cond.md (stzx_16): Use register_operand for operand 0.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "rtl.h"
26 #include "regs.h"
27 #include "function.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "expr.h"
35 #include "output.h"
36 #include "optabs.h"
37 #include "diagnostic-core.h"
38 #include "tm_p.h"
39 #include "cfgloop.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "vec.h"
44 #include "pointer-set.h"
45 #include "dbgcnt.h"
46
47 #ifndef HAVE_conditional_move
48 #define HAVE_conditional_move 0
49 #endif
50 #ifndef HAVE_incscc
51 #define HAVE_incscc 0
52 #endif
53 #ifndef HAVE_decscc
54 #define HAVE_decscc 0
55 #endif
56 #ifndef HAVE_trap
57 #define HAVE_trap 0
58 #endif
59
60 #ifndef MAX_CONDITIONAL_EXECUTE
61 #define MAX_CONDITIONAL_EXECUTE \
62 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
63 + 1)
64 #endif
65
66 #define IFCVT_MULTIPLE_DUMPS 1
67
68 #define NULL_BLOCK ((basic_block) NULL)
69
70 /* True if after combine pass. */
71 static bool ifcvt_after_combine;
72
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
75
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
79
80 /* # of changes made. */
81 static int num_true_changes;
82
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
85
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, int, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block_t *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block_t *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int dead_or_predicable (basic_block, basic_block, basic_block,
107 edge, int);
108 static void noce_emit_move_insn (rtx, rtx);
109 static rtx block_has_only_trap (basic_block);
110 \f
111 /* Count the number of non-jump active insns in BB. */
112
113 static int
114 count_bb_insns (const_basic_block bb)
115 {
116 int count = 0;
117 rtx insn = BB_HEAD (bb);
118
119 while (1)
120 {
121 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
122 count++;
123
124 if (insn == BB_END (bb))
125 break;
126 insn = NEXT_INSN (insn);
127 }
128
129 return count;
130 }
131
132 /* Determine whether the total insn_rtx_cost on non-jump insns in
133 basic block BB is less than MAX_COST. This function returns
134 false if the cost of any instruction could not be estimated.
135
136 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
137 as those insns are being speculated. MAX_COST is scaled with SCALE
138 plus a small fudge factor. */
139
140 static bool
141 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
142 {
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
145 bool speed = optimize_bb_for_speed_p (bb);
146
147 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
148 applied to insn_rtx_cost when optimizing for size. Only do
149 this after combine because if-conversion might interfere with
150 passes before combine.
151
152 Use optimize_function_for_speed_p instead of the pre-defined
153 variable speed to make sure it is set to same value for all
154 basic blocks in one if-conversion transformation. */
155 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
156 scale = REG_BR_PROB_BASE;
157 /* Our branch probability/scaling factors are just estimates and don't
158 account for cases where we can get speculation for free and other
159 secondary benefits. So we fudge the scale factor to make speculating
160 appear a little more profitable when optimizing for performance. */
161 else
162 scale += REG_BR_PROB_BASE / 8;
163
164
165 max_cost *= scale;
166
167 while (1)
168 {
169 if (NONJUMP_INSN_P (insn))
170 {
171 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
172 if (cost == 0)
173 return false;
174
175 /* If this instruction is the load or set of a "stack" register,
176 such as a floating point register on x87, then the cost of
177 speculatively executing this insn may need to include
178 the additional cost of popping its result off of the
179 register stack. Unfortunately, correctly recognizing and
180 accounting for this additional overhead is tricky, so for
181 now we simply prohibit such speculative execution. */
182 #ifdef STACK_REGS
183 {
184 rtx set = single_set (insn);
185 if (set && STACK_REG_P (SET_DEST (set)))
186 return false;
187 }
188 #endif
189
190 count += cost;
191 if (count >= max_cost)
192 return false;
193 }
194 else if (CALL_P (insn))
195 return false;
196
197 if (insn == BB_END (bb))
198 break;
199 insn = NEXT_INSN (insn);
200 }
201
202 return true;
203 }
204
205 /* Return the first non-jump active insn in the basic block. */
206
207 static rtx
208 first_active_insn (basic_block bb)
209 {
210 rtx insn = BB_HEAD (bb);
211
212 if (LABEL_P (insn))
213 {
214 if (insn == BB_END (bb))
215 return NULL_RTX;
216 insn = NEXT_INSN (insn);
217 }
218
219 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
220 {
221 if (insn == BB_END (bb))
222 return NULL_RTX;
223 insn = NEXT_INSN (insn);
224 }
225
226 if (JUMP_P (insn))
227 return NULL_RTX;
228
229 return insn;
230 }
231
232 /* Return the last non-jump active (non-jump) insn in the basic block. */
233
234 static rtx
235 last_active_insn (basic_block bb, int skip_use_p)
236 {
237 rtx insn = BB_END (bb);
238 rtx head = BB_HEAD (bb);
239
240 while (NOTE_P (insn)
241 || JUMP_P (insn)
242 || DEBUG_INSN_P (insn)
243 || (skip_use_p
244 && NONJUMP_INSN_P (insn)
245 && GET_CODE (PATTERN (insn)) == USE))
246 {
247 if (insn == head)
248 return NULL_RTX;
249 insn = PREV_INSN (insn);
250 }
251
252 if (LABEL_P (insn))
253 return NULL_RTX;
254
255 return insn;
256 }
257
258 /* Return the active insn before INSN inside basic block CURR_BB. */
259
260 static rtx
261 find_active_insn_before (basic_block curr_bb, rtx insn)
262 {
263 if (!insn || insn == BB_HEAD (curr_bb))
264 return NULL_RTX;
265
266 while ((insn = PREV_INSN (insn)) != NULL_RTX)
267 {
268 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
269 break;
270
271 /* No other active insn all the way to the start of the basic block. */
272 if (insn == BB_HEAD (curr_bb))
273 return NULL_RTX;
274 }
275
276 return insn;
277 }
278
279 /* Return the active insn after INSN inside basic block CURR_BB. */
280
281 static rtx
282 find_active_insn_after (basic_block curr_bb, rtx insn)
283 {
284 if (!insn || insn == BB_END (curr_bb))
285 return NULL_RTX;
286
287 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
288 {
289 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
290 break;
291
292 /* No other active insn all the way to the end of the basic block. */
293 if (insn == BB_END (curr_bb))
294 return NULL_RTX;
295 }
296
297 return insn;
298 }
299
300 /* Return the basic block reached by falling though the basic block BB. */
301
302 static basic_block
303 block_fallthru (basic_block bb)
304 {
305 edge e = find_fallthru_edge (bb->succs);
306
307 return (e) ? e->dest : NULL_BLOCK;
308 }
309 \f
310 /* Go through a bunch of insns, converting them to conditional
311 execution format if possible. Return TRUE if all of the non-note
312 insns were processed. */
313
314 static int
315 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
316 /* if block information */rtx start,
317 /* first insn to look at */rtx end,
318 /* last insn to look at */rtx test,
319 /* conditional execution test */int prob_val,
320 /* probability of branch taken. */int mod_ok)
321 {
322 int must_be_last = FALSE;
323 rtx insn;
324 rtx xtest;
325 rtx pattern;
326
327 if (!start || !end)
328 return FALSE;
329
330 for (insn = start; ; insn = NEXT_INSN (insn))
331 {
332 /* dwarf2out can't cope with conditional prologues. */
333 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
334 return FALSE;
335
336 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
337 goto insn_done;
338
339 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
340
341 /* Remove USE insns that get in the way. */
342 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
343 {
344 /* ??? Ug. Actually unlinking the thing is problematic,
345 given what we'd have to coordinate with our callers. */
346 SET_INSN_DELETED (insn);
347 goto insn_done;
348 }
349
350 /* Last insn wasn't last? */
351 if (must_be_last)
352 return FALSE;
353
354 if (modified_in_p (test, insn))
355 {
356 if (!mod_ok)
357 return FALSE;
358 must_be_last = TRUE;
359 }
360
361 /* Now build the conditional form of the instruction. */
362 pattern = PATTERN (insn);
363 xtest = copy_rtx (test);
364
365 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
366 two conditions. */
367 if (GET_CODE (pattern) == COND_EXEC)
368 {
369 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
370 return FALSE;
371
372 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
373 COND_EXEC_TEST (pattern));
374 pattern = COND_EXEC_CODE (pattern);
375 }
376
377 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
378
379 /* If the machine needs to modify the insn being conditionally executed,
380 say for example to force a constant integer operand into a temp
381 register, do so here. */
382 #ifdef IFCVT_MODIFY_INSN
383 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
384 if (! pattern)
385 return FALSE;
386 #endif
387
388 validate_change (insn, &PATTERN (insn), pattern, 1);
389
390 if (CALL_P (insn) && prob_val >= 0)
391 validate_change (insn, &REG_NOTES (insn),
392 gen_rtx_INT_LIST ((enum machine_mode) REG_BR_PROB,
393 prob_val, REG_NOTES (insn)), 1);
394
395 insn_done:
396 if (insn == end)
397 break;
398 }
399
400 return TRUE;
401 }
402
403 /* Return the condition for a jump. Do not do any special processing. */
404
405 static rtx
406 cond_exec_get_condition (rtx jump)
407 {
408 rtx test_if, cond;
409
410 if (any_condjump_p (jump))
411 test_if = SET_SRC (pc_set (jump));
412 else
413 return NULL_RTX;
414 cond = XEXP (test_if, 0);
415
416 /* If this branches to JUMP_LABEL when the condition is false,
417 reverse the condition. */
418 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
419 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
420 {
421 enum rtx_code rev = reversed_comparison_code (cond, jump);
422 if (rev == UNKNOWN)
423 return NULL_RTX;
424
425 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
426 XEXP (cond, 1));
427 }
428
429 return cond;
430 }
431
432 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
433 to conditional execution. Return TRUE if we were successful at
434 converting the block. */
435
436 static int
437 cond_exec_process_if_block (ce_if_block_t * ce_info,
438 /* if block information */int do_multiple_p)
439 {
440 basic_block test_bb = ce_info->test_bb; /* last test block */
441 basic_block then_bb = ce_info->then_bb; /* THEN */
442 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
443 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
444 rtx then_start; /* first insn in THEN block */
445 rtx then_end; /* last insn + 1 in THEN block */
446 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
447 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
448 int max; /* max # of insns to convert. */
449 int then_mod_ok; /* whether conditional mods are ok in THEN */
450 rtx true_expr; /* test for else block insns */
451 rtx false_expr; /* test for then block insns */
452 int true_prob_val; /* probability of else block */
453 int false_prob_val; /* probability of then block */
454 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
455 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
456 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
457 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
458 int then_n_insns, else_n_insns, n_insns;
459 enum rtx_code false_code;
460 rtx note;
461
462 /* If test is comprised of && or || elements, and we've failed at handling
463 all of them together, just use the last test if it is the special case of
464 && elements without an ELSE block. */
465 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
466 {
467 if (else_bb || ! ce_info->and_and_p)
468 return FALSE;
469
470 ce_info->test_bb = test_bb = ce_info->last_test_bb;
471 ce_info->num_multiple_test_blocks = 0;
472 ce_info->num_and_and_blocks = 0;
473 ce_info->num_or_or_blocks = 0;
474 }
475
476 /* Find the conditional jump to the ELSE or JOIN part, and isolate
477 the test. */
478 test_expr = cond_exec_get_condition (BB_END (test_bb));
479 if (! test_expr)
480 return FALSE;
481
482 /* If the conditional jump is more than just a conditional jump,
483 then we can not do conditional execution conversion on this block. */
484 if (! onlyjump_p (BB_END (test_bb)))
485 return FALSE;
486
487 /* Collect the bounds of where we're to search, skipping any labels, jumps
488 and notes at the beginning and end of the block. Then count the total
489 number of insns and see if it is small enough to convert. */
490 then_start = first_active_insn (then_bb);
491 then_end = last_active_insn (then_bb, TRUE);
492 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
493 n_insns = then_n_insns;
494 max = MAX_CONDITIONAL_EXECUTE;
495
496 if (else_bb)
497 {
498 int n_matching;
499
500 max *= 2;
501 else_start = first_active_insn (else_bb);
502 else_end = last_active_insn (else_bb, TRUE);
503 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
504 n_insns += else_n_insns;
505
506 /* Look for matching sequences at the head and tail of the two blocks,
507 and limit the range of insns to be converted if possible. */
508 n_matching = flow_find_cross_jump (then_bb, else_bb,
509 &then_first_tail, &else_first_tail,
510 NULL);
511 if (then_first_tail == BB_HEAD (then_bb))
512 then_start = then_end = NULL_RTX;
513 if (else_first_tail == BB_HEAD (else_bb))
514 else_start = else_end = NULL_RTX;
515
516 if (n_matching > 0)
517 {
518 if (then_end)
519 then_end = find_active_insn_before (then_bb, then_first_tail);
520 if (else_end)
521 else_end = find_active_insn_before (else_bb, else_first_tail);
522 n_insns -= 2 * n_matching;
523 }
524
525 if (then_start && else_start)
526 {
527 int longest_match = MIN (then_n_insns - n_matching,
528 else_n_insns - n_matching);
529 n_matching
530 = flow_find_head_matching_sequence (then_bb, else_bb,
531 &then_last_head,
532 &else_last_head,
533 longest_match);
534
535 if (n_matching > 0)
536 {
537 rtx insn;
538
539 /* We won't pass the insns in the head sequence to
540 cond_exec_process_insns, so we need to test them here
541 to make sure that they don't clobber the condition. */
542 for (insn = BB_HEAD (then_bb);
543 insn != NEXT_INSN (then_last_head);
544 insn = NEXT_INSN (insn))
545 if (!LABEL_P (insn) && !NOTE_P (insn)
546 && !DEBUG_INSN_P (insn)
547 && modified_in_p (test_expr, insn))
548 return FALSE;
549 }
550
551 if (then_last_head == then_end)
552 then_start = then_end = NULL_RTX;
553 if (else_last_head == else_end)
554 else_start = else_end = NULL_RTX;
555
556 if (n_matching > 0)
557 {
558 if (then_start)
559 then_start = find_active_insn_after (then_bb, then_last_head);
560 if (else_start)
561 else_start = find_active_insn_after (else_bb, else_last_head);
562 n_insns -= 2 * n_matching;
563 }
564 }
565 }
566
567 if (n_insns > max)
568 return FALSE;
569
570 /* Map test_expr/test_jump into the appropriate MD tests to use on
571 the conditionally executed code. */
572
573 true_expr = test_expr;
574
575 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
576 if (false_code != UNKNOWN)
577 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
578 XEXP (true_expr, 0), XEXP (true_expr, 1));
579 else
580 false_expr = NULL_RTX;
581
582 #ifdef IFCVT_MODIFY_TESTS
583 /* If the machine description needs to modify the tests, such as setting a
584 conditional execution register from a comparison, it can do so here. */
585 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
586
587 /* See if the conversion failed. */
588 if (!true_expr || !false_expr)
589 goto fail;
590 #endif
591
592 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
593 if (note)
594 {
595 true_prob_val = XINT (note, 0);
596 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
597 }
598 else
599 {
600 true_prob_val = -1;
601 false_prob_val = -1;
602 }
603
604 /* If we have && or || tests, do them here. These tests are in the adjacent
605 blocks after the first block containing the test. */
606 if (ce_info->num_multiple_test_blocks > 0)
607 {
608 basic_block bb = test_bb;
609 basic_block last_test_bb = ce_info->last_test_bb;
610
611 if (! false_expr)
612 goto fail;
613
614 do
615 {
616 rtx start, end;
617 rtx t, f;
618 enum rtx_code f_code;
619
620 bb = block_fallthru (bb);
621 start = first_active_insn (bb);
622 end = last_active_insn (bb, TRUE);
623 if (start
624 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
625 false_prob_val, FALSE))
626 goto fail;
627
628 /* If the conditional jump is more than just a conditional jump, then
629 we can not do conditional execution conversion on this block. */
630 if (! onlyjump_p (BB_END (bb)))
631 goto fail;
632
633 /* Find the conditional jump and isolate the test. */
634 t = cond_exec_get_condition (BB_END (bb));
635 if (! t)
636 goto fail;
637
638 f_code = reversed_comparison_code (t, BB_END (bb));
639 if (f_code == UNKNOWN)
640 goto fail;
641
642 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
643 if (ce_info->and_and_p)
644 {
645 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
646 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
647 }
648 else
649 {
650 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
651 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
652 }
653
654 /* If the machine description needs to modify the tests, such as
655 setting a conditional execution register from a comparison, it can
656 do so here. */
657 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
658 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
659
660 /* See if the conversion failed. */
661 if (!t || !f)
662 goto fail;
663 #endif
664
665 true_expr = t;
666 false_expr = f;
667 }
668 while (bb != last_test_bb);
669 }
670
671 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
672 on then THEN block. */
673 then_mod_ok = (else_bb == NULL_BLOCK);
674
675 /* Go through the THEN and ELSE blocks converting the insns if possible
676 to conditional execution. */
677
678 if (then_end
679 && (! false_expr
680 || ! cond_exec_process_insns (ce_info, then_start, then_end,
681 false_expr, false_prob_val,
682 then_mod_ok)))
683 goto fail;
684
685 if (else_bb && else_end
686 && ! cond_exec_process_insns (ce_info, else_start, else_end,
687 true_expr, true_prob_val, TRUE))
688 goto fail;
689
690 /* If we cannot apply the changes, fail. Do not go through the normal fail
691 processing, since apply_change_group will call cancel_changes. */
692 if (! apply_change_group ())
693 {
694 #ifdef IFCVT_MODIFY_CANCEL
695 /* Cancel any machine dependent changes. */
696 IFCVT_MODIFY_CANCEL (ce_info);
697 #endif
698 return FALSE;
699 }
700
701 #ifdef IFCVT_MODIFY_FINAL
702 /* Do any machine dependent final modifications. */
703 IFCVT_MODIFY_FINAL (ce_info);
704 #endif
705
706 /* Conversion succeeded. */
707 if (dump_file)
708 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
709 n_insns, (n_insns == 1) ? " was" : "s were");
710
711 /* Merge the blocks! If we had matching sequences, make sure to delete one
712 copy at the appropriate location first: delete the copy in the THEN branch
713 for a tail sequence so that the remaining one is executed last for both
714 branches, and delete the copy in the ELSE branch for a head sequence so
715 that the remaining one is executed first for both branches. */
716 if (then_first_tail)
717 {
718 rtx from = then_first_tail;
719 if (!INSN_P (from))
720 from = find_active_insn_after (then_bb, from);
721 delete_insn_chain (from, BB_END (then_bb), false);
722 }
723 if (else_last_head)
724 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
725
726 merge_if_block (ce_info);
727 cond_exec_changed_p = TRUE;
728 return TRUE;
729
730 fail:
731 #ifdef IFCVT_MODIFY_CANCEL
732 /* Cancel any machine dependent changes. */
733 IFCVT_MODIFY_CANCEL (ce_info);
734 #endif
735
736 cancel_changes (0);
737 return FALSE;
738 }
739 \f
740 /* Used by noce_process_if_block to communicate with its subroutines.
