* de.po: Update.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010,
3 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "diagnostic-core.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
49
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
62
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
68
69 #define IFCVT_MULTIPLE_DUMPS 1
70
71 #define NULL_BLOCK ((basic_block) NULL)
72
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
75
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
79
80 /* # of changes made. */
81 static int num_true_changes;
82
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
85
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block_t *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block_t *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int dead_or_predicable (basic_block, basic_block, basic_block,
107 edge, int);
108 static void noce_emit_move_insn (rtx, rtx);
109 static rtx block_has_only_trap (basic_block);
110 \f
111 /* Count the number of non-jump active insns in BB. */
112
113 static int
114 count_bb_insns (const_basic_block bb)
115 {
116 int count = 0;
117 rtx insn = BB_HEAD (bb);
118
119 while (1)
120 {
121 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
122 count++;
123
124 if (insn == BB_END (bb))
125 break;
126 insn = NEXT_INSN (insn);
127 }
128
129 return count;
130 }
131
132 /* Determine whether the total insn_rtx_cost on non-jump insns in
133 basic block BB is less than MAX_COST. This function returns
134 false if the cost of any instruction could not be estimated.
135
136 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
137 as those insns are being speculated. MAX_COST is scaled with SCALE
138 plus a small fudge factor. */
139
140 static bool
141 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
142 {
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
145 bool speed = optimize_bb_for_speed_p (bb);
146
147 /* Our branch probability/scaling factors are just estimates and don't
148 account for cases where we can get speculation for free and other
149 secondary benefits. So we fudge the scale factor to make speculating
150 appear a little more profitable. */
151 scale += REG_BR_PROB_BASE / 8;
152 max_cost *= scale;
153
154 while (1)
155 {
156 if (NONJUMP_INSN_P (insn))
157 {
158 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
159 if (cost == 0)
160 return false;
161
162 /* If this instruction is the load or set of a "stack" register,
163 such as a floating point register on x87, then the cost of
164 speculatively executing this insn may need to include
165 the additional cost of popping its result off of the
166 register stack. Unfortunately, correctly recognizing and
167 accounting for this additional overhead is tricky, so for
168 now we simply prohibit such speculative execution. */
169 #ifdef STACK_REGS
170 {
171 rtx set = single_set (insn);
172 if (set && STACK_REG_P (SET_DEST (set)))
173 return false;
174 }
175 #endif
176
177 count += cost;
178 if (count >= max_cost)
179 return false;
180 }
181 else if (CALL_P (insn))
182 return false;
183
184 if (insn == BB_END (bb))
185 break;
186 insn = NEXT_INSN (insn);
187 }
188
189 return true;
190 }
191
192 /* Return the first non-jump active insn in the basic block. */
193
194 static rtx
195 first_active_insn (basic_block bb)
196 {
197 rtx insn = BB_HEAD (bb);
198
199 if (LABEL_P (insn))
200 {
201 if (insn == BB_END (bb))
202 return NULL_RTX;
203 insn = NEXT_INSN (insn);
204 }
205
206 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
207 {
208 if (insn == BB_END (bb))
209 return NULL_RTX;
210 insn = NEXT_INSN (insn);
211 }
212
213 if (JUMP_P (insn))
214 return NULL_RTX;
215
216 return insn;
217 }
218
219 /* Return the last non-jump active (non-jump) insn in the basic block. */
220
221 static rtx
222 last_active_insn (basic_block bb, int skip_use_p)
223 {
224 rtx insn = BB_END (bb);
225 rtx head = BB_HEAD (bb);
226
227 while (NOTE_P (insn)
228 || JUMP_P (insn)
229 || DEBUG_INSN_P (insn)
230 || (skip_use_p
231 && NONJUMP_INSN_P (insn)
232 && GET_CODE (PATTERN (insn)) == USE))
233 {
234 if (insn == head)
235 return NULL_RTX;
236 insn = PREV_INSN (insn);
237 }
238
239 if (LABEL_P (insn))
240 return NULL_RTX;
241
242 return insn;
243 }
244
245 /* Return the active insn before INSN inside basic block CURR_BB. */
246
247 static rtx
248 find_active_insn_before (basic_block curr_bb, rtx insn)
249 {
250 if (!insn || insn == BB_HEAD (curr_bb))
251 return NULL_RTX;
252
253 while ((insn = PREV_INSN (insn)) != NULL_RTX)
254 {
255 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
256 break;
257
258 /* No other active insn all the way to the start of the basic block. */
259 if (insn == BB_HEAD (curr_bb))
260 return NULL_RTX;
261 }
262
263 return insn;
264 }
265
266 /* Return the active insn after INSN inside basic block CURR_BB. */
267
268 static rtx
269 find_active_insn_after (basic_block curr_bb, rtx insn)
270 {
271 if (!insn || insn == BB_END (curr_bb))
272 return NULL_RTX;
273
274 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
275 {
276 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
277 break;
278
279 /* No other active insn all the way to the end of the basic block. */
280 if (insn == BB_END (curr_bb))
281 return NULL_RTX;
282 }
283
284 return insn;
285 }
286
287 /* Return the basic block reached by falling though the basic block BB. */
288
289 static basic_block
290 block_fallthru (basic_block bb)
291 {
292 edge e = find_fallthru_edge (bb->succs);
293
294 return (e) ? e->dest : NULL_BLOCK;
295 }
296 \f
297 /* Go through a bunch of insns, converting them to conditional
298 execution format if possible. Return TRUE if all of the non-note
299 insns were processed. */
300
301 static int
302 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
303 /* if block information */rtx start,
304 /* first insn to look at */rtx end,
305 /* last insn to look at */rtx test,
306 /* conditional execution test */rtx prob_val,
307 /* probability of branch taken. */int mod_ok)
308 {
309 int must_be_last = FALSE;
310 rtx insn;
311 rtx xtest;
312 rtx pattern;
313
314 if (!start || !end)
315 return FALSE;
316
317 for (insn = start; ; insn = NEXT_INSN (insn))
318 {
319 /* dwarf2out can't cope with conditional prologues. */
320 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
321 return FALSE;
322
323 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
324 goto insn_done;
325
326 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
327
328 /* Remove USE insns that get in the way. */
329 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
330 {
331 /* ??? Ug. Actually unlinking the thing is problematic,
332 given what we'd have to coordinate with our callers. */
333 SET_INSN_DELETED (insn);
334 goto insn_done;
335 }
336
337 /* Last insn wasn't last? */
338 if (must_be_last)
339 return FALSE;
340
341 if (modified_in_p (test, insn))
342 {
343 if (!mod_ok)
344 return FALSE;
345 must_be_last = TRUE;
346 }
347
348 /* Now build the conditional form of the instruction. */
349 pattern = PATTERN (insn);
350 xtest = copy_rtx (test);
351
352 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
353 two conditions. */
354 if (GET_CODE (pattern) == COND_EXEC)
355 {
356 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
357 return FALSE;
358
359 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
360 COND_EXEC_TEST (pattern));
361 pattern = COND_EXEC_CODE (pattern);
362 }
363
364 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
365
366 /* If the machine needs to modify the insn being conditionally executed,
367 say for example to force a constant integer operand into a temp
368 register, do so here. */
369 #ifdef IFCVT_MODIFY_INSN
370 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
371 if (! pattern)
372 return FALSE;
373 #endif
374
375 validate_change (insn, &PATTERN (insn), pattern, 1);
376
377 if (CALL_P (insn) && prob_val)
378 validate_change (insn, &REG_NOTES (insn),
379 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
380 REG_NOTES (insn)), 1);
381
382 insn_done:
383 if (insn == end)
384 break;
385 }
386
387 return TRUE;
388 }
389
390 /* Return the condition for a jump. Do not do any special processing. */
391
392 static rtx
393 cond_exec_get_condition (rtx jump)
394 {
395 rtx test_if, cond;
396
397 if (any_condjump_p (jump))
398 test_if = SET_SRC (pc_set (jump));
399 else
400 return NULL_RTX;
401 cond = XEXP (test_if, 0);
402
403 /* If this branches to JUMP_LABEL when the condition is false,
404 reverse the condition. */
405 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
406 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
407 {
408 enum rtx_code rev = reversed_comparison_code (cond, jump);
409 if (rev == UNKNOWN)
410 return NULL_RTX;
411
412 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
413 XEXP (cond, 1));
414 }
415
416 return cond;
417 }
418
419 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
420 to conditional execution. Return TRUE if we were successful at
421 converting the block. */
422
423 static int
424 cond_exec_process_if_block (ce_if_block_t * ce_info,
425 /* if block information */int do_multiple_p)
426 {
427 basic_block test_bb = ce_info->test_bb; /* last test block */
428 basic_block then_bb = ce_info->then_bb; /* THEN */
429 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
430 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
431 rtx then_start; /* first insn in THEN block */
432 rtx then_end; /* last insn + 1 in THEN block */
433 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
434 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
435 int max; /* max # of insns to convert. */
436 int then_mod_ok; /* whether conditional mods are ok in THEN */
437 rtx true_expr; /* test for else block insns */
438 rtx false_expr; /* test for then block insns */
439 rtx true_prob_val; /* probability of else block */
440 rtx false_prob_val; /* probability of then block */
441 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
442 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
443 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
444 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
445 int then_n_insns, else_n_insns, n_insns;
446 enum rtx_code false_code;
447
448 /* If test is comprised of && or || elements, and we've failed at handling
449 all of them together, just use the last test if it is the special case of
450 && elements without an ELSE block. */
451 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
452 {
453 if (else_bb || ! ce_info->and_and_p)
454 return FALSE;
455
456 ce_info->test_bb = test_bb = ce_info->last_test_bb;
457 ce_info->num_multiple_test_blocks = 0;
458 ce_info->num_and_and_blocks = 0;
459 ce_info->num_or_or_blocks = 0;
460 }
461
462 /* Find the conditional jump to the ELSE or JOIN part, and isolate
463 the test. */
464 test_expr = cond_exec_get_condition (BB_END (test_bb));
465 if (! test_expr)
466 return FALSE;
467
468 /* If the conditional jump is more than just a conditional jump,
469 then we can not do conditional execution conversion on this block. */
470 if (! onlyjump_p (BB_END (test_bb)))
471 return FALSE;
472
473 /* Collect the bounds of where we're to search, skipping any labels, jumps
474 and notes at the beginning and end of the block. Then count the total
475 number of insns and see if it is small enough to convert. */
476 then_start = first_active_insn (then_bb);
477 then_end = last_active_insn (then_bb, TRUE);
478 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
479 n_insns = then_n_insns;
480 max = MAX_CONDITIONAL_EXECUTE;
481
482 if (else_bb)
483 {
484 int n_matching;
485
486 max *= 2;
487 else_start = first_active_insn (else_bb);
488 else_end = last_active_insn (else_bb, TRUE);
489 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
490 n_insns += else_n_insns;
491
492 /* Look for matching sequences at the head and tail of the two blocks,
493 and limit the range of insns to be converted if possible. */
494 n_matching = flow_find_cross_jump (then_bb, else_bb,
495 &then_first_tail, &else_first_tail,
496 NULL);
497 if (then_first_tail == BB_HEAD (then_bb))
498 then_start = then_end = NULL_RTX;
499 if (else_first_tail == BB_HEAD (else_bb))
500 else_start = else_end = NULL_RTX;
501
502 if (n_matching > 0)
503 {
504 if (then_end)
505 then_end = find_active_insn_before (then_bb, then_first_tail);
506 if (else_end)
507 else_end = find_active_insn_before (else_bb, else_first_tail);
508 n_insns -= 2 * n_matching;
509 }
510
511 if (then_start && else_start)
512 {
513 int longest_match = MIN (then_n_insns - n_matching,
514 else_n_insns - n_matching);
515 n_matching
516 = flow_find_head_matching_sequence (then_bb, else_bb,
517 &then_last_head,
518 &else_last_head,
519 longest_match);
520
521 if (n_matching > 0)
522 {
523 rtx insn;
524
525 /* We won't pass the insns in the head sequence to
526 cond_exec_process_insns, so we need to test them here
527 to make sure that they don't clobber the condition. */
528 for (insn = BB_HEAD (then_bb);
529 insn != NEXT_INSN (then_last_head);
530 insn = NEXT_INSN (insn))
531 if (!LABEL_P (insn) && !NOTE_P (insn)
532 && !DEBUG_INSN_P (insn)
533 && modified_in_p (test_expr, insn))
534 return FALSE;
535 }
536
537 if (then_last_head == then_end)
538 then_start = then_end = NULL_RTX;
539 if (else_last_head == else_end)
540 else_start = else_end = NULL_RTX;
541
542 if (n_matching > 0)
543 {
544 if (then_start)
545 then_start = find_active_insn_after (then_bb, then_last_head);
546 if (else_start)
547 else_start = find_active_insn_after (else_bb, else_last_head);
548 n_insns -= 2 * n_matching;
549 }
550 }
551 }
552
553 if (n_insns > max)
554 return FALSE;
555
556 /* Map test_expr/test_jump into the appropriate MD tests to use on
557 the conditionally executed code. */
558
559 true_expr = test_expr;
560
561 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
562 if (false_code != UNKNOWN)
563 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
564 XEXP (true_expr, 0), XEXP (true_expr, 1));
565 else
566 false_expr = NULL_RTX;
567
568 #ifdef IFCVT_MODIFY_TESTS
569 /* If the machine description needs to modify the tests, such as setting a
570 conditional execution register from a comparison, it can do so here. */
571 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
572
573 /* See if the conversion failed. */
574 if (!true_expr || !false_expr)
575 goto fail;
576 #endif
577
578 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
579 if (true_prob_val)
580 {
581 true_prob_val = XEXP (true_prob_val, 0);
582 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
583 }
584 else
585 false_prob_val = NULL_RTX;
586
587 /* If we have && or || tests, do them here. These tests are in the adjacent
588 blocks after the first block containing the test. */
589 if (ce_info->num_multiple_test_blocks > 0)
590 {
591 basic_block bb = test_bb;
592 basic_block last_test_bb = ce_info->last_test_bb;
593
594 if (! false_expr)
595 goto fail;
596
597 do
598 {
599 rtx start, end;
600 rtx t, f;
601 enum rtx_code f_code;
602
603 bb = block_fallthru (bb);
604 start = first_active_insn (bb);
605 end = last_active_insn (bb, TRUE);
606 if (start
607 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
608 false_prob_val, FALSE))
609 goto fail;
610
611 /* If the conditional jump is more than just a conditional jump, then
612 we can not do conditional execution conversion on this block. */
613 if (! onlyjump_p (BB_END (bb)))
614 goto fail;
615
616 /* Find the conditional jump and isolate the test. */
617 t = cond_exec_get_condition (BB_END (bb));
618 if (! t)
619 goto fail;
620
621 f_code = reversed_comparison_code (t, BB_END (bb));
622 if (f_code == UNKNOWN)
623 goto fail;
624
625 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
626 if (ce_info->and_and_p)
627 {
628 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
629 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
630 }
631 else
632 {
633 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
634 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
635 }
636
637 /* If the machine description needs to modify the tests, such as
638 setting a conditional execution register from a comparison, it can
639 do so here. */
640 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
641 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
642
643 /* See if the conversion failed. */
644 if (!t || !f)
645 goto fail;
646 #endif
647
648 true_expr = t;
649 false_expr = f;
650 }
651 while (bb != last_test_bb);
652 }
653
654 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
655 on then THEN block. */
656 then_mod_ok = (else_bb == NULL_BLOCK);
657
658 /* Go through the THEN and ELSE blocks converting the insns if possible
659 to conditional execution. */
660
661 if (then_end
662 && (! false_expr
663 || ! cond_exec_process_insns (ce_info, then_start, then_end,
664 false_expr, false_prob_val,
665 then_mod_ok)))
666 goto fail;
667
668 if (else_bb && else_end
669 && ! cond_exec_process_insns (ce_info, else_start, else_end,
670 true_expr, true_prob_val, TRUE))
671 goto fail;
672
673 /* If we cannot apply the changes, fail. Do not go through the normal fail
674 processing, since apply_change_group will call cancel_changes. */
675 if (! apply_change_group ())
676 {
677 #ifdef IFCVT_MODIFY_CANCEL
678 /* Cancel any machine dependent changes. */
679 IFCVT_MODIFY_CANCEL (ce_info);
680 #endif
681 return FALSE;
682 }
683
684 #ifdef IFCVT_MODIFY_FINAL
685 /* Do any machine dependent final modifications. */
686 IFCVT_MODIFY_FINAL (ce_info);
687 #endif
688
689 /* Conversion succeeded. */
690 if (dump_file)
691 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
692 n_insns, (n_insns == 1) ? " was" : "s were");
693
694 /* Merge the blocks! If we had matching sequences, make sure to delete one
695 copy at the appropriate location first: delete the copy in the THEN branch
696 for a tail sequence so that the remaining one is executed last for both
697 branches, and delete the copy in the ELSE branch for a head sequence so
698 that the remaining one is executed first for both branches. */
699 if (then_first_tail)
700 {
701 rtx from = then_first_tail;
702 if (!INSN_P (from))
703 from = find_active_insn_after (then_bb, from);
704 delete_insn_chain (from, BB_END (then_bb), false);
705 }
706 if (else_last_head)
707 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
708
709 merge_if_block (ce_info);
710 cond_exec_changed_p = TRUE;
711 return TRUE;
712
713 fail:
714 #ifdef IFCVT_MODIFY_CANCEL
715 /* Cancel any machine dependent changes. */
716 IFCVT_MODIFY_CANCEL (ce_info);
717 #endif
718
719 cancel_changes (0);
720 return FALSE;
721 }
722 \f
723 /* Used by noce_process_if_block to communicate with its subroutines.
