recog.c (verify_changes, [...]): New functions, broken out of apply_change_group.
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "real.h"
38 #include "output.h"
39 #include "optabs.h"
40 #include "toplev.h"
41 #include "tm_p.h"
42 #include "cfgloop.h"
43 #include "target.h"
44
45
46 #ifndef HAVE_conditional_execution
47 #define HAVE_conditional_execution 0
48 #endif
49 #ifndef HAVE_conditional_move
50 #define HAVE_conditional_move 0
51 #endif
52 #ifndef HAVE_incscc
53 #define HAVE_incscc 0
54 #endif
55 #ifndef HAVE_decscc
56 #define HAVE_decscc 0
57 #endif
58 #ifndef HAVE_trap
59 #define HAVE_trap 0
60 #endif
61 #ifndef HAVE_conditional_trap
62 #define HAVE_conditional_trap 0
63 #endif
64
65 #ifndef MAX_CONDITIONAL_EXECUTE
66 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
67 #endif
68
69 #define NULL_EDGE ((edge) NULL)
70 #define NULL_BLOCK ((basic_block) NULL)
71
72 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
73 static int num_possible_if_blocks;
74
75 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
76 execution. */
77 static int num_updated_if_blocks;
78
79 /* # of changes made which require life information to be updated. */
80 static int num_true_changes;
81
82 /* Whether conditional execution changes were made. */
83 static int cond_exec_changed_p;
84
85 /* True if life data ok at present. */
86 static bool life_data_ok;
87
88 /* Forward references. */
89 static int count_bb_insns (basic_block);
90 static bool cheap_bb_rtx_cost_p (basic_block, int);
91 static rtx first_active_insn (basic_block);
92 static rtx last_active_insn (basic_block, int);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static int cond_exec_process_if_block (ce_if_block_t *, int);
97 static rtx noce_get_condition (rtx, rtx *);
98 static int noce_operand_ok (rtx);
99 static int noce_process_if_block (ce_if_block_t *);
100 static int process_if_block (ce_if_block_t *);
101 static void merge_if_block (ce_if_block_t *);
102 static int find_cond_trap (basic_block, edge, edge);
103 static basic_block find_if_header (basic_block, int);
104 static int block_jumps_and_fallthru_p (basic_block, basic_block);
105 static int find_if_block (ce_if_block_t *);
106 static int find_if_case_1 (basic_block, edge, edge);
107 static int find_if_case_2 (basic_block, edge, edge);
108 static int find_memory (rtx *, void *);
109 static int dead_or_predicable (basic_block, basic_block, basic_block,
110 basic_block, int);
111 static void noce_emit_move_insn (rtx, rtx);
112 static rtx block_has_only_trap (basic_block);
113 \f
114 /* Count the number of non-jump active insns in BB. */
115
116 static int
117 count_bb_insns (basic_block bb)
118 {
119 int count = 0;
120 rtx insn = BB_HEAD (bb);
121
122 while (1)
123 {
124 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
125 count++;
126
127 if (insn == BB_END (bb))
128 break;
129 insn = NEXT_INSN (insn);
130 }
131
132 return count;
133 }
134
135 /* Determine whether the total insn_rtx_cost on non-jump insns in
136 basic block BB is less than MAX_COST. This function returns
137 false if the cost of any instruction could not be estimated. */
138
139 static bool
140 cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
141 {
142 int count = 0;
143 rtx insn = BB_HEAD (bb);
144
145 while (1)
146 {
147 if (NONJUMP_INSN_P (insn))
148 {
149 int cost = insn_rtx_cost (PATTERN (insn));
150 if (cost == 0)
151 return false;
152
153 /* If this instruction is the load or set of a "stack" register,
154 such as a floating point register on x87, then the cost of
155 speculatively executing this instruction needs to include
156 the additional cost of popping this register off of the
157 register stack. */
158 #ifdef STACK_REGS
159 {
160 rtx set = single_set (insn);
161 if (set && STACK_REG_P (SET_DEST (set)))
162 cost += COSTS_N_INSNS (1);
163 }
164 #endif
165
166 count += cost;
167 if (count >= max_cost)
168 return false;
169 }
170 else if (CALL_P (insn))
171 return false;
172
173 if (insn == BB_END (bb))
174 break;
175 insn = NEXT_INSN (insn);
176 }
177
178 return true;
179 }
180
181 /* Return the first non-jump active insn in the basic block. */
182
183 static rtx
184 first_active_insn (basic_block bb)
185 {
186 rtx insn = BB_HEAD (bb);
187
188 if (LABEL_P (insn))
189 {
190 if (insn == BB_END (bb))
191 return NULL_RTX;
192 insn = NEXT_INSN (insn);
193 }
194
195 while (NOTE_P (insn))
196 {
197 if (insn == BB_END (bb))
198 return NULL_RTX;
199 insn = NEXT_INSN (insn);
200 }
201
202 if (JUMP_P (insn))
203 return NULL_RTX;
204
205 return insn;
206 }
207
208 /* Return the last non-jump active (non-jump) insn in the basic block. */
209
210 static rtx
211 last_active_insn (basic_block bb, int skip_use_p)
212 {
213 rtx insn = BB_END (bb);
214 rtx head = BB_HEAD (bb);
215
216 while (NOTE_P (insn)
217 || JUMP_P (insn)
218 || (skip_use_p
219 && NONJUMP_INSN_P (insn)
220 && GET_CODE (PATTERN (insn)) == USE))
221 {
222 if (insn == head)
223 return NULL_RTX;
224 insn = PREV_INSN (insn);
225 }
226
227 if (LABEL_P (insn))
228 return NULL_RTX;
229
230 return insn;
231 }
232
233 /* Return the basic block reached by falling though the basic block BB. */
234
235 static basic_block
236 block_fallthru (basic_block bb)
237 {
238 edge e;
239 edge_iterator ei;
240
241 FOR_EACH_EDGE (e, ei, bb->succs)
242 if (e->flags & EDGE_FALLTHRU)
243 break;
244
245 return (e) ? e->dest : NULL_BLOCK;
246 }
247 \f
248 /* Go through a bunch of insns, converting them to conditional
249 execution format if possible. Return TRUE if all of the non-note
250 insns were processed. */
251
252 static int
253 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
254 /* if block information */rtx start,
255 /* first insn to look at */rtx end,
256 /* last insn to look at */rtx test,
257 /* conditional execution test */rtx prob_val,
258 /* probability of branch taken. */int mod_ok)
259 {
260 int must_be_last = FALSE;
261 rtx insn;
262 rtx xtest;
263 rtx pattern;
264
265 if (!start || !end)
266 return FALSE;
267
268 for (insn = start; ; insn = NEXT_INSN (insn))
269 {
270 if (NOTE_P (insn))
271 goto insn_done;
272
273 if (!NONJUMP_INSN_P (insn) && !CALL_P (insn))
274 abort ();
275
276 /* Remove USE insns that get in the way. */
277 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
278 {
279 /* ??? Ug. Actually unlinking the thing is problematic,
280 given what we'd have to coordinate with our callers. */
281 SET_INSN_DELETED (insn);
282 goto insn_done;
283 }
284
285 /* Last insn wasn't last? */
286 if (must_be_last)
287 return FALSE;
288
289 if (modified_in_p (test, insn))
290 {
291 if (!mod_ok)
292 return FALSE;
293 must_be_last = TRUE;
294 }
295
296 /* Now build the conditional form of the instruction. */
297 pattern = PATTERN (insn);
298 xtest = copy_rtx (test);
299
300 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
301 two conditions. */
302 if (GET_CODE (pattern) == COND_EXEC)
303 {
304 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
305 return FALSE;
306
307 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
308 COND_EXEC_TEST (pattern));
309 pattern = COND_EXEC_CODE (pattern);
310 }
311
312 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
313
314 /* If the machine needs to modify the insn being conditionally executed,
315 say for example to force a constant integer operand into a temp
316 register, do so here. */
317 #ifdef IFCVT_MODIFY_INSN
318 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
319 if (! pattern)
320 return FALSE;
321 #endif
322
323 validate_change (insn, &PATTERN (insn), pattern, 1);
324
325 if (CALL_P (insn) && prob_val)
326 validate_change (insn, &REG_NOTES (insn),
327 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
328 REG_NOTES (insn)), 1);
329
330 insn_done:
331 if (insn == end)
332 break;
333 }
334
335 return TRUE;
336 }
337
338 /* Return the condition for a jump. Do not do any special processing. */
339
340 static rtx
341 cond_exec_get_condition (rtx jump)
342 {
343 rtx test_if, cond;
344
345 if (any_condjump_p (jump))
346 test_if = SET_SRC (pc_set (jump));
347 else
348 return NULL_RTX;
349 cond = XEXP (test_if, 0);
350
351 /* If this branches to JUMP_LABEL when the condition is false,
352 reverse the condition. */
353 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
354 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
355 {
356 enum rtx_code rev = reversed_comparison_code (cond, jump);
357 if (rev == UNKNOWN)
358 return NULL_RTX;
359
360 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
361 XEXP (cond, 1));
362 }
363
364 return cond;
365 }
366
367 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
368 to conditional execution. Return TRUE if we were successful at
369 converting the block. */
370
371 static int
372 cond_exec_process_if_block (ce_if_block_t * ce_info,
373 /* if block information */int do_multiple_p)
374 {
375 basic_block test_bb = ce_info->test_bb; /* last test block */
376 basic_block then_bb = ce_info->then_bb; /* THEN */
377 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
378 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
379 rtx then_start; /* first insn in THEN block */
380 rtx then_end; /* last insn + 1 in THEN block */
381 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
382 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
383 int max; /* max # of insns to convert. */
384 int then_mod_ok; /* whether conditional mods are ok in THEN */
385 rtx true_expr; /* test for else block insns */
386 rtx false_expr; /* test for then block insns */
387 rtx true_prob_val; /* probability of else block */
388 rtx false_prob_val; /* probability of then block */
389 int n_insns;
390 enum rtx_code false_code;
391
392 /* If test is comprised of && or || elements, and we've failed at handling
393 all of them together, just use the last test if it is the special case of
394 && elements without an ELSE block. */
395 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
396 {
397 if (else_bb || ! ce_info->and_and_p)
398 return FALSE;
399
400 ce_info->test_bb = test_bb = ce_info->last_test_bb;
401 ce_info->num_multiple_test_blocks = 0;
402 ce_info->num_and_and_blocks = 0;
403 ce_info->num_or_or_blocks = 0;
404 }
405
406 /* Find the conditional jump to the ELSE or JOIN part, and isolate
407 the test. */
408 test_expr = cond_exec_get_condition (BB_END (test_bb));
409 if (! test_expr)
410 return FALSE;
411
412 /* If the conditional jump is more than just a conditional jump,
413 then we can not do conditional execution conversion on this block. */
414 if (! onlyjump_p (BB_END (test_bb)))
415 return FALSE;
416
417 /* Collect the bounds of where we're to search, skipping any labels, jumps
418 and notes at the beginning and end of the block. Then count the total
419 number of insns and see if it is small enough to convert. */
420 then_start = first_active_insn (then_bb);
421 then_end = last_active_insn (then_bb, TRUE);
422 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
423 max = MAX_CONDITIONAL_EXECUTE;
424
425 if (else_bb)
426 {
427 max *= 2;
428 else_start = first_active_insn (else_bb);
429 else_end = last_active_insn (else_bb, TRUE);
430 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
431 }
432
433 if (n_insns > max)
434 return FALSE;
435
436 /* Map test_expr/test_jump into the appropriate MD tests to use on
437 the conditionally executed code. */
438
439 true_expr = test_expr;
440
441 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
442 if (false_code != UNKNOWN)
443 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
444 XEXP (true_expr, 0), XEXP (true_expr, 1));
445 else
446 false_expr = NULL_RTX;
447
448 #ifdef IFCVT_MODIFY_TESTS
449 /* If the machine description needs to modify the tests, such as setting a
450 conditional execution register from a comparison, it can do so here. */
451 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
452
453 /* See if the conversion failed. */
454 if (!true_expr || !false_expr)
455 goto fail;
456 #endif
457
458 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
459 if (true_prob_val)
460 {
461 true_prob_val = XEXP (true_prob_val, 0);
462 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
463 }
464 else
465 false_prob_val = NULL_RTX;
466
467 /* If we have && or || tests, do them here. These tests are in the adjacent
468 blocks after the first block containing the test. */
469 if (ce_info->num_multiple_test_blocks > 0)
470 {
471 basic_block bb = test_bb;
472 basic_block last_test_bb = ce_info->last_test_bb;
473
474 if (! false_expr)
475 goto fail;
476
477 do
478 {
479 rtx start, end;
480 rtx t, f;
481 enum rtx_code f_code;
482
483 bb = block_fallthru (bb);
484 start = first_active_insn (bb);
485 end = last_active_insn (bb, TRUE);
486 if (start
487 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
488 false_prob_val, FALSE))
489 goto fail;
490
491 /* If the conditional jump is more than just a conditional jump, then
492 we can not do conditional execution conversion on this block. */
493 if (! onlyjump_p (BB_END (bb)))
494 goto fail;
495
496 /* Find the conditional jump and isolate the test. */
497 t = cond_exec_get_condition (BB_END (bb));
498 if (! t)
499 goto fail;
500
501 f_code = reversed_comparison_code (t, BB_END (bb));
502 if (f_code == UNKNOWN)
503 goto fail;
504
505 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
506 if (ce_info->and_and_p)
507 {
508 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
509 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
510 }
511 else
512 {
513 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
514 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
515 }
516
517 /* If the machine description needs to modify the tests, such as
518 setting a conditional execution register from a comparison, it can
519 do so here. */
520 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
521 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
522
523 /* See if the conversion failed. */
524 if (!t || !f)
525 goto fail;
526 #endif
527
528 true_expr = t;
529 false_expr = f;
530 }
531 while (bb != last_test_bb);
532 }
533
534 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
535 on then THEN block. */
536 then_mod_ok = (else_bb == NULL_BLOCK);
537
538 /* Go through the THEN and ELSE blocks converting the insns if possible
539 to conditional execution. */
540
541 if (then_end
542 && (! false_expr
543 || ! cond_exec_process_insns (ce_info, then_start, then_end,
544 false_expr, false_prob_val,
545 then_mod_ok)))
546 goto fail;
547
548 if (else_bb && else_end
549 && ! cond_exec_process_insns (ce_info, else_start, else_end,
550 true_expr, true_prob_val, TRUE))
551 goto fail;
552
553 /* If we cannot apply the changes, fail. Do not go through the normal fail
554 processing, since apply_change_group will call cancel_changes. */
555 if (! apply_change_group ())
556 {
557 #ifdef IFCVT_MODIFY_CANCEL
558 /* Cancel any machine dependent changes. */
559 IFCVT_MODIFY_CANCEL (ce_info);
560 #endif
561 return FALSE;
562 }
563
564 #ifdef IFCVT_MODIFY_FINAL
565 /* Do any machine dependent final modifications. */
566 IFCVT_MODIFY_FINAL (ce_info);
567 #endif
568
569 /* Conversion succeeded. */
570 if (dump_file)
571 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
572 n_insns, (n_insns == 1) ? " was" : "s were");
573
574 /* Merge the blocks! */
575 merge_if_block (ce_info);
576 cond_exec_changed_p = TRUE;
577 return TRUE;
578
579 fail:
580 #ifdef IFCVT_MODIFY_CANCEL
581 /* Cancel any machine dependent changes. */
582 IFCVT_MODIFY_CANCEL (ce_info);
583 #endif
584
585 cancel_changes (0);
586 return FALSE;
587 }
588 \f
589 /* Used by noce_process_if_block to communicate with its subroutines.
