Daily bump.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010,
3 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "diagnostic-core.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "tree-pass.h"
44 #include "df.h"
45 #include "vec.h"
46 #include "pointer-set.h"
47 #include "dbgcnt.h"
48
49 #ifndef HAVE_conditional_move
50 #define HAVE_conditional_move 0
51 #endif
52 #ifndef HAVE_incscc
53 #define HAVE_incscc 0
54 #endif
55 #ifndef HAVE_decscc
56 #define HAVE_decscc 0
57 #endif
58 #ifndef HAVE_trap
59 #define HAVE_trap 0
60 #endif
61
62 #ifndef MAX_CONDITIONAL_EXECUTE
63 #define MAX_CONDITIONAL_EXECUTE \
64 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
65 + 1)
66 #endif
67
68 #define IFCVT_MULTIPLE_DUMPS 1
69
70 #define NULL_BLOCK ((basic_block) NULL)
71
72 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
73 static int num_possible_if_blocks;
74
75 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
76 execution. */
77 static int num_updated_if_blocks;
78
79 /* # of changes made. */
80 static int num_true_changes;
81
82 /* Whether conditional execution changes were made. */
83 static int cond_exec_changed_p;
84
85 /* Forward references. */
86 static int count_bb_insns (const_basic_block);
87 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
88 static rtx first_active_insn (basic_block);
89 static rtx last_active_insn (basic_block, int);
90 static rtx find_active_insn_before (basic_block, rtx);
91 static rtx find_active_insn_after (basic_block, rtx);
92 static basic_block block_fallthru (basic_block);
93 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
94 static rtx cond_exec_get_condition (rtx);
95 static rtx noce_get_condition (rtx, rtx *, bool);
96 static int noce_operand_ok (const_rtx);
97 static void merge_if_block (ce_if_block_t *);
98 static int find_cond_trap (basic_block, edge, edge);
99 static basic_block find_if_header (basic_block, int);
100 static int block_jumps_and_fallthru_p (basic_block, basic_block);
101 static int noce_find_if_block (basic_block, edge, edge, int);
102 static int cond_exec_find_if_block (ce_if_block_t *);
103 static int find_if_case_1 (basic_block, edge, edge);
104 static int find_if_case_2 (basic_block, edge, edge);
105 static int dead_or_predicable (basic_block, basic_block, basic_block,
106 edge, int);
107 static void noce_emit_move_insn (rtx, rtx);
108 static rtx block_has_only_trap (basic_block);
109 \f
110 /* Count the number of non-jump active insns in BB. */
111
112 static int
113 count_bb_insns (const_basic_block bb)
114 {
115 int count = 0;
116 rtx insn = BB_HEAD (bb);
117
118 while (1)
119 {
120 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
121 count++;
122
123 if (insn == BB_END (bb))
124 break;
125 insn = NEXT_INSN (insn);
126 }
127
128 return count;
129 }
130
131 /* Determine whether the total insn_rtx_cost on non-jump insns in
132 basic block BB is less than MAX_COST. This function returns
133 false if the cost of any instruction could not be estimated.
134
135 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
136 as those insns are being speculated. MAX_COST is scaled with SCALE
137 plus a small fudge factor. */
138
139 static bool
140 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
141 {
142 int count = 0;
143 rtx insn = BB_HEAD (bb);
144 bool speed = optimize_bb_for_speed_p (bb);
145
146 /* Our branch probability/scaling factors are just estimates and don't
147 account for cases where we can get speculation for free and other
148 secondary benefits. So we fudge the scale factor to make speculating
149 appear a little more profitable. */
150 scale += REG_BR_PROB_BASE / 8;
151 max_cost *= scale;
152
153 while (1)
154 {
155 if (NONJUMP_INSN_P (insn))
156 {
157 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
158 if (cost == 0)
159 return false;
160
161 /* If this instruction is the load or set of a "stack" register,
162 such as a floating point register on x87, then the cost of
163 speculatively executing this insn may need to include
164 the additional cost of popping its result off of the
165 register stack. Unfortunately, correctly recognizing and
166 accounting for this additional overhead is tricky, so for
167 now we simply prohibit such speculative execution. */
168 #ifdef STACK_REGS
169 {
170 rtx set = single_set (insn);
171 if (set && STACK_REG_P (SET_DEST (set)))
172 return false;
173 }
174 #endif
175
176 count += cost;
177 if (count >= max_cost)
178 return false;
179 }
180 else if (CALL_P (insn))
181 return false;
182
183 if (insn == BB_END (bb))
184 break;
185 insn = NEXT_INSN (insn);
186 }
187
188 return true;
189 }
190
191 /* Return the first non-jump active insn in the basic block. */
192
193 static rtx
194 first_active_insn (basic_block bb)
195 {
196 rtx insn = BB_HEAD (bb);
197
198 if (LABEL_P (insn))
199 {
200 if (insn == BB_END (bb))
201 return NULL_RTX;
202 insn = NEXT_INSN (insn);
203 }
204
205 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
206 {
207 if (insn == BB_END (bb))
208 return NULL_RTX;
209 insn = NEXT_INSN (insn);
210 }
211
212 if (JUMP_P (insn))
213 return NULL_RTX;
214
215 return insn;
216 }
217
218 /* Return the last non-jump active (non-jump) insn in the basic block. */
219
220 static rtx
221 last_active_insn (basic_block bb, int skip_use_p)
222 {
223 rtx insn = BB_END (bb);
224 rtx head = BB_HEAD (bb);
225
226 while (NOTE_P (insn)
227 || JUMP_P (insn)
228 || DEBUG_INSN_P (insn)
229 || (skip_use_p
230 && NONJUMP_INSN_P (insn)
231 && GET_CODE (PATTERN (insn)) == USE))
232 {
233 if (insn == head)
234 return NULL_RTX;
235 insn = PREV_INSN (insn);
236 }
237
238 if (LABEL_P (insn))
239 return NULL_RTX;
240
241 return insn;
242 }
243
244 /* Return the active insn before INSN inside basic block CURR_BB. */
245
246 static rtx
247 find_active_insn_before (basic_block curr_bb, rtx insn)
248 {
249 if (!insn || insn == BB_HEAD (curr_bb))
250 return NULL_RTX;
251
252 while ((insn = PREV_INSN (insn)) != NULL_RTX)
253 {
254 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
255 break;
256
257 /* No other active insn all the way to the start of the basic block. */
258 if (insn == BB_HEAD (curr_bb))
259 return NULL_RTX;
260 }
261
262 return insn;
263 }
264
265 /* Return the active insn after INSN inside basic block CURR_BB. */
266
267 static rtx
268 find_active_insn_after (basic_block curr_bb, rtx insn)
269 {
270 if (!insn || insn == BB_END (curr_bb))
271 return NULL_RTX;
272
273 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
274 {
275 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
276 break;
277
278 /* No other active insn all the way to the end of the basic block. */
279 if (insn == BB_END (curr_bb))
280 return NULL_RTX;
281 }
282
283 return insn;
284 }
285
286 /* Return the basic block reached by falling though the basic block BB. */
287
288 static basic_block
289 block_fallthru (basic_block bb)
290 {
291 edge e = find_fallthru_edge (bb->succs);
292
293 return (e) ? e->dest : NULL_BLOCK;
294 }
295 \f
296 /* Go through a bunch of insns, converting them to conditional
297 execution format if possible. Return TRUE if all of the non-note
298 insns were processed. */
299
300 static int
301 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
302 /* if block information */rtx start,
303 /* first insn to look at */rtx end,
304 /* last insn to look at */rtx test,
305 /* conditional execution test */rtx prob_val,
306 /* probability of branch taken. */int mod_ok)
307 {
308 int must_be_last = FALSE;
309 rtx insn;
310 rtx xtest;
311 rtx pattern;
312
313 if (!start || !end)
314 return FALSE;
315
316 for (insn = start; ; insn = NEXT_INSN (insn))
317 {
318 /* dwarf2out can't cope with conditional prologues. */
319 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
320 return FALSE;
321
322 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
323 goto insn_done;
324
325 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
326
327 /* Remove USE insns that get in the way. */
328 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
329 {
330 /* ??? Ug. Actually unlinking the thing is problematic,
331 given what we'd have to coordinate with our callers. */
332 SET_INSN_DELETED (insn);
333 goto insn_done;
334 }
335
336 /* Last insn wasn't last? */
337 if (must_be_last)
338 return FALSE;
339
340 if (modified_in_p (test, insn))
341 {
342 if (!mod_ok)
343 return FALSE;
344 must_be_last = TRUE;
345 }
346
347 /* Now build the conditional form of the instruction. */
348 pattern = PATTERN (insn);
349 xtest = copy_rtx (test);
350
351 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
352 two conditions. */
353 if (GET_CODE (pattern) == COND_EXEC)
354 {
355 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
356 return FALSE;
357
358 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
359 COND_EXEC_TEST (pattern));
360 pattern = COND_EXEC_CODE (pattern);
361 }
362
363 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
364
365 /* If the machine needs to modify the insn being conditionally executed,
366 say for example to force a constant integer operand into a temp
367 register, do so here. */
368 #ifdef IFCVT_MODIFY_INSN
369 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
370 if (! pattern)
371 return FALSE;
372 #endif
373
374 validate_change (insn, &PATTERN (insn), pattern, 1);
375
376 if (CALL_P (insn) && prob_val)
377 validate_change (insn, &REG_NOTES (insn),
378 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
379 REG_NOTES (insn)), 1);
380
381 insn_done:
382 if (insn == end)
383 break;
384 }
385
386 return TRUE;
387 }
388
389 /* Return the condition for a jump. Do not do any special processing. */
390
391 static rtx
392 cond_exec_get_condition (rtx jump)
393 {
394 rtx test_if, cond;
395
396 if (any_condjump_p (jump))
397 test_if = SET_SRC (pc_set (jump));
398 else
399 return NULL_RTX;
400 cond = XEXP (test_if, 0);
401
402 /* If this branches to JUMP_LABEL when the condition is false,
403 reverse the condition. */
404 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
405 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
406 {
407 enum rtx_code rev = reversed_comparison_code (cond, jump);
408 if (rev == UNKNOWN)
409 return NULL_RTX;
410
411 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
412 XEXP (cond, 1));
413 }
414
415 return cond;
416 }
417
418 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
419 to conditional execution. Return TRUE if we were successful at
420 converting the block. */
421
422 static int
423 cond_exec_process_if_block (ce_if_block_t * ce_info,
424 /* if block information */int do_multiple_p)
425 {
426 basic_block test_bb = ce_info->test_bb; /* last test block */
427 basic_block then_bb = ce_info->then_bb; /* THEN */
428 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
429 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
430 rtx then_start; /* first insn in THEN block */
431 rtx then_end; /* last insn + 1 in THEN block */
432 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
433 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
434 int max; /* max # of insns to convert. */
435 int then_mod_ok; /* whether conditional mods are ok in THEN */
436 rtx true_expr; /* test for else block insns */
437 rtx false_expr; /* test for then block insns */
438 rtx true_prob_val; /* probability of else block */
439 rtx false_prob_val; /* probability of then block */
440 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
441 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
442 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
443 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
444 int then_n_insns, else_n_insns, n_insns;
445 enum rtx_code false_code;
446
447 /* If test is comprised of && or || elements, and we've failed at handling
448 all of them together, just use the last test if it is the special case of
449 && elements without an ELSE block. */
450 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
451 {
452 if (else_bb || ! ce_info->and_and_p)
453 return FALSE;
454
455 ce_info->test_bb = test_bb = ce_info->last_test_bb;
456 ce_info->num_multiple_test_blocks = 0;
457 ce_info->num_and_and_blocks = 0;
458 ce_info->num_or_or_blocks = 0;
459 }
460
461 /* Find the conditional jump to the ELSE or JOIN part, and isolate
462 the test. */
463 test_expr = cond_exec_get_condition (BB_END (test_bb));
464 if (! test_expr)
465 return FALSE;
466
467 /* If the conditional jump is more than just a conditional jump,
468 then we can not do conditional execution conversion on this block. */
469 if (! onlyjump_p (BB_END (test_bb)))
470 return FALSE;
471
472 /* Collect the bounds of where we're to search, skipping any labels, jumps
473 and notes at the beginning and end of the block. Then count the total
474 number of insns and see if it is small enough to convert. */
475 then_start = first_active_insn (then_bb);
476 then_end = last_active_insn (then_bb, TRUE);
477 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
478 n_insns = then_n_insns;
479 max = MAX_CONDITIONAL_EXECUTE;
480
481 if (else_bb)
482 {
483 int n_matching;
484
485 max *= 2;
486 else_start = first_active_insn (else_bb);
487 else_end = last_active_insn (else_bb, TRUE);
488 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
489 n_insns += else_n_insns;
490
491 /* Look for matching sequences at the head and tail of the two blocks,
492 and limit the range of insns to be converted if possible. */
493 n_matching = flow_find_cross_jump (then_bb, else_bb,
494 &then_first_tail, &else_first_tail,
495 NULL);
496 if (then_first_tail == BB_HEAD (then_bb))
497 then_start = then_end = NULL_RTX;
498 if (else_first_tail == BB_HEAD (else_bb))
499 else_start = else_end = NULL_RTX;
500
501 if (n_matching > 0)
502 {
503 if (then_end)
504 then_end = find_active_insn_before (then_bb, then_first_tail);
505 if (else_end)
506 else_end = find_active_insn_before (else_bb, else_first_tail);
507 n_insns -= 2 * n_matching;
508 }
509
510 if (then_start && else_start)
511 {
512 int longest_match = MIN (then_n_insns - n_matching,
513 else_n_insns - n_matching);
514 n_matching
515 = flow_find_head_matching_sequence (then_bb, else_bb,
516 &then_last_head,
517 &else_last_head,
518 longest_match);
519
520 if (n_matching > 0)
521 {
522 rtx insn;
523
524 /* We won't pass the insns in the head sequence to
525 cond_exec_process_insns, so we need to test them here
526 to make sure that they don't clobber the condition. */
527 for (insn = BB_HEAD (then_bb);
528 insn != NEXT_INSN (then_last_head);
529 insn = NEXT_INSN (insn))
530 if (!LABEL_P (insn) && !NOTE_P (insn)
531 && !DEBUG_INSN_P (insn)
532 && modified_in_p (test_expr, insn))
533 return FALSE;
534 }
535
536 if (then_last_head == then_end)
537 then_start = then_end = NULL_RTX;
538 if (else_last_head == else_end)
539 else_start = else_end = NULL_RTX;
540
541 if (n_matching > 0)
542 {
543 if (then_start)
544 then_start = find_active_insn_after (then_bb, then_last_head);
545 if (else_start)
546 else_start = find_active_insn_after (else_bb, else_last_head);
547 n_insns -= 2 * n_matching;
548 }
549 }
550 }
551
552 if (n_insns > max)
553 return FALSE;
554
555 /* Map test_expr/test_jump into the appropriate MD tests to use on
556 the conditionally executed code. */
557
558 true_expr = test_expr;
559
560 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
561 if (false_code != UNKNOWN)
562 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
563 XEXP (true_expr, 0), XEXP (true_expr, 1));
564 else
565 false_expr = NULL_RTX;
566
567 #ifdef IFCVT_MODIFY_TESTS
568 /* If the machine description needs to modify the tests, such as setting a
569 conditional execution register from a comparison, it can do so here. */
570 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
571
572 /* See if the conversion failed. */
573 if (!true_expr || !false_expr)
574 goto fail;
575 #endif
576
577 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
578 if (true_prob_val)
579 {
580 true_prob_val = XEXP (true_prob_val, 0);
581 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
582 }
583 else
584 false_prob_val = NULL_RTX;
585
586 /* If we have && or || tests, do them here. These tests are in the adjacent
587 blocks after the first block containing the test. */
588 if (ce_info->num_multiple_test_blocks > 0)
589 {
590 basic_block bb = test_bb;
591 basic_block last_test_bb = ce_info->last_test_bb;
592
593 if (! false_expr)
594 goto fail;
595
596 do
597 {
598 rtx start, end;
599 rtx t, f;
600 enum rtx_code f_code;
601
602 bb = block_fallthru (bb);
603 start = first_active_insn (bb);
604 end = last_active_insn (bb, TRUE);
605 if (start
606 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
607 false_prob_val, FALSE))
608 goto fail;
609
610 /* If the conditional jump is more than just a conditional jump, then
611 we can not do conditional execution conversion on this block. */
612 if (! onlyjump_p (BB_END (bb)))
613 goto fail;
614
615 /* Find the conditional jump and isolate the test. */
616 t = cond_exec_get_condition (BB_END (bb));
617 if (! t)
618 goto fail;
619
620 f_code = reversed_comparison_code (t, BB_END (bb));
621 if (f_code == UNKNOWN)
622 goto fail;
623
624 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
625 if (ce_info->and_and_p)
626 {
627 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
628 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
629 }
630 else
631 {
632 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
633 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
634 }
635
636 /* If the machine description needs to modify the tests, such as
637 setting a conditional execution register from a comparison, it can
638 do so here. */
639 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
640 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
641
642 /* See if the conversion failed. */
643 if (!t || !f)
644 goto fail;
645 #endif
646
647 true_expr = t;
648 false_expr = f;
649 }
650 while (bb != last_test_bb);
651 }
652
653 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
654 on then THEN block. */
655 then_mod_ok = (else_bb == NULL_BLOCK);
656
657 /* Go through the THEN and ELSE blocks converting the insns if possible
658 to conditional execution. */
659
660 if (then_end
661 && (! false_expr
662 || ! cond_exec_process_insns (ce_info, then_start, then_end,
663 false_expr, false_prob_val,
664 then_mod_ok)))
665 goto fail;
666
667 if (else_bb && else_end
668 && ! cond_exec_process_insns (ce_info, else_start, else_end,
669 true_expr, true_prob_val, TRUE))
670 goto fail;
671
672 /* If we cannot apply the changes, fail. Do not go through the normal fail
673 processing, since apply_change_group will call cancel_changes. */
674 if (! apply_change_group ())
675 {
676 #ifdef IFCVT_MODIFY_CANCEL
677 /* Cancel any machine dependent changes. */
678 IFCVT_MODIFY_CANCEL (ce_info);
679 #endif
680 return FALSE;
681 }
682
683 #ifdef IFCVT_MODIFY_FINAL
684 /* Do any machine dependent final modifications. */
685 IFCVT_MODIFY_FINAL (ce_info);
686 #endif
687
688 /* Conversion succeeded. */
689 if (dump_file)
690 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
691 n_insns, (n_insns == 1) ? " was" : "s were");
692
693 /* Merge the blocks! If we had matching sequences, make sure to delete one
694 copy at the appropriate location first: delete the copy in the THEN branch
695 for a tail sequence so that the remaining one is executed last for both
696 branches, and delete the copy in the ELSE branch for a head sequence so
697 that the remaining one is executed first for both branches. */
698 if (then_first_tail)
699 {
700 rtx from = then_first_tail;
701 if (!INSN_P (from))
702 from = find_active_insn_after (then_bb, from);
703 delete_insn_chain (from, BB_END (then_bb), false);
704 }
705 if (else_last_head)
706 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
707
708 merge_if_block (ce_info);
709 cond_exec_changed_p = TRUE;
710 return TRUE;
711
712 fail:
713 #ifdef IFCVT_MODIFY_CANCEL
714 /* Cancel any machine dependent changes. */
715 IFCVT_MODIFY_CANCEL (ce_info);
716 #endif
717
718 cancel_changes (0);
719 return FALSE;
720 }
721 \f
722 /* Used by noce_process_if_block to communicate with its subroutines.
