045 {
2046 rtx tmp_a = gen_reg_rtx (x_mode);
2047 emit_insn (gen_rtx_SET (tmp_a, a));
2048 a = tmp_a;
2049 }
2050
2051 orig_a = a;
2052 orig_b = b;
2053
2054 rtx emit_a = NULL_RTX;
2055 rtx emit_b = NULL_RTX;
2056
2057 /* If either operand is complex, load it into a register first.
2058 The best way to do this is to copy the original insn. In this
2059 way we preserve any clobbers etc that the insn may have had.
2060 This is of course not possible in the IS_MEM case. */
2061
2062 if (! general_operand (a, GET_MODE (a)))
2063 {
2064
2065 if (is_mem)
2066 {
2067 rtx reg = gen_reg_rtx (GET_MODE (a));
2068 emit_a = gen_rtx_SET (reg, a);
2069 }
2070 else if (! insn_a)
2071 goto end_seq_and_fail;
2072 else
2073 {
2074 a = gen_reg_rtx (GET_MODE (a));
2075 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
2076 rtx set = single_set (copy_of_a);
2077 SET_DEST (set) = a;
2078
2079 emit_a = PATTERN (copy_of_a);
2080 }
2081 }
2082
2083 if (! general_operand (b, GET_MODE (b)))
2084 {
2085 if (is_mem)
2086 {
2087 rtx reg = gen_reg_rtx (GET_MODE (b));
2088 emit_b = gen_rtx_SET (reg, b);
2089 }
2090 else if (! insn_b)
2091 goto end_seq_and_fail;
2092 else
2093 {
2094 b = gen_reg_rtx (GET_MODE (b));
2095 rtx_insn *copy_of_b = as_a <rtx_insn *> (copy_rtx (insn_b));
2096 rtx set = single_set (copy_of_b);
2097
2098 SET_DEST (set) = b;
2099 emit_b = PATTERN (copy_of_b);
2100 }
2101 }
2102
2103 /* If insn to set up A clobbers any registers B depends on, try to
2104 swap insn that sets up A with the one that sets up B. If even
2105 that doesn't help, punt. */
2106
2107 if (emit_a && modified_in_p (orig_b, emit_a))
2108 {
2109 if (modified_in_p (orig_a, emit_b))
2110 goto end_seq_and_fail;
2111
2112 if (else_bb && !b_simple)
2113 {
2114 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2115 goto end_seq_and_fail;
2116 }
2117
2118 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2119 goto end_seq_and_fail;
2120 }
2121 else
2122 {
2123 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2124 goto end_seq_and_fail;
2125
2126 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2127 goto end_seq_and_fail;
2128
2129 }
2130
2131 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
2132 XEXP (if_info->cond, 1), a, b);
2133
2134 if (! target)
2135 goto end_seq_and_fail;
2136
2137 /* If we're handling a memory for above, emit the load now. */
2138 if (is_mem)
2139 {
2140 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
2141
2142 /* Copy over flags as appropriate. */
2143 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
2144 MEM_VOLATILE_P (mem) = 1;
2145 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
2146 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
2147 set_mem_align (mem,
2148 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
2149
2150 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
2151 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
2152
2153 noce_emit_move_insn (if_info->x, mem);
2154 }
2155 else if (target != x)
2156 noce_emit_move_insn (x, target);
2157
2158 ifcvt_seq = end_ifcvt_sequence (if_info);
2159 if (!ifcvt_seq)
2160 return FALSE;
2161
2162 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
2163 INSN_LOCATION (if_info->insn_a));
2164 return TRUE;
2165
2166 end_seq_and_fail:
2167 end_sequence ();
2168 return FALSE;
2169 }
2170
2171 /* For most cases, the simplified condition we found is the best
2172 choice, but this is not the case for the min/max/abs transforms.
2173 For these we wish to know that it is A or B in the condition. */
2174
2175 static rtx
2176 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
2177 rtx_insn **earliest)
2178 {
2179 rtx cond, set;
2180 rtx_insn *insn;
2181 int reverse;
2182
2183 /* If target is already mentioned in the known condition, return it. */
2184 if (reg_mentioned_p (target, if_info->cond))
2185 {
2186 *earliest = if_info->cond_earliest;
2187 return if_info->cond;
2188 }
2189
2190 set = pc_set (if_info->jump);
2191 cond = XEXP (SET_SRC (set), 0);
2192 reverse
2193 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2194 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
2195 if (if_info->then_else_reversed)
2196 reverse = !reverse;
2197
2198 /* If we're looking for a constant, try to make the conditional
2199 have that constant in it. There are two reasons why it may
2200 not have the constant we want:
2201
2202 1. GCC may have needed to put the constant in a register, because
2203 the target can't compare directly against that constant. For
2204 this case, we look for a SET immediately before the comparison
2205 that puts a constant in that register.
2206
2207 2. GCC may have canonicalized the conditional, for example
2208 replacing "if x < 4" with "if x <= 3". We can undo that (or
2209 make equivalent types of changes) to get the constants we need
2210 if they're off by one in the right direction. */
2211
2212 if (CONST_INT_P (target))
2213 {
2214 enum rtx_code code = GET_CODE (if_info->cond);
2215 rtx op_a = XEXP (if_info->cond, 0);
2216 rtx op_b = XEXP (if_info->cond, 1);
2217 rtx_insn *prev_insn;
2218
2219 /* First, look to see if we put a constant in a register. */
2220 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
2221 if (prev_insn
2222 && BLOCK_FOR_INSN (prev_insn)
2223 == BLOCK_FOR_INSN (if_info->cond_earliest)
2224 && INSN_P (prev_insn)
2225 && GET_CODE (PATTERN (prev_insn)) == SET)
2226 {
2227 rtx src = find_reg_equal_equiv_note (prev_insn);
2228 if (!src)
2229 src = SET_SRC (PATTERN (prev_insn));
2230 if (CONST_INT_P (src))
2231 {
2232 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
2233 op_a = src;
2234 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
2235 op_b = src;
2236
2237 if (CONST_INT_P (op_a))
2238 {
2239 std::swap (op_a, op_b);
2240 code = swap_condition (code);
2241 }
2242 }
2243 }
2244
2245 /* Now, look to see if we can get the right constant by
2246 adjusting the conditional. */
2247 if (CONST_INT_P (op_b))
2248 {
2249 HOST_WIDE_INT desired_val = INTVAL (target);
2250 HOST_WIDE_INT actual_val = INTVAL (op_b);
2251
2252 switch (code)
2253 {
2254 case LT:
2255 if (actual_val == desired_val + 1)
2256 {
2257 code = LE;
2258 op_b = GEN_INT (desired_val);
2259 }
2260 break;
2261 case LE:
2262 if (actual_val == desired_val - 1)
2263 {
2264 code = LT;
2265 op_b = GEN_INT (desired_val);
2266 }
2267 break;
2268 case GT:
2269 if (actual_val == desired_val - 1)
2270 {
2271 code = GE;
2272 op_b = GEN_INT (desired_val);
2273 }
2274 break;
2275 case GE:
2276 if (actual_val == desired_val + 1)
2277 {
2278 code = GT;
2279 op_b = GEN_INT (desired_val);
2280 }
2281 break;
2282 default:
2283 break;
2284 }
2285 }
2286
2287 /* If we made any changes, generate a new conditional that is
2288 equivalent to what we started with, but has the right
2289 constants in it. */
2290 if (code != GET_CODE (if_info->cond)
2291 || op_a != XEXP (if_info->cond, 0)
2292 || op_b != XEXP (if_info->cond, 1))
2293 {
2294 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
2295 *earliest = if_info->cond_earliest;
2296 return cond;
2297 }
2298 }
2299
2300 cond = canonicalize_condition (if_info->jump, cond, reverse,
2301 earliest, target, have_cbranchcc4, true);
2302 if (! cond || ! reg_mentioned_p (target, cond))
2303 return NULL;
2304
2305 /* We almost certainly searched back to a different place.
2306 Need to re-verify correct lifetimes. */
2307
2308 /* X may not be mentioned in the range (cond_earliest, jump]. */
2309 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
2310 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
2311 return NULL;
2312
2313 /* A and B may not be modified in the range [cond_earliest, jump). */
2314 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
2315 if (INSN_P (insn)
2316 && (modified_in_p (if_info->a, insn)
2317 || modified_in_p (if_info->b, insn)))
2318 return NULL;
2319
2320 return cond;
2321 }
2322
2323 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
2324
2325 static int
2326 noce_try_minmax (struct noce_if_info *if_info)
2327 {
2328 rtx cond, target;
2329 rtx_insn *earliest, *seq;
2330 enum rtx_code code, op;
2331 int unsignedp;
2332
2333 if (!noce_simple_bbs (if_info))
2334 return FALSE;
2335
2336 /* ??? Reject modes with NaNs or signed zeros since we don't know how
2337 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
2338 to get the target to tell us... */
2339 if (HONOR_SIGNED_ZEROS (if_info->x)
2340 || HONOR_NANS (if_info->x))
2341 return FALSE;
2342
2343 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
2344 if (!cond)
2345 return FALSE;
2346
2347 /* Verify the condition is of the form we expect, and canonicalize
2348 the comparison code. */
2349 code = GET_CODE (cond);
2350 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2351 {
2352 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2353 return FALSE;
2354 }
2355 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2356 {
2357 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2358 return FALSE;
2359 code = swap_condition (code);
2360 }
2361 else
2362 return FALSE;
2363
2364 /* Determine what sort of operation this is. Note that the code is for
2365 a taken branch, so the code->operation mapping appears backwards. */
2366 switch (code)
2367 {
2368 case LT:
2369 case LE:
2370 case UNLT:
2371 case UNLE:
2372 op = SMAX;
2373 unsignedp = 0;
2374 break;
2375 case GT:
2376 case GE:
2377 case UNGT:
2378 case UNGE:
2379 op = SMIN;
2380 unsignedp = 0;
2381 break;
2382 case LTU:
2383 case LEU:
2384 op = UMAX;
2385 unsignedp = 1;
2386 break;
2387 case GTU:
2388 case GEU:
2389 op = UMIN;
2390 unsignedp = 1;
2391 break;
2392 default:
2393 return FALSE;
2394 }
2395
2396 start_sequence ();
2397
2398 target = expand_simple_binop (GET_MODE (if_info->x), op,
2399 if_info->a, if_info->b,
2400 if_info->x, unsignedp, OPTAB_WIDEN);
2401 if (! target)
2402 {
2403 end_sequence ();
2404 return FALSE;
2405 }
2406 if (target != if_info->x)
2407 noce_emit_move_insn (if_info->x, target);
2408
2409 seq = end_ifcvt_sequence (if_info);
2410 if (!seq)
2411 return FALSE;
2412
2413 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2414 if_info->cond = cond;
2415 if_info->cond_earliest = earliest;
2416
2417 return TRUE;
2418 }
2419
2420 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2421 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2422 etc. */
2423
2424 static int
2425 noce_try_abs (struct noce_if_info *if_info)
2426 {
2427 rtx cond, target, a, b, c;
2428 rtx_insn *earliest, *seq;
2429 int negate;
2430 bool one_cmpl = false;
2431
2432 if (!noce_simple_bbs (if_info))
2433 return FALSE;
2434
2435 /* Reject modes with signed zeros. */
2436 if (HONOR_SIGNED_ZEROS (if_info->x))
2437 return FALSE;
2438
2439 /* Recognize A and B as constituting an ABS or NABS. The canonical
2440 form is a branch around the negation, taken when the object is the
2441 first operand of a comparison against 0 that evaluates to true. */
2442 a = if_info->a;
2443 b = if_info->b;
2444 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2445 negate = 0;
2446 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2447 {
2448 std::swap (a, b);
2449 negate = 1;
2450 }
2451 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2452 {
2453 negate = 0;
2454 one_cmpl = true;
2455 }
2456 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2457 {
2458 std::swap (a, b);
2459 negate = 1;
2460 one_cmpl = true;
2461 }
2462 else
2463 return FALSE;
2464
2465 cond = noce_get_alt_condition (if_info, b, &earliest);
2466 if (!cond)
2467 return FALSE;
2468
2469 /* Verify the condition is of the form we expect. */
2470 if (rtx_equal_p (XEXP (cond, 0), b))
2471 c = XEXP (cond, 1);
2472 else if (rtx_equal_p (XEXP (cond, 1), b))
2473 {
2474 c = XEXP (cond, 0);
2475 negate = !negate;
2476 }
2477 else
2478 return FALSE;
2479
2480 /* Verify that C is zero. Search one step backward for a
2481 REG_EQUAL note or a simple source if necessary. */
2482 if (REG_P (c))
2483 {
2484 rtx set;
2485 rtx_insn *insn = prev_nonnote_insn (earliest);
2486 if (insn
2487 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2488 && (set = single_set (insn))
2489 && rtx_equal_p (SET_DEST (set), c))
2490 {
2491 rtx note = find_reg_equal_equiv_note (insn);
2492 if (note)
2493 c = XEXP (note, 0);
2494 else
2495 c = SET_SRC (set);
2496 }
2497 else
2498 return FALSE;
2499 }
2500 if (MEM_P (c)
2501 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2502 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2503 c = get_pool_constant (XEXP (c, 0));
2504
2505 /* Work around funny ideas get_condition has wrt canonicalization.