590
591 The subroutines know that A and B may be evaluated freely. They
592 know that X is a register. They should insert new instructions
593 before cond_earliest. */
594
595 struct noce_if_info
596 {
597 basic_block test_bb;
598 rtx insn_a, insn_b;
599 rtx x, a, b;
600 rtx jump, cond, cond_earliest;
601 /* True if "b" was originally evaluated unconditionally. */
602 bool b_unconditional;
603 };
604
605 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
606 static int noce_try_move (struct noce_if_info *);
607 static int noce_try_store_flag (struct noce_if_info *);
608 static int noce_try_addcc (struct noce_if_info *);
609 static int noce_try_store_flag_constants (struct noce_if_info *);
610 static int noce_try_store_flag_mask (struct noce_if_info *);
611 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
612 rtx, rtx, rtx);
613 static int noce_try_cmove (struct noce_if_info *);
614 static int noce_try_cmove_arith (struct noce_if_info *);
615 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
616 static int noce_try_minmax (struct noce_if_info *);
617 static int noce_try_abs (struct noce_if_info *);
618 static int noce_try_sign_mask (struct noce_if_info *);
619
620 /* Helper function for noce_try_store_flag*. */
621
622 static rtx
623 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
624 int normalize)
625 {
626 rtx cond = if_info->cond;
627 int cond_complex;
628 enum rtx_code code;
629
630 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
631 || ! general_operand (XEXP (cond, 1), VOIDmode));
632
633 /* If earliest == jump, or when the condition is complex, try to
634 build the store_flag insn directly. */
635
636 if (cond_complex)
637 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
638
639 if (reversep)
640 code = reversed_comparison_code (cond, if_info->jump);
641 else
642 code = GET_CODE (cond);
643
644 if ((if_info->cond_earliest == if_info->jump || cond_complex)
645 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
646 {
647 rtx tmp;
648
649 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
650 XEXP (cond, 1));
651 tmp = gen_rtx_SET (VOIDmode, x, tmp);
652
653 start_sequence ();
654 tmp = emit_insn (tmp);
655
656 if (recog_memoized (tmp) >= 0)
657 {
658 tmp = get_insns ();
659 end_sequence ();
660 emit_insn (tmp);
661
662 if_info->cond_earliest = if_info->jump;
663
664 return x;
665 }
666
667 end_sequence ();
668 }
669
670 /* Don't even try if the comparison operands or the mode of X are weird. */
671 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
672 return NULL_RTX;
673
674 return emit_store_flag (x, code, XEXP (cond, 0),
675 XEXP (cond, 1), VOIDmode,
676 (code == LTU || code == LEU
677 || code == GEU || code == GTU), normalize);
678 }
679
680 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
681 X is the destination/target and Y is the value to copy. */
682
683 static void
684 noce_emit_move_insn (rtx x, rtx y)
685 {
686 enum machine_mode outmode, inmode;
687 rtx outer, inner;
688 int bitpos;
689
690 if (GET_CODE (x) != STRICT_LOW_PART)
691 {
692 emit_move_insn (x, y);
693 return;
694 }
695
696 outer = XEXP (x, 0);
697 inner = XEXP (outer, 0);
698 outmode = GET_MODE (outer);
699 inmode = GET_MODE (inner);
700 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
701 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
702 }
703
704 /* Return sequence of instructions generated by if conversion. This
705 function calls end_sequence() to end the current stream, ensures
706 that are instructions are unshared, recognizable non-jump insns.
707 On failure, this function returns a NULL_RTX. */
708
709 static rtx
710 end_ifcvt_sequence (struct noce_if_info *if_info)
711 {
712 rtx insn;
713 rtx seq = get_insns ();
714
715 set_used_flags (if_info->x);
716 set_used_flags (if_info->cond);
717 unshare_all_rtl_in_chain (seq);
718 end_sequence ();
719
720 /* Make sure that all of the instructions emitted are recognizable,
721 and that we haven't introduced a new jump instruction.
722 As an exercise for the reader, build a general mechanism that
723 allows proper placement of required clobbers. */
724 for (insn = seq; insn; insn = NEXT_INSN (insn))
725 if (JUMP_P (insn)
726 || recog_memoized (insn) == -1)
727 return NULL_RTX;
728
729 return seq;
730 }
731
732 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
733 "if (a == b) x = a; else x = b" into "x = b". */
734
735 static int
736 noce_try_move (struct noce_if_info *if_info)
737 {
738 rtx cond = if_info->cond;
739 enum rtx_code code = GET_CODE (cond);
740 rtx y, seq;
741
742 if (code != NE && code != EQ)
743 return FALSE;
744
745 /* This optimization isn't valid if either A or B could be a NaN
746 or a signed zero. */
747 if (HONOR_NANS (GET_MODE (if_info->x))
748 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
749 return FALSE;
750
751 /* Check whether the operands of the comparison are A and in
752 either order. */
753 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
754 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
755 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
756 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
757 {
758 y = (code == EQ) ? if_info->a : if_info->b;
759
760 /* Avoid generating the move if the source is the destination. */
761 if (! rtx_equal_p (if_info->x, y))
762 {
763 start_sequence ();
764 noce_emit_move_insn (if_info->x, y);
765 seq = end_ifcvt_sequence (if_info);
766 if (!seq)
767 return FALSE;
768
769 emit_insn_before_setloc (seq, if_info->jump,
770 INSN_LOCATOR (if_info->insn_a));
771 }
772 return TRUE;
773 }
774 return FALSE;
775 }
776
777 /* Convert "if (test) x = 1; else x = 0".
778
779 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
780 tried in noce_try_store_flag_constants after noce_try_cmove has had
781 a go at the conversion. */
782
783 static int
784 noce_try_store_flag (struct noce_if_info *if_info)
785 {
786 int reversep;
787 rtx target, seq;
788
789 if (GET_CODE (if_info->b) == CONST_INT
790 && INTVAL (if_info->b) == STORE_FLAG_VALUE
791 && if_info->a == const0_rtx)
792 reversep = 0;
793 else if (if_info->b == const0_rtx
794 && GET_CODE (if_info->a) == CONST_INT
795 && INTVAL (if_info->a) == STORE_FLAG_VALUE
796 && (reversed_comparison_code (if_info->cond, if_info->jump)
797 != UNKNOWN))
798 reversep = 1;
799 else
800 return FALSE;
801
802 start_sequence ();
803
804 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
805 if (target)
806 {
807 if (target != if_info->x)
808 noce_emit_move_insn (if_info->x, target);
809
810 seq = end_ifcvt_sequence (if_info);
811 if (! seq)
812 return FALSE;
813
814 emit_insn_before_setloc (seq, if_info->jump,
815 INSN_LOCATOR (if_info->insn_a));
816 return TRUE;
817 }
818 else
819 {
820 end_sequence ();
821 return FALSE;
822 }
823 }
824
825 /* Convert "if (test) x = a; else x = b", for A and B constant. */
826
827 static int
828 noce_try_store_flag_constants (struct noce_if_info *if_info)
829 {
830 rtx target, seq;
831 int reversep;
832 HOST_WIDE_INT itrue, ifalse, diff, tmp;
833 int normalize, can_reverse;
834 enum machine_mode mode;
835
836 if (! no_new_pseudos
837 && GET_CODE (if_info->a) == CONST_INT
838 && GET_CODE (if_info->b) == CONST_INT)
839 {
840 mode = GET_MODE (if_info->x);
841 ifalse = INTVAL (if_info->a);
842 itrue = INTVAL (if_info->b);
843
844 /* Make sure we can represent the difference between the two values. */
845 if ((itrue - ifalse > 0)
846 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
847 return FALSE;
848
849 diff = trunc_int_for_mode (itrue - ifalse, mode);
850
851 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
852 != UNKNOWN);
853
854 reversep = 0;
855 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
856 normalize = 0;
857 else if (ifalse == 0 && exact_log2 (itrue) >= 0
858 && (STORE_FLAG_VALUE == 1
859 || BRANCH_COST >= 2))
860 normalize = 1;
861 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
862 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
863 normalize = 1, reversep = 1;
864 else if (itrue == -1
865 && (STORE_FLAG_VALUE == -1
866 || BRANCH_COST >= 2))
867 normalize = -1;
868 else if (ifalse == -1 && can_reverse
869 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
870 normalize = -1, reversep = 1;
871 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
872 || BRANCH_COST >= 3)
873 normalize = -1;
874 else
875 return FALSE;
876
877 if (reversep)
878 {
879 tmp = itrue; itrue = ifalse; ifalse = tmp;
880 diff = trunc_int_for_mode (-diff, mode);
881 }
882
883 start_sequence ();
884 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
885 if (! target)
886 {
887 end_sequence ();
888 return FALSE;
889 }
890
891 /* if (test) x = 3; else x = 4;
892 => x = 3 + (test == 0); */
893 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
894 {
895 target = expand_simple_binop (mode,
896 (diff == STORE_FLAG_VALUE
897 ? PLUS : MINUS),
898 GEN_INT (ifalse), target, if_info->x, 0,
899 OPTAB_WIDEN);
900 }
901
902 /* if (test) x = 8; else x = 0;
903 => x = (test != 0) << 3; */
904 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
905 {
906 target = expand_simple_binop (mode, ASHIFT,
907 target, GEN_INT (tmp), if_info->x, 0,
908 OPTAB_WIDEN);
909 }
910
911 /* if (test) x = -1; else x = b;
912 => x = -(test != 0) | b; */
913 else if (itrue == -1)
914 {
915 target = expand_simple_binop (mode, IOR,
916 target, GEN_INT (ifalse), if_info->x, 0,
917 OPTAB_WIDEN);
918 }
919
920 /* if (test) x = a; else x = b;
921 => x = (-(test != 0) & (b - a)) + a; */
922 else
923 {
924 target = expand_simple_binop (mode, AND,
925 target, GEN_INT (diff), if_info->x, 0,
926 OPTAB_WIDEN);
927 if (target)
928 target = expand_simple_binop (mode, PLUS,
929 target, GEN_INT (ifalse),
930 if_info->x, 0, OPTAB_WIDEN);
931 }
932
933 if (! target)
934 {
935 end_sequence ();
936 return FALSE;
937 }
938
939 if (target != if_info->x)
940 noce_emit_move_insn (if_info->x, target);
941
942 seq = end_ifcvt_sequence (if_info);
943 if (!seq)
944 return FALSE;
945
946 emit_insn_before_setloc (seq, if_info->jump,
947 INSN_LOCATOR (if_info->insn_a));
948 return TRUE;
949 }
950
951 return FALSE;
952 }
953
954 /* Convert "if (test) foo++" into "foo += (test != 0)", and
955 similarly for "foo--". */
956
957 static int
958 noce_try_addcc (struct noce_if_info *if_info)
959 {
960 rtx target, seq;
961 int subtract, normalize;
962
963 if (! no_new_pseudos
964 && GET_CODE (if_info->a) == PLUS
965 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
966 && (reversed_comparison_code (if_info->cond, if_info->jump)
967 != UNKNOWN))
968 {
969 rtx cond = if_info->cond;
970 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
971
972 /* First try to use addcc pattern. */
973 if (general_operand (XEXP (cond, 0), VOIDmode)
974 && general_operand (XEXP (cond, 1), VOIDmode))
975 {
976 start_sequence ();
977 target = emit_conditional_add (if_info->x, code,
978 XEXP (cond, 0),
979 XEXP (cond, 1),
980 VOIDmode,
981 if_info->b,
982 XEXP (if_info->a, 1),
