re PR rtl-optimization/58668 (internal compiler error: in cond_exec_process_insns...
[gcc.git] / gcc / ifcvt.c
1 /* If-conversion support.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "rtl.h"
26 #include "regs.h"
27 #include "function.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "expr.h"
35 #include "output.h"
36 #include "optabs.h"
37 #include "diagnostic-core.h"
38 #include "tm_p.h"
39 #include "cfgloop.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "vec.h"
44 #include "pointer-set.h"
45 #include "dbgcnt.h"
46
47 #ifndef HAVE_conditional_move
48 #define HAVE_conditional_move 0
49 #endif
50 #ifndef HAVE_incscc
51 #define HAVE_incscc 0
52 #endif
53 #ifndef HAVE_decscc
54 #define HAVE_decscc 0
55 #endif
56 #ifndef HAVE_trap
57 #define HAVE_trap 0
58 #endif
59
60 #ifndef MAX_CONDITIONAL_EXECUTE
61 #define MAX_CONDITIONAL_EXECUTE \
62 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
63 + 1)
64 #endif
65
66 #define IFCVT_MULTIPLE_DUMPS 1
67
68 #define NULL_BLOCK ((basic_block) NULL)
69
70 /* True if after combine pass. */
71 static bool ifcvt_after_combine;
72
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
75
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
79
80 /* # of changes made. */
81 static int num_true_changes;
82
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
85
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block *, rtx, rtx, rtx, int, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int dead_or_predicable (basic_block, basic_block, basic_block,
107 edge, int);
108 static void noce_emit_move_insn (rtx, rtx);
109 static rtx block_has_only_trap (basic_block);
110 \f
111 /* Count the number of non-jump active insns in BB. */
112
113 static int
114 count_bb_insns (const_basic_block bb)
115 {
116 int count = 0;
117 rtx insn = BB_HEAD (bb);
118
119 while (1)
120 {
121 if (active_insn_p (insn) && !JUMP_P (insn))
122 count++;
123
124 if (insn == BB_END (bb))
125 break;
126 insn = NEXT_INSN (insn);
127 }
128
129 return count;
130 }
131
132 /* Determine whether the total insn_rtx_cost on non-jump insns in
133 basic block BB is less than MAX_COST. This function returns
134 false if the cost of any instruction could not be estimated.
135
136 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
137 as those insns are being speculated. MAX_COST is scaled with SCALE
138 plus a small fudge factor. */
139
140 static bool
141 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
142 {
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
145 bool speed = optimize_bb_for_speed_p (bb);
146
147 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
148 applied to insn_rtx_cost when optimizing for size. Only do
149 this after combine because if-conversion might interfere with
150 passes before combine.
151
152 Use optimize_function_for_speed_p instead of the pre-defined
153 variable speed to make sure it is set to same value for all
154 basic blocks in one if-conversion transformation. */
155 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
156 scale = REG_BR_PROB_BASE;
157 /* Our branch probability/scaling factors are just estimates and don't
158 account for cases where we can get speculation for free and other
159 secondary benefits. So we fudge the scale factor to make speculating
160 appear a little more profitable when optimizing for performance. */
161 else
162 scale += REG_BR_PROB_BASE / 8;
163
164
165 max_cost *= scale;
166
167 while (1)
168 {
169 if (NONJUMP_INSN_P (insn))
170 {
171 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
172 if (cost == 0)
173 return false;
174
175 /* If this instruction is the load or set of a "stack" register,
176 such as a floating point register on x87, then the cost of
177 speculatively executing this insn may need to include
178 the additional cost of popping its result off of the
179 register stack. Unfortunately, correctly recognizing and
180 accounting for this additional overhead is tricky, so for
181 now we simply prohibit such speculative execution. */
182 #ifdef STACK_REGS
183 {
184 rtx set = single_set (insn);
185 if (set && STACK_REG_P (SET_DEST (set)))
186 return false;
187 }
188 #endif
189
190 count += cost;
191 if (count >= max_cost)
192 return false;
193 }
194 else if (CALL_P (insn))
195 return false;
196
197 if (insn == BB_END (bb))
198 break;
199 insn = NEXT_INSN (insn);
200 }
201
202 return true;
203 }
204
205 /* Return the first non-jump active insn in the basic block. */
206
207 static rtx
208 first_active_insn (basic_block bb)
209 {
210 rtx insn = BB_HEAD (bb);
211
212 if (LABEL_P (insn))
213 {
214 if (insn == BB_END (bb))
215 return NULL_RTX;
216 insn = NEXT_INSN (insn);
217 }
218
219 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
220 {
221 if (insn == BB_END (bb))
222 return NULL_RTX;
223 insn = NEXT_INSN (insn);
224 }
225
226 if (JUMP_P (insn))
227 return NULL_RTX;
228
229 return insn;
230 }
231
232 /* Return the last non-jump active (non-jump) insn in the basic block. */
233
234 static rtx
235 last_active_insn (basic_block bb, int skip_use_p)
236 {
237 rtx insn = BB_END (bb);
238 rtx head = BB_HEAD (bb);
239
240 while (NOTE_P (insn)
241 || JUMP_P (insn)
242 || DEBUG_INSN_P (insn)
243 || (skip_use_p
244 && NONJUMP_INSN_P (insn)
245 && GET_CODE (PATTERN (insn)) == USE))
246 {
247 if (insn == head)
248 return NULL_RTX;
249 insn = PREV_INSN (insn);
250 }
251
252 if (LABEL_P (insn))
253 return NULL_RTX;
254
255 return insn;
256 }
257
258 /* Return the active insn before INSN inside basic block CURR_BB. */
259
260 static rtx
261 find_active_insn_before (basic_block curr_bb, rtx insn)
262 {
263 if (!insn || insn == BB_HEAD (curr_bb))
264 return NULL_RTX;
265
266 while ((insn = PREV_INSN (insn)) != NULL_RTX)
267 {
268 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
269 break;
270
271 /* No other active insn all the way to the start of the basic block. */
272 if (insn == BB_HEAD (curr_bb))
273 return NULL_RTX;
274 }
275
276 return insn;
277 }
278
279 /* Return the active insn after INSN inside basic block CURR_BB. */
280
281 static rtx
282 find_active_insn_after (basic_block curr_bb, rtx insn)
283 {
284 if (!insn || insn == BB_END (curr_bb))
285 return NULL_RTX;
286
287 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
288 {
289 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
290 break;
291
292 /* No other active insn all the way to the end of the basic block. */
293 if (insn == BB_END (curr_bb))
294 return NULL_RTX;
295 }
296
297 return insn;
298 }
299
300 /* Return the basic block reached by falling though the basic block BB. */
301
302 static basic_block
303 block_fallthru (basic_block bb)
304 {
305 edge e = find_fallthru_edge (bb->succs);
306
307 return (e) ? e->dest : NULL_BLOCK;
308 }
309 \f
310 /* Go through a bunch of insns, converting them to conditional
311 execution format if possible. Return TRUE if all of the non-note
312 insns were processed. */
313
314 static int
315 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
316 /* if block information */rtx start,
317 /* first insn to look at */rtx end,
318 /* last insn to look at */rtx test,
319 /* conditional execution test */int prob_val,
320 /* probability of branch taken. */int mod_ok)
321 {
322 int must_be_last = FALSE;
323 rtx insn;
324 rtx xtest;
325 rtx pattern;
326
327 if (!start || !end)
328 return FALSE;
329
330 for (insn = start; ; insn = NEXT_INSN (insn))
331 {
332 /* dwarf2out can't cope with conditional prologues. */
333 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
334 return FALSE;
335
336 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
337 goto insn_done;
338
339 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
340
341 /* Remove USE insns that get in the way. */
342 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
343 {
344 /* ??? Ug. Actually unlinking the thing is problematic,
345 given what we'd have to coordinate with our callers. */
346 SET_INSN_DELETED (insn);
347 goto insn_done;
348 }
349
350 /* Last insn wasn't last? */
351 if (must_be_last)
352 return FALSE;
353
354 if (modified_in_p (test, insn))
355 {
356 if (!mod_ok)
357 return FALSE;
358 must_be_last = TRUE;
359 }
360
361 /* Now build the conditional form of the instruction. */
362 pattern = PATTERN (insn);
363 xtest = copy_rtx (test);
364
365 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
366 two conditions. */
367 if (GET_CODE (pattern) == COND_EXEC)
368 {
369 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
370 return FALSE;
371
372 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
373 COND_EXEC_TEST (pattern));
374 pattern = COND_EXEC_CODE (pattern);
375 }
376
377 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
378
379 /* If the machine needs to modify the insn being conditionally executed,
380 say for example to force a constant integer operand into a temp
381 register, do so here. */
382 #ifdef IFCVT_MODIFY_INSN
383 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
384 if (! pattern)
385 return FALSE;
386 #endif
387
388 validate_change (insn, &PATTERN (insn), pattern, 1);
389
390 if (CALL_P (insn) && prob_val >= 0)
391 validate_change (insn, &REG_NOTES (insn),
392 gen_rtx_INT_LIST ((enum machine_mode) REG_BR_PROB,
393 prob_val, REG_NOTES (insn)), 1);
394
395 insn_done:
396 if (insn == end)
397 break;
398 }
399
400 return TRUE;
401 }
402
403 /* Return the condition for a jump. Do not do any special processing. */
404
405 static rtx
406 cond_exec_get_condition (rtx jump)
407 {
408 rtx test_if, cond;
409
410 if (any_condjump_p (jump))
411 test_if = SET_SRC (pc_set (jump));
412 else
413 return NULL_RTX;
414 cond = XEXP (test_if, 0);
415
416 /* If this branches to JUMP_LABEL when the condition is false,
417 reverse the condition. */
418 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
419 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
420 {
421 enum rtx_code rev = reversed_comparison_code (cond, jump);
422 if (rev == UNKNOWN)
423 return NULL_RTX;
424
425 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
426 XEXP (cond, 1));
427 }
428
429 return cond;
430 }
431
432 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
433 to conditional execution. Return TRUE if we were successful at
434 converting the block. */
435
436 static int
437 cond_exec_process_if_block (ce_if_block * ce_info,
438 /* if block information */int do_multiple_p)
439 {
440 basic_block test_bb = ce_info->test_bb; /* last test block */
441 basic_block then_bb = ce_info->then_bb; /* THEN */
442 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
443 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
444 rtx then_start; /* first insn in THEN block */
445 rtx then_end; /* last insn + 1 in THEN block */
446 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
447 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
448 int max; /* max # of insns to convert. */
449 int then_mod_ok; /* whether conditional mods are ok in THEN */
450 rtx true_expr; /* test for else block insns */
451 rtx false_expr; /* test for then block insns */
452 int true_prob_val; /* probability of else block */
453 int false_prob_val; /* probability of then block */
454 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
455 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
456 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
457 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
458 int then_n_insns, else_n_insns, n_insns;
459 enum rtx_code false_code;
460 rtx note;
461
462 /* If test is comprised of && or || elements, and we've failed at handling
463 all of them together, just use the last test if it is the special case of
464 && elements without an ELSE block. */
465 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
466 {
467 if (else_bb || ! ce_info->and_and_p)
468 return FALSE;
469
470 ce_info->test_bb = test_bb = ce_info->last_test_bb;
471 ce_info->num_multiple_test_blocks = 0;
472 ce_info->num_and_and_blocks = 0;
473 ce_info->num_or_or_blocks = 0;
474 }
475
476 /* Find the conditional jump to the ELSE or JOIN part, and isolate
477 the test. */
478 test_expr = cond_exec_get_condition (BB_END (test_bb));
479 if (! test_expr)
480 return FALSE;
481
482 /* If the conditional jump is more than just a conditional jump,
483 then we can not do conditional execution conversion on this block. */
484 if (! onlyjump_p (BB_END (test_bb)))
485 return FALSE;
486
487 /* Collect the bounds of where we're to search, skipping any labels, jumps
488 and notes at the beginning and end of the block. Then count the total
489 number of insns and see if it is small enough to convert. */
490 then_start = first_active_insn (then_bb);
491 then_end = last_active_insn (then_bb, TRUE);
492 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
493 n_insns = then_n_insns;
494 max = MAX_CONDITIONAL_EXECUTE;
495
496 if (else_bb)
497 {
498 int n_matching;
499
500 max *= 2;
501 else_start = first_active_insn (else_bb);
502 else_end = last_active_insn (else_bb, TRUE);
503 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
504 n_insns += else_n_insns;
505
506 /* Look for matching sequences at the head and tail of the two blocks,
507 and limit the range of insns to be converted if possible. */
508 n_matching = flow_find_cross_jump (then_bb, else_bb,
509 &then_first_tail, &else_first_tail,
510 NULL);
511 if (then_first_tail == BB_HEAD (then_bb))
512 then_start = then_end = NULL_RTX;
513 if (else_first_tail == BB_HEAD (else_bb))
514 else_start = else_end = NULL_RTX;
515
516 if (n_matching > 0)
517 {
518 if (then_end)
519 then_end = find_active_insn_before (then_bb, then_first_tail);
520 if (else_end)
521 else_end = find_active_insn_before (else_bb, else_first_tail);
522 n_insns -= 2 * n_matching;
523 }
524
525 if (then_start && else_start)
526 {
527 int longest_match = MIN (then_n_insns - n_matching,
528 else_n_insns - n_matching);
529 n_matching
530 = flow_find_head_matching_sequence (then_bb, else_bb,
531 &then_last_head,
532 &else_last_head,
533 longest_match);
534
535 if (n_matching > 0)
536 {
537 rtx insn;
538
539 /* We won't pass the insns in the head sequence to
540 cond_exec_process_insns, so we need to test them here
541 to make sure that they don't clobber the condition. */
542 for (insn = BB_HEAD (then_bb);
543 insn != NEXT_INSN (then_last_head);
544 insn = NEXT_INSN (insn))
545 if (!LABEL_P (insn) && !NOTE_P (insn)
546 && !DEBUG_INSN_P (insn)
547 && modified_in_p (test_expr, insn))
548 return FALSE;
549 }
550
551 if (then_last_head == then_end)
552 then_start = then_end = NULL_RTX;
553 if (else_last_head == else_end)
554 else_start = else_end = NULL_RTX;
555
556 if (n_matching > 0)
557 {
558 if (then_start)
559 then_start = find_active_insn_after (then_bb, then_last_head);
560 if (else_start)
561 else_start = find_active_insn_after (else_bb, else_last_head);
562 n_insns -= 2 * n_matching;
563 }
564 }
565 }
566
567 if (n_insns > max)
568 return FALSE;
569
570 /* Map test_expr/test_jump into the appropriate MD tests to use on
571 the conditionally executed code. */
572
573 true_expr = test_expr;
574
575 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
576 if (false_code != UNKNOWN)
577 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
578 XEXP (true_expr, 0), XEXP (true_expr, 1));
579 else
580 false_expr = NULL_RTX;
581
582 #ifdef IFCVT_MODIFY_TESTS
583 /* If the machine description needs to modify the tests, such as setting a
584 conditional execution register from a comparison, it can do so here. */
585 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
586
587 /* See if the conversion failed. */
588 if (!true_expr || !false_expr)
589 goto fail;
590 #endif
591
592 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
593 if (note)
594 {
595 true_prob_val = XINT (note, 0);
596 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
597 }
598 else
599 {
600 true_prob_val = -1;
601 false_prob_val = -1;
602 }
603
604 /* If we have && or || tests, do them here. These tests are in the adjacent
605 blocks after the first block containing the test. */
606 if (ce_info->num_multiple_test_blocks > 0)
607 {
608 basic_block bb = test_bb;
609 basic_block last_test_bb = ce_info->last_test_bb;
610
611 if (! false_expr)
612 goto fail;
613
614 do
615 {
616 rtx start, end;
617 rtx t, f;
618 enum rtx_code f_code;
619
620 bb = block_fallthru (bb);
621 start = first_active_insn (bb);
622 end = last_active_insn (bb, TRUE);
623 if (start
624 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
625 false_prob_val, FALSE))
626 goto fail;
627
628 /* If the conditional jump is more than just a conditional jump, then
629 we can not do conditional execution conversion on this block. */
630 if (! onlyjump_p (BB_END (bb)))
631 goto fail;
632
633 /* Find the conditional jump and isolate the test. */
634 t = cond_exec_get_condition (BB_END (bb));
635 if (! t)
636 goto fail;
637
638 f_code = reversed_comparison_code (t, BB_END (bb));
639 if (f_code == UNKNOWN)
640 goto fail;
641
642 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
643 if (ce_info->and_and_p)
644 {
645 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
646 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
647 }
648 else
649 {
650 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
651 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
652 }
653
654 /* If the machine description needs to modify the tests, such as
655 setting a conditional execution register from a comparison, it can
656 do so here. */
657 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
658 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
659
660 /* See if the conversion failed. */
661 if (!t || !f)
662 goto fail;
663 #endif
664
665 true_expr = t;
666 false_expr = f;
667 }
668 while (bb != last_test_bb);
669 }
670
671 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
672 on then THEN block. */
673 then_mod_ok = (else_bb == NULL_BLOCK);
674
675 /* Go through the THEN and ELSE blocks converting the insns if possible
676 to conditional execution. */
677
678 if (then_end
679 && (! false_expr
680 || ! cond_exec_process_insns (ce_info, then_start, then_end,
681 false_expr, false_prob_val,
682 then_mod_ok)))
683 goto fail;
684
685 if (else_bb && else_end
686 && ! cond_exec_process_insns (ce_info, else_start, else_end,
687 true_expr, true_prob_val, TRUE))
688 goto fail;
689
690 /* If we cannot apply the changes, fail. Do not go through the normal fail
691 processing, since apply_change_group will call cancel_changes. */
692 if (! apply_change_group ())
693 {
694 #ifdef IFCVT_MODIFY_CANCEL
695 /* Cancel any machine dependent changes. */
696 IFCVT_MODIFY_CANCEL (ce_info);
697 #endif
698 return FALSE;
699 }
700
701 #ifdef IFCVT_MODIFY_FINAL
702 /* Do any machine dependent final modifications. */
703 IFCVT_MODIFY_FINAL (ce_info);
704 #endif
705
706 /* Conversion succeeded. */
707 if (dump_file)
708 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
709 n_insns, (n_insns == 1) ? " was" : "s were");
710
711 /* Merge the blocks! If we had matching sequences, make sure to delete one
712 copy at the appropriate location first: delete the copy in the THEN branch
713 for a tail sequence so that the remaining one is executed last for both
714 branches, and delete the copy in the ELSE branch for a head sequence so
715 that the remaining one is executed first for both branches. */
716 if (then_first_tail)
717 {
718 rtx from = then_first_tail;
719 if (!INSN_P (from))
720 from = find_active_insn_after (then_bb, from);
721 delete_insn_chain (from, BB_END (then_bb), false);
722 }
723 if (else_last_head)
724 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
725
726 merge_if_block (ce_info);
727 cond_exec_changed_p = TRUE;
728 return TRUE;
729
730 fail:
731 #ifdef IFCVT_MODIFY_CANCEL
732 /* Cancel any machine dependent changes. */
733 IFCVT_MODIFY_CANCEL (ce_info);
734 #endif
735
736 cancel_changes (0);
737 return FALSE;
738 }
739 \f
740 /* Used by noce_process_if_block to communicate with its subroutines.
