basic-block.h (FOR_ALL_BB_FN): New macro.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "real.h"
38 #include "output.h"
39 #include "optabs.h"
40 #include "toplev.h"
41 #include "tm_p.h"
42 #include "cfgloop.h"
43 #include "target.h"
44
45
46 #ifndef HAVE_conditional_execution
47 #define HAVE_conditional_execution 0
48 #endif
49 #ifndef HAVE_conditional_move
50 #define HAVE_conditional_move 0
51 #endif
52 #ifndef HAVE_incscc
53 #define HAVE_incscc 0
54 #endif
55 #ifndef HAVE_decscc
56 #define HAVE_decscc 0
57 #endif
58 #ifndef HAVE_trap
59 #define HAVE_trap 0
60 #endif
61 #ifndef HAVE_conditional_trap
62 #define HAVE_conditional_trap 0
63 #endif
64
65 #ifndef MAX_CONDITIONAL_EXECUTE
66 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
67 #endif
68
69 #define NULL_BLOCK ((basic_block) NULL)
70
71 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
72 static int num_possible_if_blocks;
73
74 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
75 execution. */
76 static int num_updated_if_blocks;
77
78 /* # of changes made which require life information to be updated. */
79 static int num_true_changes;
80
81 /* Whether conditional execution changes were made. */
82 static int cond_exec_changed_p;
83
84 /* True if life data ok at present. */
85 static bool life_data_ok;
86
87 /* Forward references. */
88 static int count_bb_insns (basic_block);
89 static bool cheap_bb_rtx_cost_p (basic_block, int);
90 static rtx first_active_insn (basic_block);
91 static rtx last_active_insn (basic_block, int);
92 static basic_block block_fallthru (basic_block);
93 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
94 static rtx cond_exec_get_condition (rtx);
95 static int cond_exec_process_if_block (ce_if_block_t *, int);
96 static rtx noce_get_condition (rtx, rtx *);
97 static int noce_operand_ok (rtx);
98 static int noce_process_if_block (ce_if_block_t *);
99 static int process_if_block (ce_if_block_t *);
100 static void merge_if_block (ce_if_block_t *);
101 static int find_cond_trap (basic_block, edge, edge);
102 static basic_block find_if_header (basic_block, int);
103 static int block_jumps_and_fallthru_p (basic_block, basic_block);
104 static int find_if_block (ce_if_block_t *);
105 static int find_if_case_1 (basic_block, edge, edge);
106 static int find_if_case_2 (basic_block, edge, edge);
107 static int find_memory (rtx *, void *);
108 static int dead_or_predicable (basic_block, basic_block, basic_block,
109 basic_block, int);
110 static void noce_emit_move_insn (rtx, rtx);
111 static rtx block_has_only_trap (basic_block);
112 \f
113 /* Count the number of non-jump active insns in BB. */
114
115 static int
116 count_bb_insns (basic_block bb)
117 {
118 int count = 0;
119 rtx insn = BB_HEAD (bb);
120
121 while (1)
122 {
123 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
124 count++;
125
126 if (insn == BB_END (bb))
127 break;
128 insn = NEXT_INSN (insn);
129 }
130
131 return count;
132 }
133
134 /* Determine whether the total insn_rtx_cost on non-jump insns in
135 basic block BB is less than MAX_COST. This function returns
136 false if the cost of any instruction could not be estimated. */
137
138 static bool
139 cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
140 {
141 int count = 0;
142 rtx insn = BB_HEAD (bb);
143
144 while (1)
145 {
146 if (NONJUMP_INSN_P (insn))
147 {
148 int cost = insn_rtx_cost (PATTERN (insn));
149 if (cost == 0)
150 return false;
151
152 /* If this instruction is the load or set of a "stack" register,
153 such as a floating point register on x87, then the cost of
154 speculatively executing this instruction needs to include
155 the additional cost of popping this register off of the
156 register stack. */
157 #ifdef STACK_REGS
158 {
159 rtx set = single_set (insn);
160 if (set && STACK_REG_P (SET_DEST (set)))
161 cost += COSTS_N_INSNS (1);
162 }
163 #endif
164
165 count += cost;
166 if (count >= max_cost)
167 return false;
168 }
169 else if (CALL_P (insn))
170 return false;
171
172 if (insn == BB_END (bb))
173 break;
174 insn = NEXT_INSN (insn);
175 }
176
177 return true;
178 }
179
180 /* Return the first non-jump active insn in the basic block. */
181
182 static rtx
183 first_active_insn (basic_block bb)
184 {
185 rtx insn = BB_HEAD (bb);
186
187 if (LABEL_P (insn))
188 {
189 if (insn == BB_END (bb))
190 return NULL_RTX;
191 insn = NEXT_INSN (insn);
192 }
193
194 while (NOTE_P (insn))
195 {
196 if (insn == BB_END (bb))
197 return NULL_RTX;
198 insn = NEXT_INSN (insn);
199 }
200
201 if (JUMP_P (insn))
202 return NULL_RTX;
203
204 return insn;
205 }
206
207 /* Return the last non-jump active (non-jump) insn in the basic block. */
208
209 static rtx
210 last_active_insn (basic_block bb, int skip_use_p)
211 {
212 rtx insn = BB_END (bb);
213 rtx head = BB_HEAD (bb);
214
215 while (NOTE_P (insn)
216 || JUMP_P (insn)
217 || (skip_use_p
218 && NONJUMP_INSN_P (insn)
219 && GET_CODE (PATTERN (insn)) == USE))
220 {
221 if (insn == head)
222 return NULL_RTX;
223 insn = PREV_INSN (insn);
224 }
225
226 if (LABEL_P (insn))
227 return NULL_RTX;
228
229 return insn;
230 }
231
232 /* Return the basic block reached by falling though the basic block BB. */
233
234 static basic_block
235 block_fallthru (basic_block bb)
236 {
237 edge e;
238 edge_iterator ei;
239
240 FOR_EACH_EDGE (e, ei, bb->succs)
241 if (e->flags & EDGE_FALLTHRU)
242 break;
243
244 return (e) ? e->dest : NULL_BLOCK;
245 }
246 \f
247 /* Go through a bunch of insns, converting them to conditional
248 execution format if possible. Return TRUE if all of the non-note
249 insns were processed. */
250
251 static int
252 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
253 /* if block information */rtx start,
254 /* first insn to look at */rtx end,
255 /* last insn to look at */rtx test,
256 /* conditional execution test */rtx prob_val,
257 /* probability of branch taken. */int mod_ok)
258 {
259 int must_be_last = FALSE;
260 rtx insn;
261 rtx xtest;
262 rtx pattern;
263
264 if (!start || !end)
265 return FALSE;
266
267 for (insn = start; ; insn = NEXT_INSN (insn))
268 {
269 if (NOTE_P (insn))
270 goto insn_done;
271
272 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
273
274 /* Remove USE insns that get in the way. */
275 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
276 {
277 /* ??? Ug. Actually unlinking the thing is problematic,
278 given what we'd have to coordinate with our callers. */
279 SET_INSN_DELETED (insn);
280 goto insn_done;
281 }
282
283 /* Last insn wasn't last? */
284 if (must_be_last)
285 return FALSE;
286
287 if (modified_in_p (test, insn))
288 {
289 if (!mod_ok)
290 return FALSE;
291 must_be_last = TRUE;
292 }
293
294 /* Now build the conditional form of the instruction. */
295 pattern = PATTERN (insn);
296 xtest = copy_rtx (test);
297
298 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
299 two conditions. */
300 if (GET_CODE (pattern) == COND_EXEC)
301 {
302 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
303 return FALSE;
304
305 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
306 COND_EXEC_TEST (pattern));
307 pattern = COND_EXEC_CODE (pattern);
308 }
309
310 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
311
312 /* If the machine needs to modify the insn being conditionally executed,
313 say for example to force a constant integer operand into a temp
314 register, do so here. */
315 #ifdef IFCVT_MODIFY_INSN
316 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
317 if (! pattern)
318 return FALSE;
319 #endif
320
321 validate_change (insn, &PATTERN (insn), pattern, 1);
322
323 if (CALL_P (insn) && prob_val)
324 validate_change (insn, &REG_NOTES (insn),
325 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
326 REG_NOTES (insn)), 1);
327
328 insn_done:
329 if (insn == end)
330 break;
331 }
332
333 return TRUE;
334 }
335
336 /* Return the condition for a jump. Do not do any special processing. */
337
338 static rtx
339 cond_exec_get_condition (rtx jump)
340 {
341 rtx test_if, cond;
342
343 if (any_condjump_p (jump))
344 test_if = SET_SRC (pc_set (jump));
345 else
346 return NULL_RTX;
347 cond = XEXP (test_if, 0);
348
349 /* If this branches to JUMP_LABEL when the condition is false,
350 reverse the condition. */
351 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
352 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
353 {
354 enum rtx_code rev = reversed_comparison_code (cond, jump);
355 if (rev == UNKNOWN)
356 return NULL_RTX;
357
358 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
359 XEXP (cond, 1));
360 }
361
362 return cond;
363 }
364
365 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
366 to conditional execution. Return TRUE if we were successful at
367 converting the block. */
368
369 static int
370 cond_exec_process_if_block (ce_if_block_t * ce_info,
371 /* if block information */int do_multiple_p)
372 {
373 basic_block test_bb = ce_info->test_bb; /* last test block */
374 basic_block then_bb = ce_info->then_bb; /* THEN */
375 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
376 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
377 rtx then_start; /* first insn in THEN block */
378 rtx then_end; /* last insn + 1 in THEN block */
379 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
380 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
381 int max; /* max # of insns to convert. */
382 int then_mod_ok; /* whether conditional mods are ok in THEN */
383 rtx true_expr; /* test for else block insns */
384 rtx false_expr; /* test for then block insns */
385 rtx true_prob_val; /* probability of else block */
386 rtx false_prob_val; /* probability of then block */
387 int n_insns;
388 enum rtx_code false_code;
389
390 /* If test is comprised of && or || elements, and we've failed at handling
391 all of them together, just use the last test if it is the special case of
392 && elements without an ELSE block. */
393 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
394 {
395 if (else_bb || ! ce_info->and_and_p)
396 return FALSE;
397
398 ce_info->test_bb = test_bb = ce_info->last_test_bb;
399 ce_info->num_multiple_test_blocks = 0;
400 ce_info->num_and_and_blocks = 0;
401 ce_info->num_or_or_blocks = 0;
402 }
403
404 /* Find the conditional jump to the ELSE or JOIN part, and isolate
405 the test. */
406 test_expr = cond_exec_get_condition (BB_END (test_bb));
407 if (! test_expr)
408 return FALSE;
409
410 /* If the conditional jump is more than just a conditional jump,
411 then we can not do conditional execution conversion on this block. */
412 if (! onlyjump_p (BB_END (test_bb)))
413 return FALSE;
414
415 /* Collect the bounds of where we're to search, skipping any labels, jumps
416 and notes at the beginning and end of the block. Then count the total
417 number of insns and see if it is small enough to convert. */
418 then_start = first_active_insn (then_bb);
419 then_end = last_active_insn (then_bb, TRUE);
420 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
421 max = MAX_CONDITIONAL_EXECUTE;
422
423 if (else_bb)
424 {
425 max *= 2;
426 else_start = first_active_insn (else_bb);
427 else_end = last_active_insn (else_bb, TRUE);
428 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
429 }
430
431 if (n_insns > max)
432 return FALSE;
433
434 /* Map test_expr/test_jump into the appropriate MD tests to use on
435 the conditionally executed code. */
436
437 true_expr = test_expr;
438
439 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
440 if (false_code != UNKNOWN)
441 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
442 XEXP (true_expr, 0), XEXP (true_expr, 1));
443 else
444 false_expr = NULL_RTX;
445
446 #ifdef IFCVT_MODIFY_TESTS
447 /* If the machine description needs to modify the tests, such as setting a
448 conditional execution register from a comparison, it can do so here. */
449 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
450
451 /* See if the conversion failed. */
452 if (!true_expr || !false_expr)
453 goto fail;
454 #endif
455
456 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
457 if (true_prob_val)
458 {
459 true_prob_val = XEXP (true_prob_val, 0);
460 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
461 }
462 else
463 false_prob_val = NULL_RTX;
464
465 /* If we have && or || tests, do them here. These tests are in the adjacent
466 blocks after the first block containing the test. */
467 if (ce_info->num_multiple_test_blocks > 0)
468 {
469 basic_block bb = test_bb;
470 basic_block last_test_bb = ce_info->last_test_bb;
471
472 if (! false_expr)
473 goto fail;
474
475 do
476 {
477 rtx start, end;
478 rtx t, f;
479 enum rtx_code f_code;
480
481 bb = block_fallthru (bb);
482 start = first_active_insn (bb);
483 end = last_active_insn (bb, TRUE);
484 if (start
485 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
486 false_prob_val, FALSE))
487 goto fail;
488
489 /* If the conditional jump is more than just a conditional jump, then
490 we can not do conditional execution conversion on this block. */
491 if (! onlyjump_p (BB_END (bb)))
492 goto fail;
493
494 /* Find the conditional jump and isolate the test. */
495 t = cond_exec_get_condition (BB_END (bb));
496 if (! t)
497 goto fail;
498
499 f_code = reversed_comparison_code (t, BB_END (bb));
500 if (f_code == UNKNOWN)
501 goto fail;
502
503 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
504 if (ce_info->and_and_p)
505 {
506 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
507 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
508 }
509 else
510 {
511 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
512 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
513 }
514
515 /* If the machine description needs to modify the tests, such as
516 setting a conditional execution register from a comparison, it can
517 do so here. */
518 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
519 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
520
521 /* See if the conversion failed. */
522 if (!t || !f)
523 goto fail;
524 #endif
525
526 true_expr = t;
527 false_expr = f;
528 }
529 while (bb != last_test_bb);
530 }
531
532 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
533 on then THEN block. */
534 then_mod_ok = (else_bb == NULL_BLOCK);
535
536 /* Go through the THEN and ELSE blocks converting the insns if possible
537 to conditional execution. */
538
539 if (then_end
540 && (! false_expr
541 || ! cond_exec_process_insns (ce_info, then_start, then_end,
542 false_expr, false_prob_val,
543 then_mod_ok)))
544 goto fail;
545
546 if (else_bb && else_end
547 && ! cond_exec_process_insns (ce_info, else_start, else_end,
548 true_expr, true_prob_val, TRUE))
549 goto fail;
550
551 /* If we cannot apply the changes, fail. Do not go through the normal fail
552 processing, since apply_change_group will call cancel_changes. */
553 if (! apply_change_group ())
554 {
555 #ifdef IFCVT_MODIFY_CANCEL
556 /* Cancel any machine dependent changes. */
557 IFCVT_MODIFY_CANCEL (ce_info);
558 #endif
559 return FALSE;
560 }
561
562 #ifdef IFCVT_MODIFY_FINAL
563 /* Do any machine dependent final modifications. */
564 IFCVT_MODIFY_FINAL (ce_info);
565 #endif
566
567 /* Conversion succeeded. */
568 if (dump_file)
569 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
570 n_insns, (n_insns == 1) ? " was" : "s were");
571
572 /* Merge the blocks! */
573 merge_if_block (ce_info);
574 cond_exec_changed_p = TRUE;
575 return TRUE;
576
577 fail:
578 #ifdef IFCVT_MODIFY_CANCEL
579 /* Cancel any machine dependent changes. */
580 IFCVT_MODIFY_CANCEL (ce_info);
581 #endif
582
583 cancel_changes (0);
584 return FALSE;
585 }
586 \f
587 /* Used by noce_process_if_block to communicate with its subroutines.