723
724 The subroutines know that A and B may be evaluated freely. They
725 know that X is a register. They should insert new instructions
726 before cond_earliest. */
727
728 struct noce_if_info
729 {
730 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
731 basic_block test_bb, then_bb, else_bb, join_bb;
732
733 /* The jump that ends TEST_BB. */
734 rtx jump;
735
736 /* The jump condition. */
737 rtx cond;
738
739 /* New insns should be inserted before this one. */
740 rtx cond_earliest;
741
742 /* Insns in the THEN and ELSE block. There is always just this
743 one insns in those blocks. The insns are single_set insns.
744 If there was no ELSE block, INSN_B is the last insn before
745 COND_EARLIEST, or NULL_RTX. In the former case, the insn
746 operands are still valid, as if INSN_B was moved down below
747 the jump. */
748 rtx insn_a, insn_b;
749
750 /* The SET_SRC of INSN_A and INSN_B. */
751 rtx a, b;
752
753 /* The SET_DEST of INSN_A. */
754 rtx x;
755
756 /* True if this if block is not canonical. In the canonical form of
757 if blocks, the THEN_BB is the block reached via the fallthru edge
758 from TEST_BB. For the noce transformations, we allow the symmetric
759 form as well. */
760 bool then_else_reversed;
761
762 /* Estimated cost of the particular branch instruction. */
763 int branch_cost;
764 };
765
766 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
767 static int noce_try_move (struct noce_if_info *);
768 static int noce_try_store_flag (struct noce_if_info *);
769 static int noce_try_addcc (struct noce_if_info *);
770 static int noce_try_store_flag_constants (struct noce_if_info *);
771 static int noce_try_store_flag_mask (struct noce_if_info *);
772 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
773 rtx, rtx, rtx);
774 static int noce_try_cmove (struct noce_if_info *);
775 static int noce_try_cmove_arith (struct noce_if_info *);
776 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
777 static int noce_try_minmax (struct noce_if_info *);
778 static int noce_try_abs (struct noce_if_info *);
779 static int noce_try_sign_mask (struct noce_if_info *);
780
781 /* Helper function for noce_try_store_flag*. */
782
783 static rtx
784 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
785 int normalize)
786 {
787 rtx cond = if_info->cond;
788 int cond_complex;
789 enum rtx_code code;
790
791 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
792 || ! general_operand (XEXP (cond, 1), VOIDmode));
793
794 /* If earliest == jump, or when the condition is complex, try to
795 build the store_flag insn directly. */
796
797 if (cond_complex)
798 {
799 rtx set = pc_set (if_info->jump);
800 cond = XEXP (SET_SRC (set), 0);
801 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
802 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
803 reversep = !reversep;
804 if (if_info->then_else_reversed)
805 reversep = !reversep;
806 }
807
808 if (reversep)
809 code = reversed_comparison_code (cond, if_info->jump);
810 else
811 code = GET_CODE (cond);
812
813 if ((if_info->cond_earliest == if_info->jump || cond_complex)
814 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
815 {
816 rtx tmp;
817
818 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
819 XEXP (cond, 1));
820 tmp = gen_rtx_SET (VOIDmode, x, tmp);
821
822 start_sequence ();
823 tmp = emit_insn (tmp);
824
825 if (recog_memoized (tmp) >= 0)
826 {
827 tmp = get_insns ();
828 end_sequence ();
829 emit_insn (tmp);
830
831 if_info->cond_earliest = if_info->jump;
832
833 return x;
834 }
835
836 end_sequence ();
837 }
838
839 /* Don't even try if the comparison operands or the mode of X are weird. */
840 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
841 return NULL_RTX;
842
843 return emit_store_flag (x, code, XEXP (cond, 0),
844 XEXP (cond, 1), VOIDmode,
845 (code == LTU || code == LEU
846 || code == GEU || code == GTU), normalize);
847 }
848
849 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
850 X is the destination/target and Y is the value to copy. */
851
852 static void
853 noce_emit_move_insn (rtx x, rtx y)
854 {
855 enum machine_mode outmode;
856 rtx outer, inner;
857 int bitpos;
858
859 if (GET_CODE (x) != STRICT_LOW_PART)
860 {
861 rtx seq, insn, target;
862 optab ot;
863
864 start_sequence ();
865 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
866 otherwise construct a suitable SET pattern ourselves. */
867 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
868 ? emit_move_insn (x, y)
869 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
870 seq = get_insns ();
871 end_sequence ();
872
873 if (recog_memoized (insn) <= 0)
874 {
875 if (GET_CODE (x) == ZERO_EXTRACT)
876 {
877 rtx op = XEXP (x, 0);
878 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
879 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
880
881 /* store_bit_field expects START to be relative to
882 BYTES_BIG_ENDIAN and adjusts this value for machines with
883 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
884 invoke store_bit_field again it is necessary to have the START
885 value from the first call. */
886 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
887 {
888 if (MEM_P (op))
889 start = BITS_PER_UNIT - start - size;
890 else
891 {
892 gcc_assert (REG_P (op));
893 start = BITS_PER_WORD - start - size;
894 }
895 }
896
897 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
898 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
899 return;
900 }
901
902 switch (GET_RTX_CLASS (GET_CODE (y)))
903 {
904 case RTX_UNARY:
905 ot = code_to_optab (GET_CODE (y));
906 if (ot)
907 {
908 start_sequence ();
909 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
910 if (target != NULL_RTX)
911 {
912 if (target != x)
913 emit_move_insn (x, target);
914 seq = get_insns ();
915 }
916 end_sequence ();
917 }
918 break;
919
920 case RTX_BIN_ARITH:
921 case RTX_COMM_ARITH:
922 ot = code_to_optab (GET_CODE (y));
923 if (ot)
924 {
925 start_sequence ();
926 target = expand_binop (GET_MODE (y), ot,
927 XEXP (y, 0), XEXP (y, 1),
928 x, 0, OPTAB_DIRECT);
929 if (target != NULL_RTX)
930 {
931 if (target != x)
932 emit_move_insn (x, target);
933 seq = get_insns ();
934 }
935 end_sequence ();
936 }
937 break;
938
939 default:
940 break;
941 }
942 }
943
944 emit_insn (seq);
945 return;
946 }
947
948 outer = XEXP (x, 0);
949 inner = XEXP (outer, 0);
950 outmode = GET_MODE (outer);
951 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
952 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
953 0, 0, outmode, y);
954 }
955
956 /* Return sequence of instructions generated by if conversion. This
957 function calls end_sequence() to end the current stream, ensures
958 that are instructions are unshared, recognizable non-jump insns.
959 On failure, this function returns a NULL_RTX. */
960
961 static rtx
962 end_ifcvt_sequence (struct noce_if_info *if_info)
963 {
964 rtx insn;
965 rtx seq = get_insns ();
966
967 set_used_flags (if_info->x);
968 set_used_flags (if_info->cond);
969 unshare_all_rtl_in_chain (seq);
970 end_sequence ();
971
972 /* Make sure that all of the instructions emitted are recognizable,
973 and that we haven't introduced a new jump instruction.
974 As an exercise for the reader, build a general mechanism that
975 allows proper placement of required clobbers. */
976 for (insn = seq; insn; insn = NEXT_INSN (insn))
977 if (JUMP_P (insn)
978 || recog_memoized (insn) == -1)
979 return NULL_RTX;
980
981 return seq;
982 }
983
984 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
985 "if (a == b) x = a; else x = b" into "x = b". */
986
987 static int
988 noce_try_move (struct noce_if_info *if_info)
989 {
990 rtx cond = if_info->cond;
991 enum rtx_code code = GET_CODE (cond);
992 rtx y, seq;
993
994 if (code != NE && code != EQ)
995 return FALSE;
996
997 /* This optimization isn't valid if either A or B could be a NaN
998 or a signed zero. */
999 if (HONOR_NANS (GET_MODE (if_info->x))
1000 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1001 return FALSE;
1002
1003 /* Check whether the operands of the comparison are A and in
1004 either order. */
1005 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1006 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1007 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1008 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1009 {
1010 y = (code == EQ) ? if_info->a : if_info->b;
1011
1012 /* Avoid generating the move if the source is the destination. */
1013 if (! rtx_equal_p (if_info->x, y))
1014 {
1015 start_sequence ();
1016 noce_emit_move_insn (if_info->x, y);
1017 seq = end_ifcvt_sequence (if_info);
1018 if (!seq)
1019 return FALSE;
1020
1021 emit_insn_before_setloc (seq, if_info->jump,
1022 INSN_LOCATION (if_info->insn_a));
1023 }
1024 return TRUE;
1025 }
1026 return FALSE;
1027 }
1028
1029 /* Convert "if (test) x = 1; else x = 0".
1030
1031 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1032 tried in noce_try_store_flag_constants after noce_try_cmove has had
1033 a go at the conversion. */
1034
1035 static int
1036 noce_try_store_flag (struct noce_if_info *if_info)
1037 {
1038 int reversep;
1039 rtx target, seq;
1040
1041 if (CONST_INT_P (if_info->b)
1042 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1043 && if_info->a == const0_rtx)
1044 reversep = 0;
1045 else if (if_info->b == const0_rtx
1046 && CONST_INT_P (if_info->a)
1047 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1048 && (reversed_comparison_code (if_info->cond, if_info->jump)
1049 != UNKNOWN))
1050 reversep = 1;
1051 else
1052 return FALSE;
1053
1054 start_sequence ();
1055
1056 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1057 if (target)
1058 {
1059 if (target != if_info->x)
1060 noce_emit_move_insn (if_info->x, target);
1061
1062 seq = end_ifcvt_sequence (if_info);
1063 if (! seq)
1064 return FALSE;
1065
1066 emit_insn_before_setloc (seq, if_info->jump,
1067 INSN_LOCATION (if_info->insn_a));
1068 return TRUE;
1069 }
1070 else
1071 {
1072 end_sequence ();
1073 return FALSE;
1074 }
1075 }
1076
1077 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1078
1079 static int
1080 noce_try_store_flag_constants (struct noce_if_info *if_info)
1081 {
1082 rtx target, seq;
1083 int reversep;
1084 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1085 int normalize, can_reverse;
1086 enum machine_mode mode;
1087
1088 if (CONST_INT_P (if_info->a)
1089 && CONST_INT_P (if_info->b))
1090 {
1091 mode = GET_MODE (if_info->x);
1092 ifalse = INTVAL (if_info->a);
1093 itrue = INTVAL (if_info->b);
1094
1095 /* Make sure we can represent the difference between the two values. */
1096 if ((itrue - ifalse > 0)
1097 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1098 return FALSE;
1099
1100 diff = trunc_int_for_mode (itrue - ifalse, mode);
1101
1102 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1103 != UNKNOWN);
1104
1105 reversep = 0;
1106 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1107 normalize = 0;
1108 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1109 && (STORE_FLAG_VALUE == 1
1110 || if_info->branch_cost >= 2))
1111 normalize = 1;
1112 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1113 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1114 normalize = 1, reversep = 1;
1115 else if (itrue == -1
1116 && (STORE_FLAG_VALUE == -1
1117 || if_info->branch_cost >= 2))
1118 normalize = -1;
1119 else if (ifalse == -1 && can_reverse
1120 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1121 normalize = -1, reversep = 1;
1122 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1123 || if_info->branch_cost >= 3)
1124 normalize = -1;
1125 else
1126 return FALSE;
1127
1128 if (reversep)
1129 {
1130 tmp = itrue; itrue = ifalse; ifalse = tmp;
1131 diff = trunc_int_for_mode (-diff, mode);
1132 }
1133
1134 start_sequence ();
1135 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1136 if (! target)
1137 {
1138 end_sequence ();
1139 return FALSE;
1140 }
1141
1142 /* if (test) x = 3; else x = 4;
1143 => x = 3 + (test == 0); */
1144 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1145 {
1146 target = expand_simple_binop (mode,
1147 (diff == STORE_FLAG_VALUE
1148 ? PLUS : MINUS),
1149 GEN_INT (ifalse), target, if_info->x, 0,
1150 OPTAB_WIDEN);
1151 }
1152
1153 /* if (test) x = 8; else x = 0;
1154 => x = (test != 0) << 3; */
1155 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1156 {
1157 target = expand_simple_binop (mode, ASHIFT,
1158 target, GEN_INT (tmp), if_info->x, 0,
1159 OPTAB_WIDEN);
1160 }
1161
1162 /* if (test) x = -1; else x = b;
1163 => x = -(test != 0) | b; */
1164 else if (itrue == -1)
1165 {
1166 target = expand_simple_binop (mode, IOR,
1167 target, GEN_INT (ifalse), if_info->x, 0,
1168 OPTAB_WIDEN);
1169 }
1170
1171 /* if (test) x = a; else x = b;
1172 => x = (-(test != 0) & (b - a)) + a; */
1173 else
1174 {
1175 target = expand_simple_binop (mode, AND,
1176 target, GEN_INT (diff), if_info->x, 0,
1177 OPTAB_WIDEN);
1178 if (target)
1179 target = expand_simple_binop (mode, PLUS,
1180 target, GEN_INT (ifalse),
1181 if_info->x, 0, OPTAB_WIDEN);
1182 }
1183
1184 if (! target)
1185 {
1186 end_sequence ();
1187 return FALSE;
1188 }
1189
1190 if (target != if_info->x)
1191 noce_emit_move_insn (if_info->x, target);
1192
1193 seq = end_ifcvt_sequence (if_info);
1194 if (!seq)
1195 return FALSE;
1196
1197 emit_insn_before_setloc (seq, if_info->jump,
1198 INSN_LOCATION (if_info->insn_a));
1199 return TRUE;
1200 }
1201
1202 return FALSE;
1203 }
1204
1205 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1206 similarly for "foo--". */
1207
1208 static int
1209 noce_try_addcc (struct noce_if_info *if_info)
1210 {
1211 rtx target, seq;
1212 int subtract, normalize;
1213
1214 if (GET_CODE (if_info->a) == PLUS
1215 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1216 && (reversed_comparison_code (if_info->cond, if_info->jump)
1217 != UNKNOWN))
1218 {
1219 rtx cond = if_info->cond;
1220 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1221
1222 /* First try to use addcc pattern. */
1223 if (general_operand (XEXP (cond, 0), VOIDmode)
1224 && general_operand (XEXP (cond, 1), VOIDmode))
1225 {
1226 start_sequence ();
1227 target = emit_conditional_add (if_info->x, code,
1228 XEXP (cond, 0),
1229 XEXP (cond, 1),
1230 VOIDmode,
1231 if_info->b,
1232 XEXP (if_info->a, 1),
1233 GET_MODE (if_info->x),
1234 (code == LTU || code == GEU
1235 || code == LEU || code == GTU));
1236 if (target)
1237 {
1238 if (target != if_info->x)
1239 noce_emit_move_insn (if_info->x, target);
1240
1241 seq = end_ifcvt_sequence (if_info);
1242 if (!seq)
1243 return FALSE;
1244
1245 emit_insn_before_setloc (seq, if_info->jump,
1246 INSN_LOCATION (if_info->insn_a));
1247 return TRUE;
1248 }
1249 end_sequence ();
1250 }
1251
1252 /* If that fails, construct conditional increment or decrement using
1253 setcc. */
1254 if (if_info->branch_cost >= 2
1255 && (XEXP (if_info->a, 1) == const1_rtx
1256 || XEXP (if_info->a, 1) == constm1_rtx))
1257 {
1258 start_sequence ();
1259 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1260 subtract = 0, normalize = 0;
1261 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1262 subtract = 1, normalize = 0;
1263 else
1264 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1265
1266
1267 target = noce_emit_store_flag (if_info,
1268 gen_reg_rtx (GET_MODE (if_info->x)),
1269 1, normalize);
1270
1271 if (target)
1272 target = expand_simple_binop (GET_MODE (if_info->x),
1273 subtract ? MINUS : PLUS,
1274 if_info->b, target, if_info->x,
1275 0, OPTAB_WIDEN);
1276 if (target)
1277 {
1278 if (target != if_info->x)
1279 noce_emit_move_insn (if_info->x, target);
1280
1281 seq = end_ifcvt_sequence (if_info);
1282 if (!seq)
1283 return FALSE;
1284
1285 emit_insn_before_setloc (seq, if_info->jump,
1286 INSN_LOCATION (if_info->insn_a));
1287 return TRUE;
1288 }
1289 end_sequence ();
1290 }
1291 }
1292
1293 return FALSE;
1294 }
1295
1296 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1297
1298 static int
1299 noce_try_store_flag_mask (struct noce_if_info *if_info)
1300 {
1301 rtx target, seq;
1302 int reversep;
1303
1304 reversep = 0;
1305 if ((if_info->branch_cost >= 2
1306 || STORE_FLAG_VALUE == -1)
1307 && ((if_info->a == const0_rtx
1308 && rtx_equal_p (if_info->b, if_info->x))
1309 || ((reversep = (reversed_comparison_code (if_info->cond,
1310 if_info->jump)
1311 != UNKNOWN))
1312 && if_info->b == const0_rtx
1313 && rtx_equal_p (if_info->a, if_info->x))))
1314 {
1315 start_sequence ();
1316 target = noce_emit_store_flag (if_info,
1317 gen_reg_rtx (GET_MODE (if_info->x)),
1318 reversep, -1);
1319 if (target)
1320 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1321 if_info->x,
1322 target, if_info->x, 0,
1323 OPTAB_WIDEN);
1324
1325 if (target)
1326 {
1327 if (target != if_info->x)
1328 noce_emit_move_insn (if_info->x, target);
1329
1330 seq = end_ifcvt_sequence (if_info);
1331 if (!seq)
1332 return FALSE;
1333
1334 emit_insn_before_setloc (seq, if_info->jump,
1335 INSN_LOCATION (if_info->insn_a));
1336 return TRUE;
1337 }
1338
1339 end_sequence ();
1340 }
1341
1342 return FALSE;
1343 }
1344
1345 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1346
1347 static rtx
1348 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1349 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1350 {
1351 rtx target ATTRIBUTE_UNUSED;
1352 int unsignedp ATTRIBUTE_UNUSED;
1353
1354 /* If earliest == jump, try to build the cmove insn directly.