983 GET_MODE (if_info->x),
984 (code == LTU || code == GEU
985 || code == LEU || code == GTU));
986 if (target)
987 {
988 if (target != if_info->x)
989 noce_emit_move_insn (if_info->x, target);
990
991 seq = end_ifcvt_sequence (if_info);
992 if (!seq)
993 return FALSE;
994
995 emit_insn_before_setloc (seq, if_info->jump,
996 INSN_LOCATOR (if_info->insn_a));
997 return TRUE;
998 }
999 end_sequence ();
1000 }
1001
1002 /* If that fails, construct conditional increment or decrement using
1003 setcc. */
1004 if (BRANCH_COST >= 2
1005 && (XEXP (if_info->a, 1) == const1_rtx
1006 || XEXP (if_info->a, 1) == constm1_rtx))
1007 {
1008 start_sequence ();
1009 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1010 subtract = 0, normalize = 0;
1011 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1012 subtract = 1, normalize = 0;
1013 else
1014 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1015
1016
1017 target = noce_emit_store_flag (if_info,
1018 gen_reg_rtx (GET_MODE (if_info->x)),
1019 1, normalize);
1020
1021 if (target)
1022 target = expand_simple_binop (GET_MODE (if_info->x),
1023 subtract ? MINUS : PLUS,
1024 if_info->b, target, if_info->x,
1025 0, OPTAB_WIDEN);
1026 if (target)
1027 {
1028 if (target != if_info->x)
1029 noce_emit_move_insn (if_info->x, target);
1030
1031 seq = end_ifcvt_sequence (if_info);
1032 if (!seq)
1033 return FALSE;
1034
1035 emit_insn_before_setloc (seq, if_info->jump,
1036 INSN_LOCATOR (if_info->insn_a));
1037 return TRUE;
1038 }
1039 end_sequence ();
1040 }
1041 }
1042
1043 return FALSE;
1044 }
1045
1046 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1047
1048 static int
1049 noce_try_store_flag_mask (struct noce_if_info *if_info)
1050 {
1051 rtx target, seq;
1052 int reversep;
1053
1054 reversep = 0;
1055 if (! no_new_pseudos
1056 && (BRANCH_COST >= 2
1057 || STORE_FLAG_VALUE == -1)
1058 && ((if_info->a == const0_rtx
1059 && rtx_equal_p (if_info->b, if_info->x))
1060 || ((reversep = (reversed_comparison_code (if_info->cond,
1061 if_info->jump)
1062 != UNKNOWN))
1063 && if_info->b == const0_rtx
1064 && rtx_equal_p (if_info->a, if_info->x))))
1065 {
1066 start_sequence ();
1067 target = noce_emit_store_flag (if_info,
1068 gen_reg_rtx (GET_MODE (if_info->x)),
1069 reversep, -1);
1070 if (target)
1071 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1072 if_info->x,
1073 target, if_info->x, 0,
1074 OPTAB_WIDEN);
1075
1076 if (target)
1077 {
1078 if (target != if_info->x)
1079 noce_emit_move_insn (if_info->x, target);
1080
1081 seq = end_ifcvt_sequence (if_info);
1082 if (!seq)
1083 return FALSE;
1084
1085 emit_insn_before_setloc (seq, if_info->jump,
1086 INSN_LOCATOR (if_info->insn_a));
1087 return TRUE;
1088 }
1089
1090 end_sequence ();
1091 }
1092
1093 return FALSE;
1094 }
1095
1096 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1097
1098 static rtx
1099 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1100 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1101 {
1102 /* If earliest == jump, try to build the cmove insn directly.
1103 This is helpful when combine has created some complex condition
1104 (like for alpha's cmovlbs) that we can't hope to regenerate
1105 through the normal interface. */
1106
1107 if (if_info->cond_earliest == if_info->jump)
1108 {
1109 rtx tmp;
1110
1111 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1112 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1113 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1114
1115 start_sequence ();
1116 tmp = emit_insn (tmp);
1117
1118 if (recog_memoized (tmp) >= 0)
1119 {
1120 tmp = get_insns ();
1121 end_sequence ();
1122 emit_insn (tmp);
1123
1124 return x;
1125 }
1126
1127 end_sequence ();
1128 }
1129
1130 /* Don't even try if the comparison operands are weird. */
1131 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1132 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1133 return NULL_RTX;
1134
1135 #if HAVE_conditional_move
1136 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1137 vtrue, vfalse, GET_MODE (x),
1138 (code == LTU || code == GEU
1139 || code == LEU || code == GTU));
1140 #else
1141 /* We'll never get here, as noce_process_if_block doesn't call the
1142 functions involved. Ifdef code, however, should be discouraged
1143 because it leads to typos in the code not selected. However,
1144 emit_conditional_move won't exist either. */
1145 return NULL_RTX;
1146 #endif
1147 }
1148
1149 /* Try only simple constants and registers here. More complex cases
1150 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1151 has had a go at it. */
1152
1153 static int
1154 noce_try_cmove (struct noce_if_info *if_info)
1155 {
1156 enum rtx_code code;
1157 rtx target, seq;
1158
1159 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1160 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1161 {
1162 start_sequence ();
1163
1164 code = GET_CODE (if_info->cond);
1165 target = noce_emit_cmove (if_info, if_info->x, code,
1166 XEXP (if_info->cond, 0),
1167 XEXP (if_info->cond, 1),
1168 if_info->a, if_info->b);
1169
1170 if (target)
1171 {
1172 if (target != if_info->x)
1173 noce_emit_move_insn (if_info->x, target);
1174
1175 seq = end_ifcvt_sequence (if_info);
1176 if (!seq)
1177 return FALSE;
1178
1179 emit_insn_before_setloc (seq, if_info->jump,
1180 INSN_LOCATOR (if_info->insn_a));
1181 return TRUE;
1182 }
1183 else
1184 {
1185 end_sequence ();
1186 return FALSE;
1187 }
1188 }
1189
1190 return FALSE;
1191 }
1192
1193 /* Try more complex cases involving conditional_move. */
1194
1195 static int
1196 noce_try_cmove_arith (struct noce_if_info *if_info)
1197 {
1198 rtx a = if_info->a;
1199 rtx b = if_info->b;
1200 rtx x = if_info->x;
1201 rtx orig_a, orig_b;
1202 rtx insn_a, insn_b;
1203 rtx tmp, target;
1204 int is_mem = 0;
1205 int insn_cost;
1206 enum rtx_code code;
1207
1208 /* A conditional move from two memory sources is equivalent to a
1209 conditional on their addresses followed by a load. Don't do this
1210 early because it'll screw alias analysis. Note that we've
1211 already checked for no side effects. */
1212 if (! no_new_pseudos && cse_not_expected
1213 && MEM_P (a) && MEM_P (b)
1214 && BRANCH_COST >= 5)
1215 {
1216 a = XEXP (a, 0);
1217 b = XEXP (b, 0);
1218 x = gen_reg_rtx (Pmode);
1219 is_mem = 1;
1220 }
1221
1222 /* ??? We could handle this if we knew that a load from A or B could
1223 not fault. This is also true if we've already loaded
1224 from the address along the path from ENTRY. */
1225 else if (may_trap_p (a) || may_trap_p (b))
1226 return FALSE;
1227
1228 /* if (test) x = a + b; else x = c - d;
1229 => y = a + b;
1230 x = c - d;
1231 if (test)
1232 x = y;
1233 */
1234
1235 code = GET_CODE (if_info->cond);
1236 insn_a = if_info->insn_a;
1237 insn_b = if_info->insn_b;
1238
1239 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1240 if insn_rtx_cost can't be estimated. */
1241 if (insn_a)
1242 {
1243 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1244 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1245 return FALSE;
1246 }
1247 else
1248 {
1249 insn_cost = 0;
1250 }
1251
1252 if (insn_b) {
1253 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1254 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1255 return FALSE;
1256 }
1257
1258 /* Possibly rearrange operands to make things come out more natural. */
1259 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1260 {
1261 int reversep = 0;
1262 if (rtx_equal_p (b, x))
1263 reversep = 1;
1264 else if (general_operand (b, GET_MODE (b)))
1265 reversep = 1;
1266
1267 if (reversep)
1268 {
1269 code = reversed_comparison_code (if_info->cond, if_info->jump);
1270 tmp = a, a = b, b = tmp;
1271 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1272 }
1273 }
1274
1275 start_sequence ();
1276
1277 orig_a = a;
1278 orig_b = b;
1279
1280 /* If either operand is complex, load it into a register first.
1281 The best way to do this is to copy the original insn. In this
1282 way we preserve any clobbers etc that the insn may have had.
1283 This is of course not possible in the IS_MEM case. */
1284 if (! general_operand (a, GET_MODE (a)))
1285 {
1286 rtx set;
1287
1288 if (no_new_pseudos)
1289 goto end_seq_and_fail;
1290
1291 if (is_mem)
1292 {
1293 tmp = gen_reg_rtx (GET_MODE (a));
1294 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1295 }
1296 else if (! insn_a)
1297 goto end_seq_and_fail;
1298 else
1299 {
1300 a = gen_reg_rtx (GET_MODE (a));
1301 tmp = copy_rtx (insn_a);
1302 set = single_set (tmp);
1303 SET_DEST (set) = a;
1304 tmp = emit_insn (PATTERN (tmp));
1305 }
1306 if (recog_memoized (tmp) < 0)
1307 goto end_seq_and_fail;
1308 }
1309 if (! general_operand (b, GET_MODE (b)))
1310 {
1311 rtx set, last;
1312
1313 if (no_new_pseudos)
1314 goto end_seq_and_fail;
1315
1316 if (is_mem)
1317 {
1318 tmp = gen_reg_rtx (GET_MODE (b));
1319 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1320 }
1321 else if (! insn_b)
1322 goto end_seq_and_fail;
1323 else
1324 {
1325 b = gen_reg_rtx (GET_MODE (b));
1326 tmp = copy_rtx (insn_b);
1327 set = single_set (tmp);
1328 SET_DEST (set) = b;
1329 tmp = PATTERN (tmp);
1330 }
1331
1332 /* If insn to set up A clobbers any registers B depends on, try to
1333 swap insn that sets up A with the one that sets up B. If even
1334 that doesn't help, punt. */
1335 last = get_last_insn ();
1336 if (last && modified_in_p (orig_b, last))
1337 {
1338 tmp = emit_insn_before (tmp, get_insns ());
1339 if (modified_in_p (orig_a, tmp))
1340 goto end_seq_and_fail;
1341 }
1342 else
1343 tmp = emit_insn (tmp);
1344
1345 if (recog_memoized (tmp) < 0)
1346 goto end_seq_and_fail;
1347 }
1348
1349 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1350 XEXP (if_info->cond, 1), a, b);
1351
1352 if (! target)
1353 goto end_seq_and_fail;
1354
1355 /* If we're handling a memory for above, emit the load now. */
1356 if (is_mem)
1357 {
1358 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1359
1360 /* Copy over flags as appropriate. */
1361 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1362 MEM_VOLATILE_P (tmp) = 1;
1363 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1364 MEM_IN_STRUCT_P (tmp) = 1;
1365 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1366 MEM_SCALAR_P (tmp) = 1;
1367 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1368 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1369 set_mem_align (tmp,
1370 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1371
1372 noce_emit_move_insn (if_info->x, tmp);
1373 }
1374 else if (target != x)
1375 noce_emit_move_insn (x, target);
1376
1377 tmp = end_ifcvt_sequence (if_info);
1378 if (!tmp)
1379 return FALSE;
1380
1381 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1382 return TRUE;
1383
1384 end_seq_and_fail:
1385 end_sequence ();
1386 return FALSE;
1387 }
1388
1389 /* For most cases, the simplified condition we found is the best
1390 choice, but this is not the case for the min/max/abs transforms.
