remove pointer-set.[ch]
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "rtl.h"
26 #include "regs.h"
27 #include "function.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "expr.h"
35 #include "output.h"
36 #include "optabs.h"
37 #include "diagnostic-core.h"
38 #include "tm_p.h"
39 #include "cfgloop.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "vec.h"
44 #include "dbgcnt.h"
45
46 #ifndef HAVE_conditional_move
47 #define HAVE_conditional_move 0
48 #endif
49 #ifndef HAVE_incscc
50 #define HAVE_incscc 0
51 #endif
52 #ifndef HAVE_decscc
53 #define HAVE_decscc 0
54 #endif
55 #ifndef HAVE_trap
56 #define HAVE_trap 0
57 #endif
58
59 #ifndef MAX_CONDITIONAL_EXECUTE
60 #define MAX_CONDITIONAL_EXECUTE \
61 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
62 + 1)
63 #endif
64
65 #define IFCVT_MULTIPLE_DUMPS 1
66
67 #define NULL_BLOCK ((basic_block) NULL)
68
69 /* True if after combine pass. */
70 static bool ifcvt_after_combine;
71
72 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
73 static int num_possible_if_blocks;
74
75 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
76 execution. */
77 static int num_updated_if_blocks;
78
79 /* # of changes made. */
80 static int num_true_changes;
81
82 /* Whether conditional execution changes were made. */
83 static int cond_exec_changed_p;
84
85 /* Forward references. */
86 static int count_bb_insns (const_basic_block);
87 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
88 static rtx first_active_insn (basic_block);
89 static rtx last_active_insn (basic_block, int);
90 static rtx find_active_insn_before (basic_block, rtx);
91 static rtx find_active_insn_after (basic_block, rtx);
92 static basic_block block_fallthru (basic_block);
93 static int cond_exec_process_insns (ce_if_block *, rtx, rtx, rtx, int, int);
94 static rtx cond_exec_get_condition (rtx);
95 static rtx noce_get_condition (rtx, rtx *, bool);
96 static int noce_operand_ok (const_rtx);
97 static void merge_if_block (ce_if_block *);
98 static int find_cond_trap (basic_block, edge, edge);
99 static basic_block find_if_header (basic_block, int);
100 static int block_jumps_and_fallthru_p (basic_block, basic_block);
101 static int noce_find_if_block (basic_block, edge, edge, int);
102 static int cond_exec_find_if_block (ce_if_block *);
103 static int find_if_case_1 (basic_block, edge, edge);
104 static int find_if_case_2 (basic_block, edge, edge);
105 static int dead_or_predicable (basic_block, basic_block, basic_block,
106 edge, int);
107 static void noce_emit_move_insn (rtx, rtx);
108 static rtx block_has_only_trap (basic_block);
109 \f
110 /* Count the number of non-jump active insns in BB. */
111
112 static int
113 count_bb_insns (const_basic_block bb)
114 {
115 int count = 0;
116 rtx insn = BB_HEAD (bb);
117
118 while (1)
119 {
120 if (active_insn_p (insn) && !JUMP_P (insn))
121 count++;
122
123 if (insn == BB_END (bb))
124 break;
125 insn = NEXT_INSN (insn);
126 }
127
128 return count;
129 }
130
131 /* Determine whether the total insn_rtx_cost on non-jump insns in
132 basic block BB is less than MAX_COST. This function returns
133 false if the cost of any instruction could not be estimated.
134
135 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
136 as those insns are being speculated. MAX_COST is scaled with SCALE
137 plus a small fudge factor. */
138
139 static bool
140 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
141 {
142 int count = 0;
143 rtx insn = BB_HEAD (bb);
144 bool speed = optimize_bb_for_speed_p (bb);
145
146 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
147 applied to insn_rtx_cost when optimizing for size. Only do
148 this after combine because if-conversion might interfere with
149 passes before combine.
150
151 Use optimize_function_for_speed_p instead of the pre-defined
152 variable speed to make sure it is set to same value for all
153 basic blocks in one if-conversion transformation. */
154 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
155 scale = REG_BR_PROB_BASE;
156 /* Our branch probability/scaling factors are just estimates and don't
157 account for cases where we can get speculation for free and other
158 secondary benefits. So we fudge the scale factor to make speculating
159 appear a little more profitable when optimizing for performance. */
160 else
161 scale += REG_BR_PROB_BASE / 8;
162
163
164 max_cost *= scale;
165
166 while (1)
167 {
168 if (NONJUMP_INSN_P (insn))
169 {
170 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
171 if (cost == 0)
172 return false;
173
174 /* If this instruction is the load or set of a "stack" register,
175 such as a floating point register on x87, then the cost of
176 speculatively executing this insn may need to include
177 the additional cost of popping its result off of the
178 register stack. Unfortunately, correctly recognizing and
179 accounting for this additional overhead is tricky, so for
180 now we simply prohibit such speculative execution. */
181 #ifdef STACK_REGS
182 {
183 rtx set = single_set (insn);
184 if (set && STACK_REG_P (SET_DEST (set)))
185 return false;
186 }
187 #endif
188
189 count += cost;
190 if (count >= max_cost)
191 return false;
192 }
193 else if (CALL_P (insn))
194 return false;
195
196 if (insn == BB_END (bb))
197 break;
198 insn = NEXT_INSN (insn);
199 }
200
201 return true;
202 }
203
204 /* Return the first non-jump active insn in the basic block. */
205
206 static rtx
207 first_active_insn (basic_block bb)
208 {
209 rtx insn = BB_HEAD (bb);
210
211 if (LABEL_P (insn))
212 {
213 if (insn == BB_END (bb))
214 return NULL_RTX;
215 insn = NEXT_INSN (insn);
216 }
217
218 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
219 {
220 if (insn == BB_END (bb))
221 return NULL_RTX;
222 insn = NEXT_INSN (insn);
223 }
224
225 if (JUMP_P (insn))
226 return NULL_RTX;
227
228 return insn;
229 }
230
231 /* Return the last non-jump active (non-jump) insn in the basic block. */
232
233 static rtx
234 last_active_insn (basic_block bb, int skip_use_p)
235 {
236 rtx insn = BB_END (bb);
237 rtx head = BB_HEAD (bb);
238
239 while (NOTE_P (insn)
240 || JUMP_P (insn)
241 || DEBUG_INSN_P (insn)
242 || (skip_use_p
243 && NONJUMP_INSN_P (insn)
244 && GET_CODE (PATTERN (insn)) == USE))
245 {
246 if (insn == head)
247 return NULL_RTX;
248 insn = PREV_INSN (insn);
249 }
250
251 if (LABEL_P (insn))
252 return NULL_RTX;
253
254 return insn;
255 }
256
257 /* Return the active insn before INSN inside basic block CURR_BB. */
258
259 static rtx
260 find_active_insn_before (basic_block curr_bb, rtx insn)
261 {
262 if (!insn || insn == BB_HEAD (curr_bb))
263 return NULL_RTX;
264
265 while ((insn = PREV_INSN (insn)) != NULL_RTX)
266 {
267 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
268 break;
269
270 /* No other active insn all the way to the start of the basic block. */
271 if (insn == BB_HEAD (curr_bb))
272 return NULL_RTX;
273 }
274
275 return insn;
276 }
277
278 /* Return the active insn after INSN inside basic block CURR_BB. */
279
280 static rtx
281 find_active_insn_after (basic_block curr_bb, rtx insn)
282 {
283 if (!insn || insn == BB_END (curr_bb))
284 return NULL_RTX;
285
286 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
287 {
288 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
289 break;
290
291 /* No other active insn all the way to the end of the basic block. */
292 if (insn == BB_END (curr_bb))
293 return NULL_RTX;
294 }
295
296 return insn;
297 }
298
299 /* Return the basic block reached by falling though the basic block BB. */
300
301 static basic_block
302 block_fallthru (basic_block bb)
303 {
304 edge e = find_fallthru_edge (bb->succs);
305
306 return (e) ? e->dest : NULL_BLOCK;
307 }
308 \f
309 /* Go through a bunch of insns, converting them to conditional
310 execution format if possible. Return TRUE if all of the non-note
311 insns were processed. */
312
313 static int
314 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
315 /* if block information */rtx start,
316 /* first insn to look at */rtx end,
317 /* last insn to look at */rtx test,
318 /* conditional execution test */int prob_val,
319 /* probability of branch taken. */int mod_ok)
320 {
321 int must_be_last = FALSE;
322 rtx insn;
323 rtx xtest;
324 rtx pattern;
325
326 if (!start || !end)
327 return FALSE;
328
329 for (insn = start; ; insn = NEXT_INSN (insn))
330 {
331 /* dwarf2out can't cope with conditional prologues. */
332 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
333 return FALSE;
334
335 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
336 goto insn_done;
337
338 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
339
340 /* dwarf2out can't cope with conditional unwind info. */
341 if (RTX_FRAME_RELATED_P (insn))
342 return FALSE;
343
344 /* Remove USE insns that get in the way. */
345 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
346 {
347 /* ??? Ug. Actually unlinking the thing is problematic,
348 given what we'd have to coordinate with our callers. */
349 SET_INSN_DELETED (insn);
350 goto insn_done;
351 }
352
353 /* Last insn wasn't last? */
354 if (must_be_last)
355 return FALSE;
356
357 if (modified_in_p (test, insn))
358 {
359 if (!mod_ok)
360 return FALSE;
361 must_be_last = TRUE;
362 }
363
364 /* Now build the conditional form of the instruction. */
365 pattern = PATTERN (insn);
366 xtest = copy_rtx (test);
367
368 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
369 two conditions. */
370 if (GET_CODE (pattern) == COND_EXEC)
371 {
372 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
373 return FALSE;
374
375 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
376 COND_EXEC_TEST (pattern));
377 pattern = COND_EXEC_CODE (pattern);
378 }
379
380 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
381
382 /* If the machine needs to modify the insn being conditionally executed,
383 say for example to force a constant integer operand into a temp
384 register, do so here. */
385 #ifdef IFCVT_MODIFY_INSN
386 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
387 if (! pattern)
388 return FALSE;
389 #endif
390
391 validate_change (insn, &PATTERN (insn), pattern, 1);
392
393 if (CALL_P (insn) && prob_val >= 0)
394 validate_change (insn, &REG_NOTES (insn),
395 gen_rtx_INT_LIST ((enum machine_mode) REG_BR_PROB,
396 prob_val, REG_NOTES (insn)), 1);
397
398 insn_done:
399 if (insn == end)
400 break;
401 }
402
403 return TRUE;
404 }
405
406 /* Return the condition for a jump. Do not do any special processing. */
407
408 static rtx
409 cond_exec_get_condition (rtx jump)
410 {
411 rtx test_if, cond;
412
413 if (any_condjump_p (jump))
414 test_if = SET_SRC (pc_set (jump));
415 else
416 return NULL_RTX;
417 cond = XEXP (test_if, 0);
418
419 /* If this branches to JUMP_LABEL when the condition is false,
420 reverse the condition. */
421 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
422 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
423 {
424 enum rtx_code rev = reversed_comparison_code (cond, jump);
425 if (rev == UNKNOWN)
426 return NULL_RTX;
427
428 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
429 XEXP (cond, 1));
430 }
431
432 return cond;
433 }
434
435 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
436 to conditional execution. Return TRUE if we were successful at
437 converting the block. */
438
439 static int
440 cond_exec_process_if_block (ce_if_block * ce_info,
441 /* if block information */int do_multiple_p)
442 {
443 basic_block test_bb = ce_info->test_bb; /* last test block */
444 basic_block then_bb = ce_info->then_bb; /* THEN */
445 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
446 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
447 rtx then_start; /* first insn in THEN block */
448 rtx then_end; /* last insn + 1 in THEN block */
449 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
450 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
451 int max; /* max # of insns to convert. */
452 int then_mod_ok; /* whether conditional mods are ok in THEN */
453 rtx true_expr; /* test for else block insns */
454 rtx false_expr; /* test for then block insns */
455 int true_prob_val; /* probability of else block */
456 int false_prob_val; /* probability of then block */
457 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
458 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
459 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
460 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
461 int then_n_insns, else_n_insns, n_insns;
462 enum rtx_code false_code;
463 rtx note;
464
465 /* If test is comprised of && or || elements, and we've failed at handling
466 all of them together, just use the last test if it is the special case of
467 && elements without an ELSE block. */
468 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
469 {
470 if (else_bb || ! ce_info->and_and_p)
471 return FALSE;
472
473 ce_info->test_bb = test_bb = ce_info->last_test_bb;
474 ce_info->num_multiple_test_blocks = 0;
475 ce_info->num_and_and_blocks = 0;
476 ce_info->num_or_or_blocks = 0;
477 }
478
479 /* Find the conditional jump to the ELSE or JOIN part, and isolate
480 the test. */
481 test_expr = cond_exec_get_condition (BB_END (test_bb));
482 if (! test_expr)
483 return FALSE;
484
485 /* If the conditional jump is more than just a conditional jump,
486 then we can not do conditional execution conversion on this block. */
487 if (! onlyjump_p (BB_END (test_bb)))
488 return FALSE;
489
490 /* Collect the bounds of where we're to search, skipping any labels, jumps
491 and notes at the beginning and end of the block. Then count the total
492 number of insns and see if it is small enough to convert. */
493 then_start = first_active_insn (then_bb);
494 then_end = last_active_insn (then_bb, TRUE);
495 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
496 n_insns = then_n_insns;
497 max = MAX_CONDITIONAL_EXECUTE;
498
499 if (else_bb)
500 {
501 int n_matching;
502
503 max *= 2;
504 else_start = first_active_insn (else_bb);
505 else_end = last_active_insn (else_bb, TRUE);
506 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
507 n_insns += else_n_insns;
508
509 /* Look for matching sequences at the head and tail of the two blocks,
510 and limit the range of insns to be converted if possible. */
511 n_matching = flow_find_cross_jump (then_bb, else_bb,
512 &then_first_tail, &else_first_tail,
513 NULL);
514 if (then_first_tail == BB_HEAD (then_bb))
515 then_start = then_end = NULL_RTX;
516 if (else_first_tail == BB_HEAD (else_bb))
517 else_start = else_end = NULL_RTX;
518
519 if (n_matching > 0)
520 {
521 if (then_end)
522 then_end = find_active_insn_before (then_bb, then_first_tail);
523 if (else_end)
524 else_end = find_active_insn_before (else_bb, else_first_tail);
525 n_insns -= 2 * n_matching;
526 }
527
528 if (then_start
529 && else_start
530 && then_n_insns > n_matching
531 && else_n_insns > n_matching)
532 {
533 int longest_match = MIN (then_n_insns - n_matching,
534 else_n_insns - n_matching);
535 n_matching
536 = flow_find_head_matching_sequence (then_bb, else_bb,
537 &then_last_head,
538 &else_last_head,
539 longest_match);
540
541 if (n_matching > 0)
542 {
543 rtx insn;
544
545 /* We won't pass the insns in the head sequence to
546 cond_exec_process_insns, so we need to test them here
547 to make sure that they don't clobber the condition. */
548 for (insn = BB_HEAD (then_bb);
549 insn != NEXT_INSN (then_last_head);
550 insn = NEXT_INSN (insn))
551 if (!LABEL_P (insn) && !NOTE_P (insn)
552 && !DEBUG_INSN_P (insn)
553 && modified_in_p (test_expr, insn))
554 return FALSE;
555 }
556
557 if (then_last_head == then_end)
558 then_start = then_end = NULL_RTX;
559 if (else_last_head == else_end)
560 else_start = else_end = NULL_RTX;
561
562 if (n_matching > 0)
563 {
564 if (then_start)
565 then_start = find_active_insn_after (then_bb, then_last_head);
566 if (else_start)
567 else_start = find_active_insn_after (else_bb, else_last_head);
568 n_insns -= 2 * n_matching;
569 }
570 }
571 }
572
573 if (n_insns > max)
574 return FALSE;
575
576 /* Map test_expr/test_jump into the appropriate MD tests to use on
577 the conditionally executed code. */
578
579 true_expr = test_expr;
580
581 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
582 if (false_code != UNKNOWN)
583 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
584 XEXP (true_expr, 0), XEXP (true_expr, 1));
585 else
586 false_expr = NULL_RTX;
587
588 #ifdef IFCVT_MODIFY_TESTS
589 /* If the machine description needs to modify the tests, such as setting a
590 conditional execution register from a comparison, it can do so here. */
591 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
592
593 /* See if the conversion failed. */
594 if (!true_expr || !false_expr)
595 goto fail;
596 #endif
597
598 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
599 if (note)
600 {
601 true_prob_val = XINT (note, 0);
602 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
603 }
604 else
605 {
606 true_prob_val = -1;
607 false_prob_val = -1;
608 }
609
610 /* If we have && or || tests, do them here. These tests are in the adjacent
611 blocks after the first block containing the test. */
612 if (ce_info->num_multiple_test_blocks > 0)
613 {
614 basic_block bb = test_bb;
615 basic_block last_test_bb = ce_info->last_test_bb;
616
617 if (! false_expr)
618 goto fail;
619
620 do
621 {
622 rtx start, end;
623 rtx t, f;
624 enum rtx_code f_code;
625
626 bb = block_fallthru (bb);
627 start = first_active_insn (bb);
628 end = last_active_insn (bb, TRUE);
629 if (start
630 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
631 false_prob_val, FALSE))
632 goto fail;
633
634 /* If the conditional jump is more than just a conditional jump, then
635 we can not do conditional execution conversion on this block. */
636 if (! onlyjump_p (BB_END (bb)))
637 goto fail;
638
639 /* Find the conditional jump and isolate the test. */
640 t = cond_exec_get_condition (BB_END (bb));
641 if (! t)
642 goto fail;
643
644 f_code = reversed_comparison_code (t, BB_END (bb));
645 if (f_code == UNKNOWN)
646 goto fail;
647
648 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
649 if (ce_info->and_and_p)
650 {
651 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
652 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
653 }
654 else
655 {
656 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
657 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
658 }
659
660 /* If the machine description needs to modify the tests, such as
661 setting a conditional execution register from a comparison, it can
662 do so here. */
663 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
664 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
665
666 /* See if the conversion failed. */
667 if (!t || !f)
668 goto fail;
669 #endif
670
671 true_expr = t;
672 false_expr = f;
673 }
674 while (bb != last_test_bb);
675 }
676
677 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
678 on then THEN block. */
679 then_mod_ok = (else_bb == NULL_BLOCK);
680
681 /* Go through the THEN and ELSE blocks converting the insns if possible
682 to conditional execution. */
683
684 if (then_end
685 && (! false_expr
686 || ! cond_exec_process_insns (ce_info, then_start, then_end,
687 false_expr, false_prob_val,
688 then_mod_ok)))
689 goto fail;
690
691 if (else_bb && else_end
692 && ! cond_exec_process_insns (ce_info, else_start, else_end,
693 true_expr, true_prob_val, TRUE))
694 goto fail;
695
696 /* If we cannot apply the changes, fail. Do not go through the normal fail
697 processing, since apply_change_group will call cancel_changes. */
698 if (! apply_change_group ())
699 {
700 #ifdef IFCVT_MODIFY_CANCEL
701 /* Cancel any machine dependent changes. */
702 IFCVT_MODIFY_CANCEL (ce_info);
703 #endif
704 return FALSE;
705 }
706
707 #ifdef IFCVT_MODIFY_FINAL
708 /* Do any machine dependent final modifications. */
709 IFCVT_MODIFY_FINAL (ce_info);
710 #endif
711
712 /* Conversion succeeded. */
713 if (dump_file)
714 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
715 n_insns, (n_insns == 1) ? " was" : "s were");
716
717 /* Merge the blocks! If we had matching sequences, make sure to delete one
718 copy at the appropriate location first: delete the copy in the THEN branch
719 for a tail sequence so that the remaining one is executed last for both
720 branches, and delete the copy in the ELSE branch for a head sequence so
721 that the remaining one is executed first for both branches. */
722 if (then_first_tail)
723 {
724 rtx from = then_first_tail;
725 if (!INSN_P (from))
726 from = find_active_insn_after (then_bb, from);
727 delete_insn_chain (from, BB_END (then_bb), false);
728 }
729 if (else_last_head)
730 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
731
732 merge_if_block (ce_info);
733 cond_exec_changed_p = TRUE;
734 return TRUE;
735
736 fail:
737 #ifdef IFCVT_MODIFY_CANCEL
738 /* Cancel any machine dependent changes. */
739 IFCVT_MODIFY_CANCEL (ce_info);
740 #endif
741
742 cancel_changes (0);
743 return FALSE;
744 }
745 \f
746 /* Used by noce_process_if_block to communicate with its subroutines.