588
589 The subroutines know that A and B may be evaluated freely. They
590 know that X is a register. They should insert new instructions
591 before cond_earliest. */
592
593 struct noce_if_info
594 {
595 basic_block test_bb;
596 rtx insn_a, insn_b;
597 rtx x, a, b;
598 rtx jump, cond, cond_earliest;
599 /* True if "b" was originally evaluated unconditionally. */
600 bool b_unconditional;
601 };
602
603 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
604 static int noce_try_move (struct noce_if_info *);
605 static int noce_try_store_flag (struct noce_if_info *);
606 static int noce_try_addcc (struct noce_if_info *);
607 static int noce_try_store_flag_constants (struct noce_if_info *);
608 static int noce_try_store_flag_mask (struct noce_if_info *);
609 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
610 rtx, rtx, rtx);
611 static int noce_try_cmove (struct noce_if_info *);
612 static int noce_try_cmove_arith (struct noce_if_info *);
613 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
614 static int noce_try_minmax (struct noce_if_info *);
615 static int noce_try_abs (struct noce_if_info *);
616 static int noce_try_sign_mask (struct noce_if_info *);
617
618 /* Helper function for noce_try_store_flag*. */
619
620 static rtx
621 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
622 int normalize)
623 {
624 rtx cond = if_info->cond;
625 int cond_complex;
626 enum rtx_code code;
627
628 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
629 || ! general_operand (XEXP (cond, 1), VOIDmode));
630
631 /* If earliest == jump, or when the condition is complex, try to
632 build the store_flag insn directly. */
633
634 if (cond_complex)
635 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
636
637 if (reversep)
638 code = reversed_comparison_code (cond, if_info->jump);
639 else
640 code = GET_CODE (cond);
641
642 if ((if_info->cond_earliest == if_info->jump || cond_complex)
643 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
644 {
645 rtx tmp;
646
647 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
648 XEXP (cond, 1));
649 tmp = gen_rtx_SET (VOIDmode, x, tmp);
650
651 start_sequence ();
652 tmp = emit_insn (tmp);
653
654 if (recog_memoized (tmp) >= 0)
655 {
656 tmp = get_insns ();
657 end_sequence ();
658 emit_insn (tmp);
659
660 if_info->cond_earliest = if_info->jump;
661
662 return x;
663 }
664
665 end_sequence ();
666 }
667
668 /* Don't even try if the comparison operands or the mode of X are weird. */
669 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
670 return NULL_RTX;
671
672 return emit_store_flag (x, code, XEXP (cond, 0),
673 XEXP (cond, 1), VOIDmode,
674 (code == LTU || code == LEU
675 || code == GEU || code == GTU), normalize);
676 }
677
678 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
679 X is the destination/target and Y is the value to copy. */
680
681 static void
682 noce_emit_move_insn (rtx x, rtx y)
683 {
684 enum machine_mode outmode;
685 rtx outer, inner;
686 int bitpos;
687
688 if (GET_CODE (x) != STRICT_LOW_PART)
689 {
690 emit_move_insn (x, y);
691 return;
692 }
693
694 outer = XEXP (x, 0);
695 inner = XEXP (outer, 0);
696 outmode = GET_MODE (outer);
697 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
698 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
699 }
700
701 /* Return sequence of instructions generated by if conversion. This
702 function calls end_sequence() to end the current stream, ensures
703 that are instructions are unshared, recognizable non-jump insns.
704 On failure, this function returns a NULL_RTX. */
705
706 static rtx
707 end_ifcvt_sequence (struct noce_if_info *if_info)
708 {
709 rtx insn;
710 rtx seq = get_insns ();
711
712 set_used_flags (if_info->x);
713 set_used_flags (if_info->cond);
714 unshare_all_rtl_in_chain (seq);
715 end_sequence ();
716
717 /* Make sure that all of the instructions emitted are recognizable,
718 and that we haven't introduced a new jump instruction.
719 As an exercise for the reader, build a general mechanism that
720 allows proper placement of required clobbers. */
721 for (insn = seq; insn; insn = NEXT_INSN (insn))
722 if (JUMP_P (insn)
723 || recog_memoized (insn) == -1)
724 return NULL_RTX;
725
726 return seq;
727 }
728
729 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
730 "if (a == b) x = a; else x = b" into "x = b". */
731
732 static int
733 noce_try_move (struct noce_if_info *if_info)
734 {
735 rtx cond = if_info->cond;
736 enum rtx_code code = GET_CODE (cond);
737 rtx y, seq;
738
739 if (code != NE && code != EQ)
740 return FALSE;
741
742 /* This optimization isn't valid if either A or B could be a NaN
743 or a signed zero. */
744 if (HONOR_NANS (GET_MODE (if_info->x))
745 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
746 return FALSE;
747
748 /* Check whether the operands of the comparison are A and in
749 either order. */
750 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
751 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
752 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
753 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
754 {
755 y = (code == EQ) ? if_info->a : if_info->b;
756
757 /* Avoid generating the move if the source is the destination. */
758 if (! rtx_equal_p (if_info->x, y))
759 {
760 start_sequence ();
761 noce_emit_move_insn (if_info->x, y);
762 seq = end_ifcvt_sequence (if_info);
763 if (!seq)
764 return FALSE;
765
766 emit_insn_before_setloc (seq, if_info->jump,
767 INSN_LOCATOR (if_info->insn_a));
768 }
769 return TRUE;
770 }
771 return FALSE;
772 }
773
774 /* Convert "if (test) x = 1; else x = 0".
775
776 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
777 tried in noce_try_store_flag_constants after noce_try_cmove has had
778 a go at the conversion. */
779
780 static int
781 noce_try_store_flag (struct noce_if_info *if_info)
782 {
783 int reversep;
784 rtx target, seq;
785
786 if (GET_CODE (if_info->b) == CONST_INT
787 && INTVAL (if_info->b) == STORE_FLAG_VALUE
788 && if_info->a == const0_rtx)
789 reversep = 0;
790 else if (if_info->b == const0_rtx
791 && GET_CODE (if_info->a) == CONST_INT
792 && INTVAL (if_info->a) == STORE_FLAG_VALUE
793 && (reversed_comparison_code (if_info->cond, if_info->jump)
794 != UNKNOWN))
795 reversep = 1;
796 else
797 return FALSE;
798
799 start_sequence ();
800
801 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
802 if (target)
803 {
804 if (target != if_info->x)
805 noce_emit_move_insn (if_info->x, target);
806
807 seq = end_ifcvt_sequence (if_info);
808 if (! seq)
809 return FALSE;
810
811 emit_insn_before_setloc (seq, if_info->jump,
812 INSN_LOCATOR (if_info->insn_a));
813 return TRUE;
814 }
815 else
816 {
817 end_sequence ();
818 return FALSE;
819 }
820 }
821
822 /* Convert "if (test) x = a; else x = b", for A and B constant. */
823
824 static int
825 noce_try_store_flag_constants (struct noce_if_info *if_info)
826 {
827 rtx target, seq;
828 int reversep;
829 HOST_WIDE_INT itrue, ifalse, diff, tmp;
830 int normalize, can_reverse;
831 enum machine_mode mode;
832
833 if (! no_new_pseudos
834 && GET_CODE (if_info->a) == CONST_INT
835 && GET_CODE (if_info->b) == CONST_INT)
836 {
837 mode = GET_MODE (if_info->x);
838 ifalse = INTVAL (if_info->a);
839 itrue = INTVAL (if_info->b);
840
841 /* Make sure we can represent the difference between the two values. */
842 if ((itrue - ifalse > 0)
843 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
844 return FALSE;
845
846 diff = trunc_int_for_mode (itrue - ifalse, mode);
847
848 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
849 != UNKNOWN);
850
851 reversep = 0;
852 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
853 normalize = 0;
854 else if (ifalse == 0 && exact_log2 (itrue) >= 0
855 && (STORE_FLAG_VALUE == 1
856 || BRANCH_COST >= 2))
857 normalize = 1;
858 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
859 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
860 normalize = 1, reversep = 1;
861 else if (itrue == -1
862 && (STORE_FLAG_VALUE == -1
863 || BRANCH_COST >= 2))
864 normalize = -1;
865 else if (ifalse == -1 && can_reverse
866 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
867 normalize = -1, reversep = 1;
868 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
869 || BRANCH_COST >= 3)
870 normalize = -1;
871 else
872 return FALSE;
873
874 if (reversep)
875 {
876 tmp = itrue; itrue = ifalse; ifalse = tmp;
877 diff = trunc_int_for_mode (-diff, mode);
878 }
879
880 start_sequence ();
881 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
882 if (! target)
883 {
884 end_sequence ();
885 return FALSE;
886 }
887
888 /* if (test) x = 3; else x = 4;
889 => x = 3 + (test == 0); */
890 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
891 {
892 target = expand_simple_binop (mode,
893 (diff == STORE_FLAG_VALUE
894 ? PLUS : MINUS),
895 GEN_INT (ifalse), target, if_info->x, 0,
896 OPTAB_WIDEN);
897 }
898
899 /* if (test) x = 8; else x = 0;
900 => x = (test != 0) << 3; */
901 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
902 {
903 target = expand_simple_binop (mode, ASHIFT,
904 target, GEN_INT (tmp), if_info->x, 0,
905 OPTAB_WIDEN);
906 }
907
908 /* if (test) x = -1; else x = b;
909 => x = -(test != 0) | b; */
910 else if (itrue == -1)
911 {
912 target = expand_simple_binop (mode, IOR,
913 target, GEN_INT (ifalse), if_info->x, 0,
914 OPTAB_WIDEN);
915 }
916
917 /* if (test) x = a; else x = b;
918 => x = (-(test != 0) & (b - a)) + a; */
919 else
920 {
921 target = expand_simple_binop (mode, AND,
922 target, GEN_INT (diff), if_info->x, 0,
923 OPTAB_WIDEN);
924 if (target)
925 target = expand_simple_binop (mode, PLUS,
926 target, GEN_INT (ifalse),
927 if_info->x, 0, OPTAB_WIDEN);
928 }
929
930 if (! target)
931 {
932 end_sequence ();
933 return FALSE;
934 }
935
936 if (target != if_info->x)
937 noce_emit_move_insn (if_info->x, target);
938
939 seq = end_ifcvt_sequence (if_info);
940 if (!seq)
941 return FALSE;
942
943 emit_insn_before_setloc (seq, if_info->jump,
944 INSN_LOCATOR (if_info->insn_a));
945 return TRUE;
946 }
947
948 return FALSE;
949 }
950
951 /* Convert "if (test) foo++" into "foo += (test != 0)", and
952 similarly for "foo--". */
953
954 static int
955 noce_try_addcc (struct noce_if_info *if_info)
956 {
957 rtx target, seq;
958 int subtract, normalize;
959
960 if (! no_new_pseudos
961 && GET_CODE (if_info->a) == PLUS
962 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
963 && (reversed_comparison_code (if_info->cond, if_info->jump)
964 != UNKNOWN))
965 {
966 rtx cond = if_info->cond;
967 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
968
969 /* First try to use addcc pattern. */
970 if (general_operand (XEXP (cond, 0), VOIDmode)
971 && general_operand (XEXP (cond, 1), VOIDmode))
972 {
973 start_sequence ();
974 target = emit_conditional_add (if_info->x, code,
975 XEXP (cond, 0),
976 XEXP (cond, 1),
977 VOIDmode,
978 if_info->b,
979 XEXP (if_info->a, 1),