2506 Note that these rtx constants are known to be CONST_INT, and
2507 therefore imply integer comparisons. */
2508 if (c == constm1_rtx && GET_CODE (cond) == GT)
2509 ;
2510 else if (c == const1_rtx && GET_CODE (cond) == LT)
2511 ;
2512 else if (c != CONST0_RTX (GET_MODE (b)))
2513 return FALSE;
2514
2515 /* Determine what sort of operation this is. */
2516 switch (GET_CODE (cond))
2517 {
2518 case LT:
2519 case LE:
2520 case UNLT:
2521 case UNLE:
2522 negate = !negate;
2523 break;
2524 case GT:
2525 case GE:
2526 case UNGT:
2527 case UNGE:
2528 break;
2529 default:
2530 return FALSE;
2531 }
2532
2533 start_sequence ();
2534 if (one_cmpl)
2535 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2536 if_info->x);
2537 else
2538 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2539
2540 /* ??? It's a quandary whether cmove would be better here, especially
2541 for integers. Perhaps combine will clean things up. */
2542 if (target && negate)
2543 {
2544 if (one_cmpl)
2545 target = expand_simple_unop (GET_MODE (target), NOT, target,
2546 if_info->x, 0);
2547 else
2548 target = expand_simple_unop (GET_MODE (target), NEG, target,
2549 if_info->x, 0);
2550 }
2551
2552 if (! target)
2553 {
2554 end_sequence ();
2555 return FALSE;
2556 }
2557
2558 if (target != if_info->x)
2559 noce_emit_move_insn (if_info->x, target);
2560
2561 seq = end_ifcvt_sequence (if_info);
2562 if (!seq)
2563 return FALSE;
2564
2565 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2566 if_info->cond = cond;
2567 if_info->cond_earliest = earliest;
2568
2569 return TRUE;
2570 }
2571
2572 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2573
2574 static int
2575 noce_try_sign_mask (struct noce_if_info *if_info)
2576 {
2577 rtx cond, t, m, c;
2578 rtx_insn *seq;
2579 machine_mode mode;
2580 enum rtx_code code;
2581 bool t_unconditional;
2582
2583 if (!noce_simple_bbs (if_info))
2584 return FALSE;
2585
2586 cond = if_info->cond;
2587 code = GET_CODE (cond);
2588 m = XEXP (cond, 0);
2589 c = XEXP (cond, 1);
2590
2591 t = NULL_RTX;
2592 if (if_info->a == const0_rtx)
2593 {
2594 if ((code == LT && c == const0_rtx)
2595 || (code == LE && c == constm1_rtx))
2596 t = if_info->b;
2597 }
2598 else if (if_info->b == const0_rtx)
2599 {
2600 if ((code == GE && c == const0_rtx)
2601 || (code == GT && c == constm1_rtx))
2602 t = if_info->a;
2603 }
2604
2605 if (! t || side_effects_p (t))
2606 return FALSE;
2607
2608 /* We currently don't handle different modes. */
2609 mode = GET_MODE (t);
2610 if (GET_MODE (m) != mode)
2611 return FALSE;
2612
2613 /* This is only profitable if T is unconditionally executed/evaluated in the
2614 original insn sequence or T is cheap. The former happens if B is the
2615 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2616 INSN_B which can happen for e.g. conditional stores to memory. For the
2617 cost computation use the block TEST_BB where the evaluation will end up
2618 after the transformation. */
2619 t_unconditional =
2620 (t == if_info->b
2621 && (if_info->insn_b == NULL_RTX
2622 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2623 if (!(t_unconditional
2624 || (set_src_cost (t, mode, optimize_bb_for_speed_p (if_info->test_bb))
2625 < COSTS_N_INSNS (2))))
2626 return FALSE;
2627
2628 start_sequence ();
2629 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2630 "(signed) m >> 31" directly. This benefits targets with specialized
2631 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2632 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2633 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2634 : NULL_RTX;
2635
2636 if (!t)
2637 {
2638 end_sequence ();
2639 return FALSE;
2640 }
2641
2642 noce_emit_move_insn (if_info->x, t);
2643
2644 seq = end_ifcvt_sequence (if_info);
2645 if (!seq)
2646 return FALSE;
2647
2648 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2649 return TRUE;
2650 }
2651
2652
2653 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2654 transformations. */
2655
2656 static int
2657 noce_try_bitop (struct noce_if_info *if_info)
2658 {
2659 rtx cond, x, a, result;
2660 rtx_insn *seq;
2661 machine_mode mode;
2662 enum rtx_code code;
2663 int bitnum;
2664
2665 x = if_info->x;
2666 cond = if_info->cond;
2667 code = GET_CODE (cond);
2668
2669 if (!noce_simple_bbs (if_info))
2670 return FALSE;
2671
2672 /* Check for no else condition. */
2673 if (! rtx_equal_p (x, if_info->b))
2674 return FALSE;
2675
2676 /* Check for a suitable condition. */
2677 if (code != NE && code != EQ)
2678 return FALSE;
2679 if (XEXP (cond, 1) != const0_rtx)
2680 return FALSE;
2681 cond = XEXP (cond, 0);
2682
2683 /* ??? We could also handle AND here. */
2684 if (GET_CODE (cond) == ZERO_EXTRACT)
2685 {
2686 if (XEXP (cond, 1) != const1_rtx
2687 || !CONST_INT_P (XEXP (cond, 2))
2688 || ! rtx_equal_p (x, XEXP (cond, 0)))
2689 return FALSE;
2690 bitnum = INTVAL (XEXP (cond, 2));
2691 mode = GET_MODE (x);
2692 if (BITS_BIG_ENDIAN)
2693 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2694 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2695 return FALSE;
2696 }
2697 else
2698 return FALSE;
2699
2700 a = if_info->a;
2701 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2702 {
2703 /* Check for "if (X & C) x = x op C". */
2704 if (! rtx_equal_p (x, XEXP (a, 0))
2705 || !CONST_INT_P (XEXP (a, 1))
2706 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2707 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2708 return FALSE;
2709
2710 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2711 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2712 if (GET_CODE (a) == IOR)
2713 result = (code == NE) ? a : NULL_RTX;
2714 else if (code == NE)
2715 {
2716 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2717 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2718 result = simplify_gen_binary (IOR, mode, x, result);
2719 }
2720 else
2721 {
2722 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2723 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2724 result = simplify_gen_binary (AND, mode, x, result);
2725 }
2726 }
2727 else if (GET_CODE (a) == AND)
2728 {
2729 /* Check for "if (X & C) x &= ~C". */
2730 if (! rtx_equal_p (x, XEXP (a, 0))
2731 || !CONST_INT_P (XEXP (a, 1))
2732 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2733 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2734 return FALSE;
2735
2736 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2737 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2738 result = (code == EQ) ? a : NULL_RTX;
2739 }
2740 else
2741 return FALSE;
2742
2743 if (result)
2744 {
2745 start_sequence ();
2746 noce_emit_move_insn (x, result);
2747 seq = end_ifcvt_sequence (if_info);
2748 if (!seq)
2749 return FALSE;
2750
2751 emit_insn_before_setloc (seq, if_info->jump,
2752 INSN_LOCATION (if_info->insn_a));
2753 }
2754 return TRUE;
2755 }
2756
2757
2758 /* Similar to get_condition, only the resulting condition must be
2759 valid at JUMP, instead of at EARLIEST.
2760
2761 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2762 THEN block of the caller, and we have to reverse the condition. */
2763
2764 static rtx
2765 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2766 {
2767 rtx cond, set, tmp;
2768 bool reverse;
2769
2770 if (! any_condjump_p (jump))
2771 return NULL_RTX;
2772
2773 set = pc_set (jump);
2774
2775 /* If this branches to JUMP_LABEL when the condition is false,
2776 reverse the condition. */
2777 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2778 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2779
2780 /* We may have to reverse because the caller's if block is not canonical,
2781 i.e. the THEN block isn't the fallthrough block for the TEST block
2782 (see find_if_header). */
2783 if (then_else_reversed)
2784 reverse = !reverse;
2785
2786 /* If the condition variable is a register and is MODE_INT, accept it. */
2787
2788 cond = XEXP (SET_SRC (set), 0);
2789 tmp = XEXP (cond, 0);
2790 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2791 && (GET_MODE (tmp) != BImode
2792 || !targetm.small_register_classes_for_mode_p (BImode)))
2793 {
2794 *earliest = jump;
2795
2796 if (reverse)
2797 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2798 GET_MODE (cond), tmp, XEXP (cond, 1));
2799 return cond;
2800 }
2801
2802 /* Otherwise, fall back on canonicalize_condition to do the dirty
2803 work of manipulating MODE_CC values and COMPARE rtx codes. */
2804 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2805 NULL_RTX, have_cbranchcc4, true);
2806
2807 /* We don't handle side-effects in the condition, like handling
2808 REG_INC notes and making sure no duplicate conditions are emitted. */
2809 if (tmp != NULL_RTX && side_effects_p (tmp))
2810 return NULL_RTX;
2811
2812 return tmp;
2813 }
2814
2815 /* Return true if OP is ok for if-then-else processing. */
2816
2817 static int
2818 noce_operand_ok (const_rtx op)
2819 {
2820 if (side_effects_p (op))
2821 return FALSE;
2822
2823 /* We special-case memories, so handle any of them with
2824 no address side effects. */
2825 if (MEM_P (op))
2826 return ! side_effects_p (XEXP (op, 0));
2827
2828 return ! may_trap_p (op);
2829 }
2830
2831 /* Return true if a write into MEM may trap or fault. */
2832
2833 static bool
2834 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2835 {
2836 rtx addr;
2837
2838 if (MEM_READONLY_P (mem))
2839 return true;
2840
2841 if (may_trap_or_fault_p (mem))
2842 return true;
2843
2844 addr = XEXP (mem, 0);
2845
2846 /* Call target hook to avoid the effects of -fpic etc.... */
2847 addr = targetm.delegitimize_address (addr);
2848
2849 while (addr)
2850 switch (GET_CODE (addr))
2851 {
2852 case CONST:
2853 case PRE_DEC:
2854 case PRE_INC:
2855 case POST_DEC:
2856 case POST_INC:
2857 case POST_MODIFY:
2858 addr = XEXP (addr, 0);
2859 break;
2860 case LO_SUM:
2861 case PRE_MODIFY:
2862 addr = XEXP (addr, 1);
2863 break;
2864 case PLUS:
2865 if (CONST_INT_P (XEXP (addr, 1)))
2866 addr = XEXP (addr, 0);
2867 else
2868 return false;
2869 break;
2870 case LABEL_REF:
2871 return true;
2872 case SYMBOL_REF:
2873 if (SYMBOL_REF_DECL (addr)
2874 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2875 return true;
2876 return false;
2877 default:
2878 return false;
2879 }
2880
2881 return false;
2882 }
2883
2884 /* Return whether we can use store speculation for MEM. TOP_BB is the
2885 basic block above the conditional block where we are considering
2886 doing the speculative store. We look for whether MEM is set
2887 unconditionally later in the function. */
2888
2889 static bool
2890 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2891 {
2892 basic_block dominator;
2893
2894 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2895 dominator != NULL;
2896 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2897 {
2898 rtx_insn *insn;
2899
2900 FOR_BB_INSNS (dominator, insn)
2901 {
2902 /* If we see something that might be a memory barrier, we
2903 have to stop looking. Even if the MEM is set later in
2904 the function, we still don't want to set it
2905 unconditionally before the barrier. */
2906 if (INSN_P (insn)
2907 && (volatile_insn_p (PATTERN (insn))
2908 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2909 return false;
2910
2911 if (memory_must_be_modified_in_insn_p (mem, insn))
2912 return true;
2913 if (modified_in_p (XEXP (mem, 0), insn))
2914 return false;
2915
2916 }
2917 }
2918
2919 return false;
2920 }
2921
2922 /* Return true if X contains a MEM subrtx. */
2923
2924 static bool
2925 contains_mem_rtx_p (rtx x)
2926 {
2927 subrtx_iterator::array_type array;
2928 FOR_EACH_SUBRTX (iter, array, x, ALL)
2929 if (MEM_P (*iter))
2930 return true;
2931
2932 return false;
2933 }
2934
2935 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
2936 The condition used in this if-conversion is in COND.
2937 In practice, check that TEST_BB ends with a single set
2938 x := a and all previous computations
2939 in TEST_BB don't produce any values that are live after TEST_BB.