747
748 The subroutines know that A and B may be evaluated freely. They
749 know that X is a register. They should insert new instructions
750 before cond_earliest. */
751
752 struct noce_if_info
753 {
754 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
755 basic_block test_bb, then_bb, else_bb, join_bb;
756
757 /* The jump that ends TEST_BB. */
758 rtx jump;
759
760 /* The jump condition. */
761 rtx cond;
762
763 /* New insns should be inserted before this one. */
764 rtx cond_earliest;
765
766 /* Insns in the THEN and ELSE block. There is always just this
767 one insns in those blocks. The insns are single_set insns.
768 If there was no ELSE block, INSN_B is the last insn before
769 COND_EARLIEST, or NULL_RTX. In the former case, the insn
770 operands are still valid, as if INSN_B was moved down below
771 the jump. */
772 rtx insn_a, insn_b;
773
774 /* The SET_SRC of INSN_A and INSN_B. */
775 rtx a, b;
776
777 /* The SET_DEST of INSN_A. */
778 rtx x;
779
780 /* True if this if block is not canonical. In the canonical form of
781 if blocks, the THEN_BB is the block reached via the fallthru edge
782 from TEST_BB. For the noce transformations, we allow the symmetric
783 form as well. */
784 bool then_else_reversed;
785
786 /* Estimated cost of the particular branch instruction. */
787 int branch_cost;
788 };
789
790 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
791 static int noce_try_move (struct noce_if_info *);
792 static int noce_try_store_flag (struct noce_if_info *);
793 static int noce_try_addcc (struct noce_if_info *);
794 static int noce_try_store_flag_constants (struct noce_if_info *);
795 static int noce_try_store_flag_mask (struct noce_if_info *);
796 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
797 rtx, rtx, rtx);
798 static int noce_try_cmove (struct noce_if_info *);
799 static int noce_try_cmove_arith (struct noce_if_info *);
800 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
801 static int noce_try_minmax (struct noce_if_info *);
802 static int noce_try_abs (struct noce_if_info *);
803 static int noce_try_sign_mask (struct noce_if_info *);
804
805 /* Helper function for noce_try_store_flag*. */
806
807 static rtx
808 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
809 int normalize)
810 {
811 rtx cond = if_info->cond;
812 int cond_complex;
813 enum rtx_code code;
814
815 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
816 || ! general_operand (XEXP (cond, 1), VOIDmode));
817
818 /* If earliest == jump, or when the condition is complex, try to
819 build the store_flag insn directly. */
820
821 if (cond_complex)
822 {
823 rtx set = pc_set (if_info->jump);
824 cond = XEXP (SET_SRC (set), 0);
825 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
826 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
827 reversep = !reversep;
828 if (if_info->then_else_reversed)
829 reversep = !reversep;
830 }
831
832 if (reversep)
833 code = reversed_comparison_code (cond, if_info->jump);
834 else
835 code = GET_CODE (cond);
836
837 if ((if_info->cond_earliest == if_info->jump || cond_complex)
838 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
839 {
840 rtx tmp;
841
842 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
843 XEXP (cond, 1));
844 tmp = gen_rtx_SET (VOIDmode, x, tmp);
845
846 start_sequence ();
847 tmp = emit_insn (tmp);
848
849 if (recog_memoized (tmp) >= 0)
850 {
851 tmp = get_insns ();
852 end_sequence ();
853 emit_insn (tmp);
854
855 if_info->cond_earliest = if_info->jump;
856
857 return x;
858 }
859
860 end_sequence ();
861 }
862
863 /* Don't even try if the comparison operands or the mode of X are weird. */
864 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
865 return NULL_RTX;
866
867 return emit_store_flag (x, code, XEXP (cond, 0),
868 XEXP (cond, 1), VOIDmode,
869 (code == LTU || code == LEU
870 || code == GEU || code == GTU), normalize);
871 }
872
873 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
874 X is the destination/target and Y is the value to copy. */
875
876 static void
877 noce_emit_move_insn (rtx x, rtx y)
878 {
879 enum machine_mode outmode;
880 rtx outer, inner;
881 int bitpos;
882
883 if (GET_CODE (x) != STRICT_LOW_PART)
884 {
885 rtx seq, insn, target;
886 optab ot;
887
888 start_sequence ();
889 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
890 otherwise construct a suitable SET pattern ourselves. */
891 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
892 ? emit_move_insn (x, y)
893 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
894 seq = get_insns ();
895 end_sequence ();
896
897 if (recog_memoized (insn) <= 0)
898 {
899 if (GET_CODE (x) == ZERO_EXTRACT)
900 {
901 rtx op = XEXP (x, 0);
902 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
903 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
904
905 /* store_bit_field expects START to be relative to
906 BYTES_BIG_ENDIAN and adjusts this value for machines with
907 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
908 invoke store_bit_field again it is necessary to have the START
909 value from the first call. */
910 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
911 {
912 if (MEM_P (op))
913 start = BITS_PER_UNIT - start - size;
914 else
915 {
916 gcc_assert (REG_P (op));
917 start = BITS_PER_WORD - start - size;
918 }
919 }
920
921 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
922 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
923 return;
924 }
925
926 switch (GET_RTX_CLASS (GET_CODE (y)))
927 {
928 case RTX_UNARY:
929 ot = code_to_optab (GET_CODE (y));
930 if (ot)
931 {
932 start_sequence ();
933 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
934 if (target != NULL_RTX)
935 {
936 if (target != x)
937 emit_move_insn (x, target);
938 seq = get_insns ();
939 }
940 end_sequence ();
941 }
942 break;
943
944 case RTX_BIN_ARITH:
945 case RTX_COMM_ARITH:
946 ot = code_to_optab (GET_CODE (y));
947 if (ot)
948 {
949 start_sequence ();
950 target = expand_binop (GET_MODE (y), ot,
951 XEXP (y, 0), XEXP (y, 1),
952 x, 0, OPTAB_DIRECT);
953 if (target != NULL_RTX)
954 {
955 if (target != x)
956 emit_move_insn (x, target);
957 seq = get_insns ();
958 }
959 end_sequence ();
960 }
961 break;
962
963 default:
964 break;
965 }
966 }
967
968 emit_insn (seq);
969 return;
970 }
971
972 outer = XEXP (x, 0);
973 inner = XEXP (outer, 0);
974 outmode = GET_MODE (outer);
975 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
976 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
977 0, 0, outmode, y);
978 }
979
980 /* Return sequence of instructions generated by if conversion. This
981 function calls end_sequence() to end the current stream, ensures
982 that are instructions are unshared, recognizable non-jump insns.
983 On failure, this function returns a NULL_RTX. */
984
985 static rtx
986 end_ifcvt_sequence (struct noce_if_info *if_info)
987 {
988 rtx insn;
989 rtx seq = get_insns ();
990
991 set_used_flags (if_info->x);
992 set_used_flags (if_info->cond);
993 set_used_flags (if_info->a);
994 set_used_flags (if_info->b);
995 unshare_all_rtl_in_chain (seq);
996 end_sequence ();
997
998 /* Make sure that all of the instructions emitted are recognizable,
999 and that we haven't introduced a new jump instruction.
1000 As an exercise for the reader, build a general mechanism that
1001 allows proper placement of required clobbers. */
1002 for (insn = seq; insn; insn = NEXT_INSN (insn))
1003 if (JUMP_P (insn)
1004 || recog_memoized (insn) == -1)
1005 return NULL_RTX;
1006
1007 return seq;
1008 }
1009
1010 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1011 "if (a == b) x = a; else x = b" into "x = b". */
1012
1013 static int
1014 noce_try_move (struct noce_if_info *if_info)
1015 {
1016 rtx cond = if_info->cond;
1017 enum rtx_code code = GET_CODE (cond);
1018 rtx y, seq;
1019
1020 if (code != NE && code != EQ)
1021 return FALSE;
1022
1023 /* This optimization isn't valid if either A or B could be a NaN
1024 or a signed zero. */
1025 if (HONOR_NANS (GET_MODE (if_info->x))
1026 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1027 return FALSE;
1028
1029 /* Check whether the operands of the comparison are A and in
1030 either order. */
1031 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1032 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1033 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1034 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1035 {
1036 y = (code == EQ) ? if_info->a : if_info->b;
1037
1038 /* Avoid generating the move if the source is the destination. */
1039 if (! rtx_equal_p (if_info->x, y))
1040 {
1041 start_sequence ();
1042 noce_emit_move_insn (if_info->x, y);
1043 seq = end_ifcvt_sequence (if_info);
1044 if (!seq)
1045 return FALSE;
1046
1047 emit_insn_before_setloc (seq, if_info->jump,
1048 INSN_LOCATION (if_info->insn_a));
1049 }
1050 return TRUE;
1051 }
1052 return FALSE;
1053 }
1054
1055 /* Convert "if (test) x = 1; else x = 0".
1056
1057 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1058 tried in noce_try_store_flag_constants after noce_try_cmove has had
1059 a go at the conversion. */
1060
1061 static int
1062 noce_try_store_flag (struct noce_if_info *if_info)
1063 {
1064 int reversep;
1065 rtx target, seq;
1066
1067 if (CONST_INT_P (if_info->b)
1068 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1069 && if_info->a == const0_rtx)
1070 reversep = 0;
1071 else if (if_info->b == const0_rtx
1072 && CONST_INT_P (if_info->a)
1073 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1074 && (reversed_comparison_code (if_info->cond, if_info->jump)
1075 != UNKNOWN))
1076 reversep = 1;
1077 else
1078 return FALSE;
1079
1080 start_sequence ();
1081
1082 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1083 if (target)
1084 {
1085 if (target != if_info->x)
1086 noce_emit_move_insn (if_info->x, target);
1087
1088 seq = end_ifcvt_sequence (if_info);
1089 if (! seq)
1090 return FALSE;
1091
1092 emit_insn_before_setloc (seq, if_info->jump,
1093 INSN_LOCATION (if_info->insn_a));
1094 return TRUE;
1095 }
1096 else
1097 {
1098 end_sequence ();
1099 return FALSE;
1100 }
1101 }
1102
1103 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1104
1105 static int
1106 noce_try_store_flag_constants (struct noce_if_info *if_info)
1107 {
1108 rtx target, seq;
1109 int reversep;
1110 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1111 int normalize, can_reverse;
1112 enum machine_mode mode;
1113
1114 if (CONST_INT_P (if_info->a)
1115 && CONST_INT_P (if_info->b))
1116 {
1117 mode = GET_MODE (if_info->x);
1118 ifalse = INTVAL (if_info->a);
1119 itrue = INTVAL (if_info->b);
1120
1121 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1122 /* Make sure we can represent the difference between the two values. */
1123 if ((diff > 0)
1124 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1125 return FALSE;
1126
1127 diff = trunc_int_for_mode (diff, mode);
1128
1129 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1130 != UNKNOWN);
1131
1132 reversep = 0;
1133 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1134 normalize = 0;
1135 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1136 && (STORE_FLAG_VALUE == 1
1137 || if_info->branch_cost >= 2))
1138 normalize = 1;
1139 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1140 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1141 normalize = 1, reversep = 1;
1142 else if (itrue == -1
1143 && (STORE_FLAG_VALUE == -1
1144 || if_info->branch_cost >= 2))
1145 normalize = -1;
1146 else if (ifalse == -1 && can_reverse
1147 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1148 normalize = -1, reversep = 1;
1149 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1150 || if_info->branch_cost >= 3)
1151 normalize = -1;
1152 else
1153 return FALSE;
1154
1155 if (reversep)
1156 {
1157 tmp = itrue; itrue = ifalse; ifalse = tmp;
1158 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1159 }
1160
1161 start_sequence ();
1162 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1163 if (! target)
1164 {
1165 end_sequence ();
1166 return FALSE;
1167 }
1168
1169 /* if (test) x = 3; else x = 4;
1170 => x = 3 + (test == 0); */
1171 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1172 {
1173 target = expand_simple_binop (mode,
1174 (diff == STORE_FLAG_VALUE
1175 ? PLUS : MINUS),
1176 gen_int_mode (ifalse, mode), target,
1177 if_info->x, 0, OPTAB_WIDEN);
1178 }
1179
1180 /* if (test) x = 8; else x = 0;
1181 => x = (test != 0) << 3; */
1182 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1183 {
1184 target = expand_simple_binop (mode, ASHIFT,
1185 target, GEN_INT (tmp), if_info->x, 0,
1186 OPTAB_WIDEN);
1187 }
1188
1189 /* if (test) x = -1; else x = b;
1190 => x = -(test != 0) | b; */
1191 else if (itrue == -1)
1192 {
1193 target = expand_simple_binop (mode, IOR,
1194 target, gen_int_mode (ifalse, mode),
1195 if_info->x, 0, OPTAB_WIDEN);
1196 }
1197
1198 /* if (test) x = a; else x = b;
1199 => x = (-(test != 0) & (b - a)) + a; */
1200 else
1201 {
1202 target = expand_simple_binop (mode, AND,
1203 target, gen_int_mode (diff, mode),
1204 if_info->x, 0, OPTAB_WIDEN);
1205 if (target)
1206 target = expand_simple_binop (mode, PLUS,
1207 target, gen_int_mode (ifalse, mode),
1208 if_info->x, 0, OPTAB_WIDEN);
1209 }
1210
1211 if (! target)
1212 {
1213 end_sequence ();
1214 return FALSE;
1215 }
1216
1217 if (target != if_info->x)
1218 noce_emit_move_insn (if_info->x, target);
1219
1220 seq = end_ifcvt_sequence (if_info);
1221 if (!seq)
1222 return FALSE;
1223
1224 emit_insn_before_setloc (seq, if_info->jump,
1225 INSN_LOCATION (if_info->insn_a));
1226 return TRUE;
1227 }
1228
1229 return FALSE;
1230 }
1231
1232 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1233 similarly for "foo--". */
1234
1235 static int
1236 noce_try_addcc (struct noce_if_info *if_info)
1237 {
1238 rtx target, seq;
1239 int subtract, normalize;
1240
1241 if (GET_CODE (if_info->a) == PLUS
1242 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1243 && (reversed_comparison_code (if_info->cond, if_info->jump)
1244 != UNKNOWN))
1245 {
1246 rtx cond = if_info->cond;
1247 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1248
1249 /* First try to use addcc pattern. */
1250 if (general_operand (XEXP (cond, 0), VOIDmode)
1251 && general_operand (XEXP (cond, 1), VOIDmode))
1252 {
1253 start_sequence ();
1254 target = emit_conditional_add (if_info->x, code,
1255 XEXP (cond, 0),
1256 XEXP (cond, 1),
1257 VOIDmode,
1258 if_info->b,
1259 XEXP (if_info->a, 1),
1260 GET_MODE (if_info->x),
1261 (code == LTU || code == GEU
1262 || code == LEU || code == GTU));
1263 if (target)
1264 {
1265 if (target != if_info->x)
1266 noce_emit_move_insn (if_info->x, target);
1267
1268 seq = end_ifcvt_sequence (if_info);
1269 if (!seq)
1270 return FALSE;
1271
1272 emit_insn_before_setloc (seq, if_info->jump,
1273 INSN_LOCATION (if_info->insn_a));
1274 return TRUE;
1275 }
1276 end_sequence ();
1277 }
1278
1279 /* If that fails, construct conditional increment or decrement using
1280 setcc. */
1281 if (if_info->branch_cost >= 2
1282 && (XEXP (if_info->a, 1) == const1_rtx
1283 || XEXP (if_info->a, 1) == constm1_rtx))
1284 {
1285 start_sequence ();
1286 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1287 subtract = 0, normalize = 0;
1288 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1289 subtract = 1, normalize = 0;
1290 else
1291 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1292
1293
1294 target = noce_emit_store_flag (if_info,
1295 gen_reg_rtx (GET_MODE (if_info->x)),
1296 1, normalize);
1297
1298 if (target)
1299 target = expand_simple_binop (GET_MODE (if_info->x),
1300 subtract ? MINUS : PLUS,
1301 if_info->b, target, if_info->x,
1302 0, OPTAB_WIDEN);
1303 if (target)
1304 {
1305 if (target != if_info->x)
1306 noce_emit_move_insn (if_info->x, target);
1307
1308 seq = end_ifcvt_sequence (if_info);
1309 if (!seq)
1310 return FALSE;
1311
1312 emit_insn_before_setloc (seq, if_info->jump,
1313 INSN_LOCATION (if_info->insn_a));
1314 return TRUE;
1315 }
1316 end_sequence ();
1317 }
1318 }
1319
1320 return FALSE;
1321 }
1322
1323 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1324
1325 static int
1326 noce_try_store_flag_mask (struct noce_if_info *if_info)
1327 {
1328 rtx target, seq;
1329 int reversep;
1330
1331 reversep = 0;
1332 if ((if_info->branch_cost >= 2
1333 || STORE_FLAG_VALUE == -1)
1334 && ((if_info->a == const0_rtx
1335 && rtx_equal_p (if_info->b, if_info->x))
1336 || ((reversep = (reversed_comparison_code (if_info->cond,
1337 if_info->jump)
1338 != UNKNOWN))
1339 && if_info->b == const0_rtx
1340 && rtx_equal_p (if_info->a, if_info->x))))
1341 {
1342 start_sequence ();
1343 target = noce_emit_store_flag (if_info,
1344 gen_reg_rtx (GET_MODE (if_info->x)),
1345 reversep, -1);
1346 if (target)
1347 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1348 if_info->x,
1349 target, if_info->x, 0,
1350 OPTAB_WIDEN);
1351
1352 if (target)
1353 {
1354 if (target != if_info->x)
1355 noce_emit_move_insn (if_info->x, target);
1356
1357 seq = end_ifcvt_sequence (if_info);
1358 if (!seq)
1359 return FALSE;
1360
1361 emit_insn_before_setloc (seq, if_info->jump,
1362 INSN_LOCATION (if_info->insn_a));
1363 return TRUE;
1364 }
1365
1366 end_sequence ();
1367 }
1368
1369 return FALSE;
1370 }
1371
1372 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1373
1374 static rtx
1375 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1376 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1377 {
1378 rtx target ATTRIBUTE_UNUSED;
1379 int unsignedp ATTRIBUTE_UNUSED;
1380
1381 /* If earliest == jump, try to build the cmove insn directly.
