configure.ac (gcc_cv_as_dwloc): Test support for debug frame section label reference.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35
36 #include "cfgrtl.h"
37 #include "cfganal.h"
38 #include "cfgcleanup.h"
39 #include "expr.h"
40 #include "output.h"
41 #include "cfgloop.h"
42 #include "tree-pass.h"
43 #include "dbgcnt.h"
44 #include "shrink-wrap.h"
45 #include "rtl-iter.h"
46 #include "ifcvt.h"
47 #include "params.h"
48
49 #ifndef MAX_CONDITIONAL_EXECUTE
50 #define MAX_CONDITIONAL_EXECUTE \
51 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
52 + 1)
53 #endif
54
55 #define IFCVT_MULTIPLE_DUMPS 1
56
57 #define NULL_BLOCK ((basic_block) NULL)
58
59 /* True if after combine pass. */
60 static bool ifcvt_after_combine;
61
62 /* True if the target has the cbranchcc4 optab. */
63 static bool have_cbranchcc4;
64
65 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
66 static int num_possible_if_blocks;
67
68 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
69 execution. */
70 static int num_updated_if_blocks;
71
72 /* # of changes made. */
73 static int num_true_changes;
74
75 /* Whether conditional execution changes were made. */
76 static int cond_exec_changed_p;
77
78 /* Forward references. */
79 static int count_bb_insns (const_basic_block);
80 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
81 static rtx_insn *first_active_insn (basic_block);
82 static rtx_insn *last_active_insn (basic_block, int);
83 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
84 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
85 static basic_block block_fallthru (basic_block);
86 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
87 int);
88 static rtx cond_exec_get_condition (rtx_insn *);
89 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
90 static int noce_operand_ok (const_rtx);
91 static void merge_if_block (ce_if_block *);
92 static int find_cond_trap (basic_block, edge, edge);
93 static basic_block find_if_header (basic_block, int);
94 static int block_jumps_and_fallthru_p (basic_block, basic_block);
95 static int noce_find_if_block (basic_block, edge, edge, int);
96 static int cond_exec_find_if_block (ce_if_block *);
97 static int find_if_case_1 (basic_block, edge, edge);
98 static int find_if_case_2 (basic_block, edge, edge);
99 static int dead_or_predicable (basic_block, basic_block, basic_block,
100 edge, int);
101 static void noce_emit_move_insn (rtx, rtx);
102 static rtx_insn *block_has_only_trap (basic_block);
103 \f
104 /* Count the number of non-jump active insns in BB. */
105
106 static int
107 count_bb_insns (const_basic_block bb)
108 {
109 int count = 0;
110 rtx_insn *insn = BB_HEAD (bb);
111
112 while (1)
113 {
114 if (active_insn_p (insn) && !JUMP_P (insn))
115 count++;
116
117 if (insn == BB_END (bb))
118 break;
119 insn = NEXT_INSN (insn);
120 }
121
122 return count;
123 }
124
125 /* Determine whether the total insn_rtx_cost on non-jump insns in
126 basic block BB is less than MAX_COST. This function returns
127 false if the cost of any instruction could not be estimated.
128
129 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
130 as those insns are being speculated. MAX_COST is scaled with SCALE
131 plus a small fudge factor. */
132
133 static bool
134 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
135 {
136 int count = 0;
137 rtx_insn *insn = BB_HEAD (bb);
138 bool speed = optimize_bb_for_speed_p (bb);
139
140 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
141 applied to insn_rtx_cost when optimizing for size. Only do
142 this after combine because if-conversion might interfere with
143 passes before combine.
144
145 Use optimize_function_for_speed_p instead of the pre-defined
146 variable speed to make sure it is set to same value for all
147 basic blocks in one if-conversion transformation. */
148 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
149 scale = REG_BR_PROB_BASE;
150 /* Our branch probability/scaling factors are just estimates and don't
151 account for cases where we can get speculation for free and other
152 secondary benefits. So we fudge the scale factor to make speculating
153 appear a little more profitable when optimizing for performance. */
154 else
155 scale += REG_BR_PROB_BASE / 8;
156
157
158 max_cost *= scale;
159
160 while (1)
161 {
162 if (NONJUMP_INSN_P (insn))
163 {
164 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
165 if (cost == 0)
166 return false;
167
168 /* If this instruction is the load or set of a "stack" register,
169 such as a floating point register on x87, then the cost of
170 speculatively executing this insn may need to include
171 the additional cost of popping its result off of the
172 register stack. Unfortunately, correctly recognizing and
173 accounting for this additional overhead is tricky, so for
174 now we simply prohibit such speculative execution. */
175 #ifdef STACK_REGS
176 {
177 rtx set = single_set (insn);
178 if (set && STACK_REG_P (SET_DEST (set)))
179 return false;
180 }
181 #endif
182
183 count += cost;
184 if (count >= max_cost)
185 return false;
186 }
187 else if (CALL_P (insn))
188 return false;
189
190 if (insn == BB_END (bb))
191 break;
192 insn = NEXT_INSN (insn);
193 }
194
195 return true;
196 }
197
198 /* Return the first non-jump active insn in the basic block. */
199
200 static rtx_insn *
201 first_active_insn (basic_block bb)
202 {
203 rtx_insn *insn = BB_HEAD (bb);
204
205 if (LABEL_P (insn))
206 {
207 if (insn == BB_END (bb))
208 return NULL;
209 insn = NEXT_INSN (insn);
210 }
211
212 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
213 {
214 if (insn == BB_END (bb))
215 return NULL;
216 insn = NEXT_INSN (insn);
217 }
218
219 if (JUMP_P (insn))
220 return NULL;
221
222 return insn;
223 }
224
225 /* Return the last non-jump active (non-jump) insn in the basic block. */
226
227 static rtx_insn *
228 last_active_insn (basic_block bb, int skip_use_p)
229 {
230 rtx_insn *insn = BB_END (bb);
231 rtx_insn *head = BB_HEAD (bb);
232
233 while (NOTE_P (insn)
234 || JUMP_P (insn)
235 || DEBUG_INSN_P (insn)
236 || (skip_use_p
237 && NONJUMP_INSN_P (insn)
238 && GET_CODE (PATTERN (insn)) == USE))
239 {
240 if (insn == head)
241 return NULL;
242 insn = PREV_INSN (insn);
243 }
244
245 if (LABEL_P (insn))
246 return NULL;
247
248 return insn;
249 }
250
251 /* Return the active insn before INSN inside basic block CURR_BB. */
252
253 static rtx_insn *
254 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
255 {
256 if (!insn || insn == BB_HEAD (curr_bb))
257 return NULL;
258
259 while ((insn = PREV_INSN (insn)) != NULL_RTX)
260 {
261 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
262 break;
263
264 /* No other active insn all the way to the start of the basic block. */
265 if (insn == BB_HEAD (curr_bb))
266 return NULL;
267 }
268
269 return insn;
270 }
271
272 /* Return the active insn after INSN inside basic block CURR_BB. */
273
274 static rtx_insn *
275 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
276 {
277 if (!insn || insn == BB_END (curr_bb))
278 return NULL;
279
280 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
281 {
282 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
283 break;
284
285 /* No other active insn all the way to the end of the basic block. */
286 if (insn == BB_END (curr_bb))
287 return NULL;
288 }
289
290 return insn;
291 }
292
293 /* Return the basic block reached by falling though the basic block BB. */
294
295 static basic_block
296 block_fallthru (basic_block bb)
297 {
298 edge e = find_fallthru_edge (bb->succs);
299
300 return (e) ? e->dest : NULL_BLOCK;
301 }
302
303 /* Return true if RTXs A and B can be safely interchanged. */
304
305 static bool
306 rtx_interchangeable_p (const_rtx a, const_rtx b)
307 {
308 if (!rtx_equal_p (a, b))
309 return false;
310
311 if (GET_CODE (a) != MEM)
312 return true;
313
314 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
315 reference is not. Interchanging a dead type-unsafe memory reference with
316 a live type-safe one creates a live type-unsafe memory reference, in other
317 words, it makes the program illegal.
318 We check here conservatively whether the two memory references have equal
319 memory attributes. */
320
321 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
322 }
323
324 \f
325 /* Go through a bunch of insns, converting them to conditional
326 execution format if possible. Return TRUE if all of the non-note
327 insns were processed. */
328
329 static int
330 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
331 /* if block information */rtx_insn *start,
332 /* first insn to look at */rtx end,
333 /* last insn to look at */rtx test,
334 /* conditional execution test */int prob_val,
335 /* probability of branch taken. */int mod_ok)
336 {
337 int must_be_last = FALSE;
338 rtx_insn *insn;
339 rtx xtest;
340 rtx pattern;
341
342 if (!start || !end)
343 return FALSE;
344
345 for (insn = start; ; insn = NEXT_INSN (insn))
346 {
347 /* dwarf2out can't cope with conditional prologues. */
348 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
349 return FALSE;
350
351 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
352 goto insn_done;
353
354 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
355
356 /* dwarf2out can't cope with conditional unwind info. */
357 if (RTX_FRAME_RELATED_P (insn))
358 return FALSE;
359
360 /* Remove USE insns that get in the way. */
361 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
362 {
363 /* ??? Ug. Actually unlinking the thing is problematic,
364 given what we'd have to coordinate with our callers. */
365 SET_INSN_DELETED (insn);
366 goto insn_done;
367 }
368
369 /* Last insn wasn't last? */
370 if (must_be_last)
371 return FALSE;
372
373 if (modified_in_p (test, insn))
374 {
375 if (!mod_ok)
376 return FALSE;
377 must_be_last = TRUE;
378 }
379
380 /* Now build the conditional form of the instruction. */
381 pattern = PATTERN (insn);
382 xtest = copy_rtx (test);
383
384 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
385 two conditions. */
386 if (GET_CODE (pattern) == COND_EXEC)
387 {
388 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
389 return FALSE;
390
391 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
392 COND_EXEC_TEST (pattern));
393 pattern = COND_EXEC_CODE (pattern);
394 }
395
396 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
397
398 /* If the machine needs to modify the insn being conditionally executed,
399 say for example to force a constant integer operand into a temp
400 register, do so here. */
401 #ifdef IFCVT_MODIFY_INSN
402 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
403 if (! pattern)
404 return FALSE;
405 #endif
406
407 validate_change (insn, &PATTERN (insn), pattern, 1);
408
409 if (CALL_P (insn) && prob_val >= 0)
410 validate_change (insn, &REG_NOTES (insn),
411 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
412 prob_val, REG_NOTES (insn)), 1);
413
414 insn_done:
415 if (insn == end)
416 break;
417 }
418
419 return TRUE;
420 }
421
422 /* Return the condition for a jump. Do not do any special processing. */
423
424 static rtx
425 cond_exec_get_condition (rtx_insn *jump)
426 {
427 rtx test_if, cond;
428
429 if (any_condjump_p (jump))
430 test_if = SET_SRC (pc_set (jump));
431 else
432 return NULL_RTX;
433 cond = XEXP (test_if, 0);
434
435 /* If this branches to JUMP_LABEL when the condition is false,
436 reverse the condition. */
437 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
438 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
439 {
440 enum rtx_code rev = reversed_comparison_code (cond, jump);
441 if (rev == UNKNOWN)
442 return NULL_RTX;
443
444 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
445 XEXP (cond, 1));
446 }
447
448 return cond;
449 }
450
451 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
452 to conditional execution. Return TRUE if we were successful at
453 converting the block. */
454
455 static int
456 cond_exec_process_if_block (ce_if_block * ce_info,
457 /* if block information */int do_multiple_p)
458 {
459 basic_block test_bb = ce_info->test_bb; /* last test block */
460 basic_block then_bb = ce_info->then_bb; /* THEN */
461 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
462 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
463 rtx_insn *then_start; /* first insn in THEN block */
464 rtx_insn *then_end; /* last insn + 1 in THEN block */
465 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
466 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
467 int max; /* max # of insns to convert. */
468 int then_mod_ok; /* whether conditional mods are ok in THEN */
469 rtx true_expr; /* test for else block insns */
470 rtx false_expr; /* test for then block insns */
471 int true_prob_val; /* probability of else block */
472 int false_prob_val; /* probability of then block */
473 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
474 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
475 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
476 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
477 int then_n_insns, else_n_insns, n_insns;
478 enum rtx_code false_code;
479 rtx note;
480
481 /* If test is comprised of && or || elements, and we've failed at handling
482 all of them together, just use the last test if it is the special case of
483 && elements without an ELSE block. */
484 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
485 {
486 if (else_bb || ! ce_info->and_and_p)
487 return FALSE;
488
489 ce_info->test_bb = test_bb = ce_info->last_test_bb;
490 ce_info->num_multiple_test_blocks = 0;
491 ce_info->num_and_and_blocks = 0;
492 ce_info->num_or_or_blocks = 0;
493 }
494
495 /* Find the conditional jump to the ELSE or JOIN part, and isolate
496 the test. */
497 test_expr = cond_exec_get_condition (BB_END (test_bb));
498 if (! test_expr)
499 return FALSE;
500
501 /* If the conditional jump is more than just a conditional jump,
502 then we can not do conditional execution conversion on this block. */
503 if (! onlyjump_p (BB_END (test_bb)))
504 return FALSE;
505
506 /* Collect the bounds of where we're to search, skipping any labels, jumps
507 and notes at the beginning and end of the block. Then count the total
508 number of insns and see if it is small enough to convert. */
509 then_start = first_active_insn (then_bb);
510 then_end = last_active_insn (then_bb, TRUE);
511 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
512 n_insns = then_n_insns;
513 max = MAX_CONDITIONAL_EXECUTE;
514
515 if (else_bb)
516 {
517 int n_matching;
518
519 max *= 2;
520 else_start = first_active_insn (else_bb);
521 else_end = last_active_insn (else_bb, TRUE);
522 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
523 n_insns += else_n_insns;
524
525 /* Look for matching sequences at the head and tail of the two blocks,
526 and limit the range of insns to be converted if possible. */
527 n_matching = flow_find_cross_jump (then_bb, else_bb,
528 &then_first_tail, &else_first_tail,
529 NULL);
530 if (then_first_tail == BB_HEAD (then_bb))
531 then_start = then_end = NULL;
532 if (else_first_tail == BB_HEAD (else_bb))
533 else_start = else_end = NULL;
534
535 if (n_matching > 0)
536 {
537 if (then_end)
538 then_end = find_active_insn_before (then_bb, then_first_tail);
539 if (else_end)
540 else_end = find_active_insn_before (else_bb, else_first_tail);
541 n_insns -= 2 * n_matching;
542 }
543
544 if (then_start
545 && else_start
546 && then_n_insns > n_matching
547 && else_n_insns > n_matching)
548 {
549 int longest_match = MIN (then_n_insns - n_matching,
550 else_n_insns - n_matching);
551 n_matching
552 = flow_find_head_matching_sequence (then_bb, else_bb,
553 &then_last_head,
554 &else_last_head,
555 longest_match);
556
557 if (n_matching > 0)
558 {
559 rtx_insn *insn;
560
561 /* We won't pass the insns in the head sequence to
562 cond_exec_process_insns, so we need to test them here
563 to make sure that they don't clobber the condition. */
564 for (insn = BB_HEAD (then_bb);
565 insn != NEXT_INSN (then_last_head);
566 insn = NEXT_INSN (insn))
567 if (!LABEL_P (insn) && !NOTE_P (insn)
568 && !DEBUG_INSN_P (insn)
569 && modified_in_p (test_expr, insn))
570 return FALSE;
571 }
572
573 if (then_last_head == then_end)
574 then_start = then_end = NULL;
575 if (else_last_head == else_end)
576 else_start = else_end = NULL;
577
578 if (n_matching > 0)
579 {
580 if (then_start)
581 then_start = find_active_insn_after (then_bb, then_last_head);
582 if (else_start)
583 else_start = find_active_insn_after (else_bb, else_last_head);
584 n_insns -= 2 * n_matching;
585 }
586 }
587 }
588
589 if (n_insns > max)
590 return FALSE;
591
592 /* Map test_expr/test_jump into the appropriate MD tests to use on
593 the conditionally executed code. */
594
595 true_expr = test_expr;
596
597 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
598 if (false_code != UNKNOWN)
599 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
600 XEXP (true_expr, 0), XEXP (true_expr, 1));
601 else
602 false_expr = NULL_RTX;
603
604 #ifdef IFCVT_MODIFY_TESTS
605 /* If the machine description needs to modify the tests, such as setting a
606 conditional execution register from a comparison, it can do so here. */
607 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
608
609 /* See if the conversion failed. */
610 if (!true_expr || !false_expr)
611 goto fail;
612 #endif
613
614 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
615 if (note)
616 {
617 true_prob_val = XINT (note, 0);
618 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
619 }
620 else
621 {
622 true_prob_val = -1;
623 false_prob_val = -1;
624 }
625
626 /* If we have && or || tests, do them here. These tests are in the adjacent
627 blocks after the first block containing the test. */
628 if (ce_info->num_multiple_test_blocks > 0)
629 {
630 basic_block bb = test_bb;
631 basic_block last_test_bb = ce_info->last_test_bb;
632
633 if (! false_expr)
634 goto fail;
635
636 do
637 {
638 rtx_insn *start, *end;
639 rtx t, f;
640 enum rtx_code f_code;
641
642 bb = block_fallthru (bb);
643 start = first_active_insn (bb);
644 end = last_active_insn (bb, TRUE);
645 if (start
646 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
647 false_prob_val, FALSE))
648 goto fail;
649
650 /* If the conditional jump is more than just a conditional jump, then
651 we can not do conditional execution conversion on this block. */
652 if (! onlyjump_p (BB_END (bb)))
653 goto fail;
654
655 /* Find the conditional jump and isolate the test. */
656 t = cond_exec_get_condition (BB_END (bb));
657 if (! t)
658 goto fail;
659
660 f_code = reversed_comparison_code (t, BB_END (bb));
661 if (f_code == UNKNOWN)
662 goto fail;
663
664 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
665 if (ce_info->and_and_p)
666 {
667 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
668 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
669 }
670 else
671 {
672 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
673 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
674 }
675
676 /* If the machine description needs to modify the tests, such as
677 setting a conditional execution register from a comparison, it can
678 do so here. */
679 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
680 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
681
682 /* See if the conversion failed. */
683 if (!t || !f)
684 goto fail;
685 #endif
686
687 true_expr = t;
688 false_expr = f;
689 }
690 while (bb != last_test_bb);
691 }
692
693 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
694 on then THEN block. */
695 then_mod_ok = (else_bb == NULL_BLOCK);
696
697 /* Go through the THEN and ELSE blocks converting the insns if possible
698 to conditional execution. */
699
700 if (then_end
701 && (! false_expr
702 || ! cond_exec_process_insns (ce_info, then_start, then_end,
703 false_expr, false_prob_val,
704 then_mod_ok)))
705 goto fail;
706
707 if (else_bb && else_end
708 && ! cond_exec_process_insns (ce_info, else_start, else_end,
709 true_expr, true_prob_val, TRUE))
710 goto fail;
711
712 /* If we cannot apply the changes, fail. Do not go through the normal fail
713 processing, since apply_change_group will call cancel_changes. */
714 if (! apply_change_group ())
715 {
716 #ifdef IFCVT_MODIFY_CANCEL
717 /* Cancel any machine dependent changes. */
718 IFCVT_MODIFY_CANCEL (ce_info);
719 #endif
720 return FALSE;
721 }
722
723 #ifdef IFCVT_MODIFY_FINAL
724 /* Do any machine dependent final modifications. */
725 IFCVT_MODIFY_FINAL (ce_info);
726 #endif
727
728 /* Conversion succeeded. */
729 if (dump_file)
730 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
731 n_insns, (n_insns == 1) ? " was" : "s were");
732
733 /* Merge the blocks! If we had matching sequences, make sure to delete one
734 copy at the appropriate location first: delete the copy in the THEN branch
735 for a tail sequence so that the remaining one is executed last for both
736 branches, and delete the copy in the ELSE branch for a head sequence so
737 that the remaining one is executed first for both branches. */
738 if (then_first_tail)
739 {
740 rtx_insn *from = then_first_tail;
741 if (!INSN_P (from))
742 from = find_active_insn_after (then_bb, from);
743 delete_insn_chain (from, get_last_bb_insn (then_bb), false);
744 }
745 if (else_last_head)
746 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
747
748 merge_if_block (ce_info);
749 cond_exec_changed_p = TRUE;
750 return TRUE;
751
752 fail:
753 #ifdef IFCVT_MODIFY_CANCEL
754 /* Cancel any machine dependent changes. */
755 IFCVT_MODIFY_CANCEL (ce_info);
756 #endif
757
758 cancel_changes (0);
759 return FALSE;
760 }
761 \f
762 /* Used by noce_process_if_block to communicate with its subroutines.
763
764 The subroutines know that A and B may be evaluated freely. They
765 know that X is a register. They should insert new instructions
766 before cond_earliest. */
767
768 struct noce_if_info
769 {
770 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
771 basic_block test_bb, then_bb, else_bb, join_bb;
772
773 /* The jump that ends TEST_BB. */
774 rtx_insn *jump;
775
776 /* The jump condition. */
777 rtx cond;
778
779 /* New insns should be inserted before this one. */
780 rtx_insn *cond_earliest;
781
782 /* Insns in the THEN and ELSE block. There is always just this
783 one insns in those blocks. The insns are single_set insns.