741
742 The subroutines know that A and B may be evaluated freely. They
743 know that X is a register. They should insert new instructions
744 before cond_earliest. */
745
746 struct noce_if_info
747 {
748 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
749 basic_block test_bb, then_bb, else_bb, join_bb;
750
751 /* The jump that ends TEST_BB. */
752 rtx jump;
753
754 /* The jump condition. */
755 rtx cond;
756
757 /* New insns should be inserted before this one. */
758 rtx cond_earliest;
759
760 /* Insns in the THEN and ELSE block. There is always just this
761 one insns in those blocks. The insns are single_set insns.
762 If there was no ELSE block, INSN_B is the last insn before
763 COND_EARLIEST, or NULL_RTX. In the former case, the insn
764 operands are still valid, as if INSN_B was moved down below
765 the jump. */
766 rtx insn_a, insn_b;
767
768 /* The SET_SRC of INSN_A and INSN_B. */
769 rtx a, b;
770
771 /* The SET_DEST of INSN_A. */
772 rtx x;
773
774 /* True if this if block is not canonical. In the canonical form of
775 if blocks, the THEN_BB is the block reached via the fallthru edge
776 from TEST_BB. For the noce transformations, we allow the symmetric
777 form as well. */
778 bool then_else_reversed;
779
780 /* Estimated cost of the particular branch instruction. */
781 int branch_cost;
782 };
783
784 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
785 static int noce_try_move (struct noce_if_info *);
786 static int noce_try_store_flag (struct noce_if_info *);
787 static int noce_try_addcc (struct noce_if_info *);
788 static int noce_try_store_flag_constants (struct noce_if_info *);
789 static int noce_try_store_flag_mask (struct noce_if_info *);
790 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
791 rtx, rtx, rtx);
792 static int noce_try_cmove (struct noce_if_info *);
793 static int noce_try_cmove_arith (struct noce_if_info *);
794 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
795 static int noce_try_minmax (struct noce_if_info *);
796 static int noce_try_abs (struct noce_if_info *);
797 static int noce_try_sign_mask (struct noce_if_info *);
798
799 /* Helper function for noce_try_store_flag*. */
800
801 static rtx
802 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
803 int normalize)
804 {
805 rtx cond = if_info->cond;
806 int cond_complex;
807 enum rtx_code code;
808
809 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
810 || ! general_operand (XEXP (cond, 1), VOIDmode));
811
812 /* If earliest == jump, or when the condition is complex, try to
813 build the store_flag insn directly. */
814
815 if (cond_complex)
816 {
817 rtx set = pc_set (if_info->jump);
818 cond = XEXP (SET_SRC (set), 0);
819 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
820 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
821 reversep = !reversep;
822 if (if_info->then_else_reversed)
823 reversep = !reversep;
824 }
825
826 if (reversep)
827 code = reversed_comparison_code (cond, if_info->jump);
828 else
829 code = GET_CODE (cond);
830
831 if ((if_info->cond_earliest == if_info->jump || cond_complex)
832 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
833 {
834 rtx tmp;
835
836 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
837 XEXP (cond, 1));
838 tmp = gen_rtx_SET (VOIDmode, x, tmp);
839
840 start_sequence ();
841 tmp = emit_insn (tmp);
842
843 if (recog_memoized (tmp) >= 0)
844 {
845 tmp = get_insns ();
846 end_sequence ();
847 emit_insn (tmp);
848
849 if_info->cond_earliest = if_info->jump;
850
851 return x;
852 }
853
854 end_sequence ();
855 }
856
857 /* Don't even try if the comparison operands or the mode of X are weird. */
858 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
859 return NULL_RTX;
860
861 return emit_store_flag (x, code, XEXP (cond, 0),
862 XEXP (cond, 1), VOIDmode,
863 (code == LTU || code == LEU
864 || code == GEU || code == GTU), normalize);
865 }
866
867 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
868 X is the destination/target and Y is the value to copy. */
869
870 static void
871 noce_emit_move_insn (rtx x, rtx y)
872 {
873 enum machine_mode outmode;
874 rtx outer, inner;
875 int bitpos;
876
877 if (GET_CODE (x) != STRICT_LOW_PART)
878 {
879 rtx seq, insn, target;
880 optab ot;
881
882 start_sequence ();
883 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
884 otherwise construct a suitable SET pattern ourselves. */
885 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
886 ? emit_move_insn (x, y)
887 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
888 seq = get_insns ();
889 end_sequence ();
890
891 if (recog_memoized (insn) <= 0)
892 {
893 if (GET_CODE (x) == ZERO_EXTRACT)
894 {
895 rtx op = XEXP (x, 0);
896 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
897 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
898
899 /* store_bit_field expects START to be relative to
900 BYTES_BIG_ENDIAN and adjusts this value for machines with
901 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
902 invoke store_bit_field again it is necessary to have the START
903 value from the first call. */
904 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
905 {
906 if (MEM_P (op))
907 start = BITS_PER_UNIT - start - size;
908 else
909 {
910 gcc_assert (REG_P (op));
911 start = BITS_PER_WORD - start - size;
912 }
913 }
914
915 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
916 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
917 return;
918 }
919
920 switch (GET_RTX_CLASS (GET_CODE (y)))
921 {
922 case RTX_UNARY:
923 ot = code_to_optab (GET_CODE (y));
924 if (ot)
925 {
926 start_sequence ();
927 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
928 if (target != NULL_RTX)
929 {
930 if (target != x)
931 emit_move_insn (x, target);
932 seq = get_insns ();
933 }
934 end_sequence ();
935 }
936 break;
937
938 case RTX_BIN_ARITH:
939 case RTX_COMM_ARITH:
940 ot = code_to_optab (GET_CODE (y));
941 if (ot)
942 {
943 start_sequence ();
944 target = expand_binop (GET_MODE (y), ot,
945 XEXP (y, 0), XEXP (y, 1),
946 x, 0, OPTAB_DIRECT);
947 if (target != NULL_RTX)
948 {
949 if (target != x)
950 emit_move_insn (x, target);
951 seq = get_insns ();
952 }
953 end_sequence ();
954 }
955 break;
956
957 default:
958 break;
959 }
960 }
961
962 emit_insn (seq);
963 return;
964 }
965
966 outer = XEXP (x, 0);
967 inner = XEXP (outer, 0);
968 outmode = GET_MODE (outer);
969 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
970 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
971 0, 0, outmode, y);
972 }
973
974 /* Return sequence of instructions generated by if conversion. This
975 function calls end_sequence() to end the current stream, ensures
976 that are instructions are unshared, recognizable non-jump insns.
977 On failure, this function returns a NULL_RTX. */
978
979 static rtx
980 end_ifcvt_sequence (struct noce_if_info *if_info)
981 {
982 rtx insn;
983 rtx seq = get_insns ();
984
985 set_used_flags (if_info->x);
986 set_used_flags (if_info->cond);
987 set_used_flags (if_info->a);
988 set_used_flags (if_info->b);
989 unshare_all_rtl_in_chain (seq);
990 end_sequence ();
991
992 /* Make sure that all of the instructions emitted are recognizable,
993 and that we haven't introduced a new jump instruction.
994 As an exercise for the reader, build a general mechanism that
995 allows proper placement of required clobbers. */
996 for (insn = seq; insn; insn = NEXT_INSN (insn))
997 if (JUMP_P (insn)
998 || recog_memoized (insn) == -1)
999 return NULL_RTX;
1000
1001 return seq;
1002 }
1003
1004 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1005 "if (a == b) x = a; else x = b" into "x = b". */
1006
1007 static int
1008 noce_try_move (struct noce_if_info *if_info)
1009 {
1010 rtx cond = if_info->cond;
1011 enum rtx_code code = GET_CODE (cond);
1012 rtx y, seq;
1013
1014 if (code != NE && code != EQ)
1015 return FALSE;
1016
1017 /* This optimization isn't valid if either A or B could be a NaN
1018 or a signed zero. */
1019 if (HONOR_NANS (GET_MODE (if_info->x))
1020 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1021 return FALSE;
1022
1023 /* Check whether the operands of the comparison are A and in
1024 either order. */
1025 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1026 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1027 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1028 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1029 {
1030 y = (code == EQ) ? if_info->a : if_info->b;
1031
1032 /* Avoid generating the move if the source is the destination. */
1033 if (! rtx_equal_p (if_info->x, y))
1034 {
1035 start_sequence ();
1036 noce_emit_move_insn (if_info->x, y);
1037 seq = end_ifcvt_sequence (if_info);
1038 if (!seq)
1039 return FALSE;
1040
1041 emit_insn_before_setloc (seq, if_info->jump,
1042 INSN_LOCATION (if_info->insn_a));
1043 }
1044 return TRUE;
1045 }
1046 return FALSE;
1047 }
1048
1049 /* Convert "if (test) x = 1; else x = 0".
1050
1051 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1052 tried in noce_try_store_flag_constants after noce_try_cmove has had
1053 a go at the conversion. */
1054
1055 static int
1056 noce_try_store_flag (struct noce_if_info *if_info)
1057 {
1058 int reversep;
1059 rtx target, seq;
1060
1061 if (CONST_INT_P (if_info->b)
1062 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1063 && if_info->a == const0_rtx)
1064 reversep = 0;
1065 else if (if_info->b == const0_rtx
1066 && CONST_INT_P (if_info->a)
1067 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1068 && (reversed_comparison_code (if_info->cond, if_info->jump)
1069 != UNKNOWN))
1070 reversep = 1;
1071 else
1072 return FALSE;
1073
1074 start_sequence ();
1075
1076 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1077 if (target)
1078 {
1079 if (target != if_info->x)
1080 noce_emit_move_insn (if_info->x, target);
1081
1082 seq = end_ifcvt_sequence (if_info);
1083 if (! seq)
1084 return FALSE;
1085
1086 emit_insn_before_setloc (seq, if_info->jump,
1087 INSN_LOCATION (if_info->insn_a));
1088 return TRUE;
1089 }
1090 else
1091 {
1092 end_sequence ();
1093 return FALSE;
1094 }
1095 }
1096
1097 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1098
1099 static int
1100 noce_try_store_flag_constants (struct noce_if_info *if_info)
1101 {
1102 rtx target, seq;
1103 int reversep;
1104 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1105 int normalize, can_reverse;
1106 enum machine_mode mode;
1107
1108 if (CONST_INT_P (if_info->a)
1109 && CONST_INT_P (if_info->b))
1110 {
1111 mode = GET_MODE (if_info->x);
1112 ifalse = INTVAL (if_info->a);
1113 itrue = INTVAL (if_info->b);
1114
1115 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1116 /* Make sure we can represent the difference between the two values. */
1117 if ((diff > 0)
1118 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1119 return FALSE;
1120
1121 diff = trunc_int_for_mode (diff, mode);
1122
1123 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1124 != UNKNOWN);
1125
1126 reversep = 0;
1127 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1128 normalize = 0;
1129 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1130 && (STORE_FLAG_VALUE == 1
1131 || if_info->branch_cost >= 2))
1132 normalize = 1;
1133 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1134 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1135 normalize = 1, reversep = 1;
1136 else if (itrue == -1
1137 && (STORE_FLAG_VALUE == -1
1138 || if_info->branch_cost >= 2))
1139 normalize = -1;
1140 else if (ifalse == -1 && can_reverse
1141 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1142 normalize = -1, reversep = 1;
1143 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1144 || if_info->branch_cost >= 3)
1145 normalize = -1;
1146 else
1147 return FALSE;
1148
1149 if (reversep)
1150 {
1151 tmp = itrue; itrue = ifalse; ifalse = tmp;
1152 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1153 }
1154
1155 start_sequence ();
1156 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1157 if (! target)
1158 {
1159 end_sequence ();
1160 return FALSE;
1161 }
1162
1163 /* if (test) x = 3; else x = 4;
1164 => x = 3 + (test == 0); */
1165 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1166 {
1167 target = expand_simple_binop (mode,
1168 (diff == STORE_FLAG_VALUE
1169 ? PLUS : MINUS),
1170 gen_int_mode (ifalse, mode), target,
1171 if_info->x, 0, OPTAB_WIDEN);
1172 }
1173
1174 /* if (test) x = 8; else x = 0;
1175 => x = (test != 0) << 3; */
1176 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1177 {
1178 target = expand_simple_binop (mode, ASHIFT,
1179 target, GEN_INT (tmp), if_info->x, 0,
1180 OPTAB_WIDEN);
1181 }
1182
1183 /* if (test) x = -1; else x = b;
1184 => x = -(test != 0) | b; */
1185 else if (itrue == -1)
1186 {
1187 target = expand_simple_binop (mode, IOR,
1188 target, gen_int_mode (ifalse, mode),
1189 if_info->x, 0, OPTAB_WIDEN);
1190 }
1191
1192 /* if (test) x = a; else x = b;
1193 => x = (-(test != 0) & (b - a)) + a; */
1194 else
1195 {
1196 target = expand_simple_binop (mode, AND,
1197 target, gen_int_mode (diff, mode),
1198 if_info->x, 0, OPTAB_WIDEN);
1199 if (target)
1200 target = expand_simple_binop (mode, PLUS,
1201 target, gen_int_mode (ifalse, mode),
1202 if_info->x, 0, OPTAB_WIDEN);
1203 }
1204
1205 if (! target)
1206 {
1207 end_sequence ();
1208 return FALSE;
1209 }
1210
1211 if (target != if_info->x)
1212 noce_emit_move_insn (if_info->x, target);
1213
1214 seq = end_ifcvt_sequence (if_info);
1215 if (!seq)
1216 return FALSE;
1217
1218 emit_insn_before_setloc (seq, if_info->jump,
1219 INSN_LOCATION (if_info->insn_a));
1220 return TRUE;
1221 }
1222
1223 return FALSE;
1224 }
1225
1226 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1227 similarly for "foo--". */
1228
1229 static int
1230 noce_try_addcc (struct noce_if_info *if_info)
1231 {
1232 rtx target, seq;
1233 int subtract, normalize;
1234
1235 if (GET_CODE (if_info->a) == PLUS
1236 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1237 && (reversed_comparison_code (if_info->cond, if_info->jump)
1238 != UNKNOWN))
1239 {
1240 rtx cond = if_info->cond;
1241 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1242
1243 /* First try to use addcc pattern. */
1244 if (general_operand (XEXP (cond, 0), VOIDmode)
1245 && general_operand (XEXP (cond, 1), VOIDmode))
1246 {
1247 start_sequence ();
1248 target = emit_conditional_add (if_info->x, code,
1249 XEXP (cond, 0),
1250 XEXP (cond, 1),
1251 VOIDmode,
1252 if_info->b,
1253 XEXP (if_info->a, 1),
1254 GET_MODE (if_info->x),
1255 (code == LTU || code == GEU
1256 || code == LEU || code == GTU));
1257 if (target)
1258 {
1259 if (target != if_info->x)
1260 noce_emit_move_insn (if_info->x, target);
1261
1262 seq = end_ifcvt_sequence (if_info);
1263 if (!seq)
1264 return FALSE;
1265
1266 emit_insn_before_setloc (seq, if_info->jump,
1267 INSN_LOCATION (if_info->insn_a));
1268 return TRUE;
1269 }
1270 end_sequence ();
1271 }
1272
1273 /* If that fails, construct conditional increment or decrement using
1274 setcc. */
1275 if (if_info->branch_cost >= 2
1276 && (XEXP (if_info->a, 1) == const1_rtx
1277 || XEXP (if_info->a, 1) == constm1_rtx))
1278 {
1279 start_sequence ();
1280 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1281 subtract = 0, normalize = 0;
1282 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1283 subtract = 1, normalize = 0;
1284 else
1285 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1286
1287
1288 target = noce_emit_store_flag (if_info,
1289 gen_reg_rtx (GET_MODE (if_info->x)),
1290 1, normalize);
1291
1292 if (target)
1293 target = expand_simple_binop (GET_MODE (if_info->x),
1294 subtract ? MINUS : PLUS,
1295 if_info->b, target, if_info->x,
1296 0, OPTAB_WIDEN);
1297 if (target)
1298 {
1299 if (target != if_info->x)
1300 noce_emit_move_insn (if_info->x, target);
1301
1302 seq = end_ifcvt_sequence (if_info);
1303 if (!seq)
1304 return FALSE;
1305
1306 emit_insn_before_setloc (seq, if_info->jump,
1307 INSN_LOCATION (if_info->insn_a));
1308 return TRUE;
1309 }
1310 end_sequence ();
1311 }
1312 }
1313
1314 return FALSE;
1315 }
1316
1317 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1318
1319 static int
1320 noce_try_store_flag_mask (struct noce_if_info *if_info)
1321 {
1322 rtx target, seq;
1323 int reversep;
1324
1325 reversep = 0;
1326 if ((if_info->branch_cost >= 2
1327 || STORE_FLAG_VALUE == -1)
1328 && ((if_info->a == const0_rtx
1329 && rtx_equal_p (if_info->b, if_info->x))
1330 || ((reversep = (reversed_comparison_code (if_info->cond,
1331 if_info->jump)
1332 != UNKNOWN))
1333 && if_info->b == const0_rtx
1334 && rtx_equal_p (if_info->a, if_info->x))))
1335 {
1336 start_sequence ();
1337 target = noce_emit_store_flag (if_info,
1338 gen_reg_rtx (GET_MODE (if_info->x)),
1339 reversep, -1);
1340 if (target)
1341 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1342 if_info->x,
1343 target, if_info->x, 0,
1344 OPTAB_WIDEN);
1345
1346 if (target)
1347 {
1348 if (target != if_info->x)
1349 noce_emit_move_insn (if_info->x, target);
1350
1351 seq = end_ifcvt_sequence (if_info);
1352 if (!seq)
1353 return FALSE;
1354
1355 emit_insn_before_setloc (seq, if_info->jump,
1356 INSN_LOCATION (if_info->insn_a));
1357 return TRUE;
1358 }
1359
1360 end_sequence ();
1361 }
1362
1363 return FALSE;
1364 }
1365
1366 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1367
1368 static rtx
1369 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1370 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1371 {
1372 rtx target ATTRIBUTE_UNUSED;
1373 int unsignedp ATTRIBUTE_UNUSED;
1374
1375 /* If earliest == jump, try to build the cmove insn directly.