724
725 The subroutines know that A and B may be evaluated freely. They
726 know that X is a register. They should insert new instructions
727 before cond_earliest. */
728
729 struct noce_if_info
730 {
731 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
732 basic_block test_bb, then_bb, else_bb, join_bb;
733
734 /* The jump that ends TEST_BB. */
735 rtx jump;
736
737 /* The jump condition. */
738 rtx cond;
739
740 /* New insns should be inserted before this one. */
741 rtx cond_earliest;
742
743 /* Insns in the THEN and ELSE block. There is always just this
744 one insns in those blocks. The insns are single_set insns.
745 If there was no ELSE block, INSN_B is the last insn before
746 COND_EARLIEST, or NULL_RTX. In the former case, the insn
747 operands are still valid, as if INSN_B was moved down below
748 the jump. */
749 rtx insn_a, insn_b;
750
751 /* The SET_SRC of INSN_A and INSN_B. */
752 rtx a, b;
753
754 /* The SET_DEST of INSN_A. */
755 rtx x;
756
757 /* True if this if block is not canonical. In the canonical form of
758 if blocks, the THEN_BB is the block reached via the fallthru edge
759 from TEST_BB. For the noce transformations, we allow the symmetric
760 form as well. */
761 bool then_else_reversed;
762
763 /* Estimated cost of the particular branch instruction. */
764 int branch_cost;
765 };
766
767 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
768 static int noce_try_move (struct noce_if_info *);
769 static int noce_try_store_flag (struct noce_if_info *);
770 static int noce_try_addcc (struct noce_if_info *);
771 static int noce_try_store_flag_constants (struct noce_if_info *);
772 static int noce_try_store_flag_mask (struct noce_if_info *);
773 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
774 rtx, rtx, rtx);
775 static int noce_try_cmove (struct noce_if_info *);
776 static int noce_try_cmove_arith (struct noce_if_info *);
777 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
778 static int noce_try_minmax (struct noce_if_info *);
779 static int noce_try_abs (struct noce_if_info *);
780 static int noce_try_sign_mask (struct noce_if_info *);
781
782 /* Helper function for noce_try_store_flag*. */
783
784 static rtx
785 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
786 int normalize)
787 {
788 rtx cond = if_info->cond;
789 int cond_complex;
790 enum rtx_code code;
791
792 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
793 || ! general_operand (XEXP (cond, 1), VOIDmode));
794
795 /* If earliest == jump, or when the condition is complex, try to
796 build the store_flag insn directly. */
797
798 if (cond_complex)
799 {
800 rtx set = pc_set (if_info->jump);
801 cond = XEXP (SET_SRC (set), 0);
802 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
803 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
804 reversep = !reversep;
805 if (if_info->then_else_reversed)
806 reversep = !reversep;
807 }
808
809 if (reversep)
810 code = reversed_comparison_code (cond, if_info->jump);
811 else
812 code = GET_CODE (cond);
813
814 if ((if_info->cond_earliest == if_info->jump || cond_complex)
815 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
816 {
817 rtx tmp;
818
819 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
820 XEXP (cond, 1));
821 tmp = gen_rtx_SET (VOIDmode, x, tmp);
822
823 start_sequence ();
824 tmp = emit_insn (tmp);
825
826 if (recog_memoized (tmp) >= 0)
827 {
828 tmp = get_insns ();
829 end_sequence ();
830 emit_insn (tmp);
831
832 if_info->cond_earliest = if_info->jump;
833
834 return x;
835 }
836
837 end_sequence ();
838 }
839
840 /* Don't even try if the comparison operands or the mode of X are weird. */
841 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
842 return NULL_RTX;
843
844 return emit_store_flag (x, code, XEXP (cond, 0),
845 XEXP (cond, 1), VOIDmode,
846 (code == LTU || code == LEU
847 || code == GEU || code == GTU), normalize);
848 }
849
850 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
851 X is the destination/target and Y is the value to copy. */
852
853 static void
854 noce_emit_move_insn (rtx x, rtx y)
855 {
856 enum machine_mode outmode;
857 rtx outer, inner;
858 int bitpos;
859
860 if (GET_CODE (x) != STRICT_LOW_PART)
861 {
862 rtx seq, insn, target;
863 optab ot;
864
865 start_sequence ();
866 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
867 otherwise construct a suitable SET pattern ourselves. */
868 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
869 ? emit_move_insn (x, y)
870 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
871 seq = get_insns ();
872 end_sequence ();
873
874 if (recog_memoized (insn) <= 0)
875 {
876 if (GET_CODE (x) == ZERO_EXTRACT)
877 {
878 rtx op = XEXP (x, 0);
879 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
880 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
881
882 /* store_bit_field expects START to be relative to
883 BYTES_BIG_ENDIAN and adjusts this value for machines with
884 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
885 invoke store_bit_field again it is necessary to have the START
886 value from the first call. */
887 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
888 {
889 if (MEM_P (op))
890 start = BITS_PER_UNIT - start - size;
891 else
892 {
893 gcc_assert (REG_P (op));
894 start = BITS_PER_WORD - start - size;
895 }
896 }
897
898 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
899 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
900 return;
901 }
902
903 switch (GET_RTX_CLASS (GET_CODE (y)))
904 {
905 case RTX_UNARY:
906 ot = code_to_optab[GET_CODE (y)];
907 if (ot)
908 {
909 start_sequence ();
910 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
911 if (target != NULL_RTX)
912 {
913 if (target != x)
914 emit_move_insn (x, target);
915 seq = get_insns ();
916 }
917 end_sequence ();
918 }
919 break;
920
921 case RTX_BIN_ARITH:
922 case RTX_COMM_ARITH:
923 ot = code_to_optab[GET_CODE (y)];
924 if (ot)
925 {
926 start_sequence ();
927 target = expand_binop (GET_MODE (y), ot,
928 XEXP (y, 0), XEXP (y, 1),
929 x, 0, OPTAB_DIRECT);
930 if (target != NULL_RTX)
931 {
932 if (target != x)
933 emit_move_insn (x, target);
934 seq = get_insns ();
935 }
936 end_sequence ();
937 }
938 break;
939
940 default:
941 break;
942 }
943 }
944
945 emit_insn (seq);
946 return;
947 }
948
949 outer = XEXP (x, 0);
950 inner = XEXP (outer, 0);
951 outmode = GET_MODE (outer);
952 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
953 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
954 0, 0, outmode, y);
955 }
956
957 /* Return sequence of instructions generated by if conversion. This
958 function calls end_sequence() to end the current stream, ensures
959 that are instructions are unshared, recognizable non-jump insns.
960 On failure, this function returns a NULL_RTX. */
961
962 static rtx
963 end_ifcvt_sequence (struct noce_if_info *if_info)
964 {
965 rtx insn;
966 rtx seq = get_insns ();
967
968 set_used_flags (if_info->x);
969 set_used_flags (if_info->cond);
970 unshare_all_rtl_in_chain (seq);
971 end_sequence ();
972
973 /* Make sure that all of the instructions emitted are recognizable,
974 and that we haven't introduced a new jump instruction.
975 As an exercise for the reader, build a general mechanism that
976 allows proper placement of required clobbers. */
977 for (insn = seq; insn; insn = NEXT_INSN (insn))
978 if (JUMP_P (insn)
979 || recog_memoized (insn) == -1)
980 return NULL_RTX;
981
982 return seq;
983 }
984
985 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
986 "if (a == b) x = a; else x = b" into "x = b". */
987
988 static int
989 noce_try_move (struct noce_if_info *if_info)
990 {
991 rtx cond = if_info->cond;
992 enum rtx_code code = GET_CODE (cond);
993 rtx y, seq;
994
995 if (code != NE && code != EQ)
996 return FALSE;
997
998 /* This optimization isn't valid if either A or B could be a NaN
999 or a signed zero. */
1000 if (HONOR_NANS (GET_MODE (if_info->x))
1001 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1002 return FALSE;
1003
1004 /* Check whether the operands of the comparison are A and in
1005 either order. */
1006 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1007 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1008 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1009 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1010 {
1011 y = (code == EQ) ? if_info->a : if_info->b;
1012
1013 /* Avoid generating the move if the source is the destination. */
1014 if (! rtx_equal_p (if_info->x, y))
1015 {
1016 start_sequence ();
1017 noce_emit_move_insn (if_info->x, y);
1018 seq = end_ifcvt_sequence (if_info);
1019 if (!seq)
1020 return FALSE;
1021
1022 emit_insn_before_setloc (seq, if_info->jump,
1023 INSN_LOCATOR (if_info->insn_a));
1024 }
1025 return TRUE;
1026 }
1027 return FALSE;
1028 }
1029
1030 /* Convert "if (test) x = 1; else x = 0".
1031
1032 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1033 tried in noce_try_store_flag_constants after noce_try_cmove has had
1034 a go at the conversion. */
1035
1036 static int
1037 noce_try_store_flag (struct noce_if_info *if_info)
1038 {
1039 int reversep;
1040 rtx target, seq;
1041
1042 if (CONST_INT_P (if_info->b)
1043 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1044 && if_info->a == const0_rtx)
1045 reversep = 0;
1046 else if (if_info->b == const0_rtx
1047 && CONST_INT_P (if_info->a)
1048 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1049 && (reversed_comparison_code (if_info->cond, if_info->jump)
1050 != UNKNOWN))
1051 reversep = 1;
1052 else
1053 return FALSE;
1054
1055 start_sequence ();
1056
1057 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1058 if (target)
1059 {
1060 if (target != if_info->x)
1061 noce_emit_move_insn (if_info->x, target);
1062
1063 seq = end_ifcvt_sequence (if_info);
1064 if (! seq)
1065 return FALSE;
1066
1067 emit_insn_before_setloc (seq, if_info->jump,
1068 INSN_LOCATOR (if_info->insn_a));
1069 return TRUE;
1070 }
1071 else
1072 {
1073 end_sequence ();
1074 return FALSE;
1075 }
1076 }
1077
1078 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1079
1080 static int
1081 noce_try_store_flag_constants (struct noce_if_info *if_info)
1082 {
1083 rtx target, seq;
1084 int reversep;
1085 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1086 int normalize, can_reverse;
1087 enum machine_mode mode;
1088
1089 if (CONST_INT_P (if_info->a)
1090 && CONST_INT_P (if_info->b))
1091 {
1092 mode = GET_MODE (if_info->x);
1093 ifalse = INTVAL (if_info->a);
1094 itrue = INTVAL (if_info->b);
1095
1096 /* Make sure we can represent the difference between the two values. */
1097 if ((itrue - ifalse > 0)
1098 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1099 return FALSE;
1100
1101 diff = trunc_int_for_mode (itrue - ifalse, mode);
1102
1103 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1104 != UNKNOWN);
1105
1106 reversep = 0;
1107 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1108 normalize = 0;
1109 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1110 && (STORE_FLAG_VALUE == 1
1111 || if_info->branch_cost >= 2))
1112 normalize = 1;
1113 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1114 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1115 normalize = 1, reversep = 1;
1116 else if (itrue == -1
1117 && (STORE_FLAG_VALUE == -1
1118 || if_info->branch_cost >= 2))
1119 normalize = -1;
1120 else if (ifalse == -1 && can_reverse
1121 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1122 normalize = -1, reversep = 1;
1123 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1124 || if_info->branch_cost >= 3)
1125 normalize = -1;
1126 else
1127 return FALSE;
1128
1129 if (reversep)
1130 {
1131 tmp = itrue; itrue = ifalse; ifalse = tmp;
1132 diff = trunc_int_for_mode (-diff, mode);
1133 }
1134
1135 start_sequence ();
1136 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1137 if (! target)
1138 {
1139 end_sequence ();
1140 return FALSE;
1141 }
1142
1143 /* if (test) x = 3; else x = 4;
1144 => x = 3 + (test == 0); */
1145 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1146 {
1147 target = expand_simple_binop (mode,
1148 (diff == STORE_FLAG_VALUE
1149 ? PLUS : MINUS),
1150 GEN_INT (ifalse), target, if_info->x, 0,
1151 OPTAB_WIDEN);
1152 }
1153
1154 /* if (test) x = 8; else x = 0;
1155 => x = (test != 0) << 3; */
1156 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1157 {
1158 target = expand_simple_binop (mode, ASHIFT,
1159 target, GEN_INT (tmp), if_info->x, 0,
1160 OPTAB_WIDEN);
1161 }
1162
1163 /* if (test) x = -1; else x = b;
1164 => x = -(test != 0) | b; */
1165 else if (itrue == -1)
1166 {
1167 target = expand_simple_binop (mode, IOR,
1168 target, GEN_INT (ifalse), if_info->x, 0,
1169 OPTAB_WIDEN);
1170 }
1171
1172 /* if (test) x = a; else x = b;
1173 => x = (-(test != 0) & (b - a)) + a; */
1174 else
1175 {
1176 target = expand_simple_binop (mode, AND,
1177 target, GEN_INT (diff), if_info->x, 0,
1178 OPTAB_WIDEN);
1179 if (target)
1180 target = expand_simple_binop (mode, PLUS,
1181 target, GEN_INT (ifalse),
1182 if_info->x, 0, OPTAB_WIDEN);
1183 }
1184
1185 if (! target)
1186 {
1187 end_sequence ();
1188 return FALSE;
1189 }
1190
1191 if (target != if_info->x)
1192 noce_emit_move_insn (if_info->x, target);
1193
1194 seq = end_ifcvt_sequence (if_info);
1195 if (!seq)
1196 return FALSE;
1197
1198 emit_insn_before_setloc (seq, if_info->jump,
1199 INSN_LOCATOR (if_info->insn_a));
1200 return TRUE;
1201 }
1202
1203 return FALSE;
1204 }
1205
1206 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1207 similarly for "foo--". */
1208
1209 static int
1210 noce_try_addcc (struct noce_if_info *if_info)
1211 {
1212 rtx target, seq;
1213 int subtract, normalize;
1214
1215 if (GET_CODE (if_info->a) == PLUS
1216 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1217 && (reversed_comparison_code (if_info->cond, if_info->jump)
1218 != UNKNOWN))
1219 {
1220 rtx cond = if_info->cond;
1221 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1222
1223 /* First try to use addcc pattern. */
1224 if (general_operand (XEXP (cond, 0), VOIDmode)
1225 && general_operand (XEXP (cond, 1), VOIDmode))
1226 {
1227 start_sequence ();
1228 target = emit_conditional_add (if_info->x, code,
1229 XEXP (cond, 0),
1230 XEXP (cond, 1),
1231 VOIDmode,
1232 if_info->b,
1233 XEXP (if_info->a, 1),
1234 GET_MODE (if_info->x),
1235 (code == LTU || code == GEU
1236 || code == LEU || code == GTU));
1237 if (target)
1238 {
1239 if (target != if_info->x)
1240 noce_emit_move_insn (if_info->x, target);
1241
1242 seq = end_ifcvt_sequence (if_info);
1243 if (!seq)
1244 return FALSE;
1245
1246 emit_insn_before_setloc (seq, if_info->jump,
1247 INSN_LOCATOR (if_info->insn_a));
1248 return TRUE;
1249 }
1250 end_sequence ();
1251 }
1252
1253 /* If that fails, construct conditional increment or decrement using
1254 setcc. */
1255 if (if_info->branch_cost >= 2
1256 && (XEXP (if_info->a, 1) == const1_rtx
1257 || XEXP (if_info->a, 1) == constm1_rtx))
1258 {
1259 start_sequence ();
1260 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1261 subtract = 0, normalize = 0;
1262 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1263 subtract = 1, normalize = 0;
1264 else
1265 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1266
1267
1268 target = noce_emit_store_flag (if_info,
1269 gen_reg_rtx (GET_MODE (if_info->x)),
1270 1, normalize);
1271
1272 if (target)
1273 target = expand_simple_binop (GET_MODE (if_info->x),
1274 subtract ? MINUS : PLUS,
1275 if_info->b, target, if_info->x,
1276 0, OPTAB_WIDEN);
1277 if (target)
1278 {
1279 if (target != if_info->x)
1280 noce_emit_move_insn (if_info->x, target);
1281
1282 seq = end_ifcvt_sequence (if_info);
1283 if (!seq)
1284 return FALSE;
1285
1286 emit_insn_before_setloc (seq, if_info->jump,
1287 INSN_LOCATOR (if_info->insn_a));
1288 return TRUE;
1289 }
1290 end_sequence ();
1291 }
1292 }
1293
1294 return FALSE;
1295 }
1296
1297 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1298
1299 static int
1300 noce_try_store_flag_mask (struct noce_if_info *if_info)
1301 {
1302 rtx target, seq;
1303 int reversep;
1304
1305 reversep = 0;
1306 if ((if_info->branch_cost >= 2
1307 || STORE_FLAG_VALUE == -1)
1308 && ((if_info->a == const0_rtx
1309 && rtx_equal_p (if_info->b, if_info->x))
1310 || ((reversep = (reversed_comparison_code (if_info->cond,
1311 if_info->jump)
1312 != UNKNOWN))
1313 && if_info->b == const0_rtx
1314 && rtx_equal_p (if_info->a, if_info->x))))
1315 {
1316 start_sequence ();
1317 target = noce_emit_store_flag (if_info,
1318 gen_reg_rtx (GET_MODE (if_info->x)),
1319 reversep, -1);
1320 if (target)
1321 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1322 if_info->x,
1323 target, if_info->x, 0,
1324 OPTAB_WIDEN);
1325
1326 if (target)
1327 {
1328 if (target != if_info->x)
1329 noce_emit_move_insn (if_info->x, target);
1330
1331 seq = end_ifcvt_sequence (if_info);
1332 if (!seq)
1333 return FALSE;
1334
1335 emit_insn_before_setloc (seq, if_info->jump,
1336 INSN_LOCATOR (if_info->insn_a));
1337 return TRUE;
1338 }
1339
1340 end_sequence ();
1341 }
1342
1343 return FALSE;
1344 }
1345
1346 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1347
1348 static rtx
1349 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1350 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1351 {
1352 rtx target ATTRIBUTE_UNUSED;
1353 int unsignedp ATTRIBUTE_UNUSED;
1354
1355 /* If earliest == jump, try to build the cmove insn directly.