1391 For these we wish to know that it is A or B in the condition. */
1392
1393 static rtx
1394 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1395 rtx *earliest)
1396 {
1397 rtx cond, set, insn;
1398 int reverse;
1399
1400 /* If target is already mentioned in the known condition, return it. */
1401 if (reg_mentioned_p (target, if_info->cond))
1402 {
1403 *earliest = if_info->cond_earliest;
1404 return if_info->cond;
1405 }
1406
1407 set = pc_set (if_info->jump);
1408 cond = XEXP (SET_SRC (set), 0);
1409 reverse
1410 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1411 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1412
1413 /* If we're looking for a constant, try to make the conditional
1414 have that constant in it. There are two reasons why it may
1415 not have the constant we want:
1416
1417 1. GCC may have needed to put the constant in a register, because
1418 the target can't compare directly against that constant. For
1419 this case, we look for a SET immediately before the comparison
1420 that puts a constant in that register.
1421
1422 2. GCC may have canonicalized the conditional, for example
1423 replacing "if x < 4" with "if x <= 3". We can undo that (or
1424 make equivalent types of changes) to get the constants we need
1425 if they're off by one in the right direction. */
1426
1427 if (GET_CODE (target) == CONST_INT)
1428 {
1429 enum rtx_code code = GET_CODE (if_info->cond);
1430 rtx op_a = XEXP (if_info->cond, 0);
1431 rtx op_b = XEXP (if_info->cond, 1);
1432 rtx prev_insn;
1433
1434 /* First, look to see if we put a constant in a register. */
1435 prev_insn = PREV_INSN (if_info->cond_earliest);
1436 if (prev_insn
1437 && INSN_P (prev_insn)
1438 && GET_CODE (PATTERN (prev_insn)) == SET)
1439 {
1440 rtx src = find_reg_equal_equiv_note (prev_insn);
1441 if (!src)
1442 src = SET_SRC (PATTERN (prev_insn));
1443 if (GET_CODE (src) == CONST_INT)
1444 {
1445 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1446 op_a = src;
1447 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1448 op_b = src;
1449
1450 if (GET_CODE (op_a) == CONST_INT)
1451 {
1452 rtx tmp = op_a;
1453 op_a = op_b;
1454 op_b = tmp;
1455 code = swap_condition (code);
1456 }
1457 }
1458 }
1459
1460 /* Now, look to see if we can get the right constant by
1461 adjusting the conditional. */
1462 if (GET_CODE (op_b) == CONST_INT)
1463 {
1464 HOST_WIDE_INT desired_val = INTVAL (target);
1465 HOST_WIDE_INT actual_val = INTVAL (op_b);
1466
1467 switch (code)
1468 {
1469 case LT:
1470 if (actual_val == desired_val + 1)
1471 {
1472 code = LE;
1473 op_b = GEN_INT (desired_val);
1474 }
1475 break;
1476 case LE:
1477 if (actual_val == desired_val - 1)
1478 {
1479 code = LT;
1480 op_b = GEN_INT (desired_val);
1481 }
1482 break;
1483 case GT:
1484 if (actual_val == desired_val - 1)
1485 {
1486 code = GE;
1487 op_b = GEN_INT (desired_val);
1488 }
1489 break;
1490 case GE:
1491 if (actual_val == desired_val + 1)
1492 {
1493 code = GT;
1494 op_b = GEN_INT (desired_val);
1495 }
1496 break;
1497 default:
1498 break;
1499 }
1500 }
1501
1502 /* If we made any changes, generate a new conditional that is
1503 equivalent to what we started with, but has the right
1504 constants in it. */
1505 if (code != GET_CODE (if_info->cond)
1506 || op_a != XEXP (if_info->cond, 0)
1507 || op_b != XEXP (if_info->cond, 1))
1508 {
1509 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1510 *earliest = if_info->cond_earliest;
1511 return cond;
1512 }
1513 }
1514
1515 cond = canonicalize_condition (if_info->jump, cond, reverse,
1516 earliest, target, false, true);
1517 if (! cond || ! reg_mentioned_p (target, cond))
1518 return NULL;
1519
1520 /* We almost certainly searched back to a different place.
1521 Need to re-verify correct lifetimes. */
1522
1523 /* X may not be mentioned in the range (cond_earliest, jump]. */
1524 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1525 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1526 return NULL;
1527
1528 /* A and B may not be modified in the range [cond_earliest, jump). */
1529 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1530 if (INSN_P (insn)
1531 && (modified_in_p (if_info->a, insn)
1532 || modified_in_p (if_info->b, insn)))
1533 return NULL;
1534
1535 return cond;
1536 }
1537
1538 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1539
1540 static int
1541 noce_try_minmax (struct noce_if_info *if_info)
1542 {
1543 rtx cond, earliest, target, seq;
1544 enum rtx_code code, op;
1545 int unsignedp;
1546
1547 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1548 if (no_new_pseudos)
1549 return FALSE;
1550
1551 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1552 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1553 to get the target to tell us... */
1554 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1555 || HONOR_NANS (GET_MODE (if_info->x)))
1556 return FALSE;
1557
1558 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1559 if (!cond)
1560 return FALSE;
1561
1562 /* Verify the condition is of the form we expect, and canonicalize
1563 the comparison code. */
1564 code = GET_CODE (cond);
1565 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1566 {
1567 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1568 return FALSE;
1569 }
1570 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1571 {
1572 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1573 return FALSE;
1574 code = swap_condition (code);
1575 }
1576 else
1577 return FALSE;
1578
1579 /* Determine what sort of operation this is. Note that the code is for
1580 a taken branch, so the code->operation mapping appears backwards. */
1581 switch (code)
1582 {
1583 case LT:
1584 case LE:
1585 case UNLT:
1586 case UNLE:
1587 op = SMAX;
1588 unsignedp = 0;
1589 break;
1590 case GT:
1591 case GE:
1592 case UNGT:
1593 case UNGE:
1594 op = SMIN;
1595 unsignedp = 0;
1596 break;
1597 case LTU:
1598 case LEU:
1599 op = UMAX;
1600 unsignedp = 1;
1601 break;
1602 case GTU:
1603 case GEU:
1604 op = UMIN;
1605 unsignedp = 1;
1606 break;
1607 default:
1608 return FALSE;
1609 }
1610
1611 start_sequence ();
1612
1613 target = expand_simple_binop (GET_MODE (if_info->x), op,
1614 if_info->a, if_info->b,
1615 if_info->x, unsignedp, OPTAB_WIDEN);
1616 if (! target)
1617 {
1618 end_sequence ();
1619 return FALSE;
1620 }
1621 if (target != if_info->x)
1622 noce_emit_move_insn (if_info->x, target);
1623
1624 seq = end_ifcvt_sequence (if_info);
1625 if (!seq)
1626 return FALSE;
1627
1628 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1629 if_info->cond = cond;
1630 if_info->cond_earliest = earliest;
1631
1632 return TRUE;
1633 }
1634
1635 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1636
1637 static int
1638 noce_try_abs (struct noce_if_info *if_info)
1639 {
1640 rtx cond, earliest, target, seq, a, b, c;
1641 int negate;
1642
1643 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1644 if (no_new_pseudos)
1645 return FALSE;
1646
1647 /* Recognize A and B as constituting an ABS or NABS. */
1648 a = if_info->a;
1649 b = if_info->b;
1650 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1651 negate = 0;
1652 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1653 {
1654 c = a; a = b; b = c;
1655 negate = 1;
1656 }
1657 else
1658 return FALSE;
1659
1660 cond = noce_get_alt_condition (if_info, b, &earliest);
1661 if (!cond)
1662 return FALSE;
1663
1664 /* Verify the condition is of the form we expect. */
1665 if (rtx_equal_p (XEXP (cond, 0), b))
1666 c = XEXP (cond, 1);
1667 else if (rtx_equal_p (XEXP (cond, 1), b))
1668 c = XEXP (cond, 0);
1669 else
1670 return FALSE;
1671
1672 /* Verify that C is zero. Search backward through the block for
1673 a REG_EQUAL note if necessary. */
1674 if (REG_P (c))
1675 {
1676 rtx insn, note = NULL;
1677 for (insn = earliest;
1678 insn != BB_HEAD (if_info->test_bb);
1679 insn = PREV_INSN (insn))
1680 if (INSN_P (insn)
1681 && ((note = find_reg_note (insn, REG_EQUAL, c))
1682 || (note = find_reg_note (insn, REG_EQUIV, c))))
1683 break;
1684 if (! note)
1685 return FALSE;
1686 c = XEXP (note, 0);
1687 }
1688 if (MEM_P (c)
1689 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1690 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1691 c = get_pool_constant (XEXP (c, 0));
1692
1693 /* Work around funny ideas get_condition has wrt canonicalization.
1694 Note that these rtx constants are known to be CONST_INT, and
1695 therefore imply integer comparisons. */
1696 if (c == constm1_rtx && GET_CODE (cond) == GT)
1697 ;
1698 else if (c == const1_rtx && GET_CODE (cond) == LT)
1699 ;
1700 else if (c != CONST0_RTX (GET_MODE (b)))
1701 return FALSE;
1702
1703 /* Determine what sort of operation this is. */
1704 switch (GET_CODE (cond))
1705 {
1706 case LT:
1707 case LE:
1708 case UNLT:
1709 case UNLE:
1710 negate = !negate;
1711 break;
1712 case GT:
1713 case GE:
1714 case UNGT:
1715 case UNGE:
1716 break;
1717 default:
1718 return FALSE;
1719 }
1720
1721 start_sequence ();
1722
1723 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1724
1725 /* ??? It's a quandary whether cmove would be better here, especially
1726 for integers. Perhaps combine will clean things up. */
1727 if (target && negate)
1728 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1729
1730 if (! target)
1731 {
1732 end_sequence ();
1733 return FALSE;
1734 }
1735
1736 if (target != if_info->x)
1737 noce_emit_move_insn (if_info->x, target);
1738
1739 seq = end_ifcvt_sequence (if_info);
1740 if (!seq)
1741 return FALSE;
1742
1743 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1744 if_info->cond = cond;
1745 if_info->cond_earliest = earliest;
1746
1747 return TRUE;
1748 }
1749
1750 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1751
1752 static int
1753 noce_try_sign_mask (struct noce_if_info *if_info)
1754 {
1755 rtx cond, t, m, c, seq;
1756 enum machine_mode mode;
1757 enum rtx_code code;
1758
1759 if (no_new_pseudos)
1760 return FALSE;
1761
1762 cond = if_info->cond;
1763 code = GET_CODE (cond);
1764 m = XEXP (cond, 0);
1765 c = XEXP (cond, 1);
1766
1767 t = NULL_RTX;
1768 if (if_info->a == const0_rtx)
1769 {
1770 if ((code == LT && c == const0_rtx)
1771 || (code == LE && c == constm1_rtx))
1772 t = if_info->b;
1773 }
1774 else if (if_info->b == const0_rtx)
1775 {
1776 if ((code == GE && c == const0_rtx)
1777 || (code == GT && c == constm1_rtx))
1778 t = if_info->a;
1779 }
1780
1781 if (! t || side_effects_p (t))
1782 return FALSE;
1783
1784 /* We currently don't handle different modes. */
1785 mode = GET_MODE (t);
1786 if (GET_MODE (m) != mode)
1787 return FALSE;
1788
1789 /* This is only profitable if T is cheap, or T is unconditionally
1790 executed/evaluated in the original insn sequence. */
1791 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1792 && (!if_info->b_unconditional
1793 || t != if_info->b))
1794 return FALSE;
1795
1796 start_sequence ();
1797 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1798 "(signed) m >> 31" directly. This benefits targets with specialized
1799 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1800 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1801 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1802 : NULL_RTX;
1803
1804 if (!t)
1805 {
1806 end_sequence ();
1807 return FALSE;
1808 }
1809
1810 noce_emit_move_insn (if_info->x, t);
1811
1812 seq = end_ifcvt_sequence (if_info);
1813 if (!seq)
1814 return FALSE;
1815
1816 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1817 return TRUE;
1818 }
1819
1820
1821 /* Similar to get_condition, only the resulting condition must be
1822 valid at JUMP, instead of at EARLIEST. */
1823
1824 static rtx
1825 noce_get_condition (rtx jump, rtx *earliest)
1826 {
1827 rtx cond, set, tmp;
1828 bool reverse;
1829
1830 if (! any_condjump_p (jump))
1831 return NULL_RTX;
1832
1833 set = pc_set (jump);
1834
1835 /* If this branches to JUMP_LABEL when the condition is false,
1836 reverse the condition. */
1837 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1838 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
1839
1840 /* If the condition variable is a register and is MODE_INT, accept it. */
1841
1842 cond = XEXP (SET_SRC (set), 0);
1843 tmp = XEXP (cond, 0);
1844 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
1845 {
1846 *earliest = jump;
1847
1848 if (reverse)
1849 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
1850 GET_MODE (cond), tmp, XEXP (cond, 1));
1851 return cond;
1852 }
1853
1854 /* Otherwise, fall back on canonicalize_condition to do the dirty
1855 work of manipulating MODE_CC values and COMPARE rtx codes. */
1856 return canonicalize_condition (jump, cond, reverse, earliest,
1857 NULL_RTX, false, true);
1858 }
1859
1860 /* Return true if OP is ok for if-then-else processing. */
1861
1862 static int
1863 noce_operand_ok (rtx op)
1864 {
1865 /* We special-case memories, so handle any of them with
1866 no address side effects. */
1867 if (MEM_P (op))
1868 return ! side_effects_p (XEXP (op, 0));
1869
1870 if (side_effects_p (op))
1871 return FALSE;
1872
1873 return ! may_trap_p (op);
1874 }
1875
1876 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
1877 without using conditional execution. Return TRUE if we were
1878 successful at converting the block. */
1879
1880 static int
1881 noce_process_if_block (struct ce_if_block * ce_info)
1882 {
1883 basic_block test_bb = ce_info->test_bb; /* test block */
1884 basic_block then_bb = ce_info->then_bb; /* THEN */
1885 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
1886 struct noce_if_info if_info;
1887 rtx insn_a, insn_b;
1888 rtx set_a, set_b;
1889 rtx orig_x, x, a, b;
1890 rtx jump, cond;
1891
1892 /* We're looking for patterns of the form
1893
1894 (1) if (...) x = a; else x = b;
1895 (2) x = b; if (...) x = a;
1896 (3) if (...) x = a; // as if with an initial x = x.