980 GET_MODE (if_info->x),
981 (code == LTU || code == GEU
982 || code == LEU || code == GTU));
983 if (target)
984 {
985 if (target != if_info->x)
986 noce_emit_move_insn (if_info->x, target);
987
988 seq = end_ifcvt_sequence (if_info);
989 if (!seq)
990 return FALSE;
991
992 emit_insn_before_setloc (seq, if_info->jump,
993 INSN_LOCATOR (if_info->insn_a));
994 return TRUE;
995 }
996 end_sequence ();
997 }
998
999 /* If that fails, construct conditional increment or decrement using
1000 setcc. */
1001 if (BRANCH_COST >= 2
1002 && (XEXP (if_info->a, 1) == const1_rtx
1003 || XEXP (if_info->a, 1) == constm1_rtx))
1004 {
1005 start_sequence ();
1006 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1007 subtract = 0, normalize = 0;
1008 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1009 subtract = 1, normalize = 0;
1010 else
1011 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1012
1013
1014 target = noce_emit_store_flag (if_info,
1015 gen_reg_rtx (GET_MODE (if_info->x)),
1016 1, normalize);
1017
1018 if (target)
1019 target = expand_simple_binop (GET_MODE (if_info->x),
1020 subtract ? MINUS : PLUS,
1021 if_info->b, target, if_info->x,
1022 0, OPTAB_WIDEN);
1023 if (target)
1024 {
1025 if (target != if_info->x)
1026 noce_emit_move_insn (if_info->x, target);
1027
1028 seq = end_ifcvt_sequence (if_info);
1029 if (!seq)
1030 return FALSE;
1031
1032 emit_insn_before_setloc (seq, if_info->jump,
1033 INSN_LOCATOR (if_info->insn_a));
1034 return TRUE;
1035 }
1036 end_sequence ();
1037 }
1038 }
1039
1040 return FALSE;
1041 }
1042
1043 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1044
1045 static int
1046 noce_try_store_flag_mask (struct noce_if_info *if_info)
1047 {
1048 rtx target, seq;
1049 int reversep;
1050
1051 reversep = 0;
1052 if (! no_new_pseudos
1053 && (BRANCH_COST >= 2
1054 || STORE_FLAG_VALUE == -1)
1055 && ((if_info->a == const0_rtx
1056 && rtx_equal_p (if_info->b, if_info->x))
1057 || ((reversep = (reversed_comparison_code (if_info->cond,
1058 if_info->jump)
1059 != UNKNOWN))
1060 && if_info->b == const0_rtx
1061 && rtx_equal_p (if_info->a, if_info->x))))
1062 {
1063 start_sequence ();
1064 target = noce_emit_store_flag (if_info,
1065 gen_reg_rtx (GET_MODE (if_info->x)),
1066 reversep, -1);
1067 if (target)
1068 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1069 if_info->x,
1070 target, if_info->x, 0,
1071 OPTAB_WIDEN);
1072
1073 if (target)
1074 {
1075 if (target != if_info->x)
1076 noce_emit_move_insn (if_info->x, target);
1077
1078 seq = end_ifcvt_sequence (if_info);
1079 if (!seq)
1080 return FALSE;
1081
1082 emit_insn_before_setloc (seq, if_info->jump,
1083 INSN_LOCATOR (if_info->insn_a));
1084 return TRUE;
1085 }
1086
1087 end_sequence ();
1088 }
1089
1090 return FALSE;
1091 }
1092
1093 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1094
1095 static rtx
1096 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1097 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1098 {
1099 /* If earliest == jump, try to build the cmove insn directly.
1100 This is helpful when combine has created some complex condition
1101 (like for alpha's cmovlbs) that we can't hope to regenerate
1102 through the normal interface. */
1103
1104 if (if_info->cond_earliest == if_info->jump)
1105 {
1106 rtx tmp;
1107
1108 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1109 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1110 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1111
1112 start_sequence ();
1113 tmp = emit_insn (tmp);
1114
1115 if (recog_memoized (tmp) >= 0)
1116 {
1117 tmp = get_insns ();
1118 end_sequence ();
1119 emit_insn (tmp);
1120
1121 return x;
1122 }
1123
1124 end_sequence ();
1125 }
1126
1127 /* Don't even try if the comparison operands are weird. */
1128 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1129 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1130 return NULL_RTX;
1131
1132 #if HAVE_conditional_move
1133 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1134 vtrue, vfalse, GET_MODE (x),
1135 (code == LTU || code == GEU
1136 || code == LEU || code == GTU));
1137 #else
1138 /* We'll never get here, as noce_process_if_block doesn't call the
1139 functions involved. Ifdef code, however, should be discouraged
1140 because it leads to typos in the code not selected. However,
1141 emit_conditional_move won't exist either. */
1142 return NULL_RTX;
1143 #endif
1144 }
1145
1146 /* Try only simple constants and registers here. More complex cases
1147 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1148 has had a go at it. */
1149
1150 static int
1151 noce_try_cmove (struct noce_if_info *if_info)
1152 {
1153 enum rtx_code code;
1154 rtx target, seq;
1155
1156 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1157 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1158 {
1159 start_sequence ();
1160
1161 code = GET_CODE (if_info->cond);
1162 target = noce_emit_cmove (if_info, if_info->x, code,
1163 XEXP (if_info->cond, 0),
1164 XEXP (if_info->cond, 1),
1165 if_info->a, if_info->b);
1166
1167 if (target)
1168 {
1169 if (target != if_info->x)
1170 noce_emit_move_insn (if_info->x, target);
1171
1172 seq = end_ifcvt_sequence (if_info);
1173 if (!seq)
1174 return FALSE;
1175
1176 emit_insn_before_setloc (seq, if_info->jump,
1177 INSN_LOCATOR (if_info->insn_a));
1178 return TRUE;
1179 }
1180 else
1181 {
1182 end_sequence ();
1183 return FALSE;
1184 }
1185 }
1186
1187 return FALSE;
1188 }
1189
1190 /* Try more complex cases involving conditional_move. */
1191
1192 static int
1193 noce_try_cmove_arith (struct noce_if_info *if_info)
1194 {
1195 rtx a = if_info->a;
1196 rtx b = if_info->b;
1197 rtx x = if_info->x;
1198 rtx orig_a, orig_b;
1199 rtx insn_a, insn_b;
1200 rtx tmp, target;
1201 int is_mem = 0;
1202 int insn_cost;
1203 enum rtx_code code;
1204
1205 /* A conditional move from two memory sources is equivalent to a
1206 conditional on their addresses followed by a load. Don't do this
1207 early because it'll screw alias analysis. Note that we've
1208 already checked for no side effects. */
1209 if (! no_new_pseudos && cse_not_expected
1210 && MEM_P (a) && MEM_P (b)
1211 && BRANCH_COST >= 5)
1212 {
1213 a = XEXP (a, 0);
1214 b = XEXP (b, 0);
1215 x = gen_reg_rtx (Pmode);
1216 is_mem = 1;
1217 }
1218
1219 /* ??? We could handle this if we knew that a load from A or B could
1220 not fault. This is also true if we've already loaded
1221 from the address along the path from ENTRY. */
1222 else if (may_trap_p (a) || may_trap_p (b))
1223 return FALSE;
1224
1225 /* if (test) x = a + b; else x = c - d;
1226 => y = a + b;
1227 x = c - d;
1228 if (test)
1229 x = y;
1230 */
1231
1232 code = GET_CODE (if_info->cond);
1233 insn_a = if_info->insn_a;
1234 insn_b = if_info->insn_b;
1235
1236 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1237 if insn_rtx_cost can't be estimated. */
1238 if (insn_a)
1239 {
1240 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1241 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1242 return FALSE;
1243 }
1244 else
1245 {
1246 insn_cost = 0;
1247 }
1248
1249 if (insn_b) {
1250 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1251 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1252 return FALSE;
1253 }
1254
1255 /* Possibly rearrange operands to make things come out more natural. */
1256 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1257 {
1258 int reversep = 0;
1259 if (rtx_equal_p (b, x))
1260 reversep = 1;
1261 else if (general_operand (b, GET_MODE (b)))
1262 reversep = 1;
1263
1264 if (reversep)
1265 {
1266 code = reversed_comparison_code (if_info->cond, if_info->jump);
1267 tmp = a, a = b, b = tmp;
1268 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1269 }
1270 }
1271
1272 start_sequence ();
1273
1274 orig_a = a;
1275 orig_b = b;
1276
1277 /* If either operand is complex, load it into a register first.
1278 The best way to do this is to copy the original insn. In this
1279 way we preserve any clobbers etc that the insn may have had.
1280 This is of course not possible in the IS_MEM case. */
1281 if (! general_operand (a, GET_MODE (a)))
1282 {
1283 rtx set;
1284
1285 if (no_new_pseudos)
1286 goto end_seq_and_fail;
1287
1288 if (is_mem)
1289 {
1290 tmp = gen_reg_rtx (GET_MODE (a));
1291 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1292 }
1293 else if (! insn_a)
1294 goto end_seq_and_fail;
1295 else
1296 {
1297 a = gen_reg_rtx (GET_MODE (a));
1298 tmp = copy_rtx (insn_a);
1299 set = single_set (tmp);
1300 SET_DEST (set) = a;
1301 tmp = emit_insn (PATTERN (tmp));
1302 }
1303 if (recog_memoized (tmp) < 0)
1304 goto end_seq_and_fail;
1305 }
1306 if (! general_operand (b, GET_MODE (b)))
1307 {
1308 rtx set, last;
1309
1310 if (no_new_pseudos)
1311 goto end_seq_and_fail;
1312
1313 if (is_mem)
1314 {
1315 tmp = gen_reg_rtx (GET_MODE (b));
1316 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1317 }
1318 else if (! insn_b)
1319 goto end_seq_and_fail;
1320 else
1321 {
1322 b = gen_reg_rtx (GET_MODE (b));
1323 tmp = copy_rtx (insn_b);
1324 set = single_set (tmp);
1325 SET_DEST (set) = b;
1326 tmp = PATTERN (tmp);
1327 }
1328
1329 /* If insn to set up A clobbers any registers B depends on, try to
1330 swap insn that sets up A with the one that sets up B. If even
1331 that doesn't help, punt. */
1332 last = get_last_insn ();
1333 if (last && modified_in_p (orig_b, last))
1334 {
1335 tmp = emit_insn_before (tmp, get_insns ());
1336 if (modified_in_p (orig_a, tmp))
1337 goto end_seq_and_fail;
1338 }
1339 else
1340 tmp = emit_insn (tmp);
1341
1342 if (recog_memoized (tmp) < 0)
1343 goto end_seq_and_fail;
1344 }
1345
1346 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1347 XEXP (if_info->cond, 1), a, b);
1348
1349 if (! target)
1350 goto end_seq_and_fail;
1351
1352 /* If we're handling a memory for above, emit the load now. */
1353 if (is_mem)
1354 {
1355 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1356
1357 /* Copy over flags as appropriate. */
1358 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1359 MEM_VOLATILE_P (tmp) = 1;
1360 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1361 MEM_IN_STRUCT_P (tmp) = 1;
1362 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1363 MEM_SCALAR_P (tmp) = 1;
1364 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1365 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1366 set_mem_align (tmp,
1367 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1368
1369 noce_emit_move_insn (if_info->x, tmp);
1370 }
1371 else if (target != x)
1372 noce_emit_move_insn (x, target);
1373
1374 tmp = end_ifcvt_sequence (if_info);
1375 if (!tmp)
1376 return FALSE;
1377
1378 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1379 return TRUE;
1380
1381 end_seq_and_fail:
1382 end_sequence ();
1383 return FALSE;
1384 }
1385
1386 /* For most cases, the simplified condition we found is the best
1387 choice, but this is not the case for the min/max/abs transforms.