784 If there was no ELSE block, INSN_B is the last insn before
785 COND_EARLIEST, or NULL_RTX. In the former case, the insn
786 operands are still valid, as if INSN_B was moved down below
787 the jump. */
788 rtx_insn *insn_a, *insn_b;
789
790 /* The SET_SRC of INSN_A and INSN_B. */
791 rtx a, b;
792
793 /* The SET_DEST of INSN_A. */
794 rtx x;
795
796 /* The original set destination that the THEN and ELSE basic blocks finally
797 write their result to. */
798 rtx orig_x;
799 /* True if this if block is not canonical. In the canonical form of
800 if blocks, the THEN_BB is the block reached via the fallthru edge
801 from TEST_BB. For the noce transformations, we allow the symmetric
802 form as well. */
803 bool then_else_reversed;
804
805 /* True if the contents of then_bb and else_bb are a
806 simple single set instruction. */
807 bool then_simple;
808 bool else_simple;
809
810 /* The total rtx cost of the instructions in then_bb and else_bb. */
811 unsigned int then_cost;
812 unsigned int else_cost;
813
814 /* Estimated cost of the particular branch instruction. */
815 unsigned int branch_cost;
816 };
817
818 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
819 static int noce_try_move (struct noce_if_info *);
820 static int noce_try_store_flag (struct noce_if_info *);
821 static int noce_try_addcc (struct noce_if_info *);
822 static int noce_try_store_flag_constants (struct noce_if_info *);
823 static int noce_try_store_flag_mask (struct noce_if_info *);
824 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
825 rtx, rtx, rtx);
826 static int noce_try_cmove (struct noce_if_info *);
827 static int noce_try_cmove_arith (struct noce_if_info *);
828 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
829 static int noce_try_minmax (struct noce_if_info *);
830 static int noce_try_abs (struct noce_if_info *);
831 static int noce_try_sign_mask (struct noce_if_info *);
832
833 /* Helper function for noce_try_store_flag*. */
834
835 static rtx
836 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
837 int normalize)
838 {
839 rtx cond = if_info->cond;
840 int cond_complex;
841 enum rtx_code code;
842
843 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
844 || ! general_operand (XEXP (cond, 1), VOIDmode));
845
846 /* If earliest == jump, or when the condition is complex, try to
847 build the store_flag insn directly. */
848
849 if (cond_complex)
850 {
851 rtx set = pc_set (if_info->jump);
852 cond = XEXP (SET_SRC (set), 0);
853 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
854 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
855 reversep = !reversep;
856 if (if_info->then_else_reversed)
857 reversep = !reversep;
858 }
859
860 if (reversep)
861 code = reversed_comparison_code (cond, if_info->jump);
862 else
863 code = GET_CODE (cond);
864
865 if ((if_info->cond_earliest == if_info->jump || cond_complex)
866 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
867 {
868 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
869 XEXP (cond, 1));
870 rtx set = gen_rtx_SET (x, src);
871
872 start_sequence ();
873 rtx_insn *insn = emit_insn (set);
874
875 if (recog_memoized (insn) >= 0)
876 {
877 rtx_insn *seq = get_insns ();
878 end_sequence ();
879 emit_insn (seq);
880
881 if_info->cond_earliest = if_info->jump;
882
883 return x;
884 }
885
886 end_sequence ();
887 }
888
889 /* Don't even try if the comparison operands or the mode of X are weird. */
890 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
891 return NULL_RTX;
892
893 return emit_store_flag (x, code, XEXP (cond, 0),
894 XEXP (cond, 1), VOIDmode,
895 (code == LTU || code == LEU
896 || code == GEU || code == GTU), normalize);
897 }
898
899 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
900 X is the destination/target and Y is the value to copy. */
901
902 static void
903 noce_emit_move_insn (rtx x, rtx y)
904 {
905 machine_mode outmode;
906 rtx outer, inner;
907 int bitpos;
908
909 if (GET_CODE (x) != STRICT_LOW_PART)
910 {
911 rtx_insn *seq, *insn;
912 rtx target;
913 optab ot;
914
915 start_sequence ();
916 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
917 otherwise construct a suitable SET pattern ourselves. */
918 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
919 ? emit_move_insn (x, y)
920 : emit_insn (gen_rtx_SET (x, y));
921 seq = get_insns ();
922 end_sequence ();
923
924 if (recog_memoized (insn) <= 0)
925 {
926 if (GET_CODE (x) == ZERO_EXTRACT)
927 {
928 rtx op = XEXP (x, 0);
929 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
930 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
931
932 /* store_bit_field expects START to be relative to
933 BYTES_BIG_ENDIAN and adjusts this value for machines with
934 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
935 invoke store_bit_field again it is necessary to have the START
936 value from the first call. */
937 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
938 {
939 if (MEM_P (op))
940 start = BITS_PER_UNIT - start - size;
941 else
942 {
943 gcc_assert (REG_P (op));
944 start = BITS_PER_WORD - start - size;
945 }
946 }
947
948 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
949 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y, false);
950 return;
951 }
952
953 switch (GET_RTX_CLASS (GET_CODE (y)))
954 {
955 case RTX_UNARY:
956 ot = code_to_optab (GET_CODE (y));
957 if (ot)
958 {
959 start_sequence ();
960 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
961 if (target != NULL_RTX)
962 {
963 if (target != x)
964 emit_move_insn (x, target);
965 seq = get_insns ();
966 }
967 end_sequence ();
968 }
969 break;
970
971 case RTX_BIN_ARITH:
972 case RTX_COMM_ARITH:
973 ot = code_to_optab (GET_CODE (y));
974 if (ot)
975 {
976 start_sequence ();
977 target = expand_binop (GET_MODE (y), ot,
978 XEXP (y, 0), XEXP (y, 1),
979 x, 0, OPTAB_DIRECT);
980 if (target != NULL_RTX)
981 {
982 if (target != x)
983 emit_move_insn (x, target);
984 seq = get_insns ();
985 }
986 end_sequence ();
987 }
988 break;
989
990 default:
991 break;
992 }
993 }
994
995 emit_insn (seq);
996 return;
997 }
998
999 outer = XEXP (x, 0);
1000 inner = XEXP (outer, 0);
1001 outmode = GET_MODE (outer);
1002 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1003 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1004 0, 0, outmode, y, false);
1005 }
1006
1007 /* Return the CC reg if it is used in COND. */
1008
1009 static rtx
1010 cc_in_cond (rtx cond)
1011 {
1012 if (have_cbranchcc4 && cond
1013 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1014 return XEXP (cond, 0);
1015
1016 return NULL_RTX;
1017 }
1018
1019 /* Return sequence of instructions generated by if conversion. This
1020 function calls end_sequence() to end the current stream, ensures
1021 that the instructions are unshared, recognizable non-jump insns.
1022 On failure, this function returns a NULL_RTX. */
1023
1024 static rtx_insn *
1025 end_ifcvt_sequence (struct noce_if_info *if_info)
1026 {
1027 rtx_insn *insn;
1028 rtx_insn *seq = get_insns ();
1029 rtx cc = cc_in_cond (if_info->cond);
1030
1031 set_used_flags (if_info->x);
1032 set_used_flags (if_info->cond);
1033 set_used_flags (if_info->a);
1034 set_used_flags (if_info->b);
1035
1036 for (insn = seq; insn; insn = NEXT_INSN (insn))
1037 set_used_flags (insn);
1038
1039 unshare_all_rtl_in_chain (seq);
1040 end_sequence ();
1041
1042 /* Make sure that all of the instructions emitted are recognizable,
1043 and that we haven't introduced a new jump instruction.
1044 As an exercise for the reader, build a general mechanism that
1045 allows proper placement of required clobbers. */
1046 for (insn = seq; insn; insn = NEXT_INSN (insn))
1047 if (JUMP_P (insn)
1048 || recog_memoized (insn) == -1
1049 /* Make sure new generated code does not clobber CC. */
1050 || (cc && set_of (cc, insn)))
1051 return NULL;
1052
1053 return seq;
1054 }
1055
1056 /* Return true iff the then and else basic block (if it exists)
1057 consist of a single simple set instruction. */
1058
1059 static bool
1060 noce_simple_bbs (struct noce_if_info *if_info)
1061 {
1062 if (!if_info->then_simple)
1063 return false;
1064
1065 if (if_info->else_bb)
1066 return if_info->else_simple;
1067
1068 return true;
1069 }
1070
1071 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1072 "if (a == b) x = a; else x = b" into "x = b". */
1073
1074 static int
1075 noce_try_move (struct noce_if_info *if_info)
1076 {
1077 rtx cond = if_info->cond;
1078 enum rtx_code code = GET_CODE (cond);
1079 rtx y;
1080 rtx_insn *seq;
1081
1082 if (code != NE && code != EQ)
1083 return FALSE;
1084
1085 if (!noce_simple_bbs (if_info))
1086 return FALSE;
1087
1088 /* This optimization isn't valid if either A or B could be a NaN
1089 or a signed zero. */
1090 if (HONOR_NANS (if_info->x)
1091 || HONOR_SIGNED_ZEROS (if_info->x))
1092 return FALSE;
1093
1094 /* Check whether the operands of the comparison are A and in
1095 either order. */
1096 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1097 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1098 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1099 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1100 {
1101 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1102 return FALSE;
1103
1104 y = (code == EQ) ? if_info->a : if_info->b;
1105
1106 /* Avoid generating the move if the source is the destination. */
1107 if (! rtx_equal_p (if_info->x, y))
1108 {
1109 start_sequence ();
1110 noce_emit_move_insn (if_info->x, y);
1111 seq = end_ifcvt_sequence (if_info);
1112 if (!seq)
1113 return FALSE;
1114
1115 emit_insn_before_setloc (seq, if_info->jump,
1116 INSN_LOCATION (if_info->insn_a));
1117 }
1118 return TRUE;
1119 }
1120 return FALSE;
1121 }
1122
1123 /* Convert "if (test) x = 1; else x = 0".
1124
1125 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1126 tried in noce_try_store_flag_constants after noce_try_cmove has had
1127 a go at the conversion. */
1128
1129 static int
1130 noce_try_store_flag (struct noce_if_info *if_info)
1131 {
1132 int reversep;
1133 rtx target;
1134 rtx_insn *seq;
1135
1136 if (!noce_simple_bbs (if_info))
1137 return FALSE;
1138
1139 if (CONST_INT_P (if_info->b)
1140 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1141 && if_info->a == const0_rtx)
1142 reversep = 0;
1143 else if (if_info->b == const0_rtx
1144 && CONST_INT_P (if_info->a)
1145 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1146 && (reversed_comparison_code (if_info->cond, if_info->jump)
1147 != UNKNOWN))
1148 reversep = 1;
1149 else
1150 return FALSE;
1151
1152 start_sequence ();
1153
1154 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1155 if (target)
1156 {
1157 if (target != if_info->x)
1158 noce_emit_move_insn (if_info->x, target);
1159
1160 seq = end_ifcvt_sequence (if_info);
1161 if (! seq)
1162 return FALSE;
1163
1164 emit_insn_before_setloc (seq, if_info->jump,
1165 INSN_LOCATION (if_info->insn_a));
1166 return TRUE;
1167 }
1168 else
1169 {
1170 end_sequence ();
1171 return FALSE;
1172 }
1173 }
1174
1175
1176 /* Convert "if (test) x = -A; else x = A" into
1177 x = A; if (test) x = -x if the machine can do the
1178 conditional negate form of this cheaply.
1179 Try this before noce_try_cmove that will just load the
1180 immediates into two registers and do a conditional select
1181 between them. If the target has a conditional negate or
1182 conditional invert operation we can save a potentially
1183 expensive constant synthesis. */
1184
1185 static bool
1186 noce_try_inverse_constants (struct noce_if_info *if_info)
1187 {
1188 if (!noce_simple_bbs (if_info))
1189 return false;
1190
1191 if (!CONST_INT_P (if_info->a)
1192 || !CONST_INT_P (if_info->b)
1193 || !REG_P (if_info->x))
1194 return false;
1195
1196 machine_mode mode = GET_MODE (if_info->x);
1197
1198 HOST_WIDE_INT val_a = INTVAL (if_info->a);
1199 HOST_WIDE_INT val_b = INTVAL (if_info->b);
1200
1201 rtx cond = if_info->cond;
1202
1203 rtx x = if_info->x;
1204 rtx target;
1205
1206 start_sequence ();
1207
1208 rtx_code code;
1209 if (val_b != HOST_WIDE_INT_MIN && val_a == -val_b)
1210 code = NEG;
1211 else if (val_a == ~val_b)
1212 code = NOT;
1213 else
1214 {
1215 end_sequence ();
1216 return false;
1217 }
1218
1219 rtx tmp = gen_reg_rtx (mode);
1220 noce_emit_move_insn (tmp, if_info->a);
1221
1222 target = emit_conditional_neg_or_complement (x, code, mode, cond, tmp, tmp);
1223
1224 if (target)
1225 {
1226 rtx_insn *seq = get_insns ();
1227
1228 if (!seq)
1229 {
1230 end_sequence ();
1231 return false;
1232 }
1233
1234 if (target != if_info->x)
1235 noce_emit_move_insn (if_info->x, target);
1236
1237 seq = end_ifcvt_sequence (if_info);
1238
1239 if (!seq)
1240 return false;
1241
1242 emit_insn_before_setloc (seq, if_info->jump,
1243 INSN_LOCATION (if_info->insn_a));
1244 return true;
1245 }
1246
1247 end_sequence ();
1248 return false;
1249 }
1250
1251
1252 /* Convert "if (test) x = a; else x = b", for A and B constant.
1253 Also allow A = y + c1, B = y + c2, with a common y between A
1254 and B. */
1255
1256 static int
1257 noce_try_store_flag_constants (struct noce_if_info *if_info)
1258 {
1259 rtx target;
1260 rtx_insn *seq;
1261 bool reversep;
1262 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1263 int normalize;
1264 bool can_reverse;
1265 machine_mode mode = GET_MODE (if_info->x);;
1266 rtx common = NULL_RTX;
1267
1268 rtx a = if_info->a;
1269 rtx b = if_info->b;
1270
1271 /* Handle cases like x := test ? y + 3 : y + 4. */
1272 if (GET_CODE (a) == PLUS
1273 && GET_CODE (b) == PLUS
1274 && CONST_INT_P (XEXP (a, 1))
1275 && CONST_INT_P (XEXP (b, 1))
1276 && rtx_equal_p (XEXP (a, 0), XEXP (b, 0))
1277 && noce_operand_ok (XEXP (a, 0))
1278 && if_info->branch_cost >= 2)
1279 {
1280 common = XEXP (a, 0);
1281 a = XEXP (a, 1);
1282 b = XEXP (b, 1);
1283 }
1284
1285 if (!noce_simple_bbs (if_info))
1286 return FALSE;
1287
1288 if (CONST_INT_P (a)
1289 && CONST_INT_P (b))
1290 {
1291 ifalse = INTVAL (a);
1292 itrue = INTVAL (b);
1293 bool subtract_flag_p = false;
1294
1295 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1296 /* Make sure we can represent the difference between the two values. */
1297 if ((diff > 0)
1298 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1299 return FALSE;
1300
1301 diff = trunc_int_for_mode (diff, mode);
1302
1303 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1304 != UNKNOWN);
1305
1306 reversep = false;
1307 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1308 {
1309 normalize = 0;
1310 /* We could collapse these cases but it is easier to follow the
1311 diff/STORE_FLAG_VALUE combinations when they are listed
1312 explicitly. */
1313
1314 /* test ? 3 : 4
1315 => 4 + (test != 0). */
1316 if (diff < 0 && STORE_FLAG_VALUE < 0)
1317 reversep = false;
1318 /* test ? 4 : 3
1319 => can_reverse | 4 + (test == 0)
1320 !can_reverse | 3 - (test != 0). */
1321 else if (diff > 0 && STORE_FLAG_VALUE < 0)
1322 {
1323 reversep = can_reverse;
1324 subtract_flag_p = !can_reverse;
1325 /* If we need to subtract the flag and we have PLUS-immediate
1326 A and B then it is unlikely to be beneficial to play tricks
1327 here. */
1328 if (subtract_flag_p && common)
1329 return FALSE;
1330 }
1331 /* test ? 3 : 4
1332 => can_reverse | 3 + (test == 0)
1333 !can_reverse | 4 - (test != 0). */
1334 else if (diff < 0 && STORE_FLAG_VALUE > 0)
1335 {
1336 reversep = can_reverse;
1337 subtract_flag_p = !can_reverse;
1338 /* If we need to subtract the flag and we have PLUS-immediate
1339 A and B then it is unlikely to be beneficial to play tricks
1340 here. */
1341 if (subtract_flag_p && common)
1342 return FALSE;
1343 }
1344 /* test ? 4 : 3
1345 => 4 + (test != 0). */
1346 else if (diff > 0 && STORE_FLAG_VALUE > 0)
1347 reversep = false;
1348 else
1349 gcc_unreachable ();
1350 }
1351 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1352 && (STORE_FLAG_VALUE == 1
1353 || if_info->branch_cost >= 2))
1354 normalize = 1;
1355 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1356 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1357 {
1358 normalize = 1;
1359 reversep = true;
1360 }
1361 else if (itrue == -1
1362 && (STORE_FLAG_VALUE == -1
1363 || if_info->branch_cost >= 2))
1364 normalize = -1;
1365 else if (ifalse == -1 && can_reverse
1366 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1367 {
1368 normalize = -1;
1369 reversep = true;
1370 }
1371 else
1372 return FALSE;
1373
1374 if (reversep)
1375 {
1376 std::swap (itrue, ifalse);
1377 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1378 }
1379
1380 start_sequence ();
1381
1382 /* If we have x := test ? x + 3 : x + 4 then move the original
1383 x out of the way while we store flags. */
1384 if (common && rtx_equal_p (common, if_info->x))
1385 {
1386 common = gen_reg_rtx (mode);
1387 noce_emit_move_insn (common, if_info->x);
1388 }
1389
1390 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1391 if (! target)
1392 {
1393 end_sequence ();
1394 return FALSE;
1395 }
1396
1397 /* if (test) x = 3; else x = 4;
1398 => x = 3 + (test == 0); */
1399 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1400 {
1401 /* Add the common part now. This may allow combine to merge this
1402 with the store flag operation earlier into some sort of conditional
1403 increment/decrement if the target allows it. */
1404 if (common)
1405 target = expand_simple_binop (mode, PLUS,
1406 target, common,
1407 target, 0, OPTAB_WIDEN);
1408
1409 /* Always use ifalse here. It should have been swapped with itrue
1410 when appropriate when reversep is true. */
1411 target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
1412 gen_int_mode (ifalse, mode), target,
1413 if_info->x, 0, OPTAB_WIDEN);
1414 }
1415 /* Other cases are not beneficial when the original A and B are PLUS
1416 expressions. */
1417 else if (common)
1418 {
1419 end_sequence ();
1420 return FALSE;
1421 }
1422 /* if (test) x = 8; else x = 0;
1423 => x = (test != 0) << 3; */
1424 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1425 {
1426 target = expand_simple_binop (mode, ASHIFT,
1427 target, GEN_INT (tmp), if_info->x, 0,
1428 OPTAB_WIDEN);
1429 }
1430
1431 /* if (test) x = -1; else x = b;
1432 => x = -(test != 0) | b; */
1433 else if (itrue == -1)
1434 {
1435 target = expand_simple_binop (mode, IOR,
1436 target, gen_int_mode (ifalse, mode),
1437 if_info->x, 0, OPTAB_WIDEN);
1438 }
1439 else
1440 {
1441 end_sequence ();
1442 return FALSE;
1443 }
1444
1445 if (! target)
1446 {
1447 end_sequence ();
1448 return FALSE;
1449 }
1450
1451 if (target != if_info->x)
1452 noce_emit_move_insn (if_info->x, target);
1453
1454 seq = end_ifcvt_sequence (if_info);
1455 if (!seq)
1456 return FALSE;
1457
1458 emit_insn_before_setloc (seq, if_info->jump,
1459 INSN_LOCATION (if_info->insn_a));
1460 return TRUE;
1461 }
1462
1463 return FALSE;
1464 }
1465
1466 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1467 similarly for "foo--". */
1468
1469 static int
1470 noce_try_addcc (struct noce_if_info *if_info)
1471 {
1472 rtx target;
1473 rtx_insn *seq;
1474 int subtract, normalize;
1475
1476 if (!noce_simple_bbs (if_info))
1477 return FALSE;
1478
1479 if (GET_CODE (if_info->a) == PLUS
1480 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1481 && (reversed_comparison_code (if_info->cond, if_info->jump)
1482 != UNKNOWN))
1483 {
1484 rtx cond = if_info->cond;
1485 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1486
1487 /* First try to use addcc pattern. */
1488 if (general_operand (XEXP (cond, 0), VOIDmode)
1489 && general_operand (XEXP (cond, 1), VOIDmode))
1490 {
1491 start_sequence ();
1492 target = emit_conditional_add (if_info->x, code,
1493 XEXP (cond, 0),
1494 XEXP (cond, 1),
1495 VOIDmode,
1496 if_info->b,
1497 XEXP (if_info->a, 1),
1498 GET_MODE (if_info->x),
1499 (code == LTU || code == GEU
1500 || code == LEU || code == GTU));
1501 if (target)
1502 {
1503 if (target != if_info->x)
1504 noce_emit_move_insn (if_info->x, target);
1505
1506 seq = end_ifcvt_sequence (if_info);
1507 if (!seq)
1508 return FALSE;
1509
1510 emit_insn_before_setloc (seq, if_info->jump,
1511 INSN_LOCATION (if_info->insn_a));
1512 return TRUE;
1513 }
1514 end_sequence ();
1515 }
1516
1517 /* If that fails, construct conditional increment or decrement using
1518 setcc. */
1519 if (if_info->branch_cost >= 2
1520 && (XEXP (if_info->a, 1) == const1_rtx
1521 || XEXP (if_info->a, 1) == constm1_rtx))
1522 {
1523 start_sequence ();
1524 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1525 subtract = 0, normalize = 0;
1526 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1527 subtract = 1, normalize = 0;
1528 else
1529 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1530
1531
1532 target = noce_emit_store_flag (if_info,
1533 gen_reg_rtx (GET_MODE (if_info->x)),
1534 1, normalize);
1535
1536 if (target)
1537 target = expand_simple_binop (GET_MODE (if_info->x),
1538 subtract ? MINUS : PLUS,
1539 if_info->b, target, if_info->x,
1540 0, OPTAB_WIDEN);
1541 if (target)
1542 {
1543 if (target != if_info->x)
1544 noce_emit_move_insn (if_info->x, target);
1545
1546 seq = end_ifcvt_sequence (if_info);
1547 if (!seq)
1548 return FALSE;
1549
1550 emit_insn_before_setloc (seq, if_info->jump,
1551 INSN_LOCATION (if_info->insn_a));
1552 return TRUE;
1553 }
1554 end_sequence ();
1555 }
1556 }
1557
1558 return FALSE;
1559 }
1560
1561 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1562
1563 static int
1564 noce_try_store_flag_mask (struct noce_if_info *if_info)
1565 {
1566 rtx target;
1567 rtx_insn *seq;
1568 int reversep;
1569
1570 if (!noce_simple_bbs (if_info))
1571 return FALSE;
1572
1573 reversep = 0;
1574 if ((if_info->branch_cost >= 2
1575 || STORE_FLAG_VALUE == -1)
1576 && ((if_info->a == const0_rtx
1577 && rtx_equal_p (if_info->b, if_info->x))
1578 || ((reversep = (reversed_comparison_code (if_info->cond,
1579 if_info->jump)
1580 != UNKNOWN))
1581 && if_info->b == const0_rtx
1582 && rtx_equal_p (if_info->a, if_info->x))))
1583 {
1584 start_sequence ();
1585 target = noce_emit_store_flag (if_info,
1586 gen_reg_rtx (GET_MODE (if_info->x)),
1587 reversep, -1);
1588 if (target)
1589 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1590 if_info->x,
1591 target, if_info->x, 0,
1592 OPTAB_WIDEN);
1593
1594 if (target)
1595 {
1596 int old_cost, new_cost, insn_cost;
1597 int speed_p;
1598
1599 if (target != if_info->x)
1600 noce_emit_move_insn (if_info->x, target);
1601
1602 seq = end_ifcvt_sequence (if_info);
1603 if (!seq)
1604 return FALSE;
1605
1606 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a));
1607 insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p);
1608 old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost;
1609 new_cost = seq_cost (seq, speed_p);
1610
1611 if (new_cost > old_cost)
1612 return FALSE;
1613
1614 emit_insn_before_setloc (seq, if_info->jump,
1615 INSN_LOCATION (if_info->insn_a));
1616 return TRUE;
1617 }
1618
1619 end_sequence ();
1620 }
1621
1622 return FALSE;
1623 }
1624
1625 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1626
1627 static rtx
1628 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1629 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1630 {
1631 rtx target ATTRIBUTE_UNUSED;
1632 int unsignedp ATTRIBUTE_UNUSED;
1633
1634 /* If earliest == jump, try to build the cmove insn directly.