1376 This is helpful when combine has created some complex condition
1377 (like for alpha's cmovlbs) that we can't hope to regenerate
1378 through the normal interface. */
1379
1380 if (if_info->cond_earliest == if_info->jump)
1381 {
1382 rtx tmp;
1383
1384 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1385 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1386 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1387
1388 start_sequence ();
1389 tmp = emit_insn (tmp);
1390
1391 if (recog_memoized (tmp) >= 0)
1392 {
1393 tmp = get_insns ();
1394 end_sequence ();
1395 emit_insn (tmp);
1396
1397 return x;
1398 }
1399
1400 end_sequence ();
1401 }
1402
1403 /* Don't even try if the comparison operands are weird. */
1404 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1405 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1406 return NULL_RTX;
1407
1408 #if HAVE_conditional_move
1409 unsignedp = (code == LTU || code == GEU
1410 || code == LEU || code == GTU);
1411
1412 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1413 vtrue, vfalse, GET_MODE (x),
1414 unsignedp);
1415 if (target)
1416 return target;
1417
1418 /* We might be faced with a situation like:
1419
1420 x = (reg:M TARGET)
1421 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1422 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1423
1424 We can't do a conditional move in mode M, but it's possible that we
1425 could do a conditional move in mode N instead and take a subreg of
1426 the result.
1427
1428 If we can't create new pseudos, though, don't bother. */
1429 if (reload_completed)
1430 return NULL_RTX;
1431
1432 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1433 {
1434 rtx reg_vtrue = SUBREG_REG (vtrue);
1435 rtx reg_vfalse = SUBREG_REG (vfalse);
1436 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1437 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1438 rtx promoted_target;
1439
1440 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1441 || byte_vtrue != byte_vfalse
1442 || (SUBREG_PROMOTED_VAR_P (vtrue)
1443 != SUBREG_PROMOTED_VAR_P (vfalse))
1444 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1445 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1446 return NULL_RTX;
1447
1448 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1449
1450 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1451 VOIDmode, reg_vtrue, reg_vfalse,
1452 GET_MODE (reg_vtrue), unsignedp);
1453 /* Nope, couldn't do it in that mode either. */
1454 if (!target)
1455 return NULL_RTX;
1456
1457 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1458 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1459 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1460 emit_move_insn (x, target);
1461 return x;
1462 }
1463 else
1464 return NULL_RTX;
1465 #else
1466 /* We'll never get here, as noce_process_if_block doesn't call the
1467 functions involved. Ifdef code, however, should be discouraged
1468 because it leads to typos in the code not selected. However,
1469 emit_conditional_move won't exist either. */
1470 return NULL_RTX;
1471 #endif
1472 }
1473
1474 /* Try only simple constants and registers here. More complex cases
1475 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1476 has had a go at it. */
1477
1478 static int
1479 noce_try_cmove (struct noce_if_info *if_info)
1480 {
1481 enum rtx_code code;
1482 rtx target, seq;
1483
1484 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1485 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1486 {
1487 start_sequence ();
1488
1489 code = GET_CODE (if_info->cond);
1490 target = noce_emit_cmove (if_info, if_info->x, code,
1491 XEXP (if_info->cond, 0),
1492 XEXP (if_info->cond, 1),
1493 if_info->a, if_info->b);
1494
1495 if (target)
1496 {
1497 if (target != if_info->x)
1498 noce_emit_move_insn (if_info->x, target);
1499
1500 seq = end_ifcvt_sequence (if_info);
1501 if (!seq)
1502 return FALSE;
1503
1504 emit_insn_before_setloc (seq, if_info->jump,
1505 INSN_LOCATION (if_info->insn_a));
1506 return TRUE;
1507 }
1508 else
1509 {
1510 end_sequence ();
1511 return FALSE;
1512 }
1513 }
1514
1515 return FALSE;
1516 }
1517
1518 /* Try more complex cases involving conditional_move. */
1519
1520 static int
1521 noce_try_cmove_arith (struct noce_if_info *if_info)
1522 {
1523 rtx a = if_info->a;
1524 rtx b = if_info->b;
1525 rtx x = if_info->x;
1526 rtx orig_a, orig_b;
1527 rtx insn_a, insn_b;
1528 rtx tmp, target;
1529 int is_mem = 0;
1530 int insn_cost;
1531 enum rtx_code code;
1532
1533 /* A conditional move from two memory sources is equivalent to a
1534 conditional on their addresses followed by a load. Don't do this
1535 early because it'll screw alias analysis. Note that we've
1536 already checked for no side effects. */
1537 /* ??? FIXME: Magic number 5. */
1538 if (cse_not_expected
1539 && MEM_P (a) && MEM_P (b)
1540 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1541 && if_info->branch_cost >= 5)
1542 {
1543 enum machine_mode address_mode = get_address_mode (a);
1544
1545 a = XEXP (a, 0);
1546 b = XEXP (b, 0);
1547 x = gen_reg_rtx (address_mode);
1548 is_mem = 1;
1549 }
1550
1551 /* ??? We could handle this if we knew that a load from A or B could
1552 not trap or fault. This is also true if we've already loaded
1553 from the address along the path from ENTRY. */
1554 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1555 return FALSE;
1556
1557 /* if (test) x = a + b; else x = c - d;
1558 => y = a + b;
1559 x = c - d;
1560 if (test)
1561 x = y;
1562 */
1563
1564 code = GET_CODE (if_info->cond);
1565 insn_a = if_info->insn_a;
1566 insn_b = if_info->insn_b;
1567
1568 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1569 if insn_rtx_cost can't be estimated. */
1570 if (insn_a)
1571 {
1572 insn_cost
1573 = insn_rtx_cost (PATTERN (insn_a),
1574 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1575 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1576 return FALSE;
1577 }
1578 else
1579 insn_cost = 0;
1580
1581 if (insn_b)
1582 {
1583 insn_cost
1584 += insn_rtx_cost (PATTERN (insn_b),
1585 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1586 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1587 return FALSE;
1588 }
1589
1590 /* Possibly rearrange operands to make things come out more natural. */
1591 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1592 {
1593 int reversep = 0;
1594 if (rtx_equal_p (b, x))
1595 reversep = 1;
1596 else if (general_operand (b, GET_MODE (b)))
1597 reversep = 1;
1598
1599 if (reversep)
1600 {
1601 code = reversed_comparison_code (if_info->cond, if_info->jump);
1602 tmp = a, a = b, b = tmp;
1603 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1604 }
1605 }
1606
1607 start_sequence ();
1608
1609 orig_a = a;
1610 orig_b = b;
1611
1612 /* If either operand is complex, load it into a register first.
1613 The best way to do this is to copy the original insn. In this
1614 way we preserve any clobbers etc that the insn may have had.
1615 This is of course not possible in the IS_MEM case. */
1616 if (! general_operand (a, GET_MODE (a)))
1617 {
1618 rtx set;
1619
1620 if (is_mem)
1621 {
1622 tmp = gen_reg_rtx (GET_MODE (a));
1623 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1624 }
1625 else if (! insn_a)
1626 goto end_seq_and_fail;
1627 else
1628 {
1629 a = gen_reg_rtx (GET_MODE (a));
1630 tmp = copy_rtx (insn_a);
1631 set = single_set (tmp);
1632 SET_DEST (set) = a;
1633 tmp = emit_insn (PATTERN (tmp));
1634 }
1635 if (recog_memoized (tmp) < 0)
1636 goto end_seq_and_fail;
1637 }
1638 if (! general_operand (b, GET_MODE (b)))
1639 {
1640 rtx set, last;
1641
1642 if (is_mem)
1643 {
1644 tmp = gen_reg_rtx (GET_MODE (b));
1645 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1646 }
1647 else if (! insn_b)
1648 goto end_seq_and_fail;
1649 else
1650 {
1651 b = gen_reg_rtx (GET_MODE (b));
1652 tmp = copy_rtx (insn_b);
1653 set = single_set (tmp);
1654 SET_DEST (set) = b;
1655 tmp = PATTERN (tmp);
1656 }
1657
1658 /* If insn to set up A clobbers any registers B depends on, try to
1659 swap insn that sets up A with the one that sets up B. If even
1660 that doesn't help, punt. */
1661 last = get_last_insn ();
1662 if (last && modified_in_p (orig_b, last))
1663 {
1664 tmp = emit_insn_before (tmp, get_insns ());
1665 if (modified_in_p (orig_a, tmp))
1666 goto end_seq_and_fail;
1667 }
1668 else
1669 tmp = emit_insn (tmp);
1670
1671 if (recog_memoized (tmp) < 0)
1672 goto end_seq_and_fail;
1673 }
1674
1675 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1676 XEXP (if_info->cond, 1), a, b);
1677
1678 if (! target)
1679 goto end_seq_and_fail;
1680
1681 /* If we're handling a memory for above, emit the load now. */
1682 if (is_mem)
1683 {
1684 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1685
1686 /* Copy over flags as appropriate. */
1687 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1688 MEM_VOLATILE_P (tmp) = 1;
1689 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1690 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1691 set_mem_align (tmp,
1692 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1693
1694 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1695 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1696
1697 noce_emit_move_insn (if_info->x, tmp);
1698 }
1699 else if (target != x)
1700 noce_emit_move_insn (x, target);
1701
1702 tmp = end_ifcvt_sequence (if_info);
1703 if (!tmp)
1704 return FALSE;
1705
1706 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATION (if_info->insn_a));
1707 return TRUE;
1708
1709 end_seq_and_fail:
1710 end_sequence ();
1711 return FALSE;
1712 }
1713
1714 /* For most cases, the simplified condition we found is the best
1715 choice, but this is not the case for the min/max/abs transforms.
1716 For these we wish to know that it is A or B in the condition. */
1717
1718 static rtx
1719 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1720 rtx *earliest)
1721 {
1722 rtx cond, set, insn;
1723 int reverse;
1724
1725 /* If target is already mentioned in the known condition, return it. */
1726 if (reg_mentioned_p (target, if_info->cond))
1727 {
1728 *earliest = if_info->cond_earliest;
1729 return if_info->cond;
1730 }
1731
1732 set = pc_set (if_info->jump);
1733 cond = XEXP (SET_SRC (set), 0);
1734 reverse
1735 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1736 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1737 if (if_info->then_else_reversed)
1738 reverse = !reverse;
1739
1740 /* If we're looking for a constant, try to make the conditional
1741 have that constant in it. There are two reasons why it may
1742 not have the constant we want:
1743
1744 1. GCC may have needed to put the constant in a register, because
1745 the target can't compare directly against that constant. For
1746 this case, we look for a SET immediately before the comparison
1747 that puts a constant in that register.
1748
1749 2. GCC may have canonicalized the conditional, for example
1750 replacing "if x < 4" with "if x <= 3". We can undo that (or
1751 make equivalent types of changes) to get the constants we need
1752 if they're off by one in the right direction. */
1753
1754 if (CONST_INT_P (target))
1755 {
1756 enum rtx_code code = GET_CODE (if_info->cond);
1757 rtx op_a = XEXP (if_info->cond, 0);
1758 rtx op_b = XEXP (if_info->cond, 1);
1759 rtx prev_insn;
1760
1761 /* First, look to see if we put a constant in a register. */
1762 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1763 if (prev_insn
1764 && BLOCK_FOR_INSN (prev_insn)
1765 == BLOCK_FOR_INSN (if_info->cond_earliest)
1766 && INSN_P (prev_insn)
1767 && GET_CODE (PATTERN (prev_insn)) == SET)
1768 {
1769 rtx src = find_reg_equal_equiv_note (prev_insn);
1770 if (!src)
1771 src = SET_SRC (PATTERN (prev_insn));
1772 if (CONST_INT_P (src))
1773 {
1774 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1775 op_a = src;
1776 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1777 op_b = src;
1778
1779 if (CONST_INT_P (op_a))
1780 {
1781 rtx tmp = op_a;
1782 op_a = op_b;
1783 op_b = tmp;
1784 code = swap_condition (code);
1785 }
1786 }
1787 }
1788
1789 /* Now, look to see if we can get the right constant by
1790 adjusting the conditional. */
1791 if (CONST_INT_P (op_b))
1792 {
1793 HOST_WIDE_INT desired_val = INTVAL (target);
1794 HOST_WIDE_INT actual_val = INTVAL (op_b);
1795
1796 switch (code)
1797 {
1798 case LT:
1799 if (actual_val == desired_val + 1)
1800 {
1801 code = LE;
1802 op_b = GEN_INT (desired_val);
1803 }
1804 break;
1805 case LE:
1806 if (actual_val == desired_val - 1)
1807 {
1808 code = LT;
1809 op_b = GEN_INT (desired_val);
1810 }
1811 break;
1812 case GT:
1813 if (actual_val == desired_val - 1)
1814 {
1815 code = GE;
1816 op_b = GEN_INT (desired_val);
1817 }
1818 break;
1819 case GE:
1820 if (actual_val == desired_val + 1)
1821 {
1822 code = GT;
1823 op_b = GEN_INT (desired_val);
1824 }
1825 break;
1826 default:
1827 break;
1828 }
1829 }
1830
1831 /* If we made any changes, generate a new conditional that is
1832 equivalent to what we started with, but has the right
1833 constants in it. */
1834 if (code != GET_CODE (if_info->cond)
1835 || op_a != XEXP (if_info->cond, 0)
1836 || op_b != XEXP (if_info->cond, 1))
1837 {
1838 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1839 *earliest = if_info->cond_earliest;
1840 return cond;
1841 }
1842 }
1843
1844 cond = canonicalize_condition (if_info->jump, cond, reverse,
1845 earliest, target, false, true);
1846 if (! cond || ! reg_mentioned_p (target, cond))
1847 return NULL;
1848
1849 /* We almost certainly searched back to a different place.