1355 This is helpful when combine has created some complex condition
1356 (like for alpha's cmovlbs) that we can't hope to regenerate
1357 through the normal interface. */
1358
1359 if (if_info->cond_earliest == if_info->jump)
1360 {
1361 rtx tmp;
1362
1363 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1364 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1365 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1366
1367 start_sequence ();
1368 tmp = emit_insn (tmp);
1369
1370 if (recog_memoized (tmp) >= 0)
1371 {
1372 tmp = get_insns ();
1373 end_sequence ();
1374 emit_insn (tmp);
1375
1376 return x;
1377 }
1378
1379 end_sequence ();
1380 }
1381
1382 /* Don't even try if the comparison operands are weird. */
1383 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1384 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1385 return NULL_RTX;
1386
1387 #if HAVE_conditional_move
1388 unsignedp = (code == LTU || code == GEU
1389 || code == LEU || code == GTU);
1390
1391 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1392 vtrue, vfalse, GET_MODE (x),
1393 unsignedp);
1394 if (target)
1395 return target;
1396
1397 /* We might be faced with a situation like:
1398
1399 x = (reg:M TARGET)
1400 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1401 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1402
1403 We can't do a conditional move in mode M, but it's possible that we
1404 could do a conditional move in mode N instead and take a subreg of
1405 the result.
1406
1407 If we can't create new pseudos, though, don't bother. */
1408 if (reload_completed)
1409 return NULL_RTX;
1410
1411 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1412 {
1413 rtx reg_vtrue = SUBREG_REG (vtrue);
1414 rtx reg_vfalse = SUBREG_REG (vfalse);
1415 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1416 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1417 rtx promoted_target;
1418
1419 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1420 || byte_vtrue != byte_vfalse
1421 || (SUBREG_PROMOTED_VAR_P (vtrue)
1422 != SUBREG_PROMOTED_VAR_P (vfalse))
1423 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1424 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1425 return NULL_RTX;
1426
1427 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1428
1429 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1430 VOIDmode, reg_vtrue, reg_vfalse,
1431 GET_MODE (reg_vtrue), unsignedp);
1432 /* Nope, couldn't do it in that mode either. */
1433 if (!target)
1434 return NULL_RTX;
1435
1436 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1437 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1438 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1439 emit_move_insn (x, target);
1440 return x;
1441 }
1442 else
1443 return NULL_RTX;
1444 #else
1445 /* We'll never get here, as noce_process_if_block doesn't call the
1446 functions involved. Ifdef code, however, should be discouraged
1447 because it leads to typos in the code not selected. However,
1448 emit_conditional_move won't exist either. */
1449 return NULL_RTX;
1450 #endif
1451 }
1452
1453 /* Try only simple constants and registers here. More complex cases
1454 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1455 has had a go at it. */
1456
1457 static int
1458 noce_try_cmove (struct noce_if_info *if_info)
1459 {
1460 enum rtx_code code;
1461 rtx target, seq;
1462
1463 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1464 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1465 {
1466 start_sequence ();
1467
1468 code = GET_CODE (if_info->cond);
1469 target = noce_emit_cmove (if_info, if_info->x, code,
1470 XEXP (if_info->cond, 0),
1471 XEXP (if_info->cond, 1),
1472 if_info->a, if_info->b);
1473
1474 if (target)
1475 {
1476 if (target != if_info->x)
1477 noce_emit_move_insn (if_info->x, target);
1478
1479 seq = end_ifcvt_sequence (if_info);
1480 if (!seq)
1481 return FALSE;
1482
1483 emit_insn_before_setloc (seq, if_info->jump,
1484 INSN_LOCATION (if_info->insn_a));
1485 return TRUE;
1486 }
1487 else
1488 {
1489 end_sequence ();
1490 return FALSE;
1491 }
1492 }
1493
1494 return FALSE;
1495 }
1496
1497 /* Try more complex cases involving conditional_move. */
1498
1499 static int
1500 noce_try_cmove_arith (struct noce_if_info *if_info)
1501 {
1502 rtx a = if_info->a;
1503 rtx b = if_info->b;
1504 rtx x = if_info->x;
1505 rtx orig_a, orig_b;
1506 rtx insn_a, insn_b;
1507 rtx tmp, target;
1508 int is_mem = 0;
1509 int insn_cost;
1510 enum rtx_code code;
1511
1512 /* A conditional move from two memory sources is equivalent to a
1513 conditional on their addresses followed by a load. Don't do this
1514 early because it'll screw alias analysis. Note that we've
1515 already checked for no side effects. */
1516 /* ??? FIXME: Magic number 5. */
1517 if (cse_not_expected
1518 && MEM_P (a) && MEM_P (b)
1519 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1520 && if_info->branch_cost >= 5)
1521 {
1522 enum machine_mode address_mode = get_address_mode (a);
1523
1524 a = XEXP (a, 0);
1525 b = XEXP (b, 0);
1526 x = gen_reg_rtx (address_mode);
1527 is_mem = 1;
1528 }
1529
1530 /* ??? We could handle this if we knew that a load from A or B could
1531 not trap or fault. This is also true if we've already loaded
1532 from the address along the path from ENTRY. */
1533 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1534 return FALSE;
1535
1536 /* if (test) x = a + b; else x = c - d;
1537 => y = a + b;
1538 x = c - d;
1539 if (test)
1540 x = y;
1541 */
1542
1543 code = GET_CODE (if_info->cond);
1544 insn_a = if_info->insn_a;
1545 insn_b = if_info->insn_b;
1546
1547 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1548 if insn_rtx_cost can't be estimated. */
1549 if (insn_a)
1550 {
1551 insn_cost
1552 = insn_rtx_cost (PATTERN (insn_a),
1553 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1554 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1555 return FALSE;
1556 }
1557 else
1558 insn_cost = 0;
1559
1560 if (insn_b)
1561 {
1562 insn_cost
1563 += insn_rtx_cost (PATTERN (insn_b),
1564 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1565 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1566 return FALSE;
1567 }
1568
1569 /* Possibly rearrange operands to make things come out more natural. */
1570 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1571 {
1572 int reversep = 0;
1573 if (rtx_equal_p (b, x))
1574 reversep = 1;
1575 else if (general_operand (b, GET_MODE (b)))
1576 reversep = 1;
1577
1578 if (reversep)
1579 {
1580 code = reversed_comparison_code (if_info->cond, if_info->jump);
1581 tmp = a, a = b, b = tmp;
1582 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1583 }
1584 }
1585
1586 start_sequence ();
1587
1588 orig_a = a;
1589 orig_b = b;
1590
1591 /* If either operand is complex, load it into a register first.
1592 The best way to do this is to copy the original insn. In this
1593 way we preserve any clobbers etc that the insn may have had.
1594 This is of course not possible in the IS_MEM case. */
1595 if (! general_operand (a, GET_MODE (a)))
1596 {
1597 rtx set;
1598
1599 if (is_mem)
1600 {
1601 tmp = gen_reg_rtx (GET_MODE (a));
1602 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1603 }
1604 else if (! insn_a)
1605 goto end_seq_and_fail;
1606 else
1607 {
1608 a = gen_reg_rtx (GET_MODE (a));
1609 tmp = copy_rtx (insn_a);
1610 set = single_set (tmp);
1611 SET_DEST (set) = a;
1612 tmp = emit_insn (PATTERN (tmp));
1613 }
1614 if (recog_memoized (tmp) < 0)
1615 goto end_seq_and_fail;
1616 }
1617 if (! general_operand (b, GET_MODE (b)))
1618 {
1619 rtx set, last;
1620
1621 if (is_mem)
1622 {
1623 tmp = gen_reg_rtx (GET_MODE (b));
1624 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1625 }
1626 else if (! insn_b)
1627 goto end_seq_and_fail;
1628 else
1629 {
1630 b = gen_reg_rtx (GET_MODE (b));
1631 tmp = copy_rtx (insn_b);
1632 set = single_set (tmp);
1633 SET_DEST (set) = b;
1634 tmp = PATTERN (tmp);
1635 }
1636
1637 /* If insn to set up A clobbers any registers B depends on, try to
1638 swap insn that sets up A with the one that sets up B. If even
1639 that doesn't help, punt. */
1640 last = get_last_insn ();
1641 if (last && modified_in_p (orig_b, last))
1642 {
1643 tmp = emit_insn_before (tmp, get_insns ());
1644 if (modified_in_p (orig_a, tmp))
1645 goto end_seq_and_fail;
1646 }
1647 else
1648 tmp = emit_insn (tmp);
1649
1650 if (recog_memoized (tmp) < 0)
1651 goto end_seq_and_fail;
1652 }
1653
1654 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1655 XEXP (if_info->cond, 1), a, b);
1656
1657 if (! target)
1658 goto end_seq_and_fail;
1659
1660 /* If we're handling a memory for above, emit the load now. */
1661 if (is_mem)
1662 {
1663 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1664
1665 /* Copy over flags as appropriate. */
1666 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1667 MEM_VOLATILE_P (tmp) = 1;
1668 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1669 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1670 set_mem_align (tmp,
1671 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1672
1673 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1674 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1675
1676 noce_emit_move_insn (if_info->x, tmp);
1677 }
1678 else if (target != x)
1679 noce_emit_move_insn (x, target);
1680
1681 tmp = end_ifcvt_sequence (if_info);
1682 if (!tmp)
1683 return FALSE;
1684
1685 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATION (if_info->insn_a));
1686 return TRUE;
1687
1688 end_seq_and_fail:
1689 end_sequence ();
1690 return FALSE;
1691 }
1692
1693 /* For most cases, the simplified condition we found is the best
1694 choice, but this is not the case for the min/max/abs transforms.
1695 For these we wish to know that it is A or B in the condition. */
1696
1697 static rtx
1698 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1699 rtx *earliest)
1700 {
1701 rtx cond, set, insn;
1702 int reverse;
1703
1704 /* If target is already mentioned in the known condition, return it. */
1705 if (reg_mentioned_p (target, if_info->cond))
1706 {
1707 *earliest = if_info->cond_earliest;
1708 return if_info->cond;
1709 }
1710
1711 set = pc_set (if_info->jump);
1712 cond = XEXP (SET_SRC (set), 0);
1713 reverse
1714 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1715 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1716 if (if_info->then_else_reversed)
1717 reverse = !reverse;
1718
1719 /* If we're looking for a constant, try to make the conditional
1720 have that constant in it. There are two reasons why it may
1721 not have the constant we want:
1722
1723 1. GCC may have needed to put the constant in a register, because
1724 the target can't compare directly against that constant. For
1725 this case, we look for a SET immediately before the comparison
1726 that puts a constant in that register.
1727
1728 2. GCC may have canonicalized the conditional, for example
1729 replacing "if x < 4" with "if x <= 3". We can undo that (or
1730 make equivalent types of changes) to get the constants we need
1731 if they're off by one in the right direction. */
1732
1733 if (CONST_INT_P (target))
1734 {
1735 enum rtx_code code = GET_CODE (if_info->cond);
1736 rtx op_a = XEXP (if_info->cond, 0);
1737 rtx op_b = XEXP (if_info->cond, 1);
1738 rtx prev_insn;
1739
1740 /* First, look to see if we put a constant in a register. */
1741 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1742 if (prev_insn
1743 && BLOCK_FOR_INSN (prev_insn)
1744 == BLOCK_FOR_INSN (if_info->cond_earliest)
1745 && INSN_P (prev_insn)
1746 && GET_CODE (PATTERN (prev_insn)) == SET)
1747 {
1748 rtx src = find_reg_equal_equiv_note (prev_insn);
1749 if (!src)
1750 src = SET_SRC (PATTERN (prev_insn));
1751 if (CONST_INT_P (src))
1752 {
1753 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1754 op_a = src;
1755 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1756 op_b = src;
1757
1758 if (CONST_INT_P (op_a))
1759 {
1760 rtx tmp = op_a;
1761 op_a = op_b;
1762 op_b = tmp;
1763 code = swap_condition (code);
1764 }
1765 }
1766 }
1767
1768 /* Now, look to see if we can get the right constant by
1769 adjusting the conditional. */
1770 if (CONST_INT_P (op_b))
1771 {
1772 HOST_WIDE_INT desired_val = INTVAL (target);
1773 HOST_WIDE_INT actual_val = INTVAL (op_b);
1774
1775 switch (code)
1776 {
1777 case LT:
1778 if (actual_val == desired_val + 1)
1779 {
1780 code = LE;
1781 op_b = GEN_INT (desired_val);
1782 }
1783 break;
1784 case LE:
1785 if (actual_val == desired_val - 1)
1786 {
1787 code = LT;
1788 op_b = GEN_INT (desired_val);
1789 }
1790 break;
1791 case GT:
1792 if (actual_val == desired_val - 1)
1793 {
1794 code = GE;
1795 op_b = GEN_INT (desired_val);
1796 }
1797 break;
1798 case GE:
1799 if (actual_val == desired_val + 1)
1800 {
1801 code = GT;
1802 op_b = GEN_INT (desired_val);
1803 }
1804 break;
1805 default:
1806 break;
1807 }
1808 }
1809
1810 /* If we made any changes, generate a new conditional that is
1811 equivalent to what we started with, but has the right
1812 constants in it. */
1813 if (code != GET_CODE (if_info->cond)
1814 || op_a != XEXP (if_info->cond, 0)
1815 || op_b != XEXP (if_info->cond, 1))
1816 {
1817 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1818 *earliest = if_info->cond_earliest;
1819 return cond;
1820 }
1821 }
1822
1823 cond = canonicalize_condition (if_info->jump, cond, reverse,
1824 earliest, target, false, true);
1825 if (! cond || ! reg_mentioned_p (target, cond))
1826 return NULL;
1827
1828 /* We almost certainly searched back to a different place.