2940 In other words, all the insns in TEST_BB are there only
2941 to compute a value for x. Put the rtx cost of the insns
2942 in TEST_BB into COST. Record whether TEST_BB is a single simple
2943 set instruction in SIMPLE_P. */
2944
2945 static bool
2946 bb_valid_for_noce_process_p (basic_block test_bb, rtx cond,
2947 unsigned int *cost, bool *simple_p)
2948 {
2949 if (!test_bb)
2950 return false;
2951
2952 rtx_insn *last_insn = last_active_insn (test_bb, FALSE);
2953 rtx last_set = NULL_RTX;
2954
2955 rtx cc = cc_in_cond (cond);
2956
2957 if (!insn_valid_noce_process_p (last_insn, cc))
2958 return false;
2959 last_set = single_set (last_insn);
2960
2961 rtx x = SET_DEST (last_set);
2962 rtx_insn *first_insn = first_active_insn (test_bb);
2963 rtx first_set = single_set (first_insn);
2964
2965 if (!first_set)
2966 return false;
2967
2968 /* We have a single simple set, that's okay. */
2969 bool speed_p = optimize_bb_for_speed_p (test_bb);
2970
2971 if (first_insn == last_insn)
2972 {
2973 *simple_p = noce_operand_ok (SET_DEST (first_set));
2974 *cost = insn_rtx_cost (first_set, speed_p);
2975 return *simple_p;
2976 }
2977
2978 rtx_insn *prev_last_insn = PREV_INSN (last_insn);
2979 gcc_assert (prev_last_insn);
2980
2981 /* For now, disallow setting x multiple times in test_bb. */
2982 if (REG_P (x) && reg_set_between_p (x, first_insn, prev_last_insn))
2983 return false;
2984
2985 bitmap test_bb_temps = BITMAP_ALLOC (&reg_obstack);
2986
2987 /* The regs that are live out of test_bb. */
2988 bitmap test_bb_live_out = df_get_live_out (test_bb);
2989
2990 int potential_cost = insn_rtx_cost (last_set, speed_p);
2991 rtx_insn *insn;
2992 FOR_BB_INSNS (test_bb, insn)
2993 {
2994 if (insn != last_insn)
2995 {
2996 if (!active_insn_p (insn))
2997 continue;
2998
2999 if (!insn_valid_noce_process_p (insn, cc))
3000 goto free_bitmap_and_fail;
3001
3002 rtx sset = single_set (insn);
3003 gcc_assert (sset);
3004
3005 if (contains_mem_rtx_p (SET_SRC (sset))
3006 || !REG_P (SET_DEST (sset)))
3007 goto free_bitmap_and_fail;
3008
3009 potential_cost += insn_rtx_cost (sset, speed_p);
3010 bitmap_set_bit (test_bb_temps, REGNO (SET_DEST (sset)));
3011 }
3012 }
3013
3014 /* If any of the intermediate results in test_bb are live after test_bb
3015 then fail. */
3016 if (bitmap_intersect_p (test_bb_live_out, test_bb_temps))
3017 goto free_bitmap_and_fail;
3018
3019 BITMAP_FREE (test_bb_temps);
3020 *cost = potential_cost;
3021 *simple_p = false;
3022 return true;
3023
3024 free_bitmap_and_fail:
3025 BITMAP_FREE (test_bb_temps);
3026 return false;
3027 }
3028
3029 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3030 it without using conditional execution. Return TRUE if we were successful
3031 at converting the block. */
3032
3033 static int
3034 noce_process_if_block (struct noce_if_info *if_info)
3035 {
3036 basic_block test_bb = if_info->test_bb; /* test block */
3037 basic_block then_bb = if_info->then_bb; /* THEN */
3038 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
3039 basic_block join_bb = if_info->join_bb; /* JOIN */
3040 rtx_insn *jump = if_info->jump;
3041 rtx cond = if_info->cond;
3042 rtx_insn *insn_a, *insn_b;
3043 rtx set_a, set_b;
3044 rtx orig_x, x, a, b;
3045
3046 /* We're looking for patterns of the form
3047
3048 (1) if (...) x = a; else x = b;
3049 (2) x = b; if (...) x = a;
3050 (3) if (...) x = a; // as if with an initial x = x.
3051
3052 The later patterns require jumps to be more expensive.
3053 For the if (...) x = a; else x = b; case we allow multiple insns
3054 inside the then and else blocks as long as their only effect is
3055 to calculate a value for x.
3056 ??? For future expansion, look for multiple X in such patterns. */
3057
3058 if (! bb_valid_for_noce_process_p (then_bb, cond, &if_info->then_cost,
3059 &if_info->then_simple))
3060 return false;
3061
3062 if (else_bb
3063 && ! bb_valid_for_noce_process_p (else_bb, cond, &if_info->else_cost,
3064 &if_info->else_simple))
3065 return false;
3066
3067 insn_a = last_active_insn (then_bb, FALSE);
3068 set_a = single_set (insn_a);
3069 gcc_assert (set_a);
3070
3071 x = SET_DEST (set_a);
3072 a = SET_SRC (set_a);
3073
3074 /* Look for the other potential set. Make sure we've got equivalent
3075 destinations. */
3076 /* ??? This is overconservative. Storing to two different mems is
3077 as easy as conditionally computing the address. Storing to a
3078 single mem merely requires a scratch memory to use as one of the
3079 destination addresses; often the memory immediately below the
3080 stack pointer is available for this. */
3081 set_b = NULL_RTX;
3082 if (else_bb)
3083 {
3084 insn_b = last_active_insn (else_bb, FALSE);
3085 set_b = single_set (insn_b);
3086 gcc_assert (set_b);
3087
3088 if (!rtx_interchangeable_p (x, SET_DEST (set_b)))
3089 return FALSE;
3090 }
3091 else
3092 {
3093 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
3094 /* We're going to be moving the evaluation of B down from above
3095 COND_EARLIEST to JUMP. Make sure the relevant data is still
3096 intact. */
3097 if (! insn_b
3098 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
3099 || !NONJUMP_INSN_P (insn_b)
3100 || (set_b = single_set (insn_b)) == NULL_RTX
3101 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
3102 || ! noce_operand_ok (SET_SRC (set_b))
3103 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
3104 || modified_between_p (SET_SRC (set_b), insn_b, jump)
3105 /* Avoid extending the lifetime of hard registers on small
3106 register class machines. */
3107 || (REG_P (SET_SRC (set_b))
3108 && HARD_REGISTER_P (SET_SRC (set_b))
3109 && targetm.small_register_classes_for_mode_p
3110 (GET_MODE (SET_SRC (set_b))))
3111 /* Likewise with X. In particular this can happen when
3112 noce_get_condition looks farther back in the instruction
3113 stream than one might expect. */
3114 || reg_overlap_mentioned_p (x, cond)
3115 || reg_overlap_mentioned_p (x, a)
3116 || modified_between_p (x, insn_b, jump))
3117 {
3118 insn_b = NULL;
3119 set_b = NULL_RTX;
3120 }
3121 }
3122
3123 /* If x has side effects then only the if-then-else form is safe to
3124 convert. But even in that case we would need to restore any notes
3125 (such as REG_INC) at then end. That can be tricky if
3126 noce_emit_move_insn expands to more than one insn, so disable the
3127 optimization entirely for now if there are side effects. */
3128 if (side_effects_p (x))
3129 return FALSE;
3130
3131 b = (set_b ? SET_SRC (set_b) : x);
3132
3133 /* Only operate on register destinations, and even then avoid extending
3134 the lifetime of hard registers on small register class machines. */
3135 orig_x = x;
3136 if (!REG_P (x)
3137 || (HARD_REGISTER_P (x)
3138 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
3139 {
3140 if (GET_MODE (x) == BLKmode)
3141 return FALSE;
3142
3143 if (GET_CODE (x) == ZERO_EXTRACT
3144 && (!CONST_INT_P (XEXP (x, 1))
3145 || !CONST_INT_P (XEXP (x, 2))))
3146 return FALSE;
3147
3148 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
3149 ? XEXP (x, 0) : x));
3150 }
3151
3152 /* Don't operate on sources that may trap or are volatile. */
3153 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
3154 return FALSE;
3155
3156 retry:
3157 /* Set up the info block for our subroutines. */
3158 if_info->insn_a = insn_a;
3159 if_info->insn_b = insn_b;
3160 if_info->x = x;
3161 if_info->a = a;
3162 if_info->b = b;
3163
3164 /* Try optimizations in some approximation of a useful order. */
3165 /* ??? Should first look to see if X is live incoming at all. If it
3166 isn't, we don't need anything but an unconditional set. */
3167
3168 /* Look and see if A and B are really the same. Avoid creating silly
3169 cmove constructs that no one will fix up later. */
3170 if (noce_simple_bbs (if_info)
3171 && rtx_interchangeable_p (a, b))
3172 {
3173 /* If we have an INSN_B, we don't have to create any new rtl. Just
3174 move the instruction that we already have. If we don't have an
3175 INSN_B, that means that A == X, and we've got a noop move. In
3176 that case don't do anything and let the code below delete INSN_A. */
3177 if (insn_b && else_bb)
3178 {
3179 rtx note;
3180
3181 if (else_bb && insn_b == BB_END (else_bb))
3182 BB_END (else_bb) = PREV_INSN (insn_b);
3183 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
3184
3185 /* If there was a REG_EQUAL note, delete it since it may have been
3186 true due to this insn being after a jump. */
3187 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
3188 remove_note (insn_b, note);
3189
3190 insn_b = NULL;
3191 }
3192 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
3193 x must be executed twice. */
3194 else if (insn_b && side_effects_p (orig_x))
3195 return FALSE;
3196
3197 x = orig_x;
3198 goto success;
3199 }
3200
3201 if (!set_b && MEM_P (orig_x))
3202 {
3203 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
3204 for optimizations if writing to x may trap or fault,
3205 i.e. it's a memory other than a static var or a stack slot,
3206 is misaligned on strict aligned machines or is read-only. If
3207 x is a read-only memory, then the program is valid only if we
3208 avoid the store into it. If there are stores on both the
3209 THEN and ELSE arms, then we can go ahead with the conversion;
3210 either the program is broken, or the condition is always
3211 false such that the other memory is selected. */
3212 if (noce_mem_write_may_trap_or_fault_p (orig_x))
3213 return FALSE;
3214
3215 /* Avoid store speculation: given "if (...) x = a" where x is a
3216 MEM, we only want to do the store if x is always set
3217 somewhere in the function. This avoids cases like
3218 if (pthread_mutex_trylock(mutex))
3219 ++global_variable;
3220 where we only want global_variable to be changed if the mutex
3221 is held. FIXME: This should ideally be expressed directly in
3222 RTL somehow. */
3223 if (!noce_can_store_speculate_p (test_bb, orig_x))
3224 return FALSE;
3225 }
3226
3227 if (noce_try_move (if_info))
3228 goto success;
3229 if (noce_try_store_flag (if_info))
3230 goto success;
3231 if (noce_try_bitop (if_info))
3232 goto success;
3233 if (noce_try_minmax (if_info))
3234 goto success;
3235 if (noce_try_abs (if_info))
3236 goto success;
3237 if (!targetm.have_conditional_execution ()
3238 && noce_try_store_flag_constants (if_info))
3239 goto success;
3240 if (HAVE_conditional_move
3241 && noce_try_cmove (if_info))
3242 goto success;
3243 if (! targetm.have_conditional_execution ())
3244 {
3245 if (noce_try_addcc (if_info))
3246 goto success;
3247 if (noce_try_store_flag_mask (if_info))
3248 goto success;
3249 if (HAVE_conditional_move
3250 && noce_try_cmove_arith (if_info))
3251 goto success;
3252 if (noce_try_sign_mask (if_info))
3253 goto success;
3254 }
3255
3256 if (!else_bb && set_b)
3257 {
3258 insn_b = NULL;
3259 set_b = NULL_RTX;
3260 b = orig_x;
3261 goto retry;
3262 }
3263
3264 return FALSE;
3265
3266 success:
3267
3268 /* If we used a temporary, fix it up now. */
3269 if (orig_x != x)
3270 {
3271 rtx_insn *seq;
3272
3273 start_sequence ();
3274 noce_emit_move_insn (orig_x, x);
3275 seq = get_insns ();
3276 set_used_flags (orig_x);
3277 unshare_all_rtl_in_chain (seq);
3278 end_sequence ();
3279
3280 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
3281 }
3282
3283 /* The original THEN and ELSE blocks may now be removed. The test block
3284 must now jump to the join block. If the test block and the join block
3285 can be merged, do so. */
3286 if (else_bb)
3287 {
3288 delete_basic_block (else_bb);
3289 num_true_changes++;
3290 }
3291 else
3292 remove_edge (find_edge (test_bb, join_bb));
3293
3294 remove_edge (find_edge (then_bb, join_bb));
3295 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3296 delete_basic_block (then_bb);
3297 num_true_changes++;
3298
3299 if (can_merge_blocks_p (test_bb, join_bb))
3300 {
3301 merge_blocks (test_bb, join_bb);
3302 num_true_changes++;
3303 }
3304
3305 num_updated_if_blocks++;
3306 return TRUE;
3307 }
3308
3309 /* Check whether a block is suitable for conditional move conversion.