1635 This is helpful when combine has created some complex condition
1636 (like for alpha's cmovlbs) that we can't hope to regenerate
1637 through the normal interface. */
1638
1639 if (if_info->cond_earliest == if_info->jump)
1640 {
1641 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1642 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1643 cond, vtrue, vfalse);
1644 rtx set = gen_rtx_SET (x, if_then_else);
1645
1646 start_sequence ();
1647 rtx_insn *insn = emit_insn (set);
1648
1649 if (recog_memoized (insn) >= 0)
1650 {
1651 rtx_insn *seq = get_insns ();
1652 end_sequence ();
1653 emit_insn (seq);
1654
1655 return x;
1656 }
1657
1658 end_sequence ();
1659 }
1660
1661 /* Don't even try if the comparison operands are weird
1662 except that the target supports cbranchcc4. */
1663 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1664 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1665 {
1666 if (!have_cbranchcc4
1667 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1668 || cmp_b != const0_rtx)
1669 return NULL_RTX;
1670 }
1671
1672 unsignedp = (code == LTU || code == GEU
1673 || code == LEU || code == GTU);
1674
1675 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1676 vtrue, vfalse, GET_MODE (x),
1677 unsignedp);
1678 if (target)
1679 return target;
1680
1681 /* We might be faced with a situation like:
1682
1683 x = (reg:M TARGET)
1684 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1685 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1686
1687 We can't do a conditional move in mode M, but it's possible that we
1688 could do a conditional move in mode N instead and take a subreg of
1689 the result.
1690
1691 If we can't create new pseudos, though, don't bother. */
1692 if (reload_completed)
1693 return NULL_RTX;
1694
1695 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1696 {
1697 rtx reg_vtrue = SUBREG_REG (vtrue);
1698 rtx reg_vfalse = SUBREG_REG (vfalse);
1699 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1700 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1701 rtx promoted_target;
1702
1703 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1704 || byte_vtrue != byte_vfalse
1705 || (SUBREG_PROMOTED_VAR_P (vtrue)
1706 != SUBREG_PROMOTED_VAR_P (vfalse))
1707 || (SUBREG_PROMOTED_GET (vtrue)
1708 != SUBREG_PROMOTED_GET (vfalse)))
1709 return NULL_RTX;
1710
1711 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1712
1713 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1714 VOIDmode, reg_vtrue, reg_vfalse,
1715 GET_MODE (reg_vtrue), unsignedp);
1716 /* Nope, couldn't do it in that mode either. */
1717 if (!target)
1718 return NULL_RTX;
1719
1720 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1721 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1722 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1723 emit_move_insn (x, target);
1724 return x;
1725 }
1726 else
1727 return NULL_RTX;
1728 }
1729
1730 /* Try only simple constants and registers here. More complex cases
1731 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1732 has had a go at it. */
1733
1734 static int
1735 noce_try_cmove (struct noce_if_info *if_info)
1736 {
1737 enum rtx_code code;
1738 rtx target;
1739 rtx_insn *seq;
1740
1741 if (!noce_simple_bbs (if_info))
1742 return FALSE;
1743
1744 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1745 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1746 {
1747 start_sequence ();
1748
1749 code = GET_CODE (if_info->cond);
1750 target = noce_emit_cmove (if_info, if_info->x, code,
1751 XEXP (if_info->cond, 0),
1752 XEXP (if_info->cond, 1),
1753 if_info->a, if_info->b);
1754
1755 if (target)
1756 {
1757 if (target != if_info->x)
1758 noce_emit_move_insn (if_info->x, target);
1759
1760 seq = end_ifcvt_sequence (if_info);
1761 if (!seq)
1762 return FALSE;
1763
1764 emit_insn_before_setloc (seq, if_info->jump,
1765 INSN_LOCATION (if_info->insn_a));
1766 return TRUE;
1767 }
1768 /* If both a and b are constants try a last-ditch transformation:
1769 if (test) x = a; else x = b;
1770 => x = (-(test != 0) & (b - a)) + a;
1771 Try this only if the target-specific expansion above has failed.
1772 The target-specific expander may want to generate sequences that
1773 we don't know about, so give them a chance before trying this
1774 approach. */
1775 else if (!targetm.have_conditional_execution ()
1776 && CONST_INT_P (if_info->a) && CONST_INT_P (if_info->b)
1777 && ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1778 || if_info->branch_cost >= 3))
1779 {
1780 machine_mode mode = GET_MODE (if_info->x);
1781 HOST_WIDE_INT ifalse = INTVAL (if_info->a);
1782 HOST_WIDE_INT itrue = INTVAL (if_info->b);
1783 rtx target = noce_emit_store_flag (if_info, if_info->x, false, -1);
1784 if (!target)
1785 {
1786 end_sequence ();
1787 return FALSE;
1788 }
1789
1790 HOST_WIDE_INT diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1791 /* Make sure we can represent the difference
1792 between the two values. */
1793 if ((diff > 0)
1794 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1795 {
1796 end_sequence ();
1797 return FALSE;
1798 }
1799
1800 diff = trunc_int_for_mode (diff, mode);
1801 target = expand_simple_binop (mode, AND,
1802 target, gen_int_mode (diff, mode),
1803 if_info->x, 0, OPTAB_WIDEN);
1804 if (target)
1805 target = expand_simple_binop (mode, PLUS,
1806 target, gen_int_mode (ifalse, mode),
1807 if_info->x, 0, OPTAB_WIDEN);
1808 if (target)
1809 {
1810 if (target != if_info->x)
1811 noce_emit_move_insn (if_info->x, target);
1812
1813 seq = end_ifcvt_sequence (if_info);
1814 if (!seq)
1815 return FALSE;
1816
1817 emit_insn_before_setloc (seq, if_info->jump,
1818 INSN_LOCATION (if_info->insn_a));
1819 return TRUE;
1820 }
1821 else
1822 {
1823 end_sequence ();
1824 return FALSE;
1825 }
1826 }
1827 else
1828 end_sequence ();
1829 }
1830
1831 return FALSE;
1832 }
1833
1834 /* Return true if X contains a conditional code mode rtx. */
1835
1836 static bool
1837 contains_ccmode_rtx_p (rtx x)
1838 {
1839 subrtx_iterator::array_type array;
1840 FOR_EACH_SUBRTX (iter, array, x, ALL)
1841 if (GET_MODE_CLASS (GET_MODE (*iter)) == MODE_CC)
1842 return true;
1843
1844 return false;
1845 }
1846
1847 /* Helper for bb_valid_for_noce_process_p. Validate that
1848 the rtx insn INSN is a single set that does not set
1849 the conditional register CC and is in general valid for
1850 if-conversion. */
1851
1852 static bool
1853 insn_valid_noce_process_p (rtx_insn *insn, rtx cc)
1854 {
1855 if (!insn
1856 || !NONJUMP_INSN_P (insn)
1857 || (cc && set_of (cc, insn)))
1858 return false;
1859
1860 rtx sset = single_set (insn);
1861
1862 /* Currently support only simple single sets in test_bb. */
1863 if (!sset
1864 || !noce_operand_ok (SET_DEST (sset))
1865 || contains_ccmode_rtx_p (SET_DEST (sset))
1866 || !noce_operand_ok (SET_SRC (sset)))
1867 return false;
1868
1869 return true;
1870 }
1871
1872
1873 /* Return true iff the registers that the insns in BB_A set do not get
1874 used in BB_B. If TO_RENAME is non-NULL then it is a location that will be
1875 renamed later by the caller and so conflicts on it should be ignored
1876 in this function. */
1877
1878 static bool
1879 bbs_ok_for_cmove_arith (basic_block bb_a, basic_block bb_b, rtx to_rename)
1880 {
1881 rtx_insn *a_insn;
1882 bitmap bba_sets = BITMAP_ALLOC (&reg_obstack);
1883
1884 df_ref def;
1885 df_ref use;
1886
1887 FOR_BB_INSNS (bb_a, a_insn)
1888 {
1889 if (!active_insn_p (a_insn))
1890 continue;
1891
1892 rtx sset_a = single_set (a_insn);
1893
1894 if (!sset_a)
1895 {
1896 BITMAP_FREE (bba_sets);
1897 return false;
1898 }
1899 /* Record all registers that BB_A sets. */
1900 FOR_EACH_INSN_DEF (def, a_insn)
1901 if (!(to_rename && DF_REF_REG (def) == to_rename))
1902 bitmap_set_bit (bba_sets, DF_REF_REGNO (def));
1903 }
1904
1905 rtx_insn *b_insn;
1906
1907 FOR_BB_INSNS (bb_b, b_insn)
1908 {
1909 if (!active_insn_p (b_insn))
1910 continue;
1911
1912 rtx sset_b = single_set (b_insn);
1913
1914 if (!sset_b)
1915 {
1916 BITMAP_FREE (bba_sets);
1917 return false;
1918 }
1919
1920 /* Make sure this is a REG and not some instance
1921 of ZERO_EXTRACT or SUBREG or other dangerous stuff.
1922 If we have a memory destination then we have a pair of simple
1923 basic blocks performing an operation of the form [addr] = c ? a : b.
1924 bb_valid_for_noce_process_p will have ensured that these are
1925 the only stores present. In that case [addr] should be the location
1926 to be renamed. Assert that the callers set this up properly. */
1927 if (MEM_P (SET_DEST (sset_b)))
1928 gcc_assert (rtx_equal_p (SET_DEST (sset_b), to_rename));
1929 else if (!REG_P (SET_DEST (sset_b)))
1930 {
1931 BITMAP_FREE (bba_sets);
1932 return false;
1933 }
1934
1935 /* If the insn uses a reg set in BB_A return false. */
1936 FOR_EACH_INSN_USE (use, b_insn)
1937 {
1938 if (bitmap_bit_p (bba_sets, DF_REF_REGNO (use)))
1939 {
1940 BITMAP_FREE (bba_sets);
1941 return false;
1942 }
1943 }
1944
1945 }
1946
1947 BITMAP_FREE (bba_sets);
1948 return true;
1949 }
1950
1951 /* Emit copies of all the active instructions in BB except the last.
1952 This is a helper for noce_try_cmove_arith. */
1953
1954 static void
1955 noce_emit_all_but_last (basic_block bb)
1956 {
1957 rtx_insn *last = last_active_insn (bb, FALSE);
1958 rtx_insn *insn;
1959 FOR_BB_INSNS (bb, insn)
1960 {
1961 if (insn != last && active_insn_p (insn))
1962 {
1963 rtx_insn *to_emit = as_a <rtx_insn *> (copy_rtx (insn));
1964
1965 emit_insn (PATTERN (to_emit));
1966 }
1967 }
1968 }
1969
1970 /* Helper for noce_try_cmove_arith. Emit the pattern TO_EMIT and return
1971 the resulting insn or NULL if it's not a valid insn. */
1972
1973 static rtx_insn *
1974 noce_emit_insn (rtx to_emit)
1975 {
1976 gcc_assert (to_emit);
1977 rtx_insn *insn = emit_insn (to_emit);
1978
1979 if (recog_memoized (insn) < 0)
1980 return NULL;
1981
1982 return insn;
1983 }
1984
1985 /* Helper for noce_try_cmove_arith. Emit a copy of the insns up to
1986 and including the penultimate one in BB if it is not simple
1987 (as indicated by SIMPLE). Then emit LAST_INSN as the last
1988 insn in the block. The reason for that is that LAST_INSN may
1989 have been modified by the preparation in noce_try_cmove_arith. */
1990
1991 static bool
1992 noce_emit_bb (rtx last_insn, basic_block bb, bool simple)
1993 {
1994 if (bb && !simple)
1995 noce_emit_all_but_last (bb);
1996
1997 if (last_insn && !noce_emit_insn (last_insn))
1998 return false;
1999
2000 return true;
2001 }
2002
2003 /* Try more complex cases involving conditional_move. */
2004
2005 static int
2006 noce_try_cmove_arith (struct noce_if_info *if_info)
2007 {
2008 rtx a = if_info->a;
2009 rtx b = if_info->b;
2010 rtx x = if_info->x;
2011 rtx orig_a, orig_b;
2012 rtx_insn *insn_a, *insn_b;
2013 bool a_simple = if_info->then_simple;
2014 bool b_simple = if_info->else_simple;
2015 basic_block then_bb = if_info->then_bb;
2016 basic_block else_bb = if_info->else_bb;
2017 rtx target;
2018 int is_mem = 0;
2019 enum rtx_code code;
2020 rtx_insn *ifcvt_seq;
2021
2022 /* A conditional move from two memory sources is equivalent to a
2023 conditional on their addresses followed by a load. Don't do this
2024 early because it'll screw alias analysis. Note that we've
2025 already checked for no side effects. */
2026 /* ??? FIXME: Magic number 5. */
2027 if (cse_not_expected
2028 && MEM_P (a) && MEM_P (b)
2029 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
2030 && if_info->branch_cost >= 5)
2031 {
2032 machine_mode address_mode = get_address_mode (a);
2033
2034 a = XEXP (a, 0);
2035 b = XEXP (b, 0);
2036 x = gen_reg_rtx (address_mode);
2037 is_mem = 1;
2038 }
2039
2040 /* ??? We could handle this if we knew that a load from A or B could
2041 not trap or fault. This is also true if we've already loaded
2042 from the address along the path from ENTRY. */
2043 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
2044 return FALSE;
2045
2046 /* if (test) x = a + b; else x = c - d;
2047 => y = a + b;
2048 x = c - d;
2049 if (test)
2050 x = y;
2051 */
2052
2053 code = GET_CODE (if_info->cond);
2054 insn_a = if_info->insn_a;
2055 insn_b = if_info->insn_b;
2056
2057 machine_mode x_mode = GET_MODE (x);
2058
2059 if (!can_conditionally_move_p (x_mode))
2060 return FALSE;
2061
2062 unsigned int then_cost;
2063 unsigned int else_cost;
2064 if (insn_a)
2065 then_cost = if_info->then_cost;
2066 else
2067 then_cost = 0;
2068
2069 if (insn_b)
2070 else_cost = if_info->else_cost;
2071 else
2072 else_cost = 0;
2073
2074 /* We're going to execute one of the basic blocks anyway, so
2075 bail out if the most expensive of the two blocks is unacceptable. */
2076 if (MAX (then_cost, else_cost) > COSTS_N_INSNS (if_info->branch_cost))
2077 return FALSE;
2078
2079 /* Possibly rearrange operands to make things come out more natural. */
2080 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
2081 {
2082 int reversep = 0;
2083 if (rtx_equal_p (b, x))
2084 reversep = 1;
2085 else if (general_operand (b, GET_MODE (b)))
2086 reversep = 1;
2087
2088 if (reversep)
2089 {
2090 code = reversed_comparison_code (if_info->cond, if_info->jump);
2091 std::swap (a, b);
2092 std::swap (insn_a, insn_b);
2093 std::swap (a_simple, b_simple);
2094 std::swap (then_bb, else_bb);
2095 }
2096 }
2097
2098 if (then_bb && else_bb
2099 && (!bbs_ok_for_cmove_arith (then_bb, else_bb, if_info->orig_x)
2100 || !bbs_ok_for_cmove_arith (else_bb, then_bb, if_info->orig_x)))
2101 return FALSE;
2102
2103 start_sequence ();
2104
2105 /* If one of the blocks is empty then the corresponding B or A value
2106 came from the test block. The non-empty complex block that we will
2107 emit might clobber the register used by B or A, so move it to a pseudo
2108 first. */
2109
2110 rtx tmp_a = NULL_RTX;
2111 rtx tmp_b = NULL_RTX;
2112
2113 if (b_simple || !else_bb)
2114 tmp_b = gen_reg_rtx (x_mode);
2115
2116 if (a_simple || !then_bb)
2117 tmp_a = gen_reg_rtx (x_mode);
2118
2119 orig_a = a;
2120 orig_b = b;
2121
2122 rtx emit_a = NULL_RTX;
2123 rtx emit_b = NULL_RTX;
2124 rtx_insn *tmp_insn = NULL;
2125 bool modified_in_a = false;
2126 bool modified_in_b = false;
2127 /* If either operand is complex, load it into a register first.
2128 The best way to do this is to copy the original insn. In this
2129 way we preserve any clobbers etc that the insn may have had.