1388 For these we wish to know that it is A or B in the condition. */
1389
1390 static rtx
1391 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1392 rtx *earliest)
1393 {
1394 rtx cond, set, insn;
1395 int reverse;
1396
1397 /* If target is already mentioned in the known condition, return it. */
1398 if (reg_mentioned_p (target, if_info->cond))
1399 {
1400 *earliest = if_info->cond_earliest;
1401 return if_info->cond;
1402 }
1403
1404 set = pc_set (if_info->jump);
1405 cond = XEXP (SET_SRC (set), 0);
1406 reverse
1407 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1408 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1409
1410 /* If we're looking for a constant, try to make the conditional
1411 have that constant in it. There are two reasons why it may
1412 not have the constant we want:
1413
1414 1. GCC may have needed to put the constant in a register, because
1415 the target can't compare directly against that constant. For
1416 this case, we look for a SET immediately before the comparison
1417 that puts a constant in that register.
1418
1419 2. GCC may have canonicalized the conditional, for example
1420 replacing "if x < 4" with "if x <= 3". We can undo that (or
1421 make equivalent types of changes) to get the constants we need
1422 if they're off by one in the right direction. */
1423
1424 if (GET_CODE (target) == CONST_INT)
1425 {
1426 enum rtx_code code = GET_CODE (if_info->cond);
1427 rtx op_a = XEXP (if_info->cond, 0);
1428 rtx op_b = XEXP (if_info->cond, 1);
1429 rtx prev_insn;
1430
1431 /* First, look to see if we put a constant in a register. */
1432 prev_insn = PREV_INSN (if_info->cond_earliest);
1433 if (prev_insn
1434 && INSN_P (prev_insn)
1435 && GET_CODE (PATTERN (prev_insn)) == SET)
1436 {
1437 rtx src = find_reg_equal_equiv_note (prev_insn);
1438 if (!src)
1439 src = SET_SRC (PATTERN (prev_insn));
1440 if (GET_CODE (src) == CONST_INT)
1441 {
1442 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1443 op_a = src;
1444 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1445 op_b = src;
1446
1447 if (GET_CODE (op_a) == CONST_INT)
1448 {
1449 rtx tmp = op_a;
1450 op_a = op_b;
1451 op_b = tmp;
1452 code = swap_condition (code);
1453 }
1454 }
1455 }
1456
1457 /* Now, look to see if we can get the right constant by
1458 adjusting the conditional. */
1459 if (GET_CODE (op_b) == CONST_INT)
1460 {
1461 HOST_WIDE_INT desired_val = INTVAL (target);
1462 HOST_WIDE_INT actual_val = INTVAL (op_b);
1463
1464 switch (code)
1465 {
1466 case LT:
1467 if (actual_val == desired_val + 1)
1468 {
1469 code = LE;
1470 op_b = GEN_INT (desired_val);
1471 }
1472 break;
1473 case LE:
1474 if (actual_val == desired_val - 1)
1475 {
1476 code = LT;
1477 op_b = GEN_INT (desired_val);
1478 }
1479 break;
1480 case GT:
1481 if (actual_val == desired_val - 1)
1482 {
1483 code = GE;
1484 op_b = GEN_INT (desired_val);
1485 }
1486 break;
1487 case GE:
1488 if (actual_val == desired_val + 1)
1489 {
1490 code = GT;
1491 op_b = GEN_INT (desired_val);
1492 }
1493 break;
1494 default:
1495 break;
1496 }
1497 }
1498
1499 /* If we made any changes, generate a new conditional that is
1500 equivalent to what we started with, but has the right
1501 constants in it. */
1502 if (code != GET_CODE (if_info->cond)
1503 || op_a != XEXP (if_info->cond, 0)
1504 || op_b != XEXP (if_info->cond, 1))
1505 {
1506 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1507 *earliest = if_info->cond_earliest;
1508 return cond;
1509 }
1510 }
1511
1512 cond = canonicalize_condition (if_info->jump, cond, reverse,
1513 earliest, target, false, true);
1514 if (! cond || ! reg_mentioned_p (target, cond))
1515 return NULL;
1516
1517 /* We almost certainly searched back to a different place.
1518 Need to re-verify correct lifetimes. */
1519
1520 /* X may not be mentioned in the range (cond_earliest, jump]. */
1521 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1522 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1523 return NULL;
1524
1525 /* A and B may not be modified in the range [cond_earliest, jump). */
1526 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1527 if (INSN_P (insn)
1528 && (modified_in_p (if_info->a, insn)
1529 || modified_in_p (if_info->b, insn)))
1530 return NULL;
1531
1532 return cond;
1533 }
1534
1535 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1536
1537 static int
1538 noce_try_minmax (struct noce_if_info *if_info)
1539 {
1540 rtx cond, earliest, target, seq;
1541 enum rtx_code code, op;
1542 int unsignedp;
1543
1544 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1545 if (no_new_pseudos)
1546 return FALSE;
1547
1548 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1549 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1550 to get the target to tell us... */
1551 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1552 || HONOR_NANS (GET_MODE (if_info->x)))
1553 return FALSE;
1554
1555 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1556 if (!cond)
1557 return FALSE;
1558
1559 /* Verify the condition is of the form we expect, and canonicalize
1560 the comparison code. */
1561 code = GET_CODE (cond);
1562 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1563 {
1564 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1565 return FALSE;
1566 }
1567 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1568 {
1569 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1570 return FALSE;
1571 code = swap_condition (code);
1572 }
1573 else
1574 return FALSE;
1575
1576 /* Determine what sort of operation this is. Note that the code is for
1577 a taken branch, so the code->operation mapping appears backwards. */
1578 switch (code)
1579 {
1580 case LT:
1581 case LE:
1582 case UNLT:
1583 case UNLE:
1584 op = SMAX;
1585 unsignedp = 0;
1586 break;
1587 case GT:
1588 case GE:
1589 case UNGT:
1590 case UNGE:
1591 op = SMIN;
1592 unsignedp = 0;
1593 break;
1594 case LTU:
1595 case LEU:
1596 op = UMAX;
1597 unsignedp = 1;
1598 break;
1599 case GTU:
1600 case GEU:
1601 op = UMIN;
1602 unsignedp = 1;
1603 break;
1604 default:
1605 return FALSE;
1606 }
1607
1608 start_sequence ();
1609
1610 target = expand_simple_binop (GET_MODE (if_info->x), op,
1611 if_info->a, if_info->b,
1612 if_info->x, unsignedp, OPTAB_WIDEN);
1613 if (! target)
1614 {
1615 end_sequence ();
1616 return FALSE;
1617 }
1618 if (target != if_info->x)
1619 noce_emit_move_insn (if_info->x, target);
1620
1621 seq = end_ifcvt_sequence (if_info);
1622 if (!seq)
1623 return FALSE;
1624
1625 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1626 if_info->cond = cond;
1627 if_info->cond_earliest = earliest;
1628
1629 return TRUE;
1630 }
1631
1632 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1633
1634 static int
1635 noce_try_abs (struct noce_if_info *if_info)
1636 {
1637 rtx cond, earliest, target, seq, a, b, c;
1638 int negate;
1639
1640 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1641 if (no_new_pseudos)
1642 return FALSE;
1643
1644 /* Recognize A and B as constituting an ABS or NABS. */
1645 a = if_info->a;
1646 b = if_info->b;
1647 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1648 negate = 0;
1649 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1650 {
1651 c = a; a = b; b = c;
1652 negate = 1;
1653 }
1654 else
1655 return FALSE;
1656
1657 cond = noce_get_alt_condition (if_info, b, &earliest);
1658 if (!cond)
1659 return FALSE;
1660
1661 /* Verify the condition is of the form we expect. */
1662 if (rtx_equal_p (XEXP (cond, 0), b))
1663 c = XEXP (cond, 1);
1664 else if (rtx_equal_p (XEXP (cond, 1), b))
1665 c = XEXP (cond, 0);
1666 else
1667 return FALSE;
1668
1669 /* Verify that C is zero. Search backward through the block for
1670 a REG_EQUAL note if necessary. */
1671 if (REG_P (c))
1672 {
1673 rtx insn, note = NULL;
1674 for (insn = earliest;
1675 insn != BB_HEAD (if_info->test_bb);
1676 insn = PREV_INSN (insn))
1677 if (INSN_P (insn)
1678 && ((note = find_reg_note (insn, REG_EQUAL, c))
1679 || (note = find_reg_note (insn, REG_EQUIV, c))))
1680 break;
1681 if (! note)
1682 return FALSE;
1683 c = XEXP (note, 0);
1684 }
1685 if (MEM_P (c)
1686 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1687 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1688 c = get_pool_constant (XEXP (c, 0));
1689
1690 /* Work around funny ideas get_condition has wrt canonicalization.
1691 Note that these rtx constants are known to be CONST_INT, and
1692 therefore imply integer comparisons. */
1693 if (c == constm1_rtx && GET_CODE (cond) == GT)
1694 ;
1695 else if (c == const1_rtx && GET_CODE (cond) == LT)
1696 ;
1697 else if (c != CONST0_RTX (GET_MODE (b)))
1698 return FALSE;
1699
1700 /* Determine what sort of operation this is. */
1701 switch (GET_CODE (cond))
1702 {
1703 case LT:
1704 case LE:
1705 case UNLT:
1706 case UNLE:
1707 negate = !negate;
1708 break;
1709 case GT:
1710 case GE:
1711 case UNGT:
1712 case UNGE:
1713 break;
1714 default:
1715 return FALSE;
1716 }
1717
1718 start_sequence ();
1719
1720 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1721
1722 /* ??? It's a quandary whether cmove would be better here, especially
1723 for integers. Perhaps combine will clean things up. */
1724 if (target && negate)
1725 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1726
1727 if (! target)
1728 {
1729 end_sequence ();
1730 return FALSE;
1731 }
1732
1733 if (target != if_info->x)
1734 noce_emit_move_insn (if_info->x, target);
1735
1736 seq = end_ifcvt_sequence (if_info);
1737 if (!seq)
1738 return FALSE;
1739
1740 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1741 if_info->cond = cond;
1742 if_info->cond_earliest = earliest;
1743
1744 return TRUE;
1745 }
1746
1747 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1748
1749 static int
1750 noce_try_sign_mask (struct noce_if_info *if_info)
1751 {
1752 rtx cond, t, m, c, seq;
1753 enum machine_mode mode;
1754 enum rtx_code code;
1755
1756 if (no_new_pseudos)
1757 return FALSE;
1758
1759 cond = if_info->cond;
1760 code = GET_CODE (cond);
1761 m = XEXP (cond, 0);
1762 c = XEXP (cond, 1);
1763
1764 t = NULL_RTX;
1765 if (if_info->a == const0_rtx)
1766 {
1767 if ((code == LT && c == const0_rtx)
1768 || (code == LE && c == constm1_rtx))
1769 t = if_info->b;
1770 }
1771 else if (if_info->b == const0_rtx)
1772 {
1773 if ((code == GE && c == const0_rtx)
1774 || (code == GT && c == constm1_rtx))
1775 t = if_info->a;
1776 }
1777
1778 if (! t || side_effects_p (t))
1779 return FALSE;
1780
1781 /* We currently don't handle different modes. */
1782 mode = GET_MODE (t);
1783 if (GET_MODE (m) != mode)
1784 return FALSE;
1785
1786 /* This is only profitable if T is cheap, or T is unconditionally
1787 executed/evaluated in the original insn sequence. */
1788 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1789 && (!if_info->b_unconditional
1790 || t != if_info->b))
1791 return FALSE;
1792
1793 start_sequence ();
1794 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1795 "(signed) m >> 31" directly. This benefits targets with specialized
1796 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1797 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1798 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1799 : NULL_RTX;
1800
1801 if (!t)
1802 {
1803 end_sequence ();
1804 return FALSE;
1805 }
1806
1807 noce_emit_move_insn (if_info->x, t);
1808
1809 seq = end_ifcvt_sequence (if_info);
1810 if (!seq)
1811 return FALSE;
1812
1813 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1814 return TRUE;
1815 }
1816
1817
1818 /* Similar to get_condition, only the resulting condition must be
1819 valid at JUMP, instead of at EARLIEST. */
1820
1821 static rtx
1822 noce_get_condition (rtx jump, rtx *earliest)
1823 {
1824 rtx cond, set, tmp;
1825 bool reverse;
1826
1827 if (! any_condjump_p (jump))
1828 return NULL_RTX;
1829
1830 set = pc_set (jump);
1831
1832 /* If this branches to JUMP_LABEL when the condition is false,
1833 reverse the condition. */
1834 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1835 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
1836
1837 /* If the condition variable is a register and is MODE_INT, accept it. */
1838
1839 cond = XEXP (SET_SRC (set), 0);
1840 tmp = XEXP (cond, 0);
1841 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
1842 {
1843 *earliest = jump;
1844
1845 if (reverse)
1846 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
1847 GET_MODE (cond), tmp, XEXP (cond, 1));
1848 return cond;
1849 }
1850
1851 /* Otherwise, fall back on canonicalize_condition to do the dirty
1852 work of manipulating MODE_CC values and COMPARE rtx codes. */
1853 return canonicalize_condition (jump, cond, reverse, earliest,
1854 NULL_RTX, false, true);
1855 }
1856
1857 /* Return true if OP is ok for if-then-else processing. */
1858
1859 static int
1860 noce_operand_ok (rtx op)
1861 {
1862 /* We special-case memories, so handle any of them with
1863 no address side effects. */
1864 if (MEM_P (op))
1865 return ! side_effects_p (XEXP (op, 0));
1866
1867 if (side_effects_p (op))
1868 return FALSE;
1869
1870 return ! may_trap_p (op);
1871 }
1872
1873 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
1874 without using conditional execution. Return TRUE if we were
1875 successful at converting the block. */
1876
1877 static int
1878 noce_process_if_block (struct ce_if_block * ce_info)
1879 {
1880 basic_block test_bb = ce_info->test_bb; /* test block */
1881 basic_block then_bb = ce_info->then_bb; /* THEN */
1882 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
1883 struct noce_if_info if_info;
1884 rtx insn_a, insn_b;
1885 rtx set_a, set_b;
1886 rtx orig_x, x, a, b;
1887 rtx jump, cond;
1888
1889 /* We're looking for patterns of the form
1890
1891 (1) if (...) x = a; else x = b;
1892 (2) x = b; if (...) x = a;
1893 (3) if (...) x = a; // as if with an initial x = x.