1382 This is helpful when combine has created some complex condition
1383 (like for alpha's cmovlbs) that we can't hope to regenerate
1384 through the normal interface. */
1385
1386 if (if_info->cond_earliest == if_info->jump)
1387 {
1388 rtx tmp;
1389
1390 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1391 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1392 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1393
1394 start_sequence ();
1395 tmp = emit_insn (tmp);
1396
1397 if (recog_memoized (tmp) >= 0)
1398 {
1399 tmp = get_insns ();
1400 end_sequence ();
1401 emit_insn (tmp);
1402
1403 return x;
1404 }
1405
1406 end_sequence ();
1407 }
1408
1409 /* Don't even try if the comparison operands are weird. */
1410 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1411 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1412 return NULL_RTX;
1413
1414 #if HAVE_conditional_move
1415 unsignedp = (code == LTU || code == GEU
1416 || code == LEU || code == GTU);
1417
1418 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1419 vtrue, vfalse, GET_MODE (x),
1420 unsignedp);
1421 if (target)
1422 return target;
1423
1424 /* We might be faced with a situation like:
1425
1426 x = (reg:M TARGET)
1427 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1428 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1429
1430 We can't do a conditional move in mode M, but it's possible that we
1431 could do a conditional move in mode N instead and take a subreg of
1432 the result.
1433
1434 If we can't create new pseudos, though, don't bother. */
1435 if (reload_completed)
1436 return NULL_RTX;
1437
1438 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1439 {
1440 rtx reg_vtrue = SUBREG_REG (vtrue);
1441 rtx reg_vfalse = SUBREG_REG (vfalse);
1442 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1443 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1444 rtx promoted_target;
1445
1446 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1447 || byte_vtrue != byte_vfalse
1448 || (SUBREG_PROMOTED_VAR_P (vtrue)
1449 != SUBREG_PROMOTED_VAR_P (vfalse))
1450 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1451 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1452 return NULL_RTX;
1453
1454 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1455
1456 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1457 VOIDmode, reg_vtrue, reg_vfalse,
1458 GET_MODE (reg_vtrue), unsignedp);
1459 /* Nope, couldn't do it in that mode either. */
1460 if (!target)
1461 return NULL_RTX;
1462
1463 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1464 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1465 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1466 emit_move_insn (x, target);
1467 return x;
1468 }
1469 else
1470 return NULL_RTX;
1471 #else
1472 /* We'll never get here, as noce_process_if_block doesn't call the
1473 functions involved. Ifdef code, however, should be discouraged
1474 because it leads to typos in the code not selected. However,
1475 emit_conditional_move won't exist either. */
1476 return NULL_RTX;
1477 #endif
1478 }
1479
1480 /* Try only simple constants and registers here. More complex cases
1481 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1482 has had a go at it. */
1483
1484 static int
1485 noce_try_cmove (struct noce_if_info *if_info)
1486 {
1487 enum rtx_code code;
1488 rtx target, seq;
1489
1490 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1491 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1492 {
1493 start_sequence ();
1494
1495 code = GET_CODE (if_info->cond);
1496 target = noce_emit_cmove (if_info, if_info->x, code,
1497 XEXP (if_info->cond, 0),
1498 XEXP (if_info->cond, 1),
1499 if_info->a, if_info->b);
1500
1501 if (target)
1502 {
1503 if (target != if_info->x)
1504 noce_emit_move_insn (if_info->x, target);
1505
1506 seq = end_ifcvt_sequence (if_info);
1507 if (!seq)
1508 return FALSE;
1509
1510 emit_insn_before_setloc (seq, if_info->jump,
1511 INSN_LOCATION (if_info->insn_a));
1512 return TRUE;
1513 }
1514 else
1515 {
1516 end_sequence ();
1517 return FALSE;
1518 }
1519 }
1520
1521 return FALSE;
1522 }
1523
1524 /* Try more complex cases involving conditional_move. */
1525
1526 static int
1527 noce_try_cmove_arith (struct noce_if_info *if_info)
1528 {
1529 rtx a = if_info->a;
1530 rtx b = if_info->b;
1531 rtx x = if_info->x;
1532 rtx orig_a, orig_b;
1533 rtx insn_a, insn_b;
1534 rtx tmp, target;
1535 int is_mem = 0;
1536 int insn_cost;
1537 enum rtx_code code;
1538
1539 /* A conditional move from two memory sources is equivalent to a
1540 conditional on their addresses followed by a load. Don't do this
1541 early because it'll screw alias analysis. Note that we've
1542 already checked for no side effects. */
1543 /* ??? FIXME: Magic number 5. */
1544 if (cse_not_expected
1545 && MEM_P (a) && MEM_P (b)
1546 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1547 && if_info->branch_cost >= 5)
1548 {
1549 enum machine_mode address_mode = get_address_mode (a);
1550
1551 a = XEXP (a, 0);
1552 b = XEXP (b, 0);
1553 x = gen_reg_rtx (address_mode);
1554 is_mem = 1;
1555 }
1556
1557 /* ??? We could handle this if we knew that a load from A or B could
1558 not trap or fault. This is also true if we've already loaded
1559 from the address along the path from ENTRY. */
1560 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1561 return FALSE;
1562
1563 /* if (test) x = a + b; else x = c - d;
1564 => y = a + b;
1565 x = c - d;
1566 if (test)
1567 x = y;
1568 */
1569
1570 code = GET_CODE (if_info->cond);
1571 insn_a = if_info->insn_a;
1572 insn_b = if_info->insn_b;
1573
1574 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1575 if insn_rtx_cost can't be estimated. */
1576 if (insn_a)
1577 {
1578 insn_cost
1579 = insn_rtx_cost (PATTERN (insn_a),
1580 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1581 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1582 return FALSE;
1583 }
1584 else
1585 insn_cost = 0;
1586
1587 if (insn_b)
1588 {
1589 insn_cost
1590 += insn_rtx_cost (PATTERN (insn_b),
1591 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1592 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1593 return FALSE;
1594 }
1595
1596 /* Possibly rearrange operands to make things come out more natural. */
1597 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1598 {
1599 int reversep = 0;
1600 if (rtx_equal_p (b, x))
1601 reversep = 1;
1602 else if (general_operand (b, GET_MODE (b)))
1603 reversep = 1;
1604
1605 if (reversep)
1606 {
1607 code = reversed_comparison_code (if_info->cond, if_info->jump);
1608 tmp = a, a = b, b = tmp;
1609 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1610 }
1611 }
1612
1613 start_sequence ();
1614
1615 orig_a = a;
1616 orig_b = b;
1617
1618 /* If either operand is complex, load it into a register first.
1619 The best way to do this is to copy the original insn. In this
1620 way we preserve any clobbers etc that the insn may have had.
1621 This is of course not possible in the IS_MEM case. */
1622 if (! general_operand (a, GET_MODE (a)))
1623 {
1624 rtx set;
1625
1626 if (is_mem)
1627 {
1628 tmp = gen_reg_rtx (GET_MODE (a));
1629 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1630 }
1631 else if (! insn_a)
1632 goto end_seq_and_fail;
1633 else
1634 {
1635 a = gen_reg_rtx (GET_MODE (a));
1636 tmp = copy_rtx (insn_a);
1637 set = single_set (tmp);
1638 SET_DEST (set) = a;
1639 tmp = emit_insn (PATTERN (tmp));
1640 }
1641 if (recog_memoized (tmp) < 0)
1642 goto end_seq_and_fail;
1643 }
1644 if (! general_operand (b, GET_MODE (b)))
1645 {
1646 rtx set, last;
1647
1648 if (is_mem)
1649 {
1650 tmp = gen_reg_rtx (GET_MODE (b));
1651 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1652 }
1653 else if (! insn_b)
1654 goto end_seq_and_fail;
1655 else
1656 {
1657 b = gen_reg_rtx (GET_MODE (b));
1658 tmp = copy_rtx (insn_b);
1659 set = single_set (tmp);
1660 SET_DEST (set) = b;
1661 tmp = PATTERN (tmp);
1662 }
1663
1664 /* If insn to set up A clobbers any registers B depends on, try to
1665 swap insn that sets up A with the one that sets up B. If even
1666 that doesn't help, punt. */
1667 last = get_last_insn ();
1668 if (last && modified_in_p (orig_b, last))
1669 {
1670 tmp = emit_insn_before (tmp, get_insns ());
1671 if (modified_in_p (orig_a, tmp))
1672 goto end_seq_and_fail;
1673 }
1674 else
1675 tmp = emit_insn (tmp);
1676
1677 if (recog_memoized (tmp) < 0)
1678 goto end_seq_and_fail;
1679 }
1680
1681 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1682 XEXP (if_info->cond, 1), a, b);
1683
1684 if (! target)
1685 goto end_seq_and_fail;
1686
1687 /* If we're handling a memory for above, emit the load now. */
1688 if (is_mem)
1689 {
1690 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1691
1692 /* Copy over flags as appropriate. */
1693 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1694 MEM_VOLATILE_P (tmp) = 1;
1695 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1696 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1697 set_mem_align (tmp,
1698 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1699
1700 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1701 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1702
1703 noce_emit_move_insn (if_info->x, tmp);
1704 }
1705 else if (target != x)
1706 noce_emit_move_insn (x, target);
1707
1708 tmp = end_ifcvt_sequence (if_info);
1709 if (!tmp)
1710 return FALSE;
1711
1712 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATION (if_info->insn_a));
1713 return TRUE;
1714
1715 end_seq_and_fail:
1716 end_sequence ();
1717 return FALSE;
1718 }
1719
1720 /* For most cases, the simplified condition we found is the best
1721 choice, but this is not the case for the min/max/abs transforms.
1722 For these we wish to know that it is A or B in the condition. */
1723
1724 static rtx
1725 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1726 rtx *earliest)
1727 {
1728 rtx cond, set, insn;
1729 int reverse;
1730
1731 /* If target is already mentioned in the known condition, return it. */
1732 if (reg_mentioned_p (target, if_info->cond))
1733 {
1734 *earliest = if_info->cond_earliest;
1735 return if_info->cond;
1736 }
1737
1738 set = pc_set (if_info->jump);
1739 cond = XEXP (SET_SRC (set), 0);
1740 reverse
1741 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1742 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1743 if (if_info->then_else_reversed)
1744 reverse = !reverse;
1745
1746 /* If we're looking for a constant, try to make the conditional
1747 have that constant in it. There are two reasons why it may
1748 not have the constant we want:
1749
1750 1. GCC may have needed to put the constant in a register, because
1751 the target can't compare directly against that constant. For
1752 this case, we look for a SET immediately before the comparison
1753 that puts a constant in that register.
1754
1755 2. GCC may have canonicalized the conditional, for example
1756 replacing "if x < 4" with "if x <= 3". We can undo that (or
1757 make equivalent types of changes) to get the constants we need
1758 if they're off by one in the right direction. */
1759
1760 if (CONST_INT_P (target))
1761 {
1762 enum rtx_code code = GET_CODE (if_info->cond);
1763 rtx op_a = XEXP (if_info->cond, 0);
1764 rtx op_b = XEXP (if_info->cond, 1);
1765 rtx prev_insn;
1766
1767 /* First, look to see if we put a constant in a register. */
1768 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1769 if (prev_insn
1770 && BLOCK_FOR_INSN (prev_insn)
1771 == BLOCK_FOR_INSN (if_info->cond_earliest)
1772 && INSN_P (prev_insn)
1773 && GET_CODE (PATTERN (prev_insn)) == SET)
1774 {
1775 rtx src = find_reg_equal_equiv_note (prev_insn);
1776 if (!src)
1777 src = SET_SRC (PATTERN (prev_insn));
1778 if (CONST_INT_P (src))
1779 {
1780 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1781 op_a = src;
1782 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1783 op_b = src;
1784
1785 if (CONST_INT_P (op_a))
1786 {
1787 rtx tmp = op_a;
1788 op_a = op_b;
1789 op_b = tmp;
1790 code = swap_condition (code);
1791 }
1792 }
1793 }
1794
1795 /* Now, look to see if we can get the right constant by
1796 adjusting the conditional. */
1797 if (CONST_INT_P (op_b))
1798 {
1799 HOST_WIDE_INT desired_val = INTVAL (target);
1800 HOST_WIDE_INT actual_val = INTVAL (op_b);
1801
1802 switch (code)
1803 {
1804 case LT:
1805 if (actual_val == desired_val + 1)
1806 {
1807 code = LE;
1808 op_b = GEN_INT (desired_val);
1809 }
1810 break;
1811 case LE:
1812 if (actual_val == desired_val - 1)
1813 {
1814 code = LT;
1815 op_b = GEN_INT (desired_val);
1816 }
1817 break;
1818 case GT:
1819 if (actual_val == desired_val - 1)
1820 {
1821 code = GE;
1822 op_b = GEN_INT (desired_val);
1823 }
1824 break;
1825 case GE:
1826 if (actual_val == desired_val + 1)
1827 {
1828 code = GT;
1829 op_b = GEN_INT (desired_val);
1830 }
1831 break;
1832 default:
1833 break;
1834 }
1835 }
1836
1837 /* If we made any changes, generate a new conditional that is
1838 equivalent to what we started with, but has the right
1839 constants in it. */
1840 if (code != GET_CODE (if_info->cond)
1841 || op_a != XEXP (if_info->cond, 0)
1842 || op_b != XEXP (if_info->cond, 1))
1843 {
1844 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1845 *earliest = if_info->cond_earliest;
1846 return cond;
1847 }
1848 }
1849
1850 cond = canonicalize_condition (if_info->jump, cond, reverse,
1851 earliest, target, false, true);
1852 if (! cond || ! reg_mentioned_p (target, cond))
1853 return NULL;
1854
1855 /* We almost certainly searched back to a different place.