1850 Need to re-verify correct lifetimes. */
1851
1852 /* X may not be mentioned in the range (cond_earliest, jump]. */
1853 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1854 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1855 return NULL;
1856
1857 /* A and B may not be modified in the range [cond_earliest, jump). */
1858 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1859 if (INSN_P (insn)
1860 && (modified_in_p (if_info->a, insn)
1861 || modified_in_p (if_info->b, insn)))
1862 return NULL;
1863
1864 return cond;
1865 }
1866
1867 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1868
1869 static int
1870 noce_try_minmax (struct noce_if_info *if_info)
1871 {
1872 rtx cond, earliest, target, seq;
1873 enum rtx_code code, op;
1874 int unsignedp;
1875
1876 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1877 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1878 to get the target to tell us... */
1879 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1880 || HONOR_NANS (GET_MODE (if_info->x)))
1881 return FALSE;
1882
1883 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1884 if (!cond)
1885 return FALSE;
1886
1887 /* Verify the condition is of the form we expect, and canonicalize
1888 the comparison code. */
1889 code = GET_CODE (cond);
1890 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1891 {
1892 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1893 return FALSE;
1894 }
1895 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1896 {
1897 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1898 return FALSE;
1899 code = swap_condition (code);
1900 }
1901 else
1902 return FALSE;
1903
1904 /* Determine what sort of operation this is. Note that the code is for
1905 a taken branch, so the code->operation mapping appears backwards. */
1906 switch (code)
1907 {
1908 case LT:
1909 case LE:
1910 case UNLT:
1911 case UNLE:
1912 op = SMAX;
1913 unsignedp = 0;
1914 break;
1915 case GT:
1916 case GE:
1917 case UNGT:
1918 case UNGE:
1919 op = SMIN;
1920 unsignedp = 0;
1921 break;
1922 case LTU:
1923 case LEU:
1924 op = UMAX;
1925 unsignedp = 1;
1926 break;
1927 case GTU:
1928 case GEU:
1929 op = UMIN;
1930 unsignedp = 1;
1931 break;
1932 default:
1933 return FALSE;
1934 }
1935
1936 start_sequence ();
1937
1938 target = expand_simple_binop (GET_MODE (if_info->x), op,
1939 if_info->a, if_info->b,
1940 if_info->x, unsignedp, OPTAB_WIDEN);
1941 if (! target)
1942 {
1943 end_sequence ();
1944 return FALSE;
1945 }
1946 if (target != if_info->x)
1947 noce_emit_move_insn (if_info->x, target);
1948
1949 seq = end_ifcvt_sequence (if_info);
1950 if (!seq)
1951 return FALSE;
1952
1953 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
1954 if_info->cond = cond;
1955 if_info->cond_earliest = earliest;
1956
1957 return TRUE;
1958 }
1959
1960 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1961 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1962 etc. */
1963
1964 static int
1965 noce_try_abs (struct noce_if_info *if_info)
1966 {
1967 rtx cond, earliest, target, seq, a, b, c;
1968 int negate;
1969 bool one_cmpl = false;
1970
1971 /* Reject modes with signed zeros. */
1972 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1973 return FALSE;
1974
1975 /* Recognize A and B as constituting an ABS or NABS. The canonical
1976 form is a branch around the negation, taken when the object is the
1977 first operand of a comparison against 0 that evaluates to true. */
1978 a = if_info->a;
1979 b = if_info->b;
1980 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1981 negate = 0;
1982 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1983 {
1984 c = a; a = b; b = c;
1985 negate = 1;
1986 }
1987 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1988 {
1989 negate = 0;
1990 one_cmpl = true;
1991 }
1992 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1993 {
1994 c = a; a = b; b = c;
1995 negate = 1;
1996 one_cmpl = true;
1997 }
1998 else
1999 return FALSE;
2000
2001 cond = noce_get_alt_condition (if_info, b, &earliest);
2002 if (!cond)
2003 return FALSE;
2004
2005 /* Verify the condition is of the form we expect. */
2006 if (rtx_equal_p (XEXP (cond, 0), b))
2007 c = XEXP (cond, 1);
2008 else if (rtx_equal_p (XEXP (cond, 1), b))
2009 {
2010 c = XEXP (cond, 0);
2011 negate = !negate;
2012 }
2013 else
2014 return FALSE;
2015
2016 /* Verify that C is zero. Search one step backward for a
2017 REG_EQUAL note or a simple source if necessary. */
2018 if (REG_P (c))
2019 {
2020 rtx set, insn = prev_nonnote_insn (earliest);
2021 if (insn
2022 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2023 && (set = single_set (insn))
2024 && rtx_equal_p (SET_DEST (set), c))
2025 {
2026 rtx note = find_reg_equal_equiv_note (insn);
2027 if (note)
2028 c = XEXP (note, 0);
2029 else
2030 c = SET_SRC (set);
2031 }
2032 else
2033 return FALSE;
2034 }
2035 if (MEM_P (c)
2036 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2037 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2038 c = get_pool_constant (XEXP (c, 0));
2039
2040 /* Work around funny ideas get_condition has wrt canonicalization.
2041 Note that these rtx constants are known to be CONST_INT, and
2042 therefore imply integer comparisons. */
2043 if (c == constm1_rtx && GET_CODE (cond) == GT)
2044 ;
2045 else if (c == const1_rtx && GET_CODE (cond) == LT)
2046 ;
2047 else if (c != CONST0_RTX (GET_MODE (b)))
2048 return FALSE;
2049
2050 /* Determine what sort of operation this is. */
2051 switch (GET_CODE (cond))
2052 {
2053 case LT:
2054 case LE:
2055 case UNLT:
2056 case UNLE:
2057 negate = !negate;
2058 break;
2059 case GT:
2060 case GE:
2061 case UNGT:
2062 case UNGE:
2063 break;
2064 default:
2065 return FALSE;
2066 }
2067
2068 start_sequence ();
2069 if (one_cmpl)
2070 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2071 if_info->x);
2072 else
2073 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2074
2075 /* ??? It's a quandary whether cmove would be better here, especially
2076 for integers. Perhaps combine will clean things up. */
2077 if (target && negate)
2078 {
2079 if (one_cmpl)
2080 target = expand_simple_unop (GET_MODE (target), NOT, target,
2081 if_info->x, 0);
2082 else
2083 target = expand_simple_unop (GET_MODE (target), NEG, target,
2084 if_info->x, 0);
2085 }
2086
2087 if (! target)
2088 {
2089 end_sequence ();
2090 return FALSE;
2091 }
2092
2093 if (target != if_info->x)
2094 noce_emit_move_insn (if_info->x, target);
2095
2096 seq = end_ifcvt_sequence (if_info);
2097 if (!seq)
2098 return FALSE;
2099
2100 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2101 if_info->cond = cond;
2102 if_info->cond_earliest = earliest;
2103
2104 return TRUE;
2105 }
2106
2107 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2108
2109 static int
2110 noce_try_sign_mask (struct noce_if_info *if_info)
2111 {
2112 rtx cond, t, m, c, seq;
2113 enum machine_mode mode;
2114 enum rtx_code code;
2115 bool t_unconditional;
2116
2117 cond = if_info->cond;
2118 code = GET_CODE (cond);
2119 m = XEXP (cond, 0);
2120 c = XEXP (cond, 1);
2121
2122 t = NULL_RTX;
2123 if (if_info->a == const0_rtx)
2124 {
2125 if ((code == LT && c == const0_rtx)
2126 || (code == LE && c == constm1_rtx))
2127 t = if_info->b;
2128 }
2129 else if (if_info->b == const0_rtx)
2130 {
2131 if ((code == GE && c == const0_rtx)
2132 || (code == GT && c == constm1_rtx))
2133 t = if_info->a;
2134 }
2135
2136 if (! t || side_effects_p (t))
2137 return FALSE;
2138
2139 /* We currently don't handle different modes. */
2140 mode = GET_MODE (t);
2141 if (GET_MODE (m) != mode)
2142 return FALSE;
2143
2144 /* This is only profitable if T is unconditionally executed/evaluated in the
2145 original insn sequence or T is cheap. The former happens if B is the
2146 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2147 INSN_B which can happen for e.g. conditional stores to memory. For the
2148 cost computation use the block TEST_BB where the evaluation will end up
2149 after the transformation. */
2150 t_unconditional =
2151 (t == if_info->b
2152 && (if_info->insn_b == NULL_RTX
2153 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2154 if (!(t_unconditional
2155 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2156 < COSTS_N_INSNS (2))))
2157 return FALSE;
2158
2159 start_sequence ();
2160 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2161 "(signed) m >> 31" directly. This benefits targets with specialized
2162 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2163 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2164 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2165 : NULL_RTX;
2166
2167 if (!t)
2168 {
2169 end_sequence ();
2170 return FALSE;
2171 }
2172
2173 noce_emit_move_insn (if_info->x, t);
2174
2175 seq = end_ifcvt_sequence (if_info);
2176 if (!seq)
2177 return FALSE;
2178
2179 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2180 return TRUE;
2181 }
2182
2183
2184 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2185 transformations. */
2186
2187 static int
2188 noce_try_bitop (struct noce_if_info *if_info)
2189 {
2190 rtx cond, x, a, result, seq;
2191 enum machine_mode mode;
2192 enum rtx_code code;
2193 int bitnum;
2194
2195 x = if_info->x;
2196 cond = if_info->cond;
2197 code = GET_CODE (cond);
2198
2199 /* Check for no else condition. */
2200 if (! rtx_equal_p (x, if_info->b))
2201 return FALSE;
2202
2203 /* Check for a suitable condition. */
2204 if (code != NE && code != EQ)
2205 return FALSE;
2206 if (XEXP (cond, 1) != const0_rtx)
2207 return FALSE;
2208 cond = XEXP (cond, 0);
2209
2210 /* ??? We could also handle AND here. */
2211 if (GET_CODE (cond) == ZERO_EXTRACT)
2212 {
2213 if (XEXP (cond, 1) != const1_rtx
2214 || !CONST_INT_P (XEXP (cond, 2))
2215 || ! rtx_equal_p (x, XEXP (cond, 0)))
2216 return FALSE;
2217 bitnum = INTVAL (XEXP (cond, 2));
2218 mode = GET_MODE (x);
2219 if (BITS_BIG_ENDIAN)
2220 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2221 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2222 return FALSE;
2223 }
2224 else
2225 return FALSE;
2226
2227 a = if_info->a;
2228 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2229 {
2230 /* Check for "if (X & C) x = x op C". */
2231 if (! rtx_equal_p (x, XEXP (a, 0))
2232 || !CONST_INT_P (XEXP (a, 1))
2233 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2234 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2235 return FALSE;
2236
2237 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2238 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2239 if (GET_CODE (a) == IOR)
2240 result = (code == NE) ? a : NULL_RTX;
2241 else if (code == NE)
2242 {
2243 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2244 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2245 result = simplify_gen_binary (IOR, mode, x, result);
2246 }
2247 else
2248 {
2249 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2250 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2251 result = simplify_gen_binary (AND, mode, x, result);
2252 }
2253 }
2254 else if (GET_CODE (a) == AND)
2255 {
2256 /* Check for "if (X & C) x &= ~C". */
2257 if (! rtx_equal_p (x, XEXP (a, 0))
2258 || !CONST_INT_P (XEXP (a, 1))
2259 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2260 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2261 return FALSE;
2262
2263 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2264 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2265 result = (code == EQ) ? a : NULL_RTX;
2266 }
2267 else
2268 return FALSE;
2269
2270 if (result)
2271 {
2272 start_sequence ();
2273 noce_emit_move_insn (x, result);
2274 seq = end_ifcvt_sequence (if_info);
2275 if (!seq)
2276 return FALSE;
2277
2278 emit_insn_before_setloc (seq, if_info->jump,
2279 INSN_LOCATION (if_info->insn_a));
2280 }
2281 return TRUE;
2282 }
2283
2284
2285 /* Similar to get_condition, only the resulting condition must be
2286 valid at JUMP, instead of at EARLIEST.
2287
2288 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2289 THEN block of the caller, and we have to reverse the condition. */
2290
2291 static rtx
2292 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2293 {
2294 rtx cond, set, tmp;
2295 bool reverse;
2296
2297 if (! any_condjump_p (jump))
2298 return NULL_RTX;
2299
2300 set = pc_set (jump);
2301
2302 /* If this branches to JUMP_LABEL when the condition is false,
2303 reverse the condition. */
2304 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2305 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2306
2307 /* We may have to reverse because the caller's if block is not canonical,
2308 i.e. the THEN block isn't the fallthrough block for the TEST block
2309 (see find_if_header). */
2310 if (then_else_reversed)
2311 reverse = !reverse;
2312
2313 /* If the condition variable is a register and is MODE_INT, accept it. */
2314
2315 cond = XEXP (SET_SRC (set), 0);
2316 tmp = XEXP (cond, 0);
2317 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2318 && (GET_MODE (tmp) != BImode
2319 || !targetm.small_register_classes_for_mode_p (BImode)))
2320 {
2321 *earliest = jump;
2322
2323 if (reverse)
2324 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2325 GET_MODE (cond), tmp, XEXP (cond, 1));
2326 return cond;
2327 }
2328
2329 /* Otherwise, fall back on canonicalize_condition to do the dirty
2330 work of manipulating MODE_CC values and COMPARE rtx codes. */
2331 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2332 NULL_RTX, false, true);
2333
2334 /* We don't handle side-effects in the condition, like handling
2335 REG_INC notes and making sure no duplicate conditions are emitted. */
2336 if (tmp != NULL_RTX && side_effects_p (tmp))
2337 return NULL_RTX;
2338
2339 return tmp;
2340 }
2341
2342 /* Return true if OP is ok for if-then-else processing. */
2343
2344 static int
2345 noce_operand_ok (const_rtx op)
2346 {
2347 if (side_effects_p (op))
2348 return FALSE;
2349
2350 /* We special-case memories, so handle any of them with
2351 no address side effects. */
2352 if (MEM_P (op))
2353 return ! side_effects_p (XEXP (op, 0));
2354
2355 return ! may_trap_p (op);
2356 }
2357
2358 /* Return true if a write into MEM may trap or fault. */
2359
2360 static bool
2361 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2362 {
2363 rtx addr;
2364
2365 if (MEM_READONLY_P (mem))
2366 return true;
2367
2368 if (may_trap_or_fault_p (mem))
2369 return true;
2370
2371 addr = XEXP (mem, 0);
2372
2373 /* Call target hook to avoid the effects of -fpic etc.... */
2374 addr = targetm.delegitimize_address (addr);
2375
2376 while (addr)
2377 switch (GET_CODE (addr))
2378 {
2379 case CONST:
2380 case PRE_DEC:
2381 case PRE_INC:
2382 case POST_DEC:
2383 case POST_INC:
2384 case POST_MODIFY:
2385 addr = XEXP (addr, 0);
2386 break;
2387 case LO_SUM:
2388 case PRE_MODIFY:
2389 addr = XEXP (addr, 1);
2390 break;
2391 case PLUS:
2392 if (CONST_INT_P (XEXP (addr, 1)))
2393 addr = XEXP (addr, 0);
2394 else
2395 return false;
2396 break;
2397 case LABEL_REF:
2398 return true;
2399 case SYMBOL_REF:
2400 if (SYMBOL_REF_DECL (addr)
2401 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2402 return true;
2403 return false;
2404 default:
2405 return false;
2406 }
2407
2408 return false;
2409 }
2410
2411 /* Return whether we can use store speculation for MEM. TOP_BB is the
2412 basic block above the conditional block where we are considering
2413 doing the speculative store. We look for whether MEM is set
2414 unconditionally later in the function. */
2415
2416 static bool
2417 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2418 {
2419 basic_block dominator;
2420
2421 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2422 dominator != NULL;
2423 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2424 {
2425 rtx insn;
2426
2427 FOR_BB_INSNS (dominator, insn)
2428 {
2429 /* If we see something that might be a memory barrier, we
2430 have to stop looking. Even if the MEM is set later in
2431 the function, we still don't want to set it
2432 unconditionally before the barrier. */
2433 if (INSN_P (insn)
2434 && (volatile_insn_p (PATTERN (insn))
2435 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2436 return false;
2437
2438 if (memory_must_be_modified_in_insn_p (mem, insn))
2439 return true;
2440 if (modified_in_p (XEXP (mem, 0), insn))
2441 return false;
2442
2443 }
2444 }
2445
2446 return false;
2447 }
2448
2449 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2450 it without using conditional execution. Return TRUE if we were successful
2451 at converting the block. */
2452
2453 static int
2454 noce_process_if_block (struct noce_if_info *if_info)
2455 {
2456 basic_block test_bb = if_info->test_bb; /* test block */
2457 basic_block then_bb = if_info->then_bb; /* THEN */
2458 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2459 basic_block join_bb = if_info->join_bb; /* JOIN */
2460 rtx jump = if_info->jump;
2461 rtx cond = if_info->cond;
2462 rtx insn_a, insn_b;
2463 rtx set_a, set_b;
2464 rtx orig_x, x, a, b;
2465
2466 /* We're looking for patterns of the form
2467
2468 (1) if (...) x = a; else x = b;
2469 (2) x = b; if (...) x = a;
2470 (3) if (...) x = a; // as if with an initial x = x.