2130 This is of course not possible in the IS_MEM case. */
2131
2132 if (! general_operand (a, GET_MODE (a)) || tmp_a)
2133 {
2134
2135 if (is_mem)
2136 {
2137 rtx reg = gen_reg_rtx (GET_MODE (a));
2138 emit_a = gen_rtx_SET (reg, a);
2139 }
2140 else
2141 {
2142 if (insn_a)
2143 {
2144 a = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2145
2146 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
2147 rtx set = single_set (copy_of_a);
2148 SET_DEST (set) = a;
2149
2150 emit_a = PATTERN (copy_of_a);
2151 }
2152 else
2153 {
2154 rtx tmp_reg = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2155 emit_a = gen_rtx_SET (tmp_reg, a);
2156 a = tmp_reg;
2157 }
2158 }
2159 }
2160
2161 if (! general_operand (b, GET_MODE (b)) || tmp_b)
2162 {
2163 if (is_mem)
2164 {
2165 rtx reg = gen_reg_rtx (GET_MODE (b));
2166 emit_b = gen_rtx_SET (reg, b);
2167 }
2168 else
2169 {
2170 if (insn_b)
2171 {
2172 b = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2173 rtx_insn *copy_of_b = as_a <rtx_insn *> (copy_rtx (insn_b));
2174 rtx set = single_set (copy_of_b);
2175
2176 SET_DEST (set) = b;
2177 emit_b = PATTERN (copy_of_b);
2178 }
2179 else
2180 {
2181 rtx tmp_reg = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2182 emit_b = gen_rtx_SET (tmp_reg, b);
2183 b = tmp_reg;
2184 }
2185 }
2186 }
2187
2188 modified_in_a = emit_a != NULL_RTX && modified_in_p (orig_b, emit_a);
2189 if (tmp_b && then_bb)
2190 {
2191 FOR_BB_INSNS (then_bb, tmp_insn)
2192 /* Don't check inside insn_a. We will have changed it to emit_a
2193 with a destination that doesn't conflict. */
2194 if (!(insn_a && tmp_insn == insn_a)
2195 && modified_in_p (orig_b, tmp_insn))
2196 {
2197 modified_in_a = true;
2198 break;
2199 }
2200
2201 }
2202
2203 modified_in_b = emit_b != NULL_RTX && modified_in_p (orig_a, emit_b);
2204 if (tmp_a && else_bb)
2205 {
2206 FOR_BB_INSNS (else_bb, tmp_insn)
2207 /* Don't check inside insn_b. We will have changed it to emit_b
2208 with a destination that doesn't conflict. */
2209 if (!(insn_b && tmp_insn == insn_b)
2210 && modified_in_p (orig_a, tmp_insn))
2211 {
2212 modified_in_b = true;
2213 break;
2214 }
2215 }
2216
2217 /* If insn to set up A clobbers any registers B depends on, try to
2218 swap insn that sets up A with the one that sets up B. If even
2219 that doesn't help, punt. */
2220 if (modified_in_a && !modified_in_b)
2221 {
2222 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2223 goto end_seq_and_fail;
2224
2225 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2226 goto end_seq_and_fail;
2227 }
2228 else if (!modified_in_a)
2229 {
2230 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2231 goto end_seq_and_fail;
2232
2233 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2234 goto end_seq_and_fail;
2235 }
2236 else
2237 goto end_seq_and_fail;
2238
2239 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
2240 XEXP (if_info->cond, 1), a, b);
2241
2242 if (! target)
2243 goto end_seq_and_fail;
2244
2245 /* If we're handling a memory for above, emit the load now. */
2246 if (is_mem)
2247 {
2248 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
2249
2250 /* Copy over flags as appropriate. */
2251 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
2252 MEM_VOLATILE_P (mem) = 1;
2253 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
2254 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
2255 set_mem_align (mem,
2256 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
2257
2258 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
2259 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
2260
2261 noce_emit_move_insn (if_info->x, mem);
2262 }
2263 else if (target != x)
2264 noce_emit_move_insn (x, target);
2265
2266 ifcvt_seq = end_ifcvt_sequence (if_info);
2267 if (!ifcvt_seq)
2268 return FALSE;
2269
2270 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
2271 INSN_LOCATION (if_info->insn_a));
2272 return TRUE;
2273
2274 end_seq_and_fail:
2275 end_sequence ();
2276 return FALSE;
2277 }
2278
2279 /* For most cases, the simplified condition we found is the best
2280 choice, but this is not the case for the min/max/abs transforms.
2281 For these we wish to know that it is A or B in the condition. */
2282
2283 static rtx
2284 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
2285 rtx_insn **earliest)
2286 {
2287 rtx cond, set;
2288 rtx_insn *insn;
2289 int reverse;
2290
2291 /* If target is already mentioned in the known condition, return it. */
2292 if (reg_mentioned_p (target, if_info->cond))
2293 {
2294 *earliest = if_info->cond_earliest;
2295 return if_info->cond;
2296 }
2297
2298 set = pc_set (if_info->jump);
2299 cond = XEXP (SET_SRC (set), 0);
2300 reverse
2301 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2302 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
2303 if (if_info->then_else_reversed)
2304 reverse = !reverse;
2305
2306 /* If we're looking for a constant, try to make the conditional
2307 have that constant in it. There are two reasons why it may
2308 not have the constant we want:
2309
2310 1. GCC may have needed to put the constant in a register, because
2311 the target can't compare directly against that constant. For
2312 this case, we look for a SET immediately before the comparison
2313 that puts a constant in that register.
2314
2315 2. GCC may have canonicalized the conditional, for example
2316 replacing "if x < 4" with "if x <= 3". We can undo that (or
2317 make equivalent types of changes) to get the constants we need
2318 if they're off by one in the right direction. */
2319
2320 if (CONST_INT_P (target))
2321 {
2322 enum rtx_code code = GET_CODE (if_info->cond);
2323 rtx op_a = XEXP (if_info->cond, 0);
2324 rtx op_b = XEXP (if_info->cond, 1);
2325 rtx_insn *prev_insn;
2326
2327 /* First, look to see if we put a constant in a register. */
2328 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
2329 if (prev_insn
2330 && BLOCK_FOR_INSN (prev_insn)
2331 == BLOCK_FOR_INSN (if_info->cond_earliest)
2332 && INSN_P (prev_insn)
2333 && GET_CODE (PATTERN (prev_insn)) == SET)
2334 {
2335 rtx src = find_reg_equal_equiv_note (prev_insn);
2336 if (!src)
2337 src = SET_SRC (PATTERN (prev_insn));
2338 if (CONST_INT_P (src))
2339 {
2340 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
2341 op_a = src;
2342 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
2343 op_b = src;
2344
2345 if (CONST_INT_P (op_a))
2346 {
2347 std::swap (op_a, op_b);
2348 code = swap_condition (code);
2349 }
2350 }
2351 }
2352
2353 /* Now, look to see if we can get the right constant by
2354 adjusting the conditional. */
2355 if (CONST_INT_P (op_b))
2356 {
2357 HOST_WIDE_INT desired_val = INTVAL (target);
2358 HOST_WIDE_INT actual_val = INTVAL (op_b);
2359
2360 switch (code)
2361 {
2362 case LT:
2363 if (actual_val == desired_val + 1)
2364 {
2365 code = LE;
2366 op_b = GEN_INT (desired_val);
2367 }
2368 break;
2369 case LE:
2370 if (actual_val == desired_val - 1)
2371 {
2372 code = LT;
2373 op_b = GEN_INT (desired_val);
2374 }
2375 break;
2376 case GT:
2377 if (actual_val == desired_val - 1)
2378 {
2379 code = GE;
2380 op_b = GEN_INT (desired_val);
2381 }
2382 break;
2383 case GE:
2384 if (actual_val == desired_val + 1)
2385 {
2386 code = GT;
2387 op_b = GEN_INT (desired_val);
2388 }
2389 break;
2390 default:
2391 break;
2392 }
2393 }
2394
2395 /* If we made any changes, generate a new conditional that is
2396 equivalent to what we started with, but has the right
2397 constants in it. */
2398 if (code != GET_CODE (if_info->cond)
2399 || op_a != XEXP (if_info->cond, 0)
2400 || op_b != XEXP (if_info->cond, 1))
2401 {
2402 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
2403 *earliest = if_info->cond_earliest;
2404 return cond;
2405 }
2406 }
2407
2408 cond = canonicalize_condition (if_info->jump, cond, reverse,
2409 earliest, target, have_cbranchcc4, true);
2410 if (! cond || ! reg_mentioned_p (target, cond))
2411 return NULL;
2412
2413 /* We almost certainly searched back to a different place.
2414 Need to re-verify correct lifetimes. */
2415
2416 /* X may not be mentioned in the range (cond_earliest, jump]. */
2417 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
2418 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
2419 return NULL;
2420
2421 /* A and B may not be modified in the range [cond_earliest, jump). */
2422 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
2423 if (INSN_P (insn)
2424 && (modified_in_p (if_info->a, insn)
2425 || modified_in_p (if_info->b, insn)))
2426 return NULL;
2427
2428 return cond;
2429 }
2430
2431 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
2432
2433 static int
2434 noce_try_minmax (struct noce_if_info *if_info)
2435 {
2436 rtx cond, target;
2437 rtx_insn *earliest, *seq;
2438 enum rtx_code code, op;
2439 int unsignedp;
2440
2441 if (!noce_simple_bbs (if_info))
2442 return FALSE;
2443
2444 /* ??? Reject modes with NaNs or signed zeros since we don't know how
2445 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
2446 to get the target to tell us... */
2447 if (HONOR_SIGNED_ZEROS (if_info->x)
2448 || HONOR_NANS (if_info->x))
2449 return FALSE;
2450
2451 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
2452 if (!cond)
2453 return FALSE;
2454
2455 /* Verify the condition is of the form we expect, and canonicalize
2456 the comparison code. */
2457 code = GET_CODE (cond);
2458 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2459 {
2460 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2461 return FALSE;
2462 }
2463 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2464 {
2465 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2466 return FALSE;
2467 code = swap_condition (code);
2468 }
2469 else
2470 return FALSE;
2471
2472 /* Determine what sort of operation this is. Note that the code is for
2473 a taken branch, so the code->operation mapping appears backwards. */
2474 switch (code)
2475 {
2476 case LT:
2477 case LE:
2478 case UNLT:
2479 case UNLE:
2480 op = SMAX;
2481 unsignedp = 0;
2482 break;
2483 case GT:
2484 case GE:
2485 case UNGT:
2486 case UNGE:
2487 op = SMIN;
2488 unsignedp = 0;
2489 break;
2490 case LTU:
2491 case LEU:
2492 op = UMAX;
2493 unsignedp = 1;
2494 break;
2495 case GTU:
2496 case GEU:
2497 op = UMIN;
2498 unsignedp = 1;
2499 break;
2500 default:
2501 return FALSE;
2502 }
2503
2504 start_sequence ();
2505
2506 target = expand_simple_binop (GET_MODE (if_info->x), op,
2507 if_info->a, if_info->b,
2508 if_info->x, unsignedp, OPTAB_WIDEN);
2509 if (! target)
2510 {
2511 end_sequence ();
2512 return FALSE;
2513 }
2514 if (target != if_info->x)
2515 noce_emit_move_insn (if_info->x, target);
2516
2517 seq = end_ifcvt_sequence (if_info);
2518 if (!seq)
2519 return FALSE;
2520
2521 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2522 if_info->cond = cond;
2523 if_info->cond_earliest = earliest;
2524
2525 return TRUE;
2526 }
2527
2528 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2529 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2530 etc. */
2531
2532 static int
2533 noce_try_abs (struct noce_if_info *if_info)
2534 {
2535 rtx cond, target, a, b, c;
2536 rtx_insn *earliest, *seq;
2537 int negate;
2538 bool one_cmpl = false;
2539
2540 if (!noce_simple_bbs (if_info))
2541 return FALSE;
2542
2543 /* Reject modes with signed zeros. */
2544 if (HONOR_SIGNED_ZEROS (if_info->x))
2545 return FALSE;
2546
2547 /* Recognize A and B as constituting an ABS or NABS. The canonical
2548 form is a branch around the negation, taken when the object is the
2549 first operand of a comparison against 0 that evaluates to true. */
2550 a = if_info->a;
2551 b = if_info->b;
2552 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2553 negate = 0;
2554 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2555 {
2556 std::swap (a, b);
2557 negate = 1;
2558 }
2559 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2560 {
2561 negate = 0;
2562 one_cmpl = true;
2563 }
2564 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2565 {
2566 std::swap (a, b);
2567 negate = 1;
2568 one_cmpl = true;
2569 }
2570 else
2571 return FALSE;
2572
2573 cond = noce_get_alt_condition (if_info, b, &earliest);
2574 if (!cond)
2575 return FALSE;
2576
2577 /* Verify the condition is of the form we expect. */
2578 if (rtx_equal_p (XEXP (cond, 0), b))
2579 c = XEXP (cond, 1);
2580 else if (rtx_equal_p (XEXP (cond, 1), b))
2581 {
2582 c = XEXP (cond, 0);
2583 negate = !negate;
2584 }
2585 else
2586 return FALSE;
2587
2588 /* Verify that C is zero. Search one step backward for a
2589 REG_EQUAL note or a simple source if necessary. */
2590 if (REG_P (c))
2591 {
2592 rtx set;
2593 rtx_insn *insn = prev_nonnote_insn (earliest);
2594 if (insn
2595 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2596 && (set = single_set (insn))
2597 && rtx_equal_p (SET_DEST (set), c))
2598 {
2599 rtx note = find_reg_equal_equiv_note (insn);
2600 if (note)
2601 c = XEXP (note, 0);
2602 else
2603 c = SET_SRC (set);
2604 }
2605 else
2606 return FALSE;
2607 }
2608 if (MEM_P (c)
2609 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2610 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2611 c = get_pool_constant (XEXP (c, 0));
2612
2613 /* Work around funny ideas get_condition has wrt canonicalization.
2614 Note that these rtx constants are known to be CONST_INT, and
2615 therefore imply integer comparisons.
2616 The one_cmpl case is more complicated, as we want to handle
2617 only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2618 and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2619 but not other cases (x > -1 is equivalent of x >= 0). */
2620 if (c == constm1_rtx && GET_CODE (cond) == GT)
2621 ;
2622 else if (c == const1_rtx && GET_CODE (cond) == LT)
2623 {
2624 if (one_cmpl)
2625 return FALSE;
2626 }
2627 else if (c == CONST0_RTX (GET_MODE (b)))
2628 {
2629 if (one_cmpl
2630 && GET_CODE (cond) != GE
2631 && GET_CODE (cond) != LT)
2632 return FALSE;
2633 }
2634 else
2635 return FALSE;
2636
2637 /* Determine what sort of operation this is. */
2638 switch (GET_CODE (cond))
2639 {
2640 case LT:
2641 case LE:
2642 case UNLT:
2643 case UNLE:
2644 negate = !negate;
2645 break;
2646 case GT:
2647 case GE:
2648 case UNGT:
2649 case UNGE:
2650 break;
2651 default:
2652 return FALSE;
2653 }
2654
2655 start_sequence ();
2656 if (one_cmpl)
2657 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2658 if_info->x);
2659 else
2660 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2661
2662 /* ??? It's a quandary whether cmove would be better here, especially
2663 for integers. Perhaps combine will clean things up. */
2664 if (target && negate)
2665 {
2666 if (one_cmpl)
2667 target = expand_simple_unop (GET_MODE (target), NOT, target,
2668 if_info->x, 0);
2669 else
2670 target = expand_simple_unop (GET_MODE (target), NEG, target,
2671 if_info->x, 0);
2672 }
2673
2674 if (! target)
2675 {
2676 end_sequence ();
2677 return FALSE;
2678 }
2679
2680 if (target != if_info->x)
2681 noce_emit_move_insn (if_info->x, target);
2682
2683 seq = end_ifcvt_sequence (if_info);
2684 if (!seq)
2685 return FALSE;
2686
2687 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2688 if_info->cond = cond;
2689 if_info->cond_earliest = earliest;
2690
2691 return TRUE;
2692 }
2693
2694 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2695
2696 static int
2697 noce_try_sign_mask (struct noce_if_info *if_info)
2698 {
2699 rtx cond, t, m, c;
2700 rtx_insn *seq;
2701 machine_mode mode;
2702 enum rtx_code code;
2703 bool t_unconditional;
2704
2705 if (!noce_simple_bbs (if_info))
2706 return FALSE;
2707
2708 cond = if_info->cond;
2709 code = GET_CODE (cond);
2710 m = XEXP (cond, 0);
2711 c = XEXP (cond, 1);
2712
2713 t = NULL_RTX;
2714 if (if_info->a == const0_rtx)
2715 {
2716 if ((code == LT && c == const0_rtx)
2717 || (code == LE && c == constm1_rtx))
2718 t = if_info->b;
2719 }
2720 else if (if_info->b == const0_rtx)
2721 {
2722 if ((code == GE && c == const0_rtx)
2723 || (code == GT && c == constm1_rtx))
2724 t = if_info->a;
2725 }
2726
2727 if (! t || side_effects_p (t))
2728 return FALSE;
2729
2730 /* We currently don't handle different modes. */
2731 mode = GET_MODE (t);
2732 if (GET_MODE (m) != mode)
2733 return FALSE;
2734
2735 /* This is only profitable if T is unconditionally executed/evaluated in the
2736 original insn sequence or T is cheap. The former happens if B is the
2737 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2738 INSN_B which can happen for e.g. conditional stores to memory. For the
2739 cost computation use the block TEST_BB where the evaluation will end up
2740 after the transformation. */
2741 t_unconditional =
2742 (t == if_info->b
2743 && (if_info->insn_b == NULL_RTX
2744 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2745 if (!(t_unconditional
2746 || (set_src_cost (t, mode, optimize_bb_for_speed_p (if_info->test_bb))
2747 < COSTS_N_INSNS (2))))
2748 return FALSE;
2749
2750 start_sequence ();
2751 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2752 "(signed) m >> 31" directly. This benefits targets with specialized
2753 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2754 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2755 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2756 : NULL_RTX;
2757
2758 if (!t)
2759 {
2760 end_sequence ();
2761 return FALSE;
2762 }
2763
2764 noce_emit_move_insn (if_info->x, t);
2765
2766 seq = end_ifcvt_sequence (if_info);
2767 if (!seq)
2768 return FALSE;
2769
2770 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2771 return TRUE;
2772 }
2773
2774
2775 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2776 transformations. */
2777
2778 static int
2779 noce_try_bitop (struct noce_if_info *if_info)
2780 {
2781 rtx cond, x, a, result;
2782 rtx_insn *seq;
2783 machine_mode mode;
2784 enum rtx_code code;
2785 int bitnum;
2786
2787 x = if_info->x;
2788 cond = if_info->cond;
2789 code = GET_CODE (cond);
2790
2791 if (!noce_simple_bbs (if_info))
2792 return FALSE;
2793
2794 /* Check for no else condition. */
2795 if (! rtx_equal_p (x, if_info->b))
2796 return FALSE;
2797
2798 /* Check for a suitable condition. */
2799 if (code != NE && code != EQ)
2800 return FALSE;
2801 if (XEXP (cond, 1) != const0_rtx)
2802 return FALSE;
2803 cond = XEXP (cond, 0);
2804
2805 /* ??? We could also handle AND here. */
2806 if (GET_CODE (cond) == ZERO_EXTRACT)
2807 {
2808 if (XEXP (cond, 1) != const1_rtx
2809 || !CONST_INT_P (XEXP (cond, 2))
2810 || ! rtx_equal_p (x, XEXP (cond, 0)))
2811 return FALSE;
2812 bitnum = INTVAL (XEXP (cond, 2));
2813 mode = GET_MODE (x);
2814 if (BITS_BIG_ENDIAN)
2815 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2816 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2817 return FALSE;
2818 }
2819 else
2820 return FALSE;
2821
2822 a = if_info->a;
2823 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2824 {
2825 /* Check for "if (X & C) x = x op C". */
2826 if (! rtx_equal_p (x, XEXP (a, 0))
2827 || !CONST_INT_P (XEXP (a, 1))
2828 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2829 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2830 return FALSE;
2831
2832 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2833 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2834 if (GET_CODE (a) == IOR)
2835 result = (code == NE) ? a : NULL_RTX;
2836 else if (code == NE)
2837 {
2838 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2839 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2840 result = simplify_gen_binary (IOR, mode, x, result);
2841 }
2842 else
2843 {
2844 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2845 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2846 result = simplify_gen_binary (AND, mode, x, result);
2847 }
2848 }
2849 else if (GET_CODE (a) == AND)
2850 {
2851 /* Check for "if (X & C) x &= ~C". */
2852 if (! rtx_equal_p (x, XEXP (a, 0))
2853 || !CONST_INT_P (XEXP (a, 1))
2854 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2855 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2856 return FALSE;
2857
2858 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2859 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2860 result = (code == EQ) ? a : NULL_RTX;
2861 }
2862 else
2863 return FALSE;
2864
2865 if (result)
2866 {
2867 start_sequence ();
2868 noce_emit_move_insn (x, result);
2869 seq = end_ifcvt_sequence (if_info);
2870 if (!seq)
2871 return FALSE;
2872
2873 emit_insn_before_setloc (seq, if_info->jump,
2874 INSN_LOCATION (if_info->insn_a));
2875 }
2876 return TRUE;
2877 }
2878
2879
2880 /* Similar to get_condition, only the resulting condition must be
2881 valid at JUMP, instead of at EARLIEST.