1856 Need to re-verify correct lifetimes. */
1857
1858 /* X may not be mentioned in the range (cond_earliest, jump]. */
1859 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1860 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1861 return NULL;
1862
1863 /* A and B may not be modified in the range [cond_earliest, jump). */
1864 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1865 if (INSN_P (insn)
1866 && (modified_in_p (if_info->a, insn)
1867 || modified_in_p (if_info->b, insn)))
1868 return NULL;
1869
1870 return cond;
1871 }
1872
1873 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1874
1875 static int
1876 noce_try_minmax (struct noce_if_info *if_info)
1877 {
1878 rtx cond, earliest, target, seq;
1879 enum rtx_code code, op;
1880 int unsignedp;
1881
1882 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1883 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1884 to get the target to tell us... */
1885 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1886 || HONOR_NANS (GET_MODE (if_info->x)))
1887 return FALSE;
1888
1889 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1890 if (!cond)
1891 return FALSE;
1892
1893 /* Verify the condition is of the form we expect, and canonicalize
1894 the comparison code. */
1895 code = GET_CODE (cond);
1896 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1897 {
1898 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1899 return FALSE;
1900 }
1901 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1902 {
1903 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1904 return FALSE;
1905 code = swap_condition (code);
1906 }
1907 else
1908 return FALSE;
1909
1910 /* Determine what sort of operation this is. Note that the code is for
1911 a taken branch, so the code->operation mapping appears backwards. */
1912 switch (code)
1913 {
1914 case LT:
1915 case LE:
1916 case UNLT:
1917 case UNLE:
1918 op = SMAX;
1919 unsignedp = 0;
1920 break;
1921 case GT:
1922 case GE:
1923 case UNGT:
1924 case UNGE:
1925 op = SMIN;
1926 unsignedp = 0;
1927 break;
1928 case LTU:
1929 case LEU:
1930 op = UMAX;
1931 unsignedp = 1;
1932 break;
1933 case GTU:
1934 case GEU:
1935 op = UMIN;
1936 unsignedp = 1;
1937 break;
1938 default:
1939 return FALSE;
1940 }
1941
1942 start_sequence ();
1943
1944 target = expand_simple_binop (GET_MODE (if_info->x), op,
1945 if_info->a, if_info->b,
1946 if_info->x, unsignedp, OPTAB_WIDEN);
1947 if (! target)
1948 {
1949 end_sequence ();
1950 return FALSE;
1951 }
1952 if (target != if_info->x)
1953 noce_emit_move_insn (if_info->x, target);
1954
1955 seq = end_ifcvt_sequence (if_info);
1956 if (!seq)
1957 return FALSE;
1958
1959 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
1960 if_info->cond = cond;
1961 if_info->cond_earliest = earliest;
1962
1963 return TRUE;
1964 }
1965
1966 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1967 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1968 etc. */
1969
1970 static int
1971 noce_try_abs (struct noce_if_info *if_info)
1972 {
1973 rtx cond, earliest, target, seq, a, b, c;
1974 int negate;
1975 bool one_cmpl = false;
1976
1977 /* Reject modes with signed zeros. */
1978 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1979 return FALSE;
1980
1981 /* Recognize A and B as constituting an ABS or NABS. The canonical
1982 form is a branch around the negation, taken when the object is the
1983 first operand of a comparison against 0 that evaluates to true. */
1984 a = if_info->a;
1985 b = if_info->b;
1986 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1987 negate = 0;
1988 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1989 {
1990 c = a; a = b; b = c;
1991 negate = 1;
1992 }
1993 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1994 {
1995 negate = 0;
1996 one_cmpl = true;
1997 }
1998 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1999 {
2000 c = a; a = b; b = c;
2001 negate = 1;
2002 one_cmpl = true;
2003 }
2004 else
2005 return FALSE;
2006
2007 cond = noce_get_alt_condition (if_info, b, &earliest);
2008 if (!cond)
2009 return FALSE;
2010
2011 /* Verify the condition is of the form we expect. */
2012 if (rtx_equal_p (XEXP (cond, 0), b))
2013 c = XEXP (cond, 1);
2014 else if (rtx_equal_p (XEXP (cond, 1), b))
2015 {
2016 c = XEXP (cond, 0);
2017 negate = !negate;
2018 }
2019 else
2020 return FALSE;
2021
2022 /* Verify that C is zero. Search one step backward for a
2023 REG_EQUAL note or a simple source if necessary. */
2024 if (REG_P (c))
2025 {
2026 rtx set, insn = prev_nonnote_insn (earliest);
2027 if (insn
2028 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2029 && (set = single_set (insn))
2030 && rtx_equal_p (SET_DEST (set), c))
2031 {
2032 rtx note = find_reg_equal_equiv_note (insn);
2033 if (note)
2034 c = XEXP (note, 0);
2035 else
2036 c = SET_SRC (set);
2037 }
2038 else
2039 return FALSE;
2040 }
2041 if (MEM_P (c)
2042 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2043 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2044 c = get_pool_constant (XEXP (c, 0));
2045
2046 /* Work around funny ideas get_condition has wrt canonicalization.
2047 Note that these rtx constants are known to be CONST_INT, and
2048 therefore imply integer comparisons. */
2049 if (c == constm1_rtx && GET_CODE (cond) == GT)
2050 ;
2051 else if (c == const1_rtx && GET_CODE (cond) == LT)
2052 ;
2053 else if (c != CONST0_RTX (GET_MODE (b)))
2054 return FALSE;
2055
2056 /* Determine what sort of operation this is. */
2057 switch (GET_CODE (cond))
2058 {
2059 case LT:
2060 case LE:
2061 case UNLT:
2062 case UNLE:
2063 negate = !negate;
2064 break;
2065 case GT:
2066 case GE:
2067 case UNGT:
2068 case UNGE:
2069 break;
2070 default:
2071 return FALSE;
2072 }
2073
2074 start_sequence ();
2075 if (one_cmpl)
2076 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2077 if_info->x);
2078 else
2079 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2080
2081 /* ??? It's a quandary whether cmove would be better here, especially
2082 for integers. Perhaps combine will clean things up. */
2083 if (target && negate)
2084 {
2085 if (one_cmpl)
2086 target = expand_simple_unop (GET_MODE (target), NOT, target,
2087 if_info->x, 0);
2088 else
2089 target = expand_simple_unop (GET_MODE (target), NEG, target,
2090 if_info->x, 0);
2091 }
2092
2093 if (! target)
2094 {
2095 end_sequence ();
2096 return FALSE;
2097 }
2098
2099 if (target != if_info->x)
2100 noce_emit_move_insn (if_info->x, target);
2101
2102 seq = end_ifcvt_sequence (if_info);
2103 if (!seq)
2104 return FALSE;
2105
2106 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2107 if_info->cond = cond;
2108 if_info->cond_earliest = earliest;
2109
2110 return TRUE;
2111 }
2112
2113 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2114
2115 static int
2116 noce_try_sign_mask (struct noce_if_info *if_info)
2117 {
2118 rtx cond, t, m, c, seq;
2119 enum machine_mode mode;
2120 enum rtx_code code;
2121 bool t_unconditional;
2122
2123 cond = if_info->cond;
2124 code = GET_CODE (cond);
2125 m = XEXP (cond, 0);
2126 c = XEXP (cond, 1);
2127
2128 t = NULL_RTX;
2129 if (if_info->a == const0_rtx)
2130 {
2131 if ((code == LT && c == const0_rtx)
2132 || (code == LE && c == constm1_rtx))
2133 t = if_info->b;
2134 }
2135 else if (if_info->b == const0_rtx)
2136 {
2137 if ((code == GE && c == const0_rtx)
2138 || (code == GT && c == constm1_rtx))
2139 t = if_info->a;
2140 }
2141
2142 if (! t || side_effects_p (t))
2143 return FALSE;
2144
2145 /* We currently don't handle different modes. */
2146 mode = GET_MODE (t);
2147 if (GET_MODE (m) != mode)
2148 return FALSE;
2149
2150 /* This is only profitable if T is unconditionally executed/evaluated in the
2151 original insn sequence or T is cheap. The former happens if B is the
2152 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2153 INSN_B which can happen for e.g. conditional stores to memory. For the
2154 cost computation use the block TEST_BB where the evaluation will end up
2155 after the transformation. */
2156 t_unconditional =
2157 (t == if_info->b
2158 && (if_info->insn_b == NULL_RTX
2159 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2160 if (!(t_unconditional
2161 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2162 < COSTS_N_INSNS (2))))
2163 return FALSE;
2164
2165 start_sequence ();
2166 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2167 "(signed) m >> 31" directly. This benefits targets with specialized
2168 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2169 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2170 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2171 : NULL_RTX;
2172
2173 if (!t)
2174 {
2175 end_sequence ();
2176 return FALSE;
2177 }
2178
2179 noce_emit_move_insn (if_info->x, t);
2180
2181 seq = end_ifcvt_sequence (if_info);
2182 if (!seq)
2183 return FALSE;
2184
2185 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2186 return TRUE;
2187 }
2188
2189
2190 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2191 transformations. */
2192
2193 static int
2194 noce_try_bitop (struct noce_if_info *if_info)
2195 {
2196 rtx cond, x, a, result, seq;
2197 enum machine_mode mode;
2198 enum rtx_code code;
2199 int bitnum;
2200
2201 x = if_info->x;
2202 cond = if_info->cond;
2203 code = GET_CODE (cond);
2204
2205 /* Check for no else condition. */
2206 if (! rtx_equal_p (x, if_info->b))
2207 return FALSE;
2208
2209 /* Check for a suitable condition. */
2210 if (code != NE && code != EQ)
2211 return FALSE;
2212 if (XEXP (cond, 1) != const0_rtx)
2213 return FALSE;
2214 cond = XEXP (cond, 0);
2215
2216 /* ??? We could also handle AND here. */
2217 if (GET_CODE (cond) == ZERO_EXTRACT)
2218 {
2219 if (XEXP (cond, 1) != const1_rtx
2220 || !CONST_INT_P (XEXP (cond, 2))
2221 || ! rtx_equal_p (x, XEXP (cond, 0)))
2222 return FALSE;
2223 bitnum = INTVAL (XEXP (cond, 2));
2224 mode = GET_MODE (x);
2225 if (BITS_BIG_ENDIAN)
2226 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2227 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2228 return FALSE;
2229 }
2230 else
2231 return FALSE;
2232
2233 a = if_info->a;
2234 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2235 {
2236 /* Check for "if (X & C) x = x op C". */
2237 if (! rtx_equal_p (x, XEXP (a, 0))
2238 || !CONST_INT_P (XEXP (a, 1))
2239 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2240 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2241 return FALSE;
2242
2243 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2244 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2245 if (GET_CODE (a) == IOR)
2246 result = (code == NE) ? a : NULL_RTX;
2247 else if (code == NE)
2248 {
2249 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2250 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2251 result = simplify_gen_binary (IOR, mode, x, result);
2252 }
2253 else
2254 {
2255 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2256 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2257 result = simplify_gen_binary (AND, mode, x, result);
2258 }
2259 }
2260 else if (GET_CODE (a) == AND)
2261 {
2262 /* Check for "if (X & C) x &= ~C". */
2263 if (! rtx_equal_p (x, XEXP (a, 0))
2264 || !CONST_INT_P (XEXP (a, 1))
2265 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2266 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2267 return FALSE;
2268
2269 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2270 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2271 result = (code == EQ) ? a : NULL_RTX;
2272 }
2273 else
2274 return FALSE;
2275
2276 if (result)
2277 {
2278 start_sequence ();
2279 noce_emit_move_insn (x, result);
2280 seq = end_ifcvt_sequence (if_info);
2281 if (!seq)
2282 return FALSE;
2283
2284 emit_insn_before_setloc (seq, if_info->jump,
2285 INSN_LOCATION (if_info->insn_a));
2286 }
2287 return TRUE;
2288 }
2289
2290
2291 /* Similar to get_condition, only the resulting condition must be
2292 valid at JUMP, instead of at EARLIEST.
2293
2294 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2295 THEN block of the caller, and we have to reverse the condition. */
2296
2297 static rtx
2298 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2299 {
2300 rtx cond, set, tmp;
2301 bool reverse;
2302
2303 if (! any_condjump_p (jump))
2304 return NULL_RTX;
2305
2306 set = pc_set (jump);
2307
2308 /* If this branches to JUMP_LABEL when the condition is false,
2309 reverse the condition. */
2310 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2311 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2312
2313 /* We may have to reverse because the caller's if block is not canonical,
2314 i.e. the THEN block isn't the fallthrough block for the TEST block
2315 (see find_if_header). */
2316 if (then_else_reversed)
2317 reverse = !reverse;
2318
2319 /* If the condition variable is a register and is MODE_INT, accept it. */
2320
2321 cond = XEXP (SET_SRC (set), 0);
2322 tmp = XEXP (cond, 0);
2323 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2324 && (GET_MODE (tmp) != BImode
2325 || !targetm.small_register_classes_for_mode_p (BImode)))
2326 {
2327 *earliest = jump;
2328
2329 if (reverse)
2330 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2331 GET_MODE (cond), tmp, XEXP (cond, 1));
2332 return cond;
2333 }
2334
2335 /* Otherwise, fall back on canonicalize_condition to do the dirty
2336 work of manipulating MODE_CC values and COMPARE rtx codes. */
2337 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2338 NULL_RTX, false, true);
2339
2340 /* We don't handle side-effects in the condition, like handling
2341 REG_INC notes and making sure no duplicate conditions are emitted. */
2342 if (tmp != NULL_RTX && side_effects_p (tmp))
2343 return NULL_RTX;
2344
2345 return tmp;
2346 }
2347
2348 /* Return true if OP is ok for if-then-else processing. */
2349
2350 static int
2351 noce_operand_ok (const_rtx op)
2352 {
2353 if (side_effects_p (op))
2354 return FALSE;
2355
2356 /* We special-case memories, so handle any of them with
2357 no address side effects. */
2358 if (MEM_P (op))
2359 return ! side_effects_p (XEXP (op, 0));
2360
2361 return ! may_trap_p (op);
2362 }
2363
2364 /* Return true if a write into MEM may trap or fault. */
2365
2366 static bool
2367 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2368 {
2369 rtx addr;
2370
2371 if (MEM_READONLY_P (mem))
2372 return true;
2373
2374 if (may_trap_or_fault_p (mem))
2375 return true;
2376
2377 addr = XEXP (mem, 0);
2378
2379 /* Call target hook to avoid the effects of -fpic etc.... */
2380 addr = targetm.delegitimize_address (addr);
2381
2382 while (addr)
2383 switch (GET_CODE (addr))
2384 {
2385 case CONST:
2386 case PRE_DEC:
2387 case PRE_INC:
2388 case POST_DEC:
2389 case POST_INC:
2390 case POST_MODIFY:
2391 addr = XEXP (addr, 0);
2392 break;
2393 case LO_SUM:
2394 case PRE_MODIFY:
2395 addr = XEXP (addr, 1);
2396 break;
2397 case PLUS:
2398 if (CONST_INT_P (XEXP (addr, 1)))
2399 addr = XEXP (addr, 0);
2400 else
2401 return false;
2402 break;
2403 case LABEL_REF:
2404 return true;
2405 case SYMBOL_REF:
2406 if (SYMBOL_REF_DECL (addr)
2407 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2408 return true;
2409 return false;
2410 default:
2411 return false;
2412 }
2413
2414 return false;
2415 }
2416
2417 /* Return whether we can use store speculation for MEM. TOP_BB is the
2418 basic block above the conditional block where we are considering
2419 doing the speculative store. We look for whether MEM is set
2420 unconditionally later in the function. */
2421
2422 static bool
2423 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2424 {
2425 basic_block dominator;
2426
2427 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2428 dominator != NULL;
2429 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2430 {
2431 rtx insn;
2432
2433 FOR_BB_INSNS (dominator, insn)
2434 {
2435 /* If we see something that might be a memory barrier, we
2436 have to stop looking. Even if the MEM is set later in
2437 the function, we still don't want to set it
2438 unconditionally before the barrier. */
2439 if (INSN_P (insn)
2440 && (volatile_insn_p (PATTERN (insn))
2441 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2442 return false;
2443
2444 if (memory_must_be_modified_in_insn_p (mem, insn))
2445 return true;
2446 if (modified_in_p (XEXP (mem, 0), insn))
2447 return false;
2448
2449 }
2450 }
2451
2452 return false;
2453 }
2454
2455 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2456 it without using conditional execution. Return TRUE if we were successful
2457 at converting the block. */
2458
2459 static int
2460 noce_process_if_block (struct noce_if_info *if_info)
2461 {
2462 basic_block test_bb = if_info->test_bb; /* test block */
2463 basic_block then_bb = if_info->then_bb; /* THEN */
2464 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2465 basic_block join_bb = if_info->join_bb; /* JOIN */
2466 rtx jump = if_info->jump;
2467 rtx cond = if_info->cond;
2468 rtx insn_a, insn_b;
2469 rtx set_a, set_b;
2470 rtx orig_x, x, a, b;
2471
2472 /* We're looking for patterns of the form
2473
2474 (1) if (...) x = a; else x = b;
2475 (2) x = b; if (...) x = a;
2476 (3) if (...) x = a; // as if with an initial x = x.