2471
2472 The later patterns require jumps to be more expensive.
2473
2474 ??? For future expansion, look for multiple X in such patterns. */
2475
2476 /* Look for one of the potential sets. */
2477 insn_a = first_active_insn (then_bb);
2478 if (! insn_a
2479 || insn_a != last_active_insn (then_bb, FALSE)
2480 || (set_a = single_set (insn_a)) == NULL_RTX)
2481 return FALSE;
2482
2483 x = SET_DEST (set_a);
2484 a = SET_SRC (set_a);
2485
2486 /* Look for the other potential set. Make sure we've got equivalent
2487 destinations. */
2488 /* ??? This is overconservative. Storing to two different mems is
2489 as easy as conditionally computing the address. Storing to a
2490 single mem merely requires a scratch memory to use as one of the
2491 destination addresses; often the memory immediately below the
2492 stack pointer is available for this. */
2493 set_b = NULL_RTX;
2494 if (else_bb)
2495 {
2496 insn_b = first_active_insn (else_bb);
2497 if (! insn_b
2498 || insn_b != last_active_insn (else_bb, FALSE)
2499 || (set_b = single_set (insn_b)) == NULL_RTX
2500 || ! rtx_equal_p (x, SET_DEST (set_b)))
2501 return FALSE;
2502 }
2503 else
2504 {
2505 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2506 /* We're going to be moving the evaluation of B down from above
2507 COND_EARLIEST to JUMP. Make sure the relevant data is still
2508 intact. */
2509 if (! insn_b
2510 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2511 || !NONJUMP_INSN_P (insn_b)
2512 || (set_b = single_set (insn_b)) == NULL_RTX
2513 || ! rtx_equal_p (x, SET_DEST (set_b))
2514 || ! noce_operand_ok (SET_SRC (set_b))
2515 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2516 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2517 /* Avoid extending the lifetime of hard registers on small
2518 register class machines. */
2519 || (REG_P (SET_SRC (set_b))
2520 && HARD_REGISTER_P (SET_SRC (set_b))
2521 && targetm.small_register_classes_for_mode_p
2522 (GET_MODE (SET_SRC (set_b))))
2523 /* Likewise with X. In particular this can happen when
2524 noce_get_condition looks farther back in the instruction
2525 stream than one might expect. */
2526 || reg_overlap_mentioned_p (x, cond)
2527 || reg_overlap_mentioned_p (x, a)
2528 || modified_between_p (x, insn_b, jump))
2529 insn_b = set_b = NULL_RTX;
2530 }
2531
2532 /* If x has side effects then only the if-then-else form is safe to
2533 convert. But even in that case we would need to restore any notes
2534 (such as REG_INC) at then end. That can be tricky if
2535 noce_emit_move_insn expands to more than one insn, so disable the
2536 optimization entirely for now if there are side effects. */
2537 if (side_effects_p (x))
2538 return FALSE;
2539
2540 b = (set_b ? SET_SRC (set_b) : x);
2541
2542 /* Only operate on register destinations, and even then avoid extending
2543 the lifetime of hard registers on small register class machines. */
2544 orig_x = x;
2545 if (!REG_P (x)
2546 || (HARD_REGISTER_P (x)
2547 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2548 {
2549 if (GET_MODE (x) == BLKmode)
2550 return FALSE;
2551
2552 if (GET_CODE (x) == ZERO_EXTRACT
2553 && (!CONST_INT_P (XEXP (x, 1))
2554 || !CONST_INT_P (XEXP (x, 2))))
2555 return FALSE;
2556
2557 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2558 ? XEXP (x, 0) : x));
2559 }
2560
2561 /* Don't operate on sources that may trap or are volatile. */
2562 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2563 return FALSE;
2564
2565 retry:
2566 /* Set up the info block for our subroutines. */
2567 if_info->insn_a = insn_a;
2568 if_info->insn_b = insn_b;
2569 if_info->x = x;
2570 if_info->a = a;
2571 if_info->b = b;
2572
2573 /* Try optimizations in some approximation of a useful order. */
2574 /* ??? Should first look to see if X is live incoming at all. If it
2575 isn't, we don't need anything but an unconditional set. */
2576
2577 /* Look and see if A and B are really the same. Avoid creating silly
2578 cmove constructs that no one will fix up later. */
2579 if (rtx_equal_p (a, b))
2580 {
2581 /* If we have an INSN_B, we don't have to create any new rtl. Just
2582 move the instruction that we already have. If we don't have an
2583 INSN_B, that means that A == X, and we've got a noop move. In
2584 that case don't do anything and let the code below delete INSN_A. */
2585 if (insn_b && else_bb)
2586 {
2587 rtx note;
2588
2589 if (else_bb && insn_b == BB_END (else_bb))
2590 BB_END (else_bb) = PREV_INSN (insn_b);
2591 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2592
2593 /* If there was a REG_EQUAL note, delete it since it may have been
2594 true due to this insn being after a jump. */
2595 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2596 remove_note (insn_b, note);
2597
2598 insn_b = NULL_RTX;
2599 }
2600 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2601 x must be executed twice. */
2602 else if (insn_b && side_effects_p (orig_x))
2603 return FALSE;
2604
2605 x = orig_x;
2606 goto success;
2607 }
2608
2609 if (!set_b && MEM_P (orig_x))
2610 {
2611 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2612 for optimizations if writing to x may trap or fault,
2613 i.e. it's a memory other than a static var or a stack slot,
2614 is misaligned on strict aligned machines or is read-only. If
2615 x is a read-only memory, then the program is valid only if we
2616 avoid the store into it. If there are stores on both the
2617 THEN and ELSE arms, then we can go ahead with the conversion;
2618 either the program is broken, or the condition is always
2619 false such that the other memory is selected. */
2620 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2621 return FALSE;
2622
2623 /* Avoid store speculation: given "if (...) x = a" where x is a
2624 MEM, we only want to do the store if x is always set
2625 somewhere in the function. This avoids cases like
2626 if (pthread_mutex_trylock(mutex))
2627 ++global_variable;
2628 where we only want global_variable to be changed if the mutex
2629 is held. FIXME: This should ideally be expressed directly in
2630 RTL somehow. */
2631 if (!noce_can_store_speculate_p (test_bb, orig_x))
2632 return FALSE;
2633 }
2634
2635 if (noce_try_move (if_info))
2636 goto success;
2637 if (noce_try_store_flag (if_info))
2638 goto success;
2639 if (noce_try_bitop (if_info))
2640 goto success;
2641 if (noce_try_minmax (if_info))
2642 goto success;
2643 if (noce_try_abs (if_info))
2644 goto success;
2645 if (HAVE_conditional_move
2646 && noce_try_cmove (if_info))
2647 goto success;
2648 if (! targetm.have_conditional_execution ())
2649 {
2650 if (noce_try_store_flag_constants (if_info))
2651 goto success;
2652 if (noce_try_addcc (if_info))
2653 goto success;
2654 if (noce_try_store_flag_mask (if_info))
2655 goto success;
2656 if (HAVE_conditional_move
2657 && noce_try_cmove_arith (if_info))
2658 goto success;
2659 if (noce_try_sign_mask (if_info))
2660 goto success;
2661 }
2662
2663 if (!else_bb && set_b)
2664 {
2665 insn_b = set_b = NULL_RTX;
2666 b = orig_x;
2667 goto retry;
2668 }
2669
2670 return FALSE;
2671
2672 success:
2673
2674 /* If we used a temporary, fix it up now. */
2675 if (orig_x != x)
2676 {
2677 rtx seq;
2678
2679 start_sequence ();
2680 noce_emit_move_insn (orig_x, x);
2681 seq = get_insns ();
2682 set_used_flags (orig_x);
2683 unshare_all_rtl_in_chain (seq);
2684 end_sequence ();
2685
2686 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2687 }
2688
2689 /* The original THEN and ELSE blocks may now be removed. The test block
2690 must now jump to the join block. If the test block and the join block
2691 can be merged, do so. */
2692 if (else_bb)
2693 {
2694 delete_basic_block (else_bb);
2695 num_true_changes++;
2696 }
2697 else
2698 remove_edge (find_edge (test_bb, join_bb));
2699
2700 remove_edge (find_edge (then_bb, join_bb));
2701 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2702 delete_basic_block (then_bb);
2703 num_true_changes++;
2704
2705 if (can_merge_blocks_p (test_bb, join_bb))
2706 {
2707 merge_blocks (test_bb, join_bb);
2708 num_true_changes++;
2709 }
2710
2711 num_updated_if_blocks++;
2712 return TRUE;
2713 }
2714
2715 /* Check whether a block is suitable for conditional move conversion.
2716 Every insn must be a simple set of a register to a constant or a
2717 register. For each assignment, store the value in the pointer map
2718 VALS, keyed indexed by register pointer, then store the register
2719 pointer in REGS. COND is the condition we will test. */
2720
2721 static int
2722 check_cond_move_block (basic_block bb,
2723 struct pointer_map_t *vals,
2724 vec<rtx> *regs,
2725 rtx cond)
2726 {
2727 rtx insn;
2728
2729 /* We can only handle simple jumps at the end of the basic block.
2730 It is almost impossible to update the CFG otherwise. */
2731 insn = BB_END (bb);
2732 if (JUMP_P (insn) && !onlyjump_p (insn))
2733 return FALSE;
2734
2735 FOR_BB_INSNS (bb, insn)
2736 {
2737 rtx set, dest, src;
2738 void **slot;
2739
2740 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2741 continue;
2742 set = single_set (insn);
2743 if (!set)
2744 return FALSE;
2745
2746 dest = SET_DEST (set);
2747 src = SET_SRC (set);
2748 if (!REG_P (dest)
2749 || (HARD_REGISTER_P (dest)
2750 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2751 return FALSE;
2752
2753 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2754 return FALSE;
2755
2756 if (side_effects_p (src) || side_effects_p (dest))
2757 return FALSE;
2758
2759 if (may_trap_p (src) || may_trap_p (dest))
2760 return FALSE;
2761
2762 /* Don't try to handle this if the source register was
2763 modified earlier in the block. */
2764 if ((REG_P (src)
2765 && pointer_map_contains (vals, src))
2766 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2767 && pointer_map_contains (vals, SUBREG_REG (src))))
2768 return FALSE;
2769
2770 /* Don't try to handle this if the destination register was
2771 modified earlier in the block. */
2772 if (pointer_map_contains (vals, dest))
2773 return FALSE;
2774
2775 /* Don't try to handle this if the condition uses the
2776 destination register. */
2777 if (reg_overlap_mentioned_p (dest, cond))
2778 return FALSE;
2779
2780 /* Don't try to handle this if the source register is modified
2781 later in the block. */
2782 if (!CONSTANT_P (src)
2783 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2784 return FALSE;
2785
2786 slot = pointer_map_insert (vals, (void *) dest);
2787 *slot = (void *) src;
2788
2789 regs->safe_push (dest);
2790 }
2791
2792 return TRUE;
2793 }
2794
2795 /* Given a basic block BB suitable for conditional move conversion,
2796 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2797 the register values depending on COND, emit the insns in the block as
2798 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2799 processed. The caller has started a sequence for the conversion.
2800 Return true if successful, false if something goes wrong. */
2801
2802 static bool
2803 cond_move_convert_if_block (struct noce_if_info *if_infop,
2804 basic_block bb, rtx cond,
2805 struct pointer_map_t *then_vals,
2806 struct pointer_map_t *else_vals,
2807 bool else_block_p)
2808 {
2809 enum rtx_code code;
2810 rtx insn, cond_arg0, cond_arg1;
2811
2812 code = GET_CODE (cond);
2813 cond_arg0 = XEXP (cond, 0);
2814 cond_arg1 = XEXP (cond, 1);
2815
2816 FOR_BB_INSNS (bb, insn)
2817 {
2818 rtx set, target, dest, t, e;
2819 void **then_slot, **else_slot;
2820
2821 /* ??? Maybe emit conditional debug insn? */
2822 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2823 continue;
2824 set = single_set (insn);
2825 gcc_assert (set && REG_P (SET_DEST (set)));
2826
2827 dest = SET_DEST (set);
2828
2829 then_slot = pointer_map_contains (then_vals, dest);
2830 else_slot = pointer_map_contains (else_vals, dest);
2831 t = then_slot ? (rtx) *then_slot : NULL_RTX;
2832 e = else_slot ? (rtx) *else_slot : NULL_RTX;
2833
2834 if (else_block_p)
2835 {
2836 /* If this register was set in the then block, we already
2837 handled this case there. */
2838 if (t)
2839 continue;
2840 t = dest;
2841 gcc_assert (e);
2842 }
2843 else
2844 {
2845 gcc_assert (t);
2846 if (!e)
2847 e = dest;
2848 }
2849
2850 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2851 t, e);
2852 if (!target)
2853 return false;
2854
2855 if (target != dest)
2856 noce_emit_move_insn (dest, target);
2857 }
2858
2859 return true;
2860 }
2861
2862 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2863 it using only conditional moves. Return TRUE if we were successful at
2864 converting the block. */
2865
2866 static int
2867 cond_move_process_if_block (struct noce_if_info *if_info)
2868 {
2869 basic_block test_bb = if_info->test_bb;
2870 basic_block then_bb = if_info->then_bb;
2871 basic_block else_bb = if_info->else_bb;
2872 basic_block join_bb = if_info->join_bb;
2873 rtx jump = if_info->jump;
2874 rtx cond = if_info->cond;
2875 rtx seq, loc_insn;
2876 rtx reg;
2877 int c;
2878 struct pointer_map_t *then_vals;
2879 struct pointer_map_t *else_vals;
2880 vec<rtx> then_regs = vNULL;
2881 vec<rtx> else_regs = vNULL;
2882 unsigned int i;
2883 int success_p = FALSE;
2884
2885 /* Build a mapping for each block to the value used for each
2886 register. */
2887 then_vals = pointer_map_create ();
2888 else_vals = pointer_map_create ();
2889
2890 /* Make sure the blocks are suitable. */
2891 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2892 || (else_bb
2893 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2894 goto done;
2895
2896 /* Make sure the blocks can be used together. If the same register
2897 is set in both blocks, and is not set to a constant in both
2898 cases, then both blocks must set it to the same register. We
2899 have already verified that if it is set to a register, that the
2900 source register does not change after the assignment. Also count
2901 the number of registers set in only one of the blocks. */
2902 c = 0;
2903 FOR_EACH_VEC_ELT (then_regs, i, reg)
2904 {
2905 void **then_slot = pointer_map_contains (then_vals, reg);
2906 void **else_slot = pointer_map_contains (else_vals, reg);
2907
2908 gcc_checking_assert (then_slot);
2909 if (!else_slot)
2910 ++c;
2911 else
2912 {
2913 rtx then_val = (rtx) *then_slot;
2914 rtx else_val = (rtx) *else_slot;
2915 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
2916 && !rtx_equal_p (then_val, else_val))
2917 goto done;
2918 }
2919 }
2920
2921 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2922 FOR_EACH_VEC_ELT (else_regs, i, reg)
2923 {
2924 gcc_checking_assert (pointer_map_contains (else_vals, reg));
2925 if (!pointer_map_contains (then_vals, reg))
2926 ++c;
2927 }
2928
2929 /* Make sure it is reasonable to convert this block. What matters
2930 is the number of assignments currently made in only one of the
2931 branches, since if we convert we are going to always execute
2932 them. */
2933 if (c > MAX_CONDITIONAL_EXECUTE)
2934 goto done;
2935
2936 /* Try to emit the conditional moves. First do the then block,
2937 then do anything left in the else blocks. */
2938 start_sequence ();
2939 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2940 then_vals, else_vals, false)
2941 || (else_bb
2942 && !cond_move_convert_if_block (if_info, else_bb, cond,
2943 then_vals, else_vals, true)))
2944 {
2945 end_sequence ();
2946 goto done;
2947 }
2948 seq = end_ifcvt_sequence (if_info);
2949 if (!seq)
2950 goto done;
2951
2952 loc_insn = first_active_insn (then_bb);
2953 if (!loc_insn)
2954 {
2955 loc_insn = first_active_insn (else_bb);
2956 gcc_assert (loc_insn);
2957 }
2958 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
2959
2960 if (else_bb)
2961 {
2962 delete_basic_block (else_bb);
2963 num_true_changes++;
2964 }
2965 else
2966 remove_edge (find_edge (test_bb, join_bb));
2967
2968 remove_edge (find_edge (then_bb, join_bb));
2969 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2970 delete_basic_block (then_bb);
2971 num_true_changes++;
2972
2973 if (can_merge_blocks_p (test_bb, join_bb))
2974 {
2975 merge_blocks (test_bb, join_bb);
2976 num_true_changes++;
2977 }
2978
2979 num_updated_if_blocks++;
2980
2981 success_p = TRUE;
2982
2983 done:
2984 pointer_map_destroy (then_vals);
2985 pointer_map_destroy (else_vals);
2986 then_regs.release ();
2987 else_regs.release ();
2988 return success_p;
2989 }
2990
2991 \f
2992 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2993 IF-THEN-ELSE-JOIN block.