741
742 The subroutines know that A and B may be evaluated freely. They
743 know that X is a register. They should insert new instructions
744 before cond_earliest. */
745
746 struct noce_if_info
747 {
748 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
749 basic_block test_bb, then_bb, else_bb, join_bb;
750
751 /* The jump that ends TEST_BB. */
752 rtx jump;
753
754 /* The jump condition. */
755 rtx cond;
756
757 /* New insns should be inserted before this one. */
758 rtx cond_earliest;
759
760 /* Insns in the THEN and ELSE block. There is always just this
761 one insns in those blocks. The insns are single_set insns.
762 If there was no ELSE block, INSN_B is the last insn before
763 COND_EARLIEST, or NULL_RTX. In the former case, the insn
764 operands are still valid, as if INSN_B was moved down below
765 the jump. */
766 rtx insn_a, insn_b;
767
768 /* The SET_SRC of INSN_A and INSN_B. */
769 rtx a, b;
770
771 /* The SET_DEST of INSN_A. */
772 rtx x;
773
774 /* True if this if block is not canonical. In the canonical form of
775 if blocks, the THEN_BB is the block reached via the fallthru edge
776 from TEST_BB. For the noce transformations, we allow the symmetric
777 form as well. */
778 bool then_else_reversed;
779
780 /* Estimated cost of the particular branch instruction. */
781 int branch_cost;
782 };
783
784 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
785 static int noce_try_move (struct noce_if_info *);
786 static int noce_try_store_flag (struct noce_if_info *);
787 static int noce_try_addcc (struct noce_if_info *);
788 static int noce_try_store_flag_constants (struct noce_if_info *);
789 static int noce_try_store_flag_mask (struct noce_if_info *);
790 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
791 rtx, rtx, rtx);
792 static int noce_try_cmove (struct noce_if_info *);
793 static int noce_try_cmove_arith (struct noce_if_info *);
794 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
795 static int noce_try_minmax (struct noce_if_info *);
796 static int noce_try_abs (struct noce_if_info *);
797 static int noce_try_sign_mask (struct noce_if_info *);
798
799 /* Helper function for noce_try_store_flag*. */
800
801 static rtx
802 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
803 int normalize)
804 {
805 rtx cond = if_info->cond;
806 int cond_complex;
807 enum rtx_code code;
808
809 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
810 || ! general_operand (XEXP (cond, 1), VOIDmode));
811
812 /* If earliest == jump, or when the condition is complex, try to
813 build the store_flag insn directly. */
814
815 if (cond_complex)
816 {
817 rtx set = pc_set (if_info->jump);
818 cond = XEXP (SET_SRC (set), 0);
819 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
820 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
821 reversep = !reversep;
822 if (if_info->then_else_reversed)
823 reversep = !reversep;
824 }
825
826 if (reversep)
827 code = reversed_comparison_code (cond, if_info->jump);
828 else
829 code = GET_CODE (cond);
830
831 if ((if_info->cond_earliest == if_info->jump || cond_complex)
832 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
833 {
834 rtx tmp;
835
836 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
837 XEXP (cond, 1));
838 tmp = gen_rtx_SET (VOIDmode, x, tmp);
839
840 start_sequence ();
841 tmp = emit_insn (tmp);
842
843 if (recog_memoized (tmp) >= 0)
844 {
845 tmp = get_insns ();
846 end_sequence ();
847 emit_insn (tmp);
848
849 if_info->cond_earliest = if_info->jump;
850
851 return x;
852 }
853
854 end_sequence ();
855 }
856
857 /* Don't even try if the comparison operands or the mode of X are weird. */
858 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
859 return NULL_RTX;
860
861 return emit_store_flag (x, code, XEXP (cond, 0),
862 XEXP (cond, 1), VOIDmode,
863 (code == LTU || code == LEU
864 || code == GEU || code == GTU), normalize);
865 }
866
867 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
868 X is the destination/target and Y is the value to copy. */
869
870 static void
871 noce_emit_move_insn (rtx x, rtx y)
872 {
873 enum machine_mode outmode;
874 rtx outer, inner;
875 int bitpos;
876
877 if (GET_CODE (x) != STRICT_LOW_PART)
878 {
879 rtx seq, insn, target;
880 optab ot;
881
882 start_sequence ();
883 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
884 otherwise construct a suitable SET pattern ourselves. */
885 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
886 ? emit_move_insn (x, y)
887 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
888 seq = get_insns ();
889 end_sequence ();
890
891 if (recog_memoized (insn) <= 0)
892 {
893 if (GET_CODE (x) == ZERO_EXTRACT)
894 {
895 rtx op = XEXP (x, 0);
896 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
897 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
898
899 /* store_bit_field expects START to be relative to
900 BYTES_BIG_ENDIAN and adjusts this value for machines with
901 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
902 invoke store_bit_field again it is necessary to have the START
903 value from the first call. */
904 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
905 {
906 if (MEM_P (op))
907 start = BITS_PER_UNIT - start - size;
908 else
909 {
910 gcc_assert (REG_P (op));
911 start = BITS_PER_WORD - start - size;
912 }
913 }
914
915 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
916 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
917 return;
918 }
919
920 switch (GET_RTX_CLASS (GET_CODE (y)))
921 {
922 case RTX_UNARY:
923 ot = code_to_optab (GET_CODE (y));
924 if (ot)
925 {
926 start_sequence ();
927 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
928 if (target != NULL_RTX)
929 {
930 if (target != x)
931 emit_move_insn (x, target);
932 seq = get_insns ();
933 }
934 end_sequence ();
935 }
936 break;
937
938 case RTX_BIN_ARITH:
939 case RTX_COMM_ARITH:
940 ot = code_to_optab (GET_CODE (y));
941 if (ot)
942 {
943 start_sequence ();
944 target = expand_binop (GET_MODE (y), ot,
945 XEXP (y, 0), XEXP (y, 1),
946 x, 0, OPTAB_DIRECT);
947 if (target != NULL_RTX)
948 {
949 if (target != x)
950 emit_move_insn (x, target);
951 seq = get_insns ();
952 }
953 end_sequence ();
954 }
955 break;
956
957 default:
958 break;
959 }
960 }
961
962 emit_insn (seq);
963 return;
964 }
965
966 outer = XEXP (x, 0);
967 inner = XEXP (outer, 0);
968 outmode = GET_MODE (outer);
969 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
970 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
971 0, 0, outmode, y);
972 }
973
974 /* Return sequence of instructions generated by if conversion. This
975 function calls end_sequence() to end the current stream, ensures
976 that are instructions are unshared, recognizable non-jump insns.
977 On failure, this function returns a NULL_RTX. */
978
979 static rtx
980 end_ifcvt_sequence (struct noce_if_info *if_info)
981 {
982 rtx insn;
983 rtx seq = get_insns ();
984
985 set_used_flags (if_info->x);
986 set_used_flags (if_info->cond);
987 set_used_flags (if_info->a);
988 set_used_flags (if_info->b);
989 unshare_all_rtl_in_chain (seq);
990 end_sequence ();
991
992 /* Make sure that all of the instructions emitted are recognizable,
993 and that we haven't introduced a new jump instruction.
994 As an exercise for the reader, build a general mechanism that
995 allows proper placement of required clobbers. */
996 for (insn = seq; insn; insn = NEXT_INSN (insn))
997 if (JUMP_P (insn)
998 || recog_memoized (insn) == -1)
999 return NULL_RTX;
1000
1001 return seq;
1002 }
1003
1004 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1005 "if (a == b) x = a; else x = b" into "x = b". */
1006
1007 static int
1008 noce_try_move (struct noce_if_info *if_info)
1009 {
1010 rtx cond = if_info->cond;
1011 enum rtx_code code = GET_CODE (cond);
1012 rtx y, seq;
1013
1014 if (code != NE && code != EQ)
1015 return FALSE;
1016
1017 /* This optimization isn't valid if either A or B could be a NaN
1018 or a signed zero. */
1019 if (HONOR_NANS (GET_MODE (if_info->x))
1020 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1021 return FALSE;
1022
1023 /* Check whether the operands of the comparison are A and in
1024 either order. */
1025 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1026 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1027 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1028 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1029 {
1030 y = (code == EQ) ? if_info->a : if_info->b;
1031
1032 /* Avoid generating the move if the source is the destination. */
1033 if (! rtx_equal_p (if_info->x, y))
1034 {
1035 start_sequence ();
1036 noce_emit_move_insn (if_info->x, y);
1037 seq = end_ifcvt_sequence (if_info);
1038 if (!seq)
1039 return FALSE;
1040
1041 emit_insn_before_setloc (seq, if_info->jump,
1042 INSN_LOCATION (if_info->insn_a));
1043 }
1044 return TRUE;
1045 }
1046 return FALSE;
1047 }
1048
1049 /* Convert "if (test) x = 1; else x = 0".
1050
1051 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1052 tried in noce_try_store_flag_constants after noce_try_cmove has had
1053 a go at the conversion. */
1054
1055 static int
1056 noce_try_store_flag (struct noce_if_info *if_info)
1057 {
1058 int reversep;
1059 rtx target, seq;
1060
1061 if (CONST_INT_P (if_info->b)
1062 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1063 && if_info->a == const0_rtx)
1064 reversep = 0;
1065 else if (if_info->b == const0_rtx
1066 && CONST_INT_P (if_info->a)
1067 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1068 && (reversed_comparison_code (if_info->cond, if_info->jump)
1069 != UNKNOWN))
1070 reversep = 1;
1071 else
1072 return FALSE;
1073
1074 start_sequence ();
1075
1076 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1077 if (target)
1078 {
1079 if (target != if_info->x)
1080 noce_emit_move_insn (if_info->x, target);
1081
1082 seq = end_ifcvt_sequence (if_info);
1083 if (! seq)
1084 return FALSE;
1085
1086 emit_insn_before_setloc (seq, if_info->jump,
1087 INSN_LOCATION (if_info->insn_a));
1088 return TRUE;
1089 }
1090 else
1091 {
1092 end_sequence ();
1093 return FALSE;
1094 }
1095 }
1096
1097 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1098
1099 static int
1100 noce_try_store_flag_constants (struct noce_if_info *if_info)
1101 {
1102 rtx target, seq;
1103 int reversep;
1104 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1105 int normalize, can_reverse;
1106 enum machine_mode mode;
1107
1108 if (CONST_INT_P (if_info->a)
1109 && CONST_INT_P (if_info->b))
1110 {
1111 mode = GET_MODE (if_info->x);
1112 ifalse = INTVAL (if_info->a);
1113 itrue = INTVAL (if_info->b);
1114
1115 /* Make sure we can represent the difference between the two values. */
1116 if ((itrue - ifalse > 0)
1117 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1118 return FALSE;
1119
1120 diff = trunc_int_for_mode (itrue - ifalse, mode);
1121
1122 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1123 != UNKNOWN);
1124
1125 reversep = 0;
1126 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1127 normalize = 0;
1128 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1129 && (STORE_FLAG_VALUE == 1
1130 || if_info->branch_cost >= 2))
1131 normalize = 1;
1132 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1133 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1134 normalize = 1, reversep = 1;
1135 else if (itrue == -1
1136 && (STORE_FLAG_VALUE == -1
1137 || if_info->branch_cost >= 2))
1138 normalize = -1;
1139 else if (ifalse == -1 && can_reverse
1140 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1141 normalize = -1, reversep = 1;
1142 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1143 || if_info->branch_cost >= 3)
1144 normalize = -1;
1145 else
1146 return FALSE;
1147
1148 if (reversep)
1149 {
1150 tmp = itrue; itrue = ifalse; ifalse = tmp;
1151 diff = trunc_int_for_mode (-diff, mode);
1152 }
1153
1154 start_sequence ();
1155 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1156 if (! target)
1157 {
1158 end_sequence ();
1159 return FALSE;
1160 }
1161
1162 /* if (test) x = 3; else x = 4;
1163 => x = 3 + (test == 0); */
1164 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1165 {
1166 target = expand_simple_binop (mode,
1167 (diff == STORE_FLAG_VALUE
1168 ? PLUS : MINUS),
1169 gen_int_mode (ifalse, mode), target,
1170 if_info->x, 0, OPTAB_WIDEN);
1171 }
1172
1173 /* if (test) x = 8; else x = 0;
1174 => x = (test != 0) << 3; */
1175 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1176 {
1177 target = expand_simple_binop (mode, ASHIFT,
1178 target, GEN_INT (tmp), if_info->x, 0,
1179 OPTAB_WIDEN);
1180 }
1181
1182 /* if (test) x = -1; else x = b;
1183 => x = -(test != 0) | b; */
1184 else if (itrue == -1)
1185 {
1186 target = expand_simple_binop (mode, IOR,
1187 target, gen_int_mode (ifalse, mode),
1188 if_info->x, 0, OPTAB_WIDEN);
1189 }
1190
1191 /* if (test) x = a; else x = b;
1192 => x = (-(test != 0) & (b - a)) + a; */
1193 else
1194 {
1195 target = expand_simple_binop (mode, AND,
1196 target, gen_int_mode (diff, mode),
1197 if_info->x, 0, OPTAB_WIDEN);
1198 if (target)
1199 target = expand_simple_binop (mode, PLUS,
1200 target, gen_int_mode (ifalse, mode),
1201 if_info->x, 0, OPTAB_WIDEN);
1202 }
1203
1204 if (! target)
1205 {
1206 end_sequence ();
1207 return FALSE;
1208 }
1209
1210 if (target != if_info->x)
1211 noce_emit_move_insn (if_info->x, target);
1212
1213 seq = end_ifcvt_sequence (if_info);
1214 if (!seq)
1215 return FALSE;
1216
1217 emit_insn_before_setloc (seq, if_info->jump,
1218 INSN_LOCATION (if_info->insn_a));
1219 return TRUE;
1220 }
1221
1222 return FALSE;
1223 }
1224
1225 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1226 similarly for "foo--". */
1227
1228 static int
1229 noce_try_addcc (struct noce_if_info *if_info)
1230 {
1231 rtx target, seq;
1232 int subtract, normalize;
1233
1234 if (GET_CODE (if_info->a) == PLUS
1235 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1236 && (reversed_comparison_code (if_info->cond, if_info->jump)
1237 != UNKNOWN))
1238 {
1239 rtx cond = if_info->cond;
1240 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1241
1242 /* First try to use addcc pattern. */
1243 if (general_operand (XEXP (cond, 0), VOIDmode)
1244 && general_operand (XEXP (cond, 1), VOIDmode))
1245 {
1246 start_sequence ();
1247 target = emit_conditional_add (if_info->x, code,
1248 XEXP (cond, 0),
1249 XEXP (cond, 1),
1250 VOIDmode,
1251 if_info->b,
1252 XEXP (if_info->a, 1),
1253 GET_MODE (if_info->x),
1254 (code == LTU || code == GEU
1255 || code == LEU || code == GTU));
1256 if (target)
1257 {
1258 if (target != if_info->x)
1259 noce_emit_move_insn (if_info->x, target);
1260
1261 seq = end_ifcvt_sequence (if_info);
1262 if (!seq)
1263 return FALSE;
1264
1265 emit_insn_before_setloc (seq, if_info->jump,
1266 INSN_LOCATION (if_info->insn_a));
1267 return TRUE;
1268 }
1269 end_sequence ();
1270 }
1271
1272 /* If that fails, construct conditional increment or decrement using
1273 setcc. */
1274 if (if_info->branch_cost >= 2
1275 && (XEXP (if_info->a, 1) == const1_rtx
1276 || XEXP (if_info->a, 1) == constm1_rtx))
1277 {
1278 start_sequence ();
1279 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1280 subtract = 0, normalize = 0;
1281 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1282 subtract = 1, normalize = 0;
1283 else
1284 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1285
1286
1287 target = noce_emit_store_flag (if_info,
1288 gen_reg_rtx (GET_MODE (if_info->x)),
1289 1, normalize);
1290
1291 if (target)
1292 target = expand_simple_binop (GET_MODE (if_info->x),
1293 subtract ? MINUS : PLUS,
1294 if_info->b, target, if_info->x,
1295 0, OPTAB_WIDEN);
1296 if (target)
1297 {
1298 if (target != if_info->x)
1299 noce_emit_move_insn (if_info->x, target);
1300
1301 seq = end_ifcvt_sequence (if_info);
1302 if (!seq)
1303 return FALSE;
1304
1305 emit_insn_before_setloc (seq, if_info->jump,
1306 INSN_LOCATION (if_info->insn_a));
1307 return TRUE;
1308 }
1309 end_sequence ();
1310 }
1311 }
1312
1313 return FALSE;
1314 }
1315
1316 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1317
1318 static int
1319 noce_try_store_flag_mask (struct noce_if_info *if_info)
1320 {
1321 rtx target, seq;
1322 int reversep;
1323
1324 reversep = 0;
1325 if ((if_info->branch_cost >= 2
1326 || STORE_FLAG_VALUE == -1)
1327 && ((if_info->a == const0_rtx
1328 && rtx_equal_p (if_info->b, if_info->x))
1329 || ((reversep = (reversed_comparison_code (if_info->cond,
1330 if_info->jump)
1331 != UNKNOWN))
1332 && if_info->b == const0_rtx
1333 && rtx_equal_p (if_info->a, if_info->x))))
1334 {
1335 start_sequence ();
1336 target = noce_emit_store_flag (if_info,
1337 gen_reg_rtx (GET_MODE (if_info->x)),
1338 reversep, -1);
1339 if (target)
1340 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1341 if_info->x,
1342 target, if_info->x, 0,
1343 OPTAB_WIDEN);
1344
1345 if (target)
1346 {
1347 if (target != if_info->x)
1348 noce_emit_move_insn (if_info->x, target);
1349
1350 seq = end_ifcvt_sequence (if_info);
1351 if (!seq)
1352 return FALSE;
1353
1354 emit_insn_before_setloc (seq, if_info->jump,
1355 INSN_LOCATION (if_info->insn_a));
1356 return TRUE;
1357 }
1358
1359 end_sequence ();
1360 }
1361
1362 return FALSE;
1363 }
1364
1365 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1366
1367 static rtx
1368 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1369 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1370 {
1371 rtx target ATTRIBUTE_UNUSED;
1372 int unsignedp ATTRIBUTE_UNUSED;
1373
1374 /* If earliest == jump, try to build the cmove insn directly.