3310 Every insn must be a simple set of a register to a constant or a
3311 register. For each assignment, store the value in the pointer map
3312 VALS, keyed indexed by register pointer, then store the register
3313 pointer in REGS. COND is the condition we will test. */
3314
3315 static int
3316 check_cond_move_block (basic_block bb,
3317 hash_map<rtx, rtx> *vals,
3318 vec<rtx> *regs,
3319 rtx cond)
3320 {
3321 rtx_insn *insn;
3322 rtx cc = cc_in_cond (cond);
3323
3324 /* We can only handle simple jumps at the end of the basic block.
3325 It is almost impossible to update the CFG otherwise. */
3326 insn = BB_END (bb);
3327 if (JUMP_P (insn) && !onlyjump_p (insn))
3328 return FALSE;
3329
3330 FOR_BB_INSNS (bb, insn)
3331 {
3332 rtx set, dest, src;
3333
3334 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3335 continue;
3336 set = single_set (insn);
3337 if (!set)
3338 return FALSE;
3339
3340 dest = SET_DEST (set);
3341 src = SET_SRC (set);
3342 if (!REG_P (dest)
3343 || (HARD_REGISTER_P (dest)
3344 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
3345 return FALSE;
3346
3347 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
3348 return FALSE;
3349
3350 if (side_effects_p (src) || side_effects_p (dest))
3351 return FALSE;
3352
3353 if (may_trap_p (src) || may_trap_p (dest))
3354 return FALSE;
3355
3356 /* Don't try to handle this if the source register was
3357 modified earlier in the block. */
3358 if ((REG_P (src)
3359 && vals->get (src))
3360 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3361 && vals->get (SUBREG_REG (src))))
3362 return FALSE;
3363
3364 /* Don't try to handle this if the destination register was
3365 modified earlier in the block. */
3366 if (vals->get (dest))
3367 return FALSE;
3368
3369 /* Don't try to handle this if the condition uses the
3370 destination register. */
3371 if (reg_overlap_mentioned_p (dest, cond))
3372 return FALSE;
3373
3374 /* Don't try to handle this if the source register is modified
3375 later in the block. */
3376 if (!CONSTANT_P (src)
3377 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
3378 return FALSE;
3379
3380 /* Skip it if the instruction to be moved might clobber CC. */
3381 if (cc && set_of (cc, insn))
3382 return FALSE;
3383
3384 vals->put (dest, src);
3385
3386 regs->safe_push (dest);
3387 }
3388
3389 return TRUE;
3390 }
3391
3392 /* Given a basic block BB suitable for conditional move conversion,
3393 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
3394 the register values depending on COND, emit the insns in the block as
3395 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
3396 processed. The caller has started a sequence for the conversion.
3397 Return true if successful, false if something goes wrong. */
3398
3399 static bool
3400 cond_move_convert_if_block (struct noce_if_info *if_infop,
3401 basic_block bb, rtx cond,
3402 hash_map<rtx, rtx> *then_vals,
3403 hash_map<rtx, rtx> *else_vals,
3404 bool else_block_p)
3405 {
3406 enum rtx_code code;
3407 rtx_insn *insn;
3408 rtx cond_arg0, cond_arg1;
3409
3410 code = GET_CODE (cond);
3411 cond_arg0 = XEXP (cond, 0);
3412 cond_arg1 = XEXP (cond, 1);
3413
3414 FOR_BB_INSNS (bb, insn)
3415 {
3416 rtx set, target, dest, t, e;
3417
3418 /* ??? Maybe emit conditional debug insn? */
3419 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3420 continue;
3421 set = single_set (insn);
3422 gcc_assert (set && REG_P (SET_DEST (set)));
3423
3424 dest = SET_DEST (set);
3425
3426 rtx *then_slot = then_vals->get (dest);
3427 rtx *else_slot = else_vals->get (dest);
3428 t = then_slot ? *then_slot : NULL_RTX;
3429 e = else_slot ? *else_slot : NULL_RTX;
3430
3431 if (else_block_p)
3432 {
3433 /* If this register was set in the then block, we already
3434 handled this case there. */
3435 if (t)
3436 continue;
3437 t = dest;
3438 gcc_assert (e);
3439 }
3440 else
3441 {
3442 gcc_assert (t);
3443 if (!e)
3444 e = dest;
3445 }
3446
3447 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
3448 t, e);
3449 if (!target)
3450 return false;
3451
3452 if (target != dest)
3453 noce_emit_move_insn (dest, target);
3454 }
3455
3456 return true;
3457 }
3458
3459 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3460 it using only conditional moves. Return TRUE if we were successful at
3461 converting the block. */
3462
3463 static int
3464 cond_move_process_if_block (struct noce_if_info *if_info)
3465 {
3466 basic_block test_bb = if_info->test_bb;
3467 basic_block then_bb = if_info->then_bb;
3468 basic_block else_bb = if_info->else_bb;
3469 basic_block join_bb = if_info->join_bb;
3470 rtx_insn *jump = if_info->jump;
3471 rtx cond = if_info->cond;
3472 rtx_insn *seq, *loc_insn;
3473 rtx reg;
3474 int c;
3475 vec<rtx> then_regs = vNULL;
3476 vec<rtx> else_regs = vNULL;
3477 unsigned int i;
3478 int success_p = FALSE;
3479
3480 /* Build a mapping for each block to the value used for each
3481 register. */
3482 hash_map<rtx, rtx> then_vals;
3483 hash_map<rtx, rtx> else_vals;
3484
3485 /* Make sure the blocks are suitable. */
3486 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
3487 || (else_bb
3488 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
3489 goto done;
3490
3491 /* Make sure the blocks can be used together. If the same register
3492 is set in both blocks, and is not set to a constant in both
3493 cases, then both blocks must set it to the same register. We
3494 have already verified that if it is set to a register, that the
3495 source register does not change after the assignment. Also count
3496 the number of registers set in only one of the blocks. */
3497 c = 0;
3498 FOR_EACH_VEC_ELT (then_regs, i, reg)
3499 {
3500 rtx *then_slot = then_vals.get (reg);
3501 rtx *else_slot = else_vals.get (reg);
3502
3503 gcc_checking_assert (then_slot);
3504 if (!else_slot)
3505 ++c;
3506 else
3507 {
3508 rtx then_val = *then_slot;
3509 rtx else_val = *else_slot;
3510 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3511 && !rtx_equal_p (then_val, else_val))
3512 goto done;
3513 }
3514 }
3515
3516 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3517 FOR_EACH_VEC_ELT (else_regs, i, reg)
3518 {
3519 gcc_checking_assert (else_vals.get (reg));
3520 if (!then_vals.get (reg))
3521 ++c;
3522 }
3523
3524 /* Make sure it is reasonable to convert this block. What matters
3525 is the number of assignments currently made in only one of the
3526 branches, since if we convert we are going to always execute
3527 them. */
3528 if (c > MAX_CONDITIONAL_EXECUTE)
3529 goto done;
3530
3531 /* Try to emit the conditional moves. First do the then block,
3532 then do anything left in the else blocks. */
3533 start_sequence ();
3534 if (!cond_move_convert_if_block (if_info, then_bb, cond,
3535 &then_vals, &else_vals, false)
3536 || (else_bb
3537 && !cond_move_convert_if_block (if_info, else_bb, cond,
3538 &then_vals, &else_vals, true)))
3539 {
3540 end_sequence ();
3541 goto done;
3542 }
3543 seq = end_ifcvt_sequence (if_info);
3544 if (!seq)
3545 goto done;
3546
3547 loc_insn = first_active_insn (then_bb);
3548 if (!loc_insn)
3549 {
3550 loc_insn = first_active_insn (else_bb);
3551 gcc_assert (loc_insn);
3552 }
3553 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3554
3555 if (else_bb)
3556 {
3557 delete_basic_block (else_bb);
3558 num_true_changes++;
3559 }
3560 else
3561 remove_edge (find_edge (test_bb, join_bb));
3562
3563 remove_edge (find_edge (then_bb, join_bb));
3564 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3565 delete_basic_block (then_bb);
3566 num_true_changes++;
3567
3568 if (can_merge_blocks_p (test_bb, join_bb))
3569 {
3570 merge_blocks (test_bb, join_bb);
3571 num_true_changes++;
3572 }
3573
3574 num_updated_if_blocks++;
3575
3576 success_p = TRUE;
3577
3578 done:
3579 then_regs.release ();
3580 else_regs.release ();
3581 return success_p;
3582 }
3583
3584 \f
3585 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3586 IF-THEN-ELSE-JOIN block.
3587
3588 If so, we'll try to convert the insns to not require the branch,
3589 using only transformations that do not require conditional execution.