2477
2478 The later patterns require jumps to be more expensive.
2479
2480 ??? For future expansion, look for multiple X in such patterns. */
2481
2482 /* Look for one of the potential sets. */
2483 insn_a = first_active_insn (then_bb);
2484 if (! insn_a
2485 || insn_a != last_active_insn (then_bb, FALSE)
2486 || (set_a = single_set (insn_a)) == NULL_RTX)
2487 return FALSE;
2488
2489 x = SET_DEST (set_a);
2490 a = SET_SRC (set_a);
2491
2492 /* Look for the other potential set. Make sure we've got equivalent
2493 destinations. */
2494 /* ??? This is overconservative. Storing to two different mems is
2495 as easy as conditionally computing the address. Storing to a
2496 single mem merely requires a scratch memory to use as one of the
2497 destination addresses; often the memory immediately below the
2498 stack pointer is available for this. */
2499 set_b = NULL_RTX;
2500 if (else_bb)
2501 {
2502 insn_b = first_active_insn (else_bb);
2503 if (! insn_b
2504 || insn_b != last_active_insn (else_bb, FALSE)
2505 || (set_b = single_set (insn_b)) == NULL_RTX
2506 || ! rtx_equal_p (x, SET_DEST (set_b)))
2507 return FALSE;
2508 }
2509 else
2510 {
2511 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2512 /* We're going to be moving the evaluation of B down from above
2513 COND_EARLIEST to JUMP. Make sure the relevant data is still
2514 intact. */
2515 if (! insn_b
2516 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2517 || !NONJUMP_INSN_P (insn_b)
2518 || (set_b = single_set (insn_b)) == NULL_RTX
2519 || ! rtx_equal_p (x, SET_DEST (set_b))
2520 || ! noce_operand_ok (SET_SRC (set_b))
2521 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2522 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2523 /* Avoid extending the lifetime of hard registers on small
2524 register class machines. */
2525 || (REG_P (SET_SRC (set_b))
2526 && HARD_REGISTER_P (SET_SRC (set_b))
2527 && targetm.small_register_classes_for_mode_p
2528 (GET_MODE (SET_SRC (set_b))))
2529 /* Likewise with X. In particular this can happen when
2530 noce_get_condition looks farther back in the instruction
2531 stream than one might expect. */
2532 || reg_overlap_mentioned_p (x, cond)
2533 || reg_overlap_mentioned_p (x, a)
2534 || modified_between_p (x, insn_b, jump))
2535 insn_b = set_b = NULL_RTX;
2536 }
2537
2538 /* If x has side effects then only the if-then-else form is safe to
2539 convert. But even in that case we would need to restore any notes
2540 (such as REG_INC) at then end. That can be tricky if
2541 noce_emit_move_insn expands to more than one insn, so disable the
2542 optimization entirely for now if there are side effects. */
2543 if (side_effects_p (x))
2544 return FALSE;
2545
2546 b = (set_b ? SET_SRC (set_b) : x);
2547
2548 /* Only operate on register destinations, and even then avoid extending
2549 the lifetime of hard registers on small register class machines. */
2550 orig_x = x;
2551 if (!REG_P (x)
2552 || (HARD_REGISTER_P (x)
2553 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2554 {
2555 if (GET_MODE (x) == BLKmode)
2556 return FALSE;
2557
2558 if (GET_CODE (x) == ZERO_EXTRACT
2559 && (!CONST_INT_P (XEXP (x, 1))
2560 || !CONST_INT_P (XEXP (x, 2))))
2561 return FALSE;
2562
2563 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2564 ? XEXP (x, 0) : x));
2565 }
2566
2567 /* Don't operate on sources that may trap or are volatile. */
2568 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2569 return FALSE;
2570
2571 retry:
2572 /* Set up the info block for our subroutines. */
2573 if_info->insn_a = insn_a;
2574 if_info->insn_b = insn_b;
2575 if_info->x = x;
2576 if_info->a = a;
2577 if_info->b = b;
2578
2579 /* Try optimizations in some approximation of a useful order. */
2580 /* ??? Should first look to see if X is live incoming at all. If it
2581 isn't, we don't need anything but an unconditional set. */
2582
2583 /* Look and see if A and B are really the same. Avoid creating silly
2584 cmove constructs that no one will fix up later. */
2585 if (rtx_equal_p (a, b))
2586 {
2587 /* If we have an INSN_B, we don't have to create any new rtl. Just
2588 move the instruction that we already have. If we don't have an
2589 INSN_B, that means that A == X, and we've got a noop move. In
2590 that case don't do anything and let the code below delete INSN_A. */
2591 if (insn_b && else_bb)
2592 {
2593 rtx note;
2594
2595 if (else_bb && insn_b == BB_END (else_bb))
2596 BB_END (else_bb) = PREV_INSN (insn_b);
2597 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2598
2599 /* If there was a REG_EQUAL note, delete it since it may have been
2600 true due to this insn being after a jump. */
2601 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2602 remove_note (insn_b, note);
2603
2604 insn_b = NULL_RTX;
2605 }
2606 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2607 x must be executed twice. */
2608 else if (insn_b && side_effects_p (orig_x))
2609 return FALSE;
2610
2611 x = orig_x;
2612 goto success;
2613 }
2614
2615 if (!set_b && MEM_P (orig_x))
2616 {
2617 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2618 for optimizations if writing to x may trap or fault,
2619 i.e. it's a memory other than a static var or a stack slot,
2620 is misaligned on strict aligned machines or is read-only. If
2621 x is a read-only memory, then the program is valid only if we
2622 avoid the store into it. If there are stores on both the
2623 THEN and ELSE arms, then we can go ahead with the conversion;
2624 either the program is broken, or the condition is always
2625 false such that the other memory is selected. */
2626 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2627 return FALSE;
2628
2629 /* Avoid store speculation: given "if (...) x = a" where x is a
2630 MEM, we only want to do the store if x is always set
2631 somewhere in the function. This avoids cases like
2632 if (pthread_mutex_trylock(mutex))
2633 ++global_variable;
2634 where we only want global_variable to be changed if the mutex
2635 is held. FIXME: This should ideally be expressed directly in
2636 RTL somehow. */
2637 if (!noce_can_store_speculate_p (test_bb, orig_x))
2638 return FALSE;
2639 }
2640
2641 if (noce_try_move (if_info))
2642 goto success;
2643 if (noce_try_store_flag (if_info))
2644 goto success;
2645 if (noce_try_bitop (if_info))
2646 goto success;
2647 if (noce_try_minmax (if_info))
2648 goto success;
2649 if (noce_try_abs (if_info))
2650 goto success;
2651 if (HAVE_conditional_move
2652 && noce_try_cmove (if_info))
2653 goto success;
2654 if (! targetm.have_conditional_execution ())
2655 {
2656 if (noce_try_store_flag_constants (if_info))
2657 goto success;
2658 if (noce_try_addcc (if_info))
2659 goto success;
2660 if (noce_try_store_flag_mask (if_info))
2661 goto success;
2662 if (HAVE_conditional_move
2663 && noce_try_cmove_arith (if_info))
2664 goto success;
2665 if (noce_try_sign_mask (if_info))
2666 goto success;
2667 }
2668
2669 if (!else_bb && set_b)
2670 {
2671 insn_b = set_b = NULL_RTX;
2672 b = orig_x;
2673 goto retry;
2674 }
2675
2676 return FALSE;
2677
2678 success:
2679
2680 /* If we used a temporary, fix it up now. */
2681 if (orig_x != x)
2682 {
2683 rtx seq;
2684
2685 start_sequence ();
2686 noce_emit_move_insn (orig_x, x);
2687 seq = get_insns ();
2688 set_used_flags (orig_x);
2689 unshare_all_rtl_in_chain (seq);
2690 end_sequence ();
2691
2692 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2693 }
2694
2695 /* The original THEN and ELSE blocks may now be removed. The test block
2696 must now jump to the join block. If the test block and the join block
2697 can be merged, do so. */
2698 if (else_bb)
2699 {
2700 delete_basic_block (else_bb);
2701 num_true_changes++;
2702 }
2703 else
2704 remove_edge (find_edge (test_bb, join_bb));
2705
2706 remove_edge (find_edge (then_bb, join_bb));
2707 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2708 delete_basic_block (then_bb);
2709 num_true_changes++;
2710
2711 if (can_merge_blocks_p (test_bb, join_bb))
2712 {
2713 merge_blocks (test_bb, join_bb);
2714 num_true_changes++;
2715 }
2716
2717 num_updated_if_blocks++;
2718 return TRUE;
2719 }
2720
2721 /* Check whether a block is suitable for conditional move conversion.
2722 Every insn must be a simple set of a register to a constant or a
2723 register. For each assignment, store the value in the pointer map
2724 VALS, keyed indexed by register pointer, then store the register
2725 pointer in REGS. COND is the condition we will test. */
2726
2727 static int
2728 check_cond_move_block (basic_block bb,
2729 hash_map<rtx, rtx> *vals,
2730 vec<rtx> *regs,
2731 rtx cond)
2732 {
2733 rtx insn;
2734
2735 /* We can only handle simple jumps at the end of the basic block.
2736 It is almost impossible to update the CFG otherwise. */
2737 insn = BB_END (bb);
2738 if (JUMP_P (insn) && !onlyjump_p (insn))
2739 return FALSE;
2740
2741 FOR_BB_INSNS (bb, insn)
2742 {
2743 rtx set, dest, src;
2744
2745 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2746 continue;
2747 set = single_set (insn);
2748 if (!set)
2749 return FALSE;
2750
2751 dest = SET_DEST (set);
2752 src = SET_SRC (set);
2753 if (!REG_P (dest)
2754 || (HARD_REGISTER_P (dest)
2755 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2756 return FALSE;
2757
2758 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2759 return FALSE;
2760
2761 if (side_effects_p (src) || side_effects_p (dest))
2762 return FALSE;
2763
2764 if (may_trap_p (src) || may_trap_p (dest))
2765 return FALSE;
2766
2767 /* Don't try to handle this if the source register was
2768 modified earlier in the block. */
2769 if ((REG_P (src)
2770 && vals->get (src))
2771 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2772 && vals->get (SUBREG_REG (src))))
2773 return FALSE;
2774
2775 /* Don't try to handle this if the destination register was
2776 modified earlier in the block. */
2777 if (vals->get (dest))
2778 return FALSE;
2779
2780 /* Don't try to handle this if the condition uses the
2781 destination register. */
2782 if (reg_overlap_mentioned_p (dest, cond))
2783 return FALSE;
2784
2785 /* Don't try to handle this if the source register is modified
2786 later in the block. */
2787 if (!CONSTANT_P (src)
2788 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2789 return FALSE;
2790
2791 vals->put (dest, src);
2792
2793 regs->safe_push (dest);
2794 }
2795
2796 return TRUE;
2797 }
2798
2799 /* Given a basic block BB suitable for conditional move conversion,
2800 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2801 the register values depending on COND, emit the insns in the block as
2802 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2803 processed. The caller has started a sequence for the conversion.
2804 Return true if successful, false if something goes wrong. */
2805
2806 static bool
2807 cond_move_convert_if_block (struct noce_if_info *if_infop,
2808 basic_block bb, rtx cond,
2809 hash_map<rtx, rtx> *then_vals,
2810 hash_map<rtx, rtx> *else_vals,
2811 bool else_block_p)
2812 {
2813 enum rtx_code code;
2814 rtx insn, cond_arg0, cond_arg1;
2815
2816 code = GET_CODE (cond);
2817 cond_arg0 = XEXP (cond, 0);
2818 cond_arg1 = XEXP (cond, 1);
2819
2820 FOR_BB_INSNS (bb, insn)
2821 {
2822 rtx set, target, dest, t, e;
2823
2824 /* ??? Maybe emit conditional debug insn? */
2825 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2826 continue;
2827 set = single_set (insn);
2828 gcc_assert (set && REG_P (SET_DEST (set)));
2829
2830 dest = SET_DEST (set);
2831
2832 rtx *then_slot = then_vals->get (dest);
2833 rtx *else_slot = else_vals->get (dest);
2834 t = then_slot ? *then_slot : NULL_RTX;
2835 e = else_slot ? *else_slot : NULL_RTX;
2836
2837 if (else_block_p)
2838 {
2839 /* If this register was set in the then block, we already
2840 handled this case there. */
2841 if (t)
2842 continue;
2843 t = dest;
2844 gcc_assert (e);
2845 }
2846 else
2847 {
2848 gcc_assert (t);
2849 if (!e)
2850 e = dest;
2851 }
2852
2853 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2854 t, e);
2855 if (!target)
2856 return false;
2857
2858 if (target != dest)
2859 noce_emit_move_insn (dest, target);
2860 }
2861
2862 return true;
2863 }
2864
2865 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2866 it using only conditional moves. Return TRUE if we were successful at
2867 converting the block. */
2868
2869 static int
2870 cond_move_process_if_block (struct noce_if_info *if_info)
2871 {
2872 basic_block test_bb = if_info->test_bb;
2873 basic_block then_bb = if_info->then_bb;
2874 basic_block else_bb = if_info->else_bb;
2875 basic_block join_bb = if_info->join_bb;
2876 rtx jump = if_info->jump;
2877 rtx cond = if_info->cond;
2878 rtx seq, loc_insn;
2879 rtx reg;
2880 int c;
2881 vec<rtx> then_regs = vNULL;
2882 vec<rtx> else_regs = vNULL;
2883 unsigned int i;
2884 int success_p = FALSE;
2885
2886 /* Build a mapping for each block to the value used for each
2887 register. */
2888 hash_map<rtx, rtx> then_vals;
2889 hash_map<rtx, rtx> else_vals;
2890
2891 /* Make sure the blocks are suitable. */
2892 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
2893 || (else_bb
2894 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
2895 goto done;
2896
2897 /* Make sure the blocks can be used together. If the same register
2898 is set in both blocks, and is not set to a constant in both
2899 cases, then both blocks must set it to the same register. We
2900 have already verified that if it is set to a register, that the
2901 source register does not change after the assignment. Also count
2902 the number of registers set in only one of the blocks. */
2903 c = 0;
2904 FOR_EACH_VEC_ELT (then_regs, i, reg)
2905 {
2906 rtx *then_slot = then_vals.get (reg);
2907 rtx *else_slot = else_vals.get (reg);
2908
2909 gcc_checking_assert (then_slot);
2910 if (!else_slot)
2911 ++c;
2912 else
2913 {
2914 rtx then_val = *then_slot;
2915 rtx else_val = *else_slot;
2916 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
2917 && !rtx_equal_p (then_val, else_val))
2918 goto done;
2919 }
2920 }
2921
2922 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2923 FOR_EACH_VEC_ELT (else_regs, i, reg)
2924 {
2925 gcc_checking_assert (else_vals.get (reg));
2926 if (!then_vals.get (reg))
2927 ++c;
2928 }
2929
2930 /* Make sure it is reasonable to convert this block. What matters
2931 is the number of assignments currently made in only one of the
2932 branches, since if we convert we are going to always execute
2933 them. */
2934 if (c > MAX_CONDITIONAL_EXECUTE)
2935 goto done;
2936
2937 /* Try to emit the conditional moves. First do the then block,
2938 then do anything left in the else blocks. */
2939 start_sequence ();
2940 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2941 &then_vals, &else_vals, false)
2942 || (else_bb
2943 && !cond_move_convert_if_block (if_info, else_bb, cond,
2944 &then_vals, &else_vals, true)))
2945 {
2946 end_sequence ();
2947 goto done;
2948 }
2949 seq = end_ifcvt_sequence (if_info);
2950 if (!seq)
2951 goto done;
2952
2953 loc_insn = first_active_insn (then_bb);
2954 if (!loc_insn)
2955 {
2956 loc_insn = first_active_insn (else_bb);
2957 gcc_assert (loc_insn);
2958 }
2959 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
2960
2961 if (else_bb)
2962 {
2963 delete_basic_block (else_bb);
2964 num_true_changes++;
2965 }
2966 else
2967 remove_edge (find_edge (test_bb, join_bb));
2968
2969 remove_edge (find_edge (then_bb, join_bb));
2970 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2971 delete_basic_block (then_bb);
2972 num_true_changes++;
2973
2974 if (can_merge_blocks_p (test_bb, join_bb))
2975 {
2976 merge_blocks (test_bb, join_bb);
2977 num_true_changes++;
2978 }
2979
2980 num_updated_if_blocks++;
2981
2982 success_p = TRUE;
2983
2984 done:
2985 then_regs.release ();
2986 else_regs.release ();
2987 return success_p;
2988 }
2989
2990 \f
2991 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2992 IF-THEN-ELSE-JOIN block.