1375 This is helpful when combine has created some complex condition
1376 (like for alpha's cmovlbs) that we can't hope to regenerate
1377 through the normal interface. */
1378
1379 if (if_info->cond_earliest == if_info->jump)
1380 {
1381 rtx tmp;
1382
1383 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1384 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1385 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1386
1387 start_sequence ();
1388 tmp = emit_insn (tmp);
1389
1390 if (recog_memoized (tmp) >= 0)
1391 {
1392 tmp = get_insns ();
1393 end_sequence ();
1394 emit_insn (tmp);
1395
1396 return x;
1397 }
1398
1399 end_sequence ();
1400 }
1401
1402 /* Don't even try if the comparison operands are weird. */
1403 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1404 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1405 return NULL_RTX;
1406
1407 #if HAVE_conditional_move
1408 unsignedp = (code == LTU || code == GEU
1409 || code == LEU || code == GTU);
1410
1411 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1412 vtrue, vfalse, GET_MODE (x),
1413 unsignedp);
1414 if (target)
1415 return target;
1416
1417 /* We might be faced with a situation like:
1418
1419 x = (reg:M TARGET)
1420 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1421 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1422
1423 We can't do a conditional move in mode M, but it's possible that we
1424 could do a conditional move in mode N instead and take a subreg of
1425 the result.
1426
1427 If we can't create new pseudos, though, don't bother. */
1428 if (reload_completed)
1429 return NULL_RTX;
1430
1431 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1432 {
1433 rtx reg_vtrue = SUBREG_REG (vtrue);
1434 rtx reg_vfalse = SUBREG_REG (vfalse);
1435 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1436 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1437 rtx promoted_target;
1438
1439 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1440 || byte_vtrue != byte_vfalse
1441 || (SUBREG_PROMOTED_VAR_P (vtrue)
1442 != SUBREG_PROMOTED_VAR_P (vfalse))
1443 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1444 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1445 return NULL_RTX;
1446
1447 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1448
1449 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1450 VOIDmode, reg_vtrue, reg_vfalse,
1451 GET_MODE (reg_vtrue), unsignedp);
1452 /* Nope, couldn't do it in that mode either. */
1453 if (!target)
1454 return NULL_RTX;
1455
1456 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1457 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1458 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1459 emit_move_insn (x, target);
1460 return x;
1461 }
1462 else
1463 return NULL_RTX;
1464 #else
1465 /* We'll never get here, as noce_process_if_block doesn't call the
1466 functions involved. Ifdef code, however, should be discouraged
1467 because it leads to typos in the code not selected. However,
1468 emit_conditional_move won't exist either. */
1469 return NULL_RTX;
1470 #endif
1471 }
1472
1473 /* Try only simple constants and registers here. More complex cases
1474 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1475 has had a go at it. */
1476
1477 static int
1478 noce_try_cmove (struct noce_if_info *if_info)
1479 {
1480 enum rtx_code code;
1481 rtx target, seq;
1482
1483 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1484 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1485 {
1486 start_sequence ();
1487
1488 code = GET_CODE (if_info->cond);
1489 target = noce_emit_cmove (if_info, if_info->x, code,
1490 XEXP (if_info->cond, 0),
1491 XEXP (if_info->cond, 1),
1492 if_info->a, if_info->b);
1493
1494 if (target)
1495 {
1496 if (target != if_info->x)
1497 noce_emit_move_insn (if_info->x, target);
1498
1499 seq = end_ifcvt_sequence (if_info);
1500 if (!seq)
1501 return FALSE;
1502
1503 emit_insn_before_setloc (seq, if_info->jump,
1504 INSN_LOCATION (if_info->insn_a));
1505 return TRUE;
1506 }
1507 else
1508 {
1509 end_sequence ();
1510 return FALSE;
1511 }
1512 }
1513
1514 return FALSE;
1515 }
1516
1517 /* Try more complex cases involving conditional_move. */
1518
1519 static int
1520 noce_try_cmove_arith (struct noce_if_info *if_info)
1521 {
1522 rtx a = if_info->a;
1523 rtx b = if_info->b;
1524 rtx x = if_info->x;
1525 rtx orig_a, orig_b;
1526 rtx insn_a, insn_b;
1527 rtx tmp, target;
1528 int is_mem = 0;
1529 int insn_cost;
1530 enum rtx_code code;
1531
1532 /* A conditional move from two memory sources is equivalent to a
1533 conditional on their addresses followed by a load. Don't do this
1534 early because it'll screw alias analysis. Note that we've
1535 already checked for no side effects. */
1536 /* ??? FIXME: Magic number 5. */
1537 if (cse_not_expected
1538 && MEM_P (a) && MEM_P (b)
1539 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1540 && if_info->branch_cost >= 5)
1541 {
1542 enum machine_mode address_mode = get_address_mode (a);
1543
1544 a = XEXP (a, 0);
1545 b = XEXP (b, 0);
1546 x = gen_reg_rtx (address_mode);
1547 is_mem = 1;
1548 }
1549
1550 /* ??? We could handle this if we knew that a load from A or B could
1551 not trap or fault. This is also true if we've already loaded
1552 from the address along the path from ENTRY. */
1553 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1554 return FALSE;
1555
1556 /* if (test) x = a + b; else x = c - d;
1557 => y = a + b;
1558 x = c - d;
1559 if (test)
1560 x = y;
1561 */
1562
1563 code = GET_CODE (if_info->cond);
1564 insn_a = if_info->insn_a;
1565 insn_b = if_info->insn_b;
1566
1567 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1568 if insn_rtx_cost can't be estimated. */
1569 if (insn_a)
1570 {
1571 insn_cost
1572 = insn_rtx_cost (PATTERN (insn_a),
1573 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1574 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1575 return FALSE;
1576 }
1577 else
1578 insn_cost = 0;
1579
1580 if (insn_b)
1581 {
1582 insn_cost
1583 += insn_rtx_cost (PATTERN (insn_b),
1584 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1585 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1586 return FALSE;
1587 }
1588
1589 /* Possibly rearrange operands to make things come out more natural. */
1590 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1591 {
1592 int reversep = 0;
1593 if (rtx_equal_p (b, x))
1594 reversep = 1;
1595 else if (general_operand (b, GET_MODE (b)))
1596 reversep = 1;
1597
1598 if (reversep)
1599 {
1600 code = reversed_comparison_code (if_info->cond, if_info->jump);
1601 tmp = a, a = b, b = tmp;
1602 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1603 }
1604 }
1605
1606 start_sequence ();
1607
1608 orig_a = a;
1609 orig_b = b;
1610
1611 /* If either operand is complex, load it into a register first.
1612 The best way to do this is to copy the original insn. In this
1613 way we preserve any clobbers etc that the insn may have had.
1614 This is of course not possible in the IS_MEM case. */
1615 if (! general_operand (a, GET_MODE (a)))
1616 {
1617 rtx set;
1618
1619 if (is_mem)
1620 {
1621 tmp = gen_reg_rtx (GET_MODE (a));
1622 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1623 }
1624 else if (! insn_a)
1625 goto end_seq_and_fail;
1626 else
1627 {
1628 a = gen_reg_rtx (GET_MODE (a));
1629 tmp = copy_rtx (insn_a);
1630 set = single_set (tmp);
1631 SET_DEST (set) = a;
1632 tmp = emit_insn (PATTERN (tmp));
1633 }
1634 if (recog_memoized (tmp) < 0)
1635 goto end_seq_and_fail;
1636 }
1637 if (! general_operand (b, GET_MODE (b)))
1638 {
1639 rtx set, last;
1640
1641 if (is_mem)
1642 {
1643 tmp = gen_reg_rtx (GET_MODE (b));
1644 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1645 }
1646 else if (! insn_b)
1647 goto end_seq_and_fail;
1648 else
1649 {
1650 b = gen_reg_rtx (GET_MODE (b));
1651 tmp = copy_rtx (insn_b);
1652 set = single_set (tmp);
1653 SET_DEST (set) = b;
1654 tmp = PATTERN (tmp);
1655 }
1656
1657 /* If insn to set up A clobbers any registers B depends on, try to
1658 swap insn that sets up A with the one that sets up B. If even
1659 that doesn't help, punt. */
1660 last = get_last_insn ();
1661 if (last && modified_in_p (orig_b, last))
1662 {
1663 tmp = emit_insn_before (tmp, get_insns ());
1664 if (modified_in_p (orig_a, tmp))
1665 goto end_seq_and_fail;
1666 }
1667 else
1668 tmp = emit_insn (tmp);
1669
1670 if (recog_memoized (tmp) < 0)
1671 goto end_seq_and_fail;
1672 }
1673
1674 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1675 XEXP (if_info->cond, 1), a, b);
1676
1677 if (! target)
1678 goto end_seq_and_fail;
1679
1680 /* If we're handling a memory for above, emit the load now. */
1681 if (is_mem)
1682 {
1683 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1684
1685 /* Copy over flags as appropriate. */
1686 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1687 MEM_VOLATILE_P (tmp) = 1;
1688 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1689 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1690 set_mem_align (tmp,
1691 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1692
1693 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1694 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1695
1696 noce_emit_move_insn (if_info->x, tmp);
1697 }
1698 else if (target != x)
1699 noce_emit_move_insn (x, target);
1700
1701 tmp = end_ifcvt_sequence (if_info);
1702 if (!tmp)
1703 return FALSE;
1704
1705 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATION (if_info->insn_a));
1706 return TRUE;
1707
1708 end_seq_and_fail:
1709 end_sequence ();
1710 return FALSE;
1711 }
1712
1713 /* For most cases, the simplified condition we found is the best
1714 choice, but this is not the case for the min/max/abs transforms.
1715 For these we wish to know that it is A or B in the condition. */
1716
1717 static rtx
1718 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1719 rtx *earliest)
1720 {
1721 rtx cond, set, insn;
1722 int reverse;
1723
1724 /* If target is already mentioned in the known condition, return it. */
1725 if (reg_mentioned_p (target, if_info->cond))
1726 {
1727 *earliest = if_info->cond_earliest;
1728 return if_info->cond;
1729 }
1730
1731 set = pc_set (if_info->jump);
1732 cond = XEXP (SET_SRC (set), 0);
1733 reverse
1734 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1735 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1736 if (if_info->then_else_reversed)
1737 reverse = !reverse;
1738
1739 /* If we're looking for a constant, try to make the conditional
1740 have that constant in it. There are two reasons why it may
1741 not have the constant we want:
1742
1743 1. GCC may have needed to put the constant in a register, because
1744 the target can't compare directly against that constant. For
1745 this case, we look for a SET immediately before the comparison
1746 that puts a constant in that register.
1747
1748 2. GCC may have canonicalized the conditional, for example
1749 replacing "if x < 4" with "if x <= 3". We can undo that (or
1750 make equivalent types of changes) to get the constants we need
1751 if they're off by one in the right direction. */
1752
1753 if (CONST_INT_P (target))
1754 {
1755 enum rtx_code code = GET_CODE (if_info->cond);
1756 rtx op_a = XEXP (if_info->cond, 0);
1757 rtx op_b = XEXP (if_info->cond, 1);
1758 rtx prev_insn;
1759
1760 /* First, look to see if we put a constant in a register. */
1761 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1762 if (prev_insn
1763 && BLOCK_FOR_INSN (prev_insn)
1764 == BLOCK_FOR_INSN (if_info->cond_earliest)
1765 && INSN_P (prev_insn)
1766 && GET_CODE (PATTERN (prev_insn)) == SET)
1767 {
1768 rtx src = find_reg_equal_equiv_note (prev_insn);
1769 if (!src)
1770 src = SET_SRC (PATTERN (prev_insn));
1771 if (CONST_INT_P (src))
1772 {
1773 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1774 op_a = src;
1775 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1776 op_b = src;
1777
1778 if (CONST_INT_P (op_a))
1779 {
1780 rtx tmp = op_a;
1781 op_a = op_b;
1782 op_b = tmp;
1783 code = swap_condition (code);
1784 }
1785 }
1786 }
1787
1788 /* Now, look to see if we can get the right constant by
1789 adjusting the conditional. */
1790 if (CONST_INT_P (op_b))
1791 {
1792 HOST_WIDE_INT desired_val = INTVAL (target);
1793 HOST_WIDE_INT actual_val = INTVAL (op_b);
1794
1795 switch (code)
1796 {
1797 case LT:
1798 if (actual_val == desired_val + 1)
1799 {
1800 code = LE;
1801 op_b = GEN_INT (desired_val);
1802 }
1803 break;
1804 case LE:
1805 if (actual_val == desired_val - 1)
1806 {
1807 code = LT;
1808 op_b = GEN_INT (desired_val);
1809 }
1810 break;
1811 case GT:
1812 if (actual_val == desired_val - 1)
1813 {
1814 code = GE;
1815 op_b = GEN_INT (desired_val);
1816 }
1817 break;
1818 case GE:
1819 if (actual_val == desired_val + 1)
1820 {
1821 code = GT;
1822 op_b = GEN_INT (desired_val);
1823 }
1824 break;
1825 default:
1826 break;
1827 }
1828 }
1829
1830 /* If we made any changes, generate a new conditional that is
1831 equivalent to what we started with, but has the right
1832 constants in it. */
1833 if (code != GET_CODE (if_info->cond)
1834 || op_a != XEXP (if_info->cond, 0)
1835 || op_b != XEXP (if_info->cond, 1))
1836 {
1837 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1838 *earliest = if_info->cond_earliest;
1839 return cond;
1840 }
1841 }
1842
1843 cond = canonicalize_condition (if_info->jump, cond, reverse,
1844 earliest, target, false, true);
1845 if (! cond || ! reg_mentioned_p (target, cond))
1846 return NULL;
1847
1848 /* We almost certainly searched back to a different place.