1897
1898 The later patterns require jumps to be more expensive.
1899
1900 ??? For future expansion, look for multiple X in such patterns. */
1901
1902 /* If test is comprised of && or || elements, don't handle it unless it is
1903 the special case of && elements without an ELSE block. */
1904 if (ce_info->num_multiple_test_blocks)
1905 {
1906 if (else_bb || ! ce_info->and_and_p)
1907 return FALSE;
1908
1909 ce_info->test_bb = test_bb = ce_info->last_test_bb;
1910 ce_info->num_multiple_test_blocks = 0;
1911 ce_info->num_and_and_blocks = 0;
1912 ce_info->num_or_or_blocks = 0;
1913 }
1914
1915 /* If this is not a standard conditional jump, we can't parse it. */
1916 jump = BB_END (test_bb);
1917 cond = noce_get_condition (jump, &if_info.cond_earliest);
1918 if (! cond)
1919 return FALSE;
1920
1921 /* If the conditional jump is more than just a conditional
1922 jump, then we can not do if-conversion on this block. */
1923 if (! onlyjump_p (jump))
1924 return FALSE;
1925
1926 /* We must be comparing objects whose modes imply the size. */
1927 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
1928 return FALSE;
1929
1930 /* Look for one of the potential sets. */
1931 insn_a = first_active_insn (then_bb);
1932 if (! insn_a
1933 || insn_a != last_active_insn (then_bb, FALSE)
1934 || (set_a = single_set (insn_a)) == NULL_RTX)
1935 return FALSE;
1936
1937 x = SET_DEST (set_a);
1938 a = SET_SRC (set_a);
1939
1940 /* Look for the other potential set. Make sure we've got equivalent
1941 destinations. */
1942 /* ??? This is overconservative. Storing to two different mems is
1943 as easy as conditionally computing the address. Storing to a
1944 single mem merely requires a scratch memory to use as one of the
1945 destination addresses; often the memory immediately below the
1946 stack pointer is available for this. */
1947 set_b = NULL_RTX;
1948 if (else_bb)
1949 {
1950 insn_b = first_active_insn (else_bb);
1951 if (! insn_b
1952 || insn_b != last_active_insn (else_bb, FALSE)
1953 || (set_b = single_set (insn_b)) == NULL_RTX
1954 || ! rtx_equal_p (x, SET_DEST (set_b)))
1955 return FALSE;
1956 }
1957 else
1958 {
1959 insn_b = prev_nonnote_insn (if_info.cond_earliest);
1960 /* We're going to be moving the evaluation of B down from above
1961 COND_EARLIEST to JUMP. Make sure the relevant data is still
1962 intact. */
1963 if (! insn_b
1964 || !NONJUMP_INSN_P (insn_b)
1965 || (set_b = single_set (insn_b)) == NULL_RTX
1966 || ! rtx_equal_p (x, SET_DEST (set_b))
1967 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
1968 || modified_between_p (SET_SRC (set_b),
1969 PREV_INSN (if_info.cond_earliest), jump)
1970 /* Likewise with X. In particular this can happen when
1971 noce_get_condition looks farther back in the instruction
1972 stream than one might expect. */
1973 || reg_overlap_mentioned_p (x, cond)
1974 || reg_overlap_mentioned_p (x, a)
1975 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
1976 insn_b = set_b = NULL_RTX;
1977 }
1978
1979 /* If x has side effects then only the if-then-else form is safe to
1980 convert. But even in that case we would need to restore any notes
1981 (such as REG_INC) at then end. That can be tricky if
1982 noce_emit_move_insn expands to more than one insn, so disable the
1983 optimization entirely for now if there are side effects. */
1984 if (side_effects_p (x))
1985 return FALSE;
1986
1987 b = (set_b ? SET_SRC (set_b) : x);
1988
1989 /* Only operate on register destinations, and even then avoid extending
1990 the lifetime of hard registers on small register class machines. */
1991 orig_x = x;
1992 if (!REG_P (x)
1993 || (SMALL_REGISTER_CLASSES
1994 && REGNO (x) < FIRST_PSEUDO_REGISTER))
1995 {
1996 if (no_new_pseudos || GET_MODE (x) == BLKmode)
1997 return FALSE;
1998 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
1999 ? XEXP (x, 0) : x));
2000 }
2001
2002 /* Don't operate on sources that may trap or are volatile. */
2003 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2004 return FALSE;
2005
2006 /* Set up the info block for our subroutines. */
2007 if_info.test_bb = test_bb;
2008 if_info.cond = cond;
2009 if_info.jump = jump;
2010 if_info.insn_a = insn_a;
2011 if_info.insn_b = insn_b;
2012 if_info.x = x;
2013 if_info.a = a;
2014 if_info.b = b;
2015 if_info.b_unconditional = else_bb == 0;
2016
2017 /* Try optimizations in some approximation of a useful order. */
2018 /* ??? Should first look to see if X is live incoming at all. If it
2019 isn't, we don't need anything but an unconditional set. */
2020
2021 /* Look and see if A and B are really the same. Avoid creating silly
2022 cmove constructs that no one will fix up later. */
2023 if (rtx_equal_p (a, b))
2024 {
2025 /* If we have an INSN_B, we don't have to create any new rtl. Just
2026 move the instruction that we already have. If we don't have an
2027 INSN_B, that means that A == X, and we've got a noop move. In
2028 that case don't do anything and let the code below delete INSN_A. */
2029 if (insn_b && else_bb)
2030 {
2031 rtx note;
2032
2033 if (else_bb && insn_b == BB_END (else_bb))
2034 BB_END (else_bb) = PREV_INSN (insn_b);
2035 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2036
2037 /* If there was a REG_EQUAL note, delete it since it may have been
2038 true due to this insn being after a jump. */
2039 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2040 remove_note (insn_b, note);
2041
2042 insn_b = NULL_RTX;
2043 }
2044 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2045 x must be executed twice. */
2046 else if (insn_b && side_effects_p (orig_x))
2047 return FALSE;
2048
2049 x = orig_x;
2050 goto success;
2051 }
2052
2053 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2054 for most optimizations if writing to x may trap, i.e. it's a memory
2055 other than a static var or a stack slot. */
2056 if (! set_b
2057 && MEM_P (orig_x)
2058 && ! MEM_NOTRAP_P (orig_x)
2059 && rtx_addr_can_trap_p (XEXP (orig_x, 0)))
2060 {
2061 if (HAVE_conditional_move)
2062 {
2063 if (noce_try_cmove (&if_info))
2064 goto success;
2065 if (! HAVE_conditional_execution
2066 && noce_try_cmove_arith (&if_info))
2067 goto success;
2068 }
2069 return FALSE;
2070 }
2071
2072 if (noce_try_move (&if_info))
2073 goto success;
2074 if (noce_try_store_flag (&if_info))
2075 goto success;
2076 if (noce_try_minmax (&if_info))
2077 goto success;
2078 if (noce_try_abs (&if_info))
2079 goto success;
2080 if (HAVE_conditional_move
2081 && noce_try_cmove (&if_info))
2082 goto success;
2083 if (! HAVE_conditional_execution)
2084 {
2085 if (noce_try_store_flag_constants (&if_info))
2086 goto success;
2087 if (noce_try_addcc (&if_info))
2088 goto success;
2089 if (noce_try_store_flag_mask (&if_info))
2090 goto success;
2091 if (HAVE_conditional_move
2092 && noce_try_cmove_arith (&if_info))
2093 goto success;
2094 if (noce_try_sign_mask (&if_info))
2095 goto success;
2096 }
2097
2098 return FALSE;
2099
2100 success:
2101 /* The original sets may now be killed. */
2102 delete_insn (insn_a);
2103
2104 /* Several special cases here: First, we may have reused insn_b above,
2105 in which case insn_b is now NULL. Second, we want to delete insn_b
2106 if it came from the ELSE block, because follows the now correct
2107 write that appears in the TEST block. However, if we got insn_b from
2108 the TEST block, it may in fact be loading data needed for the comparison.
2109 We'll let life_analysis remove the insn if it's really dead. */
2110 if (insn_b && else_bb)
2111 delete_insn (insn_b);
2112
2113 /* The new insns will have been inserted immediately before the jump. We
2114 should be able to remove the jump with impunity, but the condition itself
2115 may have been modified by gcse to be shared across basic blocks. */
2116 delete_insn (jump);
2117
2118 /* If we used a temporary, fix it up now. */
2119 if (orig_x != x)
2120 {
2121 start_sequence ();
2122 noce_emit_move_insn (orig_x, x);
2123 insn_b = get_insns ();
2124 set_used_flags (orig_x);
2125 unshare_all_rtl_in_chain (insn_b);
2126 end_sequence ();
2127
2128 emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2129 }
2130
2131 /* Merge the blocks! */
2132 merge_if_block (ce_info);
2133
2134 return TRUE;
2135 }
2136 \f
2137 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2138 straight line code. Return true if successful. */
2139
2140 static int
2141 process_if_block (struct ce_if_block * ce_info)
2142 {
2143 if (! reload_completed
2144 && noce_process_if_block (ce_info))
2145 return TRUE;
2146
2147 if (HAVE_conditional_execution && reload_completed)
2148 {
2149 /* If we have && and || tests, try to first handle combining the && and
2150 || tests into the conditional code, and if that fails, go back and
2151 handle it without the && and ||, which at present handles the && case
2152 if there was no ELSE block. */
2153 if (cond_exec_process_if_block (ce_info, TRUE))
2154 return TRUE;
2155
2156 if (ce_info->num_multiple_test_blocks)
2157 {
2158 cancel_changes (0);
2159
2160 if (cond_exec_process_if_block (ce_info, FALSE))
2161 return TRUE;
2162 }
2163 }
2164
2165 return FALSE;
2166 }
2167
2168 /* Merge the blocks and mark for local life update. */
2169
2170 static void
2171 merge_if_block (struct ce_if_block * ce_info)
2172 {
2173 basic_block test_bb = ce_info->test_bb; /* last test block */
2174 basic_block then_bb = ce_info->then_bb; /* THEN */
2175 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2176 basic_block join_bb = ce_info->join_bb; /* join block */
2177 basic_block combo_bb;
2178
2179 /* All block merging is done into the lower block numbers. */
2180
2181 combo_bb = test_bb;
2182
2183 /* Merge any basic blocks to handle && and || subtests. Each of
2184 the blocks are on the fallthru path from the predecessor block. */
2185 if (ce_info->num_multiple_test_blocks > 0)
2186 {
2187 basic_block bb = test_bb;
2188 basic_block last_test_bb = ce_info->last_test_bb;
2189 basic_block fallthru = block_fallthru (bb);
2190
2191 do
2192 {
2193 bb = fallthru;
2194 fallthru = block_fallthru (bb);
2195 merge_blocks (combo_bb, bb);
2196 num_true_changes++;
2197 }
2198 while (bb != last_test_bb);
2199 }
2200
2201 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2202 label, but it might if there were || tests. That label's count should be
2203 zero, and it normally should be removed. */
2204
2205 if (then_bb)
2206 {
2207 if (combo_bb->global_live_at_end)
2208 COPY_REG_SET (combo_bb->global_live_at_end,
2209 then_bb->global_live_at_end);
2210 merge_blocks (combo_bb, then_bb);
2211 num_true_changes++;
2212 }
2213
2214 /* The ELSE block, if it existed, had a label. That label count
2215 will almost always be zero, but odd things can happen when labels
2216 get their addresses taken. */
2217 if (else_bb)
2218 {
2219 merge_blocks (combo_bb, else_bb);
2220 num_true_changes++;
2221 }
2222
2223 /* If there was no join block reported, that means it was not adjacent
2224 to the others, and so we cannot merge them. */
2225
2226 if (! join_bb)
2227 {
2228 rtx last = BB_END (combo_bb);
2229
2230 /* The outgoing edge for the current COMBO block should already
2231 be correct. Verify this. */
2232 if (EDGE_COUNT (combo_bb->succs) == 0)
2233 {
2234 if (find_reg_note (last, REG_NORETURN, NULL))
2235 ;
2236 else if (NONJUMP_INSN_P (last)
2237 && GET_CODE (PATTERN (last)) == TRAP_IF
2238 && TRAP_CONDITION (PATTERN (last)) == const_true_rtx)
2239 ;
2240 else
2241 abort ();
2242 }
2243
2244 /* There should still be something at the end of the THEN or ELSE
2245 blocks taking us to our final destination. */
2246 else if (JUMP_P (last))
2247 ;
2248 else if (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2249 && CALL_P (last)
2250 && SIBLING_CALL_P (last))
2251 ;
2252 else if ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2253 && can_throw_internal (last))
2254 ;
2255 else
2256 abort ();
2257 }
2258
2259 /* The JOIN block may have had quite a number of other predecessors too.