2994
2995 If so, we'll try to convert the insns to not require the branch,
2996 using only transformations that do not require conditional execution.
2997
2998 Return TRUE if we were successful at converting the block. */
2999
3000 static int
3001 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3002 int pass)
3003 {
3004 basic_block then_bb, else_bb, join_bb;
3005 bool then_else_reversed = false;
3006 rtx jump, cond;
3007 rtx cond_earliest;
3008 struct noce_if_info if_info;
3009
3010 /* We only ever should get here before reload. */
3011 gcc_assert (!reload_completed);
3012
3013 /* Recognize an IF-THEN-ELSE-JOIN block. */
3014 if (single_pred_p (then_edge->dest)
3015 && single_succ_p (then_edge->dest)
3016 && single_pred_p (else_edge->dest)
3017 && single_succ_p (else_edge->dest)
3018 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3019 {
3020 then_bb = then_edge->dest;
3021 else_bb = else_edge->dest;
3022 join_bb = single_succ (then_bb);
3023 }
3024 /* Recognize an IF-THEN-JOIN block. */
3025 else if (single_pred_p (then_edge->dest)
3026 && single_succ_p (then_edge->dest)
3027 && single_succ (then_edge->dest) == else_edge->dest)
3028 {
3029 then_bb = then_edge->dest;
3030 else_bb = NULL_BLOCK;
3031 join_bb = else_edge->dest;
3032 }
3033 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3034 of basic blocks in cfglayout mode does not matter, so the fallthrough
3035 edge can go to any basic block (and not just to bb->next_bb, like in
3036 cfgrtl mode). */
3037 else if (single_pred_p (else_edge->dest)
3038 && single_succ_p (else_edge->dest)
3039 && single_succ (else_edge->dest) == then_edge->dest)
3040 {
3041 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3042 To make this work, we have to invert the THEN and ELSE blocks
3043 and reverse the jump condition. */
3044 then_bb = else_edge->dest;
3045 else_bb = NULL_BLOCK;
3046 join_bb = single_succ (then_bb);
3047 then_else_reversed = true;
3048 }
3049 else
3050 /* Not a form we can handle. */
3051 return FALSE;
3052
3053 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3054 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3055 return FALSE;
3056 if (else_bb
3057 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3058 return FALSE;
3059
3060 num_possible_if_blocks++;
3061
3062 if (dump_file)
3063 {
3064 fprintf (dump_file,
3065 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3066 (else_bb) ? "-ELSE" : "",
3067 pass, test_bb->index, then_bb->index);
3068
3069 if (else_bb)
3070 fprintf (dump_file, ", else %d", else_bb->index);
3071
3072 fprintf (dump_file, ", join %d\n", join_bb->index);
3073 }
3074
3075 /* If the conditional jump is more than just a conditional
3076 jump, then we can not do if-conversion on this block. */
3077 jump = BB_END (test_bb);
3078 if (! onlyjump_p (jump))
3079 return FALSE;
3080
3081 /* If this is not a standard conditional jump, we can't parse it. */
3082 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3083 if (!cond)
3084 return FALSE;
3085
3086 /* We must be comparing objects whose modes imply the size. */
3087 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3088 return FALSE;
3089
3090 /* Initialize an IF_INFO struct to pass around. */
3091 memset (&if_info, 0, sizeof if_info);
3092 if_info.test_bb = test_bb;
3093 if_info.then_bb = then_bb;
3094 if_info.else_bb = else_bb;
3095 if_info.join_bb = join_bb;
3096 if_info.cond = cond;
3097 if_info.cond_earliest = cond_earliest;
3098 if_info.jump = jump;
3099 if_info.then_else_reversed = then_else_reversed;
3100 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3101 predictable_edge_p (then_edge));
3102
3103 /* Do the real work. */
3104
3105 if (noce_process_if_block (&if_info))
3106 return TRUE;
3107
3108 if (HAVE_conditional_move
3109 && cond_move_process_if_block (&if_info))
3110 return TRUE;
3111
3112 return FALSE;
3113 }
3114 \f
3115
3116 /* Merge the blocks and mark for local life update. */
3117
3118 static void
3119 merge_if_block (struct ce_if_block * ce_info)
3120 {
3121 basic_block test_bb = ce_info->test_bb; /* last test block */
3122 basic_block then_bb = ce_info->then_bb; /* THEN */
3123 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3124 basic_block join_bb = ce_info->join_bb; /* join block */
3125 basic_block combo_bb;
3126
3127 /* All block merging is done into the lower block numbers. */
3128
3129 combo_bb = test_bb;
3130 df_set_bb_dirty (test_bb);
3131
3132 /* Merge any basic blocks to handle && and || subtests. Each of
3133 the blocks are on the fallthru path from the predecessor block. */
3134 if (ce_info->num_multiple_test_blocks > 0)
3135 {
3136 basic_block bb = test_bb;
3137 basic_block last_test_bb = ce_info->last_test_bb;
3138 basic_block fallthru = block_fallthru (bb);
3139
3140 do
3141 {
3142 bb = fallthru;
3143 fallthru = block_fallthru (bb);
3144 merge_blocks (combo_bb, bb);
3145 num_true_changes++;
3146 }
3147 while (bb != last_test_bb);
3148 }
3149
3150 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3151 label, but it might if there were || tests. That label's count should be
3152 zero, and it normally should be removed. */
3153
3154 if (then_bb)
3155 {
3156 merge_blocks (combo_bb, then_bb);
3157 num_true_changes++;
3158 }
3159
3160 /* The ELSE block, if it existed, had a label. That label count
3161 will almost always be zero, but odd things can happen when labels
3162 get their addresses taken. */
3163 if (else_bb)
3164 {
3165 merge_blocks (combo_bb, else_bb);
3166 num_true_changes++;
3167 }
3168
3169 /* If there was no join block reported, that means it was not adjacent
3170 to the others, and so we cannot merge them. */
3171
3172 if (! join_bb)
3173 {
3174 rtx last = BB_END (combo_bb);
3175
3176 /* The outgoing edge for the current COMBO block should already
3177 be correct. Verify this. */
3178 if (EDGE_COUNT (combo_bb->succs) == 0)
3179 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3180 || (NONJUMP_INSN_P (last)
3181 && GET_CODE (PATTERN (last)) == TRAP_IF
3182 && (TRAP_CONDITION (PATTERN (last))
3183 == const_true_rtx)));
3184
3185 else
3186 /* There should still be something at the end of the THEN or ELSE
3187 blocks taking us to our final destination. */
3188 gcc_assert (JUMP_P (last)
3189 || (EDGE_SUCC (combo_bb, 0)->dest
3190 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3191 && CALL_P (last)
3192 && SIBLING_CALL_P (last))
3193 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3194 && can_throw_internal (last)));
3195 }
3196
3197 /* The JOIN block may have had quite a number of other predecessors too.
3198 Since we've already merged the TEST, THEN and ELSE blocks, we should
3199 have only one remaining edge from our if-then-else diamond. If there
3200 is more than one remaining edge, it must come from elsewhere. There
3201 may be zero incoming edges if the THEN block didn't actually join
3202 back up (as with a call to a non-return function). */
3203 else if (EDGE_COUNT (join_bb->preds) < 2
3204 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3205 {
3206 /* We can merge the JOIN cleanly and update the dataflow try
3207 again on this pass.*/
3208 merge_blocks (combo_bb, join_bb);
3209 num_true_changes++;
3210 }
3211 else
3212 {
3213 /* We cannot merge the JOIN. */
3214
3215 /* The outgoing edge for the current COMBO block should already
3216 be correct. Verify this. */
3217 gcc_assert (single_succ_p (combo_bb)
3218 && single_succ (combo_bb) == join_bb);
3219
3220 /* Remove the jump and cruft from the end of the COMBO block. */
3221 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3222 tidy_fallthru_edge (single_succ_edge (combo_bb));
3223 }
3224
3225 num_updated_if_blocks++;
3226 }
3227 \f
3228 /* Find a block ending in a simple IF condition and try to transform it
3229 in some way. When converting a multi-block condition, put the new code
3230 in the first such block and delete the rest. Return a pointer to this
3231 first block if some transformation was done. Return NULL otherwise. */
3232
3233 static basic_block
3234 find_if_header (basic_block test_bb, int pass)
3235 {
3236 ce_if_block ce_info;
3237 edge then_edge;
3238 edge else_edge;
3239
3240 /* The kind of block we're looking for has exactly two successors. */
3241 if (EDGE_COUNT (test_bb->succs) != 2)
3242 return NULL;
3243
3244 then_edge = EDGE_SUCC (test_bb, 0);
3245 else_edge = EDGE_SUCC (test_bb, 1);
3246
3247 if (df_get_bb_dirty (then_edge->dest))
3248 return NULL;
3249 if (df_get_bb_dirty (else_edge->dest))
3250 return NULL;
3251
3252 /* Neither edge should be abnormal. */
3253 if ((then_edge->flags & EDGE_COMPLEX)
3254 || (else_edge->flags & EDGE_COMPLEX))
3255 return NULL;
3256
3257 /* Nor exit the loop. */
3258 if ((then_edge->flags & EDGE_LOOP_EXIT)
3259 || (else_edge->flags & EDGE_LOOP_EXIT))
3260 return NULL;
3261
3262 /* The THEN edge is canonically the one that falls through. */
3263 if (then_edge->flags & EDGE_FALLTHRU)
3264 ;
3265 else if (else_edge->flags & EDGE_FALLTHRU)
3266 {
3267 edge e = else_edge;
3268 else_edge = then_edge;
3269 then_edge = e;
3270 }
3271 else
3272 /* Otherwise this must be a multiway branch of some sort. */
3273 return NULL;
3274
3275 memset (&ce_info, 0, sizeof (ce_info));
3276 ce_info.test_bb = test_bb;
3277 ce_info.then_bb = then_edge->dest;
3278 ce_info.else_bb = else_edge->dest;
3279 ce_info.pass = pass;
3280
3281 #ifdef IFCVT_MACHDEP_INIT
3282 IFCVT_MACHDEP_INIT (&ce_info);
3283 #endif
3284
3285 if (!reload_completed
3286 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3287 goto success;
3288
3289 if (reload_completed
3290 && targetm.have_conditional_execution ()
3291 && cond_exec_find_if_block (&ce_info))
3292 goto success;
3293
3294 if (HAVE_trap
3295 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3296 && find_cond_trap (test_bb, then_edge, else_edge))
3297 goto success;
3298
3299 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3300 && (reload_completed || !targetm.have_conditional_execution ()))
3301 {
3302 if (find_if_case_1 (test_bb, then_edge, else_edge))
3303 goto success;
3304 if (find_if_case_2 (test_bb, then_edge, else_edge))
3305 goto success;
3306 }
3307
3308 return NULL;
3309
3310 success:
3311 if (dump_file)
3312 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3313 /* Set this so we continue looking. */
3314 cond_exec_changed_p = TRUE;
3315 return ce_info.test_bb;
3316 }
3317
3318 /* Return true if a block has two edges, one of which falls through to the next
3319 block, and the other jumps to a specific block, so that we can tell if the
3320 block is part of an && test or an || test. Returns either -1 or the number
3321 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3322
3323 static int
3324 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3325 {
3326 edge cur_edge;
3327 int fallthru_p = FALSE;
3328 int jump_p = FALSE;
3329 rtx insn;
3330 rtx end;
3331 int n_insns = 0;
3332 edge_iterator ei;
3333
3334 if (!cur_bb || !target_bb)
3335 return -1;
3336
3337 /* If no edges, obviously it doesn't jump or fallthru. */
3338 if (EDGE_COUNT (cur_bb->succs) == 0)
3339 return FALSE;
3340
3341 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3342 {
3343 if (cur_edge->flags & EDGE_COMPLEX)
3344 /* Anything complex isn't what we want. */
3345 return -1;
3346
3347 else if (cur_edge->flags & EDGE_FALLTHRU)
3348 fallthru_p = TRUE;
3349
3350 else if (cur_edge->dest == target_bb)
3351 jump_p = TRUE;
3352
3353 else
3354 return -1;
3355 }
3356
3357 if ((jump_p & fallthru_p) == 0)
3358 return -1;
3359
3360 /* Don't allow calls in the block, since this is used to group && and ||
3361 together for conditional execution support. ??? we should support
3362 conditional execution support across calls for IA-64 some day, but
3363 for now it makes the code simpler. */
3364 end = BB_END (cur_bb);
3365 insn = BB_HEAD (cur_bb);
3366
3367 while (insn != NULL_RTX)
3368 {
3369 if (CALL_P (insn))
3370 return -1;
3371
3372 if (INSN_P (insn)
3373 && !JUMP_P (insn)
3374 && !DEBUG_INSN_P (insn)
3375 && GET_CODE (PATTERN (insn)) != USE
3376 && GET_CODE (PATTERN (insn)) != CLOBBER)
3377 n_insns++;
3378
3379 if (insn == end)
3380 break;
3381
3382 insn = NEXT_INSN (insn);
3383 }
3384
3385 return n_insns;
3386 }
3387
3388 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3389 block. If so, we'll try to convert the insns to not require the branch.