3590
3591 Return TRUE if we were successful at converting the block. */
3592
3593 static int
3594 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3595 int pass)
3596 {
3597 basic_block then_bb, else_bb, join_bb;
3598 bool then_else_reversed = false;
3599 rtx_insn *jump;
3600 rtx cond;
3601 rtx_insn *cond_earliest;
3602 struct noce_if_info if_info;
3603
3604 /* We only ever should get here before reload. */
3605 gcc_assert (!reload_completed);
3606
3607 /* Recognize an IF-THEN-ELSE-JOIN block. */
3608 if (single_pred_p (then_edge->dest)
3609 && single_succ_p (then_edge->dest)
3610 && single_pred_p (else_edge->dest)
3611 && single_succ_p (else_edge->dest)
3612 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3613 {
3614 then_bb = then_edge->dest;
3615 else_bb = else_edge->dest;
3616 join_bb = single_succ (then_bb);
3617 }
3618 /* Recognize an IF-THEN-JOIN block. */
3619 else if (single_pred_p (then_edge->dest)
3620 && single_succ_p (then_edge->dest)
3621 && single_succ (then_edge->dest) == else_edge->dest)
3622 {
3623 then_bb = then_edge->dest;
3624 else_bb = NULL_BLOCK;
3625 join_bb = else_edge->dest;
3626 }
3627 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3628 of basic blocks in cfglayout mode does not matter, so the fallthrough
3629 edge can go to any basic block (and not just to bb->next_bb, like in
3630 cfgrtl mode). */
3631 else if (single_pred_p (else_edge->dest)
3632 && single_succ_p (else_edge->dest)
3633 && single_succ (else_edge->dest) == then_edge->dest)
3634 {
3635 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3636 To make this work, we have to invert the THEN and ELSE blocks
3637 and reverse the jump condition. */
3638 then_bb = else_edge->dest;
3639 else_bb = NULL_BLOCK;
3640 join_bb = single_succ (then_bb);
3641 then_else_reversed = true;
3642 }
3643 else
3644 /* Not a form we can handle. */
3645 return FALSE;
3646
3647 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3648 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3649 return FALSE;
3650 if (else_bb
3651 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3652 return FALSE;
3653
3654 num_possible_if_blocks++;
3655
3656 if (dump_file)
3657 {
3658 fprintf (dump_file,
3659 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3660 (else_bb) ? "-ELSE" : "",
3661 pass, test_bb->index, then_bb->index);
3662
3663 if (else_bb)
3664 fprintf (dump_file, ", else %d", else_bb->index);
3665
3666 fprintf (dump_file, ", join %d\n", join_bb->index);
3667 }
3668
3669 /* If the conditional jump is more than just a conditional
3670 jump, then we can not do if-conversion on this block. */
3671 jump = BB_END (test_bb);
3672 if (! onlyjump_p (jump))
3673 return FALSE;
3674
3675 /* If this is not a standard conditional jump, we can't parse it. */
3676 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3677 if (!cond)
3678 return FALSE;
3679
3680 /* We must be comparing objects whose modes imply the size. */
3681 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3682 return FALSE;
3683
3684 /* Initialize an IF_INFO struct to pass around. */
3685 memset (&if_info, 0, sizeof if_info);
3686 if_info.test_bb = test_bb;
3687 if_info.then_bb = then_bb;
3688 if_info.else_bb = else_bb;
3689 if_info.join_bb = join_bb;
3690 if_info.cond = cond;
3691 if_info.cond_earliest = cond_earliest;
3692 if_info.jump = jump;
3693 if_info.then_else_reversed = then_else_reversed;
3694 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3695 predictable_edge_p (then_edge));
3696
3697 /* Do the real work. */
3698
3699 if (noce_process_if_block (&if_info))
3700 return TRUE;
3701
3702 if (HAVE_conditional_move
3703 && cond_move_process_if_block (&if_info))
3704 return TRUE;
3705
3706 return FALSE;
3707 }
3708 \f
3709
3710 /* Merge the blocks and mark for local life update. */
3711
3712 static void
3713 merge_if_block (struct ce_if_block * ce_info)
3714 {
3715 basic_block test_bb = ce_info->test_bb; /* last test block */
3716 basic_block then_bb = ce_info->then_bb; /* THEN */
3717 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3718 basic_block join_bb = ce_info->join_bb; /* join block */
3719 basic_block combo_bb;
3720
3721 /* All block merging is done into the lower block numbers. */
3722
3723 combo_bb = test_bb;
3724 df_set_bb_dirty (test_bb);
3725
3726 /* Merge any basic blocks to handle && and || subtests. Each of
3727 the blocks are on the fallthru path from the predecessor block. */
3728 if (ce_info->num_multiple_test_blocks > 0)
3729 {
3730 basic_block bb = test_bb;
3731 basic_block last_test_bb = ce_info->last_test_bb;
3732 basic_block fallthru = block_fallthru (bb);
3733
3734 do
3735 {
3736 bb = fallthru;
3737 fallthru = block_fallthru (bb);
3738 merge_blocks (combo_bb, bb);
3739 num_true_changes++;
3740 }
3741 while (bb != last_test_bb);
3742 }
3743
3744 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3745 label, but it might if there were || tests. That label's count should be
3746 zero, and it normally should be removed. */
3747
3748 if (then_bb)
3749 {
3750 /* If THEN_BB has no successors, then there's a BARRIER after it.
3751 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3752 is no longer needed, and in fact it is incorrect to leave it in
3753 the insn stream. */
3754 if (EDGE_COUNT (then_bb->succs) == 0
3755 && EDGE_COUNT (combo_bb->succs) > 1)
3756 {
3757 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
3758 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3759 end = NEXT_INSN (end);
3760
3761 if (end && BARRIER_P (end))
3762 delete_insn (end);
3763 }
3764 merge_blocks (combo_bb, then_bb);
3765 num_true_changes++;
3766 }
3767
3768 /* The ELSE block, if it existed, had a label. That label count
3769 will almost always be zero, but odd things can happen when labels
3770 get their addresses taken. */
3771 if (else_bb)
3772 {
3773 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3774 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3775 is no longer needed, and in fact it is incorrect to leave it in
3776 the insn stream. */
3777 if (EDGE_COUNT (else_bb->succs) == 0
3778 && EDGE_COUNT (combo_bb->succs) > 1)
3779 {
3780 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
3781 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3782 end = NEXT_INSN (end);
3783
3784 if (end && BARRIER_P (end))
3785 delete_insn (end);
3786 }
3787 merge_blocks (combo_bb, else_bb);
3788 num_true_changes++;
3789 }
3790
3791 /* If there was no join block reported, that means it was not adjacent
3792 to the others, and so we cannot merge them. */
3793
3794 if (! join_bb)
3795 {
3796 rtx_insn *last = BB_END (combo_bb);
3797
3798 /* The outgoing edge for the current COMBO block should already
3799 be correct. Verify this. */
3800 if (EDGE_COUNT (combo_bb->succs) == 0)
3801 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3802 || (NONJUMP_INSN_P (last)
3803 && GET_CODE (PATTERN (last)) == TRAP_IF
3804 && (TRAP_CONDITION (PATTERN (last))
3805 == const_true_rtx)));
3806
3807 else
3808 /* There should still be something at the end of the THEN or ELSE
3809 blocks taking us to our final destination. */
3810 gcc_assert (JUMP_P (last)
3811 || (EDGE_SUCC (combo_bb, 0)->dest
3812 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3813 && CALL_P (last)
3814 && SIBLING_CALL_P (last))
3815 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3816 && can_throw_internal (last)));
3817 }
3818
3819 /* The JOIN block may have had quite a number of other predecessors too.
3820 Since we've already merged the TEST, THEN and ELSE blocks, we should
3821 have only one remaining edge from our if-then-else diamond. If there
3822 is more than one remaining edge, it must come from elsewhere. There
3823 may be zero incoming edges if the THEN block didn't actually join
3824 back up (as with a call to a non-return function). */
3825 else if (EDGE_COUNT (join_bb->preds) < 2
3826 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3827 {
3828 /* We can merge the JOIN cleanly and update the dataflow try
3829 again on this pass.*/
3830 merge_blocks (combo_bb, join_bb);
3831 num_true_changes++;
3832 }
3833 else
3834 {
3835 /* We cannot merge the JOIN. */
3836
3837 /* The outgoing edge for the current COMBO block should already
3838 be correct. Verify this. */
3839 gcc_assert (single_succ_p (combo_bb)
3840 && single_succ (combo_bb) == join_bb);
3841
3842 /* Remove the jump and cruft from the end of the COMBO block. */
3843 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3844 tidy_fallthru_edge (single_succ_edge (combo_bb));
3845 }
3846
3847 num_updated_if_blocks++;
3848 }
3849 \f
3850 /* Find a block ending in a simple IF condition and try to transform it
3851 in some way. When converting a multi-block condition, put the new code
3852 in the first such block and delete the rest. Return a pointer to this
3853 first block if some transformation was done. Return NULL otherwise. */
3854
3855 static basic_block
3856 find_if_header (basic_block test_bb, int pass)
3857 {
3858 ce_if_block ce_info;
3859 edge then_edge;
3860 edge else_edge;
3861
3862 /* The kind of block we're looking for has exactly two successors. */
3863 if (EDGE_COUNT (test_bb->succs) != 2)
3864 return NULL;
3865
3866 then_edge = EDGE_SUCC (test_bb, 0);
3867 else_edge = EDGE_SUCC (test_bb, 1);
3868
3869 if (df_get_bb_dirty (then_edge->dest))
3870 return NULL;
3871 if (df_get_bb_dirty (else_edge->dest))
3872 return NULL;
3873
3874 /* Neither edge should be abnormal. */
3875 if ((then_edge->flags & EDGE_COMPLEX)
3876 || (else_edge->flags & EDGE_COMPLEX))
3877 return NULL;
3878
3879 /* Nor exit the loop. */
3880 if ((then_edge->flags & EDGE_LOOP_EXIT)
3881 || (else_edge->flags & EDGE_LOOP_EXIT))
3882 return NULL;
3883
3884 /* The THEN edge is canonically the one that falls through. */
3885 if (then_edge->flags & EDGE_FALLTHRU)
3886 ;
3887 else if (else_edge->flags & EDGE_FALLTHRU)
3888 std::swap (then_edge, else_edge);
3889 else
3890 /* Otherwise this must be a multiway branch of some sort. */
3891 return NULL;
3892
3893 memset (&ce_info, 0, sizeof (ce_info));
3894 ce_info.test_bb = test_bb;
3895 ce_info.then_bb = then_edge->dest;
3896 ce_info.else_bb = else_edge->dest;
3897 ce_info.pass = pass;
3898
3899 #ifdef IFCVT_MACHDEP_INIT
3900 IFCVT_MACHDEP_INIT (&ce_info);
3901 #endif
3902
3903 if (!reload_completed
3904 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3905 goto success;
3906
3907 if (reload_completed
3908 && targetm.have_conditional_execution ()
3909 && cond_exec_find_if_block (&ce_info))
3910 goto success;
3911
3912 if (targetm.have_trap ()
3913 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3914 && find_cond_trap (test_bb, then_edge, else_edge))
3915 goto success;
3916
3917 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3918 && (reload_completed || !targetm.have_conditional_execution ()))
3919 {
3920 if (find_if_case_1 (test_bb, then_edge, else_edge))
3921 goto success;
3922 if (find_if_case_2 (test_bb, then_edge, else_edge))
3923 goto success;
3924 }
3925
3926 return NULL;
3927
3928 success:
3929 if (dump_file)
3930 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3931 /* Set this so we continue looking. */
3932 cond_exec_changed_p = TRUE;
3933 return ce_info.test_bb;
3934 }
3935
3936 /* Return true if a block has two edges, one of which falls through to the next
3937 block, and the other jumps to a specific block, so that we can tell if the
3938 block is part of an && test or an || test. Returns either -1 or the number
3939 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3940
3941 static int
3942 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3943 {
3944 edge cur_edge;
3945 int fallthru_p = FALSE;
3946 int jump_p = FALSE;
3947 rtx_insn *insn;
3948 rtx_insn *end;
3949 int n_insns = 0;
3950 edge_iterator ei;
3951
3952 if (!cur_bb || !target_bb)
3953 return -1;
3954
3955 /* If no edges, obviously it doesn't jump or fallthru. */
3956 if (EDGE_COUNT (cur_bb->succs) == 0)
3957 return FALSE;
3958
3959 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3960 {
3961 if (cur_edge->flags & EDGE_COMPLEX)
3962 /* Anything complex isn't what we want. */
3963 return -1;
3964
3965 else if (cur_edge->flags & EDGE_FALLTHRU)
3966 fallthru_p = TRUE;
3967
3968 else if (cur_edge->dest == target_bb)
3969 jump_p = TRUE;
3970
3971 else
3972 return -1;
3973 }
3974
3975 if ((jump_p & fallthru_p) == 0)
3976 return -1;
3977
3978 /* Don't allow calls in the block, since this is used to group && and ||
3979 together for conditional execution support. ??? we should support
3980 conditional execution support across calls for IA-64 some day, but
3981 for now it makes the code simpler. */
3982 end = BB_END (cur_bb);
3983 insn = BB_HEAD (cur_bb);
3984
3985 while (insn != NULL_RTX)
3986 {
3987 if (CALL_P (insn))
3988 return -1;
3989
3990 if (INSN_P (insn)
3991 && !JUMP_P (insn)
3992 && !DEBUG_INSN_P (insn)
3993 && GET_CODE (PATTERN (insn)) != USE
3994 && GET_CODE (PATTERN (insn)) != CLOBBER)
3995 n_insns++;
3996
3997 if (insn == end)
3998 break;
3999
4000 insn = NEXT_INSN (insn);
4001 }
4002
4003 return n_insns;
4004 }
4005
4006 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
4007 block. If so, we'll try to convert the insns to not require the branch.