1356 This is helpful when combine has created some complex condition
1357 (like for alpha's cmovlbs) that we can't hope to regenerate
1358 through the normal interface. */
1359
1360 if (if_info->cond_earliest == if_info->jump)
1361 {
1362 rtx tmp;
1363
1364 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1365 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1366 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1367
1368 start_sequence ();
1369 tmp = emit_insn (tmp);
1370
1371 if (recog_memoized (tmp) >= 0)
1372 {
1373 tmp = get_insns ();
1374 end_sequence ();
1375 emit_insn (tmp);
1376
1377 return x;
1378 }
1379
1380 end_sequence ();
1381 }
1382
1383 /* Don't even try if the comparison operands are weird. */
1384 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1385 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1386 return NULL_RTX;
1387
1388 #if HAVE_conditional_move
1389 unsignedp = (code == LTU || code == GEU
1390 || code == LEU || code == GTU);
1391
1392 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1393 vtrue, vfalse, GET_MODE (x),
1394 unsignedp);
1395 if (target)
1396 return target;
1397
1398 /* We might be faced with a situation like:
1399
1400 x = (reg:M TARGET)
1401 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1402 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1403
1404 We can't do a conditional move in mode M, but it's possible that we
1405 could do a conditional move in mode N instead and take a subreg of
1406 the result.
1407
1408 If we can't create new pseudos, though, don't bother. */
1409 if (reload_completed)
1410 return NULL_RTX;
1411
1412 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1413 {
1414 rtx reg_vtrue = SUBREG_REG (vtrue);
1415 rtx reg_vfalse = SUBREG_REG (vfalse);
1416 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1417 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1418 rtx promoted_target;
1419
1420 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1421 || byte_vtrue != byte_vfalse
1422 || (SUBREG_PROMOTED_VAR_P (vtrue)
1423 != SUBREG_PROMOTED_VAR_P (vfalse))
1424 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1425 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1426 return NULL_RTX;
1427
1428 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1429
1430 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1431 VOIDmode, reg_vtrue, reg_vfalse,
1432 GET_MODE (reg_vtrue), unsignedp);
1433 /* Nope, couldn't do it in that mode either. */
1434 if (!target)
1435 return NULL_RTX;
1436
1437 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1438 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1439 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1440 emit_move_insn (x, target);
1441 return x;
1442 }
1443 else
1444 return NULL_RTX;
1445 #else
1446 /* We'll never get here, as noce_process_if_block doesn't call the
1447 functions involved. Ifdef code, however, should be discouraged
1448 because it leads to typos in the code not selected. However,
1449 emit_conditional_move won't exist either. */
1450 return NULL_RTX;
1451 #endif
1452 }
1453
1454 /* Try only simple constants and registers here. More complex cases
1455 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1456 has had a go at it. */
1457
1458 static int
1459 noce_try_cmove (struct noce_if_info *if_info)
1460 {
1461 enum rtx_code code;
1462 rtx target, seq;
1463
1464 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1465 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1466 {
1467 start_sequence ();
1468
1469 code = GET_CODE (if_info->cond);
1470 target = noce_emit_cmove (if_info, if_info->x, code,
1471 XEXP (if_info->cond, 0),
1472 XEXP (if_info->cond, 1),
1473 if_info->a, if_info->b);
1474
1475 if (target)
1476 {
1477 if (target != if_info->x)
1478 noce_emit_move_insn (if_info->x, target);
1479
1480 seq = end_ifcvt_sequence (if_info);
1481 if (!seq)
1482 return FALSE;
1483
1484 emit_insn_before_setloc (seq, if_info->jump,
1485 INSN_LOCATOR (if_info->insn_a));
1486 return TRUE;
1487 }
1488 else
1489 {
1490 end_sequence ();
1491 return FALSE;
1492 }
1493 }
1494
1495 return FALSE;
1496 }
1497
1498 /* Try more complex cases involving conditional_move. */
1499
1500 static int
1501 noce_try_cmove_arith (struct noce_if_info *if_info)
1502 {
1503 rtx a = if_info->a;
1504 rtx b = if_info->b;
1505 rtx x = if_info->x;
1506 rtx orig_a, orig_b;
1507 rtx insn_a, insn_b;
1508 rtx tmp, target;
1509 int is_mem = 0;
1510 int insn_cost;
1511 enum rtx_code code;
1512
1513 /* A conditional move from two memory sources is equivalent to a
1514 conditional on their addresses followed by a load. Don't do this
1515 early because it'll screw alias analysis. Note that we've
1516 already checked for no side effects. */
1517 /* ??? FIXME: Magic number 5. */
1518 if (cse_not_expected
1519 && MEM_P (a) && MEM_P (b)
1520 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1521 && if_info->branch_cost >= 5)
1522 {
1523 enum machine_mode address_mode
1524 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1525
1526 a = XEXP (a, 0);
1527 b = XEXP (b, 0);
1528 x = gen_reg_rtx (address_mode);
1529 is_mem = 1;
1530 }
1531
1532 /* ??? We could handle this if we knew that a load from A or B could
1533 not trap or fault. This is also true if we've already loaded
1534 from the address along the path from ENTRY. */
1535 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1536 return FALSE;
1537
1538 /* if (test) x = a + b; else x = c - d;
1539 => y = a + b;
1540 x = c - d;
1541 if (test)
1542 x = y;
1543 */
1544
1545 code = GET_CODE (if_info->cond);
1546 insn_a = if_info->insn_a;
1547 insn_b = if_info->insn_b;
1548
1549 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1550 if insn_rtx_cost can't be estimated. */
1551 if (insn_a)
1552 {
1553 insn_cost
1554 = insn_rtx_cost (PATTERN (insn_a),
1555 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1556 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1557 return FALSE;
1558 }
1559 else
1560 insn_cost = 0;
1561
1562 if (insn_b)
1563 {
1564 insn_cost
1565 += insn_rtx_cost (PATTERN (insn_b),
1566 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1567 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1568 return FALSE;
1569 }
1570
1571 /* Possibly rearrange operands to make things come out more natural. */
1572 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1573 {
1574 int reversep = 0;
1575 if (rtx_equal_p (b, x))
1576 reversep = 1;
1577 else if (general_operand (b, GET_MODE (b)))
1578 reversep = 1;
1579
1580 if (reversep)
1581 {
1582 code = reversed_comparison_code (if_info->cond, if_info->jump);
1583 tmp = a, a = b, b = tmp;
1584 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1585 }
1586 }
1587
1588 start_sequence ();
1589
1590 orig_a = a;
1591 orig_b = b;
1592
1593 /* If either operand is complex, load it into a register first.
1594 The best way to do this is to copy the original insn. In this
1595 way we preserve any clobbers etc that the insn may have had.
1596 This is of course not possible in the IS_MEM case. */
1597 if (! general_operand (a, GET_MODE (a)))
1598 {
1599 rtx set;
1600
1601 if (is_mem)
1602 {
1603 tmp = gen_reg_rtx (GET_MODE (a));
1604 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1605 }
1606 else if (! insn_a)
1607 goto end_seq_and_fail;
1608 else
1609 {
1610 a = gen_reg_rtx (GET_MODE (a));
1611 tmp = copy_rtx (insn_a);
1612 set = single_set (tmp);
1613 SET_DEST (set) = a;
1614 tmp = emit_insn (PATTERN (tmp));
1615 }
1616 if (recog_memoized (tmp) < 0)
1617 goto end_seq_and_fail;
1618 }
1619 if (! general_operand (b, GET_MODE (b)))
1620 {
1621 rtx set, last;
1622
1623 if (is_mem)
1624 {
1625 tmp = gen_reg_rtx (GET_MODE (b));
1626 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1627 }
1628 else if (! insn_b)
1629 goto end_seq_and_fail;
1630 else
1631 {
1632 b = gen_reg_rtx (GET_MODE (b));
1633 tmp = copy_rtx (insn_b);
1634 set = single_set (tmp);
1635 SET_DEST (set) = b;
1636 tmp = PATTERN (tmp);
1637 }
1638
1639 /* If insn to set up A clobbers any registers B depends on, try to
1640 swap insn that sets up A with the one that sets up B. If even
1641 that doesn't help, punt. */
1642 last = get_last_insn ();
1643 if (last && modified_in_p (orig_b, last))
1644 {
1645 tmp = emit_insn_before (tmp, get_insns ());
1646 if (modified_in_p (orig_a, tmp))
1647 goto end_seq_and_fail;
1648 }
1649 else
1650 tmp = emit_insn (tmp);
1651
1652 if (recog_memoized (tmp) < 0)
1653 goto end_seq_and_fail;
1654 }
1655
1656 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1657 XEXP (if_info->cond, 1), a, b);
1658
1659 if (! target)
1660 goto end_seq_and_fail;
1661
1662 /* If we're handling a memory for above, emit the load now. */
1663 if (is_mem)
1664 {
1665 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1666
1667 /* Copy over flags as appropriate. */
1668 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1669 MEM_VOLATILE_P (tmp) = 1;
1670 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1671 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1672 set_mem_align (tmp,
1673 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1674
1675 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1676 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1677
1678 noce_emit_move_insn (if_info->x, tmp);
1679 }
1680 else if (target != x)
1681 noce_emit_move_insn (x, target);
1682
1683 tmp = end_ifcvt_sequence (if_info);
1684 if (!tmp)
1685 return FALSE;
1686
1687 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1688 return TRUE;
1689
1690 end_seq_and_fail:
1691 end_sequence ();
1692 return FALSE;
1693 }
1694
1695 /* For most cases, the simplified condition we found is the best
1696 choice, but this is not the case for the min/max/abs transforms.
1697 For these we wish to know that it is A or B in the condition. */
1698
1699 static rtx
1700 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1701 rtx *earliest)
1702 {
1703 rtx cond, set, insn;
1704 int reverse;
1705
1706 /* If target is already mentioned in the known condition, return it. */
1707 if (reg_mentioned_p (target, if_info->cond))
1708 {
1709 *earliest = if_info->cond_earliest;
1710 return if_info->cond;
1711 }
1712
1713 set = pc_set (if_info->jump);
1714 cond = XEXP (SET_SRC (set), 0);
1715 reverse
1716 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1717 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1718 if (if_info->then_else_reversed)
1719 reverse = !reverse;
1720
1721 /* If we're looking for a constant, try to make the conditional
1722 have that constant in it. There are two reasons why it may
1723 not have the constant we want:
1724
1725 1. GCC may have needed to put the constant in a register, because
1726 the target can't compare directly against that constant. For
1727 this case, we look for a SET immediately before the comparison
1728 that puts a constant in that register.
1729
1730 2. GCC may have canonicalized the conditional, for example
1731 replacing "if x < 4" with "if x <= 3". We can undo that (or
1732 make equivalent types of changes) to get the constants we need
1733 if they're off by one in the right direction. */
1734
1735 if (CONST_INT_P (target))
1736 {
1737 enum rtx_code code = GET_CODE (if_info->cond);
1738 rtx op_a = XEXP (if_info->cond, 0);
1739 rtx op_b = XEXP (if_info->cond, 1);
1740 rtx prev_insn;
1741
1742 /* First, look to see if we put a constant in a register. */
1743 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1744 if (prev_insn
1745 && BLOCK_FOR_INSN (prev_insn)
1746 == BLOCK_FOR_INSN (if_info->cond_earliest)
1747 && INSN_P (prev_insn)
1748 && GET_CODE (PATTERN (prev_insn)) == SET)
1749 {
1750 rtx src = find_reg_equal_equiv_note (prev_insn);
1751 if (!src)
1752 src = SET_SRC (PATTERN (prev_insn));
1753 if (CONST_INT_P (src))
1754 {
1755 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1756 op_a = src;
1757 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1758 op_b = src;
1759
1760 if (CONST_INT_P (op_a))
1761 {
1762 rtx tmp = op_a;
1763 op_a = op_b;
1764 op_b = tmp;
1765 code = swap_condition (code);
1766 }
1767 }
1768 }
1769
1770 /* Now, look to see if we can get the right constant by
1771 adjusting the conditional. */
1772 if (CONST_INT_P (op_b))
1773 {
1774 HOST_WIDE_INT desired_val = INTVAL (target);
1775 HOST_WIDE_INT actual_val = INTVAL (op_b);
1776
1777 switch (code)
1778 {
1779 case LT:
1780 if (actual_val == desired_val + 1)
1781 {
1782 code = LE;
1783 op_b = GEN_INT (desired_val);
1784 }
1785 break;
1786 case LE:
1787 if (actual_val == desired_val - 1)
1788 {
1789 code = LT;
1790 op_b = GEN_INT (desired_val);
1791 }
1792 break;
1793 case GT:
1794 if (actual_val == desired_val - 1)
1795 {
1796 code = GE;
1797 op_b = GEN_INT (desired_val);
1798 }
1799 break;
1800 case GE:
1801 if (actual_val == desired_val + 1)
1802 {
1803 code = GT;
1804 op_b = GEN_INT (desired_val);
1805 }
1806 break;
1807 default:
1808 break;
1809 }
1810 }
1811
1812 /* If we made any changes, generate a new conditional that is
1813 equivalent to what we started with, but has the right
1814 constants in it. */
1815 if (code != GET_CODE (if_info->cond)
1816 || op_a != XEXP (if_info->cond, 0)
1817 || op_b != XEXP (if_info->cond, 1))
1818 {
1819 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1820 *earliest = if_info->cond_earliest;
1821 return cond;
1822 }
1823 }
1824
1825 cond = canonicalize_condition (if_info->jump, cond, reverse,
1826 earliest, target, false, true);
1827 if (! cond || ! reg_mentioned_p (target, cond))
1828 return NULL;
1829
1830 /* We almost certainly searched back to a different place.