1849 Need to re-verify correct lifetimes. */
1850
1851 /* X may not be mentioned in the range (cond_earliest, jump]. */
1852 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1853 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1854 return NULL;
1855
1856 /* A and B may not be modified in the range [cond_earliest, jump). */
1857 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1858 if (INSN_P (insn)
1859 && (modified_in_p (if_info->a, insn)
1860 || modified_in_p (if_info->b, insn)))
1861 return NULL;
1862
1863 return cond;
1864 }
1865
1866 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1867
1868 static int
1869 noce_try_minmax (struct noce_if_info *if_info)
1870 {
1871 rtx cond, earliest, target, seq;
1872 enum rtx_code code, op;
1873 int unsignedp;
1874
1875 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1876 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1877 to get the target to tell us... */
1878 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1879 || HONOR_NANS (GET_MODE (if_info->x)))
1880 return FALSE;
1881
1882 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1883 if (!cond)
1884 return FALSE;
1885
1886 /* Verify the condition is of the form we expect, and canonicalize
1887 the comparison code. */
1888 code = GET_CODE (cond);
1889 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1890 {
1891 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1892 return FALSE;
1893 }
1894 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1895 {
1896 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1897 return FALSE;
1898 code = swap_condition (code);
1899 }
1900 else
1901 return FALSE;
1902
1903 /* Determine what sort of operation this is. Note that the code is for
1904 a taken branch, so the code->operation mapping appears backwards. */
1905 switch (code)
1906 {
1907 case LT:
1908 case LE:
1909 case UNLT:
1910 case UNLE:
1911 op = SMAX;
1912 unsignedp = 0;
1913 break;
1914 case GT:
1915 case GE:
1916 case UNGT:
1917 case UNGE:
1918 op = SMIN;
1919 unsignedp = 0;
1920 break;
1921 case LTU:
1922 case LEU:
1923 op = UMAX;
1924 unsignedp = 1;
1925 break;
1926 case GTU:
1927 case GEU:
1928 op = UMIN;
1929 unsignedp = 1;
1930 break;
1931 default:
1932 return FALSE;
1933 }
1934
1935 start_sequence ();
1936
1937 target = expand_simple_binop (GET_MODE (if_info->x), op,
1938 if_info->a, if_info->b,
1939 if_info->x, unsignedp, OPTAB_WIDEN);
1940 if (! target)
1941 {
1942 end_sequence ();
1943 return FALSE;
1944 }
1945 if (target != if_info->x)
1946 noce_emit_move_insn (if_info->x, target);
1947
1948 seq = end_ifcvt_sequence (if_info);
1949 if (!seq)
1950 return FALSE;
1951
1952 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
1953 if_info->cond = cond;
1954 if_info->cond_earliest = earliest;
1955
1956 return TRUE;
1957 }
1958
1959 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1960 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1961 etc. */
1962
1963 static int
1964 noce_try_abs (struct noce_if_info *if_info)
1965 {
1966 rtx cond, earliest, target, seq, a, b, c;
1967 int negate;
1968 bool one_cmpl = false;
1969
1970 /* Reject modes with signed zeros. */
1971 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1972 return FALSE;
1973
1974 /* Recognize A and B as constituting an ABS or NABS. The canonical
1975 form is a branch around the negation, taken when the object is the
1976 first operand of a comparison against 0 that evaluates to true. */
1977 a = if_info->a;
1978 b = if_info->b;
1979 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1980 negate = 0;
1981 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1982 {
1983 c = a; a = b; b = c;
1984 negate = 1;
1985 }
1986 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1987 {
1988 negate = 0;
1989 one_cmpl = true;
1990 }
1991 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1992 {
1993 c = a; a = b; b = c;
1994 negate = 1;
1995 one_cmpl = true;
1996 }
1997 else
1998 return FALSE;
1999
2000 cond = noce_get_alt_condition (if_info, b, &earliest);
2001 if (!cond)
2002 return FALSE;
2003
2004 /* Verify the condition is of the form we expect. */
2005 if (rtx_equal_p (XEXP (cond, 0), b))
2006 c = XEXP (cond, 1);
2007 else if (rtx_equal_p (XEXP (cond, 1), b))
2008 {
2009 c = XEXP (cond, 0);
2010 negate = !negate;
2011 }
2012 else
2013 return FALSE;
2014
2015 /* Verify that C is zero. Search one step backward for a
2016 REG_EQUAL note or a simple source if necessary. */
2017 if (REG_P (c))
2018 {
2019 rtx set, insn = prev_nonnote_insn (earliest);
2020 if (insn
2021 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2022 && (set = single_set (insn))
2023 && rtx_equal_p (SET_DEST (set), c))
2024 {
2025 rtx note = find_reg_equal_equiv_note (insn);
2026 if (note)
2027 c = XEXP (note, 0);
2028 else
2029 c = SET_SRC (set);
2030 }
2031 else
2032 return FALSE;
2033 }
2034 if (MEM_P (c)
2035 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2036 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2037 c = get_pool_constant (XEXP (c, 0));
2038
2039 /* Work around funny ideas get_condition has wrt canonicalization.
2040 Note that these rtx constants are known to be CONST_INT, and
2041 therefore imply integer comparisons. */
2042 if (c == constm1_rtx && GET_CODE (cond) == GT)
2043 ;
2044 else if (c == const1_rtx && GET_CODE (cond) == LT)
2045 ;
2046 else if (c != CONST0_RTX (GET_MODE (b)))
2047 return FALSE;
2048
2049 /* Determine what sort of operation this is. */
2050 switch (GET_CODE (cond))
2051 {
2052 case LT:
2053 case LE:
2054 case UNLT:
2055 case UNLE:
2056 negate = !negate;
2057 break;
2058 case GT:
2059 case GE:
2060 case UNGT:
2061 case UNGE:
2062 break;
2063 default:
2064 return FALSE;
2065 }
2066
2067 start_sequence ();
2068 if (one_cmpl)
2069 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2070 if_info->x);
2071 else
2072 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2073
2074 /* ??? It's a quandary whether cmove would be better here, especially
2075 for integers. Perhaps combine will clean things up. */
2076 if (target && negate)
2077 {
2078 if (one_cmpl)
2079 target = expand_simple_unop (GET_MODE (target), NOT, target,
2080 if_info->x, 0);
2081 else
2082 target = expand_simple_unop (GET_MODE (target), NEG, target,
2083 if_info->x, 0);
2084 }
2085
2086 if (! target)
2087 {
2088 end_sequence ();
2089 return FALSE;
2090 }
2091
2092 if (target != if_info->x)
2093 noce_emit_move_insn (if_info->x, target);
2094
2095 seq = end_ifcvt_sequence (if_info);
2096 if (!seq)
2097 return FALSE;
2098
2099 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2100 if_info->cond = cond;
2101 if_info->cond_earliest = earliest;
2102
2103 return TRUE;
2104 }
2105
2106 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2107
2108 static int
2109 noce_try_sign_mask (struct noce_if_info *if_info)
2110 {
2111 rtx cond, t, m, c, seq;
2112 enum machine_mode mode;
2113 enum rtx_code code;
2114 bool t_unconditional;
2115
2116 cond = if_info->cond;
2117 code = GET_CODE (cond);
2118 m = XEXP (cond, 0);
2119 c = XEXP (cond, 1);
2120
2121 t = NULL_RTX;
2122 if (if_info->a == const0_rtx)
2123 {
2124 if ((code == LT && c == const0_rtx)
2125 || (code == LE && c == constm1_rtx))
2126 t = if_info->b;
2127 }
2128 else if (if_info->b == const0_rtx)
2129 {
2130 if ((code == GE && c == const0_rtx)
2131 || (code == GT && c == constm1_rtx))
2132 t = if_info->a;
2133 }
2134
2135 if (! t || side_effects_p (t))
2136 return FALSE;
2137
2138 /* We currently don't handle different modes. */
2139 mode = GET_MODE (t);
2140 if (GET_MODE (m) != mode)
2141 return FALSE;
2142
2143 /* This is only profitable if T is unconditionally executed/evaluated in the
2144 original insn sequence or T is cheap. The former happens if B is the
2145 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2146 INSN_B which can happen for e.g. conditional stores to memory. For the
2147 cost computation use the block TEST_BB where the evaluation will end up
2148 after the transformation. */
2149 t_unconditional =
2150 (t == if_info->b
2151 && (if_info->insn_b == NULL_RTX
2152 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2153 if (!(t_unconditional
2154 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2155 < COSTS_N_INSNS (2))))
2156 return FALSE;
2157
2158 start_sequence ();
2159 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2160 "(signed) m >> 31" directly. This benefits targets with specialized
2161 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2162 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2163 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2164 : NULL_RTX;
2165
2166 if (!t)
2167 {
2168 end_sequence ();
2169 return FALSE;
2170 }
2171
2172 noce_emit_move_insn (if_info->x, t);
2173
2174 seq = end_ifcvt_sequence (if_info);
2175 if (!seq)
2176 return FALSE;
2177
2178 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2179 return TRUE;
2180 }
2181
2182
2183 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2184 transformations. */
2185
2186 static int
2187 noce_try_bitop (struct noce_if_info *if_info)
2188 {
2189 rtx cond, x, a, result, seq;
2190 enum machine_mode mode;
2191 enum rtx_code code;
2192 int bitnum;
2193
2194 x = if_info->x;
2195 cond = if_info->cond;
2196 code = GET_CODE (cond);
2197
2198 /* Check for no else condition. */
2199 if (! rtx_equal_p (x, if_info->b))
2200 return FALSE;
2201
2202 /* Check for a suitable condition. */
2203 if (code != NE && code != EQ)
2204 return FALSE;
2205 if (XEXP (cond, 1) != const0_rtx)
2206 return FALSE;
2207 cond = XEXP (cond, 0);
2208
2209 /* ??? We could also handle AND here. */
2210 if (GET_CODE (cond) == ZERO_EXTRACT)
2211 {
2212 if (XEXP (cond, 1) != const1_rtx
2213 || !CONST_INT_P (XEXP (cond, 2))
2214 || ! rtx_equal_p (x, XEXP (cond, 0)))
2215 return FALSE;
2216 bitnum = INTVAL (XEXP (cond, 2));
2217 mode = GET_MODE (x);
2218 if (BITS_BIG_ENDIAN)
2219 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2220 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2221 return FALSE;
2222 }
2223 else
2224 return FALSE;
2225
2226 a = if_info->a;
2227 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2228 {
2229 /* Check for "if (X & C) x = x op C". */
2230 if (! rtx_equal_p (x, XEXP (a, 0))
2231 || !CONST_INT_P (XEXP (a, 1))
2232 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2233 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2234 return FALSE;
2235
2236 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2237 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2238 if (GET_CODE (a) == IOR)
2239 result = (code == NE) ? a : NULL_RTX;
2240 else if (code == NE)
2241 {
2242 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2243 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2244 result = simplify_gen_binary (IOR, mode, x, result);
2245 }
2246 else
2247 {
2248 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2249 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2250 result = simplify_gen_binary (AND, mode, x, result);
2251 }
2252 }
2253 else if (GET_CODE (a) == AND)
2254 {
2255 /* Check for "if (X & C) x &= ~C". */
2256 if (! rtx_equal_p (x, XEXP (a, 0))
2257 || !CONST_INT_P (XEXP (a, 1))
2258 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2259 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2260 return FALSE;
2261
2262 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2263 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2264 result = (code == EQ) ? a : NULL_RTX;
2265 }
2266 else
2267 return FALSE;
2268
2269 if (result)
2270 {
2271 start_sequence ();
2272 noce_emit_move_insn (x, result);
2273 seq = end_ifcvt_sequence (if_info);
2274 if (!seq)
2275 return FALSE;
2276
2277 emit_insn_before_setloc (seq, if_info->jump,
2278 INSN_LOCATION (if_info->insn_a));
2279 }
2280 return TRUE;
2281 }
2282
2283
2284 /* Similar to get_condition, only the resulting condition must be
2285 valid at JUMP, instead of at EARLIEST.
2286
2287 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2288 THEN block of the caller, and we have to reverse the condition. */
2289
2290 static rtx
2291 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2292 {
2293 rtx cond, set, tmp;
2294 bool reverse;
2295
2296 if (! any_condjump_p (jump))
2297 return NULL_RTX;
2298
2299 set = pc_set (jump);
2300
2301 /* If this branches to JUMP_LABEL when the condition is false,
2302 reverse the condition. */
2303 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2304 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2305
2306 /* We may have to reverse because the caller's if block is not canonical,
2307 i.e. the THEN block isn't the fallthrough block for the TEST block
2308 (see find_if_header). */
2309 if (then_else_reversed)
2310 reverse = !reverse;
2311
2312 /* If the condition variable is a register and is MODE_INT, accept it. */
2313
2314 cond = XEXP (SET_SRC (set), 0);
2315 tmp = XEXP (cond, 0);
2316 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2317 && (GET_MODE (tmp) != BImode
2318 || !targetm.small_register_classes_for_mode_p (BImode)))
2319 {
2320 *earliest = jump;
2321
2322 if (reverse)
2323 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2324 GET_MODE (cond), tmp, XEXP (cond, 1));
2325 return cond;
2326 }
2327
2328 /* Otherwise, fall back on canonicalize_condition to do the dirty
2329 work of manipulating MODE_CC values and COMPARE rtx codes. */
2330 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2331 NULL_RTX, false, true);
2332
2333 /* We don't handle side-effects in the condition, like handling
2334 REG_INC notes and making sure no duplicate conditions are emitted. */
2335 if (tmp != NULL_RTX && side_effects_p (tmp))
2336 return NULL_RTX;
2337
2338 return tmp;
2339 }
2340
2341 /* Return true if OP is ok for if-then-else processing. */
2342
2343 static int
2344 noce_operand_ok (const_rtx op)
2345 {
2346 if (side_effects_p (op))
2347 return FALSE;
2348
2349 /* We special-case memories, so handle any of them with
2350 no address side effects. */
2351 if (MEM_P (op))
2352 return ! side_effects_p (XEXP (op, 0));
2353
2354 return ! may_trap_p (op);
2355 }
2356
2357 /* Return true if a write into MEM may trap or fault. */
2358
2359 static bool
2360 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2361 {
2362 rtx addr;
2363
2364 if (MEM_READONLY_P (mem))
2365 return true;
2366
2367 if (may_trap_or_fault_p (mem))
2368 return true;
2369
2370 addr = XEXP (mem, 0);
2371
2372 /* Call target hook to avoid the effects of -fpic etc.... */
2373 addr = targetm.delegitimize_address (addr);
2374
2375 while (addr)
2376 switch (GET_CODE (addr))
2377 {
2378 case CONST:
2379 case PRE_DEC:
2380 case PRE_INC:
2381 case POST_DEC:
2382 case POST_INC:
2383 case POST_MODIFY:
2384 addr = XEXP (addr, 0);
2385 break;
2386 case LO_SUM:
2387 case PRE_MODIFY:
2388 addr = XEXP (addr, 1);
2389 break;
2390 case PLUS:
2391 if (CONST_INT_P (XEXP (addr, 1)))
2392 addr = XEXP (addr, 0);
2393 else
2394 return false;
2395 break;
2396 case LABEL_REF:
2397 return true;
2398 case SYMBOL_REF:
2399 if (SYMBOL_REF_DECL (addr)
2400 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2401 return true;
2402 return false;
2403 default:
2404 return false;
2405 }
2406
2407 return false;
2408 }
2409
2410 /* Return whether we can use store speculation for MEM. TOP_BB is the
2411 basic block above the conditional block where we are considering
2412 doing the speculative store. We look for whether MEM is set
2413 unconditionally later in the function. */
2414
2415 static bool
2416 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2417 {
2418 basic_block dominator;
2419
2420 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2421 dominator != NULL;
2422 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2423 {
2424 rtx insn;
2425
2426 FOR_BB_INSNS (dominator, insn)
2427 {
2428 /* If we see something that might be a memory barrier, we
2429 have to stop looking. Even if the MEM is set later in
2430 the function, we still don't want to set it
2431 unconditionally before the barrier. */
2432 if (INSN_P (insn)
2433 && (volatile_insn_p (PATTERN (insn))
2434 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2435 return false;
2436
2437 if (memory_must_be_modified_in_insn_p (mem, insn))
2438 return true;
2439 if (modified_in_p (XEXP (mem, 0), insn))
2440 return false;
2441
2442 }
2443 }
2444
2445 return false;
2446 }
2447
2448 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2449 it without using conditional execution. Return TRUE if we were successful
2450 at converting the block. */
2451
2452 static int
2453 noce_process_if_block (struct noce_if_info *if_info)
2454 {
2455 basic_block test_bb = if_info->test_bb; /* test block */
2456 basic_block then_bb = if_info->then_bb; /* THEN */
2457 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2458 basic_block join_bb = if_info->join_bb; /* JOIN */
2459 rtx jump = if_info->jump;
2460 rtx cond = if_info->cond;
2461 rtx insn_a, insn_b;
2462 rtx set_a, set_b;
2463 rtx orig_x, x, a, b;
2464
2465 /* We're looking for patterns of the form
2466
2467 (1) if (...) x = a; else x = b;
2468 (2) x = b; if (...) x = a;
2469 (3) if (...) x = a; // as if with an initial x = x.