4008 Return TRUE if we were successful at converting the block. */
4009
4010 static int
4011 cond_exec_find_if_block (struct ce_if_block * ce_info)
4012 {
4013 basic_block test_bb = ce_info->test_bb;
4014 basic_block then_bb = ce_info->then_bb;
4015 basic_block else_bb = ce_info->else_bb;
4016 basic_block join_bb = NULL_BLOCK;
4017 edge cur_edge;
4018 basic_block next;
4019 edge_iterator ei;
4020
4021 ce_info->last_test_bb = test_bb;
4022
4023 /* We only ever should get here after reload,
4024 and if we have conditional execution. */
4025 gcc_assert (reload_completed && targetm.have_conditional_execution ());
4026
4027 /* Discover if any fall through predecessors of the current test basic block
4028 were && tests (which jump to the else block) or || tests (which jump to
4029 the then block). */
4030 if (single_pred_p (test_bb)
4031 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
4032 {
4033 basic_block bb = single_pred (test_bb);
4034 basic_block target_bb;
4035 int max_insns = MAX_CONDITIONAL_EXECUTE;
4036 int n_insns;
4037
4038 /* Determine if the preceding block is an && or || block. */
4039 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
4040 {
4041 ce_info->and_and_p = TRUE;
4042 target_bb = else_bb;
4043 }
4044 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
4045 {
4046 ce_info->and_and_p = FALSE;
4047 target_bb = then_bb;
4048 }
4049 else
4050 target_bb = NULL_BLOCK;
4051
4052 if (target_bb && n_insns <= max_insns)
4053 {
4054 int total_insns = 0;
4055 int blocks = 0;
4056
4057 ce_info->last_test_bb = test_bb;
4058
4059 /* Found at least one && or || block, look for more. */
4060 do
4061 {
4062 ce_info->test_bb = test_bb = bb;
4063 total_insns += n_insns;
4064 blocks++;
4065
4066 if (!single_pred_p (bb))
4067 break;
4068
4069 bb = single_pred (bb);
4070 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
4071 }
4072 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
4073
4074 ce_info->num_multiple_test_blocks = blocks;
4075 ce_info->num_multiple_test_insns = total_insns;
4076
4077 if (ce_info->and_and_p)
4078 ce_info->num_and_and_blocks = blocks;
4079 else
4080 ce_info->num_or_or_blocks = blocks;
4081 }
4082 }
4083
4084 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
4085 other than any || blocks which jump to the THEN block. */
4086 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
4087 return FALSE;
4088
4089 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4090 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
4091 {
4092 if (cur_edge->flags & EDGE_COMPLEX)
4093 return FALSE;
4094 }
4095
4096 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
4097 {
4098 if (cur_edge->flags & EDGE_COMPLEX)
4099 return FALSE;
4100 }
4101
4102 /* The THEN block of an IF-THEN combo must have zero or one successors. */
4103 if (EDGE_COUNT (then_bb->succs) > 0
4104 && (!single_succ_p (then_bb)
4105 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4106 || (epilogue_completed
4107 && tablejump_p (BB_END (then_bb), NULL, NULL))))
4108 return FALSE;
4109
4110 /* If the THEN block has no successors, conditional execution can still
4111 make a conditional call. Don't do this unless the ELSE block has
4112 only one incoming edge -- the CFG manipulation is too ugly otherwise.
4113 Check for the last insn of the THEN block being an indirect jump, which
4114 is listed as not having any successors, but confuses the rest of the CE
4115 code processing. ??? we should fix this in the future. */
4116 if (EDGE_COUNT (then_bb->succs) == 0)
4117 {
4118 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4119 {
4120 rtx_insn *last_insn = BB_END (then_bb);
4121
4122 while (last_insn
4123 && NOTE_P (last_insn)
4124 && last_insn != BB_HEAD (then_bb))
4125 last_insn = PREV_INSN (last_insn);
4126
4127 if (last_insn
4128 && JUMP_P (last_insn)
4129 && ! simplejump_p (last_insn))
4130 return FALSE;
4131
4132 join_bb = else_bb;
4133 else_bb = NULL_BLOCK;
4134 }
4135 else
4136 return FALSE;
4137 }
4138
4139 /* If the THEN block's successor is the other edge out of the TEST block,
4140 then we have an IF-THEN combo without an ELSE. */
4141 else if (single_succ (then_bb) == else_bb)
4142 {
4143 join_bb = else_bb;
4144 else_bb = NULL_BLOCK;
4145 }
4146
4147 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
4148 has exactly one predecessor and one successor, and the outgoing edge
4149 is not complex, then we have an IF-THEN-ELSE combo. */
4150 else if (single_succ_p (else_bb)
4151 && single_succ (then_bb) == single_succ (else_bb)
4152 && single_pred_p (else_bb)
4153 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4154 && !(epilogue_completed
4155 && tablejump_p (BB_END (else_bb), NULL, NULL)))
4156 join_bb = single_succ (else_bb);
4157
4158 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
4159 else
4160 return FALSE;
4161
4162 num_possible_if_blocks++;
4163
4164 if (dump_file)
4165 {
4166 fprintf (dump_file,
4167 "\nIF-THEN%s block found, pass %d, start block %d "
4168 "[insn %d], then %d [%d]",
4169 (else_bb) ? "-ELSE" : "",
4170 ce_info->pass,
4171 test_bb->index,
4172 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
4173 then_bb->index,
4174 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
4175
4176 if (else_bb)
4177 fprintf (dump_file, ", else %d [%d]",
4178 else_bb->index,
4179 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
4180
4181 fprintf (dump_file, ", join %d [%d]",
4182 join_bb->index,
4183 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
4184
4185 if (ce_info->num_multiple_test_blocks > 0)
4186 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
4187 ce_info->num_multiple_test_blocks,
4188 (ce_info->and_and_p) ? "&&" : "||",
4189 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
4190 ce_info->last_test_bb->index,
4191 ((BB_HEAD (ce_info->last_test_bb))
4192 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
4193 : -1));
4194
4195 fputc ('\n', dump_file);
4196 }
4197
4198 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
4199 first condition for free, since we've already asserted that there's a
4200 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
4201 we checked the FALLTHRU flag, those are already adjacent to the last IF
4202 block. */
4203 /* ??? As an enhancement, move the ELSE block. Have to deal with
4204 BLOCK notes, if by no other means than backing out the merge if they
4205 exist. Sticky enough I don't want to think about it now. */
4206 next = then_bb;
4207 if (else_bb && (next = next->next_bb) != else_bb)
4208 return FALSE;
4209 if ((next = next->next_bb) != join_bb
4210 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4211 {
4212 if (else_bb)
4213 join_bb = NULL;
4214 else
4215 return FALSE;
4216 }
4217
4218 /* Do the real work. */
4219
4220 ce_info->else_bb = else_bb;
4221 ce_info->join_bb = join_bb;
4222
4223 /* If we have && and || tests, try to first handle combining the && and ||
4224 tests into the conditional code, and if that fails, go back and handle
4225 it without the && and ||, which at present handles the && case if there
4226 was no ELSE block. */
4227 if (cond_exec_process_if_block (ce_info, TRUE))
4228 return TRUE;
4229
4230 if (ce_info->num_multiple_test_blocks)
4231 {
4232 cancel_changes (0);
4233
4234 if (cond_exec_process_if_block (ce_info, FALSE))
4235 return TRUE;
4236 }
4237
4238 return FALSE;
4239 }
4240
4241 /* Convert a branch over a trap, or a branch
4242 to a trap, into a conditional trap. */
4243
4244 static int
4245 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
4246 {
4247 basic_block then_bb = then_edge->dest;
4248 basic_block else_bb = else_edge->dest;
4249 basic_block other_bb, trap_bb;
4250 rtx_insn *trap, *jump;
4251 rtx cond;
4252 rtx_insn *cond_earliest;
4253 enum rtx_code code;
4254
4255 /* Locate the block with the trap instruction. */
4256 /* ??? While we look for no successors, we really ought to allow
4257 EH successors. Need to fix merge_if_block for that to work. */
4258 if ((trap = block_has_only_trap (then_bb)) != NULL)
4259 trap_bb = then_bb, other_bb = else_bb;
4260 else if ((trap = block_has_only_trap (else_bb)) != NULL)
4261 trap_bb = else_bb, other_bb = then_bb;
4262 else
4263 return FALSE;
4264
4265 if (dump_file)
4266 {
4267 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
4268 test_bb->index, trap_bb->index);
4269 }
4270
4271 /* If this is not a standard conditional jump, we can't parse it. */
4272 jump = BB_END (test_bb);
4273 cond = noce_get_condition (jump, &cond_earliest, false);
4274 if (! cond)
4275 return FALSE;
4276
4277 /* If the conditional jump is more than just a conditional jump, then
4278 we can not do if-conversion on this block. */
4279 if (! onlyjump_p (jump))
4280 return FALSE;
4281
4282 /* We must be comparing objects whose modes imply the size. */
4283 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
4284 return FALSE;
4285
4286 /* Reverse the comparison code, if necessary. */
4287 code = GET_CODE (cond);
4288 if (then_bb == trap_bb)
4289 {
4290 code = reversed_comparison_code (cond, jump);
4291 if (code == UNKNOWN)
4292 return FALSE;
4293 }
4294
4295 /* Attempt to generate the conditional trap. */
4296 rtx_insn *seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
4297 copy_rtx (XEXP (cond, 1)),
4298 TRAP_CODE (PATTERN (trap)));
4299 if (seq == NULL)
4300 return FALSE;
4301
4302 /* Emit the new insns before cond_earliest. */
4303 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
4304
4305 /* Delete the trap block if possible. */
4306 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
4307 df_set_bb_dirty (test_bb);
4308 df_set_bb_dirty (then_bb);
4309 df_set_bb_dirty (else_bb);
4310
4311 if (EDGE_COUNT (trap_bb->preds) == 0)
4312 {
4313 delete_basic_block (trap_bb);
4314 num_true_changes++;
4315 }
4316
4317 /* Wire together the blocks again. */
4318 if (current_ir_type () == IR_RTL_CFGLAYOUT)
4319 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
4320 else if (trap_bb == then_bb)
4321 {
4322 rtx lab = JUMP_LABEL (jump);
4323 rtx_insn *seq = targetm.gen_jump (lab);
4324 rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
4325 LABEL_NUSES (lab) += 1;
4326 JUMP_LABEL (newjump) = lab;
4327 emit_barrier_after (newjump);
4328 }
4329 delete_insn (jump);
4330
4331 if (can_merge_blocks_p (test_bb, other_bb))
4332 {
4333 merge_blocks (test_bb, other_bb);
4334 num_true_changes++;
4335 }
4336
4337 num_updated_if_blocks++;
4338 return TRUE;
4339 }
4340
4341 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
4342 return it. */
4343
4344 static rtx_insn *
4345 block_has_only_trap (basic_block bb)
4346 {
4347 rtx_insn *trap;
4348
4349 /* We're not the exit block. */
4350 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4351 return NULL;
4352
4353 /* The block must have no successors. */
4354 if (EDGE_COUNT (bb->succs) > 0)
4355 return NULL;
4356
4357 /* The only instruction in the THEN block must be the trap. */
4358 trap = first_active_insn (bb);
4359 if (! (trap == BB_END (bb)
4360 && GET_CODE (PATTERN (trap)) == TRAP_IF
4361 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
4362 return NULL;
4363
4364 return trap;
4365 }
4366
4367 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
4368 transformable, but not necessarily the other. There need be no
4369 JOIN block.
4370
4371 Return TRUE if we were successful at converting the block.
4372
4373 Cases we'd like to look at:
4374
4375 (1)
4376 if (test) goto over; // x not live
4377 x = a;
4378 goto label;
4379 over:
4380
4381 becomes
4382
4383 x = a;
4384 if (! test) goto label;
4385
4386 (2)
4387 if (test) goto E; // x not live
4388 x = big();
4389 goto L;
4390 E:
4391 x = b;
4392 goto M;
4393
4394 becomes
4395
4396 x = b;
4397 if (test) goto M;
4398 x = big();
4399 goto L;
4400
4401 (3) // This one's really only interesting for targets that can do
4402 // multiway branching, e.g. IA-64 BBB bundles. For other targets
4403 // it results in multiple branches on a cache line, which often
4404 // does not sit well with predictors.
4405
4406 if (test1) goto E; // predicted not taken
4407 x = a;
4408 if (test2) goto F;
4409 ...
4410 E:
4411 x = b;
4412 J:
4413
4414 becomes
4415
4416 x = a;
4417 if (test1) goto E;
4418 if (test2) goto F;
4419
4420 Notes:
4421
4422 (A) Don't do (2) if the branch is predicted against the block we're
4423 eliminating. Do it anyway if we can eliminate a branch; this requires
4424 that the sole successor of the eliminated block postdominate the other
4425 side of the if.
4426
4427 (B) With CE, on (3) we can steal from both sides of the if, creating
4428
4429 if (test1) x = a;
4430 if (!test1) x = b;
4431 if (test1) goto J;
4432 if (test2) goto F;
4433 ...
4434 J:
4435
4436 Again, this is most useful if J postdominates.
4437
4438 (C) CE substitutes for helpful life information.
4439
4440 (D) These heuristics need a lot of work. */
4441
4442 /* Tests for case 1 above. */
4443
4444 static int
4445 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
4446 {
4447 basic_block then_bb = then_edge->dest;
4448 basic_block else_bb = else_edge->dest;
4449 basic_block new_bb;
4450 int then_bb_index, then_prob;
4451 rtx else_target = NULL_RTX;
4452
4453 /* If we are partitioning hot/cold basic blocks, we don't want to
4454 mess up unconditional or indirect jumps that cross between hot
4455 and cold sections.