1831 Need to re-verify correct lifetimes. */
1832
1833 /* X may not be mentioned in the range (cond_earliest, jump]. */
1834 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1835 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1836 return NULL;
1837
1838 /* A and B may not be modified in the range [cond_earliest, jump). */
1839 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1840 if (INSN_P (insn)
1841 && (modified_in_p (if_info->a, insn)
1842 || modified_in_p (if_info->b, insn)))
1843 return NULL;
1844
1845 return cond;
1846 }
1847
1848 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1849
1850 static int
1851 noce_try_minmax (struct noce_if_info *if_info)
1852 {
1853 rtx cond, earliest, target, seq;
1854 enum rtx_code code, op;
1855 int unsignedp;
1856
1857 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1858 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1859 to get the target to tell us... */
1860 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1861 || HONOR_NANS (GET_MODE (if_info->x)))
1862 return FALSE;
1863
1864 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1865 if (!cond)
1866 return FALSE;
1867
1868 /* Verify the condition is of the form we expect, and canonicalize
1869 the comparison code. */
1870 code = GET_CODE (cond);
1871 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1872 {
1873 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1874 return FALSE;
1875 }
1876 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1877 {
1878 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1879 return FALSE;
1880 code = swap_condition (code);
1881 }
1882 else
1883 return FALSE;
1884
1885 /* Determine what sort of operation this is. Note that the code is for
1886 a taken branch, so the code->operation mapping appears backwards. */
1887 switch (code)
1888 {
1889 case LT:
1890 case LE:
1891 case UNLT:
1892 case UNLE:
1893 op = SMAX;
1894 unsignedp = 0;
1895 break;
1896 case GT:
1897 case GE:
1898 case UNGT:
1899 case UNGE:
1900 op = SMIN;
1901 unsignedp = 0;
1902 break;
1903 case LTU:
1904 case LEU:
1905 op = UMAX;
1906 unsignedp = 1;
1907 break;
1908 case GTU:
1909 case GEU:
1910 op = UMIN;
1911 unsignedp = 1;
1912 break;
1913 default:
1914 return FALSE;
1915 }
1916
1917 start_sequence ();
1918
1919 target = expand_simple_binop (GET_MODE (if_info->x), op,
1920 if_info->a, if_info->b,
1921 if_info->x, unsignedp, OPTAB_WIDEN);
1922 if (! target)
1923 {
1924 end_sequence ();
1925 return FALSE;
1926 }
1927 if (target != if_info->x)
1928 noce_emit_move_insn (if_info->x, target);
1929
1930 seq = end_ifcvt_sequence (if_info);
1931 if (!seq)
1932 return FALSE;
1933
1934 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1935 if_info->cond = cond;
1936 if_info->cond_earliest = earliest;
1937
1938 return TRUE;
1939 }
1940
1941 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1942 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1943 etc. */
1944
1945 static int
1946 noce_try_abs (struct noce_if_info *if_info)
1947 {
1948 rtx cond, earliest, target, seq, a, b, c;
1949 int negate;
1950 bool one_cmpl = false;
1951
1952 /* Reject modes with signed zeros. */
1953 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1954 return FALSE;
1955
1956 /* Recognize A and B as constituting an ABS or NABS. The canonical
1957 form is a branch around the negation, taken when the object is the
1958 first operand of a comparison against 0 that evaluates to true. */
1959 a = if_info->a;
1960 b = if_info->b;
1961 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1962 negate = 0;
1963 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1964 {
1965 c = a; a = b; b = c;
1966 negate = 1;
1967 }
1968 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1969 {
1970 negate = 0;
1971 one_cmpl = true;
1972 }
1973 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1974 {
1975 c = a; a = b; b = c;
1976 negate = 1;
1977 one_cmpl = true;
1978 }
1979 else
1980 return FALSE;
1981
1982 cond = noce_get_alt_condition (if_info, b, &earliest);
1983 if (!cond)
1984 return FALSE;
1985
1986 /* Verify the condition is of the form we expect. */
1987 if (rtx_equal_p (XEXP (cond, 0), b))
1988 c = XEXP (cond, 1);
1989 else if (rtx_equal_p (XEXP (cond, 1), b))
1990 {
1991 c = XEXP (cond, 0);
1992 negate = !negate;
1993 }
1994 else
1995 return FALSE;
1996
1997 /* Verify that C is zero. Search one step backward for a
1998 REG_EQUAL note or a simple source if necessary. */
1999 if (REG_P (c))
2000 {
2001 rtx set, insn = prev_nonnote_insn (earliest);
2002 if (insn
2003 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2004 && (set = single_set (insn))
2005 && rtx_equal_p (SET_DEST (set), c))
2006 {
2007 rtx note = find_reg_equal_equiv_note (insn);
2008 if (note)
2009 c = XEXP (note, 0);
2010 else
2011 c = SET_SRC (set);
2012 }
2013 else
2014 return FALSE;
2015 }
2016 if (MEM_P (c)
2017 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2018 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2019 c = get_pool_constant (XEXP (c, 0));
2020
2021 /* Work around funny ideas get_condition has wrt canonicalization.
2022 Note that these rtx constants are known to be CONST_INT, and
2023 therefore imply integer comparisons. */
2024 if (c == constm1_rtx && GET_CODE (cond) == GT)
2025 ;
2026 else if (c == const1_rtx && GET_CODE (cond) == LT)
2027 ;
2028 else if (c != CONST0_RTX (GET_MODE (b)))
2029 return FALSE;
2030
2031 /* Determine what sort of operation this is. */
2032 switch (GET_CODE (cond))
2033 {
2034 case LT:
2035 case LE:
2036 case UNLT:
2037 case UNLE:
2038 negate = !negate;
2039 break;
2040 case GT:
2041 case GE:
2042 case UNGT:
2043 case UNGE:
2044 break;
2045 default:
2046 return FALSE;
2047 }
2048
2049 start_sequence ();
2050 if (one_cmpl)
2051 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2052 if_info->x);
2053 else
2054 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2055
2056 /* ??? It's a quandary whether cmove would be better here, especially
2057 for integers. Perhaps combine will clean things up. */
2058 if (target && negate)
2059 {
2060 if (one_cmpl)
2061 target = expand_simple_unop (GET_MODE (target), NOT, target,
2062 if_info->x, 0);
2063 else
2064 target = expand_simple_unop (GET_MODE (target), NEG, target,
2065 if_info->x, 0);
2066 }
2067
2068 if (! target)
2069 {
2070 end_sequence ();
2071 return FALSE;
2072 }
2073
2074 if (target != if_info->x)
2075 noce_emit_move_insn (if_info->x, target);
2076
2077 seq = end_ifcvt_sequence (if_info);
2078 if (!seq)
2079 return FALSE;
2080
2081 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2082 if_info->cond = cond;
2083 if_info->cond_earliest = earliest;
2084
2085 return TRUE;
2086 }
2087
2088 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2089
2090 static int
2091 noce_try_sign_mask (struct noce_if_info *if_info)
2092 {
2093 rtx cond, t, m, c, seq;
2094 enum machine_mode mode;
2095 enum rtx_code code;
2096 bool t_unconditional;
2097
2098 cond = if_info->cond;
2099 code = GET_CODE (cond);
2100 m = XEXP (cond, 0);
2101 c = XEXP (cond, 1);
2102
2103 t = NULL_RTX;
2104 if (if_info->a == const0_rtx)
2105 {
2106 if ((code == LT && c == const0_rtx)
2107 || (code == LE && c == constm1_rtx))
2108 t = if_info->b;
2109 }
2110 else if (if_info->b == const0_rtx)
2111 {
2112 if ((code == GE && c == const0_rtx)
2113 || (code == GT && c == constm1_rtx))
2114 t = if_info->a;
2115 }
2116
2117 if (! t || side_effects_p (t))
2118 return FALSE;
2119
2120 /* We currently don't handle different modes. */
2121 mode = GET_MODE (t);
2122 if (GET_MODE (m) != mode)
2123 return FALSE;
2124
2125 /* This is only profitable if T is unconditionally executed/evaluated in the
2126 original insn sequence or T is cheap. The former happens if B is the
2127 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2128 INSN_B which can happen for e.g. conditional stores to memory. For the
2129 cost computation use the block TEST_BB where the evaluation will end up
2130 after the transformation. */
2131 t_unconditional =
2132 (t == if_info->b
2133 && (if_info->insn_b == NULL_RTX
2134 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2135 if (!(t_unconditional
2136 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2137 < COSTS_N_INSNS (2))))
2138 return FALSE;
2139
2140 start_sequence ();
2141 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2142 "(signed) m >> 31" directly. This benefits targets with specialized
2143 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2144 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2145 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2146 : NULL_RTX;
2147
2148 if (!t)
2149 {
2150 end_sequence ();
2151 return FALSE;
2152 }
2153
2154 noce_emit_move_insn (if_info->x, t);
2155
2156 seq = end_ifcvt_sequence (if_info);
2157 if (!seq)
2158 return FALSE;
2159
2160 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2161 return TRUE;
2162 }
2163
2164
2165 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2166 transformations. */
2167
2168 static int
2169 noce_try_bitop (struct noce_if_info *if_info)
2170 {
2171 rtx cond, x, a, result, seq;
2172 enum machine_mode mode;
2173 enum rtx_code code;
2174 int bitnum;
2175
2176 x = if_info->x;
2177 cond = if_info->cond;
2178 code = GET_CODE (cond);
2179
2180 /* Check for no else condition. */
2181 if (! rtx_equal_p (x, if_info->b))
2182 return FALSE;
2183
2184 /* Check for a suitable condition. */
2185 if (code != NE && code != EQ)
2186 return FALSE;
2187 if (XEXP (cond, 1) != const0_rtx)
2188 return FALSE;
2189 cond = XEXP (cond, 0);
2190
2191 /* ??? We could also handle AND here. */
2192 if (GET_CODE (cond) == ZERO_EXTRACT)
2193 {
2194 if (XEXP (cond, 1) != const1_rtx
2195 || !CONST_INT_P (XEXP (cond, 2))
2196 || ! rtx_equal_p (x, XEXP (cond, 0)))
2197 return FALSE;
2198 bitnum = INTVAL (XEXP (cond, 2));
2199 mode = GET_MODE (x);
2200 if (BITS_BIG_ENDIAN)
2201 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2202 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2203 return FALSE;
2204 }
2205 else
2206 return FALSE;
2207
2208 a = if_info->a;
2209 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2210 {
2211 /* Check for "if (X & C) x = x op C". */
2212 if (! rtx_equal_p (x, XEXP (a, 0))
2213 || !CONST_INT_P (XEXP (a, 1))
2214 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2215 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2216 return FALSE;
2217
2218 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2219 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2220 if (GET_CODE (a) == IOR)
2221 result = (code == NE) ? a : NULL_RTX;
2222 else if (code == NE)
2223 {
2224 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2225 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2226 result = simplify_gen_binary (IOR, mode, x, result);
2227 }
2228 else
2229 {
2230 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2231 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2232 result = simplify_gen_binary (AND, mode, x, result);
2233 }
2234 }
2235 else if (GET_CODE (a) == AND)
2236 {
2237 /* Check for "if (X & C) x &= ~C". */
2238 if (! rtx_equal_p (x, XEXP (a, 0))
2239 || !CONST_INT_P (XEXP (a, 1))
2240 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2241 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2242 return FALSE;
2243
2244 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2245 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2246 result = (code == EQ) ? a : NULL_RTX;
2247 }
2248 else
2249 return FALSE;
2250
2251 if (result)
2252 {
2253 start_sequence ();
2254 noce_emit_move_insn (x, result);
2255 seq = end_ifcvt_sequence (if_info);
2256 if (!seq)
2257 return FALSE;
2258
2259 emit_insn_before_setloc (seq, if_info->jump,
2260 INSN_LOCATOR (if_info->insn_a));
2261 }
2262 return TRUE;
2263 }
2264
2265
2266 /* Similar to get_condition, only the resulting condition must be
2267 valid at JUMP, instead of at EARLIEST.
2268
2269 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2270 THEN block of the caller, and we have to reverse the condition. */
2271
2272 static rtx
2273 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2274 {
2275 rtx cond, set, tmp;
2276 bool reverse;
2277
2278 if (! any_condjump_p (jump))
2279 return NULL_RTX;
2280
2281 set = pc_set (jump);
2282
2283 /* If this branches to JUMP_LABEL when the condition is false,
2284 reverse the condition. */
2285 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2286 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2287
2288 /* We may have to reverse because the caller's if block is not canonical,
2289 i.e. the THEN block isn't the fallthrough block for the TEST block
2290 (see find_if_header). */
2291 if (then_else_reversed)
2292 reverse = !reverse;
2293
2294 /* If the condition variable is a register and is MODE_INT, accept it. */
2295
2296 cond = XEXP (SET_SRC (set), 0);
2297 tmp = XEXP (cond, 0);
2298 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2299 {
2300 *earliest = jump;
2301
2302 if (reverse)
2303 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2304 GET_MODE (cond), tmp, XEXP (cond, 1));
2305 return cond;
2306 }
2307
2308 /* Otherwise, fall back on canonicalize_condition to do the dirty
2309 work of manipulating MODE_CC values and COMPARE rtx codes. */
2310 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2311 NULL_RTX, false, true);
2312
2313 /* We don't handle side-effects in the condition, like handling
2314 REG_INC notes and making sure no duplicate conditions are emitted. */
2315 if (tmp != NULL_RTX && side_effects_p (tmp))
2316 return NULL_RTX;
2317
2318 return tmp;
2319 }
2320
2321 /* Return true if OP is ok for if-then-else processing. */
2322
2323 static int
2324 noce_operand_ok (const_rtx op)
2325 {
2326 if (side_effects_p (op))
2327 return FALSE;
2328
2329 /* We special-case memories, so handle any of them with
2330 no address side effects. */
2331 if (MEM_P (op))
2332 return ! side_effects_p (XEXP (op, 0));
2333
2334 return ! may_trap_p (op);
2335 }
2336
2337 /* Return true if a write into MEM may trap or fault. */
2338
2339 static bool
2340 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2341 {
2342 rtx addr;
2343
2344 if (MEM_READONLY_P (mem))
2345 return true;
2346
2347 if (may_trap_or_fault_p (mem))
2348 return true;
2349
2350 addr = XEXP (mem, 0);
2351
2352 /* Call target hook to avoid the effects of -fpic etc.... */
2353 addr = targetm.delegitimize_address (addr);
2354
2355 while (addr)
2356 switch (GET_CODE (addr))
2357 {
2358 case CONST:
2359 case PRE_DEC:
2360 case PRE_INC:
2361 case POST_DEC:
2362 case POST_INC:
2363 case POST_MODIFY:
2364 addr = XEXP (addr, 0);
2365 break;
2366 case LO_SUM:
2367 case PRE_MODIFY:
2368 addr = XEXP (addr, 1);
2369 break;
2370 case PLUS:
2371 if (CONST_INT_P (XEXP (addr, 1)))
2372 addr = XEXP (addr, 0);
2373 else
2374 return false;
2375 break;
2376 case LABEL_REF:
2377 return true;
2378 case SYMBOL_REF:
2379 if (SYMBOL_REF_DECL (addr)
2380 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2381 return true;
2382 return false;
2383 default:
2384 return false;
2385 }
2386
2387 return false;
2388 }
2389
2390 /* Return whether we can use store speculation for MEM. TOP_BB is the
2391 basic block above the conditional block where we are considering
2392 doing the speculative store. We look for whether MEM is set
2393 unconditionally later in the function. */
2394
2395 static bool
2396 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2397 {
2398 basic_block dominator;
2399
2400 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2401 dominator != NULL;
2402 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2403 {
2404 rtx insn;
2405
2406 FOR_BB_INSNS (dominator, insn)
2407 {
2408 /* If we see something that might be a memory barrier, we
2409 have to stop looking. Even if the MEM is set later in
2410 the function, we still don't want to set it
2411 unconditionally before the barrier. */
2412 if (INSN_P (insn)
2413 && (volatile_insn_p (PATTERN (insn))
2414 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2415 return false;
2416
2417 if (memory_modified_in_insn_p (mem, insn))
2418 return true;
2419 if (modified_in_p (XEXP (mem, 0), insn))
2420 return false;
2421
2422 }
2423 }
2424
2425 return false;
2426 }
2427
2428 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2429 it without using conditional execution. Return TRUE if we were successful
2430 at converting the block. */
2431
2432 static int
2433 noce_process_if_block (struct noce_if_info *if_info)
2434 {
2435 basic_block test_bb = if_info->test_bb; /* test block */
2436 basic_block then_bb = if_info->then_bb; /* THEN */
2437 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2438 basic_block join_bb = if_info->join_bb; /* JOIN */
2439 rtx jump = if_info->jump;
2440 rtx cond = if_info->cond;
2441 rtx insn_a, insn_b;
2442 rtx set_a, set_b;
2443 rtx orig_x, x, a, b;
2444
2445 /* We're looking for patterns of the form
2446
2447 (1) if (...) x = a; else x = b;
2448 (2) x = b; if (...) x = a;
2449 (3) if (...) x = a; // as if with an initial x = x.