2993
2994 If so, we'll try to convert the insns to not require the branch,
2995 using only transformations that do not require conditional execution.
2996
2997 Return TRUE if we were successful at converting the block. */
2998
2999 static int
3000 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3001 int pass)
3002 {
3003 basic_block then_bb, else_bb, join_bb;
3004 bool then_else_reversed = false;
3005 rtx jump, cond;
3006 rtx cond_earliest;
3007 struct noce_if_info if_info;
3008
3009 /* We only ever should get here before reload. */
3010 gcc_assert (!reload_completed);
3011
3012 /* Recognize an IF-THEN-ELSE-JOIN block. */
3013 if (single_pred_p (then_edge->dest)
3014 && single_succ_p (then_edge->dest)
3015 && single_pred_p (else_edge->dest)
3016 && single_succ_p (else_edge->dest)
3017 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3018 {
3019 then_bb = then_edge->dest;
3020 else_bb = else_edge->dest;
3021 join_bb = single_succ (then_bb);
3022 }
3023 /* Recognize an IF-THEN-JOIN block. */
3024 else if (single_pred_p (then_edge->dest)
3025 && single_succ_p (then_edge->dest)
3026 && single_succ (then_edge->dest) == else_edge->dest)
3027 {
3028 then_bb = then_edge->dest;
3029 else_bb = NULL_BLOCK;
3030 join_bb = else_edge->dest;
3031 }
3032 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3033 of basic blocks in cfglayout mode does not matter, so the fallthrough
3034 edge can go to any basic block (and not just to bb->next_bb, like in
3035 cfgrtl mode). */
3036 else if (single_pred_p (else_edge->dest)
3037 && single_succ_p (else_edge->dest)
3038 && single_succ (else_edge->dest) == then_edge->dest)
3039 {
3040 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3041 To make this work, we have to invert the THEN and ELSE blocks
3042 and reverse the jump condition. */
3043 then_bb = else_edge->dest;
3044 else_bb = NULL_BLOCK;
3045 join_bb = single_succ (then_bb);
3046 then_else_reversed = true;
3047 }
3048 else
3049 /* Not a form we can handle. */
3050 return FALSE;
3051
3052 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3053 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3054 return FALSE;
3055 if (else_bb
3056 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3057 return FALSE;
3058
3059 num_possible_if_blocks++;
3060
3061 if (dump_file)
3062 {
3063 fprintf (dump_file,
3064 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3065 (else_bb) ? "-ELSE" : "",
3066 pass, test_bb->index, then_bb->index);
3067
3068 if (else_bb)
3069 fprintf (dump_file, ", else %d", else_bb->index);
3070
3071 fprintf (dump_file, ", join %d\n", join_bb->index);
3072 }
3073
3074 /* If the conditional jump is more than just a conditional
3075 jump, then we can not do if-conversion on this block. */
3076 jump = BB_END (test_bb);
3077 if (! onlyjump_p (jump))
3078 return FALSE;
3079
3080 /* If this is not a standard conditional jump, we can't parse it. */
3081 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3082 if (!cond)
3083 return FALSE;
3084
3085 /* We must be comparing objects whose modes imply the size. */
3086 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3087 return FALSE;
3088
3089 /* Initialize an IF_INFO struct to pass around. */
3090 memset (&if_info, 0, sizeof if_info);
3091 if_info.test_bb = test_bb;
3092 if_info.then_bb = then_bb;
3093 if_info.else_bb = else_bb;
3094 if_info.join_bb = join_bb;
3095 if_info.cond = cond;
3096 if_info.cond_earliest = cond_earliest;
3097 if_info.jump = jump;
3098 if_info.then_else_reversed = then_else_reversed;
3099 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3100 predictable_edge_p (then_edge));
3101
3102 /* Do the real work. */
3103
3104 if (noce_process_if_block (&if_info))
3105 return TRUE;
3106
3107 if (HAVE_conditional_move
3108 && cond_move_process_if_block (&if_info))
3109 return TRUE;
3110
3111 return FALSE;
3112 }
3113 \f
3114
3115 /* Merge the blocks and mark for local life update. */
3116
3117 static void
3118 merge_if_block (struct ce_if_block * ce_info)
3119 {
3120 basic_block test_bb = ce_info->test_bb; /* last test block */
3121 basic_block then_bb = ce_info->then_bb; /* THEN */
3122 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3123 basic_block join_bb = ce_info->join_bb; /* join block */
3124 basic_block combo_bb;
3125
3126 /* All block merging is done into the lower block numbers. */
3127
3128 combo_bb = test_bb;
3129 df_set_bb_dirty (test_bb);
3130
3131 /* Merge any basic blocks to handle && and || subtests. Each of
3132 the blocks are on the fallthru path from the predecessor block. */
3133 if (ce_info->num_multiple_test_blocks > 0)
3134 {
3135 basic_block bb = test_bb;
3136 basic_block last_test_bb = ce_info->last_test_bb;
3137 basic_block fallthru = block_fallthru (bb);
3138
3139 do
3140 {
3141 bb = fallthru;
3142 fallthru = block_fallthru (bb);
3143 merge_blocks (combo_bb, bb);
3144 num_true_changes++;
3145 }
3146 while (bb != last_test_bb);
3147 }
3148
3149 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3150 label, but it might if there were || tests. That label's count should be
3151 zero, and it normally should be removed. */
3152
3153 if (then_bb)
3154 {
3155 /* If THEN_BB has no successors, then there's a BARRIER after it.
3156 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3157 is no longer needed, and in fact it is incorrect to leave it in
3158 the insn stream. */
3159 if (EDGE_COUNT (then_bb->succs) == 0
3160 && EDGE_COUNT (combo_bb->succs) > 1)
3161 {
3162 rtx end = NEXT_INSN (BB_END (then_bb));
3163 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3164 end = NEXT_INSN (end);
3165
3166 if (end && BARRIER_P (end))
3167 delete_insn (end);
3168 }
3169 merge_blocks (combo_bb, then_bb);
3170 num_true_changes++;
3171 }
3172
3173 /* The ELSE block, if it existed, had a label. That label count
3174 will almost always be zero, but odd things can happen when labels
3175 get their addresses taken. */
3176 if (else_bb)
3177 {
3178 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3179 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3180 is no longer needed, and in fact it is incorrect to leave it in
3181 the insn stream. */
3182 if (EDGE_COUNT (else_bb->succs) == 0
3183 && EDGE_COUNT (combo_bb->succs) > 1)
3184 {
3185 rtx end = NEXT_INSN (BB_END (else_bb));
3186 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3187 end = NEXT_INSN (end);
3188
3189 if (end && BARRIER_P (end))
3190 delete_insn (end);
3191 }
3192 merge_blocks (combo_bb, else_bb);
3193 num_true_changes++;
3194 }
3195
3196 /* If there was no join block reported, that means it was not adjacent
3197 to the others, and so we cannot merge them. */
3198
3199 if (! join_bb)
3200 {
3201 rtx last = BB_END (combo_bb);
3202
3203 /* The outgoing edge for the current COMBO block should already
3204 be correct. Verify this. */
3205 if (EDGE_COUNT (combo_bb->succs) == 0)
3206 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3207 || (NONJUMP_INSN_P (last)
3208 && GET_CODE (PATTERN (last)) == TRAP_IF
3209 && (TRAP_CONDITION (PATTERN (last))
3210 == const_true_rtx)));
3211
3212 else
3213 /* There should still be something at the end of the THEN or ELSE
3214 blocks taking us to our final destination. */
3215 gcc_assert (JUMP_P (last)
3216 || (EDGE_SUCC (combo_bb, 0)->dest
3217 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3218 && CALL_P (last)
3219 && SIBLING_CALL_P (last))
3220 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3221 && can_throw_internal (last)));
3222 }
3223
3224 /* The JOIN block may have had quite a number of other predecessors too.
3225 Since we've already merged the TEST, THEN and ELSE blocks, we should
3226 have only one remaining edge from our if-then-else diamond. If there
3227 is more than one remaining edge, it must come from elsewhere. There
3228 may be zero incoming edges if the THEN block didn't actually join
3229 back up (as with a call to a non-return function). */
3230 else if (EDGE_COUNT (join_bb->preds) < 2
3231 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3232 {
3233 /* We can merge the JOIN cleanly and update the dataflow try
3234 again on this pass.*/
3235 merge_blocks (combo_bb, join_bb);
3236 num_true_changes++;
3237 }
3238 else
3239 {
3240 /* We cannot merge the JOIN. */
3241
3242 /* The outgoing edge for the current COMBO block should already
3243 be correct. Verify this. */
3244 gcc_assert (single_succ_p (combo_bb)
3245 && single_succ (combo_bb) == join_bb);
3246
3247 /* Remove the jump and cruft from the end of the COMBO block. */
3248 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3249 tidy_fallthru_edge (single_succ_edge (combo_bb));
3250 }
3251
3252 num_updated_if_blocks++;
3253 }
3254 \f
3255 /* Find a block ending in a simple IF condition and try to transform it
3256 in some way. When converting a multi-block condition, put the new code
3257 in the first such block and delete the rest. Return a pointer to this
3258 first block if some transformation was done. Return NULL otherwise. */
3259
3260 static basic_block
3261 find_if_header (basic_block test_bb, int pass)
3262 {
3263 ce_if_block ce_info;
3264 edge then_edge;
3265 edge else_edge;
3266
3267 /* The kind of block we're looking for has exactly two successors. */
3268 if (EDGE_COUNT (test_bb->succs) != 2)
3269 return NULL;
3270
3271 then_edge = EDGE_SUCC (test_bb, 0);
3272 else_edge = EDGE_SUCC (test_bb, 1);
3273
3274 if (df_get_bb_dirty (then_edge->dest))
3275 return NULL;
3276 if (df_get_bb_dirty (else_edge->dest))
3277 return NULL;
3278
3279 /* Neither edge should be abnormal. */
3280 if ((then_edge->flags & EDGE_COMPLEX)
3281 || (else_edge->flags & EDGE_COMPLEX))
3282 return NULL;
3283
3284 /* Nor exit the loop. */
3285 if ((then_edge->flags & EDGE_LOOP_EXIT)
3286 || (else_edge->flags & EDGE_LOOP_EXIT))
3287 return NULL;
3288
3289 /* The THEN edge is canonically the one that falls through. */
3290 if (then_edge->flags & EDGE_FALLTHRU)
3291 ;
3292 else if (else_edge->flags & EDGE_FALLTHRU)
3293 {
3294 edge e = else_edge;
3295 else_edge = then_edge;
3296 then_edge = e;
3297 }
3298 else
3299 /* Otherwise this must be a multiway branch of some sort. */
3300 return NULL;
3301
3302 memset (&ce_info, 0, sizeof (ce_info));
3303 ce_info.test_bb = test_bb;
3304 ce_info.then_bb = then_edge->dest;
3305 ce_info.else_bb = else_edge->dest;
3306 ce_info.pass = pass;
3307
3308 #ifdef IFCVT_MACHDEP_INIT
3309 IFCVT_MACHDEP_INIT (&ce_info);
3310 #endif
3311
3312 if (!reload_completed
3313 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3314 goto success;
3315
3316 if (reload_completed
3317 && targetm.have_conditional_execution ()
3318 && cond_exec_find_if_block (&ce_info))
3319 goto success;
3320
3321 if (HAVE_trap
3322 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3323 && find_cond_trap (test_bb, then_edge, else_edge))
3324 goto success;
3325
3326 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3327 && (reload_completed || !targetm.have_conditional_execution ()))
3328 {
3329 if (find_if_case_1 (test_bb, then_edge, else_edge))
3330 goto success;
3331 if (find_if_case_2 (test_bb, then_edge, else_edge))
3332 goto success;
3333 }
3334
3335 return NULL;
3336
3337 success:
3338 if (dump_file)
3339 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3340 /* Set this so we continue looking. */
3341 cond_exec_changed_p = TRUE;
3342 return ce_info.test_bb;
3343 }
3344
3345 /* Return true if a block has two edges, one of which falls through to the next
3346 block, and the other jumps to a specific block, so that we can tell if the
3347 block is part of an && test or an || test. Returns either -1 or the number
3348 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3349
3350 static int
3351 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3352 {
3353 edge cur_edge;
3354 int fallthru_p = FALSE;
3355 int jump_p = FALSE;
3356 rtx insn;
3357 rtx end;
3358 int n_insns = 0;
3359 edge_iterator ei;
3360
3361 if (!cur_bb || !target_bb)
3362 return -1;
3363
3364 /* If no edges, obviously it doesn't jump or fallthru. */
3365 if (EDGE_COUNT (cur_bb->succs) == 0)
3366 return FALSE;
3367
3368 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3369 {
3370 if (cur_edge->flags & EDGE_COMPLEX)
3371 /* Anything complex isn't what we want. */
3372 return -1;
3373
3374 else if (cur_edge->flags & EDGE_FALLTHRU)
3375 fallthru_p = TRUE;
3376
3377 else if (cur_edge->dest == target_bb)
3378 jump_p = TRUE;
3379
3380 else
3381 return -1;
3382 }
3383
3384 if ((jump_p & fallthru_p) == 0)
3385 return -1;
3386
3387 /* Don't allow calls in the block, since this is used to group && and ||
3388 together for conditional execution support. ??? we should support
3389 conditional execution support across calls for IA-64 some day, but
3390 for now it makes the code simpler. */
3391 end = BB_END (cur_bb);
3392 insn = BB_HEAD (cur_bb);
3393
3394 while (insn != NULL_RTX)
3395 {
3396 if (CALL_P (insn))
3397 return -1;
3398
3399 if (INSN_P (insn)
3400 && !JUMP_P (insn)
3401 && !DEBUG_INSN_P (insn)
3402 && GET_CODE (PATTERN (insn)) != USE
3403 && GET_CODE (PATTERN (insn)) != CLOBBER)
3404 n_insns++;
3405
3406 if (insn == end)
3407 break;
3408
3409 insn = NEXT_INSN (insn);
3410 }
3411
3412 return n_insns;
3413 }
3414
3415 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3416 block. If so, we'll try to convert the insns to not require the branch.