4456
4457 Basic block partitioning may result in some jumps that appear to
4458 be optimizable (or blocks that appear to be mergeable), but which really
4459 must be left untouched (they are required to make it safely across
4460 partition boundaries). See the comments at the top of
4461 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4462
4463 if ((BB_END (then_bb)
4464 && JUMP_P (BB_END (then_bb))
4465 && CROSSING_JUMP_P (BB_END (then_bb)))
4466 || (BB_END (test_bb)
4467 && JUMP_P (BB_END (test_bb))
4468 && CROSSING_JUMP_P (BB_END (test_bb)))
4469 || (BB_END (else_bb)
4470 && JUMP_P (BB_END (else_bb))
4471 && CROSSING_JUMP_P (BB_END (else_bb))))
4472 return FALSE;
4473
4474 /* THEN has one successor. */
4475 if (!single_succ_p (then_bb))
4476 return FALSE;
4477
4478 /* THEN does not fall through, but is not strange either. */
4479 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
4480 return FALSE;
4481
4482 /* THEN has one predecessor. */
4483 if (!single_pred_p (then_bb))
4484 return FALSE;
4485
4486 /* THEN must do something. */
4487 if (forwarder_block_p (then_bb))
4488 return FALSE;
4489
4490 num_possible_if_blocks++;
4491 if (dump_file)
4492 fprintf (dump_file,
4493 "\nIF-CASE-1 found, start %d, then %d\n",
4494 test_bb->index, then_bb->index);
4495
4496 if (then_edge->probability)
4497 then_prob = REG_BR_PROB_BASE - then_edge->probability;
4498 else
4499 then_prob = REG_BR_PROB_BASE / 2;
4500
4501 /* We're speculating from the THEN path, we want to make sure the cost
4502 of speculation is within reason. */
4503 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4504 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4505 predictable_edge_p (then_edge)))))
4506 return FALSE;
4507
4508 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4509 {
4510 rtx_insn *jump = BB_END (else_edge->src);
4511 gcc_assert (JUMP_P (jump));
4512 else_target = JUMP_LABEL (jump);
4513 }
4514
4515 /* Registers set are dead, or are predicable. */
4516 if (! dead_or_predicable (test_bb, then_bb, else_bb,
4517 single_succ_edge (then_bb), 1))
4518 return FALSE;
4519
4520 /* Conversion went ok, including moving the insns and fixing up the
4521 jump. Adjust the CFG to match. */
4522
4523 /* We can avoid creating a new basic block if then_bb is immediately
4524 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4525 through to else_bb. */
4526
4527 if (then_bb->next_bb == else_bb
4528 && then_bb->prev_bb == test_bb
4529 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4530 {
4531 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4532 new_bb = 0;
4533 }
4534 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4535 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4536 else_bb, else_target);
4537 else
4538 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4539 else_bb);
4540
4541 df_set_bb_dirty (test_bb);
4542 df_set_bb_dirty (else_bb);
4543
4544 then_bb_index = then_bb->index;
4545 delete_basic_block (then_bb);
4546
4547 /* Make rest of code believe that the newly created block is the THEN_BB
4548 block we removed. */
4549 if (new_bb)
4550 {
4551 df_bb_replace (then_bb_index, new_bb);
4552 /* This should have been done above via force_nonfallthru_and_redirect
4553 (possibly called from redirect_edge_and_branch_force). */
4554 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4555 }
4556
4557 num_true_changes++;
4558 num_updated_if_blocks++;
4559
4560 return TRUE;
4561 }
4562
4563 /* Test for case 2 above. */
4564
4565 static int
4566 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4567 {
4568 basic_block then_bb = then_edge->dest;
4569 basic_block else_bb = else_edge->dest;
4570 edge else_succ;
4571 int then_prob, else_prob;
4572
4573 /* We do not want to speculate (empty) loop latches. */
4574 if (current_loops
4575 && else_bb->loop_father->latch == else_bb)
4576 return FALSE;
4577
4578 /* If we are partitioning hot/cold basic blocks, we don't want to
4579 mess up unconditional or indirect jumps that cross between hot
4580 and cold sections.
4581
4582 Basic block partitioning may result in some jumps that appear to
4583 be optimizable (or blocks that appear to be mergeable), but which really
4584 must be left untouched (they are required to make it safely across
4585 partition boundaries). See the comments at the top of
4586 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4587
4588 if ((BB_END (then_bb)
4589 && JUMP_P (BB_END (then_bb))
4590 && CROSSING_JUMP_P (BB_END (then_bb)))
4591 || (BB_END (test_bb)
4592 && JUMP_P (BB_END (test_bb))
4593 && CROSSING_JUMP_P (BB_END (test_bb)))
4594 || (BB_END (else_bb)
4595 && JUMP_P (BB_END (else_bb))
4596 && CROSSING_JUMP_P (BB_END (else_bb))))
4597 return FALSE;
4598
4599 /* ELSE has one successor. */
4600 if (!single_succ_p (else_bb))
4601 return FALSE;
4602 else
4603 else_succ = single_succ_edge (else_bb);
4604
4605 /* ELSE outgoing edge is not complex. */
4606 if (else_succ->flags & EDGE_COMPLEX)
4607 return FALSE;
4608
4609 /* ELSE has one predecessor. */
4610 if (!single_pred_p (else_bb))
4611 return FALSE;
4612
4613 /* THEN is not EXIT. */
4614 if (then_bb->index < NUM_FIXED_BLOCKS)
4615 return FALSE;
4616
4617 if (else_edge->probability)
4618 {
4619 else_prob = else_edge->probability;
4620 then_prob = REG_BR_PROB_BASE - else_prob;
4621 }
4622 else
4623 {
4624 else_prob = REG_BR_PROB_BASE / 2;
4625 then_prob = REG_BR_PROB_BASE / 2;
4626 }
4627
4628 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4629 if (else_prob > then_prob)
4630 ;
4631 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4632 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4633 else_succ->dest))
4634 ;
4635 else
4636 return FALSE;
4637
4638 num_possible_if_blocks++;
4639 if (dump_file)
4640 fprintf (dump_file,
4641 "\nIF-CASE-2 found, start %d, else %d\n",
4642 test_bb->index, else_bb->index);
4643
4644 /* We're speculating from the ELSE path, we want to make sure the cost
4645 of speculation is within reason. */
4646 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4647 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4648 predictable_edge_p (else_edge)))))
4649 return FALSE;
4650
4651 /* Registers set are dead, or are predicable. */
4652 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4653 return FALSE;
4654
4655 /* Conversion went ok, including moving the insns and fixing up the
4656 jump. Adjust the CFG to match. */
4657
4658 df_set_bb_dirty (test_bb);
4659 df_set_bb_dirty (then_bb);
4660 delete_basic_block (else_bb);
4661
4662 num_true_changes++;
4663 num_updated_if_blocks++;
4664
4665 /* ??? We may now fallthru from one of THEN's successors into a join
4666 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4667
4668 return TRUE;
4669 }
4670
4671 /* Used by the code above to perform the actual rtl transformations.
4672 Return TRUE if successful.
4673
4674 TEST_BB is the block containing the conditional branch. MERGE_BB
4675 is the block containing the code to manipulate. DEST_EDGE is an
4676 edge representing a jump to the join block; after the conversion,
4677 TEST_BB should be branching to its destination.
4678 REVERSEP is true if the sense of the branch should be reversed. */
4679
4680 static int
4681 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4682 basic_block other_bb, edge dest_edge, int reversep)
4683 {
4684 basic_block new_dest = dest_edge->dest;
4685 rtx_insn *head, *end, *jump;
4686 rtx_insn *earliest = NULL;
4687 rtx old_dest;
4688 bitmap merge_set = NULL;
4689 /* Number of pending changes. */
4690 int n_validated_changes = 0;
4691 rtx new_dest_label = NULL_RTX;
4692
4693 jump = BB_END (test_bb);
4694
4695 /* Find the extent of the real code in the merge block. */
4696 head = BB_HEAD (merge_bb);
4697 end = BB_END (merge_bb);
4698
4699 while (DEBUG_INSN_P (end) && end != head)
4700 end = PREV_INSN (end);
4701
4702 /* If merge_bb ends with a tablejump, predicating/moving insn's
4703 into test_bb and then deleting merge_bb will result in the jumptable
4704 that follows merge_bb being removed along with merge_bb and then we
4705 get an unresolved reference to the jumptable. */
4706 if (tablejump_p (end, NULL, NULL))
4707 return FALSE;
4708
4709 if (LABEL_P (head))
4710 head = NEXT_INSN (head);
4711 while (DEBUG_INSN_P (head) && head != end)
4712 head = NEXT_INSN (head);
4713 if (NOTE_P (head))
4714 {
4715 if (head == end)
4716 {
4717 head = end = NULL;
4718 goto no_body;
4719 }
4720 head = NEXT_INSN (head);
4721 while (DEBUG_INSN_P (head) && head != end)
4722 head = NEXT_INSN (head);
4723 }
4724
4725 if (JUMP_P (end))
4726 {
4727 if (!onlyjump_p (end))
4728 return FALSE;
4729 if (head == end)
4730 {
4731 head = end = NULL;
4732 goto no_body;
4733 }
4734 end = PREV_INSN (end);
4735 while (DEBUG_INSN_P (end) && end != head)
4736 end = PREV_INSN (end);
4737 }
4738
4739 /* Don't move frame-related insn across the conditional branch. This
4740 can lead to one of the paths of the branch having wrong unwind info. */
4741 if (epilogue_completed)
4742 {
4743 rtx_insn *insn = head;
4744 while (1)
4745 {
4746 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
4747 return FALSE;
4748 if (insn == end)
4749 break;
4750 insn = NEXT_INSN (insn);
4751 }
4752 }
4753
4754 /* Disable handling dead code by conditional execution if the machine needs
4755 to do anything funny with the tests, etc. */
4756 #ifndef IFCVT_MODIFY_TESTS
4757 if (targetm.have_conditional_execution ())
4758 {
4759 /* In the conditional execution case, we have things easy. We know
4760 the condition is reversible. We don't have to check life info
4761 because we're going to conditionally execute the code anyway.