2450
2451 The later patterns require jumps to be more expensive.
2452
2453 ??? For future expansion, look for multiple X in such patterns. */
2454
2455 /* Look for one of the potential sets. */
2456 insn_a = first_active_insn (then_bb);
2457 if (! insn_a
2458 || insn_a != last_active_insn (then_bb, FALSE)
2459 || (set_a = single_set (insn_a)) == NULL_RTX)
2460 return FALSE;
2461
2462 x = SET_DEST (set_a);
2463 a = SET_SRC (set_a);
2464
2465 /* Look for the other potential set. Make sure we've got equivalent
2466 destinations. */
2467 /* ??? This is overconservative. Storing to two different mems is
2468 as easy as conditionally computing the address. Storing to a
2469 single mem merely requires a scratch memory to use as one of the
2470 destination addresses; often the memory immediately below the
2471 stack pointer is available for this. */
2472 set_b = NULL_RTX;
2473 if (else_bb)
2474 {
2475 insn_b = first_active_insn (else_bb);
2476 if (! insn_b
2477 || insn_b != last_active_insn (else_bb, FALSE)
2478 || (set_b = single_set (insn_b)) == NULL_RTX
2479 || ! rtx_equal_p (x, SET_DEST (set_b)))
2480 return FALSE;
2481 }
2482 else
2483 {
2484 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2485 /* We're going to be moving the evaluation of B down from above
2486 COND_EARLIEST to JUMP. Make sure the relevant data is still
2487 intact. */
2488 if (! insn_b
2489 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2490 || !NONJUMP_INSN_P (insn_b)
2491 || (set_b = single_set (insn_b)) == NULL_RTX
2492 || ! rtx_equal_p (x, SET_DEST (set_b))
2493 || ! noce_operand_ok (SET_SRC (set_b))
2494 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2495 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2496 /* Likewise with X. In particular this can happen when
2497 noce_get_condition looks farther back in the instruction
2498 stream than one might expect. */
2499 || reg_overlap_mentioned_p (x, cond)
2500 || reg_overlap_mentioned_p (x, a)
2501 || modified_between_p (x, insn_b, jump))
2502 insn_b = set_b = NULL_RTX;
2503 }
2504
2505 /* If x has side effects then only the if-then-else form is safe to
2506 convert. But even in that case we would need to restore any notes
2507 (such as REG_INC) at then end. That can be tricky if
2508 noce_emit_move_insn expands to more than one insn, so disable the
2509 optimization entirely for now if there are side effects. */
2510 if (side_effects_p (x))
2511 return FALSE;
2512
2513 b = (set_b ? SET_SRC (set_b) : x);
2514
2515 /* Only operate on register destinations, and even then avoid extending
2516 the lifetime of hard registers on small register class machines. */
2517 orig_x = x;
2518 if (!REG_P (x)
2519 || (HARD_REGISTER_P (x)
2520 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2521 {
2522 if (GET_MODE (x) == BLKmode)
2523 return FALSE;
2524
2525 if (GET_CODE (x) == ZERO_EXTRACT
2526 && (!CONST_INT_P (XEXP (x, 1))
2527 || !CONST_INT_P (XEXP (x, 2))))
2528 return FALSE;
2529
2530 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2531 ? XEXP (x, 0) : x));
2532 }
2533
2534 /* Don't operate on sources that may trap or are volatile. */
2535 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2536 return FALSE;
2537
2538 retry:
2539 /* Set up the info block for our subroutines. */
2540 if_info->insn_a = insn_a;
2541 if_info->insn_b = insn_b;
2542 if_info->x = x;
2543 if_info->a = a;
2544 if_info->b = b;
2545
2546 /* Try optimizations in some approximation of a useful order. */
2547 /* ??? Should first look to see if X is live incoming at all. If it
2548 isn't, we don't need anything but an unconditional set. */
2549
2550 /* Look and see if A and B are really the same. Avoid creating silly
2551 cmove constructs that no one will fix up later. */
2552 if (rtx_equal_p (a, b))
2553 {
2554 /* If we have an INSN_B, we don't have to create any new rtl. Just
2555 move the instruction that we already have. If we don't have an
2556 INSN_B, that means that A == X, and we've got a noop move. In
2557 that case don't do anything and let the code below delete INSN_A. */
2558 if (insn_b && else_bb)
2559 {
2560 rtx note;
2561
2562 if (else_bb && insn_b == BB_END (else_bb))
2563 BB_END (else_bb) = PREV_INSN (insn_b);
2564 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2565
2566 /* If there was a REG_EQUAL note, delete it since it may have been
2567 true due to this insn being after a jump. */
2568 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2569 remove_note (insn_b, note);
2570
2571 insn_b = NULL_RTX;
2572 }
2573 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2574 x must be executed twice. */
2575 else if (insn_b && side_effects_p (orig_x))
2576 return FALSE;
2577
2578 x = orig_x;
2579 goto success;
2580 }
2581
2582 if (!set_b && MEM_P (orig_x))
2583 {
2584 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2585 for optimizations if writing to x may trap or fault,
2586 i.e. it's a memory other than a static var or a stack slot,
2587 is misaligned on strict aligned machines or is read-only. If
2588 x is a read-only memory, then the program is valid only if we
2589 avoid the store into it. If there are stores on both the
2590 THEN and ELSE arms, then we can go ahead with the conversion;
2591 either the program is broken, or the condition is always
2592 false such that the other memory is selected. */
2593 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2594 return FALSE;
2595
2596 /* Avoid store speculation: given "if (...) x = a" where x is a
2597 MEM, we only want to do the store if x is always set
2598 somewhere in the function. This avoids cases like
2599 if (pthread_mutex_trylock(mutex))
2600 ++global_variable;
2601 where we only want global_variable to be changed if the mutex
2602 is held. FIXME: This should ideally be expressed directly in
2603 RTL somehow. */
2604 if (!noce_can_store_speculate_p (test_bb, orig_x))
2605 return FALSE;
2606 }
2607
2608 if (noce_try_move (if_info))
2609 goto success;
2610 if (noce_try_store_flag (if_info))
2611 goto success;
2612 if (noce_try_bitop (if_info))
2613 goto success;
2614 if (noce_try_minmax (if_info))
2615 goto success;
2616 if (noce_try_abs (if_info))
2617 goto success;
2618 if (HAVE_conditional_move
2619 && noce_try_cmove (if_info))
2620 goto success;
2621 if (! targetm.have_conditional_execution ())
2622 {
2623 if (noce_try_store_flag_constants (if_info))
2624 goto success;
2625 if (noce_try_addcc (if_info))
2626 goto success;
2627 if (noce_try_store_flag_mask (if_info))
2628 goto success;
2629 if (HAVE_conditional_move
2630 && noce_try_cmove_arith (if_info))
2631 goto success;
2632 if (noce_try_sign_mask (if_info))
2633 goto success;
2634 }
2635
2636 if (!else_bb && set_b)
2637 {
2638 insn_b = set_b = NULL_RTX;
2639 b = orig_x;
2640 goto retry;
2641 }
2642
2643 return FALSE;
2644
2645 success:
2646
2647 /* If we used a temporary, fix it up now. */
2648 if (orig_x != x)
2649 {
2650 rtx seq;
2651
2652 start_sequence ();
2653 noce_emit_move_insn (orig_x, x);
2654 seq = get_insns ();
2655 set_used_flags (orig_x);
2656 unshare_all_rtl_in_chain (seq);
2657 end_sequence ();
2658
2659 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2660 }
2661
2662 /* The original THEN and ELSE blocks may now be removed. The test block
2663 must now jump to the join block. If the test block and the join block
2664 can be merged, do so. */
2665 if (else_bb)
2666 {
2667 delete_basic_block (else_bb);
2668 num_true_changes++;
2669 }
2670 else
2671 remove_edge (find_edge (test_bb, join_bb));
2672
2673 remove_edge (find_edge (then_bb, join_bb));
2674 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2675 delete_basic_block (then_bb);
2676 num_true_changes++;
2677
2678 if (can_merge_blocks_p (test_bb, join_bb))
2679 {
2680 merge_blocks (test_bb, join_bb);
2681 num_true_changes++;
2682 }
2683
2684 num_updated_if_blocks++;
2685 return TRUE;
2686 }
2687
2688 /* Check whether a block is suitable for conditional move conversion.
2689 Every insn must be a simple set of a register to a constant or a
2690 register. For each assignment, store the value in the array VALS,
2691 indexed by register number, then store the register number in
2692 REGS. COND is the condition we will test. */
2693
2694 static int
2695 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs,
2696 rtx cond)
2697 {
2698 rtx insn;
2699
2700 /* We can only handle simple jumps at the end of the basic block.
2701 It is almost impossible to update the CFG otherwise. */
2702 insn = BB_END (bb);
2703 if (JUMP_P (insn) && !onlyjump_p (insn))
2704 return FALSE;
2705
2706 FOR_BB_INSNS (bb, insn)
2707 {
2708 rtx set, dest, src;
2709
2710 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2711 continue;
2712 set = single_set (insn);
2713 if (!set)
2714 return FALSE;
2715
2716 dest = SET_DEST (set);
2717 src = SET_SRC (set);
2718 if (!REG_P (dest)
2719 || (HARD_REGISTER_P (dest)
2720 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2721 return FALSE;
2722
2723 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2724 return FALSE;
2725
2726 if (side_effects_p (src) || side_effects_p (dest))
2727 return FALSE;
2728
2729 if (may_trap_p (src) || may_trap_p (dest))
2730 return FALSE;
2731
2732 /* Don't try to handle this if the source register was
2733 modified earlier in the block. */
2734 if ((REG_P (src)
2735 && vals[REGNO (src)] != NULL)
2736 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2737 && vals[REGNO (SUBREG_REG (src))] != NULL))
2738 return FALSE;
2739
2740 /* Don't try to handle this if the destination register was
2741 modified earlier in the block. */
2742 if (vals[REGNO (dest)] != NULL)
2743 return FALSE;
2744
2745 /* Don't try to handle this if the condition uses the
2746 destination register. */
2747 if (reg_overlap_mentioned_p (dest, cond))
2748 return FALSE;
2749
2750 /* Don't try to handle this if the source register is modified
2751 later in the block. */
2752 if (!CONSTANT_P (src)
2753 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2754 return FALSE;
2755
2756 vals[REGNO (dest)] = src;
2757
2758 VEC_safe_push (int, heap, *regs, REGNO (dest));
2759 }
2760
2761 return TRUE;
2762 }
2763
2764 /* Given a basic block BB suitable for conditional move conversion,
2765 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2766 register values depending on COND, emit the insns in the block as
2767 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2768 processed. The caller has started a sequence for the conversion.
2769 Return true if successful, false if something goes wrong. */
2770
2771 static bool
2772 cond_move_convert_if_block (struct noce_if_info *if_infop,
2773 basic_block bb, rtx cond,
2774 rtx *then_vals, rtx *else_vals,
2775 bool else_block_p)
2776 {
2777 enum rtx_code code;
2778 rtx insn, cond_arg0, cond_arg1;
2779
2780 code = GET_CODE (cond);
2781 cond_arg0 = XEXP (cond, 0);
2782 cond_arg1 = XEXP (cond, 1);
2783
2784 FOR_BB_INSNS (bb, insn)
2785 {
2786 rtx set, target, dest, t, e;
2787 unsigned int regno;
2788
2789 /* ??? Maybe emit conditional debug insn? */
2790 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2791 continue;
2792 set = single_set (insn);
2793 gcc_assert (set && REG_P (SET_DEST (set)));
2794
2795 dest = SET_DEST (set);
2796 regno = REGNO (dest);
2797
2798 t = then_vals[regno];
2799 e = else_vals[regno];
2800
2801 if (else_block_p)
2802 {
2803 /* If this register was set in the then block, we already
2804 handled this case there. */
2805 if (t)
2806 continue;
2807 t = dest;
2808 gcc_assert (e);
2809 }
2810 else
2811 {
2812 gcc_assert (t);
2813 if (!e)
2814 e = dest;
2815 }
2816
2817 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2818 t, e);
2819 if (!target)
2820 return false;
2821
2822 if (target != dest)
2823 noce_emit_move_insn (dest, target);
2824 }
2825
2826 return true;
2827 }
2828
2829 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2830 it using only conditional moves. Return TRUE if we were successful at
2831 converting the block. */
2832
2833 static int
2834 cond_move_process_if_block (struct noce_if_info *if_info)
2835 {
2836 basic_block test_bb = if_info->test_bb;
2837 basic_block then_bb = if_info->then_bb;
2838 basic_block else_bb = if_info->else_bb;
2839 basic_block join_bb = if_info->join_bb;
2840 rtx jump = if_info->jump;
2841 rtx cond = if_info->cond;
2842 rtx seq, loc_insn;
2843 int max_reg, size, c, reg;
2844 rtx *then_vals;
2845 rtx *else_vals;
2846 VEC (int, heap) *then_regs = NULL;
2847 VEC (int, heap) *else_regs = NULL;
2848 unsigned int i;
2849
2850 /* Build a mapping for each block to the value used for each
2851 register. */
2852 max_reg = max_reg_num ();
2853 size = (max_reg + 1) * sizeof (rtx);
2854 then_vals = (rtx *) alloca (size);
2855 else_vals = (rtx *) alloca (size);
2856 memset (then_vals, 0, size);
2857 memset (else_vals, 0, size);
2858
2859 /* Make sure the blocks are suitable. */
2860 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2861 || (else_bb
2862 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2863 {
2864 VEC_free (int, heap, then_regs);
2865 VEC_free (int, heap, else_regs);
2866 return FALSE;
2867 }
2868
2869 /* Make sure the blocks can be used together. If the same register
2870 is set in both blocks, and is not set to a constant in both
2871 cases, then both blocks must set it to the same register. We
2872 have already verified that if it is set to a register, that the
2873 source register does not change after the assignment. Also count
2874 the number of registers set in only one of the blocks. */
2875 c = 0;
2876 FOR_EACH_VEC_ELT (int, then_regs, i, reg)
2877 {
2878 if (!then_vals[reg] && !else_vals[reg])
2879 continue;
2880
2881 if (!else_vals[reg])
2882 ++c;
2883 else
2884 {
2885 if (!CONSTANT_P (then_vals[reg])
2886 && !CONSTANT_P (else_vals[reg])
2887 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2888 {
2889 VEC_free (int, heap, then_regs);
2890 VEC_free (int, heap, else_regs);
2891 return FALSE;
2892 }
2893 }
2894 }
2895
2896 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2897 FOR_EACH_VEC_ELT (int, else_regs, i, reg)
2898 if (!then_vals[reg])
2899 ++c;
2900
2901 /* Make sure it is reasonable to convert this block. What matters
2902 is the number of assignments currently made in only one of the
2903 branches, since if we convert we are going to always execute
2904 them. */
2905 if (c > MAX_CONDITIONAL_EXECUTE)
2906 {
2907 VEC_free (int, heap, then_regs);
2908 VEC_free (int, heap, else_regs);
2909 return FALSE;
2910 }
2911
2912 /* Try to emit the conditional moves. First do the then block,
2913 then do anything left in the else blocks. */
2914 start_sequence ();
2915 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2916 then_vals, else_vals, false)
2917 || (else_bb
2918 && !cond_move_convert_if_block (if_info, else_bb, cond,
2919 then_vals, else_vals, true)))
2920 {
2921 end_sequence ();
2922 VEC_free (int, heap, then_regs);
2923 VEC_free (int, heap, else_regs);
2924 return FALSE;
2925 }
2926 seq = end_ifcvt_sequence (if_info);
2927 if (!seq)
2928 {
2929 VEC_free (int, heap, then_regs);
2930 VEC_free (int, heap, else_regs);
2931 return FALSE;
2932 }
2933
2934 loc_insn = first_active_insn (then_bb);
2935 if (!loc_insn)
2936 {
2937 loc_insn = first_active_insn (else_bb);
2938 gcc_assert (loc_insn);
2939 }
2940 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2941
2942 if (else_bb)
2943 {
2944 delete_basic_block (else_bb);
2945 num_true_changes++;
2946 }
2947 else
2948 remove_edge (find_edge (test_bb, join_bb));
2949
2950 remove_edge (find_edge (then_bb, join_bb));
2951 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2952 delete_basic_block (then_bb);
2953 num_true_changes++;
2954
2955 if (can_merge_blocks_p (test_bb, join_bb))
2956 {
2957 merge_blocks (test_bb, join_bb);
2958 num_true_changes++;
2959 }
2960
2961 num_updated_if_blocks++;
2962
2963 VEC_free (int, heap, then_regs);
2964 VEC_free (int, heap, else_regs);
2965 return TRUE;
2966 }
2967
2968 \f
2969 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2970 IF-THEN-ELSE-JOIN block.