3417 Return TRUE if we were successful at converting the block. */
3418
3419 static int
3420 cond_exec_find_if_block (struct ce_if_block * ce_info)
3421 {
3422 basic_block test_bb = ce_info->test_bb;
3423 basic_block then_bb = ce_info->then_bb;
3424 basic_block else_bb = ce_info->else_bb;
3425 basic_block join_bb = NULL_BLOCK;
3426 edge cur_edge;
3427 basic_block next;
3428 edge_iterator ei;
3429
3430 ce_info->last_test_bb = test_bb;
3431
3432 /* We only ever should get here after reload,
3433 and if we have conditional execution. */
3434 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3435
3436 /* Discover if any fall through predecessors of the current test basic block
3437 were && tests (which jump to the else block) or || tests (which jump to
3438 the then block). */
3439 if (single_pred_p (test_bb)
3440 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3441 {
3442 basic_block bb = single_pred (test_bb);
3443 basic_block target_bb;
3444 int max_insns = MAX_CONDITIONAL_EXECUTE;
3445 int n_insns;
3446
3447 /* Determine if the preceding block is an && or || block. */
3448 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3449 {
3450 ce_info->and_and_p = TRUE;
3451 target_bb = else_bb;
3452 }
3453 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3454 {
3455 ce_info->and_and_p = FALSE;
3456 target_bb = then_bb;
3457 }
3458 else
3459 target_bb = NULL_BLOCK;
3460
3461 if (target_bb && n_insns <= max_insns)
3462 {
3463 int total_insns = 0;
3464 int blocks = 0;
3465
3466 ce_info->last_test_bb = test_bb;
3467
3468 /* Found at least one && or || block, look for more. */
3469 do
3470 {
3471 ce_info->test_bb = test_bb = bb;
3472 total_insns += n_insns;
3473 blocks++;
3474
3475 if (!single_pred_p (bb))
3476 break;
3477
3478 bb = single_pred (bb);
3479 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3480 }
3481 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3482
3483 ce_info->num_multiple_test_blocks = blocks;
3484 ce_info->num_multiple_test_insns = total_insns;
3485
3486 if (ce_info->and_and_p)
3487 ce_info->num_and_and_blocks = blocks;
3488 else
3489 ce_info->num_or_or_blocks = blocks;
3490 }
3491 }
3492
3493 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3494 other than any || blocks which jump to the THEN block. */
3495 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3496 return FALSE;
3497
3498 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3499 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3500 {
3501 if (cur_edge->flags & EDGE_COMPLEX)
3502 return FALSE;
3503 }
3504
3505 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3506 {
3507 if (cur_edge->flags & EDGE_COMPLEX)
3508 return FALSE;
3509 }
3510
3511 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3512 if (EDGE_COUNT (then_bb->succs) > 0
3513 && (!single_succ_p (then_bb)
3514 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3515 || (epilogue_completed
3516 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3517 return FALSE;
3518
3519 /* If the THEN block has no successors, conditional execution can still
3520 make a conditional call. Don't do this unless the ELSE block has
3521 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3522 Check for the last insn of the THEN block being an indirect jump, which
3523 is listed as not having any successors, but confuses the rest of the CE
3524 code processing. ??? we should fix this in the future. */
3525 if (EDGE_COUNT (then_bb->succs) == 0)
3526 {
3527 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3528 {
3529 rtx last_insn = BB_END (then_bb);
3530
3531 while (last_insn
3532 && NOTE_P (last_insn)
3533 && last_insn != BB_HEAD (then_bb))
3534 last_insn = PREV_INSN (last_insn);
3535
3536 if (last_insn
3537 && JUMP_P (last_insn)
3538 && ! simplejump_p (last_insn))
3539 return FALSE;
3540
3541 join_bb = else_bb;
3542 else_bb = NULL_BLOCK;
3543 }
3544 else
3545 return FALSE;
3546 }
3547
3548 /* If the THEN block's successor is the other edge out of the TEST block,
3549 then we have an IF-THEN combo without an ELSE. */
3550 else if (single_succ (then_bb) == else_bb)
3551 {
3552 join_bb = else_bb;
3553 else_bb = NULL_BLOCK;
3554 }
3555
3556 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3557 has exactly one predecessor and one successor, and the outgoing edge
3558 is not complex, then we have an IF-THEN-ELSE combo. */
3559 else if (single_succ_p (else_bb)
3560 && single_succ (then_bb) == single_succ (else_bb)
3561 && single_pred_p (else_bb)
3562 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3563 && !(epilogue_completed
3564 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3565 join_bb = single_succ (else_bb);
3566
3567 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3568 else
3569 return FALSE;
3570
3571 num_possible_if_blocks++;
3572
3573 if (dump_file)
3574 {
3575 fprintf (dump_file,
3576 "\nIF-THEN%s block found, pass %d, start block %d "
3577 "[insn %d], then %d [%d]",
3578 (else_bb) ? "-ELSE" : "",
3579 ce_info->pass,
3580 test_bb->index,
3581 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3582 then_bb->index,
3583 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3584
3585 if (else_bb)
3586 fprintf (dump_file, ", else %d [%d]",
3587 else_bb->index,
3588 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3589
3590 fprintf (dump_file, ", join %d [%d]",
3591 join_bb->index,
3592 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3593
3594 if (ce_info->num_multiple_test_blocks > 0)
3595 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3596 ce_info->num_multiple_test_blocks,
3597 (ce_info->and_and_p) ? "&&" : "||",
3598 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3599 ce_info->last_test_bb->index,
3600 ((BB_HEAD (ce_info->last_test_bb))
3601 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3602 : -1));
3603
3604 fputc ('\n', dump_file);
3605 }
3606
3607 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3608 first condition for free, since we've already asserted that there's a
3609 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3610 we checked the FALLTHRU flag, those are already adjacent to the last IF
3611 block. */
3612 /* ??? As an enhancement, move the ELSE block. Have to deal with
3613 BLOCK notes, if by no other means than backing out the merge if they
3614 exist. Sticky enough I don't want to think about it now. */
3615 next = then_bb;
3616 if (else_bb && (next = next->next_bb) != else_bb)
3617 return FALSE;
3618 if ((next = next->next_bb) != join_bb
3619 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3620 {
3621 if (else_bb)
3622 join_bb = NULL;
3623 else
3624 return FALSE;
3625 }
3626
3627 /* Do the real work. */
3628
3629 ce_info->else_bb = else_bb;
3630 ce_info->join_bb = join_bb;
3631
3632 /* If we have && and || tests, try to first handle combining the && and ||
3633 tests into the conditional code, and if that fails, go back and handle
3634 it without the && and ||, which at present handles the && case if there
3635 was no ELSE block. */
3636 if (cond_exec_process_if_block (ce_info, TRUE))
3637 return TRUE;
3638
3639 if (ce_info->num_multiple_test_blocks)
3640 {
3641 cancel_changes (0);
3642
3643 if (cond_exec_process_if_block (ce_info, FALSE))
3644 return TRUE;
3645 }
3646
3647 return FALSE;
3648 }
3649
3650 /* Convert a branch over a trap, or a branch
3651 to a trap, into a conditional trap. */
3652
3653 static int
3654 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3655 {
3656 basic_block then_bb = then_edge->dest;
3657 basic_block else_bb = else_edge->dest;
3658 basic_block other_bb, trap_bb;
3659 rtx trap, jump, cond, cond_earliest, seq;
3660 enum rtx_code code;
3661
3662 /* Locate the block with the trap instruction. */
3663 /* ??? While we look for no successors, we really ought to allow
3664 EH successors. Need to fix merge_if_block for that to work. */
3665 if ((trap = block_has_only_trap (then_bb)) != NULL)
3666 trap_bb = then_bb, other_bb = else_bb;
3667 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3668 trap_bb = else_bb, other_bb = then_bb;
3669 else
3670 return FALSE;
3671
3672 if (dump_file)
3673 {
3674 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3675 test_bb->index, trap_bb->index);
3676 }
3677
3678 /* If this is not a standard conditional jump, we can't parse it. */
3679 jump = BB_END (test_bb);
3680 cond = noce_get_condition (jump, &cond_earliest, false);
3681 if (! cond)
3682 return FALSE;
3683
3684 /* If the conditional jump is more than just a conditional jump, then
3685 we can not do if-conversion on this block. */
3686 if (! onlyjump_p (jump))
3687 return FALSE;
3688
3689 /* We must be comparing objects whose modes imply the size. */
3690 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3691 return FALSE;
3692
3693 /* Reverse the comparison code, if necessary. */
3694 code = GET_CODE (cond);
3695 if (then_bb == trap_bb)
3696 {
3697 code = reversed_comparison_code (cond, jump);
3698 if (code == UNKNOWN)
3699 return FALSE;
3700 }
3701
3702 /* Attempt to generate the conditional trap. */
3703 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3704 copy_rtx (XEXP (cond, 1)),
3705 TRAP_CODE (PATTERN (trap)));
3706 if (seq == NULL)
3707 return FALSE;
3708
3709 /* Emit the new insns before cond_earliest. */
3710 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3711
3712 /* Delete the trap block if possible. */
3713 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3714 df_set_bb_dirty (test_bb);
3715 df_set_bb_dirty (then_bb);
3716 df_set_bb_dirty (else_bb);
3717
3718 if (EDGE_COUNT (trap_bb->preds) == 0)
3719 {
3720 delete_basic_block (trap_bb);
3721 num_true_changes++;
3722 }
3723
3724 /* Wire together the blocks again. */
3725 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3726 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3727 else if (trap_bb == then_bb)
3728 {
3729 rtx lab, newjump;
3730
3731 lab = JUMP_LABEL (jump);
3732 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3733 LABEL_NUSES (lab) += 1;
3734 JUMP_LABEL (newjump) = lab;
3735 emit_barrier_after (newjump);
3736 }
3737 delete_insn (jump);
3738
3739 if (can_merge_blocks_p (test_bb, other_bb))
3740 {
3741 merge_blocks (test_bb, other_bb);
3742 num_true_changes++;
3743 }
3744
3745 num_updated_if_blocks++;
3746 return TRUE;
3747 }
3748
3749 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3750 return it. */
3751
3752 static rtx
3753 block_has_only_trap (basic_block bb)
3754 {
3755 rtx trap;
3756
3757 /* We're not the exit block. */
3758 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3759 return NULL_RTX;
3760
3761 /* The block must have no successors. */
3762 if (EDGE_COUNT (bb->succs) > 0)
3763 return NULL_RTX;
3764
3765 /* The only instruction in the THEN block must be the trap. */
3766 trap = first_active_insn (bb);
3767 if (! (trap == BB_END (bb)
3768 && GET_CODE (PATTERN (trap)) == TRAP_IF
3769 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3770 return NULL_RTX;
3771
3772 return trap;
3773 }
3774
3775 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3776 transformable, but not necessarily the other. There need be no
3777 JOIN block.
3778
3779 Return TRUE if we were successful at converting the block.
3780
3781 Cases we'd like to look at:
3782
3783 (1)
3784 if (test) goto over; // x not live
3785 x = a;
3786 goto label;
3787 over:
3788
3789 becomes
3790
3791 x = a;
3792 if (! test) goto label;
3793
3794 (2)
3795 if (test) goto E; // x not live
3796 x = big();
3797 goto L;
3798 E:
3799 x = b;
3800 goto M;
3801
3802 becomes
3803
3804 x = b;
3805 if (test) goto M;
3806 x = big();
3807 goto L;
3808
3809 (3) // This one's really only interesting for targets that can do
3810 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3811 // it results in multiple branches on a cache line, which often
3812 // does not sit well with predictors.
3813
3814 if (test1) goto E; // predicted not taken
3815 x = a;
3816 if (test2) goto F;
3817 ...
3818 E:
3819 x = b;
3820 J:
3821
3822 becomes
3823
3824 x = a;
3825 if (test1) goto E;
3826 if (test2) goto F;
3827
3828 Notes:
3829
3830 (A) Don't do (2) if the branch is predicted against the block we're
3831 eliminating. Do it anyway if we can eliminate a branch; this requires
3832 that the sole successor of the eliminated block postdominate the other
3833 side of the if.
3834
3835 (B) With CE, on (3) we can steal from both sides of the if, creating
3836
3837 if (test1) x = a;
3838 if (!test1) x = b;
3839 if (test1) goto J;
3840 if (test2) goto F;
3841 ...
3842 J:
3843
3844 Again, this is most useful if J postdominates.
3845
3846 (C) CE substitutes for helpful life information.
3847
3848 (D) These heuristics need a lot of work. */
3849
3850 /* Tests for case 1 above. */
3851
3852 static int
3853 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3854 {
3855 basic_block then_bb = then_edge->dest;
3856 basic_block else_bb = else_edge->dest;
3857 basic_block new_bb;
3858 int then_bb_index, then_prob;
3859 rtx else_target = NULL_RTX;
3860
3861 /* If we are partitioning hot/cold basic blocks, we don't want to
3862 mess up unconditional or indirect jumps that cross between hot
3863 and cold sections.
3864
3865 Basic block partitioning may result in some jumps that appear to
3866 be optimizable (or blocks that appear to be mergeable), but which really
3867 must be left untouched (they are required to make it safely across
3868 partition boundaries). See the comments at the top of
3869 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3870
3871 if ((BB_END (then_bb)
3872 && JUMP_P (BB_END (then_bb))
3873 && CROSSING_JUMP_P (BB_END (then_bb)))
3874 || (BB_END (test_bb)
3875 && JUMP_P (BB_END (test_bb))
3876 && CROSSING_JUMP_P (BB_END (test_bb)))
3877 || (BB_END (else_bb)
3878 && JUMP_P (BB_END (else_bb))
3879 && CROSSING_JUMP_P (BB_END (else_bb))))
3880 return FALSE;
3881
3882 /* THEN has one successor. */
3883 if (!single_succ_p (then_bb))
3884 return FALSE;
3885
3886 /* THEN does not fall through, but is not strange either. */
3887 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3888 return FALSE;
3889
3890 /* THEN has one predecessor. */
3891 if (!single_pred_p (then_bb))
3892 return FALSE;
3893
3894 /* THEN must do something. */
3895 if (forwarder_block_p (then_bb))
3896 return FALSE;
3897
3898 num_possible_if_blocks++;
3899 if (dump_file)
3900 fprintf (dump_file,
3901 "\nIF-CASE-1 found, start %d, then %d\n",
3902 test_bb->index, then_bb->index);
3903
3904 if (then_edge->probability)
3905 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3906 else
3907 then_prob = REG_BR_PROB_BASE / 2;
3908
3909 /* We're speculating from the THEN path, we want to make sure the cost
3910 of speculation is within reason. */
3911 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3912 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3913 predictable_edge_p (then_edge)))))
3914 return FALSE;
3915
3916 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3917 {
3918 rtx jump = BB_END (else_edge->src);
3919 gcc_assert (JUMP_P (jump));
3920 else_target = JUMP_LABEL (jump);
3921 }
3922
3923 /* Registers set are dead, or are predicable. */
3924 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3925 single_succ_edge (then_bb), 1))
3926 return FALSE;
3927
3928 /* Conversion went ok, including moving the insns and fixing up the
3929 jump. Adjust the CFG to match. */
3930
3931 /* We can avoid creating a new basic block if then_bb is immediately
3932 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3933 through to else_bb. */
3934
3935 if (then_bb->next_bb == else_bb
3936 && then_bb->prev_bb == test_bb
3937 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3938 {
3939 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3940 new_bb = 0;
3941 }
3942 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3943 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3944 else_bb, else_target);
3945 else
3946 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3947 else_bb);
3948
3949 df_set_bb_dirty (test_bb);
3950 df_set_bb_dirty (else_bb);
3951
3952 then_bb_index = then_bb->index;
3953 delete_basic_block (then_bb);
3954
3955 /* Make rest of code believe that the newly created block is the THEN_BB
3956 block we removed. */
3957 if (new_bb)
3958 {
3959 df_bb_replace (then_bb_index, new_bb);
3960 /* This should have been done above via force_nonfallthru_and_redirect
3961 (possibly called from redirect_edge_and_branch_force). */
3962 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
3963 }
3964
3965 num_true_changes++;
3966 num_updated_if_blocks++;
3967
3968 return TRUE;
3969 }
3970
3971 /* Test for case 2 above. */
3972
3973 static int
3974 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3975 {
3976 basic_block then_bb = then_edge->dest;
3977 basic_block else_bb = else_edge->dest;
3978 edge else_succ;
3979 int then_prob, else_prob;
3980
3981 /* We do not want to speculate (empty) loop latches. */
3982 if (current_loops
3983 && else_bb->loop_father->latch == else_bb)
3984 return FALSE;
3985
3986 /* If we are partitioning hot/cold basic blocks, we don't want to
3987 mess up unconditional or indirect jumps that cross between hot
3988 and cold sections.
3989
3990 Basic block partitioning may result in some jumps that appear to
3991 be optimizable (or blocks that appear to be mergeable), but which really
3992 must be left untouched (they are required to make it safely across
3993 partition boundaries). See the comments at the top of
3994 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3995
3996 if ((BB_END (then_bb)
3997 && JUMP_P (BB_END (then_bb))
3998 && CROSSING_JUMP_P (BB_END (then_bb)))
3999 || (BB_END (test_bb)
4000 && JUMP_P (BB_END (test_bb))
4001 && CROSSING_JUMP_P (BB_END (test_bb)))
4002 || (BB_END (else_bb)
4003 && JUMP_P (BB_END (else_bb))
4004 && CROSSING_JUMP_P (BB_END (else_bb))))
4005 return FALSE;
4006
4007 /* ELSE has one successor. */
4008 if (!single_succ_p (else_bb))
4009 return FALSE;
4010 else
4011 else_succ = single_succ_edge (else_bb);
4012
4013 /* ELSE outgoing edge is not complex. */
4014 if (else_succ->flags & EDGE_COMPLEX)
4015 return FALSE;
4016
4017 /* ELSE has one predecessor. */
4018 if (!single_pred_p (else_bb))
4019 return FALSE;
4020
4021 /* THEN is not EXIT. */
4022 if (then_bb->index < NUM_FIXED_BLOCKS)
4023 return FALSE;
4024
4025 if (else_edge->probability)
4026 {
4027 else_prob = else_edge->probability;
4028 then_prob = REG_BR_PROB_BASE - else_prob;
4029 }
4030 else
4031 {
4032 else_prob = REG_BR_PROB_BASE / 2;
4033 then_prob = REG_BR_PROB_BASE / 2;
4034 }
4035
4036 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4037 if (else_prob > then_prob)
4038 ;
4039 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4040 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4041 else_succ->dest))
4042 ;
4043 else
4044 return FALSE;
4045
4046 num_possible_if_blocks++;
4047 if (dump_file)
4048 fprintf (dump_file,
4049 "\nIF-CASE-2 found, start %d, else %d\n",
4050 test_bb->index, else_bb->index);
4051
4052 /* We're speculating from the ELSE path, we want to make sure the cost
4053 of speculation is within reason. */
4054 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4055 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4056 predictable_edge_p (else_edge)))))
4057 return FALSE;
4058
4059 /* Registers set are dead, or are predicable. */
4060 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4061 return FALSE;
4062
4063 /* Conversion went ok, including moving the insns and fixing up the
4064 jump. Adjust the CFG to match. */
4065
4066 df_set_bb_dirty (test_bb);
4067 df_set_bb_dirty (then_bb);
4068 delete_basic_block (else_bb);
4069
4070 num_true_changes++;
4071 num_updated_if_blocks++;
4072
4073 /* ??? We may now fallthru from one of THEN's successors into a join
4074 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4075
4076 return TRUE;
4077 }
4078
4079 /* Used by the code above to perform the actual rtl transformations.