1829 Need to re-verify correct lifetimes. */
1830
1831 /* X may not be mentioned in the range (cond_earliest, jump]. */
1832 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1833 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1834 return NULL;
1835
1836 /* A and B may not be modified in the range [cond_earliest, jump). */
1837 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1838 if (INSN_P (insn)
1839 && (modified_in_p (if_info->a, insn)
1840 || modified_in_p (if_info->b, insn)))
1841 return NULL;
1842
1843 return cond;
1844 }
1845
1846 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1847
1848 static int
1849 noce_try_minmax (struct noce_if_info *if_info)
1850 {
1851 rtx cond, earliest, target, seq;
1852 enum rtx_code code, op;
1853 int unsignedp;
1854
1855 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1856 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1857 to get the target to tell us... */
1858 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1859 || HONOR_NANS (GET_MODE (if_info->x)))
1860 return FALSE;
1861
1862 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1863 if (!cond)
1864 return FALSE;
1865
1866 /* Verify the condition is of the form we expect, and canonicalize
1867 the comparison code. */
1868 code = GET_CODE (cond);
1869 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1870 {
1871 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1872 return FALSE;
1873 }
1874 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1875 {
1876 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1877 return FALSE;
1878 code = swap_condition (code);
1879 }
1880 else
1881 return FALSE;
1882
1883 /* Determine what sort of operation this is. Note that the code is for
1884 a taken branch, so the code->operation mapping appears backwards. */
1885 switch (code)
1886 {
1887 case LT:
1888 case LE:
1889 case UNLT:
1890 case UNLE:
1891 op = SMAX;
1892 unsignedp = 0;
1893 break;
1894 case GT:
1895 case GE:
1896 case UNGT:
1897 case UNGE:
1898 op = SMIN;
1899 unsignedp = 0;
1900 break;
1901 case LTU:
1902 case LEU:
1903 op = UMAX;
1904 unsignedp = 1;
1905 break;
1906 case GTU:
1907 case GEU:
1908 op = UMIN;
1909 unsignedp = 1;
1910 break;
1911 default:
1912 return FALSE;
1913 }
1914
1915 start_sequence ();
1916
1917 target = expand_simple_binop (GET_MODE (if_info->x), op,
1918 if_info->a, if_info->b,
1919 if_info->x, unsignedp, OPTAB_WIDEN);
1920 if (! target)
1921 {
1922 end_sequence ();
1923 return FALSE;
1924 }
1925 if (target != if_info->x)
1926 noce_emit_move_insn (if_info->x, target);
1927
1928 seq = end_ifcvt_sequence (if_info);
1929 if (!seq)
1930 return FALSE;
1931
1932 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
1933 if_info->cond = cond;
1934 if_info->cond_earliest = earliest;
1935
1936 return TRUE;
1937 }
1938
1939 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1940 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1941 etc. */
1942
1943 static int
1944 noce_try_abs (struct noce_if_info *if_info)
1945 {
1946 rtx cond, earliest, target, seq, a, b, c;
1947 int negate;
1948 bool one_cmpl = false;
1949
1950 /* Reject modes with signed zeros. */
1951 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1952 return FALSE;
1953
1954 /* Recognize A and B as constituting an ABS or NABS. The canonical
1955 form is a branch around the negation, taken when the object is the
1956 first operand of a comparison against 0 that evaluates to true. */
1957 a = if_info->a;
1958 b = if_info->b;
1959 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1960 negate = 0;
1961 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1962 {
1963 c = a; a = b; b = c;
1964 negate = 1;
1965 }
1966 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1967 {
1968 negate = 0;
1969 one_cmpl = true;
1970 }
1971 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1972 {
1973 c = a; a = b; b = c;
1974 negate = 1;
1975 one_cmpl = true;
1976 }
1977 else
1978 return FALSE;
1979
1980 cond = noce_get_alt_condition (if_info, b, &earliest);
1981 if (!cond)
1982 return FALSE;
1983
1984 /* Verify the condition is of the form we expect. */
1985 if (rtx_equal_p (XEXP (cond, 0), b))
1986 c = XEXP (cond, 1);
1987 else if (rtx_equal_p (XEXP (cond, 1), b))
1988 {
1989 c = XEXP (cond, 0);
1990 negate = !negate;
1991 }
1992 else
1993 return FALSE;
1994
1995 /* Verify that C is zero. Search one step backward for a
1996 REG_EQUAL note or a simple source if necessary. */
1997 if (REG_P (c))
1998 {
1999 rtx set, insn = prev_nonnote_insn (earliest);
2000 if (insn
2001 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2002 && (set = single_set (insn))
2003 && rtx_equal_p (SET_DEST (set), c))
2004 {
2005 rtx note = find_reg_equal_equiv_note (insn);
2006 if (note)
2007 c = XEXP (note, 0);
2008 else
2009 c = SET_SRC (set);
2010 }
2011 else
2012 return FALSE;
2013 }
2014 if (MEM_P (c)
2015 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2016 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2017 c = get_pool_constant (XEXP (c, 0));
2018
2019 /* Work around funny ideas get_condition has wrt canonicalization.
2020 Note that these rtx constants are known to be CONST_INT, and
2021 therefore imply integer comparisons. */
2022 if (c == constm1_rtx && GET_CODE (cond) == GT)
2023 ;
2024 else if (c == const1_rtx && GET_CODE (cond) == LT)
2025 ;
2026 else if (c != CONST0_RTX (GET_MODE (b)))
2027 return FALSE;
2028
2029 /* Determine what sort of operation this is. */
2030 switch (GET_CODE (cond))
2031 {
2032 case LT:
2033 case LE:
2034 case UNLT:
2035 case UNLE:
2036 negate = !negate;
2037 break;
2038 case GT:
2039 case GE:
2040 case UNGT:
2041 case UNGE:
2042 break;
2043 default:
2044 return FALSE;
2045 }
2046
2047 start_sequence ();
2048 if (one_cmpl)
2049 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2050 if_info->x);
2051 else
2052 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2053
2054 /* ??? It's a quandary whether cmove would be better here, especially
2055 for integers. Perhaps combine will clean things up. */
2056 if (target && negate)
2057 {
2058 if (one_cmpl)
2059 target = expand_simple_unop (GET_MODE (target), NOT, target,
2060 if_info->x, 0);
2061 else
2062 target = expand_simple_unop (GET_MODE (target), NEG, target,
2063 if_info->x, 0);
2064 }
2065
2066 if (! target)
2067 {
2068 end_sequence ();
2069 return FALSE;
2070 }
2071
2072 if (target != if_info->x)
2073 noce_emit_move_insn (if_info->x, target);
2074
2075 seq = end_ifcvt_sequence (if_info);
2076 if (!seq)
2077 return FALSE;
2078
2079 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2080 if_info->cond = cond;
2081 if_info->cond_earliest = earliest;
2082
2083 return TRUE;
2084 }
2085
2086 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2087
2088 static int
2089 noce_try_sign_mask (struct noce_if_info *if_info)
2090 {
2091 rtx cond, t, m, c, seq;
2092 enum machine_mode mode;
2093 enum rtx_code code;
2094 bool t_unconditional;
2095
2096 cond = if_info->cond;
2097 code = GET_CODE (cond);
2098 m = XEXP (cond, 0);
2099 c = XEXP (cond, 1);
2100
2101 t = NULL_RTX;
2102 if (if_info->a == const0_rtx)
2103 {
2104 if ((code == LT && c == const0_rtx)
2105 || (code == LE && c == constm1_rtx))
2106 t = if_info->b;
2107 }
2108 else if (if_info->b == const0_rtx)
2109 {
2110 if ((code == GE && c == const0_rtx)
2111 || (code == GT && c == constm1_rtx))
2112 t = if_info->a;
2113 }
2114
2115 if (! t || side_effects_p (t))
2116 return FALSE;
2117
2118 /* We currently don't handle different modes. */
2119 mode = GET_MODE (t);
2120 if (GET_MODE (m) != mode)
2121 return FALSE;
2122
2123 /* This is only profitable if T is unconditionally executed/evaluated in the
2124 original insn sequence or T is cheap. The former happens if B is the
2125 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2126 INSN_B which can happen for e.g. conditional stores to memory. For the
2127 cost computation use the block TEST_BB where the evaluation will end up
2128 after the transformation. */
2129 t_unconditional =
2130 (t == if_info->b
2131 && (if_info->insn_b == NULL_RTX
2132 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2133 if (!(t_unconditional
2134 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2135 < COSTS_N_INSNS (2))))
2136 return FALSE;
2137
2138 start_sequence ();
2139 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2140 "(signed) m >> 31" directly. This benefits targets with specialized
2141 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2142 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2143 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2144 : NULL_RTX;
2145
2146 if (!t)
2147 {
2148 end_sequence ();
2149 return FALSE;
2150 }
2151
2152 noce_emit_move_insn (if_info->x, t);
2153
2154 seq = end_ifcvt_sequence (if_info);
2155 if (!seq)
2156 return FALSE;
2157
2158 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2159 return TRUE;
2160 }
2161
2162
2163 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2164 transformations. */
2165
2166 static int
2167 noce_try_bitop (struct noce_if_info *if_info)
2168 {
2169 rtx cond, x, a, result, seq;
2170 enum machine_mode mode;
2171 enum rtx_code code;
2172 int bitnum;
2173
2174 x = if_info->x;
2175 cond = if_info->cond;
2176 code = GET_CODE (cond);
2177
2178 /* Check for no else condition. */
2179 if (! rtx_equal_p (x, if_info->b))
2180 return FALSE;
2181
2182 /* Check for a suitable condition. */
2183 if (code != NE && code != EQ)
2184 return FALSE;
2185 if (XEXP (cond, 1) != const0_rtx)
2186 return FALSE;
2187 cond = XEXP (cond, 0);
2188
2189 /* ??? We could also handle AND here. */
2190 if (GET_CODE (cond) == ZERO_EXTRACT)
2191 {
2192 if (XEXP (cond, 1) != const1_rtx
2193 || !CONST_INT_P (XEXP (cond, 2))
2194 || ! rtx_equal_p (x, XEXP (cond, 0)))
2195 return FALSE;
2196 bitnum = INTVAL (XEXP (cond, 2));
2197 mode = GET_MODE (x);
2198 if (BITS_BIG_ENDIAN)
2199 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2200 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2201 return FALSE;
2202 }
2203 else
2204 return FALSE;
2205
2206 a = if_info->a;
2207 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2208 {
2209 /* Check for "if (X & C) x = x op C". */
2210 if (! rtx_equal_p (x, XEXP (a, 0))
2211 || !CONST_INT_P (XEXP (a, 1))
2212 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2213 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2214 return FALSE;
2215
2216 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2217 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2218 if (GET_CODE (a) == IOR)
2219 result = (code == NE) ? a : NULL_RTX;
2220 else if (code == NE)
2221 {
2222 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2223 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2224 result = simplify_gen_binary (IOR, mode, x, result);
2225 }
2226 else
2227 {
2228 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2229 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2230 result = simplify_gen_binary (AND, mode, x, result);
2231 }
2232 }
2233 else if (GET_CODE (a) == AND)
2234 {
2235 /* Check for "if (X & C) x &= ~C". */
2236 if (! rtx_equal_p (x, XEXP (a, 0))
2237 || !CONST_INT_P (XEXP (a, 1))
2238 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2239 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2240 return FALSE;
2241
2242 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2243 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2244 result = (code == EQ) ? a : NULL_RTX;
2245 }
2246 else
2247 return FALSE;
2248
2249 if (result)
2250 {
2251 start_sequence ();
2252 noce_emit_move_insn (x, result);
2253 seq = end_ifcvt_sequence (if_info);
2254 if (!seq)
2255 return FALSE;
2256
2257 emit_insn_before_setloc (seq, if_info->jump,
2258 INSN_LOCATION (if_info->insn_a));
2259 }
2260 return TRUE;
2261 }
2262
2263
2264 /* Similar to get_condition, only the resulting condition must be
2265 valid at JUMP, instead of at EARLIEST.
2266
2267 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2268 THEN block of the caller, and we have to reverse the condition. */
2269
2270 static rtx
2271 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2272 {
2273 rtx cond, set, tmp;
2274 bool reverse;
2275
2276 if (! any_condjump_p (jump))
2277 return NULL_RTX;
2278
2279 set = pc_set (jump);
2280
2281 /* If this branches to JUMP_LABEL when the condition is false,
2282 reverse the condition. */
2283 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2284 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2285
2286 /* We may have to reverse because the caller's if block is not canonical,
2287 i.e. the THEN block isn't the fallthrough block for the TEST block
2288 (see find_if_header). */
2289 if (then_else_reversed)
2290 reverse = !reverse;
2291
2292 /* If the condition variable is a register and is MODE_INT, accept it. */
2293
2294 cond = XEXP (SET_SRC (set), 0);
2295 tmp = XEXP (cond, 0);
2296 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2297 && (GET_MODE (tmp) != BImode
2298 || !targetm.small_register_classes_for_mode_p (BImode)))
2299 {
2300 *earliest = jump;
2301
2302 if (reverse)
2303 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2304 GET_MODE (cond), tmp, XEXP (cond, 1));
2305 return cond;
2306 }
2307
2308 /* Otherwise, fall back on canonicalize_condition to do the dirty
2309 work of manipulating MODE_CC values and COMPARE rtx codes. */
2310 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2311 NULL_RTX, false, true);
2312
2313 /* We don't handle side-effects in the condition, like handling
2314 REG_INC notes and making sure no duplicate conditions are emitted. */
2315 if (tmp != NULL_RTX && side_effects_p (tmp))
2316 return NULL_RTX;
2317
2318 return tmp;
2319 }
2320
2321 /* Return true if OP is ok for if-then-else processing. */
2322
2323 static int
2324 noce_operand_ok (const_rtx op)
2325 {
2326 if (side_effects_p (op))
2327 return FALSE;
2328
2329 /* We special-case memories, so handle any of them with
2330 no address side effects. */
2331 if (MEM_P (op))
2332 return ! side_effects_p (XEXP (op, 0));
2333
2334 return ! may_trap_p (op);
2335 }
2336
2337 /* Return true if a write into MEM may trap or fault. */
2338
2339 static bool
2340 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2341 {
2342 rtx addr;
2343
2344 if (MEM_READONLY_P (mem))
2345 return true;
2346
2347 if (may_trap_or_fault_p (mem))
2348 return true;
2349
2350 addr = XEXP (mem, 0);
2351
2352 /* Call target hook to avoid the effects of -fpic etc.... */
2353 addr = targetm.delegitimize_address (addr);
2354
2355 while (addr)
2356 switch (GET_CODE (addr))
2357 {
2358 case CONST:
2359 case PRE_DEC:
2360 case PRE_INC:
2361 case POST_DEC:
2362 case POST_INC:
2363 case POST_MODIFY:
2364 addr = XEXP (addr, 0);
2365 break;
2366 case LO_SUM:
2367 case PRE_MODIFY:
2368 addr = XEXP (addr, 1);
2369 break;
2370 case PLUS:
2371 if (CONST_INT_P (XEXP (addr, 1)))
2372 addr = XEXP (addr, 0);
2373 else
2374 return false;
2375 break;
2376 case LABEL_REF:
2377 return true;
2378 case SYMBOL_REF:
2379 if (SYMBOL_REF_DECL (addr)
2380 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2381 return true;
2382 return false;
2383 default:
2384 return false;
2385 }
2386
2387 return false;
2388 }
2389
2390 /* Return whether we can use store speculation for MEM. TOP_BB is the
2391 basic block above the conditional block where we are considering
2392 doing the speculative store. We look for whether MEM is set
2393 unconditionally later in the function. */
2394
2395 static bool
2396 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2397 {
2398 basic_block dominator;
2399
2400 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2401 dominator != NULL;
2402 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2403 {
2404 rtx insn;
2405
2406 FOR_BB_INSNS (dominator, insn)
2407 {
2408 /* If we see something that might be a memory barrier, we
2409 have to stop looking. Even if the MEM is set later in
2410 the function, we still don't want to set it
2411 unconditionally before the barrier. */
2412 if (INSN_P (insn)
2413 && (volatile_insn_p (PATTERN (insn))
2414 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2415 return false;
2416
2417 if (memory_must_be_modified_in_insn_p (mem, insn))
2418 return true;
2419 if (modified_in_p (XEXP (mem, 0), insn))
2420 return false;
2421
2422 }
2423 }
2424
2425 return false;
2426 }
2427
2428 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2429 it without using conditional execution. Return TRUE if we were successful
2430 at converting the block. */
2431
2432 static int
2433 noce_process_if_block (struct noce_if_info *if_info)
2434 {
2435 basic_block test_bb = if_info->test_bb; /* test block */
2436 basic_block then_bb = if_info->then_bb; /* THEN */
2437 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2438 basic_block join_bb = if_info->join_bb; /* JOIN */
2439 rtx jump = if_info->jump;
2440 rtx cond = if_info->cond;
2441 rtx insn_a, insn_b;
2442 rtx set_a, set_b;
2443 rtx orig_x, x, a, b;
2444
2445 /* We're looking for patterns of the form
2446
2447 (1) if (...) x = a; else x = b;
2448 (2) x = b; if (...) x = a;
2449 (3) if (...) x = a; // as if with an initial x = x.