2971
2972 If so, we'll try to convert the insns to not require the branch,
2973 using only transformations that do not require conditional execution.
2974
2975 Return TRUE if we were successful at converting the block. */
2976
2977 static int
2978 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2979 int pass)
2980 {
2981 basic_block then_bb, else_bb, join_bb;
2982 bool then_else_reversed = false;
2983 rtx jump, cond;
2984 rtx cond_earliest;
2985 struct noce_if_info if_info;
2986
2987 /* We only ever should get here before reload. */
2988 gcc_assert (!reload_completed);
2989
2990 /* Recognize an IF-THEN-ELSE-JOIN block. */
2991 if (single_pred_p (then_edge->dest)
2992 && single_succ_p (then_edge->dest)
2993 && single_pred_p (else_edge->dest)
2994 && single_succ_p (else_edge->dest)
2995 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2996 {
2997 then_bb = then_edge->dest;
2998 else_bb = else_edge->dest;
2999 join_bb = single_succ (then_bb);
3000 }
3001 /* Recognize an IF-THEN-JOIN block. */
3002 else if (single_pred_p (then_edge->dest)
3003 && single_succ_p (then_edge->dest)
3004 && single_succ (then_edge->dest) == else_edge->dest)
3005 {
3006 then_bb = then_edge->dest;
3007 else_bb = NULL_BLOCK;
3008 join_bb = else_edge->dest;
3009 }
3010 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3011 of basic blocks in cfglayout mode does not matter, so the fallthrough
3012 edge can go to any basic block (and not just to bb->next_bb, like in
3013 cfgrtl mode). */
3014 else if (single_pred_p (else_edge->dest)
3015 && single_succ_p (else_edge->dest)
3016 && single_succ (else_edge->dest) == then_edge->dest)
3017 {
3018 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3019 To make this work, we have to invert the THEN and ELSE blocks
3020 and reverse the jump condition. */
3021 then_bb = else_edge->dest;
3022 else_bb = NULL_BLOCK;
3023 join_bb = single_succ (then_bb);
3024 then_else_reversed = true;
3025 }
3026 else
3027 /* Not a form we can handle. */
3028 return FALSE;
3029
3030 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3031 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3032 return FALSE;
3033 if (else_bb
3034 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3035 return FALSE;
3036
3037 num_possible_if_blocks++;
3038
3039 if (dump_file)
3040 {
3041 fprintf (dump_file,
3042 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3043 (else_bb) ? "-ELSE" : "",
3044 pass, test_bb->index, then_bb->index);
3045
3046 if (else_bb)
3047 fprintf (dump_file, ", else %d", else_bb->index);
3048
3049 fprintf (dump_file, ", join %d\n", join_bb->index);
3050 }
3051
3052 /* If the conditional jump is more than just a conditional
3053 jump, then we can not do if-conversion on this block. */
3054 jump = BB_END (test_bb);
3055 if (! onlyjump_p (jump))
3056 return FALSE;
3057
3058 /* If this is not a standard conditional jump, we can't parse it. */
3059 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3060 if (!cond)
3061 return FALSE;
3062
3063 /* We must be comparing objects whose modes imply the size. */
3064 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3065 return FALSE;
3066
3067 /* Initialize an IF_INFO struct to pass around. */
3068 memset (&if_info, 0, sizeof if_info);
3069 if_info.test_bb = test_bb;
3070 if_info.then_bb = then_bb;
3071 if_info.else_bb = else_bb;
3072 if_info.join_bb = join_bb;
3073 if_info.cond = cond;
3074 if_info.cond_earliest = cond_earliest;
3075 if_info.jump = jump;
3076 if_info.then_else_reversed = then_else_reversed;
3077 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3078 predictable_edge_p (then_edge));
3079
3080 /* Do the real work. */
3081
3082 if (noce_process_if_block (&if_info))
3083 return TRUE;
3084
3085 if (HAVE_conditional_move
3086 && cond_move_process_if_block (&if_info))
3087 return TRUE;
3088
3089 return FALSE;
3090 }
3091 \f
3092
3093 /* Merge the blocks and mark for local life update. */
3094
3095 static void
3096 merge_if_block (struct ce_if_block * ce_info)
3097 {
3098 basic_block test_bb = ce_info->test_bb; /* last test block */
3099 basic_block then_bb = ce_info->then_bb; /* THEN */
3100 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3101 basic_block join_bb = ce_info->join_bb; /* join block */
3102 basic_block combo_bb;
3103
3104 /* All block merging is done into the lower block numbers. */
3105
3106 combo_bb = test_bb;
3107 df_set_bb_dirty (test_bb);
3108
3109 /* Merge any basic blocks to handle && and || subtests. Each of
3110 the blocks are on the fallthru path from the predecessor block. */
3111 if (ce_info->num_multiple_test_blocks > 0)
3112 {
3113 basic_block bb = test_bb;
3114 basic_block last_test_bb = ce_info->last_test_bb;
3115 basic_block fallthru = block_fallthru (bb);
3116
3117 do
3118 {
3119 bb = fallthru;
3120 fallthru = block_fallthru (bb);
3121 merge_blocks (combo_bb, bb);
3122 num_true_changes++;
3123 }
3124 while (bb != last_test_bb);
3125 }
3126
3127 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3128 label, but it might if there were || tests. That label's count should be
3129 zero, and it normally should be removed. */
3130
3131 if (then_bb)
3132 {
3133 merge_blocks (combo_bb, then_bb);
3134 num_true_changes++;
3135 }
3136
3137 /* The ELSE block, if it existed, had a label. That label count
3138 will almost always be zero, but odd things can happen when labels
3139 get their addresses taken. */
3140 if (else_bb)
3141 {
3142 merge_blocks (combo_bb, else_bb);
3143 num_true_changes++;
3144 }
3145
3146 /* If there was no join block reported, that means it was not adjacent
3147 to the others, and so we cannot merge them. */
3148
3149 if (! join_bb)
3150 {
3151 rtx last = BB_END (combo_bb);
3152
3153 /* The outgoing edge for the current COMBO block should already
3154 be correct. Verify this. */
3155 if (EDGE_COUNT (combo_bb->succs) == 0)
3156 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3157 || (NONJUMP_INSN_P (last)
3158 && GET_CODE (PATTERN (last)) == TRAP_IF
3159 && (TRAP_CONDITION (PATTERN (last))
3160 == const_true_rtx)));
3161
3162 else
3163 /* There should still be something at the end of the THEN or ELSE
3164 blocks taking us to our final destination. */
3165 gcc_assert (JUMP_P (last)
3166 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3167 && CALL_P (last)
3168 && SIBLING_CALL_P (last))
3169 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3170 && can_throw_internal (last)));
3171 }
3172
3173 /* The JOIN block may have had quite a number of other predecessors too.
3174 Since we've already merged the TEST, THEN and ELSE blocks, we should
3175 have only one remaining edge from our if-then-else diamond. If there
3176 is more than one remaining edge, it must come from elsewhere. There
3177 may be zero incoming edges if the THEN block didn't actually join
3178 back up (as with a call to a non-return function). */
3179 else if (EDGE_COUNT (join_bb->preds) < 2
3180 && join_bb != EXIT_BLOCK_PTR)
3181 {
3182 /* We can merge the JOIN cleanly and update the dataflow try
3183 again on this pass.*/
3184 merge_blocks (combo_bb, join_bb);
3185 num_true_changes++;
3186 }
3187 else
3188 {
3189 /* We cannot merge the JOIN. */
3190
3191 /* The outgoing edge for the current COMBO block should already
3192 be correct. Verify this. */
3193 gcc_assert (single_succ_p (combo_bb)
3194 && single_succ (combo_bb) == join_bb);
3195
3196 /* Remove the jump and cruft from the end of the COMBO block. */
3197 if (join_bb != EXIT_BLOCK_PTR)
3198 tidy_fallthru_edge (single_succ_edge (combo_bb));
3199 }
3200
3201 num_updated_if_blocks++;
3202 }
3203 \f
3204 /* Find a block ending in a simple IF condition and try to transform it
3205 in some way. When converting a multi-block condition, put the new code
3206 in the first such block and delete the rest. Return a pointer to this
3207 first block if some transformation was done. Return NULL otherwise. */
3208
3209 static basic_block
3210 find_if_header (basic_block test_bb, int pass)
3211 {
3212 ce_if_block_t ce_info;
3213 edge then_edge;
3214 edge else_edge;
3215
3216 /* The kind of block we're looking for has exactly two successors. */
3217 if (EDGE_COUNT (test_bb->succs) != 2)
3218 return NULL;
3219
3220 then_edge = EDGE_SUCC (test_bb, 0);
3221 else_edge = EDGE_SUCC (test_bb, 1);
3222
3223 if (df_get_bb_dirty (then_edge->dest))
3224 return NULL;
3225 if (df_get_bb_dirty (else_edge->dest))
3226 return NULL;
3227
3228 /* Neither edge should be abnormal. */
3229 if ((then_edge->flags & EDGE_COMPLEX)
3230 || (else_edge->flags & EDGE_COMPLEX))
3231 return NULL;
3232
3233 /* Nor exit the loop. */
3234 if ((then_edge->flags & EDGE_LOOP_EXIT)
3235 || (else_edge->flags & EDGE_LOOP_EXIT))
3236 return NULL;
3237
3238 /* The THEN edge is canonically the one that falls through. */
3239 if (then_edge->flags & EDGE_FALLTHRU)
3240 ;
3241 else if (else_edge->flags & EDGE_FALLTHRU)
3242 {
3243 edge e = else_edge;
3244 else_edge = then_edge;
3245 then_edge = e;
3246 }
3247 else
3248 /* Otherwise this must be a multiway branch of some sort. */
3249 return NULL;
3250
3251 memset (&ce_info, 0, sizeof (ce_info));
3252 ce_info.test_bb = test_bb;
3253 ce_info.then_bb = then_edge->dest;
3254 ce_info.else_bb = else_edge->dest;
3255 ce_info.pass = pass;
3256
3257 #ifdef IFCVT_INIT_EXTRA_FIELDS
3258 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3259 #endif
3260
3261 if (!reload_completed
3262 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3263 goto success;
3264
3265 if (reload_completed
3266 && targetm.have_conditional_execution ()
3267 && cond_exec_find_if_block (&ce_info))
3268 goto success;
3269
3270 if (HAVE_trap
3271 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3272 && find_cond_trap (test_bb, then_edge, else_edge))
3273 goto success;
3274
3275 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3276 && (reload_completed || !targetm.have_conditional_execution ()))
3277 {
3278 if (find_if_case_1 (test_bb, then_edge, else_edge))
3279 goto success;
3280 if (find_if_case_2 (test_bb, then_edge, else_edge))
3281 goto success;
3282 }
3283
3284 return NULL;
3285
3286 success:
3287 if (dump_file)
3288 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3289 /* Set this so we continue looking. */
3290 cond_exec_changed_p = TRUE;
3291 return ce_info.test_bb;
3292 }
3293
3294 /* Return true if a block has two edges, one of which falls through to the next
3295 block, and the other jumps to a specific block, so that we can tell if the
3296 block is part of an && test or an || test. Returns either -1 or the number
3297 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3298
3299 static int
3300 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3301 {
3302 edge cur_edge;
3303 int fallthru_p = FALSE;
3304 int jump_p = FALSE;
3305 rtx insn;
3306 rtx end;
3307 int n_insns = 0;
3308 edge_iterator ei;
3309
3310 if (!cur_bb || !target_bb)
3311 return -1;
3312
3313 /* If no edges, obviously it doesn't jump or fallthru. */
3314 if (EDGE_COUNT (cur_bb->succs) == 0)
3315 return FALSE;
3316
3317 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3318 {
3319 if (cur_edge->flags & EDGE_COMPLEX)
3320 /* Anything complex isn't what we want. */
3321 return -1;
3322
3323 else if (cur_edge->flags & EDGE_FALLTHRU)
3324 fallthru_p = TRUE;
3325
3326 else if (cur_edge->dest == target_bb)
3327 jump_p = TRUE;
3328
3329 else
3330 return -1;
3331 }
3332
3333 if ((jump_p & fallthru_p) == 0)
3334 return -1;
3335
3336 /* Don't allow calls in the block, since this is used to group && and ||
3337 together for conditional execution support. ??? we should support
3338 conditional execution support across calls for IA-64 some day, but
3339 for now it makes the code simpler. */
3340 end = BB_END (cur_bb);
3341 insn = BB_HEAD (cur_bb);
3342
3343 while (insn != NULL_RTX)
3344 {
3345 if (CALL_P (insn))
3346 return -1;
3347
3348 if (INSN_P (insn)
3349 && !JUMP_P (insn)
3350 && !DEBUG_INSN_P (insn)
3351 && GET_CODE (PATTERN (insn)) != USE
3352 && GET_CODE (PATTERN (insn)) != CLOBBER)
3353 n_insns++;
3354
3355 if (insn == end)
3356 break;
3357
3358 insn = NEXT_INSN (insn);
3359 }
3360
3361 return n_insns;
3362 }
3363
3364 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3365 block. If so, we'll try to convert the insns to not require the branch.