1894
1895 The later patterns require jumps to be more expensive.
1896
1897 ??? For future expansion, look for multiple X in such patterns. */
1898
1899 /* If test is comprised of && or || elements, don't handle it unless it is
1900 the special case of && elements without an ELSE block. */
1901 if (ce_info->num_multiple_test_blocks)
1902 {
1903 if (else_bb || ! ce_info->and_and_p)
1904 return FALSE;
1905
1906 ce_info->test_bb = test_bb = ce_info->last_test_bb;
1907 ce_info->num_multiple_test_blocks = 0;
1908 ce_info->num_and_and_blocks = 0;
1909 ce_info->num_or_or_blocks = 0;
1910 }
1911
1912 /* If this is not a standard conditional jump, we can't parse it. */
1913 jump = BB_END (test_bb);
1914 cond = noce_get_condition (jump, &if_info.cond_earliest);
1915 if (! cond)
1916 return FALSE;
1917
1918 /* If the conditional jump is more than just a conditional
1919 jump, then we can not do if-conversion on this block. */
1920 if (! onlyjump_p (jump))
1921 return FALSE;
1922
1923 /* We must be comparing objects whose modes imply the size. */
1924 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
1925 return FALSE;
1926
1927 /* Look for one of the potential sets. */
1928 insn_a = first_active_insn (then_bb);
1929 if (! insn_a
1930 || insn_a != last_active_insn (then_bb, FALSE)
1931 || (set_a = single_set (insn_a)) == NULL_RTX)
1932 return FALSE;
1933
1934 x = SET_DEST (set_a);
1935 a = SET_SRC (set_a);
1936
1937 /* Look for the other potential set. Make sure we've got equivalent
1938 destinations. */
1939 /* ??? This is overconservative. Storing to two different mems is
1940 as easy as conditionally computing the address. Storing to a
1941 single mem merely requires a scratch memory to use as one of the
1942 destination addresses; often the memory immediately below the
1943 stack pointer is available for this. */
1944 set_b = NULL_RTX;
1945 if (else_bb)
1946 {
1947 insn_b = first_active_insn (else_bb);
1948 if (! insn_b
1949 || insn_b != last_active_insn (else_bb, FALSE)
1950 || (set_b = single_set (insn_b)) == NULL_RTX
1951 || ! rtx_equal_p (x, SET_DEST (set_b)))
1952 return FALSE;
1953 }
1954 else
1955 {
1956 insn_b = prev_nonnote_insn (if_info.cond_earliest);
1957 /* We're going to be moving the evaluation of B down from above
1958 COND_EARLIEST to JUMP. Make sure the relevant data is still
1959 intact. */
1960 if (! insn_b
1961 || !NONJUMP_INSN_P (insn_b)
1962 || (set_b = single_set (insn_b)) == NULL_RTX
1963 || ! rtx_equal_p (x, SET_DEST (set_b))
1964 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
1965 || modified_between_p (SET_SRC (set_b),
1966 PREV_INSN (if_info.cond_earliest), jump)
1967 /* Likewise with X. In particular this can happen when
1968 noce_get_condition looks farther back in the instruction
1969 stream than one might expect. */
1970 || reg_overlap_mentioned_p (x, cond)
1971 || reg_overlap_mentioned_p (x, a)
1972 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
1973 insn_b = set_b = NULL_RTX;
1974 }
1975
1976 /* If x has side effects then only the if-then-else form is safe to
1977 convert. But even in that case we would need to restore any notes
1978 (such as REG_INC) at then end. That can be tricky if
1979 noce_emit_move_insn expands to more than one insn, so disable the
1980 optimization entirely for now if there are side effects. */
1981 if (side_effects_p (x))
1982 return FALSE;
1983
1984 b = (set_b ? SET_SRC (set_b) : x);
1985
1986 /* Only operate on register destinations, and even then avoid extending
1987 the lifetime of hard registers on small register class machines. */
1988 orig_x = x;
1989 if (!REG_P (x)
1990 || (SMALL_REGISTER_CLASSES
1991 && REGNO (x) < FIRST_PSEUDO_REGISTER))
1992 {
1993 if (no_new_pseudos || GET_MODE (x) == BLKmode)
1994 return FALSE;
1995 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
1996 ? XEXP (x, 0) : x));
1997 }
1998
1999 /* Don't operate on sources that may trap or are volatile. */
2000 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2001 return FALSE;
2002
2003 /* Set up the info block for our subroutines. */
2004 if_info.test_bb = test_bb;
2005 if_info.cond = cond;
2006 if_info.jump = jump;
2007 if_info.insn_a = insn_a;
2008 if_info.insn_b = insn_b;
2009 if_info.x = x;
2010 if_info.a = a;
2011 if_info.b = b;
2012 if_info.b_unconditional = else_bb == 0;
2013
2014 /* Try optimizations in some approximation of a useful order. */
2015 /* ??? Should first look to see if X is live incoming at all. If it
2016 isn't, we don't need anything but an unconditional set. */
2017
2018 /* Look and see if A and B are really the same. Avoid creating silly
2019 cmove constructs that no one will fix up later. */
2020 if (rtx_equal_p (a, b))
2021 {
2022 /* If we have an INSN_B, we don't have to create any new rtl. Just
2023 move the instruction that we already have. If we don't have an
2024 INSN_B, that means that A == X, and we've got a noop move. In
2025 that case don't do anything and let the code below delete INSN_A. */
2026 if (insn_b && else_bb)
2027 {
2028 rtx note;
2029
2030 if (else_bb && insn_b == BB_END (else_bb))
2031 BB_END (else_bb) = PREV_INSN (insn_b);
2032 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2033
2034 /* If there was a REG_EQUAL note, delete it since it may have been
2035 true due to this insn being after a jump. */
2036 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2037 remove_note (insn_b, note);
2038
2039 insn_b = NULL_RTX;
2040 }
2041 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2042 x must be executed twice. */
2043 else if (insn_b && side_effects_p (orig_x))
2044 return FALSE;
2045
2046 x = orig_x;
2047 goto success;
2048 }
2049
2050 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2051 for most optimizations if writing to x may trap, i.e. it's a memory
2052 other than a static var or a stack slot. */
2053 if (! set_b
2054 && MEM_P (orig_x)
2055 && ! MEM_NOTRAP_P (orig_x)
2056 && rtx_addr_can_trap_p (XEXP (orig_x, 0)))
2057 {
2058 if (HAVE_conditional_move)
2059 {
2060 if (noce_try_cmove (&if_info))
2061 goto success;
2062 if (! HAVE_conditional_execution
2063 && noce_try_cmove_arith (&if_info))
2064 goto success;
2065 }
2066 return FALSE;
2067 }
2068
2069 if (noce_try_move (&if_info))
2070 goto success;
2071 if (noce_try_store_flag (&if_info))
2072 goto success;
2073 if (noce_try_minmax (&if_info))
2074 goto success;
2075 if (noce_try_abs (&if_info))
2076 goto success;
2077 if (HAVE_conditional_move
2078 && noce_try_cmove (&if_info))
2079 goto success;
2080 if (! HAVE_conditional_execution)
2081 {
2082 if (noce_try_store_flag_constants (&if_info))
2083 goto success;
2084 if (noce_try_addcc (&if_info))
2085 goto success;
2086 if (noce_try_store_flag_mask (&if_info))
2087 goto success;
2088 if (HAVE_conditional_move
2089 && noce_try_cmove_arith (&if_info))
2090 goto success;
2091 if (noce_try_sign_mask (&if_info))
2092 goto success;
2093 }
2094
2095 return FALSE;
2096
2097 success:
2098 /* The original sets may now be killed. */
2099 delete_insn (insn_a);
2100
2101 /* Several special cases here: First, we may have reused insn_b above,
2102 in which case insn_b is now NULL. Second, we want to delete insn_b
2103 if it came from the ELSE block, because follows the now correct
2104 write that appears in the TEST block. However, if we got insn_b from
2105 the TEST block, it may in fact be loading data needed for the comparison.
2106 We'll let life_analysis remove the insn if it's really dead. */
2107 if (insn_b && else_bb)
2108 delete_insn (insn_b);
2109
2110 /* The new insns will have been inserted immediately before the jump. We
2111 should be able to remove the jump with impunity, but the condition itself
2112 may have been modified by gcse to be shared across basic blocks. */
2113 delete_insn (jump);
2114
2115 /* If we used a temporary, fix it up now. */
2116 if (orig_x != x)
2117 {
2118 start_sequence ();
2119 noce_emit_move_insn (orig_x, x);
2120 insn_b = get_insns ();
2121 set_used_flags (orig_x);
2122 unshare_all_rtl_in_chain (insn_b);
2123 end_sequence ();
2124
2125 emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2126 }
2127
2128 /* Merge the blocks! */
2129 merge_if_block (ce_info);
2130
2131 return TRUE;
2132 }
2133 \f
2134 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2135 straight line code. Return true if successful. */
2136
2137 static int
2138 process_if_block (struct ce_if_block * ce_info)
2139 {
2140 if (! reload_completed
2141 && noce_process_if_block (ce_info))
2142 return TRUE;
2143
2144 if (HAVE_conditional_execution && reload_completed)
2145 {
2146 /* If we have && and || tests, try to first handle combining the && and
2147 || tests into the conditional code, and if that fails, go back and
2148 handle it without the && and ||, which at present handles the && case
2149 if there was no ELSE block. */
2150 if (cond_exec_process_if_block (ce_info, TRUE))
2151 return TRUE;
2152
2153 if (ce_info->num_multiple_test_blocks)
2154 {
2155 cancel_changes (0);
2156
2157 if (cond_exec_process_if_block (ce_info, FALSE))
2158 return TRUE;
2159 }
2160 }
2161
2162 return FALSE;
2163 }
2164
2165 /* Merge the blocks and mark for local life update. */
2166
2167 static void
2168 merge_if_block (struct ce_if_block * ce_info)
2169 {
2170 basic_block test_bb = ce_info->test_bb; /* last test block */
2171 basic_block then_bb = ce_info->then_bb; /* THEN */
2172 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2173 basic_block join_bb = ce_info->join_bb; /* join block */
2174 basic_block combo_bb;
2175
2176 /* All block merging is done into the lower block numbers. */
2177
2178 combo_bb = test_bb;
2179
2180 /* Merge any basic blocks to handle && and || subtests. Each of
2181 the blocks are on the fallthru path from the predecessor block. */
2182 if (ce_info->num_multiple_test_blocks > 0)
2183 {
2184 basic_block bb = test_bb;
2185 basic_block last_test_bb = ce_info->last_test_bb;
2186 basic_block fallthru = block_fallthru (bb);
2187
2188 do
2189 {
2190 bb = fallthru;
2191 fallthru = block_fallthru (bb);
2192 merge_blocks (combo_bb, bb);
2193 num_true_changes++;
2194 }
2195 while (bb != last_test_bb);
2196 }
2197
2198 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2199 label, but it might if there were || tests. That label's count should be
2200 zero, and it normally should be removed. */
2201
2202 if (then_bb)
2203 {
2204 if (combo_bb->global_live_at_end)
2205 COPY_REG_SET (combo_bb->global_live_at_end,
2206 then_bb->global_live_at_end);
2207 merge_blocks (combo_bb, then_bb);
2208 num_true_changes++;
2209 }
2210
2211 /* The ELSE block, if it existed, had a label. That label count
2212 will almost always be zero, but odd things can happen when labels
2213 get their addresses taken. */
2214 if (else_bb)
2215 {
2216 merge_blocks (combo_bb, else_bb);
2217 num_true_changes++;
2218 }
2219
2220 /* If there was no join block reported, that means it was not adjacent
2221 to the others, and so we cannot merge them. */
2222
2223 if (! join_bb)
2224 {
2225 rtx last = BB_END (combo_bb);
2226
2227 /* The outgoing edge for the current COMBO block should already
2228 be correct. Verify this. */
2229 if (EDGE_COUNT (combo_bb->succs) == 0)
2230 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2231 || (NONJUMP_INSN_P (last)
2232 && GET_CODE (PATTERN (last)) == TRAP_IF
2233 && (TRAP_CONDITION (PATTERN (last))
2234 == const_true_rtx)));
2235
2236 else
2237 /* There should still be something at the end of the THEN or ELSE
2238 blocks taking us to our final destination. */
2239 gcc_assert (JUMP_P (last)
2240 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2241 && CALL_P (last)
2242 && SIBLING_CALL_P (last))
2243 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2244 && can_throw_internal (last)));
2245 }
2246
2247 /* The JOIN block may have had quite a number of other predecessors too.