2450
2451 The later patterns require jumps to be more expensive.
2452
2453 ??? For future expansion, look for multiple X in such patterns. */
2454
2455 /* Look for one of the potential sets. */
2456 insn_a = first_active_insn (then_bb);
2457 if (! insn_a
2458 || insn_a != last_active_insn (then_bb, FALSE)
2459 || (set_a = single_set (insn_a)) == NULL_RTX)
2460 return FALSE;
2461
2462 x = SET_DEST (set_a);
2463 a = SET_SRC (set_a);
2464
2465 /* Look for the other potential set. Make sure we've got equivalent
2466 destinations. */
2467 /* ??? This is overconservative. Storing to two different mems is
2468 as easy as conditionally computing the address. Storing to a
2469 single mem merely requires a scratch memory to use as one of the
2470 destination addresses; often the memory immediately below the
2471 stack pointer is available for this. */
2472 set_b = NULL_RTX;
2473 if (else_bb)
2474 {
2475 insn_b = first_active_insn (else_bb);
2476 if (! insn_b
2477 || insn_b != last_active_insn (else_bb, FALSE)
2478 || (set_b = single_set (insn_b)) == NULL_RTX
2479 || ! rtx_equal_p (x, SET_DEST (set_b)))
2480 return FALSE;
2481 }
2482 else
2483 {
2484 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2485 /* We're going to be moving the evaluation of B down from above
2486 COND_EARLIEST to JUMP. Make sure the relevant data is still
2487 intact. */
2488 if (! insn_b
2489 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2490 || !NONJUMP_INSN_P (insn_b)
2491 || (set_b = single_set (insn_b)) == NULL_RTX
2492 || ! rtx_equal_p (x, SET_DEST (set_b))
2493 || ! noce_operand_ok (SET_SRC (set_b))
2494 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2495 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2496 /* Likewise with X. In particular this can happen when
2497 noce_get_condition looks farther back in the instruction
2498 stream than one might expect. */
2499 || reg_overlap_mentioned_p (x, cond)
2500 || reg_overlap_mentioned_p (x, a)
2501 || modified_between_p (x, insn_b, jump))
2502 insn_b = set_b = NULL_RTX;
2503 }
2504
2505 /* If x has side effects then only the if-then-else form is safe to
2506 convert. But even in that case we would need to restore any notes
2507 (such as REG_INC) at then end. That can be tricky if
2508 noce_emit_move_insn expands to more than one insn, so disable the
2509 optimization entirely for now if there are side effects. */
2510 if (side_effects_p (x))
2511 return FALSE;
2512
2513 b = (set_b ? SET_SRC (set_b) : x);
2514
2515 /* Only operate on register destinations, and even then avoid extending
2516 the lifetime of hard registers on small register class machines. */
2517 orig_x = x;
2518 if (!REG_P (x)
2519 || (HARD_REGISTER_P (x)
2520 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2521 {
2522 if (GET_MODE (x) == BLKmode)
2523 return FALSE;
2524
2525 if (GET_CODE (x) == ZERO_EXTRACT
2526 && (!CONST_INT_P (XEXP (x, 1))
2527 || !CONST_INT_P (XEXP (x, 2))))
2528 return FALSE;
2529
2530 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2531 ? XEXP (x, 0) : x));
2532 }
2533
2534 /* Don't operate on sources that may trap or are volatile. */
2535 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2536 return FALSE;
2537
2538 retry:
2539 /* Set up the info block for our subroutines. */
2540 if_info->insn_a = insn_a;
2541 if_info->insn_b = insn_b;
2542 if_info->x = x;
2543 if_info->a = a;
2544 if_info->b = b;
2545
2546 /* Try optimizations in some approximation of a useful order. */
2547 /* ??? Should first look to see if X is live incoming at all. If it
2548 isn't, we don't need anything but an unconditional set. */
2549
2550 /* Look and see if A and B are really the same. Avoid creating silly
2551 cmove constructs that no one will fix up later. */
2552 if (rtx_equal_p (a, b))
2553 {
2554 /* If we have an INSN_B, we don't have to create any new rtl. Just
2555 move the instruction that we already have. If we don't have an
2556 INSN_B, that means that A == X, and we've got a noop move. In
2557 that case don't do anything and let the code below delete INSN_A. */
2558 if (insn_b && else_bb)
2559 {
2560 rtx note;
2561
2562 if (else_bb && insn_b == BB_END (else_bb))
2563 BB_END (else_bb) = PREV_INSN (insn_b);
2564 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2565
2566 /* If there was a REG_EQUAL note, delete it since it may have been
2567 true due to this insn being after a jump. */
2568 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2569 remove_note (insn_b, note);
2570
2571 insn_b = NULL_RTX;
2572 }
2573 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2574 x must be executed twice. */
2575 else if (insn_b && side_effects_p (orig_x))
2576 return FALSE;
2577
2578 x = orig_x;
2579 goto success;
2580 }
2581
2582 if (!set_b && MEM_P (orig_x))
2583 {
2584 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2585 for optimizations if writing to x may trap or fault,
2586 i.e. it's a memory other than a static var or a stack slot,
2587 is misaligned on strict aligned machines or is read-only. If
2588 x is a read-only memory, then the program is valid only if we
2589 avoid the store into it. If there are stores on both the
2590 THEN and ELSE arms, then we can go ahead with the conversion;
2591 either the program is broken, or the condition is always
2592 false such that the other memory is selected. */
2593 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2594 return FALSE;
2595
2596 /* Avoid store speculation: given "if (...) x = a" where x is a
2597 MEM, we only want to do the store if x is always set
2598 somewhere in the function. This avoids cases like
2599 if (pthread_mutex_trylock(mutex))
2600 ++global_variable;
2601 where we only want global_variable to be changed if the mutex
2602 is held. FIXME: This should ideally be expressed directly in
2603 RTL somehow. */
2604 if (!noce_can_store_speculate_p (test_bb, orig_x))
2605 return FALSE;
2606 }
2607
2608 if (noce_try_move (if_info))
2609 goto success;
2610 if (noce_try_store_flag (if_info))
2611 goto success;
2612 if (noce_try_bitop (if_info))
2613 goto success;
2614 if (noce_try_minmax (if_info))
2615 goto success;
2616 if (noce_try_abs (if_info))
2617 goto success;
2618 if (HAVE_conditional_move
2619 && noce_try_cmove (if_info))
2620 goto success;
2621 if (! targetm.have_conditional_execution ())
2622 {
2623 if (noce_try_store_flag_constants (if_info))
2624 goto success;
2625 if (noce_try_addcc (if_info))
2626 goto success;
2627 if (noce_try_store_flag_mask (if_info))
2628 goto success;
2629 if (HAVE_conditional_move
2630 && noce_try_cmove_arith (if_info))
2631 goto success;
2632 if (noce_try_sign_mask (if_info))
2633 goto success;
2634 }
2635
2636 if (!else_bb && set_b)
2637 {
2638 insn_b = set_b = NULL_RTX;
2639 b = orig_x;
2640 goto retry;
2641 }
2642
2643 return FALSE;
2644
2645 success:
2646
2647 /* If we used a temporary, fix it up now. */
2648 if (orig_x != x)
2649 {
2650 rtx seq;
2651
2652 start_sequence ();
2653 noce_emit_move_insn (orig_x, x);
2654 seq = get_insns ();
2655 set_used_flags (orig_x);
2656 unshare_all_rtl_in_chain (seq);
2657 end_sequence ();
2658
2659 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2660 }
2661
2662 /* The original THEN and ELSE blocks may now be removed. The test block
2663 must now jump to the join block. If the test block and the join block
2664 can be merged, do so. */
2665 if (else_bb)
2666 {
2667 delete_basic_block (else_bb);
2668 num_true_changes++;
2669 }
2670 else
2671 remove_edge (find_edge (test_bb, join_bb));
2672
2673 remove_edge (find_edge (then_bb, join_bb));
2674 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2675 delete_basic_block (then_bb);
2676 num_true_changes++;
2677
2678 if (can_merge_blocks_p (test_bb, join_bb))
2679 {
2680 merge_blocks (test_bb, join_bb);
2681 num_true_changes++;
2682 }
2683
2684 num_updated_if_blocks++;
2685 return TRUE;
2686 }
2687
2688 /* Check whether a block is suitable for conditional move conversion.
2689 Every insn must be a simple set of a register to a constant or a
2690 register. For each assignment, store the value in the pointer map
2691 VALS, keyed indexed by register pointer, then store the register
2692 pointer in REGS. COND is the condition we will test. */
2693
2694 static int
2695 check_cond_move_block (basic_block bb,
2696 struct pointer_map_t *vals,
2697 vec<rtx> *regs,
2698 rtx cond)
2699 {
2700 rtx insn;
2701
2702 /* We can only handle simple jumps at the end of the basic block.
2703 It is almost impossible to update the CFG otherwise. */
2704 insn = BB_END (bb);
2705 if (JUMP_P (insn) && !onlyjump_p (insn))
2706 return FALSE;
2707
2708 FOR_BB_INSNS (bb, insn)
2709 {
2710 rtx set, dest, src;
2711 void **slot;
2712
2713 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2714 continue;
2715 set = single_set (insn);
2716 if (!set)
2717 return FALSE;
2718
2719 dest = SET_DEST (set);
2720 src = SET_SRC (set);
2721 if (!REG_P (dest)
2722 || (HARD_REGISTER_P (dest)
2723 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2724 return FALSE;
2725
2726 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2727 return FALSE;
2728
2729 if (side_effects_p (src) || side_effects_p (dest))
2730 return FALSE;
2731
2732 if (may_trap_p (src) || may_trap_p (dest))
2733 return FALSE;
2734
2735 /* Don't try to handle this if the source register was
2736 modified earlier in the block. */
2737 if ((REG_P (src)
2738 && pointer_map_contains (vals, src))
2739 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2740 && pointer_map_contains (vals, SUBREG_REG (src))))
2741 return FALSE;
2742
2743 /* Don't try to handle this if the destination register was
2744 modified earlier in the block. */
2745 if (pointer_map_contains (vals, dest))
2746 return FALSE;
2747
2748 /* Don't try to handle this if the condition uses the
2749 destination register. */
2750 if (reg_overlap_mentioned_p (dest, cond))
2751 return FALSE;
2752
2753 /* Don't try to handle this if the source register is modified
2754 later in the block. */
2755 if (!CONSTANT_P (src)
2756 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2757 return FALSE;
2758
2759 slot = pointer_map_insert (vals, (void *) dest);
2760 *slot = (void *) src;
2761
2762 regs->safe_push (dest);
2763 }
2764
2765 return TRUE;
2766 }
2767
2768 /* Given a basic block BB suitable for conditional move conversion,
2769 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2770 the register values depending on COND, emit the insns in the block as
2771 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2772 processed. The caller has started a sequence for the conversion.
2773 Return true if successful, false if something goes wrong. */
2774
2775 static bool
2776 cond_move_convert_if_block (struct noce_if_info *if_infop,
2777 basic_block bb, rtx cond,
2778 struct pointer_map_t *then_vals,
2779 struct pointer_map_t *else_vals,
2780 bool else_block_p)
2781 {
2782 enum rtx_code code;
2783 rtx insn, cond_arg0, cond_arg1;
2784
2785 code = GET_CODE (cond);
2786 cond_arg0 = XEXP (cond, 0);
2787 cond_arg1 = XEXP (cond, 1);
2788
2789 FOR_BB_INSNS (bb, insn)
2790 {
2791 rtx set, target, dest, t, e;
2792 void **then_slot, **else_slot;
2793
2794 /* ??? Maybe emit conditional debug insn? */
2795 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2796 continue;
2797 set = single_set (insn);
2798 gcc_assert (set && REG_P (SET_DEST (set)));
2799
2800 dest = SET_DEST (set);
2801
2802 then_slot = pointer_map_contains (then_vals, dest);
2803 else_slot = pointer_map_contains (else_vals, dest);
2804 t = then_slot ? (rtx) *then_slot : NULL_RTX;
2805 e = else_slot ? (rtx) *else_slot : NULL_RTX;
2806
2807 if (else_block_p)
2808 {
2809 /* If this register was set in the then block, we already
2810 handled this case there. */
2811 if (t)
2812 continue;
2813 t = dest;
2814 gcc_assert (e);
2815 }
2816 else
2817 {
2818 gcc_assert (t);
2819 if (!e)
2820 e = dest;
2821 }
2822
2823 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2824 t, e);
2825 if (!target)
2826 return false;
2827
2828 if (target != dest)
2829 noce_emit_move_insn (dest, target);
2830 }
2831
2832 return true;
2833 }
2834
2835 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2836 it using only conditional moves. Return TRUE if we were successful at
2837 converting the block. */
2838
2839 static int
2840 cond_move_process_if_block (struct noce_if_info *if_info)
2841 {
2842 basic_block test_bb = if_info->test_bb;
2843 basic_block then_bb = if_info->then_bb;
2844 basic_block else_bb = if_info->else_bb;
2845 basic_block join_bb = if_info->join_bb;
2846 rtx jump = if_info->jump;
2847 rtx cond = if_info->cond;
2848 rtx seq, loc_insn;
2849 rtx reg;
2850 int c;
2851 struct pointer_map_t *then_vals;
2852 struct pointer_map_t *else_vals;
2853 vec<rtx> then_regs = vNULL;
2854 vec<rtx> else_regs = vNULL;
2855 unsigned int i;
2856 int success_p = FALSE;
2857
2858 /* Build a mapping for each block to the value used for each
2859 register. */
2860 then_vals = pointer_map_create ();
2861 else_vals = pointer_map_create ();
2862
2863 /* Make sure the blocks are suitable. */
2864 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2865 || (else_bb
2866 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2867 goto done;
2868
2869 /* Make sure the blocks can be used together. If the same register
2870 is set in both blocks, and is not set to a constant in both
2871 cases, then both blocks must set it to the same register. We
2872 have already verified that if it is set to a register, that the
2873 source register does not change after the assignment. Also count
2874 the number of registers set in only one of the blocks. */
2875 c = 0;
2876 FOR_EACH_VEC_ELT (then_regs, i, reg)
2877 {
2878 void **then_slot = pointer_map_contains (then_vals, reg);
2879 void **else_slot = pointer_map_contains (else_vals, reg);
2880
2881 gcc_checking_assert (then_slot);
2882 if (!else_slot)
2883 ++c;
2884 else
2885 {
2886 rtx then_val = (rtx) *then_slot;
2887 rtx else_val = (rtx) *else_slot;
2888 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
2889 && !rtx_equal_p (then_val, else_val))
2890 goto done;
2891 }
2892 }
2893
2894 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2895 FOR_EACH_VEC_ELT (else_regs, i, reg)
2896 {
2897 gcc_checking_assert (pointer_map_contains (else_vals, reg));
2898 if (!pointer_map_contains (then_vals, reg))
2899 ++c;
2900 }
2901
2902 /* Make sure it is reasonable to convert this block. What matters
2903 is the number of assignments currently made in only one of the
2904 branches, since if we convert we are going to always execute
2905 them. */
2906 if (c > MAX_CONDITIONAL_EXECUTE)
2907 goto done;
2908
2909 /* Try to emit the conditional moves. First do the then block,
2910 then do anything left in the else blocks. */
2911 start_sequence ();
2912 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2913 then_vals, else_vals, false)
2914 || (else_bb
2915 && !cond_move_convert_if_block (if_info, else_bb, cond,
2916 then_vals, else_vals, true)))
2917 {
2918 end_sequence ();
2919 goto done;
2920 }
2921 seq = end_ifcvt_sequence (if_info);
2922 if (!seq)
2923 goto done;
2924
2925 loc_insn = first_active_insn (then_bb);
2926 if (!loc_insn)
2927 {
2928 loc_insn = first_active_insn (else_bb);
2929 gcc_assert (loc_insn);
2930 }
2931 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
2932
2933 if (else_bb)
2934 {
2935 delete_basic_block (else_bb);
2936 num_true_changes++;
2937 }
2938 else
2939 remove_edge (find_edge (test_bb, join_bb));
2940
2941 remove_edge (find_edge (then_bb, join_bb));
2942 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2943 delete_basic_block (then_bb);
2944 num_true_changes++;
2945
2946 if (can_merge_blocks_p (test_bb, join_bb))
2947 {
2948 merge_blocks (test_bb, join_bb);
2949 num_true_changes++;
2950 }
2951
2952 num_updated_if_blocks++;
2953
2954 success_p = TRUE;
2955
2956 done:
2957 pointer_map_destroy (then_vals);
2958 pointer_map_destroy (else_vals);
2959 then_regs.release ();
2960 else_regs.release ();
2961 return success_p;
2962 }
2963
2964 \f
2965 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2966 IF-THEN-ELSE-JOIN block.