3366 Return TRUE if we were successful at converting the block. */
3367
3368 static int
3369 cond_exec_find_if_block (struct ce_if_block * ce_info)
3370 {
3371 basic_block test_bb = ce_info->test_bb;
3372 basic_block then_bb = ce_info->then_bb;
3373 basic_block else_bb = ce_info->else_bb;
3374 basic_block join_bb = NULL_BLOCK;
3375 edge cur_edge;
3376 basic_block next;
3377 edge_iterator ei;
3378
3379 ce_info->last_test_bb = test_bb;
3380
3381 /* We only ever should get here after reload,
3382 and if we have conditional execution. */
3383 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3384
3385 /* Discover if any fall through predecessors of the current test basic block
3386 were && tests (which jump to the else block) or || tests (which jump to
3387 the then block). */
3388 if (single_pred_p (test_bb)
3389 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3390 {
3391 basic_block bb = single_pred (test_bb);
3392 basic_block target_bb;
3393 int max_insns = MAX_CONDITIONAL_EXECUTE;
3394 int n_insns;
3395
3396 /* Determine if the preceding block is an && or || block. */
3397 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3398 {
3399 ce_info->and_and_p = TRUE;
3400 target_bb = else_bb;
3401 }
3402 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3403 {
3404 ce_info->and_and_p = FALSE;
3405 target_bb = then_bb;
3406 }
3407 else
3408 target_bb = NULL_BLOCK;
3409
3410 if (target_bb && n_insns <= max_insns)
3411 {
3412 int total_insns = 0;
3413 int blocks = 0;
3414
3415 ce_info->last_test_bb = test_bb;
3416
3417 /* Found at least one && or || block, look for more. */
3418 do
3419 {
3420 ce_info->test_bb = test_bb = bb;
3421 total_insns += n_insns;
3422 blocks++;
3423
3424 if (!single_pred_p (bb))
3425 break;
3426
3427 bb = single_pred (bb);
3428 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3429 }
3430 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3431
3432 ce_info->num_multiple_test_blocks = blocks;
3433 ce_info->num_multiple_test_insns = total_insns;
3434
3435 if (ce_info->and_and_p)
3436 ce_info->num_and_and_blocks = blocks;
3437 else
3438 ce_info->num_or_or_blocks = blocks;
3439 }
3440 }
3441
3442 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3443 other than any || blocks which jump to the THEN block. */
3444 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3445 return FALSE;
3446
3447 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3448 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3449 {
3450 if (cur_edge->flags & EDGE_COMPLEX)
3451 return FALSE;
3452 }
3453
3454 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3455 {
3456 if (cur_edge->flags & EDGE_COMPLEX)
3457 return FALSE;
3458 }
3459
3460 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3461 if (EDGE_COUNT (then_bb->succs) > 0
3462 && (!single_succ_p (then_bb)
3463 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3464 || (epilogue_completed
3465 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3466 return FALSE;
3467
3468 /* If the THEN block has no successors, conditional execution can still
3469 make a conditional call. Don't do this unless the ELSE block has
3470 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3471 Check for the last insn of the THEN block being an indirect jump, which
3472 is listed as not having any successors, but confuses the rest of the CE
3473 code processing. ??? we should fix this in the future. */
3474 if (EDGE_COUNT (then_bb->succs) == 0)
3475 {
3476 if (single_pred_p (else_bb))
3477 {
3478 rtx last_insn = BB_END (then_bb);
3479
3480 while (last_insn
3481 && NOTE_P (last_insn)
3482 && last_insn != BB_HEAD (then_bb))
3483 last_insn = PREV_INSN (last_insn);
3484
3485 if (last_insn
3486 && JUMP_P (last_insn)
3487 && ! simplejump_p (last_insn))
3488 return FALSE;
3489
3490 join_bb = else_bb;
3491 else_bb = NULL_BLOCK;
3492 }
3493 else
3494 return FALSE;
3495 }
3496
3497 /* If the THEN block's successor is the other edge out of the TEST block,
3498 then we have an IF-THEN combo without an ELSE. */
3499 else if (single_succ (then_bb) == else_bb)
3500 {
3501 join_bb = else_bb;
3502 else_bb = NULL_BLOCK;
3503 }
3504
3505 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3506 has exactly one predecessor and one successor, and the outgoing edge
3507 is not complex, then we have an IF-THEN-ELSE combo. */
3508 else if (single_succ_p (else_bb)
3509 && single_succ (then_bb) == single_succ (else_bb)
3510 && single_pred_p (else_bb)
3511 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3512 && !(epilogue_completed
3513 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3514 join_bb = single_succ (else_bb);
3515
3516 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3517 else
3518 return FALSE;
3519
3520 num_possible_if_blocks++;
3521
3522 if (dump_file)
3523 {
3524 fprintf (dump_file,
3525 "\nIF-THEN%s block found, pass %d, start block %d "
3526 "[insn %d], then %d [%d]",
3527 (else_bb) ? "-ELSE" : "",
3528 ce_info->pass,
3529 test_bb->index,
3530 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3531 then_bb->index,
3532 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3533
3534 if (else_bb)
3535 fprintf (dump_file, ", else %d [%d]",
3536 else_bb->index,
3537 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3538
3539 fprintf (dump_file, ", join %d [%d]",
3540 join_bb->index,
3541 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3542
3543 if (ce_info->num_multiple_test_blocks > 0)
3544 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3545 ce_info->num_multiple_test_blocks,
3546 (ce_info->and_and_p) ? "&&" : "||",
3547 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3548 ce_info->last_test_bb->index,
3549 ((BB_HEAD (ce_info->last_test_bb))
3550 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3551 : -1));
3552
3553 fputc ('\n', dump_file);
3554 }
3555
3556 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3557 first condition for free, since we've already asserted that there's a
3558 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3559 we checked the FALLTHRU flag, those are already adjacent to the last IF
3560 block. */
3561 /* ??? As an enhancement, move the ELSE block. Have to deal with
3562 BLOCK notes, if by no other means than backing out the merge if they
3563 exist. Sticky enough I don't want to think about it now. */
3564 next = then_bb;
3565 if (else_bb && (next = next->next_bb) != else_bb)
3566 return FALSE;
3567 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3568 {
3569 if (else_bb)
3570 join_bb = NULL;
3571 else
3572 return FALSE;
3573 }
3574
3575 /* Do the real work. */
3576
3577 ce_info->else_bb = else_bb;
3578 ce_info->join_bb = join_bb;
3579
3580 /* If we have && and || tests, try to first handle combining the && and ||
3581 tests into the conditional code, and if that fails, go back and handle
3582 it without the && and ||, which at present handles the && case if there
3583 was no ELSE block. */
3584 if (cond_exec_process_if_block (ce_info, TRUE))
3585 return TRUE;
3586
3587 if (ce_info->num_multiple_test_blocks)
3588 {
3589 cancel_changes (0);
3590
3591 if (cond_exec_process_if_block (ce_info, FALSE))
3592 return TRUE;
3593 }
3594
3595 return FALSE;
3596 }
3597
3598 /* Convert a branch over a trap, or a branch
3599 to a trap, into a conditional trap. */
3600
3601 static int
3602 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3603 {
3604 basic_block then_bb = then_edge->dest;
3605 basic_block else_bb = else_edge->dest;
3606 basic_block other_bb, trap_bb;
3607 rtx trap, jump, cond, cond_earliest, seq;
3608 enum rtx_code code;
3609
3610 /* Locate the block with the trap instruction. */
3611 /* ??? While we look for no successors, we really ought to allow
3612 EH successors. Need to fix merge_if_block for that to work. */
3613 if ((trap = block_has_only_trap (then_bb)) != NULL)
3614 trap_bb = then_bb, other_bb = else_bb;
3615 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3616 trap_bb = else_bb, other_bb = then_bb;
3617 else
3618 return FALSE;
3619
3620 if (dump_file)
3621 {
3622 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3623 test_bb->index, trap_bb->index);
3624 }
3625
3626 /* If this is not a standard conditional jump, we can't parse it. */
3627 jump = BB_END (test_bb);
3628 cond = noce_get_condition (jump, &cond_earliest, false);
3629 if (! cond)
3630 return FALSE;
3631
3632 /* If the conditional jump is more than just a conditional jump, then
3633 we can not do if-conversion on this block. */
3634 if (! onlyjump_p (jump))
3635 return FALSE;
3636
3637 /* We must be comparing objects whose modes imply the size. */
3638 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3639 return FALSE;
3640
3641 /* Reverse the comparison code, if necessary. */
3642 code = GET_CODE (cond);
3643 if (then_bb == trap_bb)
3644 {
3645 code = reversed_comparison_code (cond, jump);
3646 if (code == UNKNOWN)
3647 return FALSE;
3648 }
3649
3650 /* Attempt to generate the conditional trap. */
3651 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3652 copy_rtx (XEXP (cond, 1)),
3653 TRAP_CODE (PATTERN (trap)));
3654 if (seq == NULL)
3655 return FALSE;
3656
3657 /* Emit the new insns before cond_earliest. */
3658 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3659
3660 /* Delete the trap block if possible. */
3661 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3662 df_set_bb_dirty (test_bb);
3663 df_set_bb_dirty (then_bb);
3664 df_set_bb_dirty (else_bb);
3665
3666 if (EDGE_COUNT (trap_bb->preds) == 0)
3667 {
3668 delete_basic_block (trap_bb);
3669 num_true_changes++;
3670 }
3671
3672 /* Wire together the blocks again. */
3673 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3674 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3675 else
3676 {
3677 rtx lab, newjump;
3678
3679 lab = JUMP_LABEL (jump);
3680 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3681 LABEL_NUSES (lab) += 1;
3682 JUMP_LABEL (newjump) = lab;
3683 emit_barrier_after (newjump);
3684 }
3685 delete_insn (jump);
3686
3687 if (can_merge_blocks_p (test_bb, other_bb))
3688 {
3689 merge_blocks (test_bb, other_bb);
3690 num_true_changes++;
3691 }
3692
3693 num_updated_if_blocks++;
3694 return TRUE;
3695 }
3696
3697 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3698 return it. */
3699
3700 static rtx
3701 block_has_only_trap (basic_block bb)
3702 {
3703 rtx trap;
3704
3705 /* We're not the exit block. */
3706 if (bb == EXIT_BLOCK_PTR)
3707 return NULL_RTX;
3708
3709 /* The block must have no successors. */
3710 if (EDGE_COUNT (bb->succs) > 0)
3711 return NULL_RTX;
3712
3713 /* The only instruction in the THEN block must be the trap. */
3714 trap = first_active_insn (bb);
3715 if (! (trap == BB_END (bb)
3716 && GET_CODE (PATTERN (trap)) == TRAP_IF
3717 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3718 return NULL_RTX;
3719
3720 return trap;
3721 }
3722
3723 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3724 transformable, but not necessarily the other. There need be no
3725 JOIN block.
3726
3727 Return TRUE if we were successful at converting the block.
3728
3729 Cases we'd like to look at:
3730
3731 (1)
3732 if (test) goto over; // x not live
3733 x = a;
3734 goto label;
3735 over:
3736
3737 becomes
3738
3739 x = a;
3740 if (! test) goto label;
3741
3742 (2)
3743 if (test) goto E; // x not live
3744 x = big();
3745 goto L;
3746 E:
3747 x = b;
3748 goto M;
3749
3750 becomes
3751
3752 x = b;
3753 if (test) goto M;
3754 x = big();
3755 goto L;
3756
3757 (3) // This one's really only interesting for targets that can do
3758 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3759 // it results in multiple branches on a cache line, which often
3760 // does not sit well with predictors.
3761
3762 if (test1) goto E; // predicted not taken
3763 x = a;
3764 if (test2) goto F;
3765 ...
3766 E:
3767 x = b;
3768 J:
3769
3770 becomes
3771
3772 x = a;
3773 if (test1) goto E;
3774 if (test2) goto F;
3775
3776 Notes:
3777
3778 (A) Don't do (2) if the branch is predicted against the block we're
3779 eliminating. Do it anyway if we can eliminate a branch; this requires
3780 that the sole successor of the eliminated block postdominate the other
3781 side of the if.
3782
3783 (B) With CE, on (3) we can steal from both sides of the if, creating
3784
3785 if (test1) x = a;
3786 if (!test1) x = b;
3787 if (test1) goto J;
3788 if (test2) goto F;
3789 ...
3790 J:
3791
3792 Again, this is most useful if J postdominates.
3793
3794 (C) CE substitutes for helpful life information.
3795
3796 (D) These heuristics need a lot of work. */
3797
3798 /* Tests for case 1 above. */
3799
3800 static int
3801 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3802 {
3803 basic_block then_bb = then_edge->dest;
3804 basic_block else_bb = else_edge->dest;
3805 basic_block new_bb;
3806 int then_bb_index, then_prob;
3807 rtx else_target = NULL_RTX;
3808
3809 /* If we are partitioning hot/cold basic blocks, we don't want to
3810 mess up unconditional or indirect jumps that cross between hot
3811 and cold sections.
3812
3813 Basic block partitioning may result in some jumps that appear to
3814 be optimizable (or blocks that appear to be mergeable), but which really
3815 must be left untouched (they are required to make it safely across
3816 partition boundaries). See the comments at the top of
3817 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3818
3819 if ((BB_END (then_bb)
3820 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3821 || (BB_END (test_bb)
3822 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3823 || (BB_END (else_bb)
3824 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3825 NULL_RTX)))
3826 return FALSE;
3827
3828 /* THEN has one successor. */
3829 if (!single_succ_p (then_bb))
3830 return FALSE;
3831
3832 /* THEN does not fall through, but is not strange either. */
3833 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3834 return FALSE;
3835
3836 /* THEN has one predecessor. */
3837 if (!single_pred_p (then_bb))
3838 return FALSE;
3839
3840 /* THEN must do something. */
3841 if (forwarder_block_p (then_bb))
3842 return FALSE;
3843
3844 num_possible_if_blocks++;
3845 if (dump_file)
3846 fprintf (dump_file,
3847 "\nIF-CASE-1 found, start %d, then %d\n",
3848 test_bb->index, then_bb->index);
3849
3850 if (then_edge->probability)
3851 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3852 else
3853 then_prob = REG_BR_PROB_BASE / 2;
3854
3855 /* We're speculating from the THEN path, we want to make sure the cost
3856 of speculation is within reason. */
3857 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3858 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3859 predictable_edge_p (then_edge)))))
3860 return FALSE;
3861
3862 if (else_bb == EXIT_BLOCK_PTR)
3863 {
3864 rtx jump = BB_END (else_edge->src);
3865 gcc_assert (JUMP_P (jump));
3866 else_target = JUMP_LABEL (jump);
3867 }
3868
3869 /* Registers set are dead, or are predicable. */
3870 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3871 single_succ_edge (then_bb), 1))
3872 return FALSE;
3873
3874 /* Conversion went ok, including moving the insns and fixing up the
3875 jump. Adjust the CFG to match. */
3876
3877 /* We can avoid creating a new basic block if then_bb is immediately
3878 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3879 thru to else_bb. */
3880
3881 if (then_bb->next_bb == else_bb
3882 && then_bb->prev_bb == test_bb
3883 && else_bb != EXIT_BLOCK_PTR)
3884 {
3885 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3886 new_bb = 0;
3887 }
3888 else if (else_bb == EXIT_BLOCK_PTR)
3889 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3890 else_bb, else_target);
3891 else
3892 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3893 else_bb);
3894
3895 df_set_bb_dirty (test_bb);
3896 df_set_bb_dirty (else_bb);
3897
3898 then_bb_index = then_bb->index;
3899 delete_basic_block (then_bb);
3900
3901 /* Make rest of code believe that the newly created block is the THEN_BB
3902 block we removed. */
3903 if (new_bb)
3904 {
3905 df_bb_replace (then_bb_index, new_bb);
3906 /* Since the fallthru edge was redirected from test_bb to new_bb,
3907 we need to ensure that new_bb is in the same partition as
3908 test bb (you can not fall through across section boundaries). */
3909 BB_COPY_PARTITION (new_bb, test_bb);
3910 }
3911
3912 num_true_changes++;
3913 num_updated_if_blocks++;
3914
3915 return TRUE;
3916 }
3917
3918 /* Test for case 2 above. */
3919
3920 static int
3921 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3922 {
3923 basic_block then_bb = then_edge->dest;
3924 basic_block else_bb = else_edge->dest;
3925 edge else_succ;
3926 int then_prob, else_prob;
3927
3928 /* If we are partitioning hot/cold basic blocks, we don't want to
3929 mess up unconditional or indirect jumps that cross between hot
3930 and cold sections.
3931
3932 Basic block partitioning may result in some jumps that appear to
3933 be optimizable (or blocks that appear to be mergeable), but which really
3934 must be left untouched (they are required to make it safely across
3935 partition boundaries). See the comments at the top of
3936 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3937
3938 if ((BB_END (then_bb)
3939 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3940 || (BB_END (test_bb)
3941 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3942 || (BB_END (else_bb)
3943 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3944 NULL_RTX)))
3945 return FALSE;
3946
3947 /* ELSE has one successor. */
3948 if (!single_succ_p (else_bb))
3949 return FALSE;
3950 else
3951 else_succ = single_succ_edge (else_bb);
3952
3953 /* ELSE outgoing edge is not complex. */
3954 if (else_succ->flags & EDGE_COMPLEX)
3955 return FALSE;
3956
3957 /* ELSE has one predecessor. */
3958 if (!single_pred_p (else_bb))
3959 return FALSE;
3960
3961 /* THEN is not EXIT. */
3962 if (then_bb->index < NUM_FIXED_BLOCKS)
3963 return FALSE;
3964
3965 if (else_edge->probability)
3966 {
3967 else_prob = else_edge->probability;
3968 then_prob = REG_BR_PROB_BASE - else_prob;
3969 }
3970 else
3971 {
3972 else_prob = REG_BR_PROB_BASE / 2;
3973 then_prob = REG_BR_PROB_BASE / 2;
3974 }
3975
3976 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3977 if (else_prob > then_prob)
3978 ;
3979 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3980 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3981 else_succ->dest))
3982 ;
3983 else
3984 return FALSE;
3985
3986 num_possible_if_blocks++;
3987 if (dump_file)
3988 fprintf (dump_file,
3989 "\nIF-CASE-2 found, start %d, else %d\n",
3990 test_bb->index, else_bb->index);
3991
3992 /* We're speculating from the ELSE path, we want to make sure the cost
3993 of speculation is within reason. */
3994 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
3995 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3996 predictable_edge_p (else_edge)))))
3997 return FALSE;
3998
3999 /* Registers set are dead, or are predicable. */
4000 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4001 return FALSE;
4002
4003 /* Conversion went ok, including moving the insns and fixing up the
4004 jump. Adjust the CFG to match. */
4005
4006 df_set_bb_dirty (test_bb);
4007 df_set_bb_dirty (then_bb);
4008 delete_basic_block (else_bb);
4009
4010 num_true_changes++;
4011 num_updated_if_blocks++;
4012
4013 /* ??? We may now fallthru from one of THEN's successors into a join
4014 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4015
4016 return TRUE;
4017 }
4018
4019 /* Used by the code above to perform the actual rtl transformations.