2882
2883 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2884 THEN block of the caller, and we have to reverse the condition. */
2885
2886 static rtx
2887 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2888 {
2889 rtx cond, set, tmp;
2890 bool reverse;
2891
2892 if (! any_condjump_p (jump))
2893 return NULL_RTX;
2894
2895 set = pc_set (jump);
2896
2897 /* If this branches to JUMP_LABEL when the condition is false,
2898 reverse the condition. */
2899 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2900 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2901
2902 /* We may have to reverse because the caller's if block is not canonical,
2903 i.e. the THEN block isn't the fallthrough block for the TEST block
2904 (see find_if_header). */
2905 if (then_else_reversed)
2906 reverse = !reverse;
2907
2908 /* If the condition variable is a register and is MODE_INT, accept it. */
2909
2910 cond = XEXP (SET_SRC (set), 0);
2911 tmp = XEXP (cond, 0);
2912 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2913 && (GET_MODE (tmp) != BImode
2914 || !targetm.small_register_classes_for_mode_p (BImode)))
2915 {
2916 *earliest = jump;
2917
2918 if (reverse)
2919 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2920 GET_MODE (cond), tmp, XEXP (cond, 1));
2921 return cond;
2922 }
2923
2924 /* Otherwise, fall back on canonicalize_condition to do the dirty
2925 work of manipulating MODE_CC values and COMPARE rtx codes. */
2926 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2927 NULL_RTX, have_cbranchcc4, true);
2928
2929 /* We don't handle side-effects in the condition, like handling
2930 REG_INC notes and making sure no duplicate conditions are emitted. */
2931 if (tmp != NULL_RTX && side_effects_p (tmp))
2932 return NULL_RTX;
2933
2934 return tmp;
2935 }
2936
2937 /* Return true if OP is ok for if-then-else processing. */
2938
2939 static int
2940 noce_operand_ok (const_rtx op)
2941 {
2942 if (side_effects_p (op))
2943 return FALSE;
2944
2945 /* We special-case memories, so handle any of them with
2946 no address side effects. */
2947 if (MEM_P (op))
2948 return ! side_effects_p (XEXP (op, 0));
2949
2950 return ! may_trap_p (op);
2951 }
2952
2953 /* Return true if X contains a MEM subrtx. */
2954
2955 static bool
2956 contains_mem_rtx_p (rtx x)
2957 {
2958 subrtx_iterator::array_type array;
2959 FOR_EACH_SUBRTX (iter, array, x, ALL)
2960 if (MEM_P (*iter))
2961 return true;
2962
2963 return false;
2964 }
2965
2966 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
2967 The condition used in this if-conversion is in COND.
2968 In practice, check that TEST_BB ends with a single set
2969 x := a and all previous computations
2970 in TEST_BB don't produce any values that are live after TEST_BB.
2971 In other words, all the insns in TEST_BB are there only
2972 to compute a value for x. Put the rtx cost of the insns
2973 in TEST_BB into COST. Record whether TEST_BB is a single simple
2974 set instruction in SIMPLE_P. */
2975
2976 static bool
2977 bb_valid_for_noce_process_p (basic_block test_bb, rtx cond,
2978 unsigned int *cost, bool *simple_p)
2979 {
2980 if (!test_bb)
2981 return false;
2982
2983 rtx_insn *last_insn = last_active_insn (test_bb, FALSE);
2984 rtx last_set = NULL_RTX;
2985
2986 rtx cc = cc_in_cond (cond);
2987
2988 if (!insn_valid_noce_process_p (last_insn, cc))
2989 return false;
2990 last_set = single_set (last_insn);
2991
2992 rtx x = SET_DEST (last_set);
2993 rtx_insn *first_insn = first_active_insn (test_bb);
2994 rtx first_set = single_set (first_insn);
2995
2996 if (!first_set)
2997 return false;
2998
2999 /* We have a single simple set, that's okay. */
3000 bool speed_p = optimize_bb_for_speed_p (test_bb);
3001
3002 if (first_insn == last_insn)
3003 {
3004 *simple_p = noce_operand_ok (SET_DEST (first_set));
3005 *cost = insn_rtx_cost (first_set, speed_p);
3006 return *simple_p;
3007 }
3008
3009 rtx_insn *prev_last_insn = PREV_INSN (last_insn);
3010 gcc_assert (prev_last_insn);
3011
3012 /* For now, disallow setting x multiple times in test_bb. */
3013 if (REG_P (x) && reg_set_between_p (x, first_insn, prev_last_insn))
3014 return false;
3015
3016 bitmap test_bb_temps = BITMAP_ALLOC (&reg_obstack);
3017
3018 /* The regs that are live out of test_bb. */
3019 bitmap test_bb_live_out = df_get_live_out (test_bb);
3020
3021 int potential_cost = insn_rtx_cost (last_set, speed_p);
3022 rtx_insn *insn;
3023 FOR_BB_INSNS (test_bb, insn)
3024 {
3025 if (insn != last_insn)
3026 {
3027 if (!active_insn_p (insn))
3028 continue;
3029
3030 if (!insn_valid_noce_process_p (insn, cc))
3031 goto free_bitmap_and_fail;
3032
3033 rtx sset = single_set (insn);
3034 gcc_assert (sset);
3035
3036 if (contains_mem_rtx_p (SET_SRC (sset))
3037 || !REG_P (SET_DEST (sset))
3038 || reg_overlap_mentioned_p (SET_DEST (sset), cond))
3039 goto free_bitmap_and_fail;
3040
3041 potential_cost += insn_rtx_cost (sset, speed_p);
3042 bitmap_set_bit (test_bb_temps, REGNO (SET_DEST (sset)));
3043 }
3044 }
3045
3046 /* If any of the intermediate results in test_bb are live after test_bb
3047 then fail. */
3048 if (bitmap_intersect_p (test_bb_live_out, test_bb_temps))
3049 goto free_bitmap_and_fail;
3050
3051 BITMAP_FREE (test_bb_temps);
3052 *cost = potential_cost;
3053 *simple_p = false;
3054 return true;
3055
3056 free_bitmap_and_fail:
3057 BITMAP_FREE (test_bb_temps);
3058 return false;
3059 }
3060
3061 /* We have something like:
3062
3063 if (x > y)
3064 { i = a; j = b; k = c; }
3065
3066 Make it:
3067
3068 tmp_i = (x > y) ? a : i;
3069 tmp_j = (x > y) ? b : j;
3070 tmp_k = (x > y) ? c : k;
3071 i = tmp_i;
3072 j = tmp_j;
3073 k = tmp_k;
3074
3075 Subsequent passes are expected to clean up the extra moves.
3076
3077 Look for special cases such as writes to one register which are
3078 read back in another SET, as might occur in a swap idiom or
3079 similar.
3080
3081 These look like:
3082
3083 if (x > y)
3084 i = a;
3085 j = i;
3086
3087 Which we want to rewrite to:
3088
3089 tmp_i = (x > y) ? a : i;
3090 tmp_j = (x > y) ? tmp_i : j;
3091 i = tmp_i;
3092 j = tmp_j;
3093
3094 We can catch these when looking at (SET x y) by keeping a list of the
3095 registers we would have targeted before if-conversion and looking back
3096 through it for an overlap with Y. If we find one, we rewire the
3097 conditional set to use the temporary we introduced earlier.
3098
3099 IF_INFO contains the useful information about the block structure and
3100 jump instructions. */
3101
3102 static int
3103 noce_convert_multiple_sets (struct noce_if_info *if_info)
3104 {
3105 basic_block test_bb = if_info->test_bb;
3106 basic_block then_bb = if_info->then_bb;
3107 basic_block join_bb = if_info->join_bb;
3108 rtx_insn *jump = if_info->jump;
3109 rtx_insn *cond_earliest;
3110 rtx_insn *insn;
3111
3112 start_sequence ();
3113
3114 /* Decompose the condition attached to the jump. */
3115 rtx cond = noce_get_condition (jump, &cond_earliest, false);
3116 rtx x = XEXP (cond, 0);
3117 rtx y = XEXP (cond, 1);
3118 rtx_code cond_code = GET_CODE (cond);
3119
3120 /* The true targets for a conditional move. */
3121 auto_vec<rtx> targets;
3122 /* The temporaries introduced to allow us to not consider register
3123 overlap. */
3124 auto_vec<rtx> temporaries;
3125 /* The insns we've emitted. */
3126 auto_vec<rtx_insn *> unmodified_insns;
3127 int count = 0;
3128
3129 FOR_BB_INSNS (then_bb, insn)
3130 {
3131 /* Skip over non-insns. */
3132 if (!active_insn_p (insn))
3133 continue;
3134
3135 rtx set = single_set (insn);
3136 gcc_checking_assert (set);
3137
3138 rtx target = SET_DEST (set);
3139 rtx temp = gen_reg_rtx (GET_MODE (target));
3140 rtx new_val = SET_SRC (set);
3141 rtx old_val = target;
3142
3143 /* If we were supposed to read from an earlier write in this block,
3144 we've changed the register allocation. Rewire the read. While
3145 we are looking, also try to catch a swap idiom. */
3146 for (int i = count - 1; i >= 0; --i)
3147 if (reg_overlap_mentioned_p (new_val, targets[i]))
3148 {
3149 /* Catch a "swap" style idiom. */
3150 if (find_reg_note (insn, REG_DEAD, new_val) != NULL_RTX)
3151 /* The write to targets[i] is only live until the read
3152 here. As the condition codes match, we can propagate
3153 the set to here. */
3154 new_val = SET_SRC (single_set (unmodified_insns[i]));
3155 else
3156 new_val = temporaries[i];
3157 break;
3158 }
3159
3160 /* If we had a non-canonical conditional jump (i.e. one where
3161 the fallthrough is to the "else" case) we need to reverse
3162 the conditional select. */
3163 if (if_info->then_else_reversed)
3164 std::swap (old_val, new_val);
3165
3166 /* Actually emit the conditional move. */
3167 rtx temp_dest = noce_emit_cmove (if_info, temp, cond_code,
3168 x, y, new_val, old_val);
3169
3170 /* If we failed to expand the conditional move, drop out and don't
3171 try to continue. */
3172 if (temp_dest == NULL_RTX)
3173 {
3174 end_sequence ();
3175 return FALSE;
3176 }
3177
3178 /* Bookkeeping. */
3179 count++;
3180 targets.safe_push (target);
3181 temporaries.safe_push (temp_dest);
3182 unmodified_insns.safe_push (insn);
3183 }
3184
3185 /* We must have seen some sort of insn to insert, otherwise we were
3186 given an empty BB to convert, and we can't handle that. */
3187 gcc_assert (!unmodified_insns.is_empty ());
3188
3189 /* Now fixup the assignments. */
3190 for (int i = 0; i < count; i++)
3191 noce_emit_move_insn (targets[i], temporaries[i]);
3192
3193 /* Actually emit the sequence. */
3194 rtx_insn *seq = get_insns ();
3195
3196 for (insn = seq; insn; insn = NEXT_INSN (insn))
3197 set_used_flags (insn);
3198
3199 /* Mark all our temporaries and targets as used. */
3200 for (int i = 0; i < count; i++)
3201 {
3202 set_used_flags (temporaries[i]);
3203 set_used_flags (targets[i]);
3204 }
3205
3206 set_used_flags (cond);
3207 set_used_flags (x);
3208 set_used_flags (y);
3209
3210 unshare_all_rtl_in_chain (seq);
3211 end_sequence ();
3212
3213 if (!seq)
3214 return FALSE;
3215
3216 for (insn = seq; insn; insn = NEXT_INSN (insn))
3217 if (JUMP_P (insn)
3218 || recog_memoized (insn) == -1)
3219 return FALSE;
3220
3221 emit_insn_before_setloc (seq, if_info->jump,
3222 INSN_LOCATION (unmodified_insns.last ()));
3223
3224 /* Clean up THEN_BB and the edges in and out of it. */
3225 remove_edge (find_edge (test_bb, join_bb));
3226 remove_edge (find_edge (then_bb, join_bb));
3227 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3228 delete_basic_block (then_bb);
3229 num_true_changes++;
3230
3231 /* Maybe merge blocks now the jump is simple enough. */
3232 if (can_merge_blocks_p (test_bb, join_bb))
3233 {
3234 merge_blocks (test_bb, join_bb);
3235 num_true_changes++;
3236 }
3237
3238 num_updated_if_blocks++;
3239 return TRUE;
3240 }
3241
3242 /* Return true iff basic block TEST_BB is comprised of only
3243 (SET (REG) (REG)) insns suitable for conversion to a series
3244 of conditional moves. FORNOW: Use II to find the expected cost of
3245 the branch into/over TEST_BB.
3246
3247 TODO: This creates an implicit "magic number" for branch_cost.
3248 II->branch_cost now guides the maximum number of set instructions in
3249 a basic block which is considered profitable to completely
3250 if-convert. */
3251
3252 static bool
3253 bb_ok_for_noce_convert_multiple_sets (basic_block test_bb,
3254 struct noce_if_info *ii)
3255 {
3256 rtx_insn *insn;
3257 unsigned count = 0;
3258 unsigned param = PARAM_VALUE (PARAM_MAX_RTL_IF_CONVERSION_INSNS);
3259 unsigned limit = MIN (ii->branch_cost, param);
3260
3261 FOR_BB_INSNS (test_bb, insn)
3262 {
3263 /* Skip over notes etc. */
3264 if (!active_insn_p (insn))
3265 continue;
3266
3267 /* We only handle SET insns. */
3268 rtx set = single_set (insn);
3269 if (set == NULL_RTX)
3270 return false;
3271
3272 rtx dest = SET_DEST (set);
3273 rtx src = SET_SRC (set);
3274
3275 /* We can possibly relax this, but for now only handle REG to REG
3276 moves. This avoids any issues that might come from introducing
3277 loads/stores that might violate data-race-freedom guarantees. */
3278 if (!(REG_P (src) && REG_P (dest)))
3279 return false;
3280
3281 /* Destination must be appropriate for a conditional write. */
3282 if (!noce_operand_ok (dest))
3283 return false;
3284
3285 /* We must be able to conditionally move in this mode. */
3286 if (!can_conditionally_move_p (GET_MODE (dest)))
3287 return false;
3288
3289 ++count;
3290 }
3291
3292 /* FORNOW: Our cost model is a count of the number of instructions we
3293 would if-convert. This is suboptimal, and should be improved as part
3294 of a wider rework of branch_cost. */
3295 if (count > limit)
3296 return false;
3297
3298 return count > 0;
3299 }
3300
3301 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3302 it without using conditional execution. Return TRUE if we were successful
3303 at converting the block. */
3304
3305 static int
3306 noce_process_if_block (struct noce_if_info *if_info)
3307 {
3308 basic_block test_bb = if_info->test_bb; /* test block */
3309 basic_block then_bb = if_info->then_bb; /* THEN */
3310 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
3311 basic_block join_bb = if_info->join_bb; /* JOIN */
3312 rtx_insn *jump = if_info->jump;
3313 rtx cond = if_info->cond;
3314 rtx_insn *insn_a, *insn_b;
3315 rtx set_a, set_b;
3316 rtx orig_x, x, a, b;
3317
3318 /* We're looking for patterns of the form
3319
3320 (1) if (...) x = a; else x = b;
3321 (2) x = b; if (...) x = a;
3322 (3) if (...) x = a; // as if with an initial x = x.
3323 (4) if (...) { x = a; y = b; z = c; } // Like 3, for multiple SETS.
3324 The later patterns require jumps to be more expensive.
3325 For the if (...) x = a; else x = b; case we allow multiple insns
3326 inside the then and else blocks as long as their only effect is
3327 to calculate a value for x.
3328 ??? For future expansion, further expand the "multiple X" rules. */
3329
3330 /* First look for multiple SETS. */
3331 if (!else_bb
3332 && HAVE_conditional_move
3333 && !HAVE_cc0
3334 && bb_ok_for_noce_convert_multiple_sets (then_bb, if_info))
3335 {
3336 if (noce_convert_multiple_sets (if_info))
3337 return TRUE;
3338 }
3339
3340 if (! bb_valid_for_noce_process_p (then_bb, cond, &if_info->then_cost,
3341 &if_info->then_simple))
3342 return false;
3343
3344 if (else_bb
3345 && ! bb_valid_for_noce_process_p (else_bb, cond, &if_info->else_cost,
3346 &if_info->else_simple))
3347 return false;
3348
3349 insn_a = last_active_insn (then_bb, FALSE);
3350 set_a = single_set (insn_a);
3351 gcc_assert (set_a);
3352
3353 x = SET_DEST (set_a);
3354 a = SET_SRC (set_a);
3355
3356 /* Look for the other potential set. Make sure we've got equivalent
3357 destinations. */
3358 /* ??? This is overconservative. Storing to two different mems is
3359 as easy as conditionally computing the address. Storing to a
3360 single mem merely requires a scratch memory to use as one of the
3361 destination addresses; often the memory immediately below the
3362 stack pointer is available for this. */
3363 set_b = NULL_RTX;
3364 if (else_bb)
3365 {
3366 insn_b = last_active_insn (else_bb, FALSE);
3367 set_b = single_set (insn_b);
3368 gcc_assert (set_b);
3369
3370 if (!rtx_interchangeable_p (x, SET_DEST (set_b)))
3371 return FALSE;
3372 }
3373 else
3374 {
3375 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
3376 /* We're going to be moving the evaluation of B down from above
3377 COND_EARLIEST to JUMP. Make sure the relevant data is still
3378 intact. */
3379 if (! insn_b
3380 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
3381 || !NONJUMP_INSN_P (insn_b)
3382 || (set_b = single_set (insn_b)) == NULL_RTX
3383 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
3384 || ! noce_operand_ok (SET_SRC (set_b))
3385 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
3386 || modified_between_p (SET_SRC (set_b), insn_b, jump)
3387 /* Avoid extending the lifetime of hard registers on small
3388 register class machines. */
3389 || (REG_P (SET_SRC (set_b))
3390 && HARD_REGISTER_P (SET_SRC (set_b))
3391 && targetm.small_register_classes_for_mode_p
3392 (GET_MODE (SET_SRC (set_b))))
3393 /* Likewise with X. In particular this can happen when
3394 noce_get_condition looks farther back in the instruction
3395 stream than one might expect. */
3396 || reg_overlap_mentioned_p (x, cond)
3397 || reg_overlap_mentioned_p (x, a)
3398 || modified_between_p (x, insn_b, jump))
3399 {
3400 insn_b = NULL;
3401 set_b = NULL_RTX;
3402 }
3403 }
3404
3405 /* If x has side effects then only the if-then-else form is safe to
3406 convert. But even in that case we would need to restore any notes
3407 (such as REG_INC) at then end. That can be tricky if
3408 noce_emit_move_insn expands to more than one insn, so disable the
3409 optimization entirely for now if there are side effects. */
3410 if (side_effects_p (x))
3411 return FALSE;
3412
3413 b = (set_b ? SET_SRC (set_b) : x);
3414
3415 /* Only operate on register destinations, and even then avoid extending
3416 the lifetime of hard registers on small register class machines. */
3417 orig_x = x;
3418 if_info->orig_x = orig_x;
3419 if (!REG_P (x)
3420 || (HARD_REGISTER_P (x)
3421 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
3422 {
3423 if (GET_MODE (x) == BLKmode)
3424 return FALSE;
3425
3426 if (GET_CODE (x) == ZERO_EXTRACT
3427 && (!CONST_INT_P (XEXP (x, 1))
3428 || !CONST_INT_P (XEXP (x, 2))))
3429 return FALSE;
3430
3431 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
3432 ? XEXP (x, 0) : x));
3433 }
3434
3435 /* Don't operate on sources that may trap or are volatile. */
3436 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
3437 return FALSE;
3438
3439 retry:
3440 /* Set up the info block for our subroutines. */
3441 if_info->insn_a = insn_a;
3442 if_info->insn_b = insn_b;
3443 if_info->x = x;
3444 if_info->a = a;
3445 if_info->b = b;
3446
3447 /* Try optimizations in some approximation of a useful order. */
3448 /* ??? Should first look to see if X is live incoming at all. If it
3449 isn't, we don't need anything but an unconditional set. */
3450
3451 /* Look and see if A and B are really the same. Avoid creating silly
3452 cmove constructs that no one will fix up later. */
3453 if (noce_simple_bbs (if_info)
3454 && rtx_interchangeable_p (a, b))
3455 {
3456 /* If we have an INSN_B, we don't have to create any new rtl. Just
3457 move the instruction that we already have. If we don't have an
3458 INSN_B, that means that A == X, and we've got a noop move. In
3459 that case don't do anything and let the code below delete INSN_A. */
3460 if (insn_b && else_bb)
3461 {
3462 rtx note;
3463
3464 if (else_bb && insn_b == BB_END (else_bb))
3465 BB_END (else_bb) = PREV_INSN (insn_b);
3466 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
3467
3468 /* If there was a REG_EQUAL note, delete it since it may have been
3469 true due to this insn being after a jump. */
3470 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
3471 remove_note (insn_b, note);
3472
3473 insn_b = NULL;
3474 }
3475 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
3476 x must be executed twice. */
3477 else if (insn_b && side_effects_p (orig_x))
3478 return FALSE;
3479
3480 x = orig_x;
3481 goto success;
3482 }
3483
3484 if (!set_b && MEM_P (orig_x))
3485 /* We want to avoid store speculation to avoid cases like
3486 if (pthread_mutex_trylock(mutex))
3487 ++global_variable;
3488 Rather than go to much effort here, we rely on the SSA optimizers,
3489 which do a good enough job these days. */
3490 return FALSE;
3491
3492 if (noce_try_move (if_info))
3493 goto success;
3494 if (noce_try_store_flag (if_info))
3495 goto success;
3496 if (noce_try_bitop (if_info))
3497 goto success;
3498 if (noce_try_minmax (if_info))
3499 goto success;
3500 if (noce_try_abs (if_info))
3501 goto success;
3502 if (noce_try_inverse_constants (if_info))
3503 goto success;
3504 if (!targetm.have_conditional_execution ()
3505 && noce_try_store_flag_constants (if_info))
3506 goto success;
3507 if (HAVE_conditional_move
3508 && noce_try_cmove (if_info))
3509 goto success;
3510 if (! targetm.have_conditional_execution ())
3511 {
3512 if (noce_try_addcc (if_info))
3513 goto success;
3514 if (noce_try_store_flag_mask (if_info))
3515 goto success;
3516 if (HAVE_conditional_move
3517 && noce_try_cmove_arith (if_info))
3518 goto success;
3519 if (noce_try_sign_mask (if_info))
3520 goto success;
3521 }
3522
3523 if (!else_bb && set_b)
3524 {
3525 insn_b = NULL;
3526 set_b = NULL_RTX;
3527 b = orig_x;
3528 goto retry;
3529 }
3530
3531 return FALSE;
3532
3533 success:
3534
3535 /* If we used a temporary, fix it up now. */
3536 if (orig_x != x)
3537 {
3538 rtx_insn *seq;
3539
3540 start_sequence ();
3541 noce_emit_move_insn (orig_x, x);
3542 seq = get_insns ();
3543 set_used_flags (orig_x);
3544 unshare_all_rtl_in_chain (seq);
3545 end_sequence ();
3546
3547 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
3548 }
3549
3550 /* The original THEN and ELSE blocks may now be removed. The test block
3551 must now jump to the join block. If the test block and the join block
3552 can be merged, do so. */
3553 if (else_bb)
3554 {
3555 delete_basic_block (else_bb);
3556 num_true_changes++;
3557 }
3558 else
3559 remove_edge (find_edge (test_bb, join_bb));
3560
3561 remove_edge (find_edge (then_bb, join_bb));
3562 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3563 delete_basic_block (then_bb);
3564 num_true_changes++;
3565
3566 if (can_merge_blocks_p (test_bb, join_bb))
3567 {
3568 merge_blocks (test_bb, join_bb);
3569 num_true_changes++;
3570 }
3571
3572 num_updated_if_blocks++;
3573 return TRUE;
3574 }
3575
3576 /* Check whether a block is suitable for conditional move conversion.