2470
2471 The later patterns require jumps to be more expensive.
2472
2473 ??? For future expansion, look for multiple X in such patterns. */
2474
2475 /* Look for one of the potential sets. */
2476 insn_a = first_active_insn (then_bb);
2477 if (! insn_a
2478 || insn_a != last_active_insn (then_bb, FALSE)
2479 || (set_a = single_set (insn_a)) == NULL_RTX)
2480 return FALSE;
2481
2482 x = SET_DEST (set_a);
2483 a = SET_SRC (set_a);
2484
2485 /* Look for the other potential set. Make sure we've got equivalent
2486 destinations. */
2487 /* ??? This is overconservative. Storing to two different mems is
2488 as easy as conditionally computing the address. Storing to a
2489 single mem merely requires a scratch memory to use as one of the
2490 destination addresses; often the memory immediately below the
2491 stack pointer is available for this. */
2492 set_b = NULL_RTX;
2493 if (else_bb)
2494 {
2495 insn_b = first_active_insn (else_bb);
2496 if (! insn_b
2497 || insn_b != last_active_insn (else_bb, FALSE)
2498 || (set_b = single_set (insn_b)) == NULL_RTX
2499 || ! rtx_equal_p (x, SET_DEST (set_b)))
2500 return FALSE;
2501 }
2502 else
2503 {
2504 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2505 /* We're going to be moving the evaluation of B down from above
2506 COND_EARLIEST to JUMP. Make sure the relevant data is still
2507 intact. */
2508 if (! insn_b
2509 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2510 || !NONJUMP_INSN_P (insn_b)
2511 || (set_b = single_set (insn_b)) == NULL_RTX
2512 || ! rtx_equal_p (x, SET_DEST (set_b))
2513 || ! noce_operand_ok (SET_SRC (set_b))
2514 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2515 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2516 /* Avoid extending the lifetime of hard registers on small
2517 register class machines. */
2518 || (REG_P (SET_SRC (set_b))
2519 && HARD_REGISTER_P (SET_SRC (set_b))
2520 && targetm.small_register_classes_for_mode_p
2521 (GET_MODE (SET_SRC (set_b))))
2522 /* Likewise with X. In particular this can happen when
2523 noce_get_condition looks farther back in the instruction
2524 stream than one might expect. */
2525 || reg_overlap_mentioned_p (x, cond)
2526 || reg_overlap_mentioned_p (x, a)
2527 || modified_between_p (x, insn_b, jump))
2528 insn_b = set_b = NULL_RTX;
2529 }
2530
2531 /* If x has side effects then only the if-then-else form is safe to
2532 convert. But even in that case we would need to restore any notes
2533 (such as REG_INC) at then end. That can be tricky if
2534 noce_emit_move_insn expands to more than one insn, so disable the
2535 optimization entirely for now if there are side effects. */
2536 if (side_effects_p (x))
2537 return FALSE;
2538
2539 b = (set_b ? SET_SRC (set_b) : x);
2540
2541 /* Only operate on register destinations, and even then avoid extending
2542 the lifetime of hard registers on small register class machines. */
2543 orig_x = x;
2544 if (!REG_P (x)
2545 || (HARD_REGISTER_P (x)
2546 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2547 {
2548 if (GET_MODE (x) == BLKmode)
2549 return FALSE;
2550
2551 if (GET_CODE (x) == ZERO_EXTRACT
2552 && (!CONST_INT_P (XEXP (x, 1))
2553 || !CONST_INT_P (XEXP (x, 2))))
2554 return FALSE;
2555
2556 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2557 ? XEXP (x, 0) : x));
2558 }
2559
2560 /* Don't operate on sources that may trap or are volatile. */
2561 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2562 return FALSE;
2563
2564 retry:
2565 /* Set up the info block for our subroutines. */
2566 if_info->insn_a = insn_a;
2567 if_info->insn_b = insn_b;
2568 if_info->x = x;
2569 if_info->a = a;
2570 if_info->b = b;
2571
2572 /* Try optimizations in some approximation of a useful order. */
2573 /* ??? Should first look to see if X is live incoming at all. If it
2574 isn't, we don't need anything but an unconditional set. */
2575
2576 /* Look and see if A and B are really the same. Avoid creating silly
2577 cmove constructs that no one will fix up later. */
2578 if (rtx_equal_p (a, b))
2579 {
2580 /* If we have an INSN_B, we don't have to create any new rtl. Just
2581 move the instruction that we already have. If we don't have an
2582 INSN_B, that means that A == X, and we've got a noop move. In
2583 that case don't do anything and let the code below delete INSN_A. */
2584 if (insn_b && else_bb)
2585 {
2586 rtx note;
2587
2588 if (else_bb && insn_b == BB_END (else_bb))
2589 BB_END (else_bb) = PREV_INSN (insn_b);
2590 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2591
2592 /* If there was a REG_EQUAL note, delete it since it may have been
2593 true due to this insn being after a jump. */
2594 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2595 remove_note (insn_b, note);
2596
2597 insn_b = NULL_RTX;
2598 }
2599 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2600 x must be executed twice. */
2601 else if (insn_b && side_effects_p (orig_x))
2602 return FALSE;
2603
2604 x = orig_x;
2605 goto success;
2606 }
2607
2608 if (!set_b && MEM_P (orig_x))
2609 {
2610 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2611 for optimizations if writing to x may trap or fault,
2612 i.e. it's a memory other than a static var or a stack slot,
2613 is misaligned on strict aligned machines or is read-only. If
2614 x is a read-only memory, then the program is valid only if we
2615 avoid the store into it. If there are stores on both the
2616 THEN and ELSE arms, then we can go ahead with the conversion;
2617 either the program is broken, or the condition is always
2618 false such that the other memory is selected. */
2619 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2620 return FALSE;
2621
2622 /* Avoid store speculation: given "if (...) x = a" where x is a
2623 MEM, we only want to do the store if x is always set
2624 somewhere in the function. This avoids cases like
2625 if (pthread_mutex_trylock(mutex))
2626 ++global_variable;
2627 where we only want global_variable to be changed if the mutex
2628 is held. FIXME: This should ideally be expressed directly in
2629 RTL somehow. */
2630 if (!noce_can_store_speculate_p (test_bb, orig_x))
2631 return FALSE;
2632 }
2633
2634 if (noce_try_move (if_info))
2635 goto success;
2636 if (noce_try_store_flag (if_info))
2637 goto success;
2638 if (noce_try_bitop (if_info))
2639 goto success;
2640 if (noce_try_minmax (if_info))
2641 goto success;
2642 if (noce_try_abs (if_info))
2643 goto success;
2644 if (HAVE_conditional_move
2645 && noce_try_cmove (if_info))
2646 goto success;
2647 if (! targetm.have_conditional_execution ())
2648 {
2649 if (noce_try_store_flag_constants (if_info))
2650 goto success;
2651 if (noce_try_addcc (if_info))
2652 goto success;
2653 if (noce_try_store_flag_mask (if_info))
2654 goto success;
2655 if (HAVE_conditional_move
2656 && noce_try_cmove_arith (if_info))
2657 goto success;
2658 if (noce_try_sign_mask (if_info))
2659 goto success;
2660 }
2661
2662 if (!else_bb && set_b)
2663 {
2664 insn_b = set_b = NULL_RTX;
2665 b = orig_x;
2666 goto retry;
2667 }
2668
2669 return FALSE;
2670
2671 success:
2672
2673 /* If we used a temporary, fix it up now. */
2674 if (orig_x != x)
2675 {
2676 rtx seq;
2677
2678 start_sequence ();
2679 noce_emit_move_insn (orig_x, x);
2680 seq = get_insns ();
2681 set_used_flags (orig_x);
2682 unshare_all_rtl_in_chain (seq);
2683 end_sequence ();
2684
2685 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2686 }
2687
2688 /* The original THEN and ELSE blocks may now be removed. The test block
2689 must now jump to the join block. If the test block and the join block
2690 can be merged, do so. */
2691 if (else_bb)
2692 {
2693 delete_basic_block (else_bb);
2694 num_true_changes++;
2695 }
2696 else
2697 remove_edge (find_edge (test_bb, join_bb));
2698
2699 remove_edge (find_edge (then_bb, join_bb));
2700 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2701 delete_basic_block (then_bb);
2702 num_true_changes++;
2703
2704 if (can_merge_blocks_p (test_bb, join_bb))
2705 {
2706 merge_blocks (test_bb, join_bb);
2707 num_true_changes++;
2708 }
2709
2710 num_updated_if_blocks++;
2711 return TRUE;
2712 }
2713
2714 /* Check whether a block is suitable for conditional move conversion.
2715 Every insn must be a simple set of a register to a constant or a
2716 register. For each assignment, store the value in the pointer map
2717 VALS, keyed indexed by register pointer, then store the register
2718 pointer in REGS. COND is the condition we will test. */
2719
2720 static int
2721 check_cond_move_block (basic_block bb,
2722 struct pointer_map_t *vals,
2723 vec<rtx> *regs,
2724 rtx cond)
2725 {
2726 rtx insn;
2727
2728 /* We can only handle simple jumps at the end of the basic block.
2729 It is almost impossible to update the CFG otherwise. */
2730 insn = BB_END (bb);
2731 if (JUMP_P (insn) && !onlyjump_p (insn))
2732 return FALSE;
2733
2734 FOR_BB_INSNS (bb, insn)
2735 {
2736 rtx set, dest, src;
2737 void **slot;
2738
2739 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2740 continue;
2741 set = single_set (insn);
2742 if (!set)
2743 return FALSE;
2744
2745 dest = SET_DEST (set);
2746 src = SET_SRC (set);
2747 if (!REG_P (dest)
2748 || (HARD_REGISTER_P (dest)
2749 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2750 return FALSE;
2751
2752 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2753 return FALSE;
2754
2755 if (side_effects_p (src) || side_effects_p (dest))
2756 return FALSE;
2757
2758 if (may_trap_p (src) || may_trap_p (dest))
2759 return FALSE;
2760
2761 /* Don't try to handle this if the source register was
2762 modified earlier in the block. */
2763 if ((REG_P (src)
2764 && pointer_map_contains (vals, src))
2765 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2766 && pointer_map_contains (vals, SUBREG_REG (src))))
2767 return FALSE;
2768
2769 /* Don't try to handle this if the destination register was
2770 modified earlier in the block. */
2771 if (pointer_map_contains (vals, dest))
2772 return FALSE;
2773
2774 /* Don't try to handle this if the condition uses the
2775 destination register. */
2776 if (reg_overlap_mentioned_p (dest, cond))
2777 return FALSE;
2778
2779 /* Don't try to handle this if the source register is modified
2780 later in the block. */
2781 if (!CONSTANT_P (src)
2782 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2783 return FALSE;
2784
2785 slot = pointer_map_insert (vals, (void *) dest);
2786 *slot = (void *) src;
2787
2788 regs->safe_push (dest);
2789 }
2790
2791 return TRUE;
2792 }
2793
2794 /* Given a basic block BB suitable for conditional move conversion,
2795 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2796 the register values depending on COND, emit the insns in the block as
2797 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2798 processed. The caller has started a sequence for the conversion.
2799 Return true if successful, false if something goes wrong. */
2800
2801 static bool
2802 cond_move_convert_if_block (struct noce_if_info *if_infop,
2803 basic_block bb, rtx cond,
2804 struct pointer_map_t *then_vals,
2805 struct pointer_map_t *else_vals,
2806 bool else_block_p)
2807 {
2808 enum rtx_code code;
2809 rtx insn, cond_arg0, cond_arg1;
2810
2811 code = GET_CODE (cond);
2812 cond_arg0 = XEXP (cond, 0);
2813 cond_arg1 = XEXP (cond, 1);
2814
2815 FOR_BB_INSNS (bb, insn)
2816 {
2817 rtx set, target, dest, t, e;
2818 void **then_slot, **else_slot;
2819
2820 /* ??? Maybe emit conditional debug insn? */
2821 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2822 continue;
2823 set = single_set (insn);
2824 gcc_assert (set && REG_P (SET_DEST (set)));
2825
2826 dest = SET_DEST (set);
2827
2828 then_slot = pointer_map_contains (then_vals, dest);
2829 else_slot = pointer_map_contains (else_vals, dest);
2830 t = then_slot ? (rtx) *then_slot : NULL_RTX;
2831 e = else_slot ? (rtx) *else_slot : NULL_RTX;
2832
2833 if (else_block_p)
2834 {
2835 /* If this register was set in the then block, we already
2836 handled this case there. */
2837 if (t)
2838 continue;
2839 t = dest;
2840 gcc_assert (e);
2841 }
2842 else
2843 {
2844 gcc_assert (t);
2845 if (!e)
2846 e = dest;
2847 }
2848
2849 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2850 t, e);
2851 if (!target)
2852 return false;
2853
2854 if (target != dest)
2855 noce_emit_move_insn (dest, target);
2856 }
2857
2858 return true;
2859 }
2860
2861 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2862 it using only conditional moves. Return TRUE if we were successful at
2863 converting the block. */
2864
2865 static int
2866 cond_move_process_if_block (struct noce_if_info *if_info)
2867 {
2868 basic_block test_bb = if_info->test_bb;
2869 basic_block then_bb = if_info->then_bb;
2870 basic_block else_bb = if_info->else_bb;
2871 basic_block join_bb = if_info->join_bb;
2872 rtx jump = if_info->jump;
2873 rtx cond = if_info->cond;
2874 rtx seq, loc_insn;
2875 rtx reg;
2876 int c;
2877 struct pointer_map_t *then_vals;
2878 struct pointer_map_t *else_vals;
2879 vec<rtx> then_regs = vNULL;
2880 vec<rtx> else_regs = vNULL;
2881 unsigned int i;
2882 int success_p = FALSE;
2883
2884 /* Build a mapping for each block to the value used for each
2885 register. */
2886 then_vals = pointer_map_create ();
2887 else_vals = pointer_map_create ();
2888
2889 /* Make sure the blocks are suitable. */
2890 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2891 || (else_bb
2892 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2893 goto done;
2894
2895 /* Make sure the blocks can be used together. If the same register
2896 is set in both blocks, and is not set to a constant in both
2897 cases, then both blocks must set it to the same register. We
2898 have already verified that if it is set to a register, that the
2899 source register does not change after the assignment. Also count
2900 the number of registers set in only one of the blocks. */
2901 c = 0;
2902 FOR_EACH_VEC_ELT (then_regs, i, reg)
2903 {
2904 void **then_slot = pointer_map_contains (then_vals, reg);
2905 void **else_slot = pointer_map_contains (else_vals, reg);
2906
2907 gcc_checking_assert (then_slot);
2908 if (!else_slot)
2909 ++c;
2910 else
2911 {
2912 rtx then_val = (rtx) *then_slot;
2913 rtx else_val = (rtx) *else_slot;
2914 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
2915 && !rtx_equal_p (then_val, else_val))
2916 goto done;
2917 }
2918 }
2919
2920 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2921 FOR_EACH_VEC_ELT (else_regs, i, reg)
2922 {
2923 gcc_checking_assert (pointer_map_contains (else_vals, reg));
2924 if (!pointer_map_contains (then_vals, reg))
2925 ++c;
2926 }
2927
2928 /* Make sure it is reasonable to convert this block. What matters
2929 is the number of assignments currently made in only one of the
2930 branches, since if we convert we are going to always execute
2931 them. */
2932 if (c > MAX_CONDITIONAL_EXECUTE)
2933 goto done;
2934
2935 /* Try to emit the conditional moves. First do the then block,
2936 then do anything left in the else blocks. */
2937 start_sequence ();
2938 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2939 then_vals, else_vals, false)
2940 || (else_bb
2941 && !cond_move_convert_if_block (if_info, else_bb, cond,
2942 then_vals, else_vals, true)))
2943 {
2944 end_sequence ();
2945 goto done;
2946 }
2947 seq = end_ifcvt_sequence (if_info);
2948 if (!seq)
2949 goto done;
2950
2951 loc_insn = first_active_insn (then_bb);
2952 if (!loc_insn)
2953 {
2954 loc_insn = first_active_insn (else_bb);
2955 gcc_assert (loc_insn);
2956 }
2957 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
2958
2959 if (else_bb)
2960 {
2961 delete_basic_block (else_bb);
2962 num_true_changes++;
2963 }
2964 else
2965 remove_edge (find_edge (test_bb, join_bb));
2966
2967 remove_edge (find_edge (then_bb, join_bb));
2968 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2969 delete_basic_block (then_bb);
2970 num_true_changes++;
2971
2972 if (can_merge_blocks_p (test_bb, join_bb))
2973 {
2974 merge_blocks (test_bb, join_bb);
2975 num_true_changes++;
2976 }
2977
2978 num_updated_if_blocks++;
2979
2980 success_p = TRUE;
2981
2982 done:
2983 pointer_map_destroy (then_vals);
2984 pointer_map_destroy (else_vals);
2985 then_regs.release ();
2986 else_regs.release ();
2987 return success_p;
2988 }
2989
2990 \f
2991 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2992 IF-THEN-ELSE-JOIN block.