2967
2968 If so, we'll try to convert the insns to not require the branch,
2969 using only transformations that do not require conditional execution.
2970
2971 Return TRUE if we were successful at converting the block. */
2972
2973 static int
2974 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2975 int pass)
2976 {
2977 basic_block then_bb, else_bb, join_bb;
2978 bool then_else_reversed = false;
2979 rtx jump, cond;
2980 rtx cond_earliest;
2981 struct noce_if_info if_info;
2982
2983 /* We only ever should get here before reload. */
2984 gcc_assert (!reload_completed);
2985
2986 /* Recognize an IF-THEN-ELSE-JOIN block. */
2987 if (single_pred_p (then_edge->dest)
2988 && single_succ_p (then_edge->dest)
2989 && single_pred_p (else_edge->dest)
2990 && single_succ_p (else_edge->dest)
2991 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2992 {
2993 then_bb = then_edge->dest;
2994 else_bb = else_edge->dest;
2995 join_bb = single_succ (then_bb);
2996 }
2997 /* Recognize an IF-THEN-JOIN block. */
2998 else if (single_pred_p (then_edge->dest)
2999 && single_succ_p (then_edge->dest)
3000 && single_succ (then_edge->dest) == else_edge->dest)
3001 {
3002 then_bb = then_edge->dest;
3003 else_bb = NULL_BLOCK;
3004 join_bb = else_edge->dest;
3005 }
3006 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3007 of basic blocks in cfglayout mode does not matter, so the fallthrough
3008 edge can go to any basic block (and not just to bb->next_bb, like in
3009 cfgrtl mode). */
3010 else if (single_pred_p (else_edge->dest)
3011 && single_succ_p (else_edge->dest)
3012 && single_succ (else_edge->dest) == then_edge->dest)
3013 {
3014 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3015 To make this work, we have to invert the THEN and ELSE blocks
3016 and reverse the jump condition. */
3017 then_bb = else_edge->dest;
3018 else_bb = NULL_BLOCK;
3019 join_bb = single_succ (then_bb);
3020 then_else_reversed = true;
3021 }
3022 else
3023 /* Not a form we can handle. */
3024 return FALSE;
3025
3026 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3027 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3028 return FALSE;
3029 if (else_bb
3030 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3031 return FALSE;
3032
3033 num_possible_if_blocks++;
3034
3035 if (dump_file)
3036 {
3037 fprintf (dump_file,
3038 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3039 (else_bb) ? "-ELSE" : "",
3040 pass, test_bb->index, then_bb->index);
3041
3042 if (else_bb)
3043 fprintf (dump_file, ", else %d", else_bb->index);
3044
3045 fprintf (dump_file, ", join %d\n", join_bb->index);
3046 }
3047
3048 /* If the conditional jump is more than just a conditional
3049 jump, then we can not do if-conversion on this block. */
3050 jump = BB_END (test_bb);
3051 if (! onlyjump_p (jump))
3052 return FALSE;
3053
3054 /* If this is not a standard conditional jump, we can't parse it. */
3055 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3056 if (!cond)
3057 return FALSE;
3058
3059 /* We must be comparing objects whose modes imply the size. */
3060 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3061 return FALSE;
3062
3063 /* Initialize an IF_INFO struct to pass around. */
3064 memset (&if_info, 0, sizeof if_info);
3065 if_info.test_bb = test_bb;
3066 if_info.then_bb = then_bb;
3067 if_info.else_bb = else_bb;
3068 if_info.join_bb = join_bb;
3069 if_info.cond = cond;
3070 if_info.cond_earliest = cond_earliest;
3071 if_info.jump = jump;
3072 if_info.then_else_reversed = then_else_reversed;
3073 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3074 predictable_edge_p (then_edge));
3075
3076 /* Do the real work. */
3077
3078 if (noce_process_if_block (&if_info))
3079 return TRUE;
3080
3081 if (HAVE_conditional_move
3082 && cond_move_process_if_block (&if_info))
3083 return TRUE;
3084
3085 return FALSE;
3086 }
3087 \f
3088
3089 /* Merge the blocks and mark for local life update. */
3090
3091 static void
3092 merge_if_block (struct ce_if_block * ce_info)
3093 {
3094 basic_block test_bb = ce_info->test_bb; /* last test block */
3095 basic_block then_bb = ce_info->then_bb; /* THEN */
3096 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3097 basic_block join_bb = ce_info->join_bb; /* join block */
3098 basic_block combo_bb;
3099
3100 /* All block merging is done into the lower block numbers. */
3101
3102 combo_bb = test_bb;
3103 df_set_bb_dirty (test_bb);
3104
3105 /* Merge any basic blocks to handle && and || subtests. Each of
3106 the blocks are on the fallthru path from the predecessor block. */
3107 if (ce_info->num_multiple_test_blocks > 0)
3108 {
3109 basic_block bb = test_bb;
3110 basic_block last_test_bb = ce_info->last_test_bb;
3111 basic_block fallthru = block_fallthru (bb);
3112
3113 do
3114 {
3115 bb = fallthru;
3116 fallthru = block_fallthru (bb);
3117 merge_blocks (combo_bb, bb);
3118 num_true_changes++;
3119 }
3120 while (bb != last_test_bb);
3121 }
3122
3123 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3124 label, but it might if there were || tests. That label's count should be
3125 zero, and it normally should be removed. */
3126
3127 if (then_bb)
3128 {
3129 merge_blocks (combo_bb, then_bb);
3130 num_true_changes++;
3131 }
3132
3133 /* The ELSE block, if it existed, had a label. That label count
3134 will almost always be zero, but odd things can happen when labels
3135 get their addresses taken. */
3136 if (else_bb)
3137 {
3138 merge_blocks (combo_bb, else_bb);
3139 num_true_changes++;
3140 }
3141
3142 /* If there was no join block reported, that means it was not adjacent
3143 to the others, and so we cannot merge them. */
3144
3145 if (! join_bb)
3146 {
3147 rtx last = BB_END (combo_bb);
3148
3149 /* The outgoing edge for the current COMBO block should already
3150 be correct. Verify this. */
3151 if (EDGE_COUNT (combo_bb->succs) == 0)
3152 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3153 || (NONJUMP_INSN_P (last)
3154 && GET_CODE (PATTERN (last)) == TRAP_IF
3155 && (TRAP_CONDITION (PATTERN (last))
3156 == const_true_rtx)));
3157
3158 else
3159 /* There should still be something at the end of the THEN or ELSE
3160 blocks taking us to our final destination. */
3161 gcc_assert (JUMP_P (last)
3162 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3163 && CALL_P (last)
3164 && SIBLING_CALL_P (last))
3165 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3166 && can_throw_internal (last)));
3167 }
3168
3169 /* The JOIN block may have had quite a number of other predecessors too.
3170 Since we've already merged the TEST, THEN and ELSE blocks, we should
3171 have only one remaining edge from our if-then-else diamond. If there
3172 is more than one remaining edge, it must come from elsewhere. There
3173 may be zero incoming edges if the THEN block didn't actually join
3174 back up (as with a call to a non-return function). */
3175 else if (EDGE_COUNT (join_bb->preds) < 2
3176 && join_bb != EXIT_BLOCK_PTR)
3177 {
3178 /* We can merge the JOIN cleanly and update the dataflow try
3179 again on this pass.*/
3180 merge_blocks (combo_bb, join_bb);
3181 num_true_changes++;
3182 }
3183 else
3184 {
3185 /* We cannot merge the JOIN. */
3186
3187 /* The outgoing edge for the current COMBO block should already
3188 be correct. Verify this. */
3189 gcc_assert (single_succ_p (combo_bb)
3190 && single_succ (combo_bb) == join_bb);
3191
3192 /* Remove the jump and cruft from the end of the COMBO block. */
3193 if (join_bb != EXIT_BLOCK_PTR)
3194 tidy_fallthru_edge (single_succ_edge (combo_bb));
3195 }
3196
3197 num_updated_if_blocks++;
3198 }
3199 \f
3200 /* Find a block ending in a simple IF condition and try to transform it
3201 in some way. When converting a multi-block condition, put the new code
3202 in the first such block and delete the rest. Return a pointer to this
3203 first block if some transformation was done. Return NULL otherwise. */
3204
3205 static basic_block
3206 find_if_header (basic_block test_bb, int pass)
3207 {
3208 ce_if_block_t ce_info;
3209 edge then_edge;
3210 edge else_edge;
3211
3212 /* The kind of block we're looking for has exactly two successors. */
3213 if (EDGE_COUNT (test_bb->succs) != 2)
3214 return NULL;
3215
3216 then_edge = EDGE_SUCC (test_bb, 0);
3217 else_edge = EDGE_SUCC (test_bb, 1);
3218
3219 if (df_get_bb_dirty (then_edge->dest))
3220 return NULL;
3221 if (df_get_bb_dirty (else_edge->dest))
3222 return NULL;
3223
3224 /* Neither edge should be abnormal. */
3225 if ((then_edge->flags & EDGE_COMPLEX)
3226 || (else_edge->flags & EDGE_COMPLEX))
3227 return NULL;
3228
3229 /* Nor exit the loop. */
3230 if ((then_edge->flags & EDGE_LOOP_EXIT)
3231 || (else_edge->flags & EDGE_LOOP_EXIT))
3232 return NULL;
3233
3234 /* The THEN edge is canonically the one that falls through. */
3235 if (then_edge->flags & EDGE_FALLTHRU)
3236 ;
3237 else if (else_edge->flags & EDGE_FALLTHRU)
3238 {
3239 edge e = else_edge;
3240 else_edge = then_edge;
3241 then_edge = e;
3242 }
3243 else
3244 /* Otherwise this must be a multiway branch of some sort. */
3245 return NULL;
3246
3247 memset (&ce_info, 0, sizeof (ce_info));
3248 ce_info.test_bb = test_bb;
3249 ce_info.then_bb = then_edge->dest;
3250 ce_info.else_bb = else_edge->dest;
3251 ce_info.pass = pass;
3252
3253 #ifdef IFCVT_MACHDEP_INIT
3254 IFCVT_MACHDEP_INIT (&ce_info);
3255 #endif
3256
3257 if (!reload_completed
3258 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3259 goto success;
3260
3261 if (reload_completed
3262 && targetm.have_conditional_execution ()
3263 && cond_exec_find_if_block (&ce_info))
3264 goto success;
3265
3266 if (HAVE_trap
3267 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3268 && find_cond_trap (test_bb, then_edge, else_edge))
3269 goto success;
3270
3271 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3272 && (reload_completed || !targetm.have_conditional_execution ()))
3273 {
3274 if (find_if_case_1 (test_bb, then_edge, else_edge))
3275 goto success;
3276 if (find_if_case_2 (test_bb, then_edge, else_edge))
3277 goto success;
3278 }
3279
3280 return NULL;
3281
3282 success:
3283 if (dump_file)
3284 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3285 /* Set this so we continue looking. */
3286 cond_exec_changed_p = TRUE;
3287 return ce_info.test_bb;
3288 }
3289
3290 /* Return true if a block has two edges, one of which falls through to the next
3291 block, and the other jumps to a specific block, so that we can tell if the
3292 block is part of an && test or an || test. Returns either -1 or the number
3293 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3294
3295 static int
3296 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3297 {
3298 edge cur_edge;
3299 int fallthru_p = FALSE;
3300 int jump_p = FALSE;
3301 rtx insn;
3302 rtx end;
3303 int n_insns = 0;
3304 edge_iterator ei;
3305
3306 if (!cur_bb || !target_bb)
3307 return -1;
3308
3309 /* If no edges, obviously it doesn't jump or fallthru. */
3310 if (EDGE_COUNT (cur_bb->succs) == 0)
3311 return FALSE;
3312
3313 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3314 {
3315 if (cur_edge->flags & EDGE_COMPLEX)
3316 /* Anything complex isn't what we want. */
3317 return -1;
3318
3319 else if (cur_edge->flags & EDGE_FALLTHRU)
3320 fallthru_p = TRUE;
3321
3322 else if (cur_edge->dest == target_bb)
3323 jump_p = TRUE;
3324
3325 else
3326 return -1;
3327 }
3328
3329 if ((jump_p & fallthru_p) == 0)
3330 return -1;
3331
3332 /* Don't allow calls in the block, since this is used to group && and ||
3333 together for conditional execution support. ??? we should support
3334 conditional execution support across calls for IA-64 some day, but
3335 for now it makes the code simpler. */
3336 end = BB_END (cur_bb);
3337 insn = BB_HEAD (cur_bb);
3338
3339 while (insn != NULL_RTX)
3340 {
3341 if (CALL_P (insn))
3342 return -1;
3343
3344 if (INSN_P (insn)
3345 && !JUMP_P (insn)
3346 && !DEBUG_INSN_P (insn)
3347 && GET_CODE (PATTERN (insn)) != USE
3348 && GET_CODE (PATTERN (insn)) != CLOBBER)
3349 n_insns++;
3350
3351 if (insn == end)
3352 break;
3353
3354 insn = NEXT_INSN (insn);
3355 }
3356
3357 return n_insns;
3358 }
3359
3360 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3361 block. If so, we'll try to convert the insns to not require the branch.