4080 Return TRUE if successful.
4081
4082 TEST_BB is the block containing the conditional branch. MERGE_BB
4083 is the block containing the code to manipulate. DEST_EDGE is an
4084 edge representing a jump to the join block; after the conversion,
4085 TEST_BB should be branching to its destination.
4086 REVERSEP is true if the sense of the branch should be reversed. */
4087
4088 static int
4089 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4090 basic_block other_bb, edge dest_edge, int reversep)
4091 {
4092 basic_block new_dest = dest_edge->dest;
4093 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4094 bitmap merge_set = NULL;
4095 /* Number of pending changes. */
4096 int n_validated_changes = 0;
4097 rtx new_dest_label = NULL_RTX;
4098
4099 jump = BB_END (test_bb);
4100
4101 /* Find the extent of the real code in the merge block. */
4102 head = BB_HEAD (merge_bb);
4103 end = BB_END (merge_bb);
4104
4105 while (DEBUG_INSN_P (end) && end != head)
4106 end = PREV_INSN (end);
4107
4108 /* If merge_bb ends with a tablejump, predicating/moving insn's
4109 into test_bb and then deleting merge_bb will result in the jumptable
4110 that follows merge_bb being removed along with merge_bb and then we
4111 get an unresolved reference to the jumptable. */
4112 if (tablejump_p (end, NULL, NULL))
4113 return FALSE;
4114
4115 if (LABEL_P (head))
4116 head = NEXT_INSN (head);
4117 while (DEBUG_INSN_P (head) && head != end)
4118 head = NEXT_INSN (head);
4119 if (NOTE_P (head))
4120 {
4121 if (head == end)
4122 {
4123 head = end = NULL_RTX;
4124 goto no_body;
4125 }
4126 head = NEXT_INSN (head);
4127 while (DEBUG_INSN_P (head) && head != end)
4128 head = NEXT_INSN (head);
4129 }
4130
4131 if (JUMP_P (end))
4132 {
4133 if (!onlyjump_p (end))
4134 return FALSE;
4135 if (head == end)
4136 {
4137 head = end = NULL_RTX;
4138 goto no_body;
4139 }
4140 end = PREV_INSN (end);
4141 while (DEBUG_INSN_P (end) && end != head)
4142 end = PREV_INSN (end);
4143 }
4144
4145 /* Don't move frame-related insn across the conditional branch. This
4146 can lead to one of the paths of the branch having wrong unwind info. */
4147 if (epilogue_completed)
4148 {
4149 rtx insn = head;
4150 while (1)
4151 {
4152 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
4153 return FALSE;
4154 if (insn == end)
4155 break;
4156 insn = NEXT_INSN (insn);
4157 }
4158 }
4159
4160 /* Disable handling dead code by conditional execution if the machine needs
4161 to do anything funny with the tests, etc. */
4162 #ifndef IFCVT_MODIFY_TESTS
4163 if (targetm.have_conditional_execution ())
4164 {
4165 /* In the conditional execution case, we have things easy. We know
4166 the condition is reversible. We don't have to check life info
4167 because we're going to conditionally execute the code anyway.
4168 All that's left is making sure the insns involved can actually
4169 be predicated. */
4170
4171 rtx cond;
4172
4173 cond = cond_exec_get_condition (jump);
4174 if (! cond)
4175 return FALSE;
4176
4177 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4178 int prob_val = (note ? XINT (note, 0) : -1);
4179
4180 if (reversep)
4181 {
4182 enum rtx_code rev = reversed_comparison_code (cond, jump);
4183 if (rev == UNKNOWN)
4184 return FALSE;
4185 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4186 XEXP (cond, 1));
4187 if (prob_val >= 0)
4188 prob_val = REG_BR_PROB_BASE - prob_val;
4189 }
4190
4191 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4192 && verify_changes (0))
4193 n_validated_changes = num_validated_changes ();
4194 else
4195 cancel_changes (0);
4196
4197 earliest = jump;
4198 }
4199 #endif
4200
4201 /* If we allocated new pseudos (e.g. in the conditional move
4202 expander called from noce_emit_cmove), we must resize the
4203 array first. */
4204 if (max_regno < max_reg_num ())
4205 max_regno = max_reg_num ();
4206
4207 /* Try the NCE path if the CE path did not result in any changes. */
4208 if (n_validated_changes == 0)
4209 {
4210 rtx cond, insn;
4211 regset live;
4212 bool success;
4213
4214 /* In the non-conditional execution case, we have to verify that there
4215 are no trapping operations, no calls, no references to memory, and
4216 that any registers modified are dead at the branch site. */
4217
4218 if (!any_condjump_p (jump))
4219 return FALSE;
4220
4221 /* Find the extent of the conditional. */
4222 cond = noce_get_condition (jump, &earliest, false);
4223 if (!cond)
4224 return FALSE;
4225
4226 live = BITMAP_ALLOC (&reg_obstack);
4227 simulate_backwards_to_point (merge_bb, live, end);
4228 success = can_move_insns_across (head, end, earliest, jump,
4229 merge_bb, live,
4230 df_get_live_in (other_bb), NULL);
4231 BITMAP_FREE (live);
4232 if (!success)
4233 return FALSE;
4234
4235 /* Collect the set of registers set in MERGE_BB. */
4236 merge_set = BITMAP_ALLOC (&reg_obstack);
4237
4238 FOR_BB_INSNS (merge_bb, insn)
4239 if (NONDEBUG_INSN_P (insn))
4240 df_simulate_find_defs (insn, merge_set);
4241
4242 #ifdef HAVE_simple_return
4243 /* If shrink-wrapping, disable this optimization when test_bb is
4244 the first basic block and merge_bb exits. The idea is to not
4245 move code setting up a return register as that may clobber a
4246 register used to pass function parameters, which then must be
4247 saved in caller-saved regs. A caller-saved reg requires the
4248 prologue, killing a shrink-wrap opportunity. */
4249 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4250 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4251 && single_succ_p (new_dest)
4252 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4253 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4254 {
4255 regset return_regs;
4256 unsigned int i;
4257
4258 return_regs = BITMAP_ALLOC (&reg_obstack);
4259
4260 /* Start off with the intersection of regs used to pass
4261 params and regs used to return values. */
4262 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4263 if (FUNCTION_ARG_REGNO_P (i)
4264 && targetm.calls.function_value_regno_p (i))
4265 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4266
4267 bitmap_and_into (return_regs,
4268 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4269 bitmap_and_into (return_regs,
4270 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4271 if (!bitmap_empty_p (return_regs))
4272 {
4273 FOR_BB_INSNS_REVERSE (new_dest, insn)
4274 if (NONDEBUG_INSN_P (insn))
4275 {
4276 df_ref def;
4277
4278 /* If this insn sets any reg in return_regs, add all
4279 reg uses to the set of regs we're interested in. */
4280 FOR_EACH_INSN_DEF (def, insn)
4281 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
4282 {
4283 df_simulate_uses (insn, return_regs);
4284 break;
4285 }
4286 }
4287 if (bitmap_intersect_p (merge_set, return_regs))
4288 {
4289 BITMAP_FREE (return_regs);
4290 BITMAP_FREE (merge_set);
4291 return FALSE;
4292 }
4293 }
4294 BITMAP_FREE (return_regs);
4295 }
4296 #endif
4297 }
4298
4299 no_body:
4300 /* We don't want to use normal invert_jump or redirect_jump because
4301 we don't want to delete_insn called. Also, we want to do our own
4302 change group management. */
4303
4304 old_dest = JUMP_LABEL (jump);
4305 if (other_bb != new_dest)
4306 {
4307 if (JUMP_P (BB_END (dest_edge->src)))
4308 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4309 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4310 new_dest_label = ret_rtx;
4311 else
4312 new_dest_label = block_label (new_dest);
4313
4314 if (reversep
4315 ? ! invert_jump_1 (jump, new_dest_label)
4316 : ! redirect_jump_1 (jump, new_dest_label))
4317 goto cancel;
4318 }
4319
4320 if (verify_changes (n_validated_changes))
4321 confirm_change_group ();
4322 else
4323 goto cancel;
4324
4325 if (other_bb != new_dest)
4326 {
4327 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4328
4329 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4330 if (reversep)
4331 {
4332 gcov_type count, probability;
4333 count = BRANCH_EDGE (test_bb)->count;
4334 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4335 FALLTHRU_EDGE (test_bb)->count = count;
4336 probability = BRANCH_EDGE (test_bb)->probability;
4337 BRANCH_EDGE (test_bb)->probability
4338 = FALLTHRU_EDGE (test_bb)->probability;
4339 FALLTHRU_EDGE (test_bb)->probability = probability;
4340 update_br_prob_note (test_bb);
4341 }
4342 }
4343
4344 /* Move the insns out of MERGE_BB to before the branch. */
4345 if (head != NULL)
4346 {
4347 rtx insn;
4348
4349 if (end == BB_END (merge_bb))
4350 BB_END (merge_bb) = PREV_INSN (head);
4351
4352 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4353 notes being moved might become invalid. */
4354 insn = head;
4355 do
4356 {
4357 rtx note, set;
4358
4359 if (! INSN_P (insn))
4360 continue;
4361 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4362 if (! note)
4363 continue;
4364 set = single_set (insn);
4365 if (!set || !function_invariant_p (SET_SRC (set))
4366 || !function_invariant_p (XEXP (note, 0)))
4367 remove_note (insn, note);
4368 } while (insn != end && (insn = NEXT_INSN (insn)));
4369
4370 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4371 notes referring to the registers being set might become invalid. */
4372 if (merge_set)
4373 {
4374 unsigned i;
4375 bitmap_iterator bi;
4376
4377 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4378 remove_reg_equal_equiv_notes_for_regno (i);
4379
4380 BITMAP_FREE (merge_set);
4381 }
4382
4383 reorder_insns (head, end, PREV_INSN (earliest));
4384 }
4385
4386 /* Remove the jump and edge if we can. */
4387 if (other_bb == new_dest)
4388 {
4389 delete_insn (jump);
4390 remove_edge (BRANCH_EDGE (test_bb));
4391 /* ??? Can't merge blocks here, as then_bb is still in use.
4392 At minimum, the merge will get done just before bb-reorder. */
4393 }
4394
4395 return TRUE;
4396
4397 cancel:
4398 cancel_changes (0);
4399
4400 if (merge_set)
4401 BITMAP_FREE (merge_set);
4402
4403 return FALSE;
4404 }
4405 \f
4406 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4407 we are after combine pass. */
4408
4409 static void
4410 if_convert (bool after_combine)
4411 {
4412 basic_block bb;
4413 int pass;
4414
4415 if (optimize == 1)
4416 {
4417 df_live_add_problem ();
4418 df_live_set_all_dirty ();
4419 }
4420
4421 /* Record whether we are after combine pass. */
4422 ifcvt_after_combine = after_combine;
4423 num_possible_if_blocks = 0;
4424 num_updated_if_blocks = 0;
4425 num_true_changes = 0;
4426
4427 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4428 mark_loop_exit_edges ();
4429 loop_optimizer_finalize ();
4430 free_dominance_info (CDI_DOMINATORS);
4431
4432 /* Compute postdominators. */
4433 calculate_dominance_info (CDI_POST_DOMINATORS);
4434
4435 df_set_flags (DF_LR_RUN_DCE);
4436
4437 /* Go through each of the basic blocks looking for things to convert. If we
4438 have conditional execution, we make multiple passes to allow us to handle
4439 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4440 pass = 0;
4441 do
4442 {
4443 df_analyze ();
4444 /* Only need to do dce on the first pass. */
4445 df_clear_flags (DF_LR_RUN_DCE);
4446 cond_exec_changed_p = FALSE;
4447 pass++;
4448
4449 #ifdef IFCVT_MULTIPLE_DUMPS
4450 if (dump_file && pass > 1)
4451 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4452 #endif
4453
4454 FOR_EACH_BB_FN (bb, cfun)
4455 {
4456 basic_block new_bb;
4457 while (!df_get_bb_dirty (bb)
4458 && (new_bb = find_if_header (bb, pass)) != NULL)
4459 bb = new_bb;
4460 }
4461
4462 #ifdef IFCVT_MULTIPLE_DUMPS
4463 if (dump_file && cond_exec_changed_p)
4464 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4465 #endif
4466 }
4467 while (cond_exec_changed_p);
4468
4469 #ifdef IFCVT_MULTIPLE_DUMPS
4470 if (dump_file)
4471 fprintf (dump_file, "\n\n========== no more changes\n");
4472 #endif
4473
4474 free_dominance_info (CDI_POST_DOMINATORS);
4475
4476 if (dump_file)
4477 fflush (dump_file);
4478
4479 clear_aux_for_blocks ();
4480
4481 /* If we allocated new pseudos, we must resize the array for sched1. */
4482 if (max_regno < max_reg_num ())
4483 max_regno = max_reg_num ();
4484
4485 /* Write the final stats. */
4486 if (dump_file && num_possible_if_blocks > 0)
4487 {
4488 fprintf (dump_file,
4489 "\n%d possible IF blocks searched.\n",
4490 num_possible_if_blocks);
4491 fprintf (dump_file,
4492 "%d IF blocks converted.\n",
4493 num_updated_if_blocks);
4494 fprintf (dump_file,
4495 "%d true changes made.\n\n\n",
4496 num_true_changes);
4497 }
4498
4499 if (optimize == 1)
4500 df_remove_problem (df_live);
4501
4502 #ifdef ENABLE_CHECKING
4503 verify_flow_info ();
4504 #endif
4505 }
4506 \f
4507 /* If-conversion and CFG cleanup. */
4508 static unsigned int
4509 rest_of_handle_if_conversion (void)
4510 {
4511 if (flag_if_conversion)
4512 {
4513 if (dump_file)
4514 {
4515 dump_reg_info (dump_file);
4516 dump_flow_info (dump_file, dump_flags);
4517 }
4518 cleanup_cfg (CLEANUP_EXPENSIVE);
4519 if_convert (false);
4520 }
4521
4522 cleanup_cfg (0);
4523 return 0;
4524 }
4525
4526 namespace {
4527
4528 const pass_data pass_data_rtl_ifcvt =
4529 {
4530 RTL_PASS, /* type */
4531 "ce1", /* name */
4532 OPTGROUP_NONE, /* optinfo_flags */
4533 TV_IFCVT, /* tv_id */
4534 0, /* properties_required */
4535 0, /* properties_provided */
4536 0, /* properties_destroyed */
4537 0, /* todo_flags_start */
4538 TODO_df_finish, /* todo_flags_finish */
4539 };
4540
4541 class pass_rtl_ifcvt : public rtl_opt_pass
4542 {
4543 public:
4544 pass_rtl_ifcvt (gcc::context *ctxt)
4545 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4546 {}
4547
4548 /* opt_pass methods: */
4549 virtual bool gate (function *)
4550 {
4551 return (optimize > 0) && dbg_cnt (if_conversion);
4552 }
4553
4554 virtual unsigned int execute (function *)
4555 {
4556 return rest_of_handle_if_conversion ();
4557 }
4558
4559 }; // class pass_rtl_ifcvt
4560
4561 } // anon namespace
4562
4563 rtl_opt_pass *
4564 make_pass_rtl_ifcvt (gcc::context *ctxt)
4565 {
4566 return new pass_rtl_ifcvt (ctxt);
4567 }
4568
4569
4570 /* Rerun if-conversion, as combine may have simplified things enough
4571 to now meet sequence length restrictions. */
4572
4573 namespace {
4574
4575 const pass_data pass_data_if_after_combine =
4576 {
4577 RTL_PASS, /* type */
4578 "ce2", /* name */
4579 OPTGROUP_NONE, /* optinfo_flags */
4580 TV_IFCVT, /* tv_id */
4581 0, /* properties_required */
4582 0, /* properties_provided */
4583 0, /* properties_destroyed */
4584 0, /* todo_flags_start */
4585 TODO_df_finish, /* todo_flags_finish */
4586 };
4587
4588 class pass_if_after_combine : public rtl_opt_pass
4589 {
4590 public:
4591 pass_if_after_combine (gcc::context *ctxt)
4592 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4593 {}
4594
4595 /* opt_pass methods: */
4596 virtual bool gate (function *)
4597 {
4598 return optimize > 0 && flag_if_conversion
4599 && dbg_cnt (if_after_combine);
4600 }
4601
4602 virtual unsigned int execute (function *)
4603 {
4604 if_convert (true);
4605 return 0;
4606 }
4607
4608 }; // class pass_if_after_combine
4609
4610 } // anon namespace
4611
4612 rtl_opt_pass *
4613 make_pass_if_after_combine (gcc::context *ctxt)
4614 {
4615 return new pass_if_after_combine (ctxt);
4616 }
4617
4618
4619 namespace {
4620
4621 const pass_data pass_data_if_after_reload =
4622 {
4623 RTL_PASS, /* type */
4624 "ce3", /* name */
4625 OPTGROUP_NONE, /* optinfo_flags */
4626 TV_IFCVT2, /* tv_id */
4627 0, /* properties_required */
4628 0, /* properties_provided */
4629 0, /* properties_destroyed */
4630 0, /* todo_flags_start */
4631 TODO_df_finish, /* todo_flags_finish */
4632 };
4633
4634 class pass_if_after_reload : public rtl_opt_pass
4635 {
4636 public:
4637 pass_if_after_reload (gcc::context *ctxt)
4638 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4639 {}
4640
4641 /* opt_pass methods: */
4642 virtual bool gate (function *)
4643 {
4644 return optimize > 0 && flag_if_conversion2
4645 && dbg_cnt (if_after_reload);
4646 }
4647
4648 virtual unsigned int execute (function *)
4649 {
4650 if_convert (true);
4651 return 0;
4652 }
4653
4654 }; // class pass_if_after_reload
4655
4656 } // anon namespace
4657
4658 rtl_opt_pass *
4659 make_pass_if_after_reload (gcc::context *ctxt)
4660 {
4661 return new pass_if_after_reload (ctxt);
4662 }