2993
2994 If so, we'll try to convert the insns to not require the branch,
2995 using only transformations that do not require conditional execution.
2996
2997 Return TRUE if we were successful at converting the block. */
2998
2999 static int
3000 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3001 int pass)
3002 {
3003 basic_block then_bb, else_bb, join_bb;
3004 bool then_else_reversed = false;
3005 rtx jump, cond;
3006 rtx cond_earliest;
3007 struct noce_if_info if_info;
3008
3009 /* We only ever should get here before reload. */
3010 gcc_assert (!reload_completed);
3011
3012 /* Recognize an IF-THEN-ELSE-JOIN block. */
3013 if (single_pred_p (then_edge->dest)
3014 && single_succ_p (then_edge->dest)
3015 && single_pred_p (else_edge->dest)
3016 && single_succ_p (else_edge->dest)
3017 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3018 {
3019 then_bb = then_edge->dest;
3020 else_bb = else_edge->dest;
3021 join_bb = single_succ (then_bb);
3022 }
3023 /* Recognize an IF-THEN-JOIN block. */
3024 else if (single_pred_p (then_edge->dest)
3025 && single_succ_p (then_edge->dest)
3026 && single_succ (then_edge->dest) == else_edge->dest)
3027 {
3028 then_bb = then_edge->dest;
3029 else_bb = NULL_BLOCK;
3030 join_bb = else_edge->dest;
3031 }
3032 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3033 of basic blocks in cfglayout mode does not matter, so the fallthrough
3034 edge can go to any basic block (and not just to bb->next_bb, like in
3035 cfgrtl mode). */
3036 else if (single_pred_p (else_edge->dest)
3037 && single_succ_p (else_edge->dest)
3038 && single_succ (else_edge->dest) == then_edge->dest)
3039 {
3040 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3041 To make this work, we have to invert the THEN and ELSE blocks
3042 and reverse the jump condition. */
3043 then_bb = else_edge->dest;
3044 else_bb = NULL_BLOCK;
3045 join_bb = single_succ (then_bb);
3046 then_else_reversed = true;
3047 }
3048 else
3049 /* Not a form we can handle. */
3050 return FALSE;
3051
3052 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3053 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3054 return FALSE;
3055 if (else_bb
3056 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3057 return FALSE;
3058
3059 num_possible_if_blocks++;
3060
3061 if (dump_file)
3062 {
3063 fprintf (dump_file,
3064 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3065 (else_bb) ? "-ELSE" : "",
3066 pass, test_bb->index, then_bb->index);
3067
3068 if (else_bb)
3069 fprintf (dump_file, ", else %d", else_bb->index);
3070
3071 fprintf (dump_file, ", join %d\n", join_bb->index);
3072 }
3073
3074 /* If the conditional jump is more than just a conditional
3075 jump, then we can not do if-conversion on this block. */
3076 jump = BB_END (test_bb);
3077 if (! onlyjump_p (jump))
3078 return FALSE;
3079
3080 /* If this is not a standard conditional jump, we can't parse it. */
3081 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3082 if (!cond)
3083 return FALSE;
3084
3085 /* We must be comparing objects whose modes imply the size. */
3086 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3087 return FALSE;
3088
3089 /* Initialize an IF_INFO struct to pass around. */
3090 memset (&if_info, 0, sizeof if_info);
3091 if_info.test_bb = test_bb;
3092 if_info.then_bb = then_bb;
3093 if_info.else_bb = else_bb;
3094 if_info.join_bb = join_bb;
3095 if_info.cond = cond;
3096 if_info.cond_earliest = cond_earliest;
3097 if_info.jump = jump;
3098 if_info.then_else_reversed = then_else_reversed;
3099 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3100 predictable_edge_p (then_edge));
3101
3102 /* Do the real work. */
3103
3104 if (noce_process_if_block (&if_info))
3105 return TRUE;
3106
3107 if (HAVE_conditional_move
3108 && cond_move_process_if_block (&if_info))
3109 return TRUE;
3110
3111 return FALSE;
3112 }
3113 \f
3114
3115 /* Merge the blocks and mark for local life update. */
3116
3117 static void
3118 merge_if_block (struct ce_if_block * ce_info)
3119 {
3120 basic_block test_bb = ce_info->test_bb; /* last test block */
3121 basic_block then_bb = ce_info->then_bb; /* THEN */
3122 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3123 basic_block join_bb = ce_info->join_bb; /* join block */
3124 basic_block combo_bb;
3125
3126 /* All block merging is done into the lower block numbers. */
3127
3128 combo_bb = test_bb;
3129 df_set_bb_dirty (test_bb);
3130
3131 /* Merge any basic blocks to handle && and || subtests. Each of
3132 the blocks are on the fallthru path from the predecessor block. */
3133 if (ce_info->num_multiple_test_blocks > 0)
3134 {
3135 basic_block bb = test_bb;
3136 basic_block last_test_bb = ce_info->last_test_bb;
3137 basic_block fallthru = block_fallthru (bb);
3138
3139 do
3140 {
3141 bb = fallthru;
3142 fallthru = block_fallthru (bb);
3143 merge_blocks (combo_bb, bb);
3144 num_true_changes++;
3145 }
3146 while (bb != last_test_bb);
3147 }
3148
3149 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3150 label, but it might if there were || tests. That label's count should be
3151 zero, and it normally should be removed. */
3152
3153 if (then_bb)
3154 {
3155 merge_blocks (combo_bb, then_bb);
3156 num_true_changes++;
3157 }
3158
3159 /* The ELSE block, if it existed, had a label. That label count
3160 will almost always be zero, but odd things can happen when labels
3161 get their addresses taken. */
3162 if (else_bb)
3163 {
3164 merge_blocks (combo_bb, else_bb);
3165 num_true_changes++;
3166 }
3167
3168 /* If there was no join block reported, that means it was not adjacent
3169 to the others, and so we cannot merge them. */
3170
3171 if (! join_bb)
3172 {
3173 rtx last = BB_END (combo_bb);
3174
3175 /* The outgoing edge for the current COMBO block should already
3176 be correct. Verify this. */
3177 if (EDGE_COUNT (combo_bb->succs) == 0)
3178 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3179 || (NONJUMP_INSN_P (last)
3180 && GET_CODE (PATTERN (last)) == TRAP_IF
3181 && (TRAP_CONDITION (PATTERN (last))
3182 == const_true_rtx)));
3183
3184 else
3185 /* There should still be something at the end of the THEN or ELSE
3186 blocks taking us to our final destination. */
3187 gcc_assert (JUMP_P (last)
3188 || (EDGE_SUCC (combo_bb, 0)->dest
3189 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3190 && CALL_P (last)
3191 && SIBLING_CALL_P (last))
3192 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3193 && can_throw_internal (last)));
3194 }
3195
3196 /* The JOIN block may have had quite a number of other predecessors too.
3197 Since we've already merged the TEST, THEN and ELSE blocks, we should
3198 have only one remaining edge from our if-then-else diamond. If there
3199 is more than one remaining edge, it must come from elsewhere. There
3200 may be zero incoming edges if the THEN block didn't actually join
3201 back up (as with a call to a non-return function). */
3202 else if (EDGE_COUNT (join_bb->preds) < 2
3203 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3204 {
3205 /* We can merge the JOIN cleanly and update the dataflow try
3206 again on this pass.*/
3207 merge_blocks (combo_bb, join_bb);
3208 num_true_changes++;
3209 }
3210 else
3211 {
3212 /* We cannot merge the JOIN. */
3213
3214 /* The outgoing edge for the current COMBO block should already
3215 be correct. Verify this. */
3216 gcc_assert (single_succ_p (combo_bb)
3217 && single_succ (combo_bb) == join_bb);
3218
3219 /* Remove the jump and cruft from the end of the COMBO block. */
3220 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3221 tidy_fallthru_edge (single_succ_edge (combo_bb));
3222 }
3223
3224 num_updated_if_blocks++;
3225 }
3226 \f
3227 /* Find a block ending in a simple IF condition and try to transform it
3228 in some way. When converting a multi-block condition, put the new code
3229 in the first such block and delete the rest. Return a pointer to this
3230 first block if some transformation was done. Return NULL otherwise. */
3231
3232 static basic_block
3233 find_if_header (basic_block test_bb, int pass)
3234 {
3235 ce_if_block_t ce_info;
3236 edge then_edge;
3237 edge else_edge;
3238
3239 /* The kind of block we're looking for has exactly two successors. */
3240 if (EDGE_COUNT (test_bb->succs) != 2)
3241 return NULL;
3242
3243 then_edge = EDGE_SUCC (test_bb, 0);
3244 else_edge = EDGE_SUCC (test_bb, 1);
3245
3246 if (df_get_bb_dirty (then_edge->dest))
3247 return NULL;
3248 if (df_get_bb_dirty (else_edge->dest))
3249 return NULL;
3250
3251 /* Neither edge should be abnormal. */
3252 if ((then_edge->flags & EDGE_COMPLEX)
3253 || (else_edge->flags & EDGE_COMPLEX))
3254 return NULL;
3255
3256 /* Nor exit the loop. */
3257 if ((then_edge->flags & EDGE_LOOP_EXIT)
3258 || (else_edge->flags & EDGE_LOOP_EXIT))
3259 return NULL;
3260
3261 /* The THEN edge is canonically the one that falls through. */
3262 if (then_edge->flags & EDGE_FALLTHRU)
3263 ;
3264 else if (else_edge->flags & EDGE_FALLTHRU)
3265 {
3266 edge e = else_edge;
3267 else_edge = then_edge;
3268 then_edge = e;
3269 }
3270 else
3271 /* Otherwise this must be a multiway branch of some sort. */
3272 return NULL;
3273
3274 memset (&ce_info, 0, sizeof (ce_info));
3275 ce_info.test_bb = test_bb;
3276 ce_info.then_bb = then_edge->dest;
3277 ce_info.else_bb = else_edge->dest;
3278 ce_info.pass = pass;
3279
3280 #ifdef IFCVT_MACHDEP_INIT
3281 IFCVT_MACHDEP_INIT (&ce_info);
3282 #endif
3283
3284 if (!reload_completed
3285 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3286 goto success;
3287
3288 if (reload_completed
3289 && targetm.have_conditional_execution ()
3290 && cond_exec_find_if_block (&ce_info))
3291 goto success;
3292
3293 if (HAVE_trap
3294 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3295 && find_cond_trap (test_bb, then_edge, else_edge))
3296 goto success;
3297
3298 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3299 && (reload_completed || !targetm.have_conditional_execution ()))
3300 {
3301 if (find_if_case_1 (test_bb, then_edge, else_edge))
3302 goto success;
3303 if (find_if_case_2 (test_bb, then_edge, else_edge))
3304 goto success;
3305 }
3306
3307 return NULL;
3308
3309 success:
3310 if (dump_file)
3311 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3312 /* Set this so we continue looking. */
3313 cond_exec_changed_p = TRUE;
3314 return ce_info.test_bb;
3315 }
3316
3317 /* Return true if a block has two edges, one of which falls through to the next
3318 block, and the other jumps to a specific block, so that we can tell if the
3319 block is part of an && test or an || test. Returns either -1 or the number
3320 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3321
3322 static int
3323 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3324 {
3325 edge cur_edge;
3326 int fallthru_p = FALSE;
3327 int jump_p = FALSE;
3328 rtx insn;
3329 rtx end;
3330 int n_insns = 0;
3331 edge_iterator ei;
3332
3333 if (!cur_bb || !target_bb)
3334 return -1;
3335
3336 /* If no edges, obviously it doesn't jump or fallthru. */
3337 if (EDGE_COUNT (cur_bb->succs) == 0)
3338 return FALSE;
3339
3340 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3341 {
3342 if (cur_edge->flags & EDGE_COMPLEX)
3343 /* Anything complex isn't what we want. */
3344 return -1;
3345
3346 else if (cur_edge->flags & EDGE_FALLTHRU)
3347 fallthru_p = TRUE;
3348
3349 else if (cur_edge->dest == target_bb)
3350 jump_p = TRUE;
3351
3352 else
3353 return -1;
3354 }
3355
3356 if ((jump_p & fallthru_p) == 0)
3357 return -1;
3358
3359 /* Don't allow calls in the block, since this is used to group && and ||
3360 together for conditional execution support. ??? we should support
3361 conditional execution support across calls for IA-64 some day, but
3362 for now it makes the code simpler. */
3363 end = BB_END (cur_bb);
3364 insn = BB_HEAD (cur_bb);
3365
3366 while (insn != NULL_RTX)
3367 {
3368 if (CALL_P (insn))
3369 return -1;
3370
3371 if (INSN_P (insn)
3372 && !JUMP_P (insn)
3373 && !DEBUG_INSN_P (insn)
3374 && GET_CODE (PATTERN (insn)) != USE
3375 && GET_CODE (PATTERN (insn)) != CLOBBER)
3376 n_insns++;
3377
3378 if (insn == end)
3379 break;
3380
3381 insn = NEXT_INSN (insn);
3382 }
3383
3384 return n_insns;
3385 }
3386
3387 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3388 block. If so, we'll try to convert the insns to not require the branch.