3577 Every insn must be a simple set of a register to a constant or a
3578 register. For each assignment, store the value in the pointer map
3579 VALS, keyed indexed by register pointer, then store the register
3580 pointer in REGS. COND is the condition we will test. */
3581
3582 static int
3583 check_cond_move_block (basic_block bb,
3584 hash_map<rtx, rtx> *vals,
3585 vec<rtx> *regs,
3586 rtx cond)
3587 {
3588 rtx_insn *insn;
3589 rtx cc = cc_in_cond (cond);
3590
3591 /* We can only handle simple jumps at the end of the basic block.
3592 It is almost impossible to update the CFG otherwise. */
3593 insn = BB_END (bb);
3594 if (JUMP_P (insn) && !onlyjump_p (insn))
3595 return FALSE;
3596
3597 FOR_BB_INSNS (bb, insn)
3598 {
3599 rtx set, dest, src;
3600
3601 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3602 continue;
3603 set = single_set (insn);
3604 if (!set)
3605 return FALSE;
3606
3607 dest = SET_DEST (set);
3608 src = SET_SRC (set);
3609 if (!REG_P (dest)
3610 || (HARD_REGISTER_P (dest)
3611 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
3612 return FALSE;
3613
3614 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
3615 return FALSE;
3616
3617 if (side_effects_p (src) || side_effects_p (dest))
3618 return FALSE;
3619
3620 if (may_trap_p (src) || may_trap_p (dest))
3621 return FALSE;
3622
3623 /* Don't try to handle this if the source register was
3624 modified earlier in the block. */
3625 if ((REG_P (src)
3626 && vals->get (src))
3627 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3628 && vals->get (SUBREG_REG (src))))
3629 return FALSE;
3630
3631 /* Don't try to handle this if the destination register was
3632 modified earlier in the block. */
3633 if (vals->get (dest))
3634 return FALSE;
3635
3636 /* Don't try to handle this if the condition uses the
3637 destination register. */
3638 if (reg_overlap_mentioned_p (dest, cond))
3639 return FALSE;
3640
3641 /* Don't try to handle this if the source register is modified
3642 later in the block. */
3643 if (!CONSTANT_P (src)
3644 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
3645 return FALSE;
3646
3647 /* Skip it if the instruction to be moved might clobber CC. */
3648 if (cc && set_of (cc, insn))
3649 return FALSE;
3650
3651 vals->put (dest, src);
3652
3653 regs->safe_push (dest);
3654 }
3655
3656 return TRUE;
3657 }
3658
3659 /* Given a basic block BB suitable for conditional move conversion,
3660 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
3661 the register values depending on COND, emit the insns in the block as
3662 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
3663 processed. The caller has started a sequence for the conversion.
3664 Return true if successful, false if something goes wrong. */
3665
3666 static bool
3667 cond_move_convert_if_block (struct noce_if_info *if_infop,
3668 basic_block bb, rtx cond,
3669 hash_map<rtx, rtx> *then_vals,
3670 hash_map<rtx, rtx> *else_vals,
3671 bool else_block_p)
3672 {
3673 enum rtx_code code;
3674 rtx_insn *insn;
3675 rtx cond_arg0, cond_arg1;
3676
3677 code = GET_CODE (cond);
3678 cond_arg0 = XEXP (cond, 0);
3679 cond_arg1 = XEXP (cond, 1);
3680
3681 FOR_BB_INSNS (bb, insn)
3682 {
3683 rtx set, target, dest, t, e;
3684
3685 /* ??? Maybe emit conditional debug insn? */
3686 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3687 continue;
3688 set = single_set (insn);
3689 gcc_assert (set && REG_P (SET_DEST (set)));
3690
3691 dest = SET_DEST (set);
3692
3693 rtx *then_slot = then_vals->get (dest);
3694 rtx *else_slot = else_vals->get (dest);
3695 t = then_slot ? *then_slot : NULL_RTX;
3696 e = else_slot ? *else_slot : NULL_RTX;
3697
3698 if (else_block_p)
3699 {
3700 /* If this register was set in the then block, we already
3701 handled this case there. */
3702 if (t)
3703 continue;
3704 t = dest;
3705 gcc_assert (e);
3706 }
3707 else
3708 {
3709 gcc_assert (t);
3710 if (!e)
3711 e = dest;
3712 }
3713
3714 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
3715 t, e);
3716 if (!target)
3717 return false;
3718
3719 if (target != dest)
3720 noce_emit_move_insn (dest, target);
3721 }
3722
3723 return true;
3724 }
3725
3726 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3727 it using only conditional moves. Return TRUE if we were successful at
3728 converting the block. */
3729
3730 static int
3731 cond_move_process_if_block (struct noce_if_info *if_info)
3732 {
3733 basic_block test_bb = if_info->test_bb;
3734 basic_block then_bb = if_info->then_bb;
3735 basic_block else_bb = if_info->else_bb;
3736 basic_block join_bb = if_info->join_bb;
3737 rtx_insn *jump = if_info->jump;
3738 rtx cond = if_info->cond;
3739 rtx_insn *seq, *loc_insn;
3740 rtx reg;
3741 int c;
3742 vec<rtx> then_regs = vNULL;
3743 vec<rtx> else_regs = vNULL;
3744 unsigned int i;
3745 int success_p = FALSE;
3746
3747 /* Build a mapping for each block to the value used for each
3748 register. */
3749 hash_map<rtx, rtx> then_vals;
3750 hash_map<rtx, rtx> else_vals;
3751
3752 /* Make sure the blocks are suitable. */
3753 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
3754 || (else_bb
3755 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
3756 goto done;
3757
3758 /* Make sure the blocks can be used together. If the same register
3759 is set in both blocks, and is not set to a constant in both
3760 cases, then both blocks must set it to the same register. We
3761 have already verified that if it is set to a register, that the
3762 source register does not change after the assignment. Also count
3763 the number of registers set in only one of the blocks. */
3764 c = 0;
3765 FOR_EACH_VEC_ELT (then_regs, i, reg)
3766 {
3767 rtx *then_slot = then_vals.get (reg);
3768 rtx *else_slot = else_vals.get (reg);
3769
3770 gcc_checking_assert (then_slot);
3771 if (!else_slot)
3772 ++c;
3773 else
3774 {
3775 rtx then_val = *then_slot;
3776 rtx else_val = *else_slot;
3777 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3778 && !rtx_equal_p (then_val, else_val))
3779 goto done;
3780 }
3781 }
3782
3783 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3784 FOR_EACH_VEC_ELT (else_regs, i, reg)
3785 {
3786 gcc_checking_assert (else_vals.get (reg));
3787 if (!then_vals.get (reg))
3788 ++c;
3789 }
3790
3791 /* Make sure it is reasonable to convert this block. What matters
3792 is the number of assignments currently made in only one of the
3793 branches, since if we convert we are going to always execute
3794 them. */
3795 if (c > MAX_CONDITIONAL_EXECUTE)
3796 goto done;
3797
3798 /* Try to emit the conditional moves. First do the then block,
3799 then do anything left in the else blocks. */
3800 start_sequence ();
3801 if (!cond_move_convert_if_block (if_info, then_bb, cond,
3802 &then_vals, &else_vals, false)
3803 || (else_bb
3804 && !cond_move_convert_if_block (if_info, else_bb, cond,
3805 &then_vals, &else_vals, true)))
3806 {
3807 end_sequence ();
3808 goto done;
3809 }
3810 seq = end_ifcvt_sequence (if_info);
3811 if (!seq)
3812 goto done;
3813
3814 loc_insn = first_active_insn (then_bb);
3815 if (!loc_insn)
3816 {
3817 loc_insn = first_active_insn (else_bb);
3818 gcc_assert (loc_insn);
3819 }
3820 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3821
3822 if (else_bb)
3823 {
3824 delete_basic_block (else_bb);
3825 num_true_changes++;
3826 }
3827 else
3828 remove_edge (find_edge (test_bb, join_bb));
3829
3830 remove_edge (find_edge (then_bb, join_bb));
3831 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3832 delete_basic_block (then_bb);
3833 num_true_changes++;
3834
3835 if (can_merge_blocks_p (test_bb, join_bb))
3836 {
3837 merge_blocks (test_bb, join_bb);
3838 num_true_changes++;
3839 }
3840
3841 num_updated_if_blocks++;
3842 success_p = TRUE;
3843
3844 done:
3845 then_regs.release ();
3846 else_regs.release ();
3847 return success_p;
3848 }
3849
3850 \f
3851 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3852 IF-THEN-ELSE-JOIN block.
3853
3854 If so, we'll try to convert the insns to not require the branch,
3855 using only transformations that do not require conditional execution.
3856
3857 Return TRUE if we were successful at converting the block. */
3858
3859 static int
3860 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3861 int pass)
3862 {
3863 basic_block then_bb, else_bb, join_bb;
3864 bool then_else_reversed = false;
3865 rtx_insn *jump;
3866 rtx cond;
3867 rtx_insn *cond_earliest;
3868 struct noce_if_info if_info;
3869
3870 /* We only ever should get here before reload. */
3871 gcc_assert (!reload_completed);
3872
3873 /* Recognize an IF-THEN-ELSE-JOIN block. */
3874 if (single_pred_p (then_edge->dest)
3875 && single_succ_p (then_edge->dest)
3876 && single_pred_p (else_edge->dest)
3877 && single_succ_p (else_edge->dest)
3878 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3879 {
3880 then_bb = then_edge->dest;
3881 else_bb = else_edge->dest;
3882 join_bb = single_succ (then_bb);
3883 }
3884 /* Recognize an IF-THEN-JOIN block. */
3885 else if (single_pred_p (then_edge->dest)
3886 && single_succ_p (then_edge->dest)
3887 && single_succ (then_edge->dest) == else_edge->dest)
3888 {
3889 then_bb = then_edge->dest;
3890 else_bb = NULL_BLOCK;
3891 join_bb = else_edge->dest;
3892 }
3893 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3894 of basic blocks in cfglayout mode does not matter, so the fallthrough
3895 edge can go to any basic block (and not just to bb->next_bb, like in
3896 cfgrtl mode). */
3897 else if (single_pred_p (else_edge->dest)
3898 && single_succ_p (else_edge->dest)
3899 && single_succ (else_edge->dest) == then_edge->dest)
3900 {
3901 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3902 To make this work, we have to invert the THEN and ELSE blocks
3903 and reverse the jump condition. */
3904 then_bb = else_edge->dest;
3905 else_bb = NULL_BLOCK;
3906 join_bb = single_succ (then_bb);
3907 then_else_reversed = true;
3908 }
3909 else
3910 /* Not a form we can handle. */
3911 return FALSE;
3912
3913 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3914 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3915 return FALSE;
3916 if (else_bb
3917 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3918 return FALSE;
3919
3920 num_possible_if_blocks++;
3921
3922 if (dump_file)
3923 {
3924 fprintf (dump_file,
3925 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3926 (else_bb) ? "-ELSE" : "",
3927 pass, test_bb->index, then_bb->index);
3928
3929 if (else_bb)
3930 fprintf (dump_file, ", else %d", else_bb->index);
3931
3932 fprintf (dump_file, ", join %d\n", join_bb->index);
3933 }
3934
3935 /* If the conditional jump is more than just a conditional
3936 jump, then we can not do if-conversion on this block. */
3937 jump = BB_END (test_bb);
3938 if (! onlyjump_p (jump))
3939 return FALSE;
3940
3941 /* If this is not a standard conditional jump, we can't parse it. */
3942 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3943 if (!cond)
3944 return FALSE;
3945
3946 /* We must be comparing objects whose modes imply the size. */
3947 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3948 return FALSE;
3949
3950 /* Initialize an IF_INFO struct to pass around. */
3951 memset (&if_info, 0, sizeof if_info);
3952 if_info.test_bb = test_bb;
3953 if_info.then_bb = then_bb;
3954 if_info.else_bb = else_bb;
3955 if_info.join_bb = join_bb;
3956 if_info.cond = cond;
3957 if_info.cond_earliest = cond_earliest;
3958 if_info.jump = jump;
3959 if_info.then_else_reversed = then_else_reversed;
3960 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3961 predictable_edge_p (then_edge));
3962
3963 /* Do the real work. */
3964
3965 if (noce_process_if_block (&if_info))
3966 return TRUE;
3967
3968 if (HAVE_conditional_move
3969 && cond_move_process_if_block (&if_info))
3970 return TRUE;
3971
3972 return FALSE;
3973 }
3974 \f
3975
3976 /* Merge the blocks and mark for local life update. */
3977
3978 static void
3979 merge_if_block (struct ce_if_block * ce_info)
3980 {
3981 basic_block test_bb = ce_info->test_bb; /* last test block */
3982 basic_block then_bb = ce_info->then_bb; /* THEN */
3983 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3984 basic_block join_bb = ce_info->join_bb; /* join block */
3985 basic_block combo_bb;
3986
3987 /* All block merging is done into the lower block numbers. */
3988
3989 combo_bb = test_bb;
3990 df_set_bb_dirty (test_bb);
3991
3992 /* Merge any basic blocks to handle && and || subtests. Each of
3993 the blocks are on the fallthru path from the predecessor block. */
3994 if (ce_info->num_multiple_test_blocks > 0)
3995 {
3996 basic_block bb = test_bb;
3997 basic_block last_test_bb = ce_info->last_test_bb;
3998 basic_block fallthru = block_fallthru (bb);
3999
4000 do
4001 {
4002 bb = fallthru;
4003 fallthru = block_fallthru (bb);
4004 merge_blocks (combo_bb, bb);
4005 num_true_changes++;
4006 }
4007 while (bb != last_test_bb);
4008 }
4009
4010 /* Merge TEST block into THEN block. Normally the THEN block won't have a
4011 label, but it might if there were || tests. That label's count should be
4012 zero, and it normally should be removed. */
4013
4014 if (then_bb)
4015 {
4016 /* If THEN_BB has no successors, then there's a BARRIER after it.
4017 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
4018 is no longer needed, and in fact it is incorrect to leave it in
4019 the insn stream. */
4020 if (EDGE_COUNT (then_bb->succs) == 0
4021 && EDGE_COUNT (combo_bb->succs) > 1)
4022 {
4023 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
4024 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4025 end = NEXT_INSN (end);
4026
4027 if (end && BARRIER_P (end))
4028 delete_insn (end);
4029 }
4030 merge_blocks (combo_bb, then_bb);
4031 num_true_changes++;
4032 }
4033
4034 /* The ELSE block, if it existed, had a label. That label count
4035 will almost always be zero, but odd things can happen when labels
4036 get their addresses taken. */
4037 if (else_bb)
4038 {
4039 /* If ELSE_BB has no successors, then there's a BARRIER after it.
4040 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
4041 is no longer needed, and in fact it is incorrect to leave it in
4042 the insn stream. */
4043 if (EDGE_COUNT (else_bb->succs) == 0
4044 && EDGE_COUNT (combo_bb->succs) > 1)
4045 {
4046 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
4047 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4048 end = NEXT_INSN (end);
4049
4050 if (end && BARRIER_P (end))
4051 delete_insn (end);
4052 }
4053 merge_blocks (combo_bb, else_bb);
4054 num_true_changes++;
4055 }
4056
4057 /* If there was no join block reported, that means it was not adjacent
4058 to the others, and so we cannot merge them. */
4059
4060 if (! join_bb)
4061 {
4062 rtx_insn *last = BB_END (combo_bb);
4063
4064 /* The outgoing edge for the current COMBO block should already
4065 be correct. Verify this. */
4066 if (EDGE_COUNT (combo_bb->succs) == 0)
4067 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
4068 || (NONJUMP_INSN_P (last)
4069 && GET_CODE (PATTERN (last)) == TRAP_IF
4070 && (TRAP_CONDITION (PATTERN (last))
4071 == const_true_rtx)));
4072
4073 else
4074 /* There should still be something at the end of the THEN or ELSE
4075 blocks taking us to our final destination. */
4076 gcc_assert (JUMP_P (last)
4077 || (EDGE_SUCC (combo_bb, 0)->dest
4078 == EXIT_BLOCK_PTR_FOR_FN (cfun)
4079 && CALL_P (last)
4080 && SIBLING_CALL_P (last))
4081 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
4082 && can_throw_internal (last)));
4083 }
4084
4085 /* The JOIN block may have had quite a number of other predecessors too.