3362 Return TRUE if we were successful at converting the block. */
3363
3364 static int
3365 cond_exec_find_if_block (struct ce_if_block * ce_info)
3366 {
3367 basic_block test_bb = ce_info->test_bb;
3368 basic_block then_bb = ce_info->then_bb;
3369 basic_block else_bb = ce_info->else_bb;
3370 basic_block join_bb = NULL_BLOCK;
3371 edge cur_edge;
3372 basic_block next;
3373 edge_iterator ei;
3374
3375 ce_info->last_test_bb = test_bb;
3376
3377 /* We only ever should get here after reload,
3378 and if we have conditional execution. */
3379 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3380
3381 /* Discover if any fall through predecessors of the current test basic block
3382 were && tests (which jump to the else block) or || tests (which jump to
3383 the then block). */
3384 if (single_pred_p (test_bb)
3385 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3386 {
3387 basic_block bb = single_pred (test_bb);
3388 basic_block target_bb;
3389 int max_insns = MAX_CONDITIONAL_EXECUTE;
3390 int n_insns;
3391
3392 /* Determine if the preceding block is an && or || block. */
3393 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3394 {
3395 ce_info->and_and_p = TRUE;
3396 target_bb = else_bb;
3397 }
3398 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3399 {
3400 ce_info->and_and_p = FALSE;
3401 target_bb = then_bb;
3402 }
3403 else
3404 target_bb = NULL_BLOCK;
3405
3406 if (target_bb && n_insns <= max_insns)
3407 {
3408 int total_insns = 0;
3409 int blocks = 0;
3410
3411 ce_info->last_test_bb = test_bb;
3412
3413 /* Found at least one && or || block, look for more. */
3414 do
3415 {
3416 ce_info->test_bb = test_bb = bb;
3417 total_insns += n_insns;
3418 blocks++;
3419
3420 if (!single_pred_p (bb))
3421 break;
3422
3423 bb = single_pred (bb);
3424 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3425 }
3426 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3427
3428 ce_info->num_multiple_test_blocks = blocks;
3429 ce_info->num_multiple_test_insns = total_insns;
3430
3431 if (ce_info->and_and_p)
3432 ce_info->num_and_and_blocks = blocks;
3433 else
3434 ce_info->num_or_or_blocks = blocks;
3435 }
3436 }
3437
3438 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3439 other than any || blocks which jump to the THEN block. */
3440 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3441 return FALSE;
3442
3443 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3444 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3445 {
3446 if (cur_edge->flags & EDGE_COMPLEX)
3447 return FALSE;
3448 }
3449
3450 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3451 {
3452 if (cur_edge->flags & EDGE_COMPLEX)
3453 return FALSE;
3454 }
3455
3456 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3457 if (EDGE_COUNT (then_bb->succs) > 0
3458 && (!single_succ_p (then_bb)
3459 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3460 || (epilogue_completed
3461 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3462 return FALSE;
3463
3464 /* If the THEN block has no successors, conditional execution can still
3465 make a conditional call. Don't do this unless the ELSE block has
3466 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3467 Check for the last insn of the THEN block being an indirect jump, which
3468 is listed as not having any successors, but confuses the rest of the CE
3469 code processing. ??? we should fix this in the future. */
3470 if (EDGE_COUNT (then_bb->succs) == 0)
3471 {
3472 if (single_pred_p (else_bb))
3473 {
3474 rtx last_insn = BB_END (then_bb);
3475
3476 while (last_insn
3477 && NOTE_P (last_insn)
3478 && last_insn != BB_HEAD (then_bb))
3479 last_insn = PREV_INSN (last_insn);
3480
3481 if (last_insn
3482 && JUMP_P (last_insn)
3483 && ! simplejump_p (last_insn))
3484 return FALSE;
3485
3486 join_bb = else_bb;
3487 else_bb = NULL_BLOCK;
3488 }
3489 else
3490 return FALSE;
3491 }
3492
3493 /* If the THEN block's successor is the other edge out of the TEST block,
3494 then we have an IF-THEN combo without an ELSE. */
3495 else if (single_succ (then_bb) == else_bb)
3496 {
3497 join_bb = else_bb;
3498 else_bb = NULL_BLOCK;
3499 }
3500
3501 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3502 has exactly one predecessor and one successor, and the outgoing edge
3503 is not complex, then we have an IF-THEN-ELSE combo. */
3504 else if (single_succ_p (else_bb)
3505 && single_succ (then_bb) == single_succ (else_bb)
3506 && single_pred_p (else_bb)
3507 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3508 && !(epilogue_completed
3509 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3510 join_bb = single_succ (else_bb);
3511
3512 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3513 else
3514 return FALSE;
3515
3516 num_possible_if_blocks++;
3517
3518 if (dump_file)
3519 {
3520 fprintf (dump_file,
3521 "\nIF-THEN%s block found, pass %d, start block %d "
3522 "[insn %d], then %d [%d]",
3523 (else_bb) ? "-ELSE" : "",
3524 ce_info->pass,
3525 test_bb->index,
3526 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3527 then_bb->index,
3528 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3529
3530 if (else_bb)
3531 fprintf (dump_file, ", else %d [%d]",
3532 else_bb->index,
3533 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3534
3535 fprintf (dump_file, ", join %d [%d]",
3536 join_bb->index,
3537 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3538
3539 if (ce_info->num_multiple_test_blocks > 0)
3540 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3541 ce_info->num_multiple_test_blocks,
3542 (ce_info->and_and_p) ? "&&" : "||",
3543 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3544 ce_info->last_test_bb->index,
3545 ((BB_HEAD (ce_info->last_test_bb))
3546 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3547 : -1));
3548
3549 fputc ('\n', dump_file);
3550 }
3551
3552 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3553 first condition for free, since we've already asserted that there's a
3554 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3555 we checked the FALLTHRU flag, those are already adjacent to the last IF
3556 block. */
3557 /* ??? As an enhancement, move the ELSE block. Have to deal with
3558 BLOCK notes, if by no other means than backing out the merge if they
3559 exist. Sticky enough I don't want to think about it now. */
3560 next = then_bb;
3561 if (else_bb && (next = next->next_bb) != else_bb)
3562 return FALSE;
3563 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3564 {
3565 if (else_bb)
3566 join_bb = NULL;
3567 else
3568 return FALSE;
3569 }
3570
3571 /* Do the real work. */
3572
3573 ce_info->else_bb = else_bb;
3574 ce_info->join_bb = join_bb;
3575
3576 /* If we have && and || tests, try to first handle combining the && and ||
3577 tests into the conditional code, and if that fails, go back and handle
3578 it without the && and ||, which at present handles the && case if there
3579 was no ELSE block. */
3580 if (cond_exec_process_if_block (ce_info, TRUE))
3581 return TRUE;
3582
3583 if (ce_info->num_multiple_test_blocks)
3584 {
3585 cancel_changes (0);
3586
3587 if (cond_exec_process_if_block (ce_info, FALSE))
3588 return TRUE;
3589 }
3590
3591 return FALSE;
3592 }
3593
3594 /* Convert a branch over a trap, or a branch
3595 to a trap, into a conditional trap. */
3596
3597 static int
3598 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3599 {
3600 basic_block then_bb = then_edge->dest;
3601 basic_block else_bb = else_edge->dest;
3602 basic_block other_bb, trap_bb;
3603 rtx trap, jump, cond, cond_earliest, seq;
3604 enum rtx_code code;
3605
3606 /* Locate the block with the trap instruction. */
3607 /* ??? While we look for no successors, we really ought to allow
3608 EH successors. Need to fix merge_if_block for that to work. */
3609 if ((trap = block_has_only_trap (then_bb)) != NULL)
3610 trap_bb = then_bb, other_bb = else_bb;
3611 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3612 trap_bb = else_bb, other_bb = then_bb;
3613 else
3614 return FALSE;
3615
3616 if (dump_file)
3617 {
3618 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3619 test_bb->index, trap_bb->index);
3620 }
3621
3622 /* If this is not a standard conditional jump, we can't parse it. */
3623 jump = BB_END (test_bb);
3624 cond = noce_get_condition (jump, &cond_earliest, false);
3625 if (! cond)
3626 return FALSE;
3627
3628 /* If the conditional jump is more than just a conditional jump, then
3629 we can not do if-conversion on this block. */
3630 if (! onlyjump_p (jump))
3631 return FALSE;
3632
3633 /* We must be comparing objects whose modes imply the size. */
3634 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3635 return FALSE;
3636
3637 /* Reverse the comparison code, if necessary. */
3638 code = GET_CODE (cond);
3639 if (then_bb == trap_bb)
3640 {
3641 code = reversed_comparison_code (cond, jump);
3642 if (code == UNKNOWN)
3643 return FALSE;
3644 }
3645
3646 /* Attempt to generate the conditional trap. */
3647 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3648 copy_rtx (XEXP (cond, 1)),
3649 TRAP_CODE (PATTERN (trap)));
3650 if (seq == NULL)
3651 return FALSE;
3652
3653 /* Emit the new insns before cond_earliest. */
3654 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3655
3656 /* Delete the trap block if possible. */
3657 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3658 df_set_bb_dirty (test_bb);
3659 df_set_bb_dirty (then_bb);
3660 df_set_bb_dirty (else_bb);
3661
3662 if (EDGE_COUNT (trap_bb->preds) == 0)
3663 {
3664 delete_basic_block (trap_bb);
3665 num_true_changes++;
3666 }
3667
3668 /* Wire together the blocks again. */
3669 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3670 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3671 else
3672 {
3673 rtx lab, newjump;
3674
3675 lab = JUMP_LABEL (jump);
3676 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3677 LABEL_NUSES (lab) += 1;
3678 JUMP_LABEL (newjump) = lab;
3679 emit_barrier_after (newjump);
3680 }
3681 delete_insn (jump);
3682
3683 if (can_merge_blocks_p (test_bb, other_bb))
3684 {
3685 merge_blocks (test_bb, other_bb);
3686 num_true_changes++;
3687 }
3688
3689 num_updated_if_blocks++;
3690 return TRUE;
3691 }
3692
3693 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3694 return it. */
3695
3696 static rtx
3697 block_has_only_trap (basic_block bb)
3698 {
3699 rtx trap;
3700
3701 /* We're not the exit block. */
3702 if (bb == EXIT_BLOCK_PTR)
3703 return NULL_RTX;
3704
3705 /* The block must have no successors. */
3706 if (EDGE_COUNT (bb->succs) > 0)
3707 return NULL_RTX;
3708
3709 /* The only instruction in the THEN block must be the trap. */
3710 trap = first_active_insn (bb);
3711 if (! (trap == BB_END (bb)
3712 && GET_CODE (PATTERN (trap)) == TRAP_IF
3713 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3714 return NULL_RTX;
3715
3716 return trap;
3717 }
3718
3719 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3720 transformable, but not necessarily the other. There need be no
3721 JOIN block.
3722
3723 Return TRUE if we were successful at converting the block.
3724
3725 Cases we'd like to look at:
3726
3727 (1)
3728 if (test) goto over; // x not live
3729 x = a;
3730 goto label;
3731 over:
3732
3733 becomes
3734
3735 x = a;
3736 if (! test) goto label;
3737
3738 (2)
3739 if (test) goto E; // x not live
3740 x = big();
3741 goto L;
3742 E:
3743 x = b;
3744 goto M;
3745
3746 becomes
3747
3748 x = b;
3749 if (test) goto M;
3750 x = big();
3751 goto L;
3752
3753 (3) // This one's really only interesting for targets that can do
3754 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3755 // it results in multiple branches on a cache line, which often
3756 // does not sit well with predictors.
3757
3758 if (test1) goto E; // predicted not taken
3759 x = a;
3760 if (test2) goto F;
3761 ...
3762 E:
3763 x = b;
3764 J:
3765
3766 becomes
3767
3768 x = a;
3769 if (test1) goto E;
3770 if (test2) goto F;
3771
3772 Notes:
3773
3774 (A) Don't do (2) if the branch is predicted against the block we're
3775 eliminating. Do it anyway if we can eliminate a branch; this requires
3776 that the sole successor of the eliminated block postdominate the other
3777 side of the if.
3778
3779 (B) With CE, on (3) we can steal from both sides of the if, creating
3780
3781 if (test1) x = a;
3782 if (!test1) x = b;
3783 if (test1) goto J;
3784 if (test2) goto F;
3785 ...
3786 J:
3787
3788 Again, this is most useful if J postdominates.
3789
3790 (C) CE substitutes for helpful life information.
3791
3792 (D) These heuristics need a lot of work. */
3793
3794 /* Tests for case 1 above. */
3795
3796 static int
3797 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3798 {
3799 basic_block then_bb = then_edge->dest;
3800 basic_block else_bb = else_edge->dest;
3801 basic_block new_bb;
3802 int then_bb_index, then_prob;
3803 rtx else_target = NULL_RTX;
3804
3805 /* If we are partitioning hot/cold basic blocks, we don't want to
3806 mess up unconditional or indirect jumps that cross between hot
3807 and cold sections.
3808
3809 Basic block partitioning may result in some jumps that appear to
3810 be optimizable (or blocks that appear to be mergeable), but which really
3811 must be left untouched (they are required to make it safely across
3812 partition boundaries). See the comments at the top of
3813 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3814
3815 if ((BB_END (then_bb)
3816 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3817 || (BB_END (test_bb)
3818 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3819 || (BB_END (else_bb)
3820 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3821 NULL_RTX)))
3822 return FALSE;
3823
3824 /* THEN has one successor. */
3825 if (!single_succ_p (then_bb))
3826 return FALSE;
3827
3828 /* THEN does not fall through, but is not strange either. */
3829 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3830 return FALSE;
3831
3832 /* THEN has one predecessor. */
3833 if (!single_pred_p (then_bb))
3834 return FALSE;
3835
3836 /* THEN must do something. */
3837 if (forwarder_block_p (then_bb))
3838 return FALSE;
3839
3840 num_possible_if_blocks++;
3841 if (dump_file)
3842 fprintf (dump_file,
3843 "\nIF-CASE-1 found, start %d, then %d\n",
3844 test_bb->index, then_bb->index);
3845
3846 if (then_edge->probability)
3847 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3848 else
3849 then_prob = REG_BR_PROB_BASE / 2;
3850
3851 /* We're speculating from the THEN path, we want to make sure the cost
3852 of speculation is within reason. */
3853 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3854 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3855 predictable_edge_p (then_edge)))))
3856 return FALSE;
3857
3858 if (else_bb == EXIT_BLOCK_PTR)
3859 {
3860 rtx jump = BB_END (else_edge->src);
3861 gcc_assert (JUMP_P (jump));
3862 else_target = JUMP_LABEL (jump);
3863 }
3864
3865 /* Registers set are dead, or are predicable. */
3866 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3867 single_succ_edge (then_bb), 1))
3868 return FALSE;
3869
3870 /* Conversion went ok, including moving the insns and fixing up the
3871 jump. Adjust the CFG to match. */
3872
3873 /* We can avoid creating a new basic block if then_bb is immediately
3874 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3875 through to else_bb. */
3876
3877 if (then_bb->next_bb == else_bb
3878 && then_bb->prev_bb == test_bb
3879 && else_bb != EXIT_BLOCK_PTR)
3880 {
3881 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3882 new_bb = 0;
3883 }
3884 else if (else_bb == EXIT_BLOCK_PTR)
3885 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3886 else_bb, else_target);
3887 else
3888 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3889 else_bb);
3890
3891 df_set_bb_dirty (test_bb);
3892 df_set_bb_dirty (else_bb);
3893
3894 then_bb_index = then_bb->index;
3895 delete_basic_block (then_bb);
3896
3897 /* Make rest of code believe that the newly created block is the THEN_BB
3898 block we removed. */
3899 if (new_bb)
3900 {
3901 df_bb_replace (then_bb_index, new_bb);
3902 /* Since the fallthru edge was redirected from test_bb to new_bb,
3903 we need to ensure that new_bb is in the same partition as
3904 test bb (you can not fall through across section boundaries). */
3905 BB_COPY_PARTITION (new_bb, test_bb);
3906 }
3907
3908 num_true_changes++;
3909 num_updated_if_blocks++;
3910
3911 return TRUE;
3912 }
3913
3914 /* Test for case 2 above. */
3915
3916 static int
3917 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3918 {
3919 basic_block then_bb = then_edge->dest;
3920 basic_block else_bb = else_edge->dest;
3921 edge else_succ;
3922 int then_prob, else_prob;
3923
3924 /* We do not want to speculate (empty) loop latches. */
3925 if (current_loops
3926 && else_bb->loop_father->latch == else_bb)
3927 return FALSE;
3928
3929 /* If we are partitioning hot/cold basic blocks, we don't want to
3930 mess up unconditional or indirect jumps that cross between hot
3931 and cold sections.
3932
3933 Basic block partitioning may result in some jumps that appear to
3934 be optimizable (or blocks that appear to be mergeable), but which really
3935 must be left untouched (they are required to make it safely across
3936 partition boundaries). See the comments at the top of
3937 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3938
3939 if ((BB_END (then_bb)
3940 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3941 || (BB_END (test_bb)
3942 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3943 || (BB_END (else_bb)
3944 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3945 NULL_RTX)))
3946 return FALSE;
3947
3948 /* ELSE has one successor. */
3949 if (!single_succ_p (else_bb))
3950 return FALSE;
3951 else
3952 else_succ = single_succ_edge (else_bb);
3953
3954 /* ELSE outgoing edge is not complex. */
3955 if (else_succ->flags & EDGE_COMPLEX)
3956 return FALSE;
3957
3958 /* ELSE has one predecessor. */
3959 if (!single_pred_p (else_bb))
3960 return FALSE;
3961
3962 /* THEN is not EXIT. */
3963 if (then_bb->index < NUM_FIXED_BLOCKS)
3964 return FALSE;
3965
3966 if (else_edge->probability)
3967 {
3968 else_prob = else_edge->probability;
3969 then_prob = REG_BR_PROB_BASE - else_prob;
3970 }
3971 else
3972 {
3973 else_prob = REG_BR_PROB_BASE / 2;
3974 then_prob = REG_BR_PROB_BASE / 2;
3975 }
3976
3977 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3978 if (else_prob > then_prob)
3979 ;
3980 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3981 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3982 else_succ->dest))
3983 ;
3984 else
3985 return FALSE;
3986
3987 num_possible_if_blocks++;
3988 if (dump_file)
3989 fprintf (dump_file,
3990 "\nIF-CASE-2 found, start %d, else %d\n",
3991 test_bb->index, else_bb->index);
3992
3993 /* We're speculating from the ELSE path, we want to make sure the cost
3994 of speculation is within reason. */
3995 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
3996 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3997 predictable_edge_p (else_edge)))))
3998 return FALSE;
3999
4000 /* Registers set are dead, or are predicable. */
4001 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4002 return FALSE;
4003
4004 /* Conversion went ok, including moving the insns and fixing up the
4005 jump. Adjust the CFG to match. */
4006
4007 df_set_bb_dirty (test_bb);
4008 df_set_bb_dirty (then_bb);
4009 delete_basic_block (else_bb);
4010
4011 num_true_changes++;
4012 num_updated_if_blocks++;
4013
4014 /* ??? We may now fallthru from one of THEN's successors into a join
4015 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4016
4017 return TRUE;
4018 }
4019
4020 /* Used by the code above to perform the actual rtl transformations.