2260 Since we've already merged the TEST, THEN and ELSE blocks, we should
2261 have only one remaining edge from our if-then-else diamond. If there
2262 is more than one remaining edge, it must come from elsewhere. There
2263 may be zero incoming edges if the THEN block didn't actually join
2264 back up (as with a call to abort). */
2265 else if (EDGE_COUNT (join_bb->preds) < 2
2266 && join_bb != EXIT_BLOCK_PTR)
2267 {
2268 /* We can merge the JOIN. */
2269 if (combo_bb->global_live_at_end)
2270 COPY_REG_SET (combo_bb->global_live_at_end,
2271 join_bb->global_live_at_end);
2272
2273 merge_blocks (combo_bb, join_bb);
2274 num_true_changes++;
2275 }
2276 else
2277 {
2278 /* We cannot merge the JOIN. */
2279
2280 /* The outgoing edge for the current COMBO block should already
2281 be correct. Verify this. */
2282 if (EDGE_COUNT (combo_bb->succs) > 1
2283 || EDGE_SUCC (combo_bb, 0)->dest != join_bb)
2284 abort ();
2285
2286 /* Remove the jump and cruft from the end of the COMBO block. */
2287 if (join_bb != EXIT_BLOCK_PTR)
2288 tidy_fallthru_edge (EDGE_SUCC (combo_bb, 0));
2289 }
2290
2291 num_updated_if_blocks++;
2292 }
2293 \f
2294 /* Find a block ending in a simple IF condition and try to transform it
2295 in some way. When converting a multi-block condition, put the new code
2296 in the first such block and delete the rest. Return a pointer to this
2297 first block if some transformation was done. Return NULL otherwise. */
2298
2299 static basic_block
2300 find_if_header (basic_block test_bb, int pass)
2301 {
2302 ce_if_block_t ce_info;
2303 edge then_edge;
2304 edge else_edge;
2305
2306 /* The kind of block we're looking for has exactly two successors. */
2307 if (EDGE_COUNT (test_bb->succs) != 2)
2308 return NULL;
2309
2310 then_edge = EDGE_SUCC (test_bb, 0);
2311 else_edge = EDGE_SUCC (test_bb, 1);
2312
2313 /* Neither edge should be abnormal. */
2314 if ((then_edge->flags & EDGE_COMPLEX)
2315 || (else_edge->flags & EDGE_COMPLEX))
2316 return NULL;
2317
2318 /* Nor exit the loop. */
2319 if ((then_edge->flags & EDGE_LOOP_EXIT)
2320 || (else_edge->flags & EDGE_LOOP_EXIT))
2321 return NULL;
2322
2323 /* The THEN edge is canonically the one that falls through. */
2324 if (then_edge->flags & EDGE_FALLTHRU)
2325 ;
2326 else if (else_edge->flags & EDGE_FALLTHRU)
2327 {
2328 edge e = else_edge;
2329 else_edge = then_edge;
2330 then_edge = e;
2331 }
2332 else
2333 /* Otherwise this must be a multiway branch of some sort. */
2334 return NULL;
2335
2336 memset (&ce_info, '\0', sizeof (ce_info));
2337 ce_info.test_bb = test_bb;
2338 ce_info.then_bb = then_edge->dest;
2339 ce_info.else_bb = else_edge->dest;
2340 ce_info.pass = pass;
2341
2342 #ifdef IFCVT_INIT_EXTRA_FIELDS
2343 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2344 #endif
2345
2346 if (find_if_block (&ce_info))
2347 goto success;
2348
2349 if (HAVE_trap && HAVE_conditional_trap
2350 && find_cond_trap (test_bb, then_edge, else_edge))
2351 goto success;
2352
2353 if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2354 && (! HAVE_conditional_execution || reload_completed))
2355 {
2356 if (find_if_case_1 (test_bb, then_edge, else_edge))
2357 goto success;
2358 if (find_if_case_2 (test_bb, then_edge, else_edge))
2359 goto success;
2360 }
2361
2362 return NULL;
2363
2364 success:
2365 if (dump_file)
2366 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2367 return ce_info.test_bb;
2368 }
2369
2370 /* Return true if a block has two edges, one of which falls through to the next
2371 block, and the other jumps to a specific block, so that we can tell if the
2372 block is part of an && test or an || test. Returns either -1 or the number
2373 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2374
2375 static int
2376 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2377 {
2378 edge cur_edge;
2379 int fallthru_p = FALSE;
2380 int jump_p = FALSE;
2381 rtx insn;
2382 rtx end;
2383 int n_insns = 0;
2384 edge_iterator ei;
2385
2386 if (!cur_bb || !target_bb)
2387 return -1;
2388
2389 /* If no edges, obviously it doesn't jump or fallthru. */
2390 if (EDGE_COUNT (cur_bb->succs) == 0)
2391 return FALSE;
2392
2393 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2394 {
2395 if (cur_edge->flags & EDGE_COMPLEX)
2396 /* Anything complex isn't what we want. */
2397 return -1;
2398
2399 else if (cur_edge->flags & EDGE_FALLTHRU)
2400 fallthru_p = TRUE;
2401
2402 else if (cur_edge->dest == target_bb)
2403 jump_p = TRUE;
2404
2405 else
2406 return -1;
2407 }
2408
2409 if ((jump_p & fallthru_p) == 0)
2410 return -1;
2411
2412 /* Don't allow calls in the block, since this is used to group && and ||
2413 together for conditional execution support. ??? we should support
2414 conditional execution support across calls for IA-64 some day, but
2415 for now it makes the code simpler. */
2416 end = BB_END (cur_bb);
2417 insn = BB_HEAD (cur_bb);
2418
2419 while (insn != NULL_RTX)
2420 {
2421 if (CALL_P (insn))
2422 return -1;
2423
2424 if (INSN_P (insn)
2425 && !JUMP_P (insn)
2426 && GET_CODE (PATTERN (insn)) != USE
2427 && GET_CODE (PATTERN (insn)) != CLOBBER)
2428 n_insns++;
2429
2430 if (insn == end)
2431 break;
2432
2433 insn = NEXT_INSN (insn);
2434 }
2435
2436 return n_insns;
2437 }
2438
2439 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2440 block. If so, we'll try to convert the insns to not require the branch.
2441 Return TRUE if we were successful at converting the block. */
2442
2443 static int
2444 find_if_block (struct ce_if_block * ce_info)
2445 {
2446 basic_block test_bb = ce_info->test_bb;
2447 basic_block then_bb = ce_info->then_bb;
2448 basic_block else_bb = ce_info->else_bb;
2449 basic_block join_bb = NULL_BLOCK;
2450 edge cur_edge;
2451 basic_block next;
2452 edge_iterator ei;
2453
2454 ce_info->last_test_bb = test_bb;
2455
2456 /* Discover if any fall through predecessors of the current test basic block
2457 were && tests (which jump to the else block) or || tests (which jump to
2458 the then block). */
2459 if (HAVE_conditional_execution && reload_completed
2460 && EDGE_COUNT (test_bb->preds) == 1
2461 && EDGE_PRED (test_bb, 0)->flags == EDGE_FALLTHRU)
2462 {
2463 basic_block bb = EDGE_PRED (test_bb, 0)->src;
2464 basic_block target_bb;
2465 int max_insns = MAX_CONDITIONAL_EXECUTE;
2466 int n_insns;
2467
2468 /* Determine if the preceding block is an && or || block. */
2469 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
2470 {
2471 ce_info->and_and_p = TRUE;
2472 target_bb = else_bb;
2473 }
2474 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
2475 {
2476 ce_info->and_and_p = FALSE;
2477 target_bb = then_bb;
2478 }
2479 else
2480 target_bb = NULL_BLOCK;
2481
2482 if (target_bb && n_insns <= max_insns)
2483 {
2484 int total_insns = 0;
2485 int blocks = 0;
2486
2487 ce_info->last_test_bb = test_bb;
2488
2489 /* Found at least one && or || block, look for more. */
2490 do
2491 {
2492 ce_info->test_bb = test_bb = bb;
2493 total_insns += n_insns;
2494 blocks++;
2495
2496 if (EDGE_COUNT (bb->preds) != 1)
2497 break;
2498
2499 bb = EDGE_PRED (bb, 0)->src;
2500 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
2501 }
2502 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
2503
2504 ce_info->num_multiple_test_blocks = blocks;
2505 ce_info->num_multiple_test_insns = total_insns;
2506
2507 if (ce_info->and_and_p)
2508 ce_info->num_and_and_blocks = blocks;
2509 else
2510 ce_info->num_or_or_blocks = blocks;
2511 }
2512 }
2513
2514 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
2515 other than any || blocks which jump to the THEN block. */
2516 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
2517 return FALSE;
2518
2519 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2520 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
2521 {
2522 if (cur_edge->flags & EDGE_COMPLEX)
2523 return FALSE;
2524 }
2525
2526 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
2527 {
2528 if (cur_edge->flags & EDGE_COMPLEX)
2529 return FALSE;
2530 }
2531
2532 /* The THEN block of an IF-THEN combo must have zero or one successors. */
2533 if (EDGE_COUNT (then_bb->succs) > 0
2534 && (EDGE_COUNT (then_bb->succs) > 1
2535 || (EDGE_SUCC (then_bb, 0)->flags & EDGE_COMPLEX)
2536 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
2537 return FALSE;
2538
2539 /* If the THEN block has no successors, conditional execution can still
2540 make a conditional call. Don't do this unless the ELSE block has
2541 only one incoming edge -- the CFG manipulation is too ugly otherwise.