2248 Since we've already merged the TEST, THEN and ELSE blocks, we should
2249 have only one remaining edge from our if-then-else diamond. If there
2250 is more than one remaining edge, it must come from elsewhere. There
2251 may be zero incoming edges if the THEN block didn't actually join
2252 back up (as with a call to a non-return function). */
2253 else if (EDGE_COUNT (join_bb->preds) < 2
2254 && join_bb != EXIT_BLOCK_PTR)
2255 {
2256 /* We can merge the JOIN. */
2257 if (combo_bb->global_live_at_end)
2258 COPY_REG_SET (combo_bb->global_live_at_end,
2259 join_bb->global_live_at_end);
2260
2261 merge_blocks (combo_bb, join_bb);
2262 num_true_changes++;
2263 }
2264 else
2265 {
2266 /* We cannot merge the JOIN. */
2267
2268 /* The outgoing edge for the current COMBO block should already
2269 be correct. Verify this. */
2270 gcc_assert (single_succ_p (combo_bb)
2271 && single_succ (combo_bb) == join_bb);
2272
2273 /* Remove the jump and cruft from the end of the COMBO block. */
2274 if (join_bb != EXIT_BLOCK_PTR)
2275 tidy_fallthru_edge (single_succ_edge (combo_bb));
2276 }
2277
2278 num_updated_if_blocks++;
2279 }
2280 \f
2281 /* Find a block ending in a simple IF condition and try to transform it
2282 in some way. When converting a multi-block condition, put the new code
2283 in the first such block and delete the rest. Return a pointer to this
2284 first block if some transformation was done. Return NULL otherwise. */
2285
2286 static basic_block
2287 find_if_header (basic_block test_bb, int pass)
2288 {
2289 ce_if_block_t ce_info;
2290 edge then_edge;
2291 edge else_edge;
2292
2293 /* The kind of block we're looking for has exactly two successors. */
2294 if (EDGE_COUNT (test_bb->succs) != 2)
2295 return NULL;
2296
2297 then_edge = EDGE_SUCC (test_bb, 0);
2298 else_edge = EDGE_SUCC (test_bb, 1);
2299
2300 /* Neither edge should be abnormal. */
2301 if ((then_edge->flags & EDGE_COMPLEX)
2302 || (else_edge->flags & EDGE_COMPLEX))
2303 return NULL;
2304
2305 /* Nor exit the loop. */
2306 if ((then_edge->flags & EDGE_LOOP_EXIT)
2307 || (else_edge->flags & EDGE_LOOP_EXIT))
2308 return NULL;
2309
2310 /* The THEN edge is canonically the one that falls through. */
2311 if (then_edge->flags & EDGE_FALLTHRU)
2312 ;
2313 else if (else_edge->flags & EDGE_FALLTHRU)
2314 {
2315 edge e = else_edge;
2316 else_edge = then_edge;
2317 then_edge = e;
2318 }
2319 else
2320 /* Otherwise this must be a multiway branch of some sort. */
2321 return NULL;
2322
2323 memset (&ce_info, '\0', sizeof (ce_info));
2324 ce_info.test_bb = test_bb;
2325 ce_info.then_bb = then_edge->dest;
2326 ce_info.else_bb = else_edge->dest;
2327 ce_info.pass = pass;
2328
2329 #ifdef IFCVT_INIT_EXTRA_FIELDS
2330 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2331 #endif
2332
2333 if (find_if_block (&ce_info))
2334 goto success;
2335
2336 if (HAVE_trap && HAVE_conditional_trap
2337 && find_cond_trap (test_bb, then_edge, else_edge))
2338 goto success;
2339
2340 if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2341 && (! HAVE_conditional_execution || reload_completed))
2342 {
2343 if (find_if_case_1 (test_bb, then_edge, else_edge))
2344 goto success;
2345 if (find_if_case_2 (test_bb, then_edge, else_edge))
2346 goto success;
2347 }
2348
2349 return NULL;
2350
2351 success:
2352 if (dump_file)
2353 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2354 return ce_info.test_bb;
2355 }
2356
2357 /* Return true if a block has two edges, one of which falls through to the next
2358 block, and the other jumps to a specific block, so that we can tell if the
2359 block is part of an && test or an || test. Returns either -1 or the number
2360 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2361
2362 static int
2363 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2364 {
2365 edge cur_edge;
2366 int fallthru_p = FALSE;
2367 int jump_p = FALSE;
2368 rtx insn;
2369 rtx end;
2370 int n_insns = 0;
2371 edge_iterator ei;
2372
2373 if (!cur_bb || !target_bb)
2374 return -1;
2375
2376 /* If no edges, obviously it doesn't jump or fallthru. */
2377 if (EDGE_COUNT (cur_bb->succs) == 0)
2378 return FALSE;
2379
2380 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2381 {
2382 if (cur_edge->flags & EDGE_COMPLEX)
2383 /* Anything complex isn't what we want. */
2384 return -1;
2385
2386 else if (cur_edge->flags & EDGE_FALLTHRU)
2387 fallthru_p = TRUE;
2388
2389 else if (cur_edge->dest == target_bb)
2390 jump_p = TRUE;
2391
2392 else
2393 return -1;
2394 }
2395
2396 if ((jump_p & fallthru_p) == 0)
2397 return -1;
2398
2399 /* Don't allow calls in the block, since this is used to group && and ||
2400 together for conditional execution support. ??? we should support
2401 conditional execution support across calls for IA-64 some day, but
2402 for now it makes the code simpler. */
2403 end = BB_END (cur_bb);
2404 insn = BB_HEAD (cur_bb);
2405
2406 while (insn != NULL_RTX)
2407 {
2408 if (CALL_P (insn))
2409 return -1;
2410
2411 if (INSN_P (insn)
2412 && !JUMP_P (insn)
2413 && GET_CODE (PATTERN (insn)) != USE
2414 && GET_CODE (PATTERN (insn)) != CLOBBER)
2415 n_insns++;
2416
2417 if (insn == end)
2418 break;
2419
2420 insn = NEXT_INSN (insn);
2421 }
2422
2423 return n_insns;
2424 }
2425
2426 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2427 block. If so, we'll try to convert the insns to not require the branch.
2428 Return TRUE if we were successful at converting the block. */
2429
2430 static int
2431 find_if_block (struct ce_if_block * ce_info)
2432 {
2433 basic_block test_bb = ce_info->test_bb;
2434 basic_block then_bb = ce_info->then_bb;
2435 basic_block else_bb = ce_info->else_bb;
2436 basic_block join_bb = NULL_BLOCK;
2437 edge cur_edge;
2438 basic_block next;
2439 edge_iterator ei;
2440
2441 ce_info->last_test_bb = test_bb;
2442
2443 /* Discover if any fall through predecessors of the current test basic block
2444 were && tests (which jump to the else block) or || tests (which jump to
2445 the then block). */
2446 if (HAVE_conditional_execution && reload_completed
2447 && single_pred_p (test_bb)
2448 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
2449 {
2450 basic_block bb = single_pred (test_bb);
2451 basic_block target_bb;
2452 int max_insns = MAX_CONDITIONAL_EXECUTE;
2453 int n_insns;
2454
2455 /* Determine if the preceding block is an && or || block. */
2456 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
2457 {
2458 ce_info->and_and_p = TRUE;
2459 target_bb = else_bb;
2460 }
2461 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
2462 {
2463 ce_info->and_and_p = FALSE;
2464 target_bb = then_bb;
2465 }
2466 else
2467 target_bb = NULL_BLOCK;
2468
2469 if (target_bb && n_insns <= max_insns)
2470 {
2471 int total_insns = 0;
2472 int blocks = 0;
2473
2474 ce_info->last_test_bb = test_bb;
2475
2476 /* Found at least one && or || block, look for more. */
2477 do
2478 {
2479 ce_info->test_bb = test_bb = bb;
2480 total_insns += n_insns;
2481 blocks++;
2482
2483 if (!single_pred_p (bb))
2484 break;
2485
2486 bb = single_pred (bb);
2487 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
2488 }
2489 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
2490
2491 ce_info->num_multiple_test_blocks = blocks;
2492 ce_info->num_multiple_test_insns = total_insns;
2493
2494 if (ce_info->and_and_p)
2495 ce_info->num_and_and_blocks = blocks;
2496 else
2497 ce_info->num_or_or_blocks = blocks;
2498 }
2499 }
2500
2501 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
2502 other than any || blocks which jump to the THEN block. */
2503 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
2504 return FALSE;
2505
2506 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2507 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
2508 {
2509 if (cur_edge->flags & EDGE_COMPLEX)
2510 return FALSE;
2511 }
2512
2513 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
2514 {
2515 if (cur_edge->flags & EDGE_COMPLEX)
2516 return FALSE;
2517 }
2518
2519 /* The THEN block of an IF-THEN combo must have zero or one successors. */
2520 if (EDGE_COUNT (then_bb->succs) > 0
2521 && (!single_succ_p (then_bb)
2522 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2523 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
2524 return FALSE;
2525
2526 /* If the THEN block has no successors, conditional execution can still
2527 make a conditional call. Don't do this unless the ELSE block has
2528 only one incoming edge -- the CFG manipulation is too ugly otherwise.