3390 Return TRUE if we were successful at converting the block. */
3391
3392 static int
3393 cond_exec_find_if_block (struct ce_if_block * ce_info)
3394 {
3395 basic_block test_bb = ce_info->test_bb;
3396 basic_block then_bb = ce_info->then_bb;
3397 basic_block else_bb = ce_info->else_bb;
3398 basic_block join_bb = NULL_BLOCK;
3399 edge cur_edge;
3400 basic_block next;
3401 edge_iterator ei;
3402
3403 ce_info->last_test_bb = test_bb;
3404
3405 /* We only ever should get here after reload,
3406 and if we have conditional execution. */
3407 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3408
3409 /* Discover if any fall through predecessors of the current test basic block
3410 were && tests (which jump to the else block) or || tests (which jump to
3411 the then block). */
3412 if (single_pred_p (test_bb)
3413 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3414 {
3415 basic_block bb = single_pred (test_bb);
3416 basic_block target_bb;
3417 int max_insns = MAX_CONDITIONAL_EXECUTE;
3418 int n_insns;
3419
3420 /* Determine if the preceding block is an && or || block. */
3421 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3422 {
3423 ce_info->and_and_p = TRUE;
3424 target_bb = else_bb;
3425 }
3426 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3427 {
3428 ce_info->and_and_p = FALSE;
3429 target_bb = then_bb;
3430 }
3431 else
3432 target_bb = NULL_BLOCK;
3433
3434 if (target_bb && n_insns <= max_insns)
3435 {
3436 int total_insns = 0;
3437 int blocks = 0;
3438
3439 ce_info->last_test_bb = test_bb;
3440
3441 /* Found at least one && or || block, look for more. */
3442 do
3443 {
3444 ce_info->test_bb = test_bb = bb;
3445 total_insns += n_insns;
3446 blocks++;
3447
3448 if (!single_pred_p (bb))
3449 break;
3450
3451 bb = single_pred (bb);
3452 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3453 }
3454 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3455
3456 ce_info->num_multiple_test_blocks = blocks;
3457 ce_info->num_multiple_test_insns = total_insns;
3458
3459 if (ce_info->and_and_p)
3460 ce_info->num_and_and_blocks = blocks;
3461 else
3462 ce_info->num_or_or_blocks = blocks;
3463 }
3464 }
3465
3466 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3467 other than any || blocks which jump to the THEN block. */
3468 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3469 return FALSE;
3470
3471 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3472 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3473 {
3474 if (cur_edge->flags & EDGE_COMPLEX)
3475 return FALSE;
3476 }
3477
3478 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3479 {
3480 if (cur_edge->flags & EDGE_COMPLEX)
3481 return FALSE;
3482 }
3483
3484 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3485 if (EDGE_COUNT (then_bb->succs) > 0
3486 && (!single_succ_p (then_bb)
3487 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3488 || (epilogue_completed
3489 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3490 return FALSE;
3491
3492 /* If the THEN block has no successors, conditional execution can still
3493 make a conditional call. Don't do this unless the ELSE block has
3494 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3495 Check for the last insn of the THEN block being an indirect jump, which
3496 is listed as not having any successors, but confuses the rest of the CE
3497 code processing. ??? we should fix this in the future. */
3498 if (EDGE_COUNT (then_bb->succs) == 0)
3499 {
3500 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3501 {
3502 rtx last_insn = BB_END (then_bb);
3503
3504 while (last_insn
3505 && NOTE_P (last_insn)
3506 && last_insn != BB_HEAD (then_bb))
3507 last_insn = PREV_INSN (last_insn);
3508
3509 if (last_insn
3510 && JUMP_P (last_insn)
3511 && ! simplejump_p (last_insn))
3512 return FALSE;
3513
3514 join_bb = else_bb;
3515 else_bb = NULL_BLOCK;
3516 }
3517 else
3518 return FALSE;
3519 }
3520
3521 /* If the THEN block's successor is the other edge out of the TEST block,
3522 then we have an IF-THEN combo without an ELSE. */
3523 else if (single_succ (then_bb) == else_bb)
3524 {
3525 join_bb = else_bb;
3526 else_bb = NULL_BLOCK;
3527 }
3528
3529 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3530 has exactly one predecessor and one successor, and the outgoing edge
3531 is not complex, then we have an IF-THEN-ELSE combo. */
3532 else if (single_succ_p (else_bb)
3533 && single_succ (then_bb) == single_succ (else_bb)
3534 && single_pred_p (else_bb)
3535 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3536 && !(epilogue_completed
3537 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3538 join_bb = single_succ (else_bb);
3539
3540 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3541 else
3542 return FALSE;
3543
3544 num_possible_if_blocks++;
3545
3546 if (dump_file)
3547 {
3548 fprintf (dump_file,
3549 "\nIF-THEN%s block found, pass %d, start block %d "
3550 "[insn %d], then %d [%d]",
3551 (else_bb) ? "-ELSE" : "",
3552 ce_info->pass,
3553 test_bb->index,
3554 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3555 then_bb->index,
3556 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3557
3558 if (else_bb)
3559 fprintf (dump_file, ", else %d [%d]",
3560 else_bb->index,
3561 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3562
3563 fprintf (dump_file, ", join %d [%d]",
3564 join_bb->index,
3565 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3566
3567 if (ce_info->num_multiple_test_blocks > 0)
3568 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3569 ce_info->num_multiple_test_blocks,
3570 (ce_info->and_and_p) ? "&&" : "||",
3571 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3572 ce_info->last_test_bb->index,
3573 ((BB_HEAD (ce_info->last_test_bb))
3574 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3575 : -1));
3576
3577 fputc ('\n', dump_file);
3578 }
3579
3580 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3581 first condition for free, since we've already asserted that there's a
3582 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3583 we checked the FALLTHRU flag, those are already adjacent to the last IF
3584 block. */
3585 /* ??? As an enhancement, move the ELSE block. Have to deal with
3586 BLOCK notes, if by no other means than backing out the merge if they
3587 exist. Sticky enough I don't want to think about it now. */
3588 next = then_bb;
3589 if (else_bb && (next = next->next_bb) != else_bb)
3590 return FALSE;
3591 if ((next = next->next_bb) != join_bb
3592 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3593 {
3594 if (else_bb)
3595 join_bb = NULL;
3596 else
3597 return FALSE;
3598 }
3599
3600 /* Do the real work. */
3601
3602 ce_info->else_bb = else_bb;
3603 ce_info->join_bb = join_bb;
3604
3605 /* If we have && and || tests, try to first handle combining the && and ||
3606 tests into the conditional code, and if that fails, go back and handle
3607 it without the && and ||, which at present handles the && case if there
3608 was no ELSE block. */
3609 if (cond_exec_process_if_block (ce_info, TRUE))
3610 return TRUE;
3611
3612 if (ce_info->num_multiple_test_blocks)
3613 {
3614 cancel_changes (0);
3615
3616 if (cond_exec_process_if_block (ce_info, FALSE))
3617 return TRUE;
3618 }
3619
3620 return FALSE;
3621 }
3622
3623 /* Convert a branch over a trap, or a branch
3624 to a trap, into a conditional trap. */
3625
3626 static int
3627 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3628 {
3629 basic_block then_bb = then_edge->dest;
3630 basic_block else_bb = else_edge->dest;
3631 basic_block other_bb, trap_bb;
3632 rtx trap, jump, cond, cond_earliest, seq;
3633 enum rtx_code code;
3634
3635 /* Locate the block with the trap instruction. */
3636 /* ??? While we look for no successors, we really ought to allow
3637 EH successors. Need to fix merge_if_block for that to work. */
3638 if ((trap = block_has_only_trap (then_bb)) != NULL)
3639 trap_bb = then_bb, other_bb = else_bb;
3640 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3641 trap_bb = else_bb, other_bb = then_bb;
3642 else
3643 return FALSE;
3644
3645 if (dump_file)
3646 {
3647 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3648 test_bb->index, trap_bb->index);
3649 }
3650
3651 /* If this is not a standard conditional jump, we can't parse it. */
3652 jump = BB_END (test_bb);
3653 cond = noce_get_condition (jump, &cond_earliest, false);
3654 if (! cond)
3655 return FALSE;
3656
3657 /* If the conditional jump is more than just a conditional jump, then
3658 we can not do if-conversion on this block. */
3659 if (! onlyjump_p (jump))
3660 return FALSE;
3661
3662 /* We must be comparing objects whose modes imply the size. */
3663 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3664 return FALSE;
3665
3666 /* Reverse the comparison code, if necessary. */
3667 code = GET_CODE (cond);
3668 if (then_bb == trap_bb)
3669 {
3670 code = reversed_comparison_code (cond, jump);
3671 if (code == UNKNOWN)
3672 return FALSE;
3673 }
3674
3675 /* Attempt to generate the conditional trap. */
3676 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3677 copy_rtx (XEXP (cond, 1)),
3678 TRAP_CODE (PATTERN (trap)));
3679 if (seq == NULL)
3680 return FALSE;
3681
3682 /* Emit the new insns before cond_earliest. */
3683 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3684
3685 /* Delete the trap block if possible. */
3686 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3687 df_set_bb_dirty (test_bb);
3688 df_set_bb_dirty (then_bb);
3689 df_set_bb_dirty (else_bb);
3690
3691 if (EDGE_COUNT (trap_bb->preds) == 0)
3692 {
3693 delete_basic_block (trap_bb);
3694 num_true_changes++;
3695 }
3696
3697 /* Wire together the blocks again. */
3698 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3699 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3700 else if (trap_bb == then_bb)
3701 {
3702 rtx lab, newjump;
3703
3704 lab = JUMP_LABEL (jump);
3705 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3706 LABEL_NUSES (lab) += 1;
3707 JUMP_LABEL (newjump) = lab;
3708 emit_barrier_after (newjump);
3709 }
3710 delete_insn (jump);
3711
3712 if (can_merge_blocks_p (test_bb, other_bb))
3713 {
3714 merge_blocks (test_bb, other_bb);
3715 num_true_changes++;
3716 }
3717
3718 num_updated_if_blocks++;
3719 return TRUE;
3720 }
3721
3722 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3723 return it. */
3724
3725 static rtx
3726 block_has_only_trap (basic_block bb)
3727 {
3728 rtx trap;
3729
3730 /* We're not the exit block. */
3731 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3732 return NULL_RTX;
3733
3734 /* The block must have no successors. */
3735 if (EDGE_COUNT (bb->succs) > 0)
3736 return NULL_RTX;
3737
3738 /* The only instruction in the THEN block must be the trap. */
3739 trap = first_active_insn (bb);
3740 if (! (trap == BB_END (bb)
3741 && GET_CODE (PATTERN (trap)) == TRAP_IF
3742 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3743 return NULL_RTX;
3744
3745 return trap;
3746 }
3747
3748 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3749 transformable, but not necessarily the other. There need be no
3750 JOIN block.
3751
3752 Return TRUE if we were successful at converting the block.
3753
3754 Cases we'd like to look at:
3755
3756 (1)
3757 if (test) goto over; // x not live
3758 x = a;
3759 goto label;
3760 over:
3761
3762 becomes
3763
3764 x = a;
3765 if (! test) goto label;
3766
3767 (2)
3768 if (test) goto E; // x not live
3769 x = big();
3770 goto L;
3771 E:
3772 x = b;
3773 goto M;
3774
3775 becomes
3776
3777 x = b;
3778 if (test) goto M;
3779 x = big();
3780 goto L;
3781
3782 (3) // This one's really only interesting for targets that can do
3783 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3784 // it results in multiple branches on a cache line, which often
3785 // does not sit well with predictors.
3786
3787 if (test1) goto E; // predicted not taken
3788 x = a;
3789 if (test2) goto F;
3790 ...
3791 E:
3792 x = b;
3793 J:
3794
3795 becomes
3796
3797 x = a;
3798 if (test1) goto E;
3799 if (test2) goto F;
3800
3801 Notes:
3802
3803 (A) Don't do (2) if the branch is predicted against the block we're
3804 eliminating. Do it anyway if we can eliminate a branch; this requires
3805 that the sole successor of the eliminated block postdominate the other
3806 side of the if.
3807
3808 (B) With CE, on (3) we can steal from both sides of the if, creating
3809
3810 if (test1) x = a;
3811 if (!test1) x = b;
3812 if (test1) goto J;
3813 if (test2) goto F;
3814 ...
3815 J:
3816
3817 Again, this is most useful if J postdominates.
3818
3819 (C) CE substitutes for helpful life information.
3820
3821 (D) These heuristics need a lot of work. */
3822
3823 /* Tests for case 1 above. */
3824
3825 static int
3826 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3827 {
3828 basic_block then_bb = then_edge->dest;
3829 basic_block else_bb = else_edge->dest;
3830 basic_block new_bb;
3831 int then_bb_index, then_prob;
3832 rtx else_target = NULL_RTX;
3833
3834 /* If we are partitioning hot/cold basic blocks, we don't want to
3835 mess up unconditional or indirect jumps that cross between hot
3836 and cold sections.
3837
3838 Basic block partitioning may result in some jumps that appear to
3839 be optimizable (or blocks that appear to be mergeable), but which really
3840 must be left untouched (they are required to make it safely across
3841 partition boundaries). See the comments at the top of
3842 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3843
3844 if ((BB_END (then_bb)
3845 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3846 || (BB_END (test_bb)
3847 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3848 || (BB_END (else_bb)
3849 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3850 NULL_RTX)))
3851 return FALSE;
3852
3853 /* THEN has one successor. */
3854 if (!single_succ_p (then_bb))
3855 return FALSE;
3856
3857 /* THEN does not fall through, but is not strange either. */
3858 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3859 return FALSE;
3860
3861 /* THEN has one predecessor. */
3862 if (!single_pred_p (then_bb))
3863 return FALSE;
3864
3865 /* THEN must do something. */
3866 if (forwarder_block_p (then_bb))
3867 return FALSE;
3868
3869 num_possible_if_blocks++;
3870 if (dump_file)
3871 fprintf (dump_file,
3872 "\nIF-CASE-1 found, start %d, then %d\n",
3873 test_bb->index, then_bb->index);
3874
3875 if (then_edge->probability)
3876 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3877 else
3878 then_prob = REG_BR_PROB_BASE / 2;
3879
3880 /* We're speculating from the THEN path, we want to make sure the cost
3881 of speculation is within reason. */
3882 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3883 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3884 predictable_edge_p (then_edge)))))
3885 return FALSE;
3886
3887 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3888 {
3889 rtx jump = BB_END (else_edge->src);
3890 gcc_assert (JUMP_P (jump));
3891 else_target = JUMP_LABEL (jump);
3892 }
3893
3894 /* Registers set are dead, or are predicable. */
3895 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3896 single_succ_edge (then_bb), 1))
3897 return FALSE;
3898
3899 /* Conversion went ok, including moving the insns and fixing up the
3900 jump. Adjust the CFG to match. */
3901
3902 /* We can avoid creating a new basic block if then_bb is immediately
3903 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3904 through to else_bb. */
3905
3906 if (then_bb->next_bb == else_bb
3907 && then_bb->prev_bb == test_bb
3908 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3909 {
3910 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3911 new_bb = 0;
3912 }
3913 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3914 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3915 else_bb, else_target);
3916 else
3917 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3918 else_bb);
3919
3920 df_set_bb_dirty (test_bb);
3921 df_set_bb_dirty (else_bb);
3922
3923 then_bb_index = then_bb->index;
3924 delete_basic_block (then_bb);
3925
3926 /* Make rest of code believe that the newly created block is the THEN_BB
3927 block we removed. */
3928 if (new_bb)
3929 {
3930 df_bb_replace (then_bb_index, new_bb);
3931 /* This should have been done above via force_nonfallthru_and_redirect
3932 (possibly called from redirect_edge_and_branch_force). */
3933 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
3934 }
3935
3936 num_true_changes++;
3937 num_updated_if_blocks++;
3938
3939 return TRUE;
3940 }
3941
3942 /* Test for case 2 above. */
3943
3944 static int
3945 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3946 {
3947 basic_block then_bb = then_edge->dest;
3948 basic_block else_bb = else_edge->dest;
3949 edge else_succ;
3950 int then_prob, else_prob;
3951
3952 /* We do not want to speculate (empty) loop latches. */
3953 if (current_loops
3954 && else_bb->loop_father->latch == else_bb)
3955 return FALSE;
3956
3957 /* If we are partitioning hot/cold basic blocks, we don't want to
3958 mess up unconditional or indirect jumps that cross between hot
3959 and cold sections.
3960
3961 Basic block partitioning may result in some jumps that appear to
3962 be optimizable (or blocks that appear to be mergeable), but which really
3963 must be left untouched (they are required to make it safely across
3964 partition boundaries). See the comments at the top of
3965 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3966
3967 if ((BB_END (then_bb)
3968 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3969 || (BB_END (test_bb)
3970 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3971 || (BB_END (else_bb)
3972 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3973 NULL_RTX)))
3974 return FALSE;
3975
3976 /* ELSE has one successor. */
3977 if (!single_succ_p (else_bb))
3978 return FALSE;
3979 else
3980 else_succ = single_succ_edge (else_bb);
3981
3982 /* ELSE outgoing edge is not complex. */
3983 if (else_succ->flags & EDGE_COMPLEX)
3984 return FALSE;
3985
3986 /* ELSE has one predecessor. */
3987 if (!single_pred_p (else_bb))
3988 return FALSE;
3989
3990 /* THEN is not EXIT. */
3991 if (then_bb->index < NUM_FIXED_BLOCKS)
3992 return FALSE;
3993
3994 if (else_edge->probability)
3995 {
3996 else_prob = else_edge->probability;
3997 then_prob = REG_BR_PROB_BASE - else_prob;
3998 }
3999 else
4000 {
4001 else_prob = REG_BR_PROB_BASE / 2;
4002 then_prob = REG_BR_PROB_BASE / 2;
4003 }
4004
4005 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4006 if (else_prob > then_prob)
4007 ;
4008 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4009 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4010 else_succ->dest))
4011 ;
4012 else
4013 return FALSE;
4014
4015 num_possible_if_blocks++;
4016 if (dump_file)
4017 fprintf (dump_file,
4018 "\nIF-CASE-2 found, start %d, else %d\n",
4019 test_bb->index, else_bb->index);
4020
4021 /* We're speculating from the ELSE path, we want to make sure the cost
4022 of speculation is within reason. */
4023 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4024 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4025 predictable_edge_p (else_edge)))))
4026 return FALSE;
4027
4028 /* Registers set are dead, or are predicable. */
4029 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4030 return FALSE;
4031
4032 /* Conversion went ok, including moving the insns and fixing up the
4033 jump. Adjust the CFG to match. */
4034
4035 df_set_bb_dirty (test_bb);
4036 df_set_bb_dirty (then_bb);
4037 delete_basic_block (else_bb);
4038
4039 num_true_changes++;
4040 num_updated_if_blocks++;
4041
4042 /* ??? We may now fallthru from one of THEN's successors into a join
4043 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4044
4045 return TRUE;
4046 }
4047
4048 /* Used by the code above to perform the actual rtl transformations.