2542 Check for the last insn of the THEN block being an indirect jump, which
2543 is listed as not having any successors, but confuses the rest of the CE
2544 code processing. ??? we should fix this in the future. */
2545 if (EDGE_COUNT (then_bb->succs) == 0)
2546 {
2547 if (EDGE_COUNT (else_bb->preds) == 1)
2548 {
2549 rtx last_insn = BB_END (then_bb);
2550
2551 while (last_insn
2552 && NOTE_P (last_insn)
2553 && last_insn != BB_HEAD (then_bb))
2554 last_insn = PREV_INSN (last_insn);
2555
2556 if (last_insn
2557 && JUMP_P (last_insn)
2558 && ! simplejump_p (last_insn))
2559 return FALSE;
2560
2561 join_bb = else_bb;
2562 else_bb = NULL_BLOCK;
2563 }
2564 else
2565 return FALSE;
2566 }
2567
2568 /* If the THEN block's successor is the other edge out of the TEST block,
2569 then we have an IF-THEN combo without an ELSE. */
2570 else if (EDGE_SUCC (then_bb, 0)->dest == else_bb)
2571 {
2572 join_bb = else_bb;
2573 else_bb = NULL_BLOCK;
2574 }
2575
2576 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
2577 has exactly one predecessor and one successor, and the outgoing edge
2578 is not complex, then we have an IF-THEN-ELSE combo. */
2579 else if (EDGE_COUNT (else_bb->succs) == 1
2580 && EDGE_SUCC (then_bb, 0)->dest == EDGE_SUCC (else_bb, 0)->dest
2581 && EDGE_COUNT (else_bb->preds) == 1
2582 && ! (EDGE_SUCC (else_bb, 0)->flags & EDGE_COMPLEX)
2583 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
2584 join_bb = EDGE_SUCC (else_bb, 0)->dest;
2585
2586 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
2587 else
2588 return FALSE;
2589
2590 num_possible_if_blocks++;
2591
2592 if (dump_file)
2593 {
2594 fprintf (dump_file,
2595 "\nIF-THEN%s block found, pass %d, start block %d "
2596 "[insn %d], then %d [%d]",
2597 (else_bb) ? "-ELSE" : "",
2598 ce_info->pass,
2599 test_bb->index,
2600 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
2601 then_bb->index,
2602 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
2603
2604 if (else_bb)
2605 fprintf (dump_file, ", else %d [%d]",
2606 else_bb->index,
2607 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
2608
2609 fprintf (dump_file, ", join %d [%d]",
2610 join_bb->index,
2611 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
2612
2613 if (ce_info->num_multiple_test_blocks > 0)
2614 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
2615 ce_info->num_multiple_test_blocks,
2616 (ce_info->and_and_p) ? "&&" : "||",
2617 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
2618 ce_info->last_test_bb->index,
2619 ((BB_HEAD (ce_info->last_test_bb))
2620 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
2621 : -1));
2622
2623 fputc ('\n', dump_file);
2624 }
2625
2626 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
2627 first condition for free, since we've already asserted that there's a
2628 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
2629 we checked the FALLTHRU flag, those are already adjacent to the last IF
2630 block. */
2631 /* ??? As an enhancement, move the ELSE block. Have to deal with
2632 BLOCK notes, if by no other means than aborting the merge if they
2633 exist. Sticky enough I don't want to think about it now. */
2634 next = then_bb;
2635 if (else_bb && (next = next->next_bb) != else_bb)
2636 return FALSE;
2637 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
2638 {
2639 if (else_bb)
2640 join_bb = NULL;
2641 else
2642 return FALSE;
2643 }
2644
2645 /* Do the real work. */
2646 ce_info->else_bb = else_bb;
2647 ce_info->join_bb = join_bb;
2648
2649 return process_if_block (ce_info);
2650 }
2651
2652 /* Convert a branch over a trap, or a branch
2653 to a trap, into a conditional trap. */
2654
2655 static int
2656 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
2657 {
2658 basic_block then_bb = then_edge->dest;
2659 basic_block else_bb = else_edge->dest;
2660 basic_block other_bb, trap_bb;
2661 rtx trap, jump, cond, cond_earliest, seq;
2662 enum rtx_code code;
2663
2664 /* Locate the block with the trap instruction. */
2665 /* ??? While we look for no successors, we really ought to allow
2666 EH successors. Need to fix merge_if_block for that to work. */
2667 if ((trap = block_has_only_trap (then_bb)) != NULL)
2668 trap_bb = then_bb, other_bb = else_bb;
2669 else if ((trap = block_has_only_trap (else_bb)) != NULL)
2670 trap_bb = else_bb, other_bb = then_bb;
2671 else
2672 return FALSE;
2673
2674 if (dump_file)
2675 {
2676 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
2677 test_bb->index, trap_bb->index);
2678 }
2679
2680 /* If this is not a standard conditional jump, we can't parse it. */
2681 jump = BB_END (test_bb);
2682 cond = noce_get_condition (jump, &cond_earliest);
2683 if (! cond)
2684 return FALSE;
2685
2686 /* If the conditional jump is more than just a conditional jump, then
2687 we can not do if-conversion on this block. */
2688 if (! onlyjump_p (jump))
2689 return FALSE;
2690
2691 /* We must be comparing objects whose modes imply the size. */
2692 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2693 return FALSE;
2694
2695 /* Reverse the comparison code, if necessary. */
2696 code = GET_CODE (cond);
2697 if (then_bb == trap_bb)
2698 {
2699 code = reversed_comparison_code (cond, jump);
2700 if (code == UNKNOWN)
2701 return FALSE;
2702 }
2703
2704 /* Attempt to generate the conditional trap. */
2705 seq = gen_cond_trap (code, XEXP (cond, 0),
2706 XEXP (cond, 1),
2707 TRAP_CODE (PATTERN (trap)));
2708 if (seq == NULL)
2709 return FALSE;
2710
2711 num_true_changes++;
2712
2713 /* Emit the new insns before cond_earliest. */
2714 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
2715
2716 /* Delete the trap block if possible. */
2717 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
2718 if (EDGE_COUNT (trap_bb->preds) == 0)
2719 delete_basic_block (trap_bb);
2720
2721 /* If the non-trap block and the test are now adjacent, merge them.
2722 Otherwise we must insert a direct branch. */
2723 if (test_bb->next_bb == other_bb)
2724 {
2725 struct ce_if_block new_ce_info;
2726 delete_insn (jump);
2727 memset (&new_ce_info, '\0', sizeof (new_ce_info));
2728 new_ce_info.test_bb = test_bb;
2729 new_ce_info.then_bb = NULL;
2730 new_ce_info.else_bb = NULL;
2731 new_ce_info.join_bb = other_bb;
2732 merge_if_block (&new_ce_info);
2733 }
2734 else
2735 {
2736 rtx lab, newjump;
2737
2738 lab = JUMP_LABEL (jump);
2739 newjump = emit_jump_insn_after (gen_jump (lab), jump);
2740 LABEL_NUSES (lab) += 1;
2741 JUMP_LABEL (newjump) = lab;
2742 emit_barrier_after (newjump);
2743
2744 delete_insn (jump);
2745 }
2746
2747 return TRUE;
2748 }
2749
2750 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
2751 return it. */
2752
2753 static rtx
2754 block_has_only_trap (basic_block bb)
2755 {
2756 rtx trap;
2757
2758 /* We're not the exit block. */
2759 if (bb == EXIT_BLOCK_PTR)
2760 return NULL_RTX;
2761
2762 /* The block must have no successors. */
2763 if (EDGE_COUNT (bb->succs) > 0)
2764 return NULL_RTX;
2765
2766 /* The only instruction in the THEN block must be the trap. */
2767 trap = first_active_insn (bb);
2768 if (! (trap == BB_END (bb)
2769 && GET_CODE (PATTERN (trap)) == TRAP_IF
2770 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
2771 return NULL_RTX;
2772
2773 return trap;
2774 }
2775
2776 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
2777 transformable, but not necessarily the other. There need be no
2778 JOIN block.
2779
2780 Return TRUE if we were successful at converting the block.
2781
2782 Cases we'd like to look at:
2783
2784 (1)
2785 if (test) goto over; // x not live
2786 x = a;
2787 goto label;
2788 over:
2789
2790 becomes
2791
2792 x = a;
2793 if (! test) goto label;
2794
2795 (2)
2796 if (test) goto E; // x not live
2797 x = big();
2798 goto L;
2799 E:
2800 x = b;
2801 goto M;
2802
2803 becomes
2804
2805 x = b;
2806 if (test) goto M;
2807 x = big();
2808 goto L;
2809
2810 (3) // This one's really only interesting for targets that can do
2811 // multiway branching, e.g. IA-64 BBB bundles. For other targets
2812 // it results in multiple branches on a cache line, which often
2813 // does not sit well with predictors.
2814
2815 if (test1) goto E; // predicted not taken
2816 x = a;
2817 if (test2) goto F;
2818 ...
2819 E:
2820 x = b;
2821 J:
2822
2823 becomes
2824
2825 x = a;
2826 if (test1) goto E;
2827 if (test2) goto F;
2828
2829 Notes:
2830
2831 (A) Don't do (2) if the branch is predicted against the block we're
2832 eliminating. Do it anyway if we can eliminate a branch; this requires
2833 that the sole successor of the eliminated block postdominate the other
2834 side of the if.
2835
2836 (B) With CE, on (3) we can steal from both sides of the if, creating
2837
2838 if (test1) x = a;
2839 if (!test1) x = b;
2840 if (test1) goto J;
2841 if (test2) goto F;
2842 ...
2843 J:
2844
2845 Again, this is most useful if J postdominates.
2846
2847 (C) CE substitutes for helpful life information.
2848
2849 (D) These heuristics need a lot of work. */
2850
2851 /* Tests for case 1 above. */
2852
2853 static int
2854 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
2855 {
2856 basic_block then_bb = then_edge->dest;
2857 basic_block else_bb = else_edge->dest, new_bb;
2858 int then_bb_index;
2859
2860 /* If we are partitioning hot/cold basic blocks, we don't want to
2861 mess up unconditional or indirect jumps that cross between hot
2862 and cold sections.
2863
2864 Basic block partitioning may result in some jumps that appear to
2865 be optimizable (or blocks that appear to be mergeable), but which really
2866 must be left untouched (they are required to make it safely across
2867 partition boundaries). See the comments at the top of
2868 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2869
2870 if (flag_reorder_blocks_and_partition
2871 && ((BB_END (then_bb)
2872 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2873 || (BB_END (else_bb)
2874 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2875 NULL_RTX))))
2876 return FALSE;
2877
2878 /* THEN has one successor. */
2879 if (EDGE_COUNT (then_bb->succs) != 1)
2880 return FALSE;
2881
2882 /* THEN does not fall through, but is not strange either. */
2883 if (EDGE_SUCC (then_bb, 0)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
2884 return FALSE;
2885
2886 /* THEN has one predecessor. */
2887 if (EDGE_COUNT (then_bb->preds) != 1)
2888 return FALSE;
2889
2890 /* THEN must do something. */
2891 if (forwarder_block_p (then_bb))
2892 return FALSE;
2893
2894 num_possible_if_blocks++;
2895 if (dump_file)
2896 fprintf (dump_file,
2897 "\nIF-CASE-1 found, start %d, then %d\n",
2898 test_bb->index, then_bb->index);
2899
2900 /* THEN is small. */
2901 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
2902 return FALSE;
2903
2904 /* Registers set are dead, or are predicable. */
2905 if (! dead_or_predicable (test_bb, then_bb, else_bb,
2906 EDGE_SUCC (then_bb, 0)->dest, 1))
2907 return FALSE;
2908
2909 /* Conversion went ok, including moving the insns and fixing up the
2910 jump. Adjust the CFG to match. */
2911
2912 bitmap_ior (test_bb->global_live_at_end,
2913 else_bb->global_live_at_start,
2914 then_bb->global_live_at_end);
2915
2916
2917 /* We can avoid creating a new basic block if then_bb is immediately
2918 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
2919 thru to else_bb. */
2920
2921 if (then_bb->next_bb == else_bb
2922 && then_bb->prev_bb == test_bb
2923 && else_bb != EXIT_BLOCK_PTR)
2924 {
2925 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
2926 new_bb = 0;
2927 }
2928 else
2929 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
2930 else_bb);
2931
2932 then_bb_index = then_bb->index;
2933 delete_basic_block (then_bb);
2934
2935 /* Make rest of code believe that the newly created block is the THEN_BB
2936 block we removed. */
2937 if (new_bb)
2938 {
2939 new_bb->index = then_bb_index;
2940 BASIC_BLOCK (then_bb_index) = new_bb;
2941 /* Since the fallthru edge was redirected from test_bb to new_bb,
2942 we need to ensure that new_bb is in the same partition as
2943 test bb (you can not fall through across section boundaries). */
2944 BB_COPY_PARTITION (new_bb, test_bb);
2945 }
2946 /* We've possibly created jump to next insn, cleanup_cfg will solve that
2947 later. */
2948
2949 num_true_changes++;
2950 num_updated_if_blocks++;
2951
2952 return TRUE;
2953 }
2954
2955 /* Test for case 2 above. */
2956
2957 static int
2958 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
2959 {
2960 basic_block then_bb = then_edge->dest;
2961 basic_block else_bb = else_edge->dest;
2962 edge else_succ;
2963 rtx note;
2964
2965 /* If we are partitioning hot/cold basic blocks, we don't want to
2966 mess up unconditional or indirect jumps that cross between hot
2967 and cold sections.