4762 All that's left is making sure the insns involved can actually
4763 be predicated. */
4764
4765 rtx cond;
4766
4767 cond = cond_exec_get_condition (jump);
4768 if (! cond)
4769 return FALSE;
4770
4771 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4772 int prob_val = (note ? XINT (note, 0) : -1);
4773
4774 if (reversep)
4775 {
4776 enum rtx_code rev = reversed_comparison_code (cond, jump);
4777 if (rev == UNKNOWN)
4778 return FALSE;
4779 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4780 XEXP (cond, 1));
4781 if (prob_val >= 0)
4782 prob_val = REG_BR_PROB_BASE - prob_val;
4783 }
4784
4785 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4786 && verify_changes (0))
4787 n_validated_changes = num_validated_changes ();
4788 else
4789 cancel_changes (0);
4790
4791 earliest = jump;
4792 }
4793 #endif
4794
4795 /* If we allocated new pseudos (e.g. in the conditional move
4796 expander called from noce_emit_cmove), we must resize the
4797 array first. */
4798 if (max_regno < max_reg_num ())
4799 max_regno = max_reg_num ();
4800
4801 /* Try the NCE path if the CE path did not result in any changes. */
4802 if (n_validated_changes == 0)
4803 {
4804 rtx cond;
4805 rtx_insn *insn;
4806 regset live;
4807 bool success;
4808
4809 /* In the non-conditional execution case, we have to verify that there
4810 are no trapping operations, no calls, no references to memory, and
4811 that any registers modified are dead at the branch site. */
4812
4813 if (!any_condjump_p (jump))
4814 return FALSE;
4815
4816 /* Find the extent of the conditional. */
4817 cond = noce_get_condition (jump, &earliest, false);
4818 if (!cond)
4819 return FALSE;
4820
4821 live = BITMAP_ALLOC (&reg_obstack);
4822 simulate_backwards_to_point (merge_bb, live, end);
4823 success = can_move_insns_across (head, end, earliest, jump,
4824 merge_bb, live,
4825 df_get_live_in (other_bb), NULL);
4826 BITMAP_FREE (live);
4827 if (!success)
4828 return FALSE;
4829
4830 /* Collect the set of registers set in MERGE_BB. */
4831 merge_set = BITMAP_ALLOC (&reg_obstack);
4832
4833 FOR_BB_INSNS (merge_bb, insn)
4834 if (NONDEBUG_INSN_P (insn))
4835 df_simulate_find_defs (insn, merge_set);
4836
4837 /* If shrink-wrapping, disable this optimization when test_bb is
4838 the first basic block and merge_bb exits. The idea is to not
4839 move code setting up a return register as that may clobber a
4840 register used to pass function parameters, which then must be
4841 saved in caller-saved regs. A caller-saved reg requires the
4842 prologue, killing a shrink-wrap opportunity. */
4843 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
4844 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4845 && single_succ_p (new_dest)
4846 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4847 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4848 {
4849 regset return_regs;
4850 unsigned int i;
4851
4852 return_regs = BITMAP_ALLOC (&reg_obstack);
4853
4854 /* Start off with the intersection of regs used to pass
4855 params and regs used to return values. */
4856 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4857 if (FUNCTION_ARG_REGNO_P (i)
4858 && targetm.calls.function_value_regno_p (i))
4859 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4860
4861 bitmap_and_into (return_regs,
4862 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4863 bitmap_and_into (return_regs,
4864 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4865 if (!bitmap_empty_p (return_regs))
4866 {
4867 FOR_BB_INSNS_REVERSE (new_dest, insn)
4868 if (NONDEBUG_INSN_P (insn))
4869 {
4870 df_ref def;
4871
4872 /* If this insn sets any reg in return_regs, add all
4873 reg uses to the set of regs we're interested in. */
4874 FOR_EACH_INSN_DEF (def, insn)
4875 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
4876 {
4877 df_simulate_uses (insn, return_regs);
4878 break;
4879 }
4880 }
4881 if (bitmap_intersect_p (merge_set, return_regs))
4882 {
4883 BITMAP_FREE (return_regs);
4884 BITMAP_FREE (merge_set);
4885 return FALSE;
4886 }
4887 }
4888 BITMAP_FREE (return_regs);
4889 }
4890 }
4891
4892 no_body:
4893 /* We don't want to use normal invert_jump or redirect_jump because
4894 we don't want to delete_insn called. Also, we want to do our own
4895 change group management. */
4896
4897 old_dest = JUMP_LABEL (jump);
4898 if (other_bb != new_dest)
4899 {
4900 if (!any_condjump_p (jump))
4901 goto cancel;
4902
4903 if (JUMP_P (BB_END (dest_edge->src)))
4904 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4905 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4906 new_dest_label = ret_rtx;
4907 else
4908 new_dest_label = block_label (new_dest);
4909
4910 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
4911 if (reversep
4912 ? ! invert_jump_1 (jump_insn, new_dest_label)
4913 : ! redirect_jump_1 (jump_insn, new_dest_label))
4914 goto cancel;
4915 }
4916
4917 if (verify_changes (n_validated_changes))
4918 confirm_change_group ();
4919 else
4920 goto cancel;
4921
4922 if (other_bb != new_dest)
4923 {
4924 redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
4925 0, reversep);
4926
4927 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4928 if (reversep)
4929 {
4930 std::swap (BRANCH_EDGE (test_bb)->count,
4931 FALLTHRU_EDGE (test_bb)->count);
4932 std::swap (BRANCH_EDGE (test_bb)->probability,
4933 FALLTHRU_EDGE (test_bb)->probability);
4934 update_br_prob_note (test_bb);
4935 }
4936 }
4937
4938 /* Move the insns out of MERGE_BB to before the branch. */
4939 if (head != NULL)
4940 {
4941 rtx_insn *insn;
4942
4943 if (end == BB_END (merge_bb))
4944 BB_END (merge_bb) = PREV_INSN (head);
4945
4946 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4947 notes being moved might become invalid. */
4948 insn = head;
4949 do
4950 {
4951 rtx note;
4952
4953 if (! INSN_P (insn))
4954 continue;
4955 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4956 if (! note)
4957 continue;
4958 remove_note (insn, note);
4959 } while (insn != end && (insn = NEXT_INSN (insn)));
4960
4961 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4962 notes referring to the registers being set might become invalid. */
4963 if (merge_set)
4964 {
4965 unsigned i;
4966 bitmap_iterator bi;
4967
4968 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4969 remove_reg_equal_equiv_notes_for_regno (i);
4970
4971 BITMAP_FREE (merge_set);
4972 }
4973
4974 reorder_insns (head, end, PREV_INSN (earliest));
4975 }
4976
4977 /* Remove the jump and edge if we can. */
4978 if (other_bb == new_dest)
4979 {
4980 delete_insn (jump);
4981 remove_edge (BRANCH_EDGE (test_bb));
4982 /* ??? Can't merge blocks here, as then_bb is still in use.
4983 At minimum, the merge will get done just before bb-reorder. */
4984 }
4985
4986 return TRUE;
4987
4988 cancel:
4989 cancel_changes (0);
4990
4991 if (merge_set)
4992 BITMAP_FREE (merge_set);
4993
4994 return FALSE;
4995 }
4996 \f
4997 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4998 we are after combine pass. */
4999
5000 static void
5001 if_convert (bool after_combine)
5002 {
5003 basic_block bb;
5004 int pass;
5005
5006 if (optimize == 1)
5007 {
5008 df_live_add_problem ();
5009 df_live_set_all_dirty ();
5010 }
5011
5012 /* Record whether we are after combine pass. */
5013 ifcvt_after_combine = after_combine;
5014 have_cbranchcc4 = (direct_optab_handler (cbranch_optab, CCmode)
5015 != CODE_FOR_nothing);
5016 num_possible_if_blocks = 0;
5017 num_updated_if_blocks = 0;
5018 num_true_changes = 0;
5019
5020 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5021 mark_loop_exit_edges ();
5022 loop_optimizer_finalize ();
5023 free_dominance_info (CDI_DOMINATORS);
5024
5025 /* Compute postdominators. */
5026 calculate_dominance_info (CDI_POST_DOMINATORS);
5027
5028 df_set_flags (DF_LR_RUN_DCE);
5029
5030 /* Go through each of the basic blocks looking for things to convert. If we
5031 have conditional execution, we make multiple passes to allow us to handle
5032 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
5033 pass = 0;
5034 do
5035 {
5036 df_analyze ();
5037 /* Only need to do dce on the first pass. */
5038 df_clear_flags (DF_LR_RUN_DCE);
5039 cond_exec_changed_p = FALSE;
5040 pass++;
5041
5042 #ifdef IFCVT_MULTIPLE_DUMPS
5043 if (dump_file && pass > 1)
5044 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
5045 #endif
5046
5047 FOR_EACH_BB_FN (bb, cfun)
5048 {
5049 basic_block new_bb;
5050 while (!df_get_bb_dirty (bb)
5051 && (new_bb = find_if_header (bb, pass)) != NULL)
5052 bb = new_bb;
5053 }
5054
5055 #ifdef IFCVT_MULTIPLE_DUMPS
5056 if (dump_file && cond_exec_changed_p)
5057 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
5058 #endif
5059 }
5060 while (cond_exec_changed_p);
5061
5062 #ifdef IFCVT_MULTIPLE_DUMPS
5063 if (dump_file)
5064 fprintf (dump_file, "\n\n========== no more changes\n");
5065 #endif
5066
5067 free_dominance_info (CDI_POST_DOMINATORS);
5068
5069 if (dump_file)
5070 fflush (dump_file);
5071
5072 clear_aux_for_blocks ();
5073
5074 /* If we allocated new pseudos, we must resize the array for sched1. */
5075 if (max_regno < max_reg_num ())
5076 max_regno = max_reg_num ();
5077
5078 /* Write the final stats. */
5079 if (dump_file && num_possible_if_blocks > 0)
5080 {
5081 fprintf (dump_file,
5082 "\n%d possible IF blocks searched.\n",
5083 num_possible_if_blocks);
5084 fprintf (dump_file,
5085 "%d IF blocks converted.\n",
5086 num_updated_if_blocks);
5087 fprintf (dump_file,
5088 "%d true changes made.\n\n\n",
5089 num_true_changes);
5090 }
5091
5092 if (optimize == 1)
5093 df_remove_problem (df_live);
5094
5095 #ifdef ENABLE_CHECKING
5096 verify_flow_info ();
5097 #endif
5098 }
5099 \f
5100 /* If-conversion and CFG cleanup. */
5101 static unsigned int
5102 rest_of_handle_if_conversion (void)
5103 {
5104 if (flag_if_conversion)
5105 {
5106 if (dump_file)
5107 {
5108 dump_reg_info (dump_file);
5109 dump_flow_info (dump_file, dump_flags);
5110 }
5111 cleanup_cfg (CLEANUP_EXPENSIVE);
5112 if_convert (false);
5113 }
5114
5115 cleanup_cfg (0);
5116 return 0;
5117 }
5118
5119 namespace {
5120
5121 const pass_data pass_data_rtl_ifcvt =
5122 {
5123 RTL_PASS, /* type */
5124 "ce1", /* name */
5125 OPTGROUP_NONE, /* optinfo_flags */
5126 TV_IFCVT, /* tv_id */
5127 0, /* properties_required */
5128 0, /* properties_provided */
5129 0, /* properties_destroyed */
5130 0, /* todo_flags_start */
5131 TODO_df_finish, /* todo_flags_finish */
5132 };
5133
5134 class pass_rtl_ifcvt : public rtl_opt_pass
5135 {
5136 public:
5137 pass_rtl_ifcvt (gcc::context *ctxt)
5138 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
5139 {}
5140
5141 /* opt_pass methods: */
5142 virtual bool gate (function *)
5143 {
5144 return (optimize > 0) && dbg_cnt (if_conversion);
5145 }
5146
5147 virtual unsigned int execute (function *)
5148 {
5149 return rest_of_handle_if_conversion ();
5150 }
5151
5152 }; // class pass_rtl_ifcvt
5153
5154 } // anon namespace
5155
5156 rtl_opt_pass *
5157 make_pass_rtl_ifcvt (gcc::context *ctxt)
5158 {
5159 return new pass_rtl_ifcvt (ctxt);
5160 }
5161
5162
5163 /* Rerun if-conversion, as combine may have simplified things enough
5164 to now meet sequence length restrictions. */
5165
5166 namespace {
5167
5168 const pass_data pass_data_if_after_combine =
5169 {
5170 RTL_PASS, /* type */
5171 "ce2", /* name */
5172 OPTGROUP_NONE, /* optinfo_flags */
5173 TV_IFCVT, /* tv_id */
5174 0, /* properties_required */
5175 0, /* properties_provided */
5176 0, /* properties_destroyed */
5177 0, /* todo_flags_start */
5178 TODO_df_finish, /* todo_flags_finish */
5179 };
5180
5181 class pass_if_after_combine : public rtl_opt_pass
5182 {
5183 public:
5184 pass_if_after_combine (gcc::context *ctxt)
5185 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
5186 {}
5187
5188 /* opt_pass methods: */
5189 virtual bool gate (function *)
5190 {
5191 return optimize > 0 && flag_if_conversion
5192 && dbg_cnt (if_after_combine);
5193 }
5194
5195 virtual unsigned int execute (function *)
5196 {
5197 if_convert (true);
5198 return 0;
5199 }
5200
5201 }; // class pass_if_after_combine
5202
5203 } // anon namespace
5204
5205 rtl_opt_pass *
5206 make_pass_if_after_combine (gcc::context *ctxt)
5207 {
5208 return new pass_if_after_combine (ctxt);
5209 }
5210
5211
5212 namespace {
5213
5214 const pass_data pass_data_if_after_reload =
5215 {
5216 RTL_PASS, /* type */
5217 "ce3", /* name */
5218 OPTGROUP_NONE, /* optinfo_flags */
5219 TV_IFCVT2, /* tv_id */
5220 0, /* properties_required */
5221 0, /* properties_provided */
5222 0, /* properties_destroyed */
5223 0, /* todo_flags_start */
5224 TODO_df_finish, /* todo_flags_finish */
5225 };
5226
5227 class pass_if_after_reload : public rtl_opt_pass
5228 {
5229 public:
5230 pass_if_after_reload (gcc::context *ctxt)
5231 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
5232 {}
5233
5234 /* opt_pass methods: */
5235 virtual bool gate (function *)
5236 {
5237 return optimize > 0 && flag_if_conversion2
5238 && dbg_cnt (if_after_reload);
5239 }
5240
5241 virtual unsigned int execute (function *)
5242 {
5243 if_convert (true);
5244 return 0;
5245 }
5246
5247 }; // class pass_if_after_reload
5248
5249 } // anon namespace
5250
5251 rtl_opt_pass *
5252 make_pass_if_after_reload (gcc::context *ctxt)
5253 {
5254 return new pass_if_after_reload (ctxt);
5255 }