4086 Since we've already merged the TEST, THEN and ELSE blocks, we should
4087 have only one remaining edge from our if-then-else diamond. If there
4088 is more than one remaining edge, it must come from elsewhere. There
4089 may be zero incoming edges if the THEN block didn't actually join
4090 back up (as with a call to a non-return function). */
4091 else if (EDGE_COUNT (join_bb->preds) < 2
4092 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4093 {
4094 /* We can merge the JOIN cleanly and update the dataflow try
4095 again on this pass.*/
4096 merge_blocks (combo_bb, join_bb);
4097 num_true_changes++;
4098 }
4099 else
4100 {
4101 /* We cannot merge the JOIN. */
4102
4103 /* The outgoing edge for the current COMBO block should already
4104 be correct. Verify this. */
4105 gcc_assert (single_succ_p (combo_bb)
4106 && single_succ (combo_bb) == join_bb);
4107
4108 /* Remove the jump and cruft from the end of the COMBO block. */
4109 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4110 tidy_fallthru_edge (single_succ_edge (combo_bb));
4111 }
4112
4113 num_updated_if_blocks++;
4114 }
4115 \f
4116 /* Find a block ending in a simple IF condition and try to transform it
4117 in some way. When converting a multi-block condition, put the new code
4118 in the first such block and delete the rest. Return a pointer to this
4119 first block if some transformation was done. Return NULL otherwise. */
4120
4121 static basic_block
4122 find_if_header (basic_block test_bb, int pass)
4123 {
4124 ce_if_block ce_info;
4125 edge then_edge;
4126 edge else_edge;
4127
4128 /* The kind of block we're looking for has exactly two successors. */
4129 if (EDGE_COUNT (test_bb->succs) != 2)
4130 return NULL;
4131
4132 then_edge = EDGE_SUCC (test_bb, 0);
4133 else_edge = EDGE_SUCC (test_bb, 1);
4134
4135 if (df_get_bb_dirty (then_edge->dest))
4136 return NULL;
4137 if (df_get_bb_dirty (else_edge->dest))
4138 return NULL;
4139
4140 /* Neither edge should be abnormal. */
4141 if ((then_edge->flags & EDGE_COMPLEX)
4142 || (else_edge->flags & EDGE_COMPLEX))
4143 return NULL;
4144
4145 /* Nor exit the loop. */
4146 if ((then_edge->flags & EDGE_LOOP_EXIT)
4147 || (else_edge->flags & EDGE_LOOP_EXIT))
4148 return NULL;
4149
4150 /* The THEN edge is canonically the one that falls through. */
4151 if (then_edge->flags & EDGE_FALLTHRU)
4152 ;
4153 else if (else_edge->flags & EDGE_FALLTHRU)
4154 std::swap (then_edge, else_edge);
4155 else
4156 /* Otherwise this must be a multiway branch of some sort. */
4157 return NULL;
4158
4159 memset (&ce_info, 0, sizeof (ce_info));
4160 ce_info.test_bb = test_bb;
4161 ce_info.then_bb = then_edge->dest;
4162 ce_info.else_bb = else_edge->dest;
4163 ce_info.pass = pass;
4164
4165 #ifdef IFCVT_MACHDEP_INIT
4166 IFCVT_MACHDEP_INIT (&ce_info);
4167 #endif
4168
4169 if (!reload_completed
4170 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
4171 goto success;
4172
4173 if (reload_completed
4174 && targetm.have_conditional_execution ()
4175 && cond_exec_find_if_block (&ce_info))
4176 goto success;
4177
4178 if (targetm.have_trap ()
4179 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
4180 && find_cond_trap (test_bb, then_edge, else_edge))
4181 goto success;
4182
4183 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
4184 && (reload_completed || !targetm.have_conditional_execution ()))
4185 {
4186 if (find_if_case_1 (test_bb, then_edge, else_edge))
4187 goto success;
4188 if (find_if_case_2 (test_bb, then_edge, else_edge))
4189 goto success;
4190 }
4191
4192 return NULL;
4193
4194 success:
4195 if (dump_file)
4196 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
4197 /* Set this so we continue looking. */
4198 cond_exec_changed_p = TRUE;
4199 return ce_info.test_bb;
4200 }
4201
4202 /* Return true if a block has two edges, one of which falls through to the next
4203 block, and the other jumps to a specific block, so that we can tell if the
4204 block is part of an && test or an || test. Returns either -1 or the number
4205 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
4206
4207 static int
4208 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
4209 {
4210 edge cur_edge;
4211 int fallthru_p = FALSE;
4212 int jump_p = FALSE;
4213 rtx_insn *insn;
4214 rtx_insn *end;
4215 int n_insns = 0;
4216 edge_iterator ei;
4217
4218 if (!cur_bb || !target_bb)
4219 return -1;
4220
4221 /* If no edges, obviously it doesn't jump or fallthru. */
4222 if (EDGE_COUNT (cur_bb->succs) == 0)
4223 return FALSE;
4224
4225 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
4226 {
4227 if (cur_edge->flags & EDGE_COMPLEX)
4228 /* Anything complex isn't what we want. */
4229 return -1;
4230
4231 else if (cur_edge->flags & EDGE_FALLTHRU)
4232 fallthru_p = TRUE;
4233
4234 else if (cur_edge->dest == target_bb)
4235 jump_p = TRUE;
4236
4237 else
4238 return -1;
4239 }
4240
4241 if ((jump_p & fallthru_p) == 0)
4242 return -1;
4243
4244 /* Don't allow calls in the block, since this is used to group && and ||
4245 together for conditional execution support. ??? we should support
4246 conditional execution support across calls for IA-64 some day, but
4247 for now it makes the code simpler. */
4248 end = BB_END (cur_bb);
4249 insn = BB_HEAD (cur_bb);
4250
4251 while (insn != NULL_RTX)
4252 {
4253 if (CALL_P (insn))
4254 return -1;
4255
4256 if (INSN_P (insn)
4257 && !JUMP_P (insn)
4258 && !DEBUG_INSN_P (insn)
4259 && GET_CODE (PATTERN (insn)) != USE
4260 && GET_CODE (PATTERN (insn)) != CLOBBER)
4261 n_insns++;
4262
4263 if (insn == end)
4264 break;
4265
4266 insn = NEXT_INSN (insn);
4267 }
4268
4269 return n_insns;
4270 }
4271
4272 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
4273 block. If so, we'll try to convert the insns to not require the branch.
4274 Return TRUE if we were successful at converting the block. */
4275
4276 static int
4277 cond_exec_find_if_block (struct ce_if_block * ce_info)
4278 {
4279 basic_block test_bb = ce_info->test_bb;
4280 basic_block then_bb = ce_info->then_bb;
4281 basic_block else_bb = ce_info->else_bb;
4282 basic_block join_bb = NULL_BLOCK;
4283 edge cur_edge;
4284 basic_block next;
4285 edge_iterator ei;
4286
4287 ce_info->last_test_bb = test_bb;
4288
4289 /* We only ever should get here after reload,
4290 and if we have conditional execution. */
4291 gcc_assert (reload_completed && targetm.have_conditional_execution ());
4292
4293 /* Discover if any fall through predecessors of the current test basic block
4294 were && tests (which jump to the else block) or || tests (which jump to
4295 the then block). */
4296 if (single_pred_p (test_bb)
4297 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
4298 {
4299 basic_block bb = single_pred (test_bb);
4300 basic_block target_bb;
4301 int max_insns = MAX_CONDITIONAL_EXECUTE;
4302 int n_insns;
4303
4304 /* Determine if the preceding block is an && or || block. */
4305 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
4306 {
4307 ce_info->and_and_p = TRUE;
4308 target_bb = else_bb;
4309 }
4310 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
4311 {
4312 ce_info->and_and_p = FALSE;
4313 target_bb = then_bb;
4314 }
4315 else
4316 target_bb = NULL_BLOCK;
4317
4318 if (target_bb && n_insns <= max_insns)
4319 {
4320 int total_insns = 0;
4321 int blocks = 0;
4322
4323 ce_info->last_test_bb = test_bb;
4324
4325 /* Found at least one && or || block, look for more. */
4326 do
4327 {
4328 ce_info->test_bb = test_bb = bb;
4329 total_insns += n_insns;
4330 blocks++;
4331
4332 if (!single_pred_p (bb))
4333 break;
4334
4335 bb = single_pred (bb);
4336 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
4337 }
4338 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
4339
4340 ce_info->num_multiple_test_blocks = blocks;
4341 ce_info->num_multiple_test_insns = total_insns;
4342
4343 if (ce_info->and_and_p)
4344 ce_info->num_and_and_blocks = blocks;
4345 else
4346 ce_info->num_or_or_blocks = blocks;
4347 }
4348 }
4349
4350 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
4351 other than any || blocks which jump to the THEN block. */
4352 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
4353 return FALSE;
4354
4355 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4356 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
4357 {
4358 if (cur_edge->flags & EDGE_COMPLEX)
4359 return FALSE;
4360 }
4361
4362 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
4363 {
4364 if (cur_edge->flags & EDGE_COMPLEX)
4365 return FALSE;
4366 }
4367
4368 /* The THEN block of an IF-THEN combo must have zero or one successors. */
4369 if (EDGE_COUNT (then_bb->succs) > 0
4370 && (!single_succ_p (then_bb)
4371 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4372 || (epilogue_completed
4373 && tablejump_p (BB_END (then_bb), NULL, NULL))))
4374 return FALSE;
4375
4376 /* If the THEN block has no successors, conditional execution can still
4377 make a conditional call. Don't do this unless the ELSE block has
4378 only one incoming edge -- the CFG manipulation is too ugly otherwise.
4379 Check for the last insn of the THEN block being an indirect jump, which
4380 is listed as not having any successors, but confuses the rest of the CE
4381 code processing. ??? we should fix this in the future. */
4382 if (EDGE_COUNT (then_bb->succs) == 0)
4383 {
4384 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4385 {
4386 rtx_insn *last_insn = BB_END (then_bb);
4387
4388 while (last_insn
4389 && NOTE_P (last_insn)
4390 && last_insn != BB_HEAD (then_bb))
4391 last_insn = PREV_INSN (last_insn);
4392
4393 if (last_insn
4394 && JUMP_P (last_insn)
4395 && ! simplejump_p (last_insn))
4396 return FALSE;
4397
4398 join_bb = else_bb;
4399 else_bb = NULL_BLOCK;
4400 }
4401 else
4402 return FALSE;
4403 }
4404
4405 /* If the THEN block's successor is the other edge out of the TEST block,
4406 then we have an IF-THEN combo without an ELSE. */
4407 else if (single_succ (then_bb) == else_bb)
4408 {
4409 join_bb = else_bb;
4410 else_bb = NULL_BLOCK;
4411 }
4412
4413 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
4414 has exactly one predecessor and one successor, and the outgoing edge
4415 is not complex, then we have an IF-THEN-ELSE combo. */
4416 else if (single_succ_p (else_bb)
4417 && single_succ (then_bb) == single_succ (else_bb)
4418 && single_pred_p (else_bb)
4419 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4420 && !(epilogue_completed
4421 && tablejump_p (BB_END (else_bb), NULL, NULL)))
4422 join_bb = single_succ (else_bb);
4423
4424 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
4425 else
4426 return FALSE;
4427
4428 num_possible_if_blocks++;
4429
4430 if (dump_file)
4431 {
4432 fprintf (dump_file,
4433 "\nIF-THEN%s block found, pass %d, start block %d "
4434 "[insn %d], then %d [%d]",
4435 (else_bb) ? "-ELSE" : "",
4436 ce_info->pass,
4437 test_bb->index,
4438 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
4439 then_bb->index,
4440 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
4441
4442 if (else_bb)
4443 fprintf (dump_file, ", else %d [%d]",
4444 else_bb->index,
4445 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
4446
4447 fprintf (dump_file, ", join %d [%d]",
4448 join_bb->index,
4449 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
4450
4451 if (ce_info->num_multiple_test_blocks > 0)
4452 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
4453 ce_info->num_multiple_test_blocks,
4454 (ce_info->and_and_p) ? "&&" : "||",
4455 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
4456 ce_info->last_test_bb->index,
4457 ((BB_HEAD (ce_info->last_test_bb))
4458 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
4459 : -1));
4460
4461 fputc ('\n', dump_file);
4462 }
4463
4464 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
4465 first condition for free, since we've already asserted that there's a
4466 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
4467 we checked the FALLTHRU flag, those are already adjacent to the last IF
4468 block. */
4469 /* ??? As an enhancement, move the ELSE block. Have to deal with
4470 BLOCK notes, if by no other means than backing out the merge if they
4471 exist. Sticky enough I don't want to think about it now. */
4472 next = then_bb;
4473 if (else_bb && (next = next->next_bb) != else_bb)
4474 return FALSE;
4475 if ((next = next->next_bb) != join_bb
4476 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4477 {
4478 if (else_bb)
4479 join_bb = NULL;
4480 else
4481 return FALSE;
4482 }
4483
4484 /* Do the real work. */
4485
4486 ce_info->else_bb = else_bb;
4487 ce_info->join_bb = join_bb;
4488
4489 /* If we have && and || tests, try to first handle combining the && and ||
4490 tests into the conditional code, and if that fails, go back and handle
4491 it without the && and ||, which at present handles the && case if there
4492 was no ELSE block. */
4493 if (cond_exec_process_if_block (ce_info, TRUE))
4494 return TRUE;
4495
4496 if (ce_info->num_multiple_test_blocks)
4497 {
4498 cancel_changes (0);
4499
4500 if (cond_exec_process_if_block (ce_info, FALSE))
4501 return TRUE;
4502 }
4503
4504 return FALSE;
4505 }
4506
4507 /* Convert a branch over a trap, or a branch
4508 to a trap, into a conditional trap. */
4509
4510 static int
4511 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
4512 {
4513 basic_block then_bb = then_edge->dest;
4514 basic_block else_bb = else_edge->dest;
4515 basic_block other_bb, trap_bb;
4516 rtx_insn *trap, *jump;
4517 rtx cond;
4518 rtx_insn *cond_earliest;
4519 enum rtx_code code;
4520
4521 /* Locate the block with the trap instruction. */
4522 /* ??? While we look for no successors, we really ought to allow
4523 EH successors. Need to fix merge_if_block for that to work. */
4524 if ((trap = block_has_only_trap (then_bb)) != NULL)
4525 trap_bb = then_bb, other_bb = else_bb;
4526 else if ((trap = block_has_only_trap (else_bb)) != NULL)
4527 trap_bb = else_bb, other_bb = then_bb;
4528 else
4529 return FALSE;
4530
4531 if (dump_file)
4532 {
4533 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
4534 test_bb->index, trap_bb->index);
4535 }
4536
4537 /* If this is not a standard conditional jump, we can't parse it. */
4538 jump = BB_END (test_bb);
4539 cond = noce_get_condition (jump, &cond_earliest, false);
4540 if (! cond)
4541 return FALSE;
4542
4543 /* If the conditional jump is more than just a conditional jump, then
4544 we can not do if-conversion on this block. Give up for returnjump_p,
4545 changing a conditional return followed by unconditional trap for
4546 conditional trap followed by unconditional return is likely not
4547 beneficial and harder to handle. */
4548 if (! onlyjump_p (jump) || returnjump_p (jump))
4549 return FALSE;
4550
4551 /* We must be comparing objects whose modes imply the size. */
4552 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
4553 return FALSE;
4554
4555 /* Reverse the comparison code, if necessary. */
4556 code = GET_CODE (cond);
4557 if (then_bb == trap_bb)
4558 {
4559 code = reversed_comparison_code (cond, jump);
4560 if (code == UNKNOWN)
4561 return FALSE;
4562 }
4563
4564 /* Attempt to generate the conditional trap. */
4565 rtx_insn *seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
4566 copy_rtx (XEXP (cond, 1)),
4567 TRAP_CODE (PATTERN (trap)));
4568 if (seq == NULL)
4569 return FALSE;
4570
4571 /* Emit the new insns before cond_earliest. */
4572 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
4573
4574 /* Delete the trap block if possible. */
4575 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
4576 df_set_bb_dirty (test_bb);
4577 df_set_bb_dirty (then_bb);
4578 df_set_bb_dirty (else_bb);
4579
4580 if (EDGE_COUNT (trap_bb->preds) == 0)
4581 {
4582 delete_basic_block (trap_bb);
4583 num_true_changes++;
4584 }
4585
4586 /* Wire together the blocks again. */
4587 if (current_ir_type () == IR_RTL_CFGLAYOUT)
4588 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
4589 else if (trap_bb == then_bb)
4590 {
4591 rtx lab = JUMP_LABEL (jump);
4592 rtx_insn *seq = targetm.gen_jump (lab);
4593 rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
4594 LABEL_NUSES (lab) += 1;
4595 JUMP_LABEL (newjump) = lab;
4596 emit_barrier_after (newjump);
4597 }
4598 delete_insn (jump);
4599
4600 if (can_merge_blocks_p (test_bb, other_bb))
4601 {
4602 merge_blocks (test_bb, other_bb);
4603 num_true_changes++;
4604 }
4605
4606 num_updated_if_blocks++;
4607 return TRUE;
4608 }
4609
4610 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
4611 return it. */
4612
4613 static rtx_insn *
4614 block_has_only_trap (basic_block bb)
4615 {
4616 rtx_insn *trap;
4617
4618 /* We're not the exit block. */
4619 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4620 return NULL;
4621
4622 /* The block must have no successors. */
4623 if (EDGE_COUNT (bb->succs) > 0)
4624 return NULL;
4625
4626 /* The only instruction in the THEN block must be the trap. */
4627 trap = first_active_insn (bb);
4628 if (! (trap == BB_END (bb)
4629 && GET_CODE (PATTERN (trap)) == TRAP_IF
4630 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
4631 return NULL;
4632
4633 return trap;
4634 }
4635
4636 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
4637 transformable, but not necessarily the other. There need be no
4638 JOIN block.
4639
4640 Return TRUE if we were successful at converting the block.
4641
4642 Cases we'd like to look at:
4643
4644 (1)
4645 if (test) goto over; // x not live
4646 x = a;
4647 goto label;
4648 over:
4649
4650 becomes
4651
4652 x = a;
4653 if (! test) goto label;
4654
4655 (2)
4656 if (test) goto E; // x not live
4657 x = big();
4658 goto L;
4659 E:
4660 x = b;
4661 goto M;
4662
4663 becomes
4664
4665 x = b;
4666 if (test) goto M;
4667 x = big();
4668 goto L;
4669
4670 (3) // This one's really only interesting for targets that can do
4671 // multiway branching, e.g. IA-64 BBB bundles. For other targets
4672 // it results in multiple branches on a cache line, which often
4673 // does not sit well with predictors.
4674
4675 if (test1) goto E; // predicted not taken
4676 x = a;
4677 if (test2) goto F;
4678 ...
4679 E:
4680 x = b;
4681 J:
4682
4683 becomes
4684
4685 x = a;
4686 if (test1) goto E;
4687 if (test2) goto F;
4688
4689 Notes:
4690
4691 (A) Don't do (2) if the branch is predicted against the block we're
4692 eliminating. Do it anyway if we can eliminate a branch; this requires
4693 that the sole successor of the eliminated block postdominate the other
4694 side of the if.
4695
4696 (B) With CE, on (3) we can steal from both sides of the if, creating
4697
4698 if (test1) x = a;
4699 if (!test1) x = b;
4700 if (test1) goto J;
4701 if (test2) goto F;
4702 ...
4703 J:
4704
4705 Again, this is most useful if J postdominates.
4706
4707 (C) CE substitutes for helpful life information.
4708
4709 (D) These heuristics need a lot of work. */
4710
4711 /* Tests for case 1 above. */
4712
4713 static int
4714 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
4715 {
4716 basic_block then_bb = then_edge->dest;
4717 basic_block else_bb = else_edge->dest;
4718 basic_block new_bb;
4719 int then_bb_index, then_prob;
4720 rtx else_target = NULL_RTX;
4721
4722 /* If we are partitioning hot/cold basic blocks, we don't want to
4723 mess up unconditional or indirect jumps that cross between hot
4724 and cold sections.
4725
4726 Basic block partitioning may result in some jumps that appear to
4727 be optimizable (or blocks that appear to be mergeable), but which really
4728 must be left untouched (they are required to make it safely across
4729 partition boundaries). See the comments at the top of
4730 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4731
4732 if ((BB_END (then_bb)
4733 && JUMP_P (BB_END (then_bb))
4734 && CROSSING_JUMP_P (BB_END (then_bb)))
4735 || (BB_END (test_bb)
4736 && JUMP_P (BB_END (test_bb))
4737 && CROSSING_JUMP_P (BB_END (test_bb)))
4738 || (BB_END (else_bb)
4739 && JUMP_P (BB_END (else_bb))
4740 && CROSSING_JUMP_P (BB_END (else_bb))))
4741 return FALSE;
4742
4743 /* THEN has one successor. */
4744 if (!single_succ_p (then_bb))
4745 return FALSE;
4746
4747 /* THEN does not fall through, but is not strange either. */
4748 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
4749 return FALSE;
4750
4751 /* THEN has one predecessor. */
4752 if (!single_pred_p (then_bb))
4753 return FALSE;
4754
4755 /* THEN must do something. */
4756 if (forwarder_block_p (then_bb))
4757 return FALSE;
4758
4759 num_possible_if_blocks++;
4760 if (dump_file)
4761 fprintf (dump_file,
4762 "\nIF-CASE-1 found, start %d, then %d\n",
4763 test_bb->index, then_bb->index);
4764
4765 if (then_edge->probability)
4766 then_prob = REG_BR_PROB_BASE - then_edge->probability;
4767 else
4768 then_prob = REG_BR_PROB_BASE / 2;
4769
4770 /* We're speculating from the THEN path, we want to make sure the cost
4771 of speculation is within reason. */
4772 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4773 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4774 predictable_edge_p (then_edge)))))
4775 return FALSE;
4776
4777 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4778 {
4779 rtx_insn *jump = BB_END (else_edge->src);
4780 gcc_assert (JUMP_P (jump));
4781 else_target = JUMP_LABEL (jump);
4782 }
4783
4784 /* Registers set are dead, or are predicable. */
4785 if (! dead_or_predicable (test_bb, then_bb, else_bb,
4786 single_succ_edge (then_bb), 1))
4787 return FALSE;
4788
4789 /* Conversion went ok, including moving the insns and fixing up the
4790 jump. Adjust the CFG to match. */
4791
4792 /* We can avoid creating a new basic block if then_bb is immediately
4793 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4794 through to else_bb. */
4795
4796 if (then_bb->next_bb == else_bb
4797 && then_bb->prev_bb == test_bb
4798 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4799 {
4800 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4801 new_bb = 0;
4802 }
4803 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4804 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4805 else_bb, else_target);
4806 else
4807 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4808 else_bb);
4809
4810 df_set_bb_dirty (test_bb);
4811 df_set_bb_dirty (else_bb);
4812
4813 then_bb_index = then_bb->index;
4814 delete_basic_block (then_bb);
4815
4816 /* Make rest of code believe that the newly created block is the THEN_BB
4817 block we removed. */
4818 if (new_bb)
4819 {
4820 df_bb_replace (then_bb_index, new_bb);
4821 /* This should have been done above via force_nonfallthru_and_redirect
4822 (possibly called from redirect_edge_and_branch_force). */
4823 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4824 }
4825
4826 num_true_changes++;
4827 num_updated_if_blocks++;
4828 return TRUE;
4829 }
4830
4831 /* Test for case 2 above. */
4832
4833 static int
4834 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4835 {
4836 basic_block then_bb = then_edge->dest;
4837 basic_block else_bb = else_edge->dest;
4838 edge else_succ;
4839 int then_prob, else_prob;
4840
4841 /* We do not want to speculate (empty) loop latches. */
4842 if (current_loops
4843 && else_bb->loop_father->latch == else_bb)
4844 return FALSE;
4845
4846 /* If we are partitioning hot/cold basic blocks, we don't want to
4847 mess up unconditional or indirect jumps that cross between hot
4848 and cold sections.