4021 Return TRUE if successful.
4022
4023 TEST_BB is the block containing the conditional branch. MERGE_BB
4024 is the block containing the code to manipulate. DEST_EDGE is an
4025 edge representing a jump to the join block; after the conversion,
4026 TEST_BB should be branching to its destination.
4027 REVERSEP is true if the sense of the branch should be reversed. */
4028
4029 static int
4030 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4031 basic_block other_bb, edge dest_edge, int reversep)
4032 {
4033 basic_block new_dest = dest_edge->dest;
4034 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4035 bitmap merge_set = NULL;
4036 /* Number of pending changes. */
4037 int n_validated_changes = 0;
4038 rtx new_dest_label = NULL_RTX;
4039
4040 jump = BB_END (test_bb);
4041
4042 /* Find the extent of the real code in the merge block. */
4043 head = BB_HEAD (merge_bb);
4044 end = BB_END (merge_bb);
4045
4046 while (DEBUG_INSN_P (end) && end != head)
4047 end = PREV_INSN (end);
4048
4049 /* If merge_bb ends with a tablejump, predicating/moving insn's
4050 into test_bb and then deleting merge_bb will result in the jumptable
4051 that follows merge_bb being removed along with merge_bb and then we
4052 get an unresolved reference to the jumptable. */
4053 if (tablejump_p (end, NULL, NULL))
4054 return FALSE;
4055
4056 if (LABEL_P (head))
4057 head = NEXT_INSN (head);
4058 while (DEBUG_INSN_P (head) && head != end)
4059 head = NEXT_INSN (head);
4060 if (NOTE_P (head))
4061 {
4062 if (head == end)
4063 {
4064 head = end = NULL_RTX;
4065 goto no_body;
4066 }
4067 head = NEXT_INSN (head);
4068 while (DEBUG_INSN_P (head) && head != end)
4069 head = NEXT_INSN (head);
4070 }
4071
4072 if (JUMP_P (end))
4073 {
4074 if (head == end)
4075 {
4076 head = end = NULL_RTX;
4077 goto no_body;
4078 }
4079 end = PREV_INSN (end);
4080 while (DEBUG_INSN_P (end) && end != head)
4081 end = PREV_INSN (end);
4082 }
4083
4084 /* Disable handling dead code by conditional execution if the machine needs
4085 to do anything funny with the tests, etc. */
4086 #ifndef IFCVT_MODIFY_TESTS
4087 if (targetm.have_conditional_execution ())
4088 {
4089 /* In the conditional execution case, we have things easy. We know
4090 the condition is reversible. We don't have to check life info
4091 because we're going to conditionally execute the code anyway.
4092 All that's left is making sure the insns involved can actually
4093 be predicated. */
4094
4095 rtx cond, prob_val;
4096
4097 cond = cond_exec_get_condition (jump);
4098 if (! cond)
4099 return FALSE;
4100
4101 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4102 if (prob_val)
4103 prob_val = XEXP (prob_val, 0);
4104
4105 if (reversep)
4106 {
4107 enum rtx_code rev = reversed_comparison_code (cond, jump);
4108 if (rev == UNKNOWN)
4109 return FALSE;
4110 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4111 XEXP (cond, 1));
4112 if (prob_val)
4113 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4114 }
4115
4116 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4117 && verify_changes (0))
4118 n_validated_changes = num_validated_changes ();
4119 else
4120 cancel_changes (0);
4121
4122 earliest = jump;
4123 }
4124 #endif
4125
4126 /* If we allocated new pseudos (e.g. in the conditional move
4127 expander called from noce_emit_cmove), we must resize the
4128 array first. */
4129 if (max_regno < max_reg_num ())
4130 max_regno = max_reg_num ();
4131
4132 /* Try the NCE path if the CE path did not result in any changes. */
4133 if (n_validated_changes == 0)
4134 {
4135 rtx cond, insn;
4136 regset live;
4137 bool success;
4138
4139 /* In the non-conditional execution case, we have to verify that there
4140 are no trapping operations, no calls, no references to memory, and
4141 that any registers modified are dead at the branch site. */
4142
4143 if (!any_condjump_p (jump))
4144 return FALSE;
4145
4146 /* Find the extent of the conditional. */
4147 cond = noce_get_condition (jump, &earliest, false);
4148 if (!cond)
4149 return FALSE;
4150
4151 live = BITMAP_ALLOC (&reg_obstack);
4152 simulate_backwards_to_point (merge_bb, live, end);
4153 success = can_move_insns_across (head, end, earliest, jump,
4154 merge_bb, live,
4155 df_get_live_in (other_bb), NULL);
4156 BITMAP_FREE (live);
4157 if (!success)
4158 return FALSE;
4159
4160 /* Collect the set of registers set in MERGE_BB. */
4161 merge_set = BITMAP_ALLOC (&reg_obstack);
4162
4163 FOR_BB_INSNS (merge_bb, insn)
4164 if (NONDEBUG_INSN_P (insn))
4165 df_simulate_find_defs (insn, merge_set);
4166
4167 #ifdef HAVE_simple_return
4168 /* If shrink-wrapping, disable this optimization when test_bb is
4169 the first basic block and merge_bb exits. The idea is to not
4170 move code setting up a return register as that may clobber a
4171 register used to pass function parameters, which then must be
4172 saved in caller-saved regs. A caller-saved reg requires the
4173 prologue, killing a shrink-wrap opportunity. */
4174 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4175 && ENTRY_BLOCK_PTR->next_bb == test_bb
4176 && single_succ_p (new_dest)
4177 && single_succ (new_dest) == EXIT_BLOCK_PTR
4178 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4179 {
4180 regset return_regs;
4181 unsigned int i;
4182
4183 return_regs = BITMAP_ALLOC (&reg_obstack);
4184
4185 /* Start off with the intersection of regs used to pass
4186 params and regs used to return values. */
4187 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4188 if (FUNCTION_ARG_REGNO_P (i)
4189 && targetm.calls.function_value_regno_p (i))
4190 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4191
4192 bitmap_and_into (return_regs, df_get_live_out (ENTRY_BLOCK_PTR));
4193 bitmap_and_into (return_regs, df_get_live_in (EXIT_BLOCK_PTR));
4194 if (!bitmap_empty_p (return_regs))
4195 {
4196 FOR_BB_INSNS_REVERSE (new_dest, insn)
4197 if (NONDEBUG_INSN_P (insn))
4198 {
4199 df_ref *def_rec;
4200 unsigned int uid = INSN_UID (insn);
4201
4202 /* If this insn sets any reg in return_regs.. */
4203 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4204 {
4205 df_ref def = *def_rec;
4206 unsigned r = DF_REF_REGNO (def);
4207
4208 if (bitmap_bit_p (return_regs, r))
4209 break;
4210 }
4211 /* ..then add all reg uses to the set of regs
4212 we're interested in. */
4213 if (*def_rec)
4214 df_simulate_uses (insn, return_regs);
4215 }
4216 if (bitmap_intersect_p (merge_set, return_regs))
4217 {
4218 BITMAP_FREE (return_regs);
4219 BITMAP_FREE (merge_set);
4220 return FALSE;
4221 }
4222 }
4223 BITMAP_FREE (return_regs);
4224 }
4225 #endif
4226 }
4227
4228 no_body:
4229 /* We don't want to use normal invert_jump or redirect_jump because
4230 we don't want to delete_insn called. Also, we want to do our own
4231 change group management. */
4232
4233 old_dest = JUMP_LABEL (jump);
4234 if (other_bb != new_dest)
4235 {
4236 if (JUMP_P (BB_END (dest_edge->src)))
4237 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4238 else if (new_dest == EXIT_BLOCK_PTR)
4239 new_dest_label = ret_rtx;
4240 else
4241 new_dest_label = block_label (new_dest);
4242
4243 if (reversep
4244 ? ! invert_jump_1 (jump, new_dest_label)
4245 : ! redirect_jump_1 (jump, new_dest_label))
4246 goto cancel;
4247 }
4248
4249 if (verify_changes (n_validated_changes))
4250 confirm_change_group ();
4251 else
4252 goto cancel;
4253
4254 if (other_bb != new_dest)
4255 {
4256 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4257
4258 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4259 if (reversep)
4260 {
4261 gcov_type count, probability;
4262 count = BRANCH_EDGE (test_bb)->count;
4263 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4264 FALLTHRU_EDGE (test_bb)->count = count;
4265 probability = BRANCH_EDGE (test_bb)->probability;
4266 BRANCH_EDGE (test_bb)->probability
4267 = FALLTHRU_EDGE (test_bb)->probability;
4268 FALLTHRU_EDGE (test_bb)->probability = probability;
4269 update_br_prob_note (test_bb);
4270 }
4271 }
4272
4273 /* Move the insns out of MERGE_BB to before the branch. */
4274 if (head != NULL)
4275 {
4276 rtx insn;
4277
4278 if (end == BB_END (merge_bb))
4279 BB_END (merge_bb) = PREV_INSN (head);
4280
4281 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4282 notes being moved might become invalid. */
4283 insn = head;
4284 do
4285 {
4286 rtx note, set;
4287
4288 if (! INSN_P (insn))
4289 continue;
4290 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4291 if (! note)
4292 continue;
4293 set = single_set (insn);
4294 if (!set || !function_invariant_p (SET_SRC (set))
4295 || !function_invariant_p (XEXP (note, 0)))
4296 remove_note (insn, note);
4297 } while (insn != end && (insn = NEXT_INSN (insn)));
4298
4299 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4300 notes referring to the registers being set might become invalid. */
4301 if (merge_set)
4302 {
4303 unsigned i;
4304 bitmap_iterator bi;
4305
4306 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4307 remove_reg_equal_equiv_notes_for_regno (i);
4308
4309 BITMAP_FREE (merge_set);
4310 }
4311
4312 reorder_insns (head, end, PREV_INSN (earliest));
4313 }
4314
4315 /* Remove the jump and edge if we can. */
4316 if (other_bb == new_dest)
4317 {
4318 delete_insn (jump);
4319 remove_edge (BRANCH_EDGE (test_bb));
4320 /* ??? Can't merge blocks here, as then_bb is still in use.
4321 At minimum, the merge will get done just before bb-reorder. */
4322 }
4323
4324 return TRUE;
4325
4326 cancel:
4327 cancel_changes (0);
4328
4329 if (merge_set)
4330 BITMAP_FREE (merge_set);
4331
4332 return FALSE;
4333 }
4334 \f
4335 /* Main entry point for all if-conversion. */
4336
4337 static void
4338 if_convert (void)
4339 {
4340 basic_block bb;
4341 int pass;
4342
4343 if (optimize == 1)
4344 {
4345 df_live_add_problem ();
4346 df_live_set_all_dirty ();
4347 }
4348
4349 num_possible_if_blocks = 0;
4350 num_updated_if_blocks = 0;
4351 num_true_changes = 0;
4352
4353 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4354 mark_loop_exit_edges ();
4355 loop_optimizer_finalize ();
4356 free_dominance_info (CDI_DOMINATORS);
4357
4358 /* Compute postdominators. */
4359 calculate_dominance_info (CDI_POST_DOMINATORS);
4360
4361 df_set_flags (DF_LR_RUN_DCE);
4362
4363 /* Go through each of the basic blocks looking for things to convert. If we
4364 have conditional execution, we make multiple passes to allow us to handle
4365 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4366 pass = 0;
4367 do
4368 {
4369 df_analyze ();
4370 /* Only need to do dce on the first pass. */
4371 df_clear_flags (DF_LR_RUN_DCE);
4372 cond_exec_changed_p = FALSE;
4373 pass++;
4374
4375 #ifdef IFCVT_MULTIPLE_DUMPS
4376 if (dump_file && pass > 1)
4377 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4378 #endif
4379
4380 FOR_EACH_BB (bb)
4381 {
4382 basic_block new_bb;
4383 while (!df_get_bb_dirty (bb)
4384 && (new_bb = find_if_header (bb, pass)) != NULL)
4385 bb = new_bb;
4386 }
4387
4388 #ifdef IFCVT_MULTIPLE_DUMPS
4389 if (dump_file && cond_exec_changed_p)
4390 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4391 #endif
4392 }
4393 while (cond_exec_changed_p);
4394
4395 #ifdef IFCVT_MULTIPLE_DUMPS
4396 if (dump_file)
4397 fprintf (dump_file, "\n\n========== no more changes\n");
4398 #endif
4399
4400 free_dominance_info (CDI_POST_DOMINATORS);
4401
4402 if (dump_file)
4403 fflush (dump_file);
4404
4405 clear_aux_for_blocks ();
4406
4407 /* If we allocated new pseudos, we must resize the array for sched1. */
4408 if (max_regno < max_reg_num ())
4409 max_regno = max_reg_num ();
4410
4411 /* Write the final stats. */
4412 if (dump_file && num_possible_if_blocks > 0)
4413 {
4414 fprintf (dump_file,
4415 "\n%d possible IF blocks searched.\n",
4416 num_possible_if_blocks);
4417 fprintf (dump_file,
4418 "%d IF blocks converted.\n",
4419 num_updated_if_blocks);
4420 fprintf (dump_file,
4421 "%d true changes made.\n\n\n",
4422 num_true_changes);
4423 }
4424
4425 if (optimize == 1)
4426 df_remove_problem (df_live);
4427
4428 #ifdef ENABLE_CHECKING
4429 verify_flow_info ();
4430 #endif
4431 }
4432 \f
4433 static bool
4434 gate_handle_if_conversion (void)
4435 {
4436 return (optimize > 0)
4437 && dbg_cnt (if_conversion);
4438 }
4439
4440 /* If-conversion and CFG cleanup. */
4441 static unsigned int
4442 rest_of_handle_if_conversion (void)
4443 {
4444 if (flag_if_conversion)
4445 {
4446 if (dump_file)
4447 {
4448 dump_reg_info (dump_file);
4449 dump_flow_info (dump_file, dump_flags);
4450 }
4451 cleanup_cfg (CLEANUP_EXPENSIVE);
4452 if_convert ();
4453 }
4454
4455 cleanup_cfg (0);
4456 return 0;
4457 }
4458
4459 struct rtl_opt_pass pass_rtl_ifcvt =
4460 {
4461 {
4462 RTL_PASS,
4463 "ce1", /* name */
4464 OPTGROUP_NONE, /* optinfo_flags */
4465 gate_handle_if_conversion, /* gate */
4466 rest_of_handle_if_conversion, /* execute */
4467 NULL, /* sub */
4468 NULL, /* next */
4469 0, /* static_pass_number */
4470 TV_IFCVT, /* tv_id */
4471 0, /* properties_required */
4472 0, /* properties_provided */
4473 0, /* properties_destroyed */
4474 0, /* todo_flags_start */
4475 TODO_df_finish | TODO_verify_rtl_sharing |
4476 0 /* todo_flags_finish */
4477 }
4478 };
4479
4480 static bool
4481 gate_handle_if_after_combine (void)
4482 {
4483 return optimize > 0 && flag_if_conversion
4484 && dbg_cnt (if_after_combine);
4485 }
4486
4487
4488 /* Rerun if-conversion, as combine may have simplified things enough
4489 to now meet sequence length restrictions. */
4490 static unsigned int
4491 rest_of_handle_if_after_combine (void)
4492 {
4493 if_convert ();
4494 return 0;
4495 }
4496
4497 struct rtl_opt_pass pass_if_after_combine =
4498 {
4499 {
4500 RTL_PASS,
4501 "ce2", /* name */
4502 OPTGROUP_NONE, /* optinfo_flags */
4503 gate_handle_if_after_combine, /* gate */
4504 rest_of_handle_if_after_combine, /* execute */
4505 NULL, /* sub */
4506 NULL, /* next */
4507 0, /* static_pass_number */
4508 TV_IFCVT, /* tv_id */
4509 0, /* properties_required */
4510 0, /* properties_provided */
4511 0, /* properties_destroyed */
4512 0, /* todo_flags_start */
4513 TODO_df_finish | TODO_verify_rtl_sharing |
4514 TODO_ggc_collect /* todo_flags_finish */
4515 }
4516 };
4517
4518
4519 static bool
4520 gate_handle_if_after_reload (void)
4521 {
4522 return optimize > 0 && flag_if_conversion2
4523 && dbg_cnt (if_after_reload);
4524 }
4525
4526 static unsigned int
4527 rest_of_handle_if_after_reload (void)
4528 {
4529 if_convert ();
4530 return 0;
4531 }
4532
4533
4534 struct rtl_opt_pass pass_if_after_reload =
4535 {
4536 {
4537 RTL_PASS,
4538 "ce3", /* name */
4539 OPTGROUP_NONE, /* optinfo_flags */
4540 gate_handle_if_after_reload, /* gate */
4541 rest_of_handle_if_after_reload, /* execute */
4542 NULL, /* sub */
4543 NULL, /* next */
4544 0, /* static_pass_number */
4545 TV_IFCVT2, /* tv_id */
4546 0, /* properties_required */
4547 0, /* properties_provided */
4548 0, /* properties_destroyed */
4549 0, /* todo_flags_start */
4550 TODO_df_finish | TODO_verify_rtl_sharing |
4551 TODO_ggc_collect /* todo_flags_finish */
4552 }
4553 };