4049 Return TRUE if successful.
4050
4051 TEST_BB is the block containing the conditional branch. MERGE_BB
4052 is the block containing the code to manipulate. DEST_EDGE is an
4053 edge representing a jump to the join block; after the conversion,
4054 TEST_BB should be branching to its destination.
4055 REVERSEP is true if the sense of the branch should be reversed. */
4056
4057 static int
4058 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4059 basic_block other_bb, edge dest_edge, int reversep)
4060 {
4061 basic_block new_dest = dest_edge->dest;
4062 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4063 bitmap merge_set = NULL;
4064 /* Number of pending changes. */
4065 int n_validated_changes = 0;
4066 rtx new_dest_label = NULL_RTX;
4067
4068 jump = BB_END (test_bb);
4069
4070 /* Find the extent of the real code in the merge block. */
4071 head = BB_HEAD (merge_bb);
4072 end = BB_END (merge_bb);
4073
4074 while (DEBUG_INSN_P (end) && end != head)
4075 end = PREV_INSN (end);
4076
4077 /* If merge_bb ends with a tablejump, predicating/moving insn's
4078 into test_bb and then deleting merge_bb will result in the jumptable
4079 that follows merge_bb being removed along with merge_bb and then we
4080 get an unresolved reference to the jumptable. */
4081 if (tablejump_p (end, NULL, NULL))
4082 return FALSE;
4083
4084 if (LABEL_P (head))
4085 head = NEXT_INSN (head);
4086 while (DEBUG_INSN_P (head) && head != end)
4087 head = NEXT_INSN (head);
4088 if (NOTE_P (head))
4089 {
4090 if (head == end)
4091 {
4092 head = end = NULL_RTX;
4093 goto no_body;
4094 }
4095 head = NEXT_INSN (head);
4096 while (DEBUG_INSN_P (head) && head != end)
4097 head = NEXT_INSN (head);
4098 }
4099
4100 if (JUMP_P (end))
4101 {
4102 if (head == end)
4103 {
4104 head = end = NULL_RTX;
4105 goto no_body;
4106 }
4107 end = PREV_INSN (end);
4108 while (DEBUG_INSN_P (end) && end != head)
4109 end = PREV_INSN (end);
4110 }
4111
4112 /* Disable handling dead code by conditional execution if the machine needs
4113 to do anything funny with the tests, etc. */
4114 #ifndef IFCVT_MODIFY_TESTS
4115 if (targetm.have_conditional_execution ())
4116 {
4117 /* In the conditional execution case, we have things easy. We know
4118 the condition is reversible. We don't have to check life info
4119 because we're going to conditionally execute the code anyway.
4120 All that's left is making sure the insns involved can actually
4121 be predicated. */
4122
4123 rtx cond;
4124
4125 cond = cond_exec_get_condition (jump);
4126 if (! cond)
4127 return FALSE;
4128
4129 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4130 int prob_val = (note ? XINT (note, 0) : -1);
4131
4132 if (reversep)
4133 {
4134 enum rtx_code rev = reversed_comparison_code (cond, jump);
4135 if (rev == UNKNOWN)
4136 return FALSE;
4137 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4138 XEXP (cond, 1));
4139 if (prob_val >= 0)
4140 prob_val = REG_BR_PROB_BASE - prob_val;
4141 }
4142
4143 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4144 && verify_changes (0))
4145 n_validated_changes = num_validated_changes ();
4146 else
4147 cancel_changes (0);
4148
4149 earliest = jump;
4150 }
4151 #endif
4152
4153 /* If we allocated new pseudos (e.g. in the conditional move
4154 expander called from noce_emit_cmove), we must resize the
4155 array first. */
4156 if (max_regno < max_reg_num ())
4157 max_regno = max_reg_num ();
4158
4159 /* Try the NCE path if the CE path did not result in any changes. */
4160 if (n_validated_changes == 0)
4161 {
4162 rtx cond, insn;
4163 regset live;
4164 bool success;
4165
4166 /* In the non-conditional execution case, we have to verify that there
4167 are no trapping operations, no calls, no references to memory, and
4168 that any registers modified are dead at the branch site. */
4169
4170 if (!any_condjump_p (jump))
4171 return FALSE;
4172
4173 /* Find the extent of the conditional. */
4174 cond = noce_get_condition (jump, &earliest, false);
4175 if (!cond)
4176 return FALSE;
4177
4178 live = BITMAP_ALLOC (&reg_obstack);
4179 simulate_backwards_to_point (merge_bb, live, end);
4180 success = can_move_insns_across (head, end, earliest, jump,
4181 merge_bb, live,
4182 df_get_live_in (other_bb), NULL);
4183 BITMAP_FREE (live);
4184 if (!success)
4185 return FALSE;
4186
4187 /* Collect the set of registers set in MERGE_BB. */
4188 merge_set = BITMAP_ALLOC (&reg_obstack);
4189
4190 FOR_BB_INSNS (merge_bb, insn)
4191 if (NONDEBUG_INSN_P (insn))
4192 df_simulate_find_defs (insn, merge_set);
4193
4194 #ifdef HAVE_simple_return
4195 /* If shrink-wrapping, disable this optimization when test_bb is
4196 the first basic block and merge_bb exits. The idea is to not
4197 move code setting up a return register as that may clobber a
4198 register used to pass function parameters, which then must be
4199 saved in caller-saved regs. A caller-saved reg requires the
4200 prologue, killing a shrink-wrap opportunity. */
4201 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4202 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4203 && single_succ_p (new_dest)
4204 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4205 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4206 {
4207 regset return_regs;
4208 unsigned int i;
4209
4210 return_regs = BITMAP_ALLOC (&reg_obstack);
4211
4212 /* Start off with the intersection of regs used to pass
4213 params and regs used to return values. */
4214 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4215 if (FUNCTION_ARG_REGNO_P (i)
4216 && targetm.calls.function_value_regno_p (i))
4217 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4218
4219 bitmap_and_into (return_regs,
4220 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4221 bitmap_and_into (return_regs,
4222 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4223 if (!bitmap_empty_p (return_regs))
4224 {
4225 FOR_BB_INSNS_REVERSE (new_dest, insn)
4226 if (NONDEBUG_INSN_P (insn))
4227 {
4228 df_ref *def_rec;
4229 unsigned int uid = INSN_UID (insn);
4230
4231 /* If this insn sets any reg in return_regs.. */
4232 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4233 {
4234 df_ref def = *def_rec;
4235 unsigned r = DF_REF_REGNO (def);
4236
4237 if (bitmap_bit_p (return_regs, r))
4238 break;
4239 }
4240 /* ..then add all reg uses to the set of regs
4241 we're interested in. */
4242 if (*def_rec)
4243 df_simulate_uses (insn, return_regs);
4244 }
4245 if (bitmap_intersect_p (merge_set, return_regs))
4246 {
4247 BITMAP_FREE (return_regs);
4248 BITMAP_FREE (merge_set);
4249 return FALSE;
4250 }
4251 }
4252 BITMAP_FREE (return_regs);
4253 }
4254 #endif
4255 }
4256
4257 no_body:
4258 /* We don't want to use normal invert_jump or redirect_jump because
4259 we don't want to delete_insn called. Also, we want to do our own
4260 change group management. */
4261
4262 old_dest = JUMP_LABEL (jump);
4263 if (other_bb != new_dest)
4264 {
4265 if (JUMP_P (BB_END (dest_edge->src)))
4266 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4267 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4268 new_dest_label = ret_rtx;
4269 else
4270 new_dest_label = block_label (new_dest);
4271
4272 if (reversep
4273 ? ! invert_jump_1 (jump, new_dest_label)
4274 : ! redirect_jump_1 (jump, new_dest_label))
4275 goto cancel;
4276 }
4277
4278 if (verify_changes (n_validated_changes))
4279 confirm_change_group ();
4280 else
4281 goto cancel;
4282
4283 if (other_bb != new_dest)
4284 {
4285 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4286
4287 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4288 if (reversep)
4289 {
4290 gcov_type count, probability;
4291 count = BRANCH_EDGE (test_bb)->count;
4292 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4293 FALLTHRU_EDGE (test_bb)->count = count;
4294 probability = BRANCH_EDGE (test_bb)->probability;
4295 BRANCH_EDGE (test_bb)->probability
4296 = FALLTHRU_EDGE (test_bb)->probability;
4297 FALLTHRU_EDGE (test_bb)->probability = probability;
4298 update_br_prob_note (test_bb);
4299 }
4300 }
4301
4302 /* Move the insns out of MERGE_BB to before the branch. */
4303 if (head != NULL)
4304 {
4305 rtx insn;
4306
4307 if (end == BB_END (merge_bb))
4308 BB_END (merge_bb) = PREV_INSN (head);
4309
4310 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4311 notes being moved might become invalid. */
4312 insn = head;
4313 do
4314 {
4315 rtx note, set;
4316
4317 if (! INSN_P (insn))
4318 continue;
4319 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4320 if (! note)
4321 continue;
4322 set = single_set (insn);
4323 if (!set || !function_invariant_p (SET_SRC (set))
4324 || !function_invariant_p (XEXP (note, 0)))
4325 remove_note (insn, note);
4326 } while (insn != end && (insn = NEXT_INSN (insn)));
4327
4328 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4329 notes referring to the registers being set might become invalid. */
4330 if (merge_set)
4331 {
4332 unsigned i;
4333 bitmap_iterator bi;
4334
4335 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4336 remove_reg_equal_equiv_notes_for_regno (i);
4337
4338 BITMAP_FREE (merge_set);
4339 }
4340
4341 reorder_insns (head, end, PREV_INSN (earliest));
4342 }
4343
4344 /* Remove the jump and edge if we can. */
4345 if (other_bb == new_dest)
4346 {
4347 delete_insn (jump);
4348 remove_edge (BRANCH_EDGE (test_bb));
4349 /* ??? Can't merge blocks here, as then_bb is still in use.
4350 At minimum, the merge will get done just before bb-reorder. */
4351 }
4352
4353 return TRUE;
4354
4355 cancel:
4356 cancel_changes (0);
4357
4358 if (merge_set)
4359 BITMAP_FREE (merge_set);
4360
4361 return FALSE;
4362 }
4363 \f
4364 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4365 we are after combine pass. */
4366
4367 static void
4368 if_convert (bool after_combine)
4369 {
4370 basic_block bb;
4371 int pass;
4372
4373 if (optimize == 1)
4374 {
4375 df_live_add_problem ();
4376 df_live_set_all_dirty ();
4377 }
4378
4379 /* Record whether we are after combine pass. */
4380 ifcvt_after_combine = after_combine;
4381 num_possible_if_blocks = 0;
4382 num_updated_if_blocks = 0;
4383 num_true_changes = 0;
4384
4385 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4386 mark_loop_exit_edges ();
4387 loop_optimizer_finalize ();
4388 free_dominance_info (CDI_DOMINATORS);
4389
4390 /* Compute postdominators. */
4391 calculate_dominance_info (CDI_POST_DOMINATORS);
4392
4393 df_set_flags (DF_LR_RUN_DCE);
4394
4395 /* Go through each of the basic blocks looking for things to convert. If we
4396 have conditional execution, we make multiple passes to allow us to handle
4397 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4398 pass = 0;
4399 do
4400 {
4401 df_analyze ();
4402 /* Only need to do dce on the first pass. */
4403 df_clear_flags (DF_LR_RUN_DCE);
4404 cond_exec_changed_p = FALSE;
4405 pass++;
4406
4407 #ifdef IFCVT_MULTIPLE_DUMPS
4408 if (dump_file && pass > 1)
4409 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4410 #endif
4411
4412 FOR_EACH_BB_FN (bb, cfun)
4413 {
4414 basic_block new_bb;
4415 while (!df_get_bb_dirty (bb)
4416 && (new_bb = find_if_header (bb, pass)) != NULL)
4417 bb = new_bb;
4418 }
4419
4420 #ifdef IFCVT_MULTIPLE_DUMPS
4421 if (dump_file && cond_exec_changed_p)
4422 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4423 #endif
4424 }
4425 while (cond_exec_changed_p);
4426
4427 #ifdef IFCVT_MULTIPLE_DUMPS
4428 if (dump_file)
4429 fprintf (dump_file, "\n\n========== no more changes\n");
4430 #endif
4431
4432 free_dominance_info (CDI_POST_DOMINATORS);
4433
4434 if (dump_file)
4435 fflush (dump_file);
4436
4437 clear_aux_for_blocks ();
4438
4439 /* If we allocated new pseudos, we must resize the array for sched1. */
4440 if (max_regno < max_reg_num ())
4441 max_regno = max_reg_num ();
4442
4443 /* Write the final stats. */
4444 if (dump_file && num_possible_if_blocks > 0)
4445 {
4446 fprintf (dump_file,
4447 "\n%d possible IF blocks searched.\n",
4448 num_possible_if_blocks);
4449 fprintf (dump_file,
4450 "%d IF blocks converted.\n",
4451 num_updated_if_blocks);
4452 fprintf (dump_file,
4453 "%d true changes made.\n\n\n",
4454 num_true_changes);
4455 }
4456
4457 if (optimize == 1)
4458 df_remove_problem (df_live);
4459
4460 #ifdef ENABLE_CHECKING
4461 verify_flow_info ();
4462 #endif
4463 }
4464 \f
4465 static bool
4466 gate_handle_if_conversion (void)
4467 {
4468 return (optimize > 0)
4469 && dbg_cnt (if_conversion);
4470 }
4471
4472 /* If-conversion and CFG cleanup. */
4473 static unsigned int
4474 rest_of_handle_if_conversion (void)
4475 {
4476 if (flag_if_conversion)
4477 {
4478 if (dump_file)
4479 {
4480 dump_reg_info (dump_file);
4481 dump_flow_info (dump_file, dump_flags);
4482 }
4483 cleanup_cfg (CLEANUP_EXPENSIVE);
4484 if_convert (false);
4485 }
4486
4487 cleanup_cfg (0);
4488 return 0;
4489 }
4490
4491 namespace {
4492
4493 const pass_data pass_data_rtl_ifcvt =
4494 {
4495 RTL_PASS, /* type */
4496 "ce1", /* name */
4497 OPTGROUP_NONE, /* optinfo_flags */
4498 true, /* has_gate */
4499 true, /* has_execute */
4500 TV_IFCVT, /* tv_id */
4501 0, /* properties_required */
4502 0, /* properties_provided */
4503 0, /* properties_destroyed */
4504 0, /* todo_flags_start */
4505 ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
4506 };
4507
4508 class pass_rtl_ifcvt : public rtl_opt_pass
4509 {
4510 public:
4511 pass_rtl_ifcvt (gcc::context *ctxt)
4512 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4513 {}
4514
4515 /* opt_pass methods: */
4516 bool gate () { return gate_handle_if_conversion (); }
4517 unsigned int execute () { return rest_of_handle_if_conversion (); }
4518
4519 }; // class pass_rtl_ifcvt
4520
4521 } // anon namespace
4522
4523 rtl_opt_pass *
4524 make_pass_rtl_ifcvt (gcc::context *ctxt)
4525 {
4526 return new pass_rtl_ifcvt (ctxt);
4527 }
4528
4529 static bool
4530 gate_handle_if_after_combine (void)
4531 {
4532 return optimize > 0 && flag_if_conversion
4533 && dbg_cnt (if_after_combine);
4534 }
4535
4536
4537 /* Rerun if-conversion, as combine may have simplified things enough
4538 to now meet sequence length restrictions. */
4539 static unsigned int
4540 rest_of_handle_if_after_combine (void)
4541 {
4542 if_convert (true);
4543 return 0;
4544 }
4545
4546 namespace {
4547
4548 const pass_data pass_data_if_after_combine =
4549 {
4550 RTL_PASS, /* type */
4551 "ce2", /* name */
4552 OPTGROUP_NONE, /* optinfo_flags */
4553 true, /* has_gate */
4554 true, /* has_execute */
4555 TV_IFCVT, /* tv_id */
4556 0, /* properties_required */
4557 0, /* properties_provided */
4558 0, /* properties_destroyed */
4559 0, /* todo_flags_start */
4560 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
4561 };
4562
4563 class pass_if_after_combine : public rtl_opt_pass
4564 {
4565 public:
4566 pass_if_after_combine (gcc::context *ctxt)
4567 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4568 {}
4569
4570 /* opt_pass methods: */
4571 bool gate () { return gate_handle_if_after_combine (); }
4572 unsigned int execute () { return rest_of_handle_if_after_combine (); }
4573
4574 }; // class pass_if_after_combine
4575
4576 } // anon namespace
4577
4578 rtl_opt_pass *
4579 make_pass_if_after_combine (gcc::context *ctxt)
4580 {
4581 return new pass_if_after_combine (ctxt);
4582 }
4583
4584
4585 static bool
4586 gate_handle_if_after_reload (void)
4587 {
4588 return optimize > 0 && flag_if_conversion2
4589 && dbg_cnt (if_after_reload);
4590 }
4591
4592 static unsigned int
4593 rest_of_handle_if_after_reload (void)
4594 {
4595 if_convert (true);
4596 return 0;
4597 }
4598
4599
4600 namespace {
4601
4602 const pass_data pass_data_if_after_reload =
4603 {
4604 RTL_PASS, /* type */
4605 "ce3", /* name */
4606 OPTGROUP_NONE, /* optinfo_flags */
4607 true, /* has_gate */
4608 true, /* has_execute */
4609 TV_IFCVT2, /* tv_id */
4610 0, /* properties_required */
4611 0, /* properties_provided */
4612 0, /* properties_destroyed */
4613 0, /* todo_flags_start */
4614 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
4615 };
4616
4617 class pass_if_after_reload : public rtl_opt_pass
4618 {
4619 public:
4620 pass_if_after_reload (gcc::context *ctxt)
4621 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4622 {}
4623
4624 /* opt_pass methods: */
4625 bool gate () { return gate_handle_if_after_reload (); }
4626 unsigned int execute () { return rest_of_handle_if_after_reload (); }
4627
4628 }; // class pass_if_after_reload
4629
4630 } // anon namespace
4631
4632 rtl_opt_pass *
4633 make_pass_if_after_reload (gcc::context *ctxt)
4634 {
4635 return new pass_if_after_reload (ctxt);
4636 }