3389 Return TRUE if we were successful at converting the block. */
3390
3391 static int
3392 cond_exec_find_if_block (struct ce_if_block * ce_info)
3393 {
3394 basic_block test_bb = ce_info->test_bb;
3395 basic_block then_bb = ce_info->then_bb;
3396 basic_block else_bb = ce_info->else_bb;
3397 basic_block join_bb = NULL_BLOCK;
3398 edge cur_edge;
3399 basic_block next;
3400 edge_iterator ei;
3401
3402 ce_info->last_test_bb = test_bb;
3403
3404 /* We only ever should get here after reload,
3405 and if we have conditional execution. */
3406 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3407
3408 /* Discover if any fall through predecessors of the current test basic block
3409 were && tests (which jump to the else block) or || tests (which jump to
3410 the then block). */
3411 if (single_pred_p (test_bb)
3412 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3413 {
3414 basic_block bb = single_pred (test_bb);
3415 basic_block target_bb;
3416 int max_insns = MAX_CONDITIONAL_EXECUTE;
3417 int n_insns;
3418
3419 /* Determine if the preceding block is an && or || block. */
3420 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3421 {
3422 ce_info->and_and_p = TRUE;
3423 target_bb = else_bb;
3424 }
3425 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3426 {
3427 ce_info->and_and_p = FALSE;
3428 target_bb = then_bb;
3429 }
3430 else
3431 target_bb = NULL_BLOCK;
3432
3433 if (target_bb && n_insns <= max_insns)
3434 {
3435 int total_insns = 0;
3436 int blocks = 0;
3437
3438 ce_info->last_test_bb = test_bb;
3439
3440 /* Found at least one && or || block, look for more. */
3441 do
3442 {
3443 ce_info->test_bb = test_bb = bb;
3444 total_insns += n_insns;
3445 blocks++;
3446
3447 if (!single_pred_p (bb))
3448 break;
3449
3450 bb = single_pred (bb);
3451 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3452 }
3453 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3454
3455 ce_info->num_multiple_test_blocks = blocks;
3456 ce_info->num_multiple_test_insns = total_insns;
3457
3458 if (ce_info->and_and_p)
3459 ce_info->num_and_and_blocks = blocks;
3460 else
3461 ce_info->num_or_or_blocks = blocks;
3462 }
3463 }
3464
3465 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3466 other than any || blocks which jump to the THEN block. */
3467 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3468 return FALSE;
3469
3470 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3471 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3472 {
3473 if (cur_edge->flags & EDGE_COMPLEX)
3474 return FALSE;
3475 }
3476
3477 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3478 {
3479 if (cur_edge->flags & EDGE_COMPLEX)
3480 return FALSE;
3481 }
3482
3483 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3484 if (EDGE_COUNT (then_bb->succs) > 0
3485 && (!single_succ_p (then_bb)
3486 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3487 || (epilogue_completed
3488 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3489 return FALSE;
3490
3491 /* If the THEN block has no successors, conditional execution can still
3492 make a conditional call. Don't do this unless the ELSE block has
3493 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3494 Check for the last insn of the THEN block being an indirect jump, which
3495 is listed as not having any successors, but confuses the rest of the CE
3496 code processing. ??? we should fix this in the future. */
3497 if (EDGE_COUNT (then_bb->succs) == 0)
3498 {
3499 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3500 {
3501 rtx last_insn = BB_END (then_bb);
3502
3503 while (last_insn
3504 && NOTE_P (last_insn)
3505 && last_insn != BB_HEAD (then_bb))
3506 last_insn = PREV_INSN (last_insn);
3507
3508 if (last_insn
3509 && JUMP_P (last_insn)
3510 && ! simplejump_p (last_insn))
3511 return FALSE;
3512
3513 join_bb = else_bb;
3514 else_bb = NULL_BLOCK;
3515 }
3516 else
3517 return FALSE;
3518 }
3519
3520 /* If the THEN block's successor is the other edge out of the TEST block,
3521 then we have an IF-THEN combo without an ELSE. */
3522 else if (single_succ (then_bb) == else_bb)
3523 {
3524 join_bb = else_bb;
3525 else_bb = NULL_BLOCK;
3526 }
3527
3528 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3529 has exactly one predecessor and one successor, and the outgoing edge
3530 is not complex, then we have an IF-THEN-ELSE combo. */
3531 else if (single_succ_p (else_bb)
3532 && single_succ (then_bb) == single_succ (else_bb)
3533 && single_pred_p (else_bb)
3534 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3535 && !(epilogue_completed
3536 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3537 join_bb = single_succ (else_bb);
3538
3539 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3540 else
3541 return FALSE;
3542
3543 num_possible_if_blocks++;
3544
3545 if (dump_file)
3546 {
3547 fprintf (dump_file,
3548 "\nIF-THEN%s block found, pass %d, start block %d "
3549 "[insn %d], then %d [%d]",
3550 (else_bb) ? "-ELSE" : "",
3551 ce_info->pass,
3552 test_bb->index,
3553 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3554 then_bb->index,
3555 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3556
3557 if (else_bb)
3558 fprintf (dump_file, ", else %d [%d]",
3559 else_bb->index,
3560 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3561
3562 fprintf (dump_file, ", join %d [%d]",
3563 join_bb->index,
3564 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3565
3566 if (ce_info->num_multiple_test_blocks > 0)
3567 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3568 ce_info->num_multiple_test_blocks,
3569 (ce_info->and_and_p) ? "&&" : "||",
3570 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3571 ce_info->last_test_bb->index,
3572 ((BB_HEAD (ce_info->last_test_bb))
3573 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3574 : -1));
3575
3576 fputc ('\n', dump_file);
3577 }
3578
3579 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3580 first condition for free, since we've already asserted that there's a
3581 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3582 we checked the FALLTHRU flag, those are already adjacent to the last IF
3583 block. */
3584 /* ??? As an enhancement, move the ELSE block. Have to deal with
3585 BLOCK notes, if by no other means than backing out the merge if they
3586 exist. Sticky enough I don't want to think about it now. */
3587 next = then_bb;
3588 if (else_bb && (next = next->next_bb) != else_bb)
3589 return FALSE;
3590 if ((next = next->next_bb) != join_bb
3591 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3592 {
3593 if (else_bb)
3594 join_bb = NULL;
3595 else
3596 return FALSE;
3597 }
3598
3599 /* Do the real work. */
3600
3601 ce_info->else_bb = else_bb;
3602 ce_info->join_bb = join_bb;
3603
3604 /* If we have && and || tests, try to first handle combining the && and ||
3605 tests into the conditional code, and if that fails, go back and handle
3606 it without the && and ||, which at present handles the && case if there
3607 was no ELSE block. */
3608 if (cond_exec_process_if_block (ce_info, TRUE))
3609 return TRUE;
3610
3611 if (ce_info->num_multiple_test_blocks)
3612 {
3613 cancel_changes (0);
3614
3615 if (cond_exec_process_if_block (ce_info, FALSE))
3616 return TRUE;
3617 }
3618
3619 return FALSE;
3620 }
3621
3622 /* Convert a branch over a trap, or a branch
3623 to a trap, into a conditional trap. */
3624
3625 static int
3626 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3627 {
3628 basic_block then_bb = then_edge->dest;
3629 basic_block else_bb = else_edge->dest;
3630 basic_block other_bb, trap_bb;
3631 rtx trap, jump, cond, cond_earliest, seq;
3632 enum rtx_code code;
3633
3634 /* Locate the block with the trap instruction. */
3635 /* ??? While we look for no successors, we really ought to allow
3636 EH successors. Need to fix merge_if_block for that to work. */
3637 if ((trap = block_has_only_trap (then_bb)) != NULL)
3638 trap_bb = then_bb, other_bb = else_bb;
3639 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3640 trap_bb = else_bb, other_bb = then_bb;
3641 else
3642 return FALSE;
3643
3644 if (dump_file)
3645 {
3646 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3647 test_bb->index, trap_bb->index);
3648 }
3649
3650 /* If this is not a standard conditional jump, we can't parse it. */
3651 jump = BB_END (test_bb);
3652 cond = noce_get_condition (jump, &cond_earliest, false);
3653 if (! cond)
3654 return FALSE;
3655
3656 /* If the conditional jump is more than just a conditional jump, then
3657 we can not do if-conversion on this block. */
3658 if (! onlyjump_p (jump))
3659 return FALSE;
3660
3661 /* We must be comparing objects whose modes imply the size. */
3662 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3663 return FALSE;
3664
3665 /* Reverse the comparison code, if necessary. */
3666 code = GET_CODE (cond);
3667 if (then_bb == trap_bb)
3668 {
3669 code = reversed_comparison_code (cond, jump);
3670 if (code == UNKNOWN)
3671 return FALSE;
3672 }
3673
3674 /* Attempt to generate the conditional trap. */
3675 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3676 copy_rtx (XEXP (cond, 1)),
3677 TRAP_CODE (PATTERN (trap)));
3678 if (seq == NULL)
3679 return FALSE;
3680
3681 /* Emit the new insns before cond_earliest. */
3682 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3683
3684 /* Delete the trap block if possible. */
3685 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3686 df_set_bb_dirty (test_bb);
3687 df_set_bb_dirty (then_bb);
3688 df_set_bb_dirty (else_bb);
3689
3690 if (EDGE_COUNT (trap_bb->preds) == 0)
3691 {
3692 delete_basic_block (trap_bb);
3693 num_true_changes++;
3694 }
3695
3696 /* Wire together the blocks again. */
3697 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3698 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3699 else if (trap_bb == then_bb)
3700 {
3701 rtx lab, newjump;
3702
3703 lab = JUMP_LABEL (jump);
3704 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3705 LABEL_NUSES (lab) += 1;
3706 JUMP_LABEL (newjump) = lab;
3707 emit_barrier_after (newjump);
3708 }
3709 delete_insn (jump);
3710
3711 if (can_merge_blocks_p (test_bb, other_bb))
3712 {
3713 merge_blocks (test_bb, other_bb);
3714 num_true_changes++;
3715 }
3716
3717 num_updated_if_blocks++;
3718 return TRUE;
3719 }
3720
3721 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3722 return it. */
3723
3724 static rtx
3725 block_has_only_trap (basic_block bb)
3726 {
3727 rtx trap;
3728
3729 /* We're not the exit block. */
3730 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3731 return NULL_RTX;
3732
3733 /* The block must have no successors. */
3734 if (EDGE_COUNT (bb->succs) > 0)
3735 return NULL_RTX;
3736
3737 /* The only instruction in the THEN block must be the trap. */
3738 trap = first_active_insn (bb);
3739 if (! (trap == BB_END (bb)
3740 && GET_CODE (PATTERN (trap)) == TRAP_IF
3741 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3742 return NULL_RTX;
3743
3744 return trap;
3745 }
3746
3747 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3748 transformable, but not necessarily the other. There need be no
3749 JOIN block.
3750
3751 Return TRUE if we were successful at converting the block.
3752
3753 Cases we'd like to look at:
3754
3755 (1)
3756 if (test) goto over; // x not live
3757 x = a;
3758 goto label;
3759 over:
3760
3761 becomes
3762
3763 x = a;
3764 if (! test) goto label;
3765
3766 (2)
3767 if (test) goto E; // x not live
3768 x = big();
3769 goto L;
3770 E:
3771 x = b;
3772 goto M;
3773
3774 becomes
3775
3776 x = b;
3777 if (test) goto M;
3778 x = big();
3779 goto L;
3780
3781 (3) // This one's really only interesting for targets that can do
3782 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3783 // it results in multiple branches on a cache line, which often
3784 // does not sit well with predictors.
3785
3786 if (test1) goto E; // predicted not taken
3787 x = a;
3788 if (test2) goto F;
3789 ...
3790 E:
3791 x = b;
3792 J:
3793
3794 becomes
3795
3796 x = a;
3797 if (test1) goto E;
3798 if (test2) goto F;
3799
3800 Notes:
3801
3802 (A) Don't do (2) if the branch is predicted against the block we're
3803 eliminating. Do it anyway if we can eliminate a branch; this requires
3804 that the sole successor of the eliminated block postdominate the other
3805 side of the if.
3806
3807 (B) With CE, on (3) we can steal from both sides of the if, creating
3808
3809 if (test1) x = a;
3810 if (!test1) x = b;
3811 if (test1) goto J;
3812 if (test2) goto F;
3813 ...
3814 J:
3815
3816 Again, this is most useful if J postdominates.
3817
3818 (C) CE substitutes for helpful life information.
3819
3820 (D) These heuristics need a lot of work. */
3821
3822 /* Tests for case 1 above. */
3823
3824 static int
3825 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3826 {
3827 basic_block then_bb = then_edge->dest;
3828 basic_block else_bb = else_edge->dest;
3829 basic_block new_bb;
3830 int then_bb_index, then_prob;
3831 rtx else_target = NULL_RTX;
3832
3833 /* If we are partitioning hot/cold basic blocks, we don't want to
3834 mess up unconditional or indirect jumps that cross between hot
3835 and cold sections.
3836
3837 Basic block partitioning may result in some jumps that appear to
3838 be optimizable (or blocks that appear to be mergeable), but which really
3839 must be left untouched (they are required to make it safely across
3840 partition boundaries). See the comments at the top of
3841 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3842
3843 if ((BB_END (then_bb)
3844 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3845 || (BB_END (test_bb)
3846 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3847 || (BB_END (else_bb)
3848 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3849 NULL_RTX)))
3850 return FALSE;
3851
3852 /* THEN has one successor. */
3853 if (!single_succ_p (then_bb))
3854 return FALSE;
3855
3856 /* THEN does not fall through, but is not strange either. */
3857 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3858 return FALSE;
3859
3860 /* THEN has one predecessor. */
3861 if (!single_pred_p (then_bb))
3862 return FALSE;
3863
3864 /* THEN must do something. */
3865 if (forwarder_block_p (then_bb))
3866 return FALSE;
3867
3868 num_possible_if_blocks++;
3869 if (dump_file)
3870 fprintf (dump_file,
3871 "\nIF-CASE-1 found, start %d, then %d\n",
3872 test_bb->index, then_bb->index);
3873
3874 if (then_edge->probability)
3875 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3876 else
3877 then_prob = REG_BR_PROB_BASE / 2;
3878
3879 /* We're speculating from the THEN path, we want to make sure the cost
3880 of speculation is within reason. */
3881 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3882 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3883 predictable_edge_p (then_edge)))))
3884 return FALSE;
3885
3886 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3887 {
3888 rtx jump = BB_END (else_edge->src);
3889 gcc_assert (JUMP_P (jump));
3890 else_target = JUMP_LABEL (jump);
3891 }
3892
3893 /* Registers set are dead, or are predicable. */
3894 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3895 single_succ_edge (then_bb), 1))
3896 return FALSE;
3897
3898 /* Conversion went ok, including moving the insns and fixing up the
3899 jump. Adjust the CFG to match. */
3900
3901 /* We can avoid creating a new basic block if then_bb is immediately
3902 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3903 through to else_bb. */
3904
3905 if (then_bb->next_bb == else_bb
3906 && then_bb->prev_bb == test_bb
3907 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3908 {
3909 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3910 new_bb = 0;
3911 }
3912 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3913 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3914 else_bb, else_target);
3915 else
3916 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3917 else_bb);
3918
3919 df_set_bb_dirty (test_bb);
3920 df_set_bb_dirty (else_bb);
3921
3922 then_bb_index = then_bb->index;
3923 delete_basic_block (then_bb);
3924
3925 /* Make rest of code believe that the newly created block is the THEN_BB
3926 block we removed. */
3927 if (new_bb)
3928 {
3929 df_bb_replace (then_bb_index, new_bb);
3930 /* This should have been done above via force_nonfallthru_and_redirect
3931 (possibly called from redirect_edge_and_branch_force). */
3932 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
3933 }
3934
3935 num_true_changes++;
3936 num_updated_if_blocks++;
3937
3938 return TRUE;
3939 }
3940
3941 /* Test for case 2 above. */
3942
3943 static int
3944 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3945 {
3946 basic_block then_bb = then_edge->dest;
3947 basic_block else_bb = else_edge->dest;
3948 edge else_succ;
3949 int then_prob, else_prob;
3950
3951 /* We do not want to speculate (empty) loop latches. */
3952 if (current_loops
3953 && else_bb->loop_father->latch == else_bb)
3954 return FALSE;
3955
3956 /* If we are partitioning hot/cold basic blocks, we don't want to
3957 mess up unconditional or indirect jumps that cross between hot
3958 and cold sections.
3959
3960 Basic block partitioning may result in some jumps that appear to
3961 be optimizable (or blocks that appear to be mergeable), but which really
3962 must be left untouched (they are required to make it safely across
3963 partition boundaries). See the comments at the top of
3964 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3965
3966 if ((BB_END (then_bb)
3967 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3968 || (BB_END (test_bb)
3969 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3970 || (BB_END (else_bb)
3971 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3972 NULL_RTX)))
3973 return FALSE;
3974
3975 /* ELSE has one successor. */
3976 if (!single_succ_p (else_bb))
3977 return FALSE;
3978 else
3979 else_succ = single_succ_edge (else_bb);
3980
3981 /* ELSE outgoing edge is not complex. */
3982 if (else_succ->flags & EDGE_COMPLEX)
3983 return FALSE;
3984
3985 /* ELSE has one predecessor. */
3986 if (!single_pred_p (else_bb))
3987 return FALSE;
3988
3989 /* THEN is not EXIT. */
3990 if (then_bb->index < NUM_FIXED_BLOCKS)
3991 return FALSE;
3992
3993 if (else_edge->probability)
3994 {
3995 else_prob = else_edge->probability;
3996 then_prob = REG_BR_PROB_BASE - else_prob;
3997 }
3998 else
3999 {
4000 else_prob = REG_BR_PROB_BASE / 2;
4001 then_prob = REG_BR_PROB_BASE / 2;
4002 }
4003
4004 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4005 if (else_prob > then_prob)
4006 ;
4007 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4008 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4009 else_succ->dest))
4010 ;
4011 else
4012 return FALSE;
4013
4014 num_possible_if_blocks++;
4015 if (dump_file)
4016 fprintf (dump_file,
4017 "\nIF-CASE-2 found, start %d, else %d\n",
4018 test_bb->index, else_bb->index);
4019
4020 /* We're speculating from the ELSE path, we want to make sure the cost
4021 of speculation is within reason. */
4022 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4023 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4024 predictable_edge_p (else_edge)))))
4025 return FALSE;
4026
4027 /* Registers set are dead, or are predicable. */
4028 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4029 return FALSE;
4030
4031 /* Conversion went ok, including moving the insns and fixing up the
4032 jump. Adjust the CFG to match. */
4033
4034 df_set_bb_dirty (test_bb);
4035 df_set_bb_dirty (then_bb);
4036 delete_basic_block (else_bb);
4037
4038 num_true_changes++;
4039 num_updated_if_blocks++;
4040
4041 /* ??? We may now fallthru from one of THEN's successors into a join
4042 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4043
4044 return TRUE;
4045 }
4046
4047 /* Used by the code above to perform the actual rtl transformations.