2968
2969 Basic block partitioning may result in some jumps that appear to
2970 be optimizable (or blocks that appear to be mergeable), but which really
2971 must be left untouched (they are required to make it safely across
2972 partition boundaries). See the comments at the top of
2973 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2974
2975 if (flag_reorder_blocks_and_partition
2976 && ((BB_END (then_bb)
2977 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
2978 || (BB_END (else_bb)
2979 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
2980 NULL_RTX))))
2981 return FALSE;
2982
2983 /* ELSE has one successor. */
2984 if (EDGE_COUNT (else_bb->succs) != 1)
2985 return FALSE;
2986 else
2987 else_succ = EDGE_SUCC (else_bb, 0);
2988
2989 /* ELSE outgoing edge is not complex. */
2990 if (else_succ->flags & EDGE_COMPLEX)
2991 return FALSE;
2992
2993 /* ELSE has one predecessor. */
2994 if (EDGE_COUNT (else_bb->preds) != 1)
2995 return FALSE;
2996
2997 /* THEN is not EXIT. */
2998 if (then_bb->index < 0)
2999 return FALSE;
3000
3001 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3002 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3003 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3004 ;
3005 else if (else_succ->dest->index < 0
3006 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3007 else_succ->dest))
3008 ;
3009 else
3010 return FALSE;
3011
3012 num_possible_if_blocks++;
3013 if (dump_file)
3014 fprintf (dump_file,
3015 "\nIF-CASE-2 found, start %d, else %d\n",
3016 test_bb->index, else_bb->index);
3017
3018 /* ELSE is small. */
3019 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3020 return FALSE;
3021
3022 /* Registers set are dead, or are predicable. */
3023 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3024 return FALSE;
3025
3026 /* Conversion went ok, including moving the insns and fixing up the
3027 jump. Adjust the CFG to match. */
3028
3029 bitmap_ior (test_bb->global_live_at_end,
3030 then_bb->global_live_at_start,
3031 else_bb->global_live_at_end);
3032
3033 delete_basic_block (else_bb);
3034
3035 num_true_changes++;
3036 num_updated_if_blocks++;
3037
3038 /* ??? We may now fallthru from one of THEN's successors into a join
3039 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3040
3041 return TRUE;
3042 }
3043
3044 /* A subroutine of dead_or_predicable called through for_each_rtx.
3045 Return 1 if a memory is found. */
3046
3047 static int
3048 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3049 {
3050 return MEM_P (*px);
3051 }
3052
3053 /* Used by the code above to perform the actual rtl transformations.
3054 Return TRUE if successful.
3055
3056 TEST_BB is the block containing the conditional branch. MERGE_BB
3057 is the block containing the code to manipulate. NEW_DEST is the
3058 label TEST_BB should be branching to after the conversion.
3059 REVERSEP is true if the sense of the branch should be reversed. */
3060
3061 static int
3062 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3063 basic_block other_bb, basic_block new_dest, int reversep)
3064 {
3065 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3066
3067 jump = BB_END (test_bb);
3068
3069 /* Find the extent of the real code in the merge block. */
3070 head = BB_HEAD (merge_bb);
3071 end = BB_END (merge_bb);
3072
3073 if (LABEL_P (head))
3074 head = NEXT_INSN (head);
3075 if (NOTE_P (head))
3076 {
3077 if (head == end)
3078 {
3079 head = end = NULL_RTX;
3080 goto no_body;
3081 }
3082 head = NEXT_INSN (head);
3083 }
3084
3085 if (JUMP_P (end))
3086 {
3087 if (head == end)
3088 {
3089 head = end = NULL_RTX;
3090 goto no_body;
3091 }
3092 end = PREV_INSN (end);
3093 }
3094
3095 /* Disable handling dead code by conditional execution if the machine needs
3096 to do anything funny with the tests, etc. */
3097 #ifndef IFCVT_MODIFY_TESTS
3098 if (HAVE_conditional_execution)
3099 {
3100 /* In the conditional execution case, we have things easy. We know
3101 the condition is reversible. We don't have to check life info
3102 because we're going to conditionally execute the code anyway.
3103 All that's left is making sure the insns involved can actually
3104 be predicated. */
3105
3106 rtx cond, prob_val;
3107
3108 cond = cond_exec_get_condition (jump);
3109 if (! cond)
3110 return FALSE;
3111
3112 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3113 if (prob_val)
3114 prob_val = XEXP (prob_val, 0);
3115
3116 if (reversep)
3117 {
3118 enum rtx_code rev = reversed_comparison_code (cond, jump);
3119 if (rev == UNKNOWN)
3120 return FALSE;
3121 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3122 XEXP (cond, 1));
3123 if (prob_val)
3124 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3125 }
3126
3127 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3128 prob_val, 0))
3129 goto cancel;
3130
3131 earliest = jump;
3132 }
3133 else
3134 #endif
3135 {
3136 /* In the non-conditional execution case, we have to verify that there
3137 are no trapping operations, no calls, no references to memory, and
3138 that any registers modified are dead at the branch site. */
3139
3140 rtx insn, cond, prev;
3141 regset merge_set, tmp, test_live, test_set;
3142 struct propagate_block_info *pbi;
3143 unsigned i, fail = 0;
3144 bitmap_iterator bi;
3145
3146 /* Check for no calls or trapping operations. */
3147 for (insn = head; ; insn = NEXT_INSN (insn))
3148 {
3149 if (CALL_P (insn))
3150 return FALSE;
3151 if (INSN_P (insn))
3152 {
3153 if (may_trap_p (PATTERN (insn)))
3154 return FALSE;
3155
3156 /* ??? Even non-trapping memories such as stack frame
3157 references must be avoided. For stores, we collect
3158 no lifetime info; for reads, we'd have to assert
3159 true_dependence false against every store in the
3160 TEST range. */
3161 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3162 return FALSE;
3163 }
3164 if (insn == end)
3165 break;
3166 }
3167
3168 if (! any_condjump_p (jump))
3169 return FALSE;
3170
3171 /* Find the extent of the conditional. */
3172 cond = noce_get_condition (jump, &earliest);
3173 if (! cond)
3174 return FALSE;
3175
3176 /* Collect:
3177 MERGE_SET = set of registers set in MERGE_BB
3178 TEST_LIVE = set of registers live at EARLIEST
3179 TEST_SET = set of registers set between EARLIEST and the
3180 end of the block. */
3181
3182 tmp = ALLOC_REG_SET (&reg_obstack);
3183 merge_set = ALLOC_REG_SET (&reg_obstack);
3184 test_live = ALLOC_REG_SET (&reg_obstack);
3185 test_set = ALLOC_REG_SET (&reg_obstack);
3186
3187 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3188 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3189 since we've already asserted that MERGE_BB is small. */
3190 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3191
3192 /* For small register class machines, don't lengthen lifetimes of
3193 hard registers before reload. */
3194 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3195 {
3196 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3197 {
3198 if (i < FIRST_PSEUDO_REGISTER
3199 && ! fixed_regs[i]
3200 && ! global_regs[i])
3201 fail = 1;
3202 }
3203 }
3204
3205 /* For TEST, we're interested in a range of insns, not a whole block.
3206 Moreover, we're interested in the insns live from OTHER_BB. */
3207
3208 COPY_REG_SET (test_live, other_bb->global_live_at_start);
3209 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3210 0);
3211
3212 for (insn = jump; ; insn = prev)
3213 {
3214 prev = propagate_one_insn (pbi, insn);
3215 if (insn == earliest)
3216 break;
3217 }
3218
3219 free_propagate_block_info (pbi);
3220
3221 /* We can perform the transformation if
3222 MERGE_SET & (TEST_SET | TEST_LIVE)
3223 and
3224 TEST_SET & merge_bb->global_live_at_start
3225 are empty. */
3226
3227 if (bitmap_intersect_p (test_set, merge_set)
3228 || bitmap_intersect_p (test_live, merge_set)
3229 || bitmap_intersect_p (test_set, merge_bb->global_live_at_start))
3230 fail = 1;
3231
3232 FREE_REG_SET (tmp);
3233 FREE_REG_SET (merge_set);
3234 FREE_REG_SET (test_live);
3235 FREE_REG_SET (test_set);
3236
3237 if (fail)
3238 return FALSE;
3239 }
3240
3241 no_body:
3242 /* We don't want to use normal invert_jump or redirect_jump because
3243 we don't want to delete_insn called. Also, we want to do our own
3244 change group management. */
3245
3246 old_dest = JUMP_LABEL (jump);
3247 if (other_bb != new_dest)
3248 {
3249 new_label = block_label (new_dest);
3250 if (reversep
3251 ? ! invert_jump_1 (jump, new_label)
3252 : ! redirect_jump_1 (jump, new_label))
3253 goto cancel;
3254 }
3255
3256 if (! apply_change_group ())
3257 return FALSE;
3258
3259 if (other_bb != new_dest)
3260 {
3261 redirect_jump_2 (jump, old_dest, new_label, -1, reversep);
3262
3263 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3264 if (reversep)
3265 {
3266 gcov_type count, probability;
3267 count = BRANCH_EDGE (test_bb)->count;
3268 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3269 FALLTHRU_EDGE (test_bb)->count = count;
3270 probability = BRANCH_EDGE (test_bb)->probability;
3271 BRANCH_EDGE (test_bb)->probability
3272 = FALLTHRU_EDGE (test_bb)->probability;
3273 FALLTHRU_EDGE (test_bb)->probability = probability;
3274 update_br_prob_note (test_bb);
3275 }
3276 }
3277
3278 /* Move the insns out of MERGE_BB to before the branch. */
3279 if (head != NULL)
3280 {
3281 if (end == BB_END (merge_bb))
3282 BB_END (merge_bb) = PREV_INSN (head);
3283
3284 if (squeeze_notes (&head, &end))
3285 return TRUE;
3286
3287 reorder_insns (head, end, PREV_INSN (earliest));
3288 }
3289
3290 /* Remove the jump and edge if we can. */
3291 if (other_bb == new_dest)
3292 {
3293 delete_insn (jump);
3294 remove_edge (BRANCH_EDGE (test_bb));
3295 /* ??? Can't merge blocks here, as then_bb is still in use.
3296 At minimum, the merge will get done just before bb-reorder. */
3297 }
3298
3299 return TRUE;
3300
3301 cancel:
3302 cancel_changes (0);
3303 return FALSE;
3304 }
3305 \f
3306 /* Main entry point for all if-conversion. */
3307
3308 void
3309 if_convert (int x_life_data_ok)
3310 {
3311 basic_block bb;
3312 int pass;
3313
3314 num_possible_if_blocks = 0;
3315 num_updated_if_blocks = 0;
3316 num_true_changes = 0;
3317 life_data_ok = (x_life_data_ok != 0);
3318
3319 if ((! targetm.cannot_modify_jumps_p ())
3320 && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3321 || !targetm.have_named_sections))
3322 {
3323 struct loops loops;
3324
3325 flow_loops_find (&loops);
3326 mark_loop_exit_edges (&loops);
3327 flow_loops_free (&loops);
3328 free_dominance_info (CDI_DOMINATORS);
3329 }
3330
3331 /* Compute postdominators if we think we'll use them. */
3332 if (HAVE_conditional_execution || life_data_ok)
3333 calculate_dominance_info (CDI_POST_DOMINATORS);
3334
3335 if (life_data_ok)
3336 clear_bb_flags ();
3337
3338 /* Go through each of the basic blocks looking for things to convert. If we
3339 have conditional execution, we make multiple passes to allow us to handle
3340 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3341 pass = 0;
3342 do
3343 {
3344 cond_exec_changed_p = FALSE;
3345 pass++;
3346
3347 #ifdef IFCVT_MULTIPLE_DUMPS
3348 if (dump_file && pass > 1)
3349 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3350 #endif
3351
3352 FOR_EACH_BB (bb)
3353 {
3354 basic_block new_bb;
3355 while ((new_bb = find_if_header (bb, pass)))
3356 bb = new_bb;
3357 }
3358
3359 #ifdef IFCVT_MULTIPLE_DUMPS
3360 if (dump_file && cond_exec_changed_p)
3361 print_rtl_with_bb (dump_file, get_insns ());
3362 #endif
3363 }
3364 while (cond_exec_changed_p);
3365
3366 #ifdef IFCVT_MULTIPLE_DUMPS
3367 if (dump_file)
3368 fprintf (dump_file, "\n\n========== no more changes\n");
3369 #endif
3370
3371 free_dominance_info (CDI_POST_DOMINATORS);
3372
3373 if (dump_file)
3374 fflush (dump_file);
3375
3376 clear_aux_for_blocks ();
3377
3378 /* Rebuild life info for basic blocks that require it. */
3379 if (num_true_changes && life_data_ok)
3380 {
3381 /* If we allocated new pseudos, we must resize the array for sched1. */
3382 if (max_regno < max_reg_num ())
3383 {
3384 max_regno = max_reg_num ();
3385 allocate_reg_info (max_regno, FALSE, FALSE);
3386 }
3387 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3388 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3389 | PROP_KILL_DEAD_CODE);
3390 }
3391
3392 /* Write the final stats. */
3393 if (dump_file && num_possible_if_blocks > 0)
3394 {
3395 fprintf (dump_file,
3396 "\n%d possible IF blocks searched.\n",
3397 num_possible_if_blocks);
3398 fprintf (dump_file,
3399 "%d IF blocks converted.\n",
3400 num_updated_if_blocks);
3401 fprintf (dump_file,
3402 "%d true changes made.\n\n\n",
3403 num_true_changes);
3404 }
3405
3406 #ifdef ENABLE_CHECKING
3407 verify_flow_info ();
3408 #endif
3409 }