2529 Check for the last insn of the THEN block being an indirect jump, which
2530 is listed as not having any successors, but confuses the rest of the CE
2531 code processing. ??? we should fix this in the future. */
2532 if (EDGE_COUNT (then_bb->succs) == 0)
2533 {
2534 if (single_pred_p (else_bb))
2535 {
2536 rtx last_insn = BB_END (then_bb);
2537
2538 while (last_insn
2539 && NOTE_P (last_insn)
2540 && last_insn != BB_HEAD (then_bb))
2541 last_insn = PREV_INSN (last_insn);
2542
2543 if (last_insn
2544 && JUMP_P (last_insn)
2545 && ! simplejump_p (last_insn))
2546 return FALSE;
2547
2548 join_bb = else_bb;
2549 else_bb = NULL_BLOCK;
2550 }
2551 else
2552 return FALSE;
2553 }
2554
2555 /* If the THEN block's successor is the other edge out of the TEST block,
2556 then we have an IF-THEN combo without an ELSE. */
2557 else if (single_succ (then_bb) == else_bb)
2558 {
2559 join_bb = else_bb;
2560 else_bb = NULL_BLOCK;
2561 }
2562
2563 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
2564 has exactly one predecessor and one successor, and the outgoing edge
2565 is not complex, then we have an IF-THEN-ELSE combo. */
2566 else if (single_succ_p (else_bb)
2567 && single_succ (then_bb) == single_succ (else_bb)
2568 && single_pred_p (else_bb)
2569 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2570 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
2571 join_bb = single_succ (else_bb);
2572
2573 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
2574 else
2575 return FALSE;
2576
2577 num_possible_if_blocks++;
2578
2579 if (dump_file)
2580 {
2581 fprintf (dump_file,
2582 "\nIF-THEN%s block found, pass %d, start block %d "
2583 "[insn %d], then %d [%d]",
2584 (else_bb) ? "-ELSE" : "",
2585 ce_info->pass,
2586 test_bb->index,
2587 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
2588 then_bb->index,
2589 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
2590
2591 if (else_bb)
2592 fprintf (dump_file, ", else %d [%d]",
2593 else_bb->index,
2594 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
2595
2596 fprintf (dump_file, ", join %d [%d]",
2597 join_bb->index,
2598 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
2599
2600 if (ce_info->num_multiple_test_blocks > 0)
2601 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
2602 ce_info->num_multiple_test_blocks,
2603 (ce_info->and_and_p) ? "&&" : "||",
2604 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
2605 ce_info->last_test_bb->index,
2606 ((BB_HEAD (ce_info->last_test_bb))
2607 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
2608 : -1));
2609
2610 fputc ('\n', dump_file);
2611 }
2612
2613 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
2614 first condition for free, since we've already asserted that there's a
2615 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
2616 we checked the FALLTHRU flag, those are already adjacent to the last IF
2617 block. */
2618 /* ??? As an enhancement, move the ELSE block. Have to deal with
2619 BLOCK notes, if by no other means than backing out the merge if they
2620 exist. Sticky enough I don't want to think about it now. */
2621 next = then_bb;
2622 if (else_bb && (next = next->next_bb) != else_bb)
2623 return FALSE;
2624 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
2625 {
2626 if (else_bb)
2627 join_bb = NULL;
2628 else
2629 return FALSE;
2630 }
2631
2632 /* Do the real work. */
2633 ce_info->else_bb = else_bb;
2634 ce_info->join_bb = join_bb;
2635
2636 return process_if_block (ce_info);
2637 }
2638
2639 /* Convert a branch over a trap, or a branch
2640 to a trap, into a conditional trap. */
2641
2642 static int
2643 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
2644 {
2645 basic_block then_bb = then_edge->dest;
2646 basic_block else_bb = else_edge->dest;
2647 basic_block other_bb, trap_bb;
2648 rtx trap, jump, cond, cond_earliest, seq;
2649 enum rtx_code code;
2650
2651 /* Locate the block with the trap instruction. */
2652 /* ??? While we look for no successors, we really ought to allow
2653 EH successors. Need to fix merge_if_block for that to work. */
2654 if ((trap = block_has_only_trap (then_bb)) != NULL)
2655 trap_bb = then_bb, other_bb = else_bb;
2656 else if ((trap = block_has_only_trap (else_bb)) != NULL)
2657 trap_bb = else_bb, other_bb = then_bb;
2658 else
2659 return FALSE;
2660
2661 if (dump_file)
2662 {
2663 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
2664 test_bb->index, trap_bb->index);
2665 }
2666
2667 /* If this is not a standard conditional jump, we can't parse it. */
2668 jump = BB_END (test_bb);
2669 cond = noce_get_condition (jump, &cond_earliest);
2670 if (! cond)
2671 return FALSE;
2672
2673 /* If the conditional jump is more than just a conditional jump, then
2674 we can not do if-conversion on this block. */
2675 if (! onlyjump_p (jump))
2676 return FALSE;
2677
2678 /* We must be comparing objects whose modes imply the size. */
2679 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2680 return FALSE;
2681
2682 /* Reverse the comparison code, if necessary. */
2683 code = GET_CODE (cond);
2684 if (then_bb == trap_bb)
2685 {
2686 code = reversed_comparison_code (cond, jump);
2687 if (code == UNKNOWN)
2688 return FALSE;
2689 }
2690
2691 /* Attempt to generate the conditional trap. */
2692 seq = gen_cond_trap (code, XEXP (cond, 0),
2693 XEXP (cond, 1),
2694 TRAP_CODE (PATTERN (trap)));
2695 if (seq == NULL)
2696 return FALSE;
2697
2698 num_true_changes++;
2699
2700 /* Emit the new insns before cond_earliest. */
2701 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
2702
2703 /* Delete the trap block if possible. */
2704 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
2705 if (EDGE_COUNT (trap_bb->preds) == 0)
2706 delete_basic_block (trap_bb);
2707
2708 /* If the non-trap block and the test are now adjacent, merge them.
2709 Otherwise we must insert a direct branch. */
2710 if (test_bb->next_bb == other_bb)
2711 {
2712 struct ce_if_block new_ce_info;
2713 delete_insn (jump);
2714 memset (&new_ce_info, '\0', sizeof (new_ce_info));
2715 new_ce_info.test_bb = test_bb;
2716 new_ce_info.then_bb = NULL;
2717 new_ce_info.else_bb = NULL;
2718 new_ce_info.join_bb = other_bb;
2719 merge_if_block (&new_ce_info);
2720 }
2721 else
2722 {
2723 rtx lab, newjump;
2724
2725 lab = JUMP_LABEL (jump);
2726 newjump = emit_jump_insn_after (gen_jump (lab), jump);
2727 LABEL_NUSES (lab) += 1;
2728 JUMP_LABEL (newjump) = lab;
2729 emit_barrier_after (newjump);
2730
2731 delete_insn (jump);
2732 }
2733
2734 return TRUE;
2735 }
2736
2737 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
2738 return it. */
2739
2740 static rtx
2741 block_has_only_trap (basic_block bb)
2742 {
2743 rtx trap;
2744
2745 /* We're not the exit block. */
2746 if (bb == EXIT_BLOCK_PTR)
2747 return NULL_RTX;
2748
2749 /* The block must have no successors. */
2750 if (EDGE_COUNT (bb->succs) > 0)
2751 return NULL_RTX;
2752
2753 /* The only instruction in the THEN block must be the trap. */
2754 trap = first_active_insn (bb);
2755 if (! (trap == BB_END (bb)
2756 && GET_CODE (PATTERN (trap)) == TRAP_IF
2757 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
2758 return NULL_RTX;
2759
2760 return trap;
2761 }
2762
2763 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
2764 transformable, but not necessarily the other. There need be no
2765 JOIN block.
2766
2767 Return TRUE if we were successful at converting the block.
2768
2769 Cases we'd like to look at:
2770
2771 (1)
2772 if (test) goto over; // x not live
2773 x = a;
2774 goto label;
2775 over:
2776
2777 becomes
2778
2779 x = a;
2780 if (! test) goto label;
2781
2782 (2)
2783 if (test) goto E; // x not live
2784 x = big();
2785 goto L;
2786 E:
2787 x = b;
2788 goto M;
2789
2790 becomes
2791
2792 x = b;
2793 if (test) goto M;
2794 x = big();
2795 goto L;
2796
2797 (3) // This one's really only interesting for targets that can do
2798 // multiway branching, e.g. IA-64 BBB bundles. For other targets
2799 // it results in multiple branches on a cache line, which often
2800 // does not sit well with predictors.
2801
2802 if (test1) goto E; // predicted not taken
2803 x = a;
2804 if (test2) goto F;
2805 ...
2806 E:
2807 x = b;
2808 J:
2809
2810 becomes
2811
2812 x = a;
2813 if (test1) goto E;
2814 if (test2) goto F;
2815
2816 Notes:
2817
2818 (A) Don't do (2) if the branch is predicted against the block we're
2819 eliminating. Do it anyway if we can eliminate a branch; this requires
2820 that the sole successor of the eliminated block postdominate the other
2821 side of the if.
2822
2823 (B) With CE, on (3) we can steal from both sides of the if, creating
2824
2825 if (test1) x = a;
2826 if (!test1) x = b;
2827 if (test1) goto J;
2828 if (test2) goto F;
2829 ...
2830 J:
2831
2832 Again, this is most useful if J postdominates.
2833
2834 (C) CE substitutes for helpful life information.
2835
2836 (D) These heuristics need a lot of work. */
2837
2838 /* Tests for case 1 above. */
2839
2840 static int
2841 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
2842 {
2843 basic_block then_bb = then_edge->dest;
2844 basic_block else_bb = else_edge->dest, new_bb;
2845 int then_bb_index;
2846
2847 /* If we are partitioning hot/cold basic blocks, we don't want to
2848 mess up unconditional or indirect jumps that cross between hot
2849 and cold sections.
2850
2851 Basic block partitioning may result in some jumps that appear to
2852 be optimizable (or blocks that appear to be mergeable), but which really
2853 must be left untouched (they are required to make it safely across
2854 partition boundaries). See the comments at the top of
2855 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2856
2857 if ((BB_END (then_bb)
2858 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2859 || (BB_END (test_bb)
2860 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
2861 || (BB_END (else_bb)
2862 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2863 NULL_RTX)))
2864 return FALSE;
2865
2866 /* THEN has one successor. */
2867 if (!single_succ_p (then_bb))
2868 return FALSE;
2869
2870 /* THEN does not fall through, but is not strange either. */
2871 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
2872 return FALSE;
2873
2874 /* THEN has one predecessor. */
2875 if (!single_pred_p (then_bb))
2876 return FALSE;
2877
2878 /* THEN must do something. */
2879 if (forwarder_block_p (then_bb))
2880 return FALSE;
2881
2882 num_possible_if_blocks++;
2883 if (dump_file)
2884 fprintf (dump_file,
2885 "\nIF-CASE-1 found, start %d, then %d\n",
2886 test_bb->index, then_bb->index);
2887
2888 /* THEN is small. */
2889 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
2890 return FALSE;
2891
2892 /* Registers set are dead, or are predicable. */
2893 if (! dead_or_predicable (test_bb, then_bb, else_bb,
2894 single_succ (then_bb), 1))
2895 return FALSE;
2896
2897 /* Conversion went ok, including moving the insns and fixing up the
2898 jump. Adjust the CFG to match. */
2899
2900 bitmap_ior (test_bb->global_live_at_end,
2901 else_bb->global_live_at_start,
2902 then_bb->global_live_at_end);
2903
2904
2905 /* We can avoid creating a new basic block if then_bb is immediately
2906 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
2907 thru to else_bb. */
2908
2909 if (then_bb->next_bb == else_bb
2910 && then_bb->prev_bb == test_bb
2911 && else_bb != EXIT_BLOCK_PTR)
2912 {
2913 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
2914 new_bb = 0;
2915 }
2916 else
2917 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
2918 else_bb);
2919
2920 then_bb_index = then_bb->index;
2921 delete_basic_block (then_bb);
2922
2923 /* Make rest of code believe that the newly created block is the THEN_BB
2924 block we removed. */
2925 if (new_bb)
2926 {
2927 new_bb->index = then_bb_index;
2928 BASIC_BLOCK (then_bb_index) = new_bb;
2929 /* Since the fallthru edge was redirected from test_bb to new_bb,
2930 we need to ensure that new_bb is in the same partition as
2931 test bb (you can not fall through across section boundaries). */
2932 BB_COPY_PARTITION (new_bb, test_bb);
2933 }
2934 /* We've possibly created jump to next insn, cleanup_cfg will solve that
2935 later. */
2936
2937 num_true_changes++;
2938 num_updated_if_blocks++;
2939
2940 return TRUE;
2941 }
2942
2943 /* Test for case 2 above. */
2944
2945 static int
2946 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
2947 {
2948 basic_block then_bb = then_edge->dest;
2949 basic_block else_bb = else_edge->dest;
2950 edge else_succ;
2951 rtx note;
2952
2953 /* If we are partitioning hot/cold basic blocks, we don't want to
2954 mess up unconditional or indirect jumps that cross between hot
2955 and cold sections.