4048 Return TRUE if successful.
4049
4050 TEST_BB is the block containing the conditional branch. MERGE_BB
4051 is the block containing the code to manipulate. DEST_EDGE is an
4052 edge representing a jump to the join block; after the conversion,
4053 TEST_BB should be branching to its destination.
4054 REVERSEP is true if the sense of the branch should be reversed. */
4055
4056 static int
4057 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4058 basic_block other_bb, edge dest_edge, int reversep)
4059 {
4060 basic_block new_dest = dest_edge->dest;
4061 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4062 bitmap merge_set = NULL;
4063 /* Number of pending changes. */
4064 int n_validated_changes = 0;
4065 rtx new_dest_label = NULL_RTX;
4066
4067 jump = BB_END (test_bb);
4068
4069 /* Find the extent of the real code in the merge block. */
4070 head = BB_HEAD (merge_bb);
4071 end = BB_END (merge_bb);
4072
4073 while (DEBUG_INSN_P (end) && end != head)
4074 end = PREV_INSN (end);
4075
4076 /* If merge_bb ends with a tablejump, predicating/moving insn's
4077 into test_bb and then deleting merge_bb will result in the jumptable
4078 that follows merge_bb being removed along with merge_bb and then we
4079 get an unresolved reference to the jumptable. */
4080 if (tablejump_p (end, NULL, NULL))
4081 return FALSE;
4082
4083 if (LABEL_P (head))
4084 head = NEXT_INSN (head);
4085 while (DEBUG_INSN_P (head) && head != end)
4086 head = NEXT_INSN (head);
4087 if (NOTE_P (head))
4088 {
4089 if (head == end)
4090 {
4091 head = end = NULL_RTX;
4092 goto no_body;
4093 }
4094 head = NEXT_INSN (head);
4095 while (DEBUG_INSN_P (head) && head != end)
4096 head = NEXT_INSN (head);
4097 }
4098
4099 if (JUMP_P (end))
4100 {
4101 if (head == end)
4102 {
4103 head = end = NULL_RTX;
4104 goto no_body;
4105 }
4106 end = PREV_INSN (end);
4107 while (DEBUG_INSN_P (end) && end != head)
4108 end = PREV_INSN (end);
4109 }
4110
4111 /* Disable handling dead code by conditional execution if the machine needs
4112 to do anything funny with the tests, etc. */
4113 #ifndef IFCVT_MODIFY_TESTS
4114 if (targetm.have_conditional_execution ())
4115 {
4116 /* In the conditional execution case, we have things easy. We know
4117 the condition is reversible. We don't have to check life info
4118 because we're going to conditionally execute the code anyway.
4119 All that's left is making sure the insns involved can actually
4120 be predicated. */
4121
4122 rtx cond;
4123
4124 cond = cond_exec_get_condition (jump);
4125 if (! cond)
4126 return FALSE;
4127
4128 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4129 int prob_val = (note ? XINT (note, 0) : -1);
4130
4131 if (reversep)
4132 {
4133 enum rtx_code rev = reversed_comparison_code (cond, jump);
4134 if (rev == UNKNOWN)
4135 return FALSE;
4136 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4137 XEXP (cond, 1));
4138 if (prob_val >= 0)
4139 prob_val = REG_BR_PROB_BASE - prob_val;
4140 }
4141
4142 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4143 && verify_changes (0))
4144 n_validated_changes = num_validated_changes ();
4145 else
4146 cancel_changes (0);
4147
4148 earliest = jump;
4149 }
4150 #endif
4151
4152 /* If we allocated new pseudos (e.g. in the conditional move
4153 expander called from noce_emit_cmove), we must resize the
4154 array first. */
4155 if (max_regno < max_reg_num ())
4156 max_regno = max_reg_num ();
4157
4158 /* Try the NCE path if the CE path did not result in any changes. */
4159 if (n_validated_changes == 0)
4160 {
4161 rtx cond, insn;
4162 regset live;
4163 bool success;
4164
4165 /* In the non-conditional execution case, we have to verify that there
4166 are no trapping operations, no calls, no references to memory, and
4167 that any registers modified are dead at the branch site. */
4168
4169 if (!any_condjump_p (jump))
4170 return FALSE;
4171
4172 /* Find the extent of the conditional. */
4173 cond = noce_get_condition (jump, &earliest, false);
4174 if (!cond)
4175 return FALSE;
4176
4177 live = BITMAP_ALLOC (&reg_obstack);
4178 simulate_backwards_to_point (merge_bb, live, end);
4179 success = can_move_insns_across (head, end, earliest, jump,
4180 merge_bb, live,
4181 df_get_live_in (other_bb), NULL);
4182 BITMAP_FREE (live);
4183 if (!success)
4184 return FALSE;
4185
4186 /* Collect the set of registers set in MERGE_BB. */
4187 merge_set = BITMAP_ALLOC (&reg_obstack);
4188
4189 FOR_BB_INSNS (merge_bb, insn)
4190 if (NONDEBUG_INSN_P (insn))
4191 df_simulate_find_defs (insn, merge_set);
4192
4193 #ifdef HAVE_simple_return
4194 /* If shrink-wrapping, disable this optimization when test_bb is
4195 the first basic block and merge_bb exits. The idea is to not
4196 move code setting up a return register as that may clobber a
4197 register used to pass function parameters, which then must be
4198 saved in caller-saved regs. A caller-saved reg requires the
4199 prologue, killing a shrink-wrap opportunity. */
4200 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4201 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4202 && single_succ_p (new_dest)
4203 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4204 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4205 {
4206 regset return_regs;
4207 unsigned int i;
4208
4209 return_regs = BITMAP_ALLOC (&reg_obstack);
4210
4211 /* Start off with the intersection of regs used to pass
4212 params and regs used to return values. */
4213 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4214 if (FUNCTION_ARG_REGNO_P (i)
4215 && targetm.calls.function_value_regno_p (i))
4216 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4217
4218 bitmap_and_into (return_regs,
4219 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4220 bitmap_and_into (return_regs,
4221 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4222 if (!bitmap_empty_p (return_regs))
4223 {
4224 FOR_BB_INSNS_REVERSE (new_dest, insn)
4225 if (NONDEBUG_INSN_P (insn))
4226 {
4227 df_ref *def_rec;
4228 unsigned int uid = INSN_UID (insn);
4229
4230 /* If this insn sets any reg in return_regs.. */
4231 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4232 {
4233 df_ref def = *def_rec;
4234 unsigned r = DF_REF_REGNO (def);
4235
4236 if (bitmap_bit_p (return_regs, r))
4237 break;
4238 }
4239 /* ..then add all reg uses to the set of regs
4240 we're interested in. */
4241 if (*def_rec)
4242 df_simulate_uses (insn, return_regs);
4243 }
4244 if (bitmap_intersect_p (merge_set, return_regs))
4245 {
4246 BITMAP_FREE (return_regs);
4247 BITMAP_FREE (merge_set);
4248 return FALSE;
4249 }
4250 }
4251 BITMAP_FREE (return_regs);
4252 }
4253 #endif
4254 }
4255
4256 no_body:
4257 /* We don't want to use normal invert_jump or redirect_jump because
4258 we don't want to delete_insn called. Also, we want to do our own
4259 change group management. */
4260
4261 old_dest = JUMP_LABEL (jump);
4262 if (other_bb != new_dest)
4263 {
4264 if (JUMP_P (BB_END (dest_edge->src)))
4265 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4266 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4267 new_dest_label = ret_rtx;
4268 else
4269 new_dest_label = block_label (new_dest);
4270
4271 if (reversep
4272 ? ! invert_jump_1 (jump, new_dest_label)
4273 : ! redirect_jump_1 (jump, new_dest_label))
4274 goto cancel;
4275 }
4276
4277 if (verify_changes (n_validated_changes))
4278 confirm_change_group ();
4279 else
4280 goto cancel;
4281
4282 if (other_bb != new_dest)
4283 {
4284 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4285
4286 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4287 if (reversep)
4288 {
4289 gcov_type count, probability;
4290 count = BRANCH_EDGE (test_bb)->count;
4291 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4292 FALLTHRU_EDGE (test_bb)->count = count;
4293 probability = BRANCH_EDGE (test_bb)->probability;
4294 BRANCH_EDGE (test_bb)->probability
4295 = FALLTHRU_EDGE (test_bb)->probability;
4296 FALLTHRU_EDGE (test_bb)->probability = probability;
4297 update_br_prob_note (test_bb);
4298 }
4299 }
4300
4301 /* Move the insns out of MERGE_BB to before the branch. */
4302 if (head != NULL)
4303 {
4304 rtx insn;
4305
4306 if (end == BB_END (merge_bb))
4307 BB_END (merge_bb) = PREV_INSN (head);
4308
4309 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4310 notes being moved might become invalid. */
4311 insn = head;
4312 do
4313 {
4314 rtx note, set;
4315
4316 if (! INSN_P (insn))
4317 continue;
4318 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4319 if (! note)
4320 continue;
4321 set = single_set (insn);
4322 if (!set || !function_invariant_p (SET_SRC (set))
4323 || !function_invariant_p (XEXP (note, 0)))
4324 remove_note (insn, note);
4325 } while (insn != end && (insn = NEXT_INSN (insn)));
4326
4327 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4328 notes referring to the registers being set might become invalid. */
4329 if (merge_set)
4330 {
4331 unsigned i;
4332 bitmap_iterator bi;
4333
4334 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4335 remove_reg_equal_equiv_notes_for_regno (i);
4336
4337 BITMAP_FREE (merge_set);
4338 }
4339
4340 reorder_insns (head, end, PREV_INSN (earliest));
4341 }
4342
4343 /* Remove the jump and edge if we can. */
4344 if (other_bb == new_dest)
4345 {
4346 delete_insn (jump);
4347 remove_edge (BRANCH_EDGE (test_bb));
4348 /* ??? Can't merge blocks here, as then_bb is still in use.
4349 At minimum, the merge will get done just before bb-reorder. */
4350 }
4351
4352 return TRUE;
4353
4354 cancel:
4355 cancel_changes (0);
4356
4357 if (merge_set)
4358 BITMAP_FREE (merge_set);
4359
4360 return FALSE;
4361 }
4362 \f
4363 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4364 we are after combine pass. */
4365
4366 static void
4367 if_convert (bool after_combine)
4368 {
4369 basic_block bb;
4370 int pass;
4371
4372 if (optimize == 1)
4373 {
4374 df_live_add_problem ();
4375 df_live_set_all_dirty ();
4376 }
4377
4378 /* Record whether we are after combine pass. */
4379 ifcvt_after_combine = after_combine;
4380 num_possible_if_blocks = 0;
4381 num_updated_if_blocks = 0;
4382 num_true_changes = 0;
4383
4384 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4385 mark_loop_exit_edges ();
4386 loop_optimizer_finalize ();
4387 free_dominance_info (CDI_DOMINATORS);
4388
4389 /* Compute postdominators. */
4390 calculate_dominance_info (CDI_POST_DOMINATORS);
4391
4392 df_set_flags (DF_LR_RUN_DCE);
4393
4394 /* Go through each of the basic blocks looking for things to convert. If we
4395 have conditional execution, we make multiple passes to allow us to handle
4396 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4397 pass = 0;
4398 do
4399 {
4400 df_analyze ();
4401 /* Only need to do dce on the first pass. */
4402 df_clear_flags (DF_LR_RUN_DCE);
4403 cond_exec_changed_p = FALSE;
4404 pass++;
4405
4406 #ifdef IFCVT_MULTIPLE_DUMPS
4407 if (dump_file && pass > 1)
4408 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4409 #endif
4410
4411 FOR_EACH_BB (bb)
4412 {
4413 basic_block new_bb;
4414 while (!df_get_bb_dirty (bb)
4415 && (new_bb = find_if_header (bb, pass)) != NULL)
4416 bb = new_bb;
4417 }
4418
4419 #ifdef IFCVT_MULTIPLE_DUMPS
4420 if (dump_file && cond_exec_changed_p)
4421 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4422 #endif
4423 }
4424 while (cond_exec_changed_p);
4425
4426 #ifdef IFCVT_MULTIPLE_DUMPS
4427 if (dump_file)
4428 fprintf (dump_file, "\n\n========== no more changes\n");
4429 #endif
4430
4431 free_dominance_info (CDI_POST_DOMINATORS);
4432
4433 if (dump_file)
4434 fflush (dump_file);
4435
4436 clear_aux_for_blocks ();
4437
4438 /* If we allocated new pseudos, we must resize the array for sched1. */
4439 if (max_regno < max_reg_num ())
4440 max_regno = max_reg_num ();
4441
4442 /* Write the final stats. */
4443 if (dump_file && num_possible_if_blocks > 0)
4444 {
4445 fprintf (dump_file,
4446 "\n%d possible IF blocks searched.\n",
4447 num_possible_if_blocks);
4448 fprintf (dump_file,
4449 "%d IF blocks converted.\n",
4450 num_updated_if_blocks);
4451 fprintf (dump_file,
4452 "%d true changes made.\n\n\n",
4453 num_true_changes);
4454 }
4455
4456 if (optimize == 1)
4457 df_remove_problem (df_live);
4458
4459 #ifdef ENABLE_CHECKING
4460 verify_flow_info ();
4461 #endif
4462 }
4463 \f
4464 static bool
4465 gate_handle_if_conversion (void)
4466 {
4467 return (optimize > 0)
4468 && dbg_cnt (if_conversion);
4469 }
4470
4471 /* If-conversion and CFG cleanup. */
4472 static unsigned int
4473 rest_of_handle_if_conversion (void)
4474 {
4475 if (flag_if_conversion)
4476 {
4477 if (dump_file)
4478 {
4479 dump_reg_info (dump_file);
4480 dump_flow_info (dump_file, dump_flags);
4481 }
4482 cleanup_cfg (CLEANUP_EXPENSIVE);
4483 if_convert (false);
4484 }
4485
4486 cleanup_cfg (0);
4487 return 0;
4488 }
4489
4490 namespace {
4491
4492 const pass_data pass_data_rtl_ifcvt =
4493 {
4494 RTL_PASS, /* type */
4495 "ce1", /* name */
4496 OPTGROUP_NONE, /* optinfo_flags */
4497 true, /* has_gate */
4498 true, /* has_execute */
4499 TV_IFCVT, /* tv_id */
4500 0, /* properties_required */
4501 0, /* properties_provided */
4502 0, /* properties_destroyed */
4503 0, /* todo_flags_start */
4504 ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
4505 };
4506
4507 class pass_rtl_ifcvt : public rtl_opt_pass
4508 {
4509 public:
4510 pass_rtl_ifcvt (gcc::context *ctxt)
4511 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4512 {}
4513
4514 /* opt_pass methods: */
4515 bool gate () { return gate_handle_if_conversion (); }
4516 unsigned int execute () { return rest_of_handle_if_conversion (); }
4517
4518 }; // class pass_rtl_ifcvt
4519
4520 } // anon namespace
4521
4522 rtl_opt_pass *
4523 make_pass_rtl_ifcvt (gcc::context *ctxt)
4524 {
4525 return new pass_rtl_ifcvt (ctxt);
4526 }
4527
4528 static bool
4529 gate_handle_if_after_combine (void)
4530 {
4531 return optimize > 0 && flag_if_conversion
4532 && dbg_cnt (if_after_combine);
4533 }
4534
4535
4536 /* Rerun if-conversion, as combine may have simplified things enough
4537 to now meet sequence length restrictions. */
4538 static unsigned int
4539 rest_of_handle_if_after_combine (void)
4540 {
4541 if_convert (true);
4542 return 0;
4543 }
4544
4545 namespace {
4546
4547 const pass_data pass_data_if_after_combine =
4548 {
4549 RTL_PASS, /* type */
4550 "ce2", /* name */
4551 OPTGROUP_NONE, /* optinfo_flags */
4552 true, /* has_gate */
4553 true, /* has_execute */
4554 TV_IFCVT, /* tv_id */
4555 0, /* properties_required */
4556 0, /* properties_provided */
4557 0, /* properties_destroyed */
4558 0, /* todo_flags_start */
4559 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
4560 };
4561
4562 class pass_if_after_combine : public rtl_opt_pass
4563 {
4564 public:
4565 pass_if_after_combine (gcc::context *ctxt)
4566 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4567 {}
4568
4569 /* opt_pass methods: */
4570 bool gate () { return gate_handle_if_after_combine (); }
4571 unsigned int execute () { return rest_of_handle_if_after_combine (); }
4572
4573 }; // class pass_if_after_combine
4574
4575 } // anon namespace
4576
4577 rtl_opt_pass *
4578 make_pass_if_after_combine (gcc::context *ctxt)
4579 {
4580 return new pass_if_after_combine (ctxt);
4581 }
4582
4583
4584 static bool
4585 gate_handle_if_after_reload (void)
4586 {
4587 return optimize > 0 && flag_if_conversion2
4588 && dbg_cnt (if_after_reload);
4589 }
4590
4591 static unsigned int
4592 rest_of_handle_if_after_reload (void)
4593 {
4594 if_convert (true);
4595 return 0;
4596 }
4597
4598
4599 namespace {
4600
4601 const pass_data pass_data_if_after_reload =
4602 {
4603 RTL_PASS, /* type */
4604 "ce3", /* name */
4605 OPTGROUP_NONE, /* optinfo_flags */
4606 true, /* has_gate */
4607 true, /* has_execute */
4608 TV_IFCVT2, /* tv_id */
4609 0, /* properties_required */
4610 0, /* properties_provided */
4611 0, /* properties_destroyed */
4612 0, /* todo_flags_start */
4613 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
4614 };
4615
4616 class pass_if_after_reload : public rtl_opt_pass
4617 {
4618 public:
4619 pass_if_after_reload (gcc::context *ctxt)
4620 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4621 {}
4622
4623 /* opt_pass methods: */
4624 bool gate () { return gate_handle_if_after_reload (); }
4625 unsigned int execute () { return rest_of_handle_if_after_reload (); }
4626
4627 }; // class pass_if_after_reload
4628
4629 } // anon namespace
4630
4631 rtl_opt_pass *
4632 make_pass_if_after_reload (gcc::context *ctxt)
4633 {
4634 return new pass_if_after_reload (ctxt);
4635 }