4020 Return TRUE if successful.
4021
4022 TEST_BB is the block containing the conditional branch. MERGE_BB
4023 is the block containing the code to manipulate. DEST_EDGE is an
4024 edge representing a jump to the join block; after the conversion,
4025 TEST_BB should be branching to its destination.
4026 REVERSEP is true if the sense of the branch should be reversed. */
4027
4028 static int
4029 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4030 basic_block other_bb, edge dest_edge, int reversep)
4031 {
4032 basic_block new_dest = dest_edge->dest;
4033 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4034 bitmap merge_set = NULL;
4035 /* Number of pending changes. */
4036 int n_validated_changes = 0;
4037 rtx new_dest_label = NULL_RTX;
4038
4039 jump = BB_END (test_bb);
4040
4041 /* Find the extent of the real code in the merge block. */
4042 head = BB_HEAD (merge_bb);
4043 end = BB_END (merge_bb);
4044
4045 while (DEBUG_INSN_P (end) && end != head)
4046 end = PREV_INSN (end);
4047
4048 /* If merge_bb ends with a tablejump, predicating/moving insn's
4049 into test_bb and then deleting merge_bb will result in the jumptable
4050 that follows merge_bb being removed along with merge_bb and then we
4051 get an unresolved reference to the jumptable. */
4052 if (tablejump_p (end, NULL, NULL))
4053 return FALSE;
4054
4055 if (LABEL_P (head))
4056 head = NEXT_INSN (head);
4057 while (DEBUG_INSN_P (head) && head != end)
4058 head = NEXT_INSN (head);
4059 if (NOTE_P (head))
4060 {
4061 if (head == end)
4062 {
4063 head = end = NULL_RTX;
4064 goto no_body;
4065 }
4066 head = NEXT_INSN (head);
4067 while (DEBUG_INSN_P (head) && head != end)
4068 head = NEXT_INSN (head);
4069 }
4070
4071 if (JUMP_P (end))
4072 {
4073 if (head == end)
4074 {
4075 head = end = NULL_RTX;
4076 goto no_body;
4077 }
4078 end = PREV_INSN (end);
4079 while (DEBUG_INSN_P (end) && end != head)
4080 end = PREV_INSN (end);
4081 }
4082
4083 /* Disable handling dead code by conditional execution if the machine needs
4084 to do anything funny with the tests, etc. */
4085 #ifndef IFCVT_MODIFY_TESTS
4086 if (targetm.have_conditional_execution ())
4087 {
4088 /* In the conditional execution case, we have things easy. We know
4089 the condition is reversible. We don't have to check life info
4090 because we're going to conditionally execute the code anyway.
4091 All that's left is making sure the insns involved can actually
4092 be predicated. */
4093
4094 rtx cond, prob_val;
4095
4096 cond = cond_exec_get_condition (jump);
4097 if (! cond)
4098 return FALSE;
4099
4100 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4101 if (prob_val)
4102 prob_val = XEXP (prob_val, 0);
4103
4104 if (reversep)
4105 {
4106 enum rtx_code rev = reversed_comparison_code (cond, jump);
4107 if (rev == UNKNOWN)
4108 return FALSE;
4109 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4110 XEXP (cond, 1));
4111 if (prob_val)
4112 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4113 }
4114
4115 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4116 && verify_changes (0))
4117 n_validated_changes = num_validated_changes ();
4118 else
4119 cancel_changes (0);
4120
4121 earliest = jump;
4122 }
4123 #endif
4124
4125 /* If we allocated new pseudos (e.g. in the conditional move
4126 expander called from noce_emit_cmove), we must resize the
4127 array first. */
4128 if (max_regno < max_reg_num ())
4129 max_regno = max_reg_num ();
4130
4131 /* Try the NCE path if the CE path did not result in any changes. */
4132 if (n_validated_changes == 0)
4133 {
4134 rtx cond, insn;
4135 regset live;
4136 bool success;
4137
4138 /* In the non-conditional execution case, we have to verify that there
4139 are no trapping operations, no calls, no references to memory, and
4140 that any registers modified are dead at the branch site. */
4141
4142 if (!any_condjump_p (jump))
4143 return FALSE;
4144
4145 /* Find the extent of the conditional. */
4146 cond = noce_get_condition (jump, &earliest, false);
4147 if (!cond)
4148 return FALSE;
4149
4150 live = BITMAP_ALLOC (&reg_obstack);
4151 simulate_backwards_to_point (merge_bb, live, end);
4152 success = can_move_insns_across (head, end, earliest, jump,
4153 merge_bb, live,
4154 df_get_live_in (other_bb), NULL);
4155 BITMAP_FREE (live);
4156 if (!success)
4157 return FALSE;
4158
4159 /* Collect the set of registers set in MERGE_BB. */
4160 merge_set = BITMAP_ALLOC (&reg_obstack);
4161
4162 FOR_BB_INSNS (merge_bb, insn)
4163 if (NONDEBUG_INSN_P (insn))
4164 df_simulate_find_defs (insn, merge_set);
4165
4166 #ifdef HAVE_simple_return
4167 /* If shrink-wrapping, disable this optimization when test_bb is
4168 the first basic block and merge_bb exits. The idea is to not
4169 move code setting up a return register as that may clobber a
4170 register used to pass function parameters, which then must be
4171 saved in caller-saved regs. A caller-saved reg requires the
4172 prologue, killing a shrink-wrap opportunity. */
4173 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4174 && ENTRY_BLOCK_PTR->next_bb == test_bb
4175 && single_succ_p (new_dest)
4176 && single_succ (new_dest) == EXIT_BLOCK_PTR
4177 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4178 {
4179 regset return_regs;
4180 unsigned int i;
4181
4182 return_regs = BITMAP_ALLOC (&reg_obstack);
4183
4184 /* Start off with the intersection of regs used to pass
4185 params and regs used to return values. */
4186 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4187 if (FUNCTION_ARG_REGNO_P (i)
4188 && targetm.calls.function_value_regno_p (i))
4189 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4190
4191 bitmap_and_into (return_regs, df_get_live_out (ENTRY_BLOCK_PTR));
4192 bitmap_and_into (return_regs, df_get_live_in (EXIT_BLOCK_PTR));
4193 if (!bitmap_empty_p (return_regs))
4194 {
4195 FOR_BB_INSNS_REVERSE (new_dest, insn)
4196 if (NONDEBUG_INSN_P (insn))
4197 {
4198 df_ref *def_rec;
4199 unsigned int uid = INSN_UID (insn);
4200
4201 /* If this insn sets any reg in return_regs.. */
4202 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4203 {
4204 df_ref def = *def_rec;
4205 unsigned r = DF_REF_REGNO (def);
4206
4207 if (bitmap_bit_p (return_regs, r))
4208 break;
4209 }
4210 /* ..then add all reg uses to the set of regs
4211 we're interested in. */
4212 if (*def_rec)
4213 df_simulate_uses (insn, return_regs);
4214 }
4215 if (bitmap_intersect_p (merge_set, return_regs))
4216 {
4217 BITMAP_FREE (return_regs);
4218 BITMAP_FREE (merge_set);
4219 return FALSE;
4220 }
4221 }
4222 BITMAP_FREE (return_regs);
4223 }
4224 #endif
4225 }
4226
4227 no_body:
4228 /* We don't want to use normal invert_jump or redirect_jump because
4229 we don't want to delete_insn called. Also, we want to do our own
4230 change group management. */
4231
4232 old_dest = JUMP_LABEL (jump);
4233 if (other_bb != new_dest)
4234 {
4235 if (JUMP_P (BB_END (dest_edge->src)))
4236 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4237 else if (new_dest == EXIT_BLOCK_PTR)
4238 new_dest_label = ret_rtx;
4239 else
4240 new_dest_label = block_label (new_dest);
4241
4242 if (reversep
4243 ? ! invert_jump_1 (jump, new_dest_label)
4244 : ! redirect_jump_1 (jump, new_dest_label))
4245 goto cancel;
4246 }
4247
4248 if (verify_changes (n_validated_changes))
4249 confirm_change_group ();
4250 else
4251 goto cancel;
4252
4253 if (other_bb != new_dest)
4254 {
4255 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4256
4257 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4258 if (reversep)
4259 {
4260 gcov_type count, probability;
4261 count = BRANCH_EDGE (test_bb)->count;
4262 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4263 FALLTHRU_EDGE (test_bb)->count = count;
4264 probability = BRANCH_EDGE (test_bb)->probability;
4265 BRANCH_EDGE (test_bb)->probability
4266 = FALLTHRU_EDGE (test_bb)->probability;
4267 FALLTHRU_EDGE (test_bb)->probability = probability;
4268 update_br_prob_note (test_bb);
4269 }
4270 }
4271
4272 /* Move the insns out of MERGE_BB to before the branch. */
4273 if (head != NULL)
4274 {
4275 rtx insn;
4276
4277 if (end == BB_END (merge_bb))
4278 BB_END (merge_bb) = PREV_INSN (head);
4279
4280 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4281 notes being moved might become invalid. */
4282 insn = head;
4283 do
4284 {
4285 rtx note, set;
4286
4287 if (! INSN_P (insn))
4288 continue;
4289 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4290 if (! note)
4291 continue;
4292 set = single_set (insn);
4293 if (!set || !function_invariant_p (SET_SRC (set))
4294 || !function_invariant_p (XEXP (note, 0)))
4295 remove_note (insn, note);
4296 } while (insn != end && (insn = NEXT_INSN (insn)));
4297
4298 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4299 notes referring to the registers being set might become invalid. */
4300 if (merge_set)
4301 {
4302 unsigned i;
4303 bitmap_iterator bi;
4304
4305 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4306 remove_reg_equal_equiv_notes_for_regno (i);
4307
4308 BITMAP_FREE (merge_set);
4309 }
4310
4311 reorder_insns (head, end, PREV_INSN (earliest));
4312 }
4313
4314 /* Remove the jump and edge if we can. */
4315 if (other_bb == new_dest)
4316 {
4317 delete_insn (jump);
4318 remove_edge (BRANCH_EDGE (test_bb));
4319 /* ??? Can't merge blocks here, as then_bb is still in use.
4320 At minimum, the merge will get done just before bb-reorder. */
4321 }
4322
4323 return TRUE;
4324
4325 cancel:
4326 cancel_changes (0);
4327
4328 if (merge_set)
4329 BITMAP_FREE (merge_set);
4330
4331 return FALSE;
4332 }
4333 \f
4334 /* Main entry point for all if-conversion. */
4335
4336 static void
4337 if_convert (void)
4338 {
4339 basic_block bb;
4340 int pass;
4341
4342 if (optimize == 1)
4343 {
4344 df_live_add_problem ();
4345 df_live_set_all_dirty ();
4346 }
4347
4348 num_possible_if_blocks = 0;
4349 num_updated_if_blocks = 0;
4350 num_true_changes = 0;
4351
4352 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4353 mark_loop_exit_edges ();
4354 loop_optimizer_finalize ();
4355 free_dominance_info (CDI_DOMINATORS);
4356
4357 /* Compute postdominators. */
4358 calculate_dominance_info (CDI_POST_DOMINATORS);
4359
4360 df_set_flags (DF_LR_RUN_DCE);
4361
4362 /* Go through each of the basic blocks looking for things to convert. If we
4363 have conditional execution, we make multiple passes to allow us to handle
4364 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4365 pass = 0;
4366 do
4367 {
4368 df_analyze ();
4369 /* Only need to do dce on the first pass. */
4370 df_clear_flags (DF_LR_RUN_DCE);
4371 cond_exec_changed_p = FALSE;
4372 pass++;
4373
4374 #ifdef IFCVT_MULTIPLE_DUMPS
4375 if (dump_file && pass > 1)
4376 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4377 #endif
4378
4379 FOR_EACH_BB (bb)
4380 {
4381 basic_block new_bb;
4382 while (!df_get_bb_dirty (bb)
4383 && (new_bb = find_if_header (bb, pass)) != NULL)
4384 bb = new_bb;
4385 }
4386
4387 #ifdef IFCVT_MULTIPLE_DUMPS
4388 if (dump_file && cond_exec_changed_p)
4389 {
4390 if (dump_flags & TDF_SLIM)
4391 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4392 else
4393 print_rtl_with_bb (dump_file, get_insns ());
4394 }
4395 #endif
4396 }
4397 while (cond_exec_changed_p);
4398
4399 #ifdef IFCVT_MULTIPLE_DUMPS
4400 if (dump_file)
4401 fprintf (dump_file, "\n\n========== no more changes\n");
4402 #endif
4403
4404 free_dominance_info (CDI_POST_DOMINATORS);
4405
4406 if (dump_file)
4407 fflush (dump_file);
4408
4409 clear_aux_for_blocks ();
4410
4411 /* If we allocated new pseudos, we must resize the array for sched1. */
4412 if (max_regno < max_reg_num ())
4413 max_regno = max_reg_num ();
4414
4415 /* Write the final stats. */
4416 if (dump_file && num_possible_if_blocks > 0)
4417 {
4418 fprintf (dump_file,
4419 "\n%d possible IF blocks searched.\n",
4420 num_possible_if_blocks);
4421 fprintf (dump_file,
4422 "%d IF blocks converted.\n",
4423 num_updated_if_blocks);
4424 fprintf (dump_file,
4425 "%d true changes made.\n\n\n",
4426 num_true_changes);
4427 }
4428
4429 if (optimize == 1)
4430 df_remove_problem (df_live);
4431
4432 #ifdef ENABLE_CHECKING
4433 verify_flow_info ();
4434 #endif
4435 }
4436 \f
4437 static bool
4438 gate_handle_if_conversion (void)
4439 {
4440 return (optimize > 0)
4441 && dbg_cnt (if_conversion);
4442 }
4443
4444 /* If-conversion and CFG cleanup. */
4445 static unsigned int
4446 rest_of_handle_if_conversion (void)
4447 {
4448 if (flag_if_conversion)
4449 {
4450 if (dump_file)
4451 dump_flow_info (dump_file, dump_flags);
4452 cleanup_cfg (CLEANUP_EXPENSIVE);
4453 if_convert ();
4454 }
4455
4456 cleanup_cfg (0);
4457 return 0;
4458 }
4459
4460 struct rtl_opt_pass pass_rtl_ifcvt =
4461 {
4462 {
4463 RTL_PASS,
4464 "ce1", /* name */
4465 gate_handle_if_conversion, /* gate */
4466 rest_of_handle_if_conversion, /* execute */
4467 NULL, /* sub */
4468 NULL, /* next */
4469 0, /* static_pass_number */
4470 TV_IFCVT, /* tv_id */
4471 0, /* properties_required */
4472 0, /* properties_provided */
4473 0, /* properties_destroyed */
4474 0, /* todo_flags_start */
4475 TODO_df_finish | TODO_verify_rtl_sharing |
4476 0 /* todo_flags_finish */
4477 }
4478 };
4479
4480 static bool
4481 gate_handle_if_after_combine (void)
4482 {
4483 return optimize > 0 && flag_if_conversion
4484 && dbg_cnt (if_after_combine);
4485 }
4486
4487
4488 /* Rerun if-conversion, as combine may have simplified things enough
4489 to now meet sequence length restrictions. */
4490 static unsigned int
4491 rest_of_handle_if_after_combine (void)
4492 {
4493 if_convert ();
4494 return 0;
4495 }
4496
4497 struct rtl_opt_pass pass_if_after_combine =
4498 {
4499 {
4500 RTL_PASS,
4501 "ce2", /* name */
4502 gate_handle_if_after_combine, /* gate */
4503 rest_of_handle_if_after_combine, /* execute */
4504 NULL, /* sub */
4505 NULL, /* next */
4506 0, /* static_pass_number */
4507 TV_IFCVT, /* tv_id */
4508 0, /* properties_required */
4509 0, /* properties_provided */
4510 0, /* properties_destroyed */
4511 0, /* todo_flags_start */
4512 TODO_df_finish | TODO_verify_rtl_sharing |
4513 TODO_ggc_collect /* todo_flags_finish */
4514 }
4515 };
4516
4517
4518 static bool
4519 gate_handle_if_after_reload (void)
4520 {
4521 return optimize > 0 && flag_if_conversion2
4522 && dbg_cnt (if_after_reload);
4523 }
4524
4525 static unsigned int
4526 rest_of_handle_if_after_reload (void)
4527 {
4528 if_convert ();
4529 return 0;
4530 }
4531
4532
4533 struct rtl_opt_pass pass_if_after_reload =
4534 {
4535 {
4536 RTL_PASS,
4537 "ce3", /* name */
4538 gate_handle_if_after_reload, /* gate */
4539 rest_of_handle_if_after_reload, /* execute */
4540 NULL, /* sub */
4541 NULL, /* next */
4542 0, /* static_pass_number */
4543 TV_IFCVT2, /* tv_id */
4544 0, /* properties_required */
4545 0, /* properties_provided */
4546 0, /* properties_destroyed */
4547 0, /* todo_flags_start */
4548 TODO_df_finish | TODO_verify_rtl_sharing |
4549 TODO_ggc_collect /* todo_flags_finish */
4550 }
4551 };