4849
4850 Basic block partitioning may result in some jumps that appear to
4851 be optimizable (or blocks that appear to be mergeable), but which really
4852 must be left untouched (they are required to make it safely across
4853 partition boundaries). See the comments at the top of
4854 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4855
4856 if ((BB_END (then_bb)
4857 && JUMP_P (BB_END (then_bb))
4858 && CROSSING_JUMP_P (BB_END (then_bb)))
4859 || (BB_END (test_bb)
4860 && JUMP_P (BB_END (test_bb))
4861 && CROSSING_JUMP_P (BB_END (test_bb)))
4862 || (BB_END (else_bb)
4863 && JUMP_P (BB_END (else_bb))
4864 && CROSSING_JUMP_P (BB_END (else_bb))))
4865 return FALSE;
4866
4867 /* ELSE has one successor. */
4868 if (!single_succ_p (else_bb))
4869 return FALSE;
4870 else
4871 else_succ = single_succ_edge (else_bb);
4872
4873 /* ELSE outgoing edge is not complex. */
4874 if (else_succ->flags & EDGE_COMPLEX)
4875 return FALSE;
4876
4877 /* ELSE has one predecessor. */
4878 if (!single_pred_p (else_bb))
4879 return FALSE;
4880
4881 /* THEN is not EXIT. */
4882 if (then_bb->index < NUM_FIXED_BLOCKS)
4883 return FALSE;
4884
4885 if (else_edge->probability)
4886 {
4887 else_prob = else_edge->probability;
4888 then_prob = REG_BR_PROB_BASE - else_prob;
4889 }
4890 else
4891 {
4892 else_prob = REG_BR_PROB_BASE / 2;
4893 then_prob = REG_BR_PROB_BASE / 2;
4894 }
4895
4896 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4897 if (else_prob > then_prob)
4898 ;
4899 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4900 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4901 else_succ->dest))
4902 ;
4903 else
4904 return FALSE;
4905
4906 num_possible_if_blocks++;
4907 if (dump_file)
4908 fprintf (dump_file,
4909 "\nIF-CASE-2 found, start %d, else %d\n",
4910 test_bb->index, else_bb->index);
4911
4912 /* We're speculating from the ELSE path, we want to make sure the cost
4913 of speculation is within reason. */
4914 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4915 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4916 predictable_edge_p (else_edge)))))
4917 return FALSE;
4918
4919 /* Registers set are dead, or are predicable. */
4920 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4921 return FALSE;
4922
4923 /* Conversion went ok, including moving the insns and fixing up the
4924 jump. Adjust the CFG to match. */
4925
4926 df_set_bb_dirty (test_bb);
4927 df_set_bb_dirty (then_bb);
4928 delete_basic_block (else_bb);
4929
4930 num_true_changes++;
4931 num_updated_if_blocks++;
4932
4933 /* ??? We may now fallthru from one of THEN's successors into a join
4934 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4935
4936 return TRUE;
4937 }
4938
4939 /* Used by the code above to perform the actual rtl transformations.
4940 Return TRUE if successful.
4941
4942 TEST_BB is the block containing the conditional branch. MERGE_BB
4943 is the block containing the code to manipulate. DEST_EDGE is an
4944 edge representing a jump to the join block; after the conversion,
4945 TEST_BB should be branching to its destination.
4946 REVERSEP is true if the sense of the branch should be reversed. */
4947
4948 static int
4949 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4950 basic_block other_bb, edge dest_edge, int reversep)
4951 {
4952 basic_block new_dest = dest_edge->dest;
4953 rtx_insn *head, *end, *jump;
4954 rtx_insn *earliest = NULL;
4955 rtx old_dest;
4956 bitmap merge_set = NULL;
4957 /* Number of pending changes. */
4958 int n_validated_changes = 0;
4959 rtx new_dest_label = NULL_RTX;
4960
4961 jump = BB_END (test_bb);
4962
4963 /* Find the extent of the real code in the merge block. */
4964 head = BB_HEAD (merge_bb);
4965 end = BB_END (merge_bb);
4966
4967 while (DEBUG_INSN_P (end) && end != head)
4968 end = PREV_INSN (end);
4969
4970 /* If merge_bb ends with a tablejump, predicating/moving insn's
4971 into test_bb and then deleting merge_bb will result in the jumptable
4972 that follows merge_bb being removed along with merge_bb and then we
4973 get an unresolved reference to the jumptable. */
4974 if (tablejump_p (end, NULL, NULL))
4975 return FALSE;
4976
4977 if (LABEL_P (head))
4978 head = NEXT_INSN (head);
4979 while (DEBUG_INSN_P (head) && head != end)
4980 head = NEXT_INSN (head);
4981 if (NOTE_P (head))
4982 {
4983 if (head == end)
4984 {
4985 head = end = NULL;
4986 goto no_body;
4987 }
4988 head = NEXT_INSN (head);
4989 while (DEBUG_INSN_P (head) && head != end)
4990 head = NEXT_INSN (head);
4991 }
4992
4993 if (JUMP_P (end))
4994 {
4995 if (!onlyjump_p (end))
4996 return FALSE;
4997 if (head == end)
4998 {
4999 head = end = NULL;
5000 goto no_body;
5001 }
5002 end = PREV_INSN (end);
5003 while (DEBUG_INSN_P (end) && end != head)
5004 end = PREV_INSN (end);
5005 }
5006
5007 /* Don't move frame-related insn across the conditional branch. This
5008 can lead to one of the paths of the branch having wrong unwind info. */
5009 if (epilogue_completed)
5010 {
5011 rtx_insn *insn = head;
5012 while (1)
5013 {
5014 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
5015 return FALSE;
5016 if (insn == end)
5017 break;
5018 insn = NEXT_INSN (insn);
5019 }
5020 }
5021
5022 /* Disable handling dead code by conditional execution if the machine needs
5023 to do anything funny with the tests, etc. */
5024 #ifndef IFCVT_MODIFY_TESTS
5025 if (targetm.have_conditional_execution ())
5026 {
5027 /* In the conditional execution case, we have things easy. We know
5028 the condition is reversible. We don't have to check life info
5029 because we're going to conditionally execute the code anyway.
5030 All that's left is making sure the insns involved can actually
5031 be predicated. */
5032
5033 rtx cond;
5034
5035 cond = cond_exec_get_condition (jump);
5036 if (! cond)
5037 return FALSE;
5038
5039 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
5040 int prob_val = (note ? XINT (note, 0) : -1);
5041
5042 if (reversep)
5043 {
5044 enum rtx_code rev = reversed_comparison_code (cond, jump);
5045 if (rev == UNKNOWN)
5046 return FALSE;
5047 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
5048 XEXP (cond, 1));
5049 if (prob_val >= 0)
5050 prob_val = REG_BR_PROB_BASE - prob_val;
5051 }
5052
5053 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
5054 && verify_changes (0))
5055 n_validated_changes = num_validated_changes ();
5056 else
5057 cancel_changes (0);
5058
5059 earliest = jump;
5060 }
5061 #endif
5062
5063 /* If we allocated new pseudos (e.g. in the conditional move
5064 expander called from noce_emit_cmove), we must resize the
5065 array first. */
5066 if (max_regno < max_reg_num ())
5067 max_regno = max_reg_num ();
5068
5069 /* Try the NCE path if the CE path did not result in any changes. */
5070 if (n_validated_changes == 0)
5071 {
5072 rtx cond;
5073 rtx_insn *insn;
5074 regset live;
5075 bool success;
5076
5077 /* In the non-conditional execution case, we have to verify that there
5078 are no trapping operations, no calls, no references to memory, and
5079 that any registers modified are dead at the branch site. */
5080
5081 if (!any_condjump_p (jump))
5082 return FALSE;
5083
5084 /* Find the extent of the conditional. */
5085 cond = noce_get_condition (jump, &earliest, false);
5086 if (!cond)
5087 return FALSE;
5088
5089 live = BITMAP_ALLOC (&reg_obstack);
5090 simulate_backwards_to_point (merge_bb, live, end);
5091 success = can_move_insns_across (head, end, earliest, jump,
5092 merge_bb, live,
5093 df_get_live_in (other_bb), NULL);
5094 BITMAP_FREE (live);
5095 if (!success)
5096 return FALSE;
5097
5098 /* Collect the set of registers set in MERGE_BB. */
5099 merge_set = BITMAP_ALLOC (&reg_obstack);
5100
5101 FOR_BB_INSNS (merge_bb, insn)
5102 if (NONDEBUG_INSN_P (insn))
5103 df_simulate_find_defs (insn, merge_set);
5104
5105 /* If shrink-wrapping, disable this optimization when test_bb is
5106 the first basic block and merge_bb exits. The idea is to not
5107 move code setting up a return register as that may clobber a
5108 register used to pass function parameters, which then must be
5109 saved in caller-saved regs. A caller-saved reg requires the
5110 prologue, killing a shrink-wrap opportunity. */
5111 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
5112 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
5113 && single_succ_p (new_dest)
5114 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
5115 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
5116 {
5117 regset return_regs;
5118 unsigned int i;
5119
5120 return_regs = BITMAP_ALLOC (&reg_obstack);
5121
5122 /* Start off with the intersection of regs used to pass
5123 params and regs used to return values. */
5124 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5125 if (FUNCTION_ARG_REGNO_P (i)
5126 && targetm.calls.function_value_regno_p (i))
5127 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
5128
5129 bitmap_and_into (return_regs,
5130 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5131 bitmap_and_into (return_regs,
5132 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
5133 if (!bitmap_empty_p (return_regs))
5134 {
5135 FOR_BB_INSNS_REVERSE (new_dest, insn)
5136 if (NONDEBUG_INSN_P (insn))
5137 {
5138 df_ref def;
5139
5140 /* If this insn sets any reg in return_regs, add all
5141 reg uses to the set of regs we're interested in. */
5142 FOR_EACH_INSN_DEF (def, insn)
5143 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
5144 {
5145 df_simulate_uses (insn, return_regs);
5146 break;
5147 }
5148 }
5149 if (bitmap_intersect_p (merge_set, return_regs))
5150 {
5151 BITMAP_FREE (return_regs);
5152 BITMAP_FREE (merge_set);
5153 return FALSE;
5154 }
5155 }
5156 BITMAP_FREE (return_regs);
5157 }
5158 }
5159
5160 no_body:
5161 /* We don't want to use normal invert_jump or redirect_jump because
5162 we don't want to delete_insn called. Also, we want to do our own
5163 change group management. */
5164
5165 old_dest = JUMP_LABEL (jump);
5166 if (other_bb != new_dest)
5167 {
5168 if (!any_condjump_p (jump))
5169 goto cancel;
5170
5171 if (JUMP_P (BB_END (dest_edge->src)))
5172 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
5173 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5174 new_dest_label = ret_rtx;
5175 else
5176 new_dest_label = block_label (new_dest);
5177
5178 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
5179 if (reversep
5180 ? ! invert_jump_1 (jump_insn, new_dest_label)
5181 : ! redirect_jump_1 (jump_insn, new_dest_label))
5182 goto cancel;
5183 }
5184
5185 if (verify_changes (n_validated_changes))
5186 confirm_change_group ();
5187 else
5188 goto cancel;
5189
5190 if (other_bb != new_dest)
5191 {
5192 redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
5193 0, reversep);
5194
5195 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
5196 if (reversep)
5197 {
5198 std::swap (BRANCH_EDGE (test_bb)->count,
5199 FALLTHRU_EDGE (test_bb)->count);
5200 std::swap (BRANCH_EDGE (test_bb)->probability,
5201 FALLTHRU_EDGE (test_bb)->probability);
5202 update_br_prob_note (test_bb);
5203 }
5204 }
5205
5206 /* Move the insns out of MERGE_BB to before the branch. */
5207 if (head != NULL)
5208 {
5209 rtx_insn *insn;
5210
5211 if (end == BB_END (merge_bb))
5212 BB_END (merge_bb) = PREV_INSN (head);
5213
5214 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
5215 notes being moved might become invalid. */
5216 insn = head;
5217 do
5218 {
5219 rtx note;
5220
5221 if (! INSN_P (insn))
5222 continue;
5223 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5224 if (! note)
5225 continue;
5226 remove_note (insn, note);
5227 } while (insn != end && (insn = NEXT_INSN (insn)));
5228
5229 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
5230 notes referring to the registers being set might become invalid. */
5231 if (merge_set)
5232 {
5233 unsigned i;
5234 bitmap_iterator bi;
5235
5236 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
5237 remove_reg_equal_equiv_notes_for_regno (i);
5238
5239 BITMAP_FREE (merge_set);
5240 }
5241
5242 reorder_insns (head, end, PREV_INSN (earliest));
5243 }
5244
5245 /* Remove the jump and edge if we can. */
5246 if (other_bb == new_dest)
5247 {
5248 delete_insn (jump);
5249 remove_edge (BRANCH_EDGE (test_bb));
5250 /* ??? Can't merge blocks here, as then_bb is still in use.
5251 At minimum, the merge will get done just before bb-reorder. */
5252 }
5253
5254 return TRUE;
5255
5256 cancel:
5257 cancel_changes (0);
5258
5259 if (merge_set)
5260 BITMAP_FREE (merge_set);
5261
5262 return FALSE;
5263 }
5264 \f
5265 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
5266 we are after combine pass. */
5267
5268 static void
5269 if_convert (bool after_combine)
5270 {
5271 basic_block bb;
5272 int pass;
5273
5274 if (optimize == 1)
5275 {
5276 df_live_add_problem ();
5277 df_live_set_all_dirty ();
5278 }
5279
5280 /* Record whether we are after combine pass. */
5281 ifcvt_after_combine = after_combine;
5282 have_cbranchcc4 = (direct_optab_handler (cbranch_optab, CCmode)
5283 != CODE_FOR_nothing);
5284 num_possible_if_blocks = 0;
5285 num_updated_if_blocks = 0;
5286 num_true_changes = 0;
5287
5288 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5289 mark_loop_exit_edges ();
5290 loop_optimizer_finalize ();
5291 free_dominance_info (CDI_DOMINATORS);
5292
5293 /* Compute postdominators. */
5294 calculate_dominance_info (CDI_POST_DOMINATORS);
5295
5296 df_set_flags (DF_LR_RUN_DCE);
5297
5298 /* Go through each of the basic blocks looking for things to convert. If we
5299 have conditional execution, we make multiple passes to allow us to handle
5300 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
5301 pass = 0;
5302 do
5303 {
5304 df_analyze ();
5305 /* Only need to do dce on the first pass. */
5306 df_clear_flags (DF_LR_RUN_DCE);
5307 cond_exec_changed_p = FALSE;
5308 pass++;
5309
5310 #ifdef IFCVT_MULTIPLE_DUMPS
5311 if (dump_file && pass > 1)
5312 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
5313 #endif
5314
5315 FOR_EACH_BB_FN (bb, cfun)
5316 {
5317 basic_block new_bb;
5318 while (!df_get_bb_dirty (bb)
5319 && (new_bb = find_if_header (bb, pass)) != NULL)
5320 bb = new_bb;
5321 }
5322
5323 #ifdef IFCVT_MULTIPLE_DUMPS
5324 if (dump_file && cond_exec_changed_p)
5325 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
5326 #endif
5327 }
5328 while (cond_exec_changed_p);
5329
5330 #ifdef IFCVT_MULTIPLE_DUMPS
5331 if (dump_file)
5332 fprintf (dump_file, "\n\n========== no more changes\n");
5333 #endif
5334
5335 free_dominance_info (CDI_POST_DOMINATORS);
5336
5337 if (dump_file)
5338 fflush (dump_file);
5339
5340 clear_aux_for_blocks ();
5341
5342 /* If we allocated new pseudos, we must resize the array for sched1. */
5343 if (max_regno < max_reg_num ())
5344 max_regno = max_reg_num ();
5345
5346 /* Write the final stats. */
5347 if (dump_file && num_possible_if_blocks > 0)
5348 {
5349 fprintf (dump_file,
5350 "\n%d possible IF blocks searched.\n",
5351 num_possible_if_blocks);
5352 fprintf (dump_file,
5353 "%d IF blocks converted.\n",
5354 num_updated_if_blocks);
5355 fprintf (dump_file,
5356 "%d true changes made.\n\n\n",
5357 num_true_changes);
5358 }
5359
5360 if (optimize == 1)
5361 df_remove_problem (df_live);
5362
5363 checking_verify_flow_info ();
5364 }
5365 \f
5366 /* If-conversion and CFG cleanup. */
5367 static unsigned int
5368 rest_of_handle_if_conversion (void)
5369 {
5370 if (flag_if_conversion)
5371 {
5372 if (dump_file)
5373 {
5374 dump_reg_info (dump_file);
5375 dump_flow_info (dump_file, dump_flags);
5376 }
5377 cleanup_cfg (CLEANUP_EXPENSIVE);
5378 if_convert (false);
5379 }
5380
5381 cleanup_cfg (0);
5382 return 0;
5383 }
5384
5385 namespace {
5386
5387 const pass_data pass_data_rtl_ifcvt =
5388 {
5389 RTL_PASS, /* type */
5390 "ce1", /* name */
5391 OPTGROUP_NONE, /* optinfo_flags */
5392 TV_IFCVT, /* tv_id */
5393 0, /* properties_required */
5394 0, /* properties_provided */
5395 0, /* properties_destroyed */
5396 0, /* todo_flags_start */
5397 TODO_df_finish, /* todo_flags_finish */
5398 };
5399
5400 class pass_rtl_ifcvt : public rtl_opt_pass
5401 {
5402 public:
5403 pass_rtl_ifcvt (gcc::context *ctxt)
5404 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
5405 {}
5406
5407 /* opt_pass methods: */
5408 virtual bool gate (function *)
5409 {
5410 return (optimize > 0) && dbg_cnt (if_conversion);
5411 }
5412
5413 virtual unsigned int execute (function *)
5414 {
5415 return rest_of_handle_if_conversion ();
5416 }
5417
5418 }; // class pass_rtl_ifcvt
5419
5420 } // anon namespace
5421
5422 rtl_opt_pass *
5423 make_pass_rtl_ifcvt (gcc::context *ctxt)
5424 {
5425 return new pass_rtl_ifcvt (ctxt);
5426 }
5427
5428
5429 /* Rerun if-conversion, as combine may have simplified things enough
5430 to now meet sequence length restrictions. */
5431
5432 namespace {
5433
5434 const pass_data pass_data_if_after_combine =
5435 {
5436 RTL_PASS, /* type */
5437 "ce2", /* name */
5438 OPTGROUP_NONE, /* optinfo_flags */
5439 TV_IFCVT, /* tv_id */
5440 0, /* properties_required */
5441 0, /* properties_provided */
5442 0, /* properties_destroyed */
5443 0, /* todo_flags_start */
5444 TODO_df_finish, /* todo_flags_finish */
5445 };
5446
5447 class pass_if_after_combine : public rtl_opt_pass
5448 {
5449 public:
5450 pass_if_after_combine (gcc::context *ctxt)
5451 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
5452 {}
5453
5454 /* opt_pass methods: */
5455 virtual bool gate (function *)
5456 {
5457 return optimize > 0 && flag_if_conversion
5458 && dbg_cnt (if_after_combine);
5459 }
5460
5461 virtual unsigned int execute (function *)
5462 {
5463 if_convert (true);
5464 return 0;
5465 }
5466
5467 }; // class pass_if_after_combine
5468
5469 } // anon namespace
5470
5471 rtl_opt_pass *
5472 make_pass_if_after_combine (gcc::context *ctxt)
5473 {
5474 return new pass_if_after_combine (ctxt);
5475 }
5476
5477
5478 namespace {
5479
5480 const pass_data pass_data_if_after_reload =
5481 {
5482 RTL_PASS, /* type */
5483 "ce3", /* name */
5484 OPTGROUP_NONE, /* optinfo_flags */
5485 TV_IFCVT2, /* tv_id */
5486 0, /* properties_required */
5487 0, /* properties_provided */
5488 0, /* properties_destroyed */
5489 0, /* todo_flags_start */
5490 TODO_df_finish, /* todo_flags_finish */
5491 };
5492
5493 class pass_if_after_reload : public rtl_opt_pass
5494 {
5495 public:
5496 pass_if_after_reload (gcc::context *ctxt)
5497 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
5498 {}
5499
5500 /* opt_pass methods: */
5501 virtual bool gate (function *)
5502 {
5503 return optimize > 0 && flag_if_conversion2
5504 && dbg_cnt (if_after_reload);
5505 }
5506
5507 virtual unsigned int execute (function *)
5508 {
5509 if_convert (true);
5510 return 0;
5511 }
5512
5513 }; // class pass_if_after_reload
5514
5515 } // anon namespace
5516
5517 rtl_opt_pass *
5518 make_pass_if_after_reload (gcc::context *ctxt)
5519 {
5520 return new pass_if_after_reload (ctxt);
5521 }