2956
2957 Basic block partitioning may result in some jumps that appear to
2958 be optimizable (or blocks that appear to be mergeable), but which really
2959 must be left untouched (they are required to make it safely across
2960 partition boundaries). See the comments at the top of
2961 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2962
2963 if ((BB_END (then_bb)
2964 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2965 || (BB_END (test_bb)
2966 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
2967 || (BB_END (else_bb)
2968 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2969 NULL_RTX)))
2970 return FALSE;
2971
2972 /* ELSE has one successor. */
2973 if (!single_succ_p (else_bb))
2974 return FALSE;
2975 else
2976 else_succ = single_succ_edge (else_bb);
2977
2978 /* ELSE outgoing edge is not complex. */
2979 if (else_succ->flags & EDGE_COMPLEX)
2980 return FALSE;
2981
2982 /* ELSE has one predecessor. */
2983 if (!single_pred_p (else_bb))
2984 return FALSE;
2985
2986 /* THEN is not EXIT. */
2987 if (then_bb->index < 0)
2988 return FALSE;
2989
2990 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
2991 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
2992 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
2993 ;
2994 else if (else_succ->dest->index < 0
2995 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
2996 else_succ->dest))
2997 ;
2998 else
2999 return FALSE;
3000
3001 num_possible_if_blocks++;
3002 if (dump_file)
3003 fprintf (dump_file,
3004 "\nIF-CASE-2 found, start %d, else %d\n",
3005 test_bb->index, else_bb->index);
3006
3007 /* ELSE is small. */
3008 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3009 return FALSE;
3010
3011 /* Registers set are dead, or are predicable. */
3012 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3013 return FALSE;
3014
3015 /* Conversion went ok, including moving the insns and fixing up the
3016 jump. Adjust the CFG to match. */
3017
3018 bitmap_ior (test_bb->global_live_at_end,
3019 then_bb->global_live_at_start,
3020 else_bb->global_live_at_end);
3021
3022 delete_basic_block (else_bb);
3023
3024 num_true_changes++;
3025 num_updated_if_blocks++;
3026
3027 /* ??? We may now fallthru from one of THEN's successors into a join
3028 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3029
3030 return TRUE;
3031 }
3032
3033 /* A subroutine of dead_or_predicable called through for_each_rtx.
3034 Return 1 if a memory is found. */
3035
3036 static int
3037 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3038 {
3039 return MEM_P (*px);
3040 }
3041
3042 /* Used by the code above to perform the actual rtl transformations.
3043 Return TRUE if successful.
3044
3045 TEST_BB is the block containing the conditional branch. MERGE_BB
3046 is the block containing the code to manipulate. NEW_DEST is the
3047 label TEST_BB should be branching to after the conversion.
3048 REVERSEP is true if the sense of the branch should be reversed. */
3049
3050 static int
3051 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3052 basic_block other_bb, basic_block new_dest, int reversep)
3053 {
3054 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3055
3056 jump = BB_END (test_bb);
3057
3058 /* Find the extent of the real code in the merge block. */
3059 head = BB_HEAD (merge_bb);
3060 end = BB_END (merge_bb);
3061
3062 if (LABEL_P (head))
3063 head = NEXT_INSN (head);
3064 if (NOTE_P (head))
3065 {
3066 if (head == end)
3067 {
3068 head = end = NULL_RTX;
3069 goto no_body;
3070 }
3071 head = NEXT_INSN (head);
3072 }
3073
3074 if (JUMP_P (end))
3075 {
3076 if (head == end)
3077 {
3078 head = end = NULL_RTX;
3079 goto no_body;
3080 }
3081 end = PREV_INSN (end);
3082 }
3083
3084 /* Disable handling dead code by conditional execution if the machine needs
3085 to do anything funny with the tests, etc. */
3086 #ifndef IFCVT_MODIFY_TESTS
3087 if (HAVE_conditional_execution)
3088 {
3089 /* In the conditional execution case, we have things easy. We know
3090 the condition is reversible. We don't have to check life info
3091 because we're going to conditionally execute the code anyway.
3092 All that's left is making sure the insns involved can actually
3093 be predicated. */
3094
3095 rtx cond, prob_val;
3096
3097 cond = cond_exec_get_condition (jump);
3098 if (! cond)
3099 return FALSE;
3100
3101 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3102 if (prob_val)
3103 prob_val = XEXP (prob_val, 0);
3104
3105 if (reversep)
3106 {
3107 enum rtx_code rev = reversed_comparison_code (cond, jump);
3108 if (rev == UNKNOWN)
3109 return FALSE;
3110 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3111 XEXP (cond, 1));
3112 if (prob_val)
3113 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3114 }
3115
3116 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3117 prob_val, 0))
3118 goto cancel;
3119
3120 earliest = jump;
3121 }
3122 else
3123 #endif
3124 {
3125 /* In the non-conditional execution case, we have to verify that there
3126 are no trapping operations, no calls, no references to memory, and
3127 that any registers modified are dead at the branch site. */
3128
3129 rtx insn, cond, prev;
3130 regset merge_set, tmp, test_live, test_set;
3131 struct propagate_block_info *pbi;
3132 unsigned i, fail = 0;
3133 bitmap_iterator bi;
3134
3135 /* Check for no calls or trapping operations. */
3136 for (insn = head; ; insn = NEXT_INSN (insn))
3137 {
3138 if (CALL_P (insn))
3139 return FALSE;
3140 if (INSN_P (insn))
3141 {
3142 if (may_trap_p (PATTERN (insn)))
3143 return FALSE;
3144
3145 /* ??? Even non-trapping memories such as stack frame
3146 references must be avoided. For stores, we collect
3147 no lifetime info; for reads, we'd have to assert
3148 true_dependence false against every store in the
3149 TEST range. */
3150 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3151 return FALSE;
3152 }
3153 if (insn == end)
3154 break;
3155 }
3156
3157 if (! any_condjump_p (jump))
3158 return FALSE;
3159
3160 /* Find the extent of the conditional. */
3161 cond = noce_get_condition (jump, &earliest);
3162 if (! cond)
3163 return FALSE;
3164
3165 /* Collect:
3166 MERGE_SET = set of registers set in MERGE_BB
3167 TEST_LIVE = set of registers live at EARLIEST
3168 TEST_SET = set of registers set between EARLIEST and the
3169 end of the block. */
3170
3171 tmp = ALLOC_REG_SET (&reg_obstack);
3172 merge_set = ALLOC_REG_SET (&reg_obstack);
3173 test_live = ALLOC_REG_SET (&reg_obstack);
3174 test_set = ALLOC_REG_SET (&reg_obstack);
3175
3176 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3177 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3178 since we've already asserted that MERGE_BB is small. */
3179 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3180
3181 /* For small register class machines, don't lengthen lifetimes of
3182 hard registers before reload. */
3183 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3184 {
3185 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3186 {
3187 if (i < FIRST_PSEUDO_REGISTER
3188 && ! fixed_regs[i]
3189 && ! global_regs[i])
3190 fail = 1;
3191 }
3192 }
3193
3194 /* For TEST, we're interested in a range of insns, not a whole block.
3195 Moreover, we're interested in the insns live from OTHER_BB. */
3196
3197 COPY_REG_SET (test_live, other_bb->global_live_at_start);
3198 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3199 0);
3200
3201 for (insn = jump; ; insn = prev)
3202 {
3203 prev = propagate_one_insn (pbi, insn);
3204 if (insn == earliest)
3205 break;
3206 }
3207
3208 free_propagate_block_info (pbi);
3209
3210 /* We can perform the transformation if
3211 MERGE_SET & (TEST_SET | TEST_LIVE)
3212 and
3213 TEST_SET & merge_bb->global_live_at_start
3214 are empty. */
3215
3216 if (bitmap_intersect_p (test_set, merge_set)
3217 || bitmap_intersect_p (test_live, merge_set)
3218 || bitmap_intersect_p (test_set, merge_bb->global_live_at_start))
3219 fail = 1;
3220
3221 FREE_REG_SET (tmp);
3222 FREE_REG_SET (merge_set);
3223 FREE_REG_SET (test_live);
3224 FREE_REG_SET (test_set);
3225
3226 if (fail)
3227 return FALSE;
3228 }
3229
3230 no_body:
3231 /* We don't want to use normal invert_jump or redirect_jump because
3232 we don't want to delete_insn called. Also, we want to do our own
3233 change group management. */
3234
3235 old_dest = JUMP_LABEL (jump);
3236 if (other_bb != new_dest)
3237 {
3238 new_label = block_label (new_dest);
3239 if (reversep
3240 ? ! invert_jump_1 (jump, new_label)
3241 : ! redirect_jump_1 (jump, new_label))
3242 goto cancel;
3243 }
3244
3245 if (! apply_change_group ())
3246 return FALSE;
3247
3248 if (other_bb != new_dest)
3249 {
3250 redirect_jump_2 (jump, old_dest, new_label, -1, reversep);
3251
3252 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3253 if (reversep)
3254 {
3255 gcov_type count, probability;
3256 count = BRANCH_EDGE (test_bb)->count;
3257 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3258 FALLTHRU_EDGE (test_bb)->count = count;
3259 probability = BRANCH_EDGE (test_bb)->probability;
3260 BRANCH_EDGE (test_bb)->probability
3261 = FALLTHRU_EDGE (test_bb)->probability;
3262 FALLTHRU_EDGE (test_bb)->probability = probability;
3263 update_br_prob_note (test_bb);
3264 }
3265 }
3266
3267 /* Move the insns out of MERGE_BB to before the branch. */
3268 if (head != NULL)
3269 {
3270 if (end == BB_END (merge_bb))
3271 BB_END (merge_bb) = PREV_INSN (head);
3272
3273 if (squeeze_notes (&head, &end))
3274 return TRUE;
3275
3276 reorder_insns (head, end, PREV_INSN (earliest));
3277 }
3278
3279 /* Remove the jump and edge if we can. */
3280 if (other_bb == new_dest)
3281 {
3282 delete_insn (jump);
3283 remove_edge (BRANCH_EDGE (test_bb));
3284 /* ??? Can't merge blocks here, as then_bb is still in use.
3285 At minimum, the merge will get done just before bb-reorder. */
3286 }
3287
3288 return TRUE;
3289
3290 cancel:
3291 cancel_changes (0);
3292 return FALSE;
3293 }
3294 \f
3295 /* Main entry point for all if-conversion. */
3296
3297 void
3298 if_convert (int x_life_data_ok)
3299 {
3300 basic_block bb;
3301 int pass;
3302
3303 num_possible_if_blocks = 0;
3304 num_updated_if_blocks = 0;
3305 num_true_changes = 0;
3306 life_data_ok = (x_life_data_ok != 0);
3307
3308 if ((! targetm.cannot_modify_jumps_p ())
3309 && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3310 || !targetm.have_named_sections))
3311 {
3312 struct loops loops;
3313
3314 flow_loops_find (&loops);
3315 mark_loop_exit_edges (&loops);
3316 flow_loops_free (&loops);
3317 free_dominance_info (CDI_DOMINATORS);
3318 }
3319
3320 /* Compute postdominators if we think we'll use them. */
3321 if (HAVE_conditional_execution || life_data_ok)
3322 calculate_dominance_info (CDI_POST_DOMINATORS);
3323
3324 if (life_data_ok)
3325 clear_bb_flags ();
3326
3327 /* Go through each of the basic blocks looking for things to convert. If we
3328 have conditional execution, we make multiple passes to allow us to handle
3329 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3330 pass = 0;
3331 do
3332 {
3333 cond_exec_changed_p = FALSE;
3334 pass++;
3335
3336 #ifdef IFCVT_MULTIPLE_DUMPS
3337 if (dump_file && pass > 1)
3338 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3339 #endif
3340
3341 FOR_EACH_BB (bb)
3342 {
3343 basic_block new_bb;
3344 while ((new_bb = find_if_header (bb, pass)))
3345 bb = new_bb;
3346 }
3347
3348 #ifdef IFCVT_MULTIPLE_DUMPS
3349 if (dump_file && cond_exec_changed_p)
3350 print_rtl_with_bb (dump_file, get_insns ());
3351 #endif
3352 }
3353 while (cond_exec_changed_p);
3354
3355 #ifdef IFCVT_MULTIPLE_DUMPS
3356 if (dump_file)
3357 fprintf (dump_file, "\n\n========== no more changes\n");
3358 #endif
3359
3360 free_dominance_info (CDI_POST_DOMINATORS);
3361
3362 if (dump_file)
3363 fflush (dump_file);
3364
3365 clear_aux_for_blocks ();
3366
3367 /* Rebuild life info for basic blocks that require it. */
3368 if (num_true_changes && life_data_ok)
3369 {
3370 /* If we allocated new pseudos, we must resize the array for sched1. */
3371 if (max_regno < max_reg_num ())
3372 {
3373 max_regno = max_reg_num ();
3374 allocate_reg_info (max_regno, FALSE, FALSE);
3375 }
3376 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3377 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3378 | PROP_KILL_DEAD_CODE);
3379 }
3380
3381 /* Write the final stats. */
3382 if (dump_file && num_possible_if_blocks > 0)
3383 {
3384 fprintf (dump_file,
3385 "\n%d possible IF blocks searched.\n",
3386 num_possible_if_blocks);
3387 fprintf (dump_file,
3388 "%d IF blocks converted.\n",
3389 num_updated_if_blocks);
3390 fprintf (dump_file,
3391 "%d true changes made.\n\n\n",
3392 num_true_changes);
3393 }
3394
3395 #ifdef ENABLE_CHECKING
3396 verify_flow_info ();
3397 